
Predicting car movement for autonomous driving
through traffic using neural networks

Camilio Delfgaauw
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

c.delfgaauw@student.utwente.nl

ABSTRACT
The technology of autonomous driving is becoming a more
common technology. These autonomous cars have the
ability to communicate with other autonomous cars. This
makes it possible to use the data of the autonomous cars to
make predictions on the traffic around the cars. Because
of this this research tries to determine what deep learning
method can be used in the prediction of vehicle movement.
And from the method that can make predictions which
method works best. The goal of the research is to answer
the following research questions: Q1 Which deep learning
method is best to use in predicting traffic movement for au-
tonomous driving? Q2 What machine learning techniques
can be used in the trajectory and speed prediction of traf-
fic? Q3 Which method creates the smallest error in our
simulated setup? To answer these question the literature
study determined to use a CNN method where you feed
the network spatial data through the use of images and an
LSTM network that uses coordinate data from each ve-
hicle individually to determine the next coordinate of the
vehicle. The generate data than can be used in the train-
ing and testing of these deep learning techniques, SUMO
was used. With the help of SUMO two data sets where
created, one with a simplistic network to test the differ-
ent techniques and one more realistic and complicated to
determine which technique preforms best. The CNN was
moderately accurate with an accuracy of around 77% af-
ter training for 150 epochs. But the CNN also produced
a lot of false positives making the results diluted. The
LSTM network preformed slightly worse with an average
accuracy of 58%. But these results where not influenced
by any false positive values, because of how the network
works. The above mentioned values together with some
more variables, the conclusion was made that the LSTM
network is more suitable for the predicting of traffic move-
ment for autonomous driving.

Keywords
Autonomous driving, deep learning, SUMO, CNN, LSTM

1. INTRODUCTION
Tesla is one of the first companies that have introduced an
auto pilot in there manufactured cars. Next to Tesla there

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
28th Twente Student Conference on IT July. 3th, 2020, Enschede, The
Netherlands.
Copyright 2018, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

are multiple companies that have vehicle being driven by
AI. These Autonomous vehicle are becoming better. But
they also raise question on how they could improve. One of
the things that could be improved on a autonomous vehicle
is it’s awareness of it’s surrounding. If there are multiple
autonomous cars in a road network, they could communi-
cate their positions to help other autonomous cars in their
navigation. Having the position of other vehicles around
the autonomous vehicle is not good enough, because you
want to determine where the cars are going to and if this
influences your path or route. For this purpose this re-
search tries to answer the following research questions: Q1
Which deep learning method is best to use in predicting
traffic movement for autonomous driving? Q2 What ma-
chine learning techniques can be used in the trajectory and
speed prediction of traffic? Q3 Which method creates the
smallest error in our simulated setup? In the first part of
the research we have preform a literature study. In this
study we want to determine what previous research has
been preformed on this subject and what deep learning
method are best candidate for the goal of this research.
The next part of the research was data collection. For the
collection several networks where created in sumo. SUMO
is a mobility simulator that can generate vehicle movement
in a road network. These data sets are being used in two
deep learning methods, the first is a convoluted neural
network and the second is a Long Short term Network.
These networks have been created in Python using Ten-
sorflow and Keras. The end of this paper will discus the
results and make conclusions based on the results

2. LITERATURE STUDY
The literature study tries to answer the research question
Q2. The literature study identified several articles that
preform predictions on traffic flows [4] [5][6]. Most of these
article use liniar regression to predict traffic flows. There
are several articles that use deep learning methods in the
prediction of traffic flow. One of the most interesting arti-
cle is the article by MA 2017.[6]. This article describes at
technique to evaluate traffic flow as images. These images
could then be used to predict the next state of the network
using a Convolutional neural network (CNN). The article
of Bratsas 2019 [3] preformed a comparison on different
machine learning methods for traffic speed prediction. In
his article Bratsas states that the Multilayer Perceptron
model(MLP) works best for circumstances with great vari-
ations. Because a CNN works faster and is more accurate
than a MLP this research focuses on the use of a CNN.
With the use of images to represent the network over time.
Another interesting article is the article by Chen 2017 [5].
In this article they propose a LSTM network to predict
short term traffic flow in a network. LSTM are very good
in predicting time series and therefore are interesting in

1



Figure 1. hand drawn road network in SUMO,
showing the intersection of the 4 roads

the use of vehicle predictions on an individual level. This
makes the LSTM one of the methods used in this research.
Next to this articles where identified on the subject of
collision detection [1] [2] [7], these articles take a same
approach as this research towards predicting speed and
direction of specific vehicles. The article do not use deep
learning techniques and are therefore different from the
goal of this research. Based on the literature study a CNN
and a LSTM network where selected as the best methods
to use for the prediction of traffic flows. The selection
of these two networks show to very different approaches
making it interesting to compare them to determine the
best deep learning method.

3. SUMO
3.1 Network generation
This reseach needs a data set that represents a road net-
work and a data set that represents traffic on this road
network. To generate this data SUMO was used. SUMO
is a Simulation Of Urban Mobility, crated by Institute of
Transportation Systems at the German Aerospace Center.
It is an open source software. Because it is an open source
software it has a large user basis making it easy to find
tutorials, help and tips. Within SUMO there is the option
to generate networks. These networks can be generated
by drawing them by hand or they can be generated using
Netconvert. This a tool allows the user to generate a net-
work based on data collected from OpenStreetMap. Net-
convert makes it possible to take any place from around
the world and convert it in to a network within SUMO.
For the purpose of this research two networks where cre-
ated. On drawn by hand (See Figure 1) and one generate
with Netconvert using a OpenStreetMap (See Figure 2).
The first network has been chosen because it represents
a very simplistic network with 4 roads and one intersec-
tion. The intersection is managed by a traffic light. This
very simplistic network allows us to generate a base line
for the deep learning methods that will be implemented.
To test the durability of the deep learning methods the
second data set was chosen to be more complicated, and
represent a real life scenario. Because of the familiarity
the campus of the University of Twente was choosen as
the second road network.

3.2 Traffic generation
The created networks can be combined with a set of routes
that are used to generate the individual vehicles. These
routes can be generated automatically with the RandomTrips.py
script. For the first example this script was used to gener-
ate random vehicle movement within the network. For the

Figure 2. network generated using Netconvert
from data of OpenStreetMap of the University of
Twente campus

second example the routes were first generated by Ron-
domTrips script, after the creation known routes where
added. Because the area is known to the researchers im-
provement could be made by adding routes that are more
commonly used in this area. This made the example less
random and more realistic.

3.3 Output generation and post processing
By combining the networks and the routes, SUMO can
generate the traffic by simulating the vehicles on the roads
in the network. SUMO does this by making a snapshot
of the network status every second. This allows SUMO to
generate an XML file with the position and speed of every
vehicle in the network on every time-step. From these
XML files the location of every vehicle at every time-step
could be extracted.

4. DEEP LEARNING METHODS
Based on the literature study two deep learning methods
where implemented for this research. The first method
is convoluted neural network that takes images from the
whole network for every time-step in the example. The
second method is long short term memory network, that
uses the locations data of the vehicles as times series data.
This makes it two very distinct approaches to the problem.
In the first approach the method looks at the network as a
whole making it possible to learn from the flow of traffic,
where as in the second approach the method looks at the
vehicle level and determine the next position based on the
previous positions.

4.1 Convolutional Neural Networks
For the CNN network Tensor was used to generated and
train the network. The pix2pix example was used as a
guidline in the creation of the neural network. The net-
work uses 2 dimensional pictures as both input and out-
put. With the use of Python pictures where generated
for every time-step in our examples. These pictures where
generated in 2 types. The first type used a black back-
ground with colored pixel for every vehicle in the network.
For the second type we used the network as a background
in red after which the cars where added in blue. This
works well because an image has 3 dimensions for each
pixel (red, green and blue), this makes it possible for the
network to differentiate between the roads and the vehi-
cles. To make the data set the pictures were linked based
on their time-step. For the purpose of training and testing
the network these pictures where generated in doubles by
combining the picture of time-step n with the picture of
time-step n+1. This allowed the network to generate a

2



Table 1. First set of layers of CNN showing the
structure of the generator

Layer type input shape output shape
Input layer (1024, 1024, 3) (1024, 1024, 3)
LeakyReLU (512, 512, 64) (512, 512, 64)

Conv2D (512, 512, 64) (256, 256, 128)
BatchNormalization (256, 256, 128) (256, 256, 128)

LeakyReLU (256, 256, 128) (256, 256, 128)
Conv2D (256, 256, 128) (128, 128, 256)

BatchNormalization (128, 128, 256) (128, 128, 256)
LeakyReLU (128, 128, 256) (128, 128, 256)

Conv2D (128, 128, 256) (64, 64, 512)
BatchNormalization (64, 64, 512) (64, 64, 512)

LeakyReLU (64, 64, 512) (64, 64, 512)
Conv2D (64, 64, 512) (32, 32, 512)

BatchNormalization (32, 32, 512) (32, 32, 512)
LeakyReLU (32, 32, 512) (32, 32, 512)

Conv2D (32, 32, 512) (16, 16, 512)

picture based on time-step n (the input) and than correct
the generator to create the Output of time-step n+1 (the
target). The generator is build of several layers that are
being used to extract features to make the connections
between the input and the target (See Table 1). These
layers consist of 3 types of layers: Convolutional layers,
ReakyRelu layers and Batch normalization. The convolu-
tional layers make the connections between the input and
the output to make the generator trainable. ReakyRelu
layers are used to make the values that are 0 slightly big-
ger so the network can make connections between the data
points with 0 values. The Batchnormalization layers make
all the values between 0 and 1, this is needed for the neu-
ral networks to make the calculation on the connections in
the network. The layers follow each other until the shape
of the last layer is (1,1, 512) this makes it possible for each
pixel to be connected in the data set to the generated out-
put. After this layer the data will be concatenated using
the output of each of the convolutional layers to generate
the full size of the full image again. This last layer can be
used to verify the accuracy with the target image of the
data set.

For every variation of the input the generator trained for
150 epoch on a data set size of 180 pictures for the first
example and 439 pictures for the second example. The
other part of the data sets where being used to test the
generator on its accuracy.

4.2 Long Short Term Memory network
The LSTM network is build in Keras. This network is
trained and test with csv files containing every position
of each vehicle in every time-step. These data sets where
divided between a training set and a test set. The model
was build with a hidden layer of 16 LSTM blocks. The
network was trained for 150 epochs to match the CNN.
Because the data consists of coordinates, the model runs
on 2 dimensional data representing the x and the y coor-
dinate of the vehicle.

5. RESULTS
5.1 CNN
The generator of the CNN network was trained and test
on 4 different data sets. The first data set was the simplis-
tic network with only one intersection. The second data
set was the simplistic network containing a layer with the
network itself. The third data set was the realistic data

Figure 3. Accuracy based on the amount of pre-
dicted points divided by the amount of ground
truth points during the training phase

Figure 4. Moving average of the accuracy based
on the amount of predicted points divided by the
amount of ground truth points during the training
phase

set which was base on the campus of the university. The
last data set was the realistic data set with the network
layer as a dimension in the data.

5.1.1 Simplistic network example
During the fitting of the CNN network to the training
data, the accuracy of the model was test on a random
example from the testing data to determine the accuracy
during the training’s phase. From these random examples
the amount of points in that represent vehicles in the im-
age was calculated, the amount of predicted points and
the amount of points that are positive in the ground truth
image and the prediction image was calculated. This data
determines the accuracy of the generator by dividing the
amount of good predicted points by the amount of points
that are positive in the ground truth image. Plotting these
values generate a picture showing the accuracy during the
training’s phase. Figure 3 shows that the accuracy. This
graph is very volatile and hard to read. A moving average
was made of the data to make it easier to read and under-
stand. Figure 4 shows the moving average of the accuracy.
The accuracy is steadily declining. This decline can be ex-
plained by the declining amount of generated points. This
happens because the network is trying to adjust it’s out-
put to the ground truth. Figure 5 shows the amount of
generated points divided by the amount of positive ground
truth points, these points are called false positives. The
amount of false positives is steadily increasing, this means
that the generated model has a problem with generating
more bad points.

There is a method to decrease the amount of bad gen-
erated points. By implementing a threshold, the gener-
ate image can ignore points that have a lower value. The
ground truth image has a pixel value of 255 for it’s blue di-
mension, this means that if the generated point also has a
value of 255 for it’s blue dimension this is a perfect match.
By implementing the threshold 127,5 for it’s blue dimen-
sion all the points that have been decreased in intensity by

3



Figure 5. Moving average of the amount of positive
points in the ground truth per predicted points
during the training phase

Figure 6. Moving average of the accuracy based
on the amount of good predicted points divided
by the amount of ground truth points with the
implemented threshold during the training phase

the generator can be eliminate. During the learning pro-
cess the network lowers the value of bad predicted points
making it possible to eliminate them with the threshold.
Figure 6 and 7 show that, with the implemented threshold
the accuracy of the model is increasing and the amount of
false positives is decreasing.This shows that the prediction
is increasing during the training phase.

After fitting the CNN network on the training data, the
generator was tested on the test data. The confusion ma-
trix shown in table 2 gives the result of the testing data
set. This gave an average of 0,66 good generated point
for every ground truth point. The generator also gener-
ated a lot of false positives similar to the training phase,
the amount of false positive points was on average 93.4205
per image. This means that the generated image are still
distorted with random point or points around the vehicle
after the training phase. By implementing the threshold
on this data as well, the amount of random points where
decreased to an average of 25 but the accuracy to dropped

Figure 7. Moving average of the amount of positive
points in the ground truth per predicted points
with the implemented threshold during the train-
ing phase

Table 2. Confusion matrix of the simplistic exam-
ple

without
threshold

with
threshold

predicted
positive

predicted
negative

pred.
positive

pred.
negative

Ground truth
positive

14.34 7.27 0.84 20.77

Ground truth
negative

934,205 114,349 25.54 1,048,529

Figure 8. Moving average of the accuracy based
on the amount of predicted points divided by the
amount of positive points in the ground truth with
the implemented threshold for the training set
with road layer during the training phase

to 0.04 good generated point for every positive point in
the ground truth.

To improve the predictions of the neural network an ex-
tra layer has been implemented in the images. This layer
represents the roads of the network in the red dimension.
The idea of this is that by giving the generator data about
the model this would increase the accuracy.

Figure 8 and 9 show the accuracy and the amount of false
positives per positive ground truth point. These figures
show that the during the training’s phase the accuracy is
increasing and that the rate of false positives is decreasing.
this shows that the generator is preforming better on the
data that has the network implemented as a layer than
on the data without this. To make the data comparable
the threshold was also implemented on the data with the
network. Figure 10 and 11 show the accuracy and the ratio
of false positives with the implemented threshold. With
the threshold the accuracy is still increasing but the rate of
false positives does not seem to decrease, this means that
with more training there is a chance that this generator
still produce a lot of random points.

After fitting the CNN network on the training data with
the extra layer, the generator was tested on the test data.

Figure 9. Moving average of the amount of positive
ground truth points per predicted points with the
implemented threshold for the training set with
road layer during the training phase

4



Figure 10. Moving average of the accuracy based
on the amount of predicted points divided by the
amount of positive ground truth points with the
implemented threshold for the training set with
road layer during the training phase

Figure 11. Moving average of the amount of posi-
tive ground truth points per predicted points with
the implemented threshold for the training set
with road layer during the training phase

Table 3. Confusion matrix of the simplistic exam-
ple with road network layer

without
threshold

with
threshold

predicted
positive

predicted
negative

pred.
positive

pred.
negative

Ground truth
positive

17.36 4.61 2.34 19.63

Ground truth
negative

1,045,062 3,488 55 1,048,499

Figure 12. Moving average of the accuracy based
on the amount of predicted points divided by the
amount of positive ground truth points with the
more realistic data set during the training phase

The confusion matrix shown in table 3 gives the result
of the testing data set. This gave an average of 0,77 good
generated point for every positive ground truth point. The
generator also generated a lot of false positives similar to
the training phase, the amount of false positive points was
on average 1.045.065 per image. This means that these
generated image were more distorted with random point
or points around the vehicle after the training phase than
the example without the network layer. By implementing
the threshold on this data as well, the amount of random
points where decreased to an average of 55 but this also
dropped the accuracy to 0.11 good generated point for
every positive ground truth point. This is significantly
higher than the example without the network layer.

5.1.2 Realistic network example
There where several issues with running this data set. The
original idea was to run this data set with images of 4000
by 4000 pixels because the network was much larger and
contained interesting movement. However the computa-
tional power of the devices at hand where not sufficient
enough to create a CNN for images this large. Even with
the use of Google COLAB the examples where to be to
be calculated in meaning full time. Because of this the
images had to be decreased to a size of 1024 by 1024 pix-
els which is similar to the size of the simplistic network.
Because the more realistic data set had to be down scaled
the amount of vehicles in the network also decreased. This
meant that the average amount of vehicles was only 4 per
image. This made the generator a lot less accurate.

Figure 12 and 13 show the accuracy and the amount of
false positives per positive ground truth point during the
training’s phase. The images show that with increased
training the accuracy decreases but also the ratio of false
positives. To compare this to the results of the other data
sets the threshold was implemented. Figure 14 and 15
show the accuracy and the false positives ratio with the
threshold implemented. In the last two figures the low
amount of vehicles per image is becoming a problem. The
generator has to few vehicles to make good predictions and
because of this the accuracy drops to almost 0.

After fitting the CNN network on the training data, the
generator was tested on the test data.The confusion ma-
trix shown in table 4 gives the result of the testing set.
This gave an average of 0,45 good generated point for
every positive ground truth point. The generator also
generated a lot of false positives similar to the training
phase, the amount of false positive points was on average
1.046.526 per image.This is very similar to the simplistic
data set. By implementing the threshold on this data as
well, the amount of random points where decreased to an

5



Figure 13. Moving average of the amount of posi-
tive ground truth points per predicted points with
the more realistic data set during the training
phase

Figure 14. Moving average of the accuracy based
on the amount of predicted points divided by the
amount of positive ground truth points with the
more realistic data set and the threshold during
the training phase

Figure 15. Moving average of the amount of posi-
tive ground truth points per predicted points with
the implemented threshold for the training set
with the more realistic data set and the thresh-
old during the training phase

Table 4. Confusion matrix of the realistic example
without

threshold
with

threshold
predicted
positive

predicted
negative

pred.
positive

pred.
negative

Ground truth
positive

1.57 1.77 0 3.34

Ground truth
negative

1,046,526 2,046 3 1,048,570

Figure 16. The X coordinates of the ground truth
for the simplistic example (grey), training data set
(orange) and the testing data set (green)

Figure 17. The Y coordinates of the ground truth
for the simplistic example (grey), training data set
(orange) and the testing data set (green)

average of 3, this looks really promising. But the accuracy
was decreased to 0, because there where no points with a
value above the threshold. This makes the results with
the threshold not comparable to the simplistic data set.
More testing is needed to determine the effectiveness of
the CNN with a realistic example.

5.2 LSTM
The LSTM network produces a mean square error for
the difference between the generated coordinates and the
ground truth coordinates. For the very simplistic network
the MSE was 45.13 for the training set and 48.02 for the
testing set. Next to this the average distance between
the generated locations and the vehicle locations was cal-
culated to be 18.27 meters. To determine the amount
of correct predictions we compared the generated and the
ground truth and determined the amount of positions within
1 meter. This gave an accuracy of 0.59 for each position.
Figure 16 and 17 where generated using respectively the
x and y coordinates for the original data set in black the
predicted training data set in orange and the predicted
testing data set in green. These images show that the fit-
ting to the original data set is good, but at the peaks of the
graph’s the lines separate. This means that the extreme
values are harder for the LSTM to predict.

For the more realistic network the MSE was 78.21 for the
training set and 79.93 for the testing set. This means that
the accuracy is decreased within the more complex net-
work. Next to this the average distance between the gen-
erated points and the vehicle coordinates was calculated
to be 27,91 meters. And if we look at the ratio of cor-
rect predicted locations within 1 meter the ratio is 0.18.
This is a significant drop in accuracy compared to the
simplistic network. This means that the network needs to
be trained longer for the more complicated road network.
Figure 18 and 19 where again generated for the x and y
values. These graph’s look much more fitting, but this is
caused by the higher range of the data points that are be-
ing used. Ass the numbers show the fitting is less accurate
than the simplistic network.

6



Figure 18. The values of the X coordinates of the
realistic example from the original data set (grey),
training data set (orange) and the testing data set
(green)

Figure 19. The values of the Y coordinates of the
realistic example from the original data set (grey),
training data set (orange) and the testing data set
(green)

6. CONCLUSION
Table 5 and 6 shows the accuracy results for all experi-
ments. The training results generated by the CNN show
that the prediction of vehicle movement in a road network
is possible. Because of the decrease in false positives and
the increase in accuracy during the training phase, the ex-
pectations are that the network will preform better after
more training is done. The data also shows that there is a
lot of random points being generated by this method that
needs to be removed. This has been achieved by imple-
menting a threshold, which removes data with lower point
values. Next to this the CNN produced less promising re-
sult using the more realistic data set. The origin of this
problem lies in the size of the road network, because the
size was to big. This resulted in smaller part of the net-
work being used in the training and testing of the model.
This caused the number of vehicles in each time step to be
very low. this made it harder for the model to train and
harder to test the result.

The results generated by the LSTM show that the model is
a good candidate for the prediction of vehicle movement in
a road network. The model could generate a error distance
of 18 meters and 28 meters respectively for the simplistic
data set and the more realistic data set. By looking at
the amount of correct identified locations within 1 meter
of the ground truth this is 59% and 18% respectively.

Table 5. Results of the CNN network

CNN
CNN

with threshold
simplist
example

realistic
example

simplistic
example

realistic
example

without
road network

66% 45% 4% 0%

with
road network

77% 11%

Table 6. Results of the LSTM network
LSTM

simplist
example

realistic
example

without
road network

59% 18%

average distance
to vehicle position (m)

18 28

The two methods can be compared on several factors:

The training duration. The training duration for the CNN
model is a lot longer than for the LSTM model. The train-
ing duration of the CNN is on average between 7 and 9
hours where the training duration of the LSTM is between
30 minutes to an hour. This makes the LSTM model much
easier to use.

The accuracy of good predicted locations. The accuracy of
the CNN was between 45% and 77%. The higher amount
of accuracy was achieved by having a lot of false positives.
after removing the false positives by using a threshold the
accuracy was between 0% and 11%. The accuracy of the
LSTM was 59% and 18%. Because the LSTM model pro-
duces no false positives this accuracy is not influenced by
this. This answers research question Q3.

By taking these factors in consideration the LSTM has
been selected as the best model to use in the prediction of
vehicle movement in a network. This answers the primary
research question of this research.

7. FUTURE RESEARCH
The results of this research show that the LSTM model
preforms best for this research goal. But this conclusion
could be reinforced more by preforming some more calcu-
lations. Because all the test where trained with 150 epochs
we do not know how much training is needed to generate
a model that preforms above 90% and has no, to almost
no false positives. Next to this the models could be im-
proved by using other variables such as the speed of the
vehicles and the past location of each vehicle. Also the
implementation of the model in real life scenarios could
be test better by having more realistic model that could
be generated using real life traffic data to make the model
a better fit for the real world.

8. REFERENCES
[1] D. Althoff, D. Wollherr, and M. Buss. Safety

assessment of trajectories for navigation in uncertain
and dynamic environments. In 2011 IEEE
International Conference on Robotics and
Automation, pages 5407–5412, May 2011.

[2] G. Aoude and J. How. Using support vector machines
and bayesian filtering for classifying agent intentions
at road intersections. 09 2009.

[3] C. Bratsas, K. Koupidis, J. M. Salanova Grau,
K. Giannakopoulos, A. Kaloudis, and
G. Aifadopoulou. A comparison of machine learning
methods for the prediction of traffic speed in urban
places. Sustainability, 12:142, 12 2019.

[4] S. Chavhan and P. Venkataram. Prediction based
traffic management in a metropolitan area. Journal of
Traffic and Transportation Engineering (English
Edition), 2019.

[5] W. Chen, Z. Zhao, J. Liu, P. C. Y. Chen, and X. Wu.
Lstm network: A deep learning approach for

7



short-term traffic forecast. IET Intelligent Transport
Systems, 11, 01 2017.

[6] X. Ma, Z. Dai, Z. He, J. Ma, Y. Wang, and Y. Wang.
Learning traffic as images: A deep convolutional
neural network for large-scale transportation network
speed prediction. Sensors, 17:818, 04 2017.

[7] K. Okamoto, K. Berntorp, and S. D. Cairano]. Driver
intention-based vehicle threat assessment using
random forests and particle filtering.
IFAC-PapersOnLine, 50(1):13860 – 13865, 2017. 20th
IFAC World Congress.

8


