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ABSTRACT

Missing values are a common problem present in data from
various sources. When building machine learning clas-
sifiers, incomplete data creates a risk of drawing invalid
conclusions and producing biased models. This can have
a tremendous impact on many business sectors or even
human lives. Ensemble methods are meta-algorithms that
can combine weak base estimators into stronger classifiers.
Ensemble learning can make use of both ML and non-ML
techniques. Using this approach proved to yield better
predictions in many use cases. This research examines
various usages of ensemble methods for handling missing
data. Moreover, the impact of using ensemble learning is
explored, given various levels of test data artificially gen-
erated based on missing at random (MAR) mechanism.
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1. INTRODUCTION

Data cleaning is a tedious and time-consuming process
that aims for discovery and removal of erroneous, incom-
plete, inconsistent, and many other types of noise in or-
der to improve the quality of the data [9]. It is believed
that this step of data processing is takes most of the time
needed for data analysis [15]. In order to use predictive
models to search for insights, the data should be complete.
This is often not the case, as missing values are a common
problem introducing bias that impacts the models trained
on them. Biased data leads to biased models. The seri-
ousness of this problem depends partly on how much data
is missing, the pattern of data missingness and its under-
lying mechanism. There are three main ways to cope with
incomplete data. The first and the least effective [19] is by
removing the rows with null values. The second includes
various imputation techniques such as ad-hoc mean or me-
dian substitution, which are considered traditional. More
advanced solutions from this category are multiple impu-
tations, maximum likelihood or expectation maximization
[1]. The third one focuses on predictive machine learning
models, which tend to yield good results [2].
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Due to the popularity of the problem, there is an extensive
research on the various approaches to handle missing val-
ues. The main focus of this paper is to examine different
ensemble learning techniques, their application, and per-
formance impact on handling missing data. In particular,
the following questions will be explored:

RQ1 What is the state of the art of ensemble methods
used for handling missing data?

RQ2 What is the impact of using ensemble machine learn-
ing methods, in terms of model fit, on various test data
sample sizes?

To answer the above mentioned questions, a literature re-
view is conducted and some of the ensemble methods used
by other researchers will be described. Then, a number of
experiments is conducted on two separate datasets. The
missing values will be introduced using a generative pro-
cess described further in this paper. Some of the most
common ML algorithms for solving regression and classifi-
cation problems are trained and used to predict previously
generated missing values. The percentage of data missing-
ness ranges from 1-100% relatively to test data size.

This paper is divided into the following sections. In the
Background section, an explanation of key concepts and
methods from ensemble learning and missing data mech-
anisms is given. Related Work describes the discoveries
made by researchers working on missing values imputation
together with ensemble. This is followed by a discussion on
Methodology and Results of conducted experiments aim-
ing to discover the impact of using ML ensemble models
on various levels of missing data.

2. BACKGROUND
2.1 Ensemble methods

The core idea of ensemble decision making is present in
our daily lives. We seek others’ ideas about a problem and
then evaluate a few different opinions in order to draw the
most optimal conclusions. Ensemble learning aim to im-
prove ML performance by combining a collection of weak
classifiers into a single stronger classifier [4], [22]. There-
after, a new instance is classified by voting the decision or
averaging in regression. Below, an explanation of certain
ensemble methods used later in the experiments, is given:

2.1.1 Bagging

Bagging, also called bootstrap aggregating, was introduced
in 1996 by Breiman [3]. This method is used for improving
unstable estimations or classification problems. Bagging is
a technique of variance reduction for given base learners,
such as decision trees, or variable selection methods used
for linear model fitting. Bagging generates additional data
for training from the original dataset, using combinations
with repetitions to create multisets with the same data



structure as the original set.
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Figure 1: Graphical representation of Bagging.

2.1.2 Boosting (AdaBoost)

Boosting is a similar approach to Bagging. The core idea
is to build a family of models that later on will be aggre-
gated and compose a stronger learner, capable of better
performance. The main difference between Bagging and
Boosting is the sequence of performing the tasks. In Bag-
ging, fitting the models is done in parallel and indepen-
dently, while in Boosting it is done sequentially and each
next model depends on the models fitted in previous steps.
At every step, more focus is directed at the observations
that were poorly handled by the previous model, which
results in a strong classifier with lower bias. AdaBoost
is a modified Boosting algorithm, it keeps track of, and
updates the weights attached to each of the training set
observations. The weight determines the observations to
focus on.
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Figure 2: Graphical representation of AdaBoost.

2.2 Missing Data Mechanisms

When thinking about data, it is important to make a dis-
tinctions between different types of the missing data ran-
domness. They are crucial to keep in mind, as they deter-
mine which statistical treatments of the missing data can
be effectively applied. We can distinguish between three
main mechanisms [16]:

2.2.1 MAR

Data missing at random (MAR) refers to a collection,
where instances with and without missing values have a
systematic relationship [7]. This can be simply explained
with an example from medical data. If there is an emer-
gency, there is a tendency that some details are omitted
when filling in a medical form, compared to a situation
of scheduled appointment with the doctor. In the former
situation, the time is critical and the patient might not
be able to provide all the required details which yield a
relationship.

Y R

Figure 3: Graphical representation of MAR [17]. X rep-
resents variables completely observed, Y partly missing, Z
represents component that causes missingness unrelated to
X and Y, R represents the missingness.

2.2.2 MCAR

Data missing completely at random (MCAR) represents
the variables that are completely unrelated either to val-
ues of the specific variable, or other measured variables.
Compared to MAR, it is more restrictive as there is no
correlation between missing data. Such a mechanism often
occurs in real-world situations [7]. For example, students
can obtain MCAR exam results due to unforeseen circum-
stances that cause the mechanism e.g. family situation,
funeral, illness.
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Figure 4: MCAR [17].

2.2.3 MNAR

When the data missingness is neither MAR nor MCAR
but still systematical, it is referred to as data missing not
at random (MNAR). In this mechanism, there is a rela-
tionship between the missing variable and its values [1].
Suppose there are students that experience test anxiety
and have missing test scores due to the fact that they
could not carry on with the exam.
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Figure 5: MNAR [17].

3. RELATED WORK

Missing data handling techniques have been studied ex-
tensively in the literature. The most well known include
various types of imputations (e.g., [6], 8], [5]). This re-
view will focus primarily on ensemble learning approaches
to handling missing data.

As one of first studies in this field, Optiz D. et al., per-
formed an extensive research on over 20 datasets, using
both neural networks and decision trees as classifiers for



ensemble methods. As a result, it was found that in ma-
jority cases Bagging offers more accurate predictions than
an individual classifier, while in some, it yields much less
accurate than Boosting [12]. This, amongst others, gave
the ground for future research, by showing the capabilities
of such techniques.

Twala et al. proposed an ensemble of Bayesian Multiple
Imputation (BAMI) and Nearest Neighbour Single Impu-
tation (NNSI). The separate results of both algorithms are
fed to decision trees and further evaluated. It has been
discovered that such combination improved the accuracy
compared to the baseline imputation method (BAMI and
NNSI) [19]. Shortly after, another study on ensemble fol-
lowed. This time the objective for was to compare 7 vari-
ous missing data handling techniques (MDT) as well as an
ensemble learning of two MDTs. All of the techniques used
in the study are non-ML and the results show that an em-
semble of expectation maximization multiple imputation
(EMMI) together with C4.5 [14] yields superior perfor-
mance compared to individual MDTs |21]. Later, Twala
and Cartwright proposed a novel approach based on boot-
strap sampling, where incomplete data is split into sub-
samples and fed into a decision tree classifier. The result-
ing ensemble consists only of decorrelated decision trees
and uses them as input to make a decision [20]. The au-
thors concluded by explaining that the proposed strategy
potentially can improve prediction accuracy, especially if
used in combination with multiple imputation.

Lu et al. conducted a study, where the use of Bagging
and Boosting is used for continuous data imputation pur-
poses. The study compares KNN and logistic regression
to the earlier mentioned ensemble methods and finds that
the more sophisticated approach underestimates variance
compared to true data, but in a significantly lower degree
than the individual regressors |10].

A different approach, based on a random subspace for
multiple imputation method, was proposed by Nanni et
al. Their idea is to put the missing values into different
clusters of random data and calculate their value using
the mean of the cluster or the center. This technique re-
quires several iterations on the random subspace to create
an ensemble. The authors compare several ensemble and
classifier systems on various medical datasets and show
that the proposed approach outperforms other existing
techniques of missing data handling on numerous datasets
and the performance does not drop on data missingness
up to 30% |[11]. Tran et al. used a combination of mul-
tiple imputation and ensemble learning to build a diverse
ensemble of classifiers which then was used for predict-
ing the incomplete data. The study focused on random
forest as a regression method and compared the accuracy
to other single imputation methods such as hot deck and
KNN-based. From the results it is clear that the ensemble
of multivariate imputation by chained equations utilising
the earlier mentioned regression methods yields the best
accuracy [18].

As outlined in the literature review, typical solutions to
missing data problem include various imputation methods
algorithms, which estimate the missing variable based on
other observed values of that variable. Due to the sensitiv-
ity of individual imputation techniques to significant errors
in estimation, especially for large dimensional datasets, en-
semble methods have been employed.

4. METHODOLOGY

The objective of the experiments created in this research
is to discover the significance of ensemble model fit gain
when evaluated on missing data prediction compared to

individual ML algorithm. The effects of different pro-
portions of missing data when classifying new instances
are further evaluated. This section describes the complete
project setup and steps required to successfully generate
missing values, train models, test and measure the perfor-
mance of ML algorithms as well as ensemble learning.

As outlined in the Background section, missing data mech-
anism is an important aspect of data imputation. For this
study, MAR has been selected as the relevant type of data
missingness due to its wide occurrence in real-life datasets.
The datasets chosen for this research are both small and
large, and contain a mix of numerical and categorical vari-
ables. The data does not have any missing values, as it
was crucial to have a total control over the whole datasets.

The experiments were conducted in Python programming
language, using PyCharm environment [13|. The data
was processed and handled using Pandas library and the
graphs were visualized using Matplotlib library. To ap-
ply the machine learning models on data, sci-kit learn was
used.

4.1 Data

To carry out the experiment, the following datasets were
used:
e Avocado Prices (retrieved from
https://www.kaggle.com/neuromusic/avocado-prices)

e Hearth Disease (retrieved from
https://www.kaggle.com /ronitf/heart-disease-uci)

These datasets were chosen to provide different perspec-
tives on the results obtained from the experiments. Av-
ocado Prices contains longitudinal data on avocado sales.
The dataset is quite large, as it consist of around 19000
rows. On the other hand, Heart Disease dataset has only
303 rows and the data comes from the healthcare domain.

4.1.1 Data Preprocessing
To ensure that the results are correct, the data was scaled
before any computations, data splitting or model fitting.
This is an essential step for ML algorithms that base their
predictions on distances between data points. To avoid
any features dominating over others when calculating the
distances, the data needs to be scaled as some features
have a higher value range than others. This was done
using sci-kit learn StandardScaler function, which essen-
tially transforms the features, so that their distributions
have a mean value 0 and standard deviation of 1. The
standarization function could be defined as follows:
n Tr—p
A = —
o

4.1.2  Generating MAR Data
To evaluate the performance of algorithms on predicting
the MAR data, a process of introducing empty values to
a complete dataset has been created.

First, a target attribute has been selected and split from
the rest of the data. To simulate that the missing value
is only dependent on the data observed, the weight (W)
matrix has been defined. Its dimensions are based on
the dimensions of target attribute matrix. The matrix W
has been filled with artificially created float-type variable.
This variable could not be correlated with any other vari-
able, other than target attribute, present in the dataset
in order to meet the MAR mechanism requirements. The
matrix W has been filled by values randomly drawn from
a uniform distribution over [0,1) and assigned a positive
correlation to the probability of missingness of target at-
tribute. These steps assure that MNAR mechanism would



not be achieved by mistake, as the target attribute is not
given a correlation to any other variable in the dataset.

Having the W matrix and probability of missingness, we
can successfully introduce missing values to the target at-
tribute by comparing the randomly generated weight with
the conditional missing probability. This process is re-
peated several times in order to allow for generation of
high percentages of missing data. The amount of NaN val-
ues is determined by a threshold value which is assigned
before the algorithm run.

4.1.3  Train/Test Split

To maintain a stable amount of data for the training set,
while changing the amount of missing values in each iter-
ation of model training and testing, two subsets of data
were created. From the entire collection, half of the rows
were sampled to be used for the training set. The remain-
der has served as a base set for generating missing data.
In each iteration, a new percentage of missing values have
been introduced and the rows containing null values were
selected and used as testing set, to evaluate score of the
algorithms.

4.2 Algorithms

Several ML models have been chosen to conduct the ex-
periments. They have been divided into two categories,
where the usage depends on the variable type. These mod-
els were selected because they are the most widely used for
regression and classification problems.

Table 1: Models selected

Numerical Variables

Categorical Variables

Linear Regression

Logistic Regression

Bayesian Ridge Regression

Perceptron

Decision Tree Regressor

Decision Tree Classifier

K-Nearest Neighbors
gressor

Re-

K-Nearest Neighbors Clas-
sifier

4.2.1 Model Evaluation

The setup of the experiments needed to tackle regres-
sion and classification problem. For this reason, in each
dataset, one categorical and one numerical attribute was
selected. To perform the predictive modelling, depend-
ing on the type of variable, an appropriate algorithm was
used. The ensemble methods and individual ML models
performance were assessed using precision and recall for
categorical variables. On the other hand, numerical val-
ues were assessed using scikit-learn 72 score function.

4.2.2  Hyperparameter Tuning

Decision Tree and KNN algorithm performance is highly
impacted by the parameters used for fitting the models.
To ensure that the models are trained with optimal pa-
rameters, GridSearchCV from sci-kit learn has been used
for the evaluation. GridSearchCV takes an array of pos-
sible parameters and tests the performance of model with
each combination of parameters. Based on the scores, it
returns the most optimal combination. Hyperparameters
used in the GridSearchCV:

Table 2: Decision Tree Hyperparameters

Parameter Values

criterion gini, entropy

splitter best, random

max_depth 2, 3 .. (training samples) -1
min_samples_split 2,3 .. 12

Table 3: KNN Hyperparameters

Parameter Values

n_neighbors 2,3,.. 12

weight uniform, distance

algorithm auto, ball_tree, kd_tree, brute
leaf_size 12, 20, .. 100

P 1,2..10

4.2.3 Ensemble Methods

Bagging and AdaBoost are the two ensemble methods used
to conduct this study. The functions were applied from sci-
kit learn library and used with default parameters. Since
one of the ML algorithms evaluated is Decision Tree, Ran-
dom Forest has been added to this study as well. RF is
a bagging method, which creates an ensemble of decision
trees with large depths. Moreover, the algorithm makes
use of random feature selection subspace for more robust
models. The implementation of AdaBoost for KNNClas-
sifier was not possible using sci-kit.

5. RESULTS

The graphs visualize model fit performance score for differ-
ent ML models and ensembles. The plots express score ob-
tained by a specific algorithm either using R? (for numeri-
cal variable), or f1 score (for categorical variable). Each of
the graphs contain a legend explaining which color sym-
bolizes a specific algorithm. Some of the visualizations
showing the most significant impact of ensemble methods
can be seen below, while remaining graphs can be found
in the Appendix section.

From the selected algorithms, all performed well (more
than 90% R? score on average) in the classification prob-
lem on Avocado dataset. Furthermore, in the Avocado
dataset, we can see high performance (around 80% R?
score) of Decision Tree Regressor, with the ensembles yield-
ing improvement of over 10-15% compared to the base
learner (see Figure 6). KNN Regression scores similarly
to Decision Tree and its AdaBoost ensemble, while Bag-
ging slightly improved the results, giving on average 2-3%
increase (see Figure 7). KNN Regression scores. Both
Linear Regression and Bayesian Ridge score very similarly
to each other (around 58% on avg., see Appendix), with
Bagging giving almost the exact same results as the base
learner, and AdaBoost scoring significantly lower than the
base learner.
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Figure 6: Decision Tree Regressor and its ensembles on
"Average Price’ attribute from Avocado dataset
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Figure 7: KNNeighbors Regressor and its ensembles on
"Average Price’ attribute from Avocado dataset

Contrary, the results of models fit on Heart Disease dataset
are significantly lower. For the regression problem, the
most readable and interesting results we can notice once
again for the Decision Tree. As one can see, some values
of R? for the base learner are negative, while the ensemble
methods score much better (see Figure 8.). In classifica-
tion problem, Decision Tree scores on average similarly to
its ensemble methods (see Figure 9.).
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Figure 8: Decision Tree Regressor and its ensembles on
’Old Peak’ attribute from Heart Disease dataset
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Figure 9: Decision Tree Classifier and its ensembles on
’Restecq’ attribute from Heart Disease dataset

6. DISCUSSION

To begin with, as we can see in the results from the ex-
periments, the regression models performed much better
overall on the Avocado dataset, than on the Heart Disease.
The model fit score is significantly higher and the results
are more stable across various amounts of missing data.
This is mostly due to the size of the collection. Since
it is large enough, the algorithms can gain valuable in-
sights and fit the model on data that represents the largest
amount of collection. The classification models obtained
high scores on the Avocado dataset as well.

Bagging offers very little to no model fit score improve-
ment for Linear Regression and Bayesian Ridge Regres-
sion on both datasets. When used for KNNeighbors Re-
gression, it resulted in a few percent increment over the
base learner.

The behavior of Adaboost is rather quite unexpected, as
the use of this method should yield prediction accuracy at
least equal to the base learner, or higher. This might be
due to a possible error in the implementation.

Perceptron and Logistic Regression scored over 90%, with
their Bagging yielding very similar results to the base
learner. Adaboost on average gave very similar score to
the base learner for Perceptron, while it performed slightly
worse for Logistic Regression. Decision Tree Classifier and
all the ensembles resulted in F1 score of 1, giving the
best possible performance on various amounts of testing
data. KNN performed similarly, having just small devia-
tions from the maximum F1 score.

The results of the experiments on the Heart Disease dataset
are unstable, as earlier mentioned, due to the size of the
dataset. Perhaps the data points drawn to the training set
are not well representative of the whole collection. Since
the models are poorly fit, given the same training set for
every testing set, the score results differ significantly for
various levels of data missingness. In the case of KNN
Regression and Decision Tree Regression, the model fit
performance significantly drops given more missing values
to predict, which was expected.

The unstable results can be explained by experimental
setup. Each testing set is created by the generative pro-
cedure outlined in Generating MAR Data section. Ev-
ery iteration generates missing values in most likely differ-
ent rows of data, creating different training data samples.
Based on the training set, different testing data samples
might result in significantly different performance of the
model. This might be due to the model being fitted better
to certain data points.

When conducting the experiments, the running times of
ensemble methods significantly increased the compilation
time. This is naturally caused by the numerous sampling
of the data and fitting numerous models which creates
computational complexity.

7. CONCLUSIONS AND FUTURE WORK

Based on the literature, the state of the art ensemble meth-
ods for handling missing data, cover mostly the usage
of multiple imputation technique together with another
traditional imputation method, or certain statistical algo-
rithms. As previous research has shown, the use of en-
semble methods can significantly help in filling the miss-
ing data, by combining various techniques. The area of
missing data is not broadly explored in terms of machine
learning ensemble methods yet, but the discoveries done
so far provide great base for future research.



As the experiments suggest, ensemble methods have a
significant impact on machine learning algorithms, that
can be classified as weak learners. For Decision Tree Re-
gression, they yield model fit score improvement on both
small and large dataset used in the study. In measurable
terms, as can be seen in Figure 6. showing the model
performance on a large dataset, the ensemble methods of
DT offer an increment of around 10-15%, varying on the
method. On the Heart Disease dataset, which is a very
small dataset, the accuracy of predictions increase is even
more noticeable (at times even more than 40% compared
to the base learner, see Figure 8.), due to the additional
training data generated and models fitted by Boosting and
Bagging algorithms.

While in the regression problem the use of ensemble meth-
ods give significant score increase, the classification prob-
lem is more difficult to clearly judge based on the results
obtained. From the selected regression models for this ex-
periment, as earlier mentioned, the largest model fit score
improvement can be seen in Decision Tree. The ensem-
ble methods outperform the base algorithm as they are
much more robust and limit overfitting by increasing the
variance, as well as decrease the error by reducing bias.
Figure 6. shows that the overall model fit score remains
quite stable given various testing data amounts. This is a
reasonable result as the training set is large enough and
remains unchanged throughout all computations.

While testing the model fit performance on the Heart Dis-
ease dataset, we can notice that the performance of base
learner regression models is most of the time just as good,
or better, than of the ensemble methods. The results of
Linear Regression and Bayesian Ridge Regression show
that there is almost no difference between the individual
ML algorithm and Bagging ensemble. This result is not
much of a surprise, as these models are rather stable and
creating multiple samples of the data to introduce more
diversity does not improve the performance. Both models
got a lesser model fit score when trained using AdaBoost.

It is crucial to point out, especially when working on large
collections of data, that using ensemble ML models might
not be feasible, due to computational complexity. If the
used technique does not provide sufficient improvement to
the model fitting and predictions accuracy, the trade-off
for compilation time and complexity might not be worth
it.

7.1 Future work

Hopefully, this paper will inspire further investigation in
the field of ML ensemble methods used for handling miss-
ing data. Since the scope of this paper did not cover more
questions or directions of this research area, there is defi-
nitely more work to be done in the future, such as:

e Explore the impact of other ensemble learning tech-
niques such as Weighted Majority Voting, Stacking,
and others.

e Experiment with other ML algorithms.

e Compare the performance of handling missing data
by ML ensemble methods to traditional missing data
imputation techniques, on various dataset sizes.

e Inspect how various ratios of training/testing data
affects the model fit score and accuracy of predic-
tions.
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Figure 10: Score obtained on the training set from Avocado dataset, per base model.
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Figure 11: Score obtained on the training set from Heart Disease database, per base model.
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