University of Twente Student Theses


Activation function impact on Sparse Neural Networks

Dubowski, A. (2020) Activation function impact on Sparse Neural Networks.

[img] PDF
Abstract:While the concept of a Sparse Neural Network has been researched for some time, researchers have only recently made notable progress in the matter. Techniques like Sparse Evolutionary Training allow for significantly lower computational complexity when compared to fully connected models by reducing redundant connections. That typically takes place in an iterative process of weight creation and removal during network training. Although there have been numerous approaches to optimize the redistribution of the removed weights, there seems to be little or no study on the effect of activation functions on the performance of the Sparse Networks. This research provides insights into the relationship between the activation function used and the network performance at various sparsity levels.
Item Type:Essay (Bachelor)
Faculty:EEMCS: Electrical Engineering, Mathematics and Computer Science
Subject:54 computer science
Programme:Business & IT BSc (56066)
Link to this item:
Export this item as:BibTeX
HTML Citation
Reference Manager


Repository Staff Only: item control page