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ABSTRACT

Face recognition software is known to be vulnerable to a
presentation attack in the form of face morphing. Face
morphing detection is an active field of research. Creat-
ing strong face morphing detection algorithms will make
face recognition software more robust. This paper inves-
tigates how regional analysis of the frequency spectrum of
face images can be used to detect morphs in both a dif-
ferential and non-differential setting. Three methods are
explained and assessed for their performance. The first
method utilizes the Kullback Leibler Divergence. The sec-
ond is a Support Vector Machine (SVM). The third a Deep
Feed Forward Neural Network (DFF). The latter two are
trained on the frequency spectrum. The Kullback Leibler
Divergence proved to be not discriminate enough to clas-
sify morphs. Both the SVM and DFF were able to detect
morphs with an accuracy of around 80%.
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1. INTRODUCTION

Face Recognition Technology (FRT) has seen world-wide
adoption in various industries, such as surveillance and
access control. Face recognition is being utilized in auto-
mated border controls to increase efficiency through au-
tomation.[3] In automated border controls eGates are re-
sponsible for veryifying the identity of the traveler. FRT
is used in eGates to verify that an individual matches the
image in his/her passport.

In 2014 Ferara et al. showed in his paper titled 'the magic
passport’ a vulnerability of face recognition software in the
form of a presentation attack.[5] These attacks were later
given the name: face morphing attacks. Face morphing at-
tacks allow an attacker to create an image, which will fool
face recognition systems to accept two different individu-
als. This would allow a criminal to cross the border under
the name of an accomplice. Furthermore, it was shown
by Robertson et al. that human observers also have dif-
ficulty differentiating between morphed and non-morphed
images.[19] Figure 1 shows an example of a morphed face
image. Note how the morphed face in Figure 1c resembles
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(c¢) Morph

Figure 1: Example of a morphed face image c created from
a and b

both the face of 1a and 1b.

Morphing detection tries to deal with the threat through
detection of morphed images. The task of a morph detec-
tion algorithm is to classify an image either as morphed or
bona-fide. Several different techniques have been proposed
to detect morphs. But as of yet, there is no robust mor-
phing detection method solution available. In general two
classes of morph detection exist.[21] No-reference morph
detection and differential morph detection. No-reference
morph detection takes a single image as its input. It has a
single point of reference to classify an image as either mor-
phed or non-morphed. Contrary to no-reference morphing
detection, a differential morphing detection approach is
supplied with two face images. A trusted reference image
and a questioned image.

This paper investigates how regional analysis of the grayscale
frequency content of facial images can be used to detect
morphed images. Furthermore, it is investigated which
classifications methods are suitable in both a differential
and non-reference setting. Some facial regions may be
more affected by morphing than others. Therefore, differ-
ent regions are compared in their effectiveness at distin-
guishing morphed images.

2. BACKGROUND



A large range of different variations of morphing methods
exist. The realism of the created morphed images is heav-
ily dependent on the morphing pipeline used. The mor-
phing process can create disocclusions and artifacts.[22][9]
An attacker can apply multiple techniques to increase the
quality of a morph. This can be done by altering the
morphing process itself or by editing the created mor-
phed images in post. Artifacts tend to appear when the
alignment of landmarks is incomplete or imperfect. Areas
around the face, such as hair and the background are es-
pecially vulnerable to this.A common way of preventing
this is through splicing. Splicing only morphs the inner
part of the face and leaves the outer part unaffected. This
however, does not prevent artifacts from appearing within
the face. This however does not prevent artifacts from ap-
pearing within the face.

Multiple morphing detection approaches have been pro-
posed. Multiple studies have looked at image descriptors
to determine whether an image is a morph. Raghavendra
et al. trained a Support Vector Machine (SVM) on the
Binarized Statistical Image Features (BSIF) of images.[16]
Other studies have also used Local Binary Patterns (LBP)
and Scale-Invariant Feature Transform (SIFT) to detect
morphs.[18][20]

Photo Response Non-Uniformity (PRNU) is a noisy pat-
tern in images as a result of imperfections in the camera’s
sensor. This feature of images has also been used success-
fully to detect morphs as shown by the paper of Debiasi et
al.[4] In their study it was noticed that higher frequencies
would get lost as a result of the morphing pipeline.

As mentioned, morphing also affects the frequency content
of an image. Any analog electric signal can be seen as a
composition of frequencies. The same applies to images.
Images can also be considered to be compositions of vari-
ous frequencies. To inspect the frequencies of an image one
can apply the 2-Dimensional Fourier Transform. This con-
verts the image into it’s frequency domain representation.
In the frequency domain each frequency is represented by
a complex number. Where the absolute value is the fre-
quency’s magnitude and the angle the frequency’s phase.
In the case of images, frequencies take the form 2-D Sinu-
soidals. Figure 2 shows different images consisting of one
or two frequencies and their respective frequency domain
representation (magnitude only).
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Figure 2: Images and their respective frequency domain
representation

Neubert et al. used the magnitude of the frequency domain

to detect morphs. They separated the frequency domain
into 25 blocks and took the mean magnitude as input for
their classifier. Their experiments showed that analysis of
the frequency domain could be used as a morphing detec-
tion approach. They were able to detect morphs with an
accuracy of 75.2% on eMRTD images.[12]

This paper extends upon the previously done research by
investigating how regional analysis of the frequency do-
main can detect morphs.

3. FREQUENCY DOMAIN CLASSIFICA-
TION

3.1 Regions

Different regions of the face have different characteristics.
The chin for example can contain facial hair and the bridge
of the nose tends to have two vertical edges. In this paper
a method is proposed that extracts different regions. A
classifier can be trained on a single region. The perfor-
mance of different classifiers can say something about a
region’s ability to recognize morphs.

To reliably extract different regions one could use land-
marks. Landmarks can be detected using a landmark de-
tection algorithm. The different landmarks can then define
different regions of the face. One possible method of creat-
ing square regions is by having different landmarks define
a central point from which a square is created. To ensure
that the regions are consistent it is advised to ensure that
the faces are aligned and scaled the same.

3.2 Frequency Extraction

To extract the frequency domain of an image the 2-Dimensional

Fourier Transform can be used. The standard Fourier
Transformation however is defined as a continuous func-
tion. Solving continuous functions computationally can
be difficult and resource intensive. Fortunately, there are
Discrete Fourier Transformation algorithms available. A
common used algorithm is the Fast Fourier Transforma-
tion (FFT). The FFT can also be used to compute the
frequency domain of a 2-dimensional function. The 2-
Dimensional Fast Fourier Transform (2D-FFT) can be used
to transform images to their respective frequency domain
representation. This results in a matrix where frequencies
are represented by complex numbers. Taking the abso-
lute values of all elements results in a matrix where the
frequencies are represented by their magnitude. The fre-
quency domain is a powerful tool for image-processing.
Taking the magnitude of the frequency domain represen-
tation of an image results in as many magnitudes as there
are pixels. This can be a lot of input for a classifier to train
on. To shrink the possible input size Neuber et al.[12] di-
vided the frequency into 25 distinct blocks and took the
mean magnitude of each block. By doing so they took the
average magnitude of frequencies with approximately the
same direction and wavelength.

This paper proposes an alternative method of shrinking
the input size. A power spectrum can be computed from
the frequency domain. By doing so the directional data of
the frequency is discarded and only the wavelength is con-
sidered. This results in a graph containing the mean mag-
nitude of frequencies with the same wavelength. An exam-
ple is of such a graph is given in Figure 4. Extracting the
power spectrum can be done by computing the frequency
domain of an image and shifting the zero-component to
the center. Finally, computing the averaging magnitudes
along a circle of radius r = w gives the mean magnitude
of frequencies with wavelength w. Figure 3 illustrates this



process. As is common in image-processing the values at
the center point can be ignored, because it contains only
the average intensity. Therefore, values at » = 0 can be
discarded. One disadvantage of this method is that it ig-
nores values at the corners of the frequency domain, be-
cause circles can’t reach these values. This method shrinks
the input size significantly. For an image of size 512 x 512
the frequency domain would contain 512 - 512 = 262144
magnitudes. With this method the input size is decreased
from 262144 values to only 512/2 = 256 values.

3.3 Pre-processing

There are multiple different ways of pre-processing the ob-
tained spectral data. Different pre-processing steps might
improve the performance of a classifier. This section de-
scribes various possible pre-processing steps. The steps
are listed in the same hierarchical order that they should
be applied from top to bottom.

Radius Weighted Mean.

Circles consisting of a larger radius (in pixels) consist of
more pixels in the frequency domain than circles of a
smaller radius. It is clear from Figure 3 that larger cir-
cles will contain more magnitudes than those of smaller
size. This means that the magnitudes of frequencies with
smaller wavelengths are represented by a smaller sample
size compared to those of larger wavelength. To include
this information it is possible to weigh the mean by its. It
is proposed to multiply the mean each magnitude by the
radius of its circle.

Logarithm.

The magnitudes of lower frequencies are often several or-
ders larger than the magnitudes of higher frequencies. For
example, a random sample’s mean magnitude at r=1 is
equal to 2830 and 87 at r=16. It is possible to apply the
logarithm to the mean magnitude in order to decrease the
large differences, while still maintaining the relative order.

Differential vs. Non-reference.

Differential morphing detection can be useful for passport
image verification during the passport application process.
The trusted image might be a point of reference for deter-
mining whether the questioned image has been morphed.
A non-reference approach does not have the advantage of
having a reference point, but non-differential morphing de-
tection is more flexible as no trusted image is required.

Normalization.

Normalization of input data is often performed in order
to transform the input to a common scale. There are two
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Figure 3: 2D-FFT Conversion of the chin region.
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Figure 4: Power Spectrum of an image

common ways of normalizing input vectors. The input vec-
tors can be either L1-normalized or L2-normalized. The
equations for the norms are:

Liw) = 3 ful

i

L2(w) = /Z w?

Where w is a vector containing for example the intensity
of different frequencies.

After either the L1 or L2 norm is calculated the vector
us divided by the norm, hence the elements of the input
vector are either:

YT T1(w)
or
— Wi
YT T2(w)

Depending on the chosen normalization method.

3.4 Kullback Leibler Divergence

One special proposed method is the classification of morphs
through the use of the Kullback Leibler Divergence. The
power spectrum can be interpreted as a probability dis-
tribution. The Kullback Leibler Divergence (KBD) is a
measure of how two probability distributions are different
from each other. The underlying assumption is that the
KBD will be higher when the questioned image is a morph.
The questioned and trusted image need to be each L1-
Normalized. After normalization the KBD is computed.
This results in a single number. It is possible to set a
threshold for which all entries with a KBD higher than
the thresholds will be classified as morphs. This makes it
possible to create a Detection Error Trade-off Curve The
KBD approach is only possible in a differential setting as
both the trusted and questioned image are required.

4. EXPERIMENTS

In total three different experiments were conducted. Two
experiments tested two different classifiers on data with
various combinations of pre-processing methods. The third
experiment investigated the viability of using the Kullback
Leibler Divergence to detect morphs.

4.1 Data



The classifiers were trained on a selection of morphed
faces and bona-fide faces from the FRGC_V2.0 and IST-
EURECOM dataset. It is of importance that the pictures
resemble legitimate passport photos. Therefore, photos
were manually selected, such that the image quality is close
to the quality requirements of passport photos. Further-
more, the images have been aligned and resized in order to
be more representative of passport photos. Both datasets
contain multiple images of each individual. This makes it
possible to create pairs, which is necessary for a differential
morphing detection approach.

4.1.1 Morphing Pipeline

Both the FRGC and IST-EURECOM dataset do not con-
tain morphed images. Therefore, it was necessary to con-
struct a morphing pipeline in order to create morphed im-
ages.

Generally, morphing is a three-step process. First, a corre-
spondence for two faces is established. The most common
technique is to detect sets of corresponding landmarks on
the the face. Second, an average correspondence is cre-
ated. This step is called warping. Third, the image colors
are merged by blending the two images.[21] The realism of
the created morphs is heavily dependent on the quality of
the morphing pipeline. The morphing process also affects
the frequency content of an image.

This study uses a morphing pipeline based on the morph-
ing attack type II as described by Kraetzer et al.[8] with
some minor modifications. One important attribute of this
morphing method is that it uses splicing. Only the area
inside of the face is morphed and the outside stays un-
affected. When two individual’s faces are not properly
aligned the blending step can create ghost artifacts. Areas
around the face like hair and clothes are very prone to hav-
ing ghost artifacts. Splicing is used to prevent this from
happening. The primary difference compared to Kraetzer
et al’s method is that STASMJ11] is used for landmark
detection. Morphing faces with large differences results in
less realistic morphs. To prevent this morphed pairs were
selected according to their similarity scores. The simi-
larity scores were computed using dlib’s face recognition
module.[6] To further increase the realism of the morphs
Poisson image editing was applied in post.[15] Poisson im-
age editing is useful when dealing with situations were
images are blended together.

The total number of pairs consist of 203 bona-fide FRGC

pairs, 100 bona-fide IST-EURECOM pairs, 628 morphed

FRGC pairs and 268 morphed IST-EURECOM pairs. Note
that the resulting dataset is imbalanced and that there are

more morphed pairs than bona-fide pairs. There are more

morphs, because some individuals appear multiple times

in different pairs. For the experiments using machine-

learning 20% was used for testing and 80% for training.

4.1.2 Region Selection

In various locations of the face different regions were se-
lected. The selected regions were the chin, eyes, cheeks,
cheekbones, nose and forehead. For every location a 32
x 32 region was extracted. Landmarks needed to be de-
tected to be able to locate the different regions. This was
done using dlib’s 68 shape landmark predictor. The cen-
ter of every region consists of a weighted average of three
different landmarks. From this center a 32 x 32 rectangle
is constructed and the grayscale content extracted. Fig-
ure 5 shows the different regions highlighted. Each region
has been labeled with a prefix. Table 1 displays the map-

ping of regions to prefixes. The morphing pipeline makes
use of splicing. This means that practically the forehead
should stay untouched and should not be indicative of the
region being part of a morphed face. This region serves as
a zero-measurement for the experiments.

Figure 5: Region Detection

Prefix | Name

NO Nose

LB Left Cheekbone
RB Right Cheekbone
LC Left Cheek

RC Right Cheek

FH Forehead

CH Chin

Colour

Table 1: Region Mapping

4.1.3  Fourier Transformation

After extraction, the regions are converted to their fre-
quency domain representation using Numpy’s Discrete FF'T
module[13]. After conversion the zero-frequency point is
shifted to the center. After the shift the absolute values of
the complex numbers are computed. To obtain the power
spectrum from the frequency domain the images are polar
warped. This is done using OpenCV2[2]. As a last step
the mean magnitude is computed of frequencies with the
same wavelength.

Two different machine-learning algorithms are used through-
out the experiments. A Support Vector Machine (SVM)
and a Deep Feed Forward Neural Network (DFF). Both
algorithms have been used successfully for the detection
of morphs in the past.[16]{17]. For each region a separate
classifier is trained.

42 SVM

A SVM was tested for different combination of the pre-
processing steps as described in Section 3.3. An SVM
in its pure form is only capable of learning linearly sepa-
rated classes. Since, the classes of morphs are not linearly
separated this would make a SVM useless for detecting
morphs. Fortunately, it is possible to classify non-linearly
separated classes using kernels. Throughout the experi-
ment a polynomial kernel is used. Sklearn’s SVM imple-
mentation is used.[14] To prevent overfitting the SVM uses
L2 Regularization with the parameter set to 1.0 Sklearn’s
implementation also provides functionality for the predic-
tion of probabilities using Platt scaling. Platt scaling uses



5-fold cross-validation internally in order to predict prob-
abilities. If a SVM is trained on an imbalanced dataset
it tends to become biased to the majority class. To coun-
teract this the SVM is trained with class weights. This
should prevent the SVM from being overly biased towards
the morphs class.

Different parameters of the SVM were fine-tuned for the
best performance after which the same paramteres were
used for all experiments. For all combinations of the dif-
ferent pre-processing mentioned in Section 3.3 the perfor-
mance of every region was measured and evaluated. It
was also tested whether the performance of the differen-
tial approach would be different from the non-reference
approach. In the case of the differential approach the in-
put vectors are concatenated prior to normalization.

4.3 DFF

The second experiment uses a neural network in order to
make prediction. A Deep Feed Forward (DFF) neural net-
work is used. The implementation was taken from Tensor-
flow’s Keras[1] package. Often Deep Convolutional Neu-
ral Networks (CNN) are used for classification tasks when
images are involved. CNN’s are very good at interpreting
image patterns. In this study however, a standard DFF
is used. The reasoning being that the frequency domain
does not contain very clear patterns to interpret. A com-
parison of the frequency domain of a trusted and morphed
image is shown in Figure 6. It is clear from the image that
there are no obvious patterns to pick up on. Furthermore,
the input size of a region’s frequency domain would be
2-32-32 = 1024 neurons. This means that there are a lot
of learnable parameters. Given the relatively small dataset
this would not be viable and most likely lead to overfit-
ting. On the contrary, the spectral data only requires a
maximum input size of 2-16 = 32 neurons. Because of this
reason the frequency spectrum is used as input instead of
the extracted frequency domain’s image.

The DFF has either 16 or 32 input neurons depending on
whether the approach is differential or non-reference. 2
hidden layers with a sigmoid activation functions are used
with a varying amount of neurons. The output consists
of two neurons with a softmaz activation function. One
neuron for signifying a bona-fide case and one neuron sig-
nifying a morphed case. The learning process is optimized
with the Adam[7] optimizer with an initial learning rate
of 0.01. 20% of the training set is used for validation.
Since DFF’s are also sensitive to imbalanced datasets,
class weights are used. The different neural networks are
trained for 100 epochs. All neural networks would stabi-
lize after around 100 epochs of training. More training
would result in overfitting and no additional gain. Three
different combinations of pre-processing steps have been
tested with hidden layers of varying size. The results are
listed in 5.3.

4.4 Kullback Leibler Divergence

As a final experiment the Kullback Leibler Divergence
(KBD) has been investigated. For different pairs the KBD
was computed. This results in a single number per pair.
If the KBD of a pair was above the threshold it would
be considered to be a morph. This threshold allows the
computation of a DET-Curve for the KBD approach.

4.5 Performance Metrics

For all experiments Detection Error Trade-off Curves (DET-
Curve) are computed. These curves display the trade-off
between the APCER and BPCER. APCER stands for At-
tack Presentation Classification Error Rate (proportion of
attack presentation classified as bona-fide) and BPCER

(a) Trusted

(b) Morphed

Figure 6: Frequency Domain image of a pair.

stands for Bona-Fide Classification Error Rate (propor-
tion of bona-fide presentations classified as attack presen-
tations).[10] DET-Curves are a useful tool for comparing
the performance of different classifiers. The Area Under
Cuve (AUCQ) also sometimes is used as a metric of perfor-
mance.

5. RESULTS

This section lists and explains the results of the various
performed experiments. Interpretation of the results will
be covered in section 6.

5.1 Kullback Leibler Divergence

Table 2 lists the sample mean and sample variance of the
KBD for the bona-fide pairs and presentation attack pairs.
BF and M stand for Bona-Fide and Morphed respectively.
Furthermore, Figure 7 lists the DET-curves of the differ-
ent regions. The number after the region prefix is its re-
spective AUC. The dotted line represents the values were
APCER = BPCFER. A classifier which classifies each
sample randomly with a 50/50 chance would lie on ap-
proximately on this line.

Prefix | BF Mean M Mean | BF Var M Var

CH 0.002390  0.004865 | 0.000018 0.000061
FH 0.004119  0.004349 | 0.000197 0.000231
LB 0.001654  0.002469 | 0.000007 0.000010
LC 0.003767  0.004820 | 0.000057 0.000064
NO 0.001778  0.002943 | 0.000010 0.000012
RB 0.001620  0.002507 | 0.000005 0.000008
RC 0.003468  0.004439 | 0.000057 0.000054

Table 2: KBD Sample Mean and Sample Variance

Table 2 shows the sample mean and sample variances for
the bona-fide pairs and presentation attack pairs.

5.2 SVM

Table 3 shows the SVM'’s performance for various pre-

processing methods. The columns indicate whether a method

is applied. WM indicates whether a weighted mean was
used, N indicates what normalization method was used.
and Diff indicates whether the approach was differential.
The Accuracy (ACC), ACPER and BPCER are averaged
over all regions.

The ability of predicting probabilities allows for the cre-
ation of a threshold. Any samples with a probability of
being a morph above the threshold will be classified as
morph. This makes it possible to construct a DET-Curve.
Figures 8 and 9 show the DET-Curves of the regions for
experiment 7 and 12 respectively.
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Figure 7: DET-Curves for Kullback Leibler Divergence
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Figure 8: DET-Curves of different regions for differential,
L2 normalized approach (SVM)
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Figure 9: DET-Curves of different regions for non-
reference, logarithmic, L2-normalized approach (SVM)

=
o

Dif Log N WM ACC

APCER BPCER

1 yes no L1 yes 0.629  0.332 0.517
2 yes yes L1 yes 0.612  0.405 0.323
3 yes no L2  yes 0.791 0.305 0.517
4 yes yes L2 yes 0.651  0.420 0.306
5 yes no LT no 0.726 0.278 0.260
6 yes yes L1 no 0.7 0.283 0.363
7 yes no L2 no [0.736  0.274 0.180
8 yes yes L2 no 0.705  0.277 0.366
9 no no L1 no 0.71 0.280 0.329
10 | no no L2 no 0.737  0.169 0.397
11 | no yes L1 no 0.795  0.160 0.183
12 | no yes L2 no [ 0.799 0.153 0.186

Table 3: Accuracy, APCER, BCPER for different pre-
processing methods (SVM)

5.3 DFF

ID PP HLN ACC APCER BPCER
1 7 8 0.752  0.259 0.206

2 7 16 [ 0.785 0.217 0.206 |
3 7 32 0.758  0.259 0.177

4 7 64 0.758  0.256 0.191

5 9 4 0.681  0.329 0.283

6 9 8 0.662  0.357 0.266

7 9 16 0.733  0.239 0.371

8 9 32 0.751  0.217 0.371

9 12 4 0.679  0.347 0.226

10 | 12 8 [ 0.767 0.216 0.297 |
11 | 12 16 0.653  0.38 0.22

12 | 12 32 0.642  0.392 0.229

13 | 10 4 0.744  0.229 0.357

14 | 10 8 0.71 0.298 0.26

15 | 10 16 0.725  0.268 0.303

16 | 10 32 0.657  0.368 0.249

Table 4: Accuracy, APCER and BPCER for different Neu-
ral Network configurations and pre-processing functions.

Table 4 shows different architectural configurations and
their respective performance. HLN denotes the number of
neurons in the 2 hidden dense layers. PP denotes the ID
of the pre-processing method used. These correspond to
the IDs in Table 3. The best differential and non-reference
performance are outlined in bold.

Figure 10 and 11 show the DET-Curves for the different
regions for DFF experiment 2 and 10 respectively. The
numbers after the region prefix denote the AUC. Further-
more, Figure 12 and 13 show the training curves for these
experiments for the training and validation set.

6. DISCUSSION
6.1 Kaullback Leibler Divergence

Table 2 clearly shows that the initial assumption of mor-
phed pairs having a higher KBD value is correct. The
mean of the Bona-Fide pairs are consistently lower than
those of the Morphed pairs. Furthermore, the sample vari-
ance is quite low which suggests that the values are not
very far spread apart.

This initial table suggests that the Kullback Leibler Diver-
gence might be a good indication of morphs. But the plot
of the DET-Curve shows that this is not true. The accu-
racy is far too bad to be used for biometric tasks. Also note
that the KBD is incapable of differentiating between bona-
fide and morphed pairs in the forehead region. This is in
line with what is expected, because the morphing pipeline
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Figure 10: DET-Curves of different regions for differential
L2-Normalized approach (DFF)
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Figure 11: DET-Curves of different regions for non-
reference, logarithmic, L2-Normalized approach (DFF)

splices the morphs. Despite the initial assumption being
correct, the KBD is not a good metric for determining
morphed face images.

6.2 SVM

The performance of the SVM is quite dependent on the
pre-processing steps used. Table 3 shows a bad APCER
and BPCER in the first four rows, which all utilize the
radius weighted mean. The outlined results indicate the
best performance for the differential and non-reference ap-
proaches. Generally, L2 Normalizing the input seemed
to result in better performance. Surprisingly, the non-
reference experiments perform better than the differen-
tial ones. In contrast to the differential method, the non-
reference method performs better on logarithmic data. In
the differential approach the SVM has not been able to
improve its performance by comparing the reference im-
age with the questioned image. Instead it seems that the
additional data confuses the SVM more than it assists in
the classification of morphs.

In Figure 8 can be see that unlike the KBD approach the
SVM has been successful to some extend at the classi-
fication of morphs for the forehead region. The region
does perform significantly worse than the other regions.
It’s surprising that the SVM has been able use the fore-
head region to differentiate between bona-fide and mor-
phed pairs in both the differential and non-reference ap-
proach. This could be because the forehead region is partly
inside spliced face.
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Figure 12: Training Curve of Nose region for differential,
L2-Normalized approach (DFF)
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Figure 13: Training Curve of Nose region for non-
reference, logarithmic approach (DFF)

6.3 DFF

Table 4 shows that the number of neurons does not have
a significant effect on the performance of the DFF. The
variations are most likely a result of random chance than
the variations of the number of neurons. The table also
shows that the differential method outperforms the non-
reference methods by a very small margin as the APCER
and BPCER is slightly lower. The DFF has been more
effective at utilizing the reference image. Figures 10, 11
show the DET-Curve of the various regions. Across the
experiments the DET-Curves of the non-reference method
are more spread out than the curves of the differential
method. Suggesting that the differential-method is more
stable. The training curves of the experiments shown in
Figure 12 and 13 support this claim. The exact cause of
this is unclear. It could be that the larger input size of
the differential approach stabilizes the results. There is
no strong evidence that the DFF has been able to com-
pare the reference image with the questioned image. The
difference in performance is almost negligible.

Also, in similar fashion to the SVM the DFF is able to
differentiate between bona-fide and morphed pairs in the
forehead region. With limited effectiveness however. In all
experiments the nose regions is one of the most effective
regions, but only by a very small margin. This has not to
do with the fact that the nose region is in the center of
the image. The chin consistently is one of the less effective
regions. This probably is due to the larger chance of facial
hair being present on the chin.



6.4 SVM vs. DFF

The SVM and DFF approach both have about equal best
performance rates. A surprising observation however has
been that the DFF performs better when supplied with
the reference image. On the contrary, the SVM performs
better with a non-reference approach.

6.5 Regional analysis

There were no large differences in performance between
the regions. This suggests that the classifiers were unable
to pick up on unique local regional details, which would be
affected by morphing. More research is needed to investi-
gate whether regional analysis can contribute to morphing
detection.

6.6 Comparison State of the Art

It is hard to directly compare this study to other stud-
ies. Neubert et al.[12] were able to detect morphs with
75.2% using a frequency approach. But the data they
used was significantly different from the data used in this
study. They had about ten times the amount of images,
which would improve classification performance. On the
contrary, their images were compressed to resemble the
passport standard more closely. This in turn would worsen
the performance. Furthermore, they did not include train-
ing datasets into the test datasets, further reducing per-
formance. It is hard to compare effectiveness of differ-
ent morphing detection algorithms without using identi-
cal data and evaluation methods. Future work should also
alm at creating a large diverse database of morphed and
bona-fide faces.

7. CONCLUSION

In this research was investigated how the grayscale fre-
quency content of images can be used to detect morphs
using specific regions of the face. The Kullback Leibler
Divergence was used in a differential only morphing de-
tection approach. Also, both a Support Vector Machine
and Neural Network were trained on the frequency spec-
trum of 32x32 regions in a differential and non-reference
setting.

The mean Kullback Leibler Divergence was higher for mor-
phed pairs than bona-fide pairs. However, the variations
were too high to use this observation in order to detect
morphs.

The SVM and DFF both were able to detect morphs with
a best performance of 79.9% and 78.5% accuracy respec-
tively. The SVM performed better in a non-reference set-
ting, while the DFF performed better in a differential set-
ting.

There were no large differences in the performance of dif-
ferent regions. The nose performed only slightly better
than the other regions with a very small margin.

This study is fairly limited in scope. The performance
might be drastically different if the classifier is trained and
tested on two separate datasets. More research is needed
to investigate how the frequency domain can contribute
to detecting morphs. Future work could look at the direc-
tional data of the frequency content, which was discarded
in this study. Furthermore, different colour channels could
be analyzed instead of just the grayscale values. Frequen-
cies in the skin could for example, be represented more in
specific colour channels. Also, different approaches of re-
gional analysis might reveal a methods, which are capable
of picking up on unique regional features. If any multiple

unique features are found in facial regions these can possi-
bly be combined to increase the performance of morphing
detection.
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