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ABSTRACT
Vessels entering and leaving a port follow a route con-
sisting of waypoints. When a vessel is at one of these
waypoints the vessel traffic service system needs to know
the estimated time of arrival to the next waypoints. This
research compares a variation of machine learning models
in order to find the model best suited for short term vessel
ETA prediction.
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1. INTRODUCTION
Vessels arrive and leave ports many times a day. This
number is growing with the increasing amount of trans-
portation of goods, however the capacity of a port is lim-
ited. This capacity is largely limited by the amount of
vessels that can be in a waterway at the same time and
the number of available docks for loading and unloading
vessels[6].

When a vessel arrives at, or leaves, a port they are assigned
a route from/to one of the docks. This route consists of
multiple waypoints within the port. Upon assignment of
the route the Estimated Time of Arrival (ETA) is given
for each of the waypoints, including the final destination.
The ETA between two waypoints is currently calculated
once a day based on the Actual Time of Arrival (ATA)
of the previous days. The problem with this method of
calculating the ETA is that this ETA will be the same
regardless of the vessel type, time of day, draught or any
other variables. The result is an often inaccurate ETA
prediction.

An inaccurate ETA prediction results in delays in the time
it will take to unload an arriving container ship. Based on
the predicted ETA of the vessel to the dock manpower
will be sent to that dock to help with the mooring of the
ship and unloading and/or loading the ship. However if
the ship arrives before the ETA the ship may have to wait
until the dock is ready for mooring, potentially blocking
part of the waterway. On the other side if the ship arrives
after the ETA the dock remains unavailable for other ships
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while not being unused. By having an accurate ETA pre-
diction there is as little delay as possible and the process of
unloading and loading will take less time resulting in less
time the dock is unavailable for other vessels. Because of
this more ships will be able to deliver or collect their loads
[6]. Another example where the ETA is important is for
vessels that require towboats. Towboats are sent to vessels
to help them manoeuvre through the waterways. Based
on the predicted ETA of the vessel a towboat is sent for
help. Again if the vessel arrives too early it needs to wait
for the towboat, resulting in a vessel potentially blocking
part of the waterway and delays in the whole process. If
the vessel arrives too late the towboat needs to wait while
being unavailable for other vessels that may need help.

The difficulty of ETA prediction lies in the many variables
that can influence the time it takes for the vessel to arrive.
Because there are so many variables the solution of look-
ing at the ATA’s of the previous days and using that to
calculate one ETA that will be the same for every vessel
that day is too inaccurate.

To address the problem above, this research compares
multiple machine learning models, using different machine
learning methods, which are trained with historical data
in order to predict the travel time of vessels.

1.1 Research questions
The goal of this research is to answer the following research
questions:

• How can the use of machine learning improve the
Estimated Time of Arrival prediction for vessels?

• Among the wide range of machine learning models,
is there any particular method which can typically
improve the ETA prediction performance?

2. RELATED WORK
There have been many studies in the field of ETA predic-
tion with the use of machine learning [10][3][9][7][1]. The
most similar research done is by I. Parolas[7]. One of the
key differences with this research is the time window of the
prediction. This research focuses on ships that are in or
about to enter the port. While in the research done by I.
Parolas the vessel was at sea possibly multiple days away
from the destination. The data used was GPS data com-
bined with weather predictions. Because of the smaller
time frame the data used for this research needs to be
more accurate. This is done by using data from a vessel
traffic service system.

In the studies done on ETA prediction the models that of-
ten performed well were: Gradient boosting, Support Vec-
tor Machines, Long Short Term Memory and Kalman Fil-
tering [1][10][4][3][9]. Kalman Filtering was mostly used in
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combination with other machine learning methods. These
ensemble models consisting of multiple machine learning
methods often out performed single method models [3][9][10].
In these ensemble models often consisted of a method for
learning from historical data and a method for learning
about the current situation. This way the model can
find trends through the historical data and adjust these
findings to the situation at that moment, which is useful
when for example an accident has occurred and a route is
blocked off.

In addition models consisting of Neural Networks often
performed the best but requires much more data compared
to other models [10][4]. In the study by Z. Wang, M. Liang
and D. Delahaye[9] data clustering had a positive result on
the predictions of the models, DBSCAN outperformed K-
means++ as the method of clustering.

3. PRELIMINARY
In this section the preliminaries for the various machine
learning methods used are given.

3.1 Support Vector Machine
Support Vector Machines (SVM)[5] considers each data
point into a multi-dimensional space. The dimension of
this space is equal to the number of features of the data
set. The SVM then tries to create a hyperplane in the
space that separates the classes of the data. If this is
not possible the SVM adds dimensions to the data space
in such a way that it becomes possible. The data is not
actually transformed to a higher dimension but it is pro-
cessed as if it was in this higher dimension, this is called
the kernel trick. SVM’s are often used for classification of
data but can be used for regression as well. When used for
regression they are often called Support Vector Regression
(SVR)[2].

3.2 Gradient Boosting
Gradient Boosting[11] uses a combination of multiple de-
cision trees for classification or regression. The decision
trees are created such that each decision tree improves
the prediction of the previous decision tree based on the
biggest mistakes that previous decision tree makes. This
way each subsequent decision tree further improves the
prediction until the maximum number of trees is reached
or no improvements can be made based on the training
data.

3.3 K-Nearest Neighbours
K-Nearest Neighbours (KNN)[8] plots each data point into
a multi-dimensional space, similar to the Support Vector
Machine. KNN however uses these data points when a
new set of data arrives. A new data point is placed into
the same space and then the nearest points are used to
determine the result of the new data. K determines at
how many nearest points the algorithm looks. If K is 1
the result will be the result of the nearest point. If K is
10 then the nearest 10 points are used to determine the
result.

4. METHODOLOGY
In this section the different steps taken during the research
are discussed.

4.1 Data sets
For this research a total of 3 data sets are used. Each of
the three data sets is confidential, meaning neither details
on the structure or actual data of the original data sets
will be mentioned in this paper. The first data set used

is a test data set. This test data set consists of simulated
data based on real data. This test data is good enough for
understanding what potential features are available and
creating test models. However, since the data within the
data set is simulated and contains repeated simulations of
roughly the same tracks, this test data set can not be used
to test the effectiveness of the different machine learning
methods. The repeated simulations allows for learning this
repetition which would not be the case for real data.

The second and third data sets consist of real data gath-
ered from one port each. These two data sets became
available during the research, data set 2 about one third
and data set 3 about two thirds into the research. All
three data sets are SQL databases with very similar struc-
ture. Whenever a vessel arrives or leaves the port it is
assigned a route containing waypoints. When this route is
created the ETA to each of the waypoints is calculated by
the system. This route with the waypoints is then stored
in the port management part of the database. A separate
system tracks the vessels movement in the port and stores
this track, again with waypoints, in its own part of the
database. In this case the route of the vessel is the as-
signed path the vessel should follow and the track consists
of the actual positions where the vessel was. The port
management database then updates the stored route with
data from the track.

The result is two different sub-databases, the port man-
agement part which we will call PM and the vessel tracking
part we will call VT. Both the PM and the VT part con-
tain similar data after the vessel finishes its route. There
are however a few key differences. First of all the PM
contains the current systems predicted ETA while the VT
does not. On the other hand the VT contains a vessels
speed and direction at each of the waypoints while the
PM does not.

In Table 1 an overview of the sizes and time frames of the
different data sets can be found. Here 2 PM rec and 3
PM rec contains only recent data, past 3 years, instead of
the entire data set. As can be seen in the Table 1 the 1
VT data set is much larger in size because most of it is
simulated data.

At the start of this research the VT data set was mostly
used. This was because the VT data sets include the ves-
sels speed and direction at each of the waypoints. How-
ever, as only the PM data sets include the current systems
ETA prediction, by using the VT data set there is no pos-
sibility of comparing the result of the new models with the
result of the current system.

Data set Start End Tracks Waypoints

1 VT 2019-07 2020-04 1.277.956 4.603.659

1 PM 2019-07 2020-04 23.868 184.772

2 VT 2017-04 2020-04 211.656 470.100

2 PM 2010-01 2020-04 69.477 690.187

2 PM rec 2017-04 2020-04 18.420 177.350

3 VT 2019-05 2020-04 39.732 145.805

3 PM 2012-10 2020-04 61.239 622.235

3 PM rec 2017-04 2020-04 16.595 195.501

Table 1. Table containing the different data sets
used with the start and end date of the time frame
and the number of tracks and waypoints.

2



When data set 3 became available the change was made
from using the VT data set to the PM data set. This is
partially due to the before mentioned reason of compar-
ing to the current systems performance. The main reason
however is that in this new data set the VT part for about
two out of three tracks does not contain a reference to a
vessel. Without this reference it is not possible to obtain
vessel details, such as depth, width or length.

4.2 Preprocessing
Before the data can be used as input into the models it first
needs to be reprocessed. This section contains the different
steps taken for obtaining a use-able data set. While taking
a look at the different steps we will take data set 3 PM as
an example of what the effects are. The total number of
tracks in data set 3 PM is 61.239.

The first step is to filter out old data. Only data from the
past 3 years will be used. As the data becomes older it
becomes less relevant to current situations. For example
if a new dock is added the route to that dock may become
busier increasing the time a vessel takes to travel along
that route. Small changes like this over a long period of
time can drastically change the travel times of vessels in
certain situations. Because of this learning from older data
may worsen the models. When only taking tracks of the
previous 3 years the number of tracks becomes 16.595.

The data from the different data sets do contain missing
data as well. An example of this is a track that consists of
certain waypoints, however some of the waypoints might
be missing. To fix this problem we will remove all tracks
that contain at least one waypoint without a waypoint ID.
After applying this filter to all the tracks there are 13.911
tracks remaining.

For the next step we will take a look at the distribution
of the number of waypoints each track contains. This dis-
tribution can be found in Table 2. There are 355 tracks
that only contain one waypoint. The goal of the model
is to predict the travel time between waypoints, however
if there is only one waypoint this cannot be done. This
means all tracks that contain only one waypoint are re-
moved resulting in 13.556 remaining tracks. For improving
the accuracy of the models we will be using two starting
waypoints instead of only one. This will be explained in
the next section, Feature Selection. This does require each
track to have at least two starting waypoints and one tar-

Waypoints per Track Count

1 355

2 2153

3 930

4 1590

5 2013

6 1871

7 1990

8 2037

9 971

10 0

11 1

Table 2. Table containing the distribution of way-
points per track.

get waypoint, in total at least 3 waypoints in a track. After
removing the 2153 tracks containing only two waypoints
there are 11.391 tracks remaining.

In addition to the track data we will also use vessel details
as features for the models. In order to use track data in
combination with vessel data each track requires a link to a
vessel. Again this link is sometimes missing meaning those
tracks with a missing link to a vessel need to be removed.
For the example data set this means a total of 4471 tracks
need to be removed. The result is 6920 remaining tracks.

Sometimes when a track has a link to a vessel that vessel
has some missing details that are needed as features for the
models. In this case a total of 115 tracks have a link to
a vessel with missing details. After removing these there
are 6805 tracks remaining.

Using the remaining tracks, for each track the first and
second waypoint in the route are used as the starting way-
points. Then each of the next waypoints in the route are
used as the target waypoint to which the ETA is to be
predicted. For example a track with a route containing 7
waypoints will result in 5 data points each using the first
two waypoints as the starting waypoints and each having
a different target waypoint.

Each of the features used for the model is then scaled such
that the mean value for that feature is 0 and the standard
deviation is 1. This is done to normalise the data and help
speed up some of the models.

Finally the data set is split into a training and test set.
This is done based on the timestamp of each data point,
the training set contains the oldest 80 percent of the data
and the test set contains the 20 most recent percent. Since
the data set is from the previous 3 years, if we assume the
number of data points is uniform over time, this means
that the last 0.6 years of data is used for testing and ev-
erything before is used for training the models.

4.3 Feature selection
The current ETA prediction system often has inaccurate
predictions because it makes the same prediction regard-
less of time of the day and vessel type. By using machine
learning we can use the time and vessel details to improve
the prediction of the models. In addition to using vessel
details and the time the models will receive three way-
points. The first waypoint is the current waypoint where
the vessel is when the prediction is made. The second
waypoint is the previous waypoint, the waypoint the ves-
sel visited before the current waypoint. The third is the
target waypoint to which the travel time will be predicted.

By using three waypoints instead of only two, current and
target waypoint, it becomes possible to add the distance
and travel time between the current and previous way-
point as features for the models. With these features the
model is able to take into account the speed over the last
segment for its prediction. When comparing the models a
comparison between using two or three waypoints as input
is present as well.

For the input of the models the following features are used:

• Time:

– Month

– Day

– Hour

• Vessel details:
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– Width

– Length

– Depth

– Type

• Previous waypoint:

– ID

– Longitude

– Latitude

– Distance to current waypoint

– Travel time to current waypoint

• Current waypoint:

– ID

– Longitude

– Latitude

– Distance to target waypoint

• Target waypoint

– ID

– Longitude

– Latitude

This results in a total of 19 features. For Gradient Boost-
ing this higher amount of features is not a problem as for
each decision tree it selects the best feature to use. For the
SVM on the other hand, already being the slowest model
among the 3, may become slower as for each new feature
an additional dimension is needed.

Feature Rank

Month 19

Day 15

Hour 17

Width 10

Length 6

Type 18

Depth 14

Previous id 8

Latitude previous 13

Longitude previous 11

Distance from previous 9

Time from previous 5

Current id 16

Latitude current 12

Longitude current 7

Target id 4

Latitude target 2

Longitude target 3

Distance target 1

Table 3. Table containing the features used ranked
by their importance according to the Gradient
Boosting model.

In order to reduce the number of features, the Gradient
Boosting model can be used to order the features by their
importance. This ranking is shown in Table 3. In this
case the lower ranked features are more important to the
model. When comparing the results of the different models
using all 19 features is compared to only using the 10 most
important features.

4.4 Parameter tuning
In order to find the best parameters for each of the models
a grid-search is performed on the different combinations
of parameters. First for each parameter of a model a list
of possible values was created. Then for each possible
combination of parameters the model is tested. This is
done using 5-fold cross validation.

For the SVR model the best parameter combination uses
the Radial Basis Function (RBF) kernel function in com-
bination with a regularization parameter of 1000, epsilon
of 50 and a gamma of 0.01. The Gradient Boosting model
performs best by using a learning rate of 0.1 in combi-
nation with a max depth of 3 for the individual trees.
The KNN model performs best when using a K, number
of neighbours to look at, of 11. Furthermore the KNN
model has the option of using the distance to the nearest
neighbours when determining the result, meaning the data
points that are more similar become more important. The
other option is to not use this distance and instead uni-
formly use the nearest neighbours in predicting the result.
Both options performed similarly in the grid-search. Be-
cause of these similar results both models are used when
comparing the different models.

4.5 Comparison
In order to compare the different models each model is
first trained on the training data set. After the training
is complete the models receive the test data set and make
their predictions. These predictions are compared with
the actual travel times and the differences are the errors.
The Root Mean Squared Error (RMSE) is then calculated
for each of these models. The RMSE is obtained by taking
the root of the Mean Squared Error (MSE). The MSE is
obtained by taking the mean after squaring each error. In
addition to the RMSE the errors are also shown in a graph
in order to see the distribution of the errors.

5. RESULTS
This section contains the results of comparing the different
models. This includes the comparison between the RMSE
for each model and graphs showing the error distributions
of the different models used.

Table 4 shows a comparison between the different models
with the achieved RMSE and the running time necessary
to train and make the predictions. These results show that

Model RMSE Time in Minutes

SVR 9.48 1.0957

GB 8.84 0.0603

KNN dist 10.12 0.0164

KNN uni 10.29 0.0135

Current 72.55 -

Table 4. Table containing the RMSE and execu-
tion time for each model. Includes the current
systems RMSE.
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the Gradient Boosting model achieved the lowest RMSE
followed by the SVR model. The SVR model however
required much more time to train especially compared to
the KNN models. The current systems RMSE is included
as well and is at least 7 times as high as the new models.
This can largely be explained by a few predictions of the
current system that are almost a year off. Because of this
large error of a few predictions the RMSE becomes much
higher as well.

Figure 1. Model error distribution comparison us-
ing all 19 features and 2 starting waypoints. The
y-axis is the error in minutes and the x-axis is the
percentage of the data set after sorting by error.

Figure 1 shows the error distribution for each of the mod-
els when using all 19 features and 2 starting waypoints.
Each model has the errors resulting from the predictions
made during testing sorted and this is shown in the figure.
For each model the lowest errors are shown on the left and
increase along the x-axis. The y-axis is the error in min-
utes and the x-axis is the percentage of the data set. For
example the area between x = 0 and x = 0.2 contains the
20% lowest errors for each model. The yellow line labeled
”Real” contains the actual travel time distribution. The
blue line labeled ”Current” is the current systems error
distribution. The other lines show the error distribution
for the different models with KNN dist using the distance
to the neighbours and KNN uni being uniform over all
neighbours.

Figure 2 shows the same graph as in Figure 1, however
the y-axis is now a logarithmic scaling. By changing the
y-axis to be logarithmic the difference between the models
becomes more visible. One clear conclusion that can be
drawn from this figure is that the different models always
seem to have lower errors compared to the current system,
the blue line.

Figure 2. Model error distribution comparison us-
ing all 19 features and 2 starting waypoints with
logarithmic scaling on the y-axis. The y-axis is the
error in minutes and the x-axis is the percentage
of the data set after sorting by error.

Figure 3. Comparison between the new models
and the current system. The y-axis is how many
percent the new models error is lower compared to
the current system. The x-axis is the percentage
of the data set after sorting by error.

In Figure 3 this conclusion is confirmed. This graph shows
how many percent each models errors are lower compared
to the current systems errors. Only at the first 1 percent
the current system has slightly lower errors. At this point
the error of each model and the current system is close to
0 minutes meaning that this slight difference is at most a
few seconds. At around x = 0.5, the middle of the error
distribution, each model has between 35% and 42% lower
errors and after x = 0.9 this goes up to about 75%. This
is a large improvement where instead of an error of 40
minutes the error becomes only 10 minutes when using
one of the machine learning models. When comparing the
different machine learning models the figure shows that
the SVR model performs the best from x = 0 to about x
= 0.85 after which the Gradient Boosting model performs
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the best.

Figure 4. Comparison between the SVR and Gra-
dient Boosting models. The y-axis is how many
percent the SVR model’s error is lower compared
to the Gradient Boosting model. The x-axis is the
percentage of the data set after sorting by error.

Figure 4 shows that this is indeed true with the SVR model
achieving around 5% lower errors compared to the Gradi-
ent Boosting model from x = 0 to about x = 0.85. After
x = 0.85 the SVR has higher errors.

Model RMSE Time in Minutes

SVR 10.35 0.7015

GB 9.33 0.0370

KNN dist 10.12 0.0051

KNN uni 9.921 0.0049

Table 5. Table containing the RMSE and execu-
tion time for each model when only using the 10
most important features.

The Table 5 shows the RMSE and execution time when
only using the 10 most important features according to
the Table 3. Compared to using all features the RMSE is
slightly higher for the SVR and Gradient Boosting mod-
els, while for the KNN uni there was a slight improvement.
The time required for training was also much lower com-
pared to the time required when using all 19 features.

Figure 5 shows the same graph as Figure 2 except with the
error distribution obtained from only using 10 features.
The KNN models now perform better compared to the
SVR and Gradient Boosting models for the first 80% after
which the models perform similar again.

Table 6 contains the RMSE and execution time when using
all features but only one starting waypoint. Compared
to using two starting waypoints the RMSE is now much
higher for all models. The Gradient Boosting model does
still perform the best out of all models.

Figure 5. Model error distribution comparison us-
ing 10 features and 2 starting waypoints. The y-
axis is the error in minutes with logarithmic scal-
ing and the x-axis is the percentage of the data set
after sorting by error.

Model RMSE Time in Minutes

SVR 17.51 1.0291

GB 16.37 0.0538

KNN dist 17.05 0.0126

KNN uni 17.11 0.0124

Table 6. Table containing the RMSE and execu-
tion time for each model when only using 1 starting
waypoint.

Figure 6. Model error distribution comparison us-
ing all features and 1 starting waypoints. The y-
axis is the error in minutes with logarithmic scal-
ing and the x-axis is the percentage of the data set
after sorting by error.

Figure 6 shows the error distribution when only using one
starting waypoints. In this figure the machine learning
models do consistently have lower errors compared to the
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current system, however the difference is much lower now
compared to before.

6. CONCLUSION
The results show that machine learning can definitely be
used to improve ETA prediction. Out of the three meth-
ods tested in this research Gradient Boosting performed
the best with the lowest RMSE while having reasonable
time required for both training and making a prediction.
The SVR model performed good as well, even out per-
forming the Gradient Boosting model for about 85% of
all predictions, however the Gradient Boosting model per-
formed better when the errors became larger as 10 min-
utes. Furthermore in order to achieve the best results all
features should be used, including two starting waypoints.
This does increase the training time of the models slightly
which can become important when using even more fea-
tures or larger data sets.

There is a lot of future work that can be done for this re-
search. This includes trying out different Machine Leaning
methods such as deep learning as well as ensemble ma-
chines that combine two or more Machine Learning meth-
ods. One example for such an ensemble model that was
used in literature was the combination of a model learned
from historical data such as a SVR together with a Kalman
Filter that adjusts the prediction of the SVR according to
the current situation in the port.
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