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ABSTRACT

Communication networks should be resilient to be able to
offer an acceptable level of service even in the face of chal-
lenges. However, how to measure the network resilience is
not straightforward. Moreover, the resilience of the net-
work depends on the type of risk it is exposed to, e.g.,
targeted attacks or random failures, and the scale of the
risk, e.g., small or large scale failures. Therefore, in this
paper, we first overview the literature on the network re-
silience metrics and the potential risks a network might
experience. As the resilience of a communication system
depends on the resilience of the levels it relies upon, we
focus on the node and link level resilience. Via simula-
tions, we analyse the impact of the resilience of links and
nodes on the network resilience. Our analysis reveals that
link placement in networks has a large influence on the re-
silience and should therefore be considered carefully when
designing resilient wired networks.
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1. INTRODUCTION

The Internet, or more generally speaking: communication
networks, have become an essential part of our daily lives.
These networks are used for a variety of things, most no-
tably they provide access to information and a means of
communication with others. Numerous instances, such as
governments, depend on the functioning of the Internet
for their daily operation and disaster response. Therefore,
the Internet may be classified as a critical infrastructure:
an asset that is essential for the functioning of a society
and economy. An example on how the Internet is a criti-
cal infrastructure is the dependency of the electrical grid
on the Internet and vice versa. The Internet relies on the
electrical grid for power, whilst the electrical grid depends
on the Internet for SCADA (supervisory control and data
acquisition) [5].

As the dependence on the Internet increases, there is also
an increased vulnerability of communication systems to
various problems. If an incident occurs where part of the
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Internet goes down, it creates large problems for other sys-
tems. Therefore, measures should be taken to ensure that
even when part of the system fails, this should not have a
significant impact on the functioning of the network, which
we call resilience. A resilient system can be described as
“one that continues to offer an acceptable level of service
even in the face of challenges, whatever the nature of the
challenge that it faces” [26]. As the goal is to minimise the
system failures, it is necessary to ensure that communica-
tion networks are as resilient as possible when faced with
a number of challenges. An example of such a challenge is
a natural disaster or human error.

Significant research has already been done on methods
and frameworks to ensure resilience in communication net-
works [19], but significantly more work needs to be done
to understand and define resilience metrics [9, 6] as well
as on how to quantify the resilience of a network [8]. As
a communication network consists of multiple levels, the
resilience of each level builds on the resilience of the levels
it depends upon [9]. Not much is known yet on the specific
impact each level has on the total resilience. Therefore,
the purpose of this paper is to get a deeper understand-
ing of the resilience specifically on the link and node level
and to quantify the impact of this resilience on the over-
all resilience. More specifically, we will address the fol-
lowing three questions: (i) What metrics can be used to
quantify link and node level resilience in a communication
network?, (ii) Which risks and challenges might a network
experience that test the resilience of a the network?, and
(iii) How does the link and node level resilience compare
for a communication netowkr with different links.

The rest of the paper is organized as follows. First, Section
2 provides background on the network resilience, whereas
Section 3 elaborates on the metrics currently being used
for resilience quantification. Section 4 provides an overview
of challenges that networks might experience and in Sec-
tion 5 the methodology for the simulations is explained.
Finally, Section 6 discusses the results and concludes with
a list of future research directions.

2. BACKGROUND

As mentioned before, resilience is the ability of the network
to provide and maintain an acceptable level of service in
the face of various faults and challenges to normal opera-
tion. In telecommunication, this acceptable level of service
is usually defined in a Service Level Agreement (SLA) be-
tween the customer and the network service provider [6].
This agreement specifies the service levels that are consid-
ered acceptable to the customer, as well as the service lev-
els where the service is impaired or unacceptable. Faults
and challenges that the network faces, such as for exam-
ple a natural disaster, impact the level of operation for
the network, which in turn can cause the level of service



to degrade to an impaired or unacceptable state.

In order to evaluate the resilience of a network a resilience
state space model was created by Hutchison et al. [9],
which has also been used in a variety of other studies [12,
19]. This state space model is created in a three step
process. First, the operational condition of the network
is represented using metrics, which are called operational
metrics as they explain the operational state of the net-
work. Second, the level of service that is being provided
by the network is quantified using service parameters. As
the third and final step these operational metrics and ser-
vice parameters are aggregated into network states, which
represent the network. A representation of the state space
of resilience in which the difference between a resilient ser-
vice and a non-resilient service can be seen is Figure 1.
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Figure 1: Resilience State Space, adapted from [9, 6].

As the network is exposed to challenges, the network state
transforms from one state to another based on how the
service parameters and operational metrics are impacted
by the challenge. Therefore, we evaluate the resilience of
a given network based on their transitions in the network
state when exposed to challenges.

As already stated above, operational metrics explain the
operational state of a given network. Different properties
can be used to derive operational metrics, all dependent
on what type of network is being used and at which level of
the network the resilience is being evaluated. An example
of an operational metric on the physical level of a network
is propagation loss.

The operational state of a network can be represented by
a set of operational metrics. The operational state space
in which this operational state is represented can be di-
vided into three regions: normal, degraded and severely
degraded, which specify the level of operation of a net-
work. State boundaries for the operational metrics are
defined to determine when a state transition occurs.

When an event happens that degrades the operational
state of the network, due to impacting one of the oper-
ational metrics, two things can happen: a state transition
or a sub-state transition. When the event results in a state
transition, the level of operation of the system transitions
from one state to another. An example of this is a state
transition from normal operation to partially degraded op-
eration. When a sub-state transition occurs, one or more
of the operational metrics are impacted, but not heavily
enough to cause transition to another state. For example,

the state boundary between normal and partially degraded
service for the operational metric ’delay’ is 200ms. The
value of this state boundary depends on the application,
as 200ms is not long for a data download, but is too long
for mission-critical applications. A network with a delay
of 150ms is challenged and the delay is increased. If the
delay stays below 200ms, only a sub-state transition will
occur, but if the delay exceeds 200ms a state transition
will occur and the operational state of the network will
shift from normal to partially degraded.

Service parameters specify the level of service that is be-
ing provided by the network, an example of a service pa-
rameter is latency. When the latency of a VoIP network
increases due to challenges, the service level might become
unacceptable.

When a resilient service and a non-resilient service face the
same level of degradation of the operational parameters
due to a fault or disturbance of the normal operation, the
resilient service will have less degradation of the service
parameters than the non-resilient service [19]. In other
words, we can define the resilience of a network as the
slope between two states of a network: the initial state
and the state when a challenge occurs. The lower the
slope, the higher the resilience.

In resilience research, networks are abstracted as graphs.
We assume a network of N nodes and E edges is defined
as graph G = (N, &). The set of nodes in the network is
denoted by N' = {n1,...,N}. Each node is defined by a
set of properties, e.g., number of outgoing links, number
of neighbours, CPU, storage capacity and failure proba-
bility. We denote an edge between node i and node j
by ei;. The set of edges in the network is denoted by
£ C {eijl(ni,n;) € N* An; # n;}. Each edge is also
defined by a set of properties, e.g. bandwidth, capacity,
centrality and failure probability.

3. RESILIENCE METRICS

As stated in the previous section, in order to evaluate the
resilience of a network, operational metrics and service pa-
rameters are needed. Resilience can be evaluated at mul-
tiple levels of the system and the resilience of the higher
levels of the system depends on the resilience of the lower
levels [9]. Also, in multilevel resilience analysis, the service
parameters of one level become the operational metrics of
the level above. In other words, the service provided by
a given level becomes the operational state of the level
above [12]. For example, when looking at the 7 layers of
the Open System Interconnection (OSI) model, the ser-
vice parameters of the first level, which is the physical
level, in turn are the operational metrics for resilience on
the second data link level. For our research on node and
link level resilience we will be focusing on the third layer
in the OSI model, the network layer, having to do with
network topology, routing and policy [13].

The European Network and Information Security Agency
(ENISA) has done a study with a group of stakeholders on
resilience measurements, and on what metrics can be used
to quantify resilience [6, 7]. A number of these metrics
have a specific focus on the links and nodes of a network,
such as operational availability, operational reliability, de-
lay variation (jitter), packet loss and link/node failure.
Link/node failure is an indicator for the robustness of a
network to link and or network nodes failures and is ex-
pressed as a network performance parameter in function
of the number of links, network nodes or components of
the network nodes that are removed [7].



Jabbar et al. [12] also used some metrics specifically aimed
at link and node level resilience in their research, e.g. the
relative number of connected components in a network
as well as the clustering coefficient. In a study done by
Rosenkrantz et al. [25] several other node and edge con-
nectivity metrics are mentioned, such as the average node
degree, the number of components and the largest com-
ponent size. Simulation analysis done by Cetinkaya et al.
[3] evaluates the network performance by using the aggre-
gate packet delivery ratio metric. Hop count and system
stability are metrics used in research by Ibrahim et. al
[10].

From all the previously mentioned metrics, metrics such
as the clustering coefficient, average node degree, relative
largest component size and number of connected compo-
nents seem to be the ones most commonly used.

The average node degree is the number of edges per node
in a graph. Assume graph G has N nodes and E edges, the
average node degree is equal to deg(G) = % The clus-
tering coefficient measures the degree to which nodes in a
graph tend to cluster together. Therefore, it measures how
connected a node’s neighbours are to one another. This
clustering coefficient for node i: (C}), can be calculated by
dividing the number of edges connecting i’s neighbours by
the total number of possible edges between i’s neighbours.
The network clustering coefficient C' is the average of all
the local clustering coefficients: C' = £ 3" | C;. The rel-
ative largest component size is the size of the largest con-
nected component compared to the total number of nodes
in the network. This is calculated by dividing the number
of nodes in the largest connected component by the total
number of nodes in the network.

4. NETWORK CHALLENGES

The need for resilience in a communication system can be
derived from the catastrophic damages resulting from a
non-resilient system being faced with challenges. A chal-
lenge is any characteristic or condition that impacts the
normal operation of a network [26]. A challenge can trig-
ger the fault — error — failure chain, ultimately result-
ing in failure of the system. The challenge triggers a fault,
which in turn could cause an error. If this error propagates
it may lead to the failure of the network service. There-
fore, in order to design a resilient network, it is important
to understand how the network behaves under these chal-
lenges.

As Figure 2 shows, challenges to a communication network
can be grouped into seven categories [4]: large-scale dis-
asters, socio-political and economic challenges, dependent
failures, human errors, malicious attacks, unusual but le-
gitimate traffic and environmental challenges.

Large-scale Disasters

This challenge category includes a large number of chal-
lenges to communication systems, which can be split into
two groups: disasters with natural causes and disasters
with human-made causes. Large-scale natural disasters
can be caused by terrestrial events such as an earthquake
or fires, meteorological events such as hurricanes and by
cosmological events such as solar storms. Human-made
disasters are the challenges with big impact that are caused
by human action, either by accident or by deliberate ma-
licious intent, for example when early warnings in the op-
eration of a system are ignored. The impact of large-scale
disasters is often enormous; regions impacted are often big
and the time needed to undo the damage done is usually
long.

~—» large-scale disasters
|—» socio-political & economical

l—> dependent failures

challenge categories [—>»human errors
—>malicious attacks

'—» unusual traffic

“— environmental changes

Figure 2: Taxonomy of major challenges [4, 16].

Socio-political and Economic Challenges

These challenges are specifically caused by human actions,
with the intent of social, political or economic gain, such
as gaining an advantage on the economical markets [2].
An example of a political challenge to a communication
system is the DDoS attack against the country of Estonia
by Russia. The Estonian government decided to move a
statue honouring fallen WWII soldiers, angering the Rus-
sians and causing them to start DDoS attacks on all major
networks of Estonia. In the end Estonia was unable to stop
the attack and ultimately decided to cut the Internet con-
nection with the outside world so that Estonian residents
could continue to use the national services [14].

Dependent Failures

These challenges occur when a system on which a net-
work is dependent fails, causing a failure in the system it-
self. The failure of the supportive system causes a failure
in the dependent system, therefore causing a disruption.
These kinds of failures have the possibility to have cascad-
ing effects, resulting in large scale damage and therefore
changing to a Large-scale disaster. An example of a de-
pendent failure is the failure of the electrical grid when
there is a failure in the Internet, as the electrical grid re-
lies no the Internet for SCADA (supervisory control and
data acquisition) [5].

Human Errors

Human actions can also lead to failures of a system. These
actions are usually performed without malicious intent and
can either be accidental (non-deliberate) or due to incom-
petence (deliberate). An example of such a challenge is the
”This site may harm your computer” Google accident. On
January 31°% 2009, almost every search result from Google
led to a ”"This site may harm your computer’-message.
Normally these messages are used to signal the user that
they are about to enter a website that may possibly harm
their computer. This accident occurred due to a simple
human error, as the list with these harmful web addresses
was edited and a single ’/’ was mistakenly added, causing
all websites to be marked as possibly malicious [17].

Malicious Attacks

These are challenges that are deliberately targeted to cause
disruption to a system, with malicious intent. An example
of such a challenge is the use of the Stuxnet worm as an
attack on the Iranian nuclear facilities. The worm infected
the programmable logic controllers used to control the cen-
trifuges that enrich uranium, causing these centrifuges to
self-destruct [20].

Unusual but Legitimate Traffic

These challenges are called flash crowds, in which a large
number of users makes a request to access a service at the
same time. The effects of flash crowds look similar to that



of a DDoS-attack, however unlike DDoS-attacks they do
not have a malicious intent. An example of a flash crowd
is the unavailability of a large number of news websites
after the 9/11 terror attack on the World Trade Center.
Due to the large amount of people wanting to know what
happened, a flash crowd occurred, causing the website of
a number of news stations to be unresponsive [23].

Environmental Challenges

The final category of challenges has to do with the net-
work environment itself. These challenges include unpre-
dictably long delay, weak connectivity of wireless channels
and mobility of nodes.

All these challenges can also be characterised based on
their time duration and the spatial region, both regarding
the challenge itself and the impact afterwards. For exam-
ple, the time duration of an earthquake, which only takes
a few seconds, differs largely from the time duration of a
hurricane, which can take hours. However, both have an
impact on a large spatial region, and the time duration of
this impact can take days.

Some challenges could fall into multiple categories of chal-
lenges, depending on their scale, goal and target. For ex-
ample, the DDoS-attack on the Estonian government falls
under both the socio-political and economic challenges cat-
egory as well as the malicious attack category.

5. METHODOLOGY

In this section we will be describing the method used to
address the third research question. To compare the link
and node level resilience for networks with different types
of links, as stated in RQ3, we will be creating and using
a simulator. This simulator will be used to simulate a
number of challenges on different networks to determine
the impact on the network resilience of these challenges.

5.1 Network Topologies

We will be evaluating the performance of three separate
topologies under different challenges. The first topology is
the Surfnet inferred topology (shown in Figure 3a), which
dataset we got from The Internet Topology Zoo from the
University of Adelaide [28]. The Surfnet network is the
backbone network of all institutions for higher education in
the Netherlands, which is used for communication between
the different institutions [27].

The second and third topology are synthetic topologies
generated using a topology generation tool called KU-
LocGen [11]. The topologies are generated with the same
number of nodes, all at the same geographic location as the
nodes in the Surfnet topology (shown in Figure 3b and 3c.)
Using the KU-LocGen generator these two topologies are
generated using the Waxman topology model [21], which
takes into account the geographic location of the nodes
when placing the links. Therefore, all three topologies
have the same nodes in the same locations, but they all
differ in link placement. The first synthetic topology, gen-
erated with the Waxman model with o = 0.4 and 8 = 0, 2,
has a lot more redundant links than the original Surfnet
topology. On the other hand, the second synthetic topol-
ogy, generated with the Waxman model with a = 0,19
and 8 = 0, 21, has around the same number of links as the
Surfnet topology, but the distance between the connected
nodes is much larger. Graph characteristics of all three
topologies can be found in Table 1.

5.2 Challenge Scenarios

As this research is specifically focusing on the effects of
resilience at the link and node level of a communication

Table 1: Characteristics of Network Topologies.

Surfnet | Syntheticl| Synthetic2
Number of | 50 50 50
Nodes
Number of | 73 118 65
Edges
Clustering 0.0958 0.1099 0.0579
Coefficient
Average 2.92 4.72 2.6
Node Degree
Average 4.364 2.784 4.219
Hopcount
Network 11 6 10
Diameter

network, we will be looking at challenges that may do di-
rect damage to these levels. We will be looking at three
different categories of challenges; malicious attacks, ran-
dom node/link failures and large-scale disasters, based on
the challenge categories from Section 4. In order to simu-
late the effects of these challenges on a network, we create
a number of challenge scenarios. Each of these scenarios
explains a challenge which will be simulated to occur to
the networks in the simulator.

The scenarios will be defined based on a selection of classes
from the challenge taxonomy defined by Cetinkaya et al.
[4] and the fault taxonomy developed by the IFIP 10.4
working group [1]. The following template has been cre-
ated based on these two taxonomies:

Challenge - Name of the challenge

Cause - The phenomenological cause of the challenge, can
either be human-made or natural.

Intent - The intent of the act challenge can either be de-
liberate, or non-deliberate.

Scope - The challenge can impact the nodes or links within
a network, or the entire geographic area of the network.
Simulations - Explanation of the simulation with regards
to where the node and/or link failures will occur.

We will consider three categories of challenges: malicious
attacks, random failures and large scale disasters. For ma-
licious attacks we simulate two attacks on critical nodes,
one targeting critical nodes based on node betweenness,
the other targeting on node degree, as well as one attack
on critical links. Which link or node fails is determined
by the criticality of the links/nodes, where the most crit-
ical ones fail first. For random failures, we simulate both
random node and random link failure within the system.
Which nodes and link fail in these simulations is deter-
mined randomly. These simulations are executed 50 times
for accuracy, and the 95% confidence intervals are shown
in the results. Finally, for large-scale disasters we simulate
large-scale failure in three separate areas of the network,
two of which are on the edges of the network, whilst the
third is in the critical centre of the network.

We consider the following six scenarios:

S1 Critical Node Attack using Node Between-
ness: This scenario simulates a human-made, de-
liberate attack on the network nodes. In the sim-
ulation, 1%-50% of the nodes will fail. The node
criticality is determined by the node betweenness, a
higher betweenness centrality indicates a higher node
criticality.

S2 Critical Node Attack using Node Degree: This
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Figure 3: Topologies used in simulation

scenario simulates a human-made, deliberate attack
on the network nodes. In the simulation, 1%-50% of
the nodes will fail. The node criticality is determined
by the node degree, a higher node degree indicates
higher node criticality.

S3 Link Attack using Link Betweenness: This sce-
nario simulates a human-made, deliberate attack on
the links in a network. In the simulation, 1%-50% of
the links will fail. The link criticality is determined
by the link betweenness, a higher betweenness cen-
trality indicates a higher link criticality.

S4 Random Link Failure: This scenario simulates a
human-made, non-deliberate failure of the links in a
network. In this simulation, 1%-50% of the links in
the network will fail.

S5 Random Node Failure: This scenario simulates a
human-made, non-deliberate failure of the nodes in
a network. In this simulation, 1%-50% of the nodes
in the network will fail.

S6 Large-scale disaster This scenario simulates a nat-
ural, non-deliberate failure of nodes and links in a
specific fixed geographic area. For each of the geo-
graphic areas coloured in Figure 3 all nodes and links
will fail.

5.3 Operational Metrics

As the goal of this research is to determine the effect of the
link and node level resilience, the operational metrics that
are used for the simulations are percentage of link failures
and percentage of node failures. Which one of these met-
rics is used depends on the failures being simulated; the
percentage of link failures is used for all link failure chal-
lenges and vice versa for the percentage of node failures.
The regions for the normal operation, partially degraded
operation and severely degraded operation are defined in
Table 2 and can be tuned depending on the service of in-
terest.

5.4 Service Parameters

For our simulations, we define the service provided by the
network with four parameters: the relative largest compo-
nent size, clustering coefficient, average node degree and

Table 2: Operational Regions

Region Percentage of | Percentage of
Link Failures x | Node Failures
Y
Normal 0<z<10 0<y<10
Partially Degraded | 10 <z < 25 10 <y <25
Severely Degraded | = > 25 y > 25

the number of connected components. The service regions
for acceptable service, impaired service and unacceptable
service are defined in Table 3 and can be changed depend-
ing on the situation and service being evaluated.

In order to determine the final value for the service pa-
rameter which we can use to determine the resilience we
aggregate and normalise all service parameter values. We
define the service parameter considering these four metrics
as follows:

1
(p1/1) + (p2/0.08) + (ps/2.7) + (1/pa)’
Using the boundaries for all service parameters, the de-

rived boundaries for the final service parameter can be
found in Table 4.

SP =

Table 3: Service Parameters

Acceptable | Impaired | Unacceptabl¢
Rel. LC Size | p1 =1 0.90 < | p1 <0.90
P1 p1 <1
Clustering p2 > 0.08 0.04 < | p2 <0.04
Coefficient ps p2 < 0.08
Avg. Node | ps > 2.7 2.3 < | p3<23
Degree p3 p3 < 2.7
Nr. of Conn. | ps =1 1 <ps <|ps>4
Components 4
Pa

5.5 Simulation Environment

The simulation environment is created in Python and uses
the NetworkX [22] and Plotly [24] libraries to visualise the
abstracted graphs and results from the simulations. For



Table 4: Final Service Parameter Boundaries

Final Service Parameter SP
Acceptable SP < 0.25
Impaired 025 <SP <04
Unacceptable | SP > 0.4

the sake of simplicity we assume that all routing is done
through Dijkstra’s shortest path algorithm and that all
links have the same bandwidth and transmission delay.
We measure the traffic over the network by the means of
stress centrality, which measures the amount of communi-
cation that passes through a link based on the number of
shortest paths passing through that link [18]. This stress
centrality of edge e is calculated by:

cs(e) = D> oale).

seENteN

Where os:(e) denotes the number of shortest paths con-
taining edge e. In our simulations we use this stress cen-
trality as a failure model for the links due to stress. Should
the stress centrality of a certain edge surpass a specific
boundary, the link will fail due to stress.

The value of the stress centrality of a link e can lay be-
tween 0 and 1. If ¢s(e) = 0 then out of all shortest paths,
no paths use link e. If the value of cs(e) = 1 then all
shortest paths use link e. After evaluation of the stress
centrality values of the networks under normal conditions,
as well as under partial link/node failure, the value for the
stress centrality boundary has been set at 0.3. The value
is chosen in such a way that a few failures will not cause
the boundary to be exceeded, however in case of multiple
failures the boundary will be exceeded by some critical
links.

After every failure of a link or node, the traffic balance
over the network is recalculated and if there are any links
that surpass the stress centrality boundary, these links will
fail due to stress.

6. PERFORMANCE ANALYSIS

In this section, we apply our challenge scenarios to the
network topologies as specified in Section 5 and analyse
and discuss the findings. Next to all the results in this
paper, separate figures for each of the service parameters,
including the 95% confidence intervals for all the random
link and node failure simulations, as well as all the other
results can be found on the github repository [15].

Malicious Attacks

Figure 4c shows the results of the simulation on all three
network topologies for the targeted link failure. We ob-
serve that both the Synthetic2 and Surfnet topologies tran-
sition to an tmpaired service level after only a few critical
link failures. This is to be expected, as the most critical
links are targeted and therefore the system is being at-
tacked at place with the most impact. The results also
show that, compared to the other two topologies, the Syn-
theticl topology is much more resilient with regards to
targeted link failure. The level of service for this topology
only transitions to an impaired state when the operational
level of the network is severely degraded.

Figures 4a and4b show the results of the simulations of
the targeted node failure scenarios. We observe that the
Surfnet and Synthetic2 topology rapidly transition to an
impaired and later unacceptable state after a relatively low
percentage of critical node failures. Interesting to see is

that the Synthetic2 topology seems to be the least resilient
for targeted node failures on node betweenness, whilst the
Surfnet topology is the least resilient for targeted node
failures on node degree. As the length of the links is the
main difference between the two topologies, it can be ar-
gued that topologies with longer links are less resilient to
targeted attacks on node betweenness than topologies with
shorter links. The same can be said the other way around
for targeted attacks on node degree.

Compared to the other two topologies, the Syntheticl topol-
ogy is again more resilient. Though it can be seen that
the topology is more resilient against targeted attacks on
node degree than on node betweenness. In both the tar-
geted node failure simulations we see a big jump in the
service level of Surfnet around 7-8% of node failures, we
believe this is due to additional link failures because the
stress centrality traffic boundary is exceeded.

When comparing the results from all three malicious at-
tack simulations we observe that all three topologies are
less resilient to targeted node attacks than to targeted link
attacks. Therefore it might be more valuable for a network
operator to use resources to improve the resilience against
targeted node attacks than to improve resilience against
targeted link attacks.

Random Failures

As Figure 5a depicts the Syntheticl topology is more re-
silient than the two other topologies, as the slope of the
graph for this topology is less steep. The service level
of the Syntheticl topology also never reaches the unac-
ceptable state, whilst the service level of the other two
topologies does.

Figure 5b shows the results of the simulation on random
node failure. The figure shows a faster decline of the ser-
vice parameters for the Surfnet and Synthetic2 topologies
compared to the Syntheticl topology. Both the random
link failure and the random node failure simulation results
show that the Synthetic2 topology is the least resilient to-
wards these kinds of failures.

Table 5 shows the slope of the values of all topologies
from Figures 4c to 5b. Recall that the slope corresponds
to the resilience of the network, a lower slope represents
higher resilience. From this data we can conclude that
the Syntheticl topology is the most resilient of all topolo-
gies, as for all simulations, its slope is the lowest out of
the three topologies. We believe this to be the case due
to the number of redundant links present in this topology,
which cause the system to be better equipped to handle
node and link failures. Even if some links fail, traccif can
be routed through alternative paths helping the network
maintaing its service.

Both the Surfnet and Synthetic2 topologies are roughly
equally resilient to both random and targeted link fail-
ures, with Surfnet being slightly more resilient to random
link failures and Synthetic2 more resilient to targeted link
failures. Overall, the resilience of the Synthetic2 topology
seems to be slightly worse than that of the Surfnet topol-
ogy. We believe that this is mostly due to the fact that the
distance between the nodes connected by a link is larger in
the Synthetic2 topology than it is in the Surfnet topology.

When comparing the slopes for the targeted node failure
simulations it is shown that all topologies are less resilient
to attacks that target nodes based on node degree com-
pared to node betweenness. For network operators this
means that it is most important to prevent these targeted
node attacks, as the systems are the least resilient to it.
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Figure 4: Resilience after Malicious Attacks.

Table 5: Resilience Slope of all Simulations

that this attack targets the entire critical portion of the
Surfnet topology, causing the remaining network to com-

Surfnet | Syntheticl | Synthetic2 pletely fall apart. The final large-scale disaster targeting
Random Link | 0.617 0.232 0.616 the purple geographic area only causes a state transition
Failure to an impaired state in the Synthetic2 topology, both the
Random 0.448 0.142 0.560 Surfnet and Syntheticl topology keep an acceptable level
Node Failure of service.
Targeted Link | 0.611 0.131 0.572
Failure Table 6: Large-scale Disaster Final Service Parameters
Targeted 1.784 1.082 2.397
Node Failure Surfnet | Syntheticl | Synthetic2
- Betweenness Normal 0.220 0.195 0.271
Targeted 2.607 1.417 3.234 Area 1 (Green) | 0.226 0.195 0.385
Node Failure Area 2 (Red) 1.001 0.279 0.515
- Degree Area 3 (Purple) | 0.224 0.183 0.329

Large-scale disasters

From Table 6 we observe that for the large-scale disaster
in which the green geographic area is hit (as shown in
Figure 3) the service level of only the Synthetic2 topology
transitions to an impaired state, whilst both the Surfnet
and Synthetic2 topology remain in the acceptable service
level state.

For the large-scale disaster in the red geographic area we
can see that the service levels of the Surfnet and Synthetic2
topologies transition to an unacceptable state, whilst the
service level of the Syntheticl topology only barely tran-
sitions to the impaired level. The impact of this large-
scale disaster specifically has a very high impact on the
Surfnet topology, we believe this to be due to the fact

In this research it was assumed that all links in the network
have the same bandwidth and that all traffic goes through
the shortest paths, taking an arbitrary boundary for link
failure due to an overloaded link. This does not accurately
represent a real network, and therefore in future research
these simulations might be modelled in such a way that
bandwidth and routing are taken into account. Another
shortcoming of our analysis is that the topologies used in
this research all have wired links and therefore no infor-
mation is known about the resilience of networks that are
wireless or partially wireless. There also exist some met-
rics that might be of interest to resilience research, but
have not yet been used widely. An example of such a met-
ric is the number of people connected to a specific network
node, which can be used to determine the number of peo-
ple affected should certain nodes fail. This is also another
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point for future research.

7. CONCLUSION

Given the increasing importance of communication net-
works, it is important to understand the resilience of a
network and possible risks to a network. Hence, this paper
provides a literature survey on resilience metrics and po-
tential risks that might lead to degradation on a network’s
service. After overviewing the literature and identifying
the resilience metrics, we have evaluated the resilience of
three selected network topologies to develop insights on
how link and node failures affect the resilience of these
networks. Our analysis via simulations shows that specif-
ically the link placement in networks has a large influence
on the resilience and therefore should be considered care-
fully when designing new resilient wired networks. Further
research still needs to be done with regards to wireless
networks to determine the influence of both link and node
level resilience for these types of networks.
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