
BSc Thesis Applied Mathematics

Greedy algorithms for anchored

rectangle packings

M.T. Maat

Supervisor: dr. R.P. Hoeksma

July, 2020

Department of Applied Mathematics
Faculty of Electrical Engineering,
Mathematics and Computer Science

Preface

Greedy algorithms for anchored rectangle packings

M.T.Maat

July, 2020

Abstract

A lower-left anchored rectangle packing of a �nite set of points S (including the
origin) in the unit square is a set of axis-aligned rectangles in the unit square such
that no two rectangles overlap, no points are in the interior of a rectangle and each
rectangle has exactly one point of S as its lower left corner. A greedy algorithm to �nd
such packings with large area was discovered before. It treats the points in a speci�c
order. We derive principles for orderings for which this greedy algorithm yields a large
area. We analyze the performance of a number of orderings empirically on a number
of random point sets. Finally, we derive upper bounds for the worst case performance,
and increase the best known lower bound on the worst case performance of an ordering
to 0.9612.

Keywords: anchored rectangle, packing problem, greedy algorithm, computational
geometry, approximation algorithm

1 Introduction

This thesis concerns a conjecture that was proposed over 50 years ago. A nice formulation
of the problem is as follows (see Christ et al. [5]): Alice has baked a cake for her and Bob.
It is a square cake, and Alice has put some raisins on top, of which one in the bottom left
corner. Bob will cut the cake, but he has to follow some rules: he can only take rectangular
axis-aligned pieces for himself, and all his pieces must have exactly one raisin, which must
be at the lower left corner of each piece (and he cannot turn pieces). The conjecture states
that Bob can always secure half of the cake for himself, independent of where Alice places
the raisins. The choice of pieces for Bob we call a (lower-left) anchored rectangle packing.
Although simple, the conjecture is still unsolved. In this thesis, we look at algorithms for
Bob to secure as much 'cake' as possible, in particular we look at a greedy algorithm called
greedypacking that chooses the largest possible rectangle at each point (raisin) in some
order. The main research question is:

• Is there an easily described order of the points in the (lower-left) anchored rectangle
packing problem, such that the greedypacking algorithm performs well?

In doing so, we state some principles that orderings should obey. Furthermore, we
look at the optimal solutions for Bob. We propose a number of di�erent orderings, and
we compare the performance of these orderings empirically. Finally, we derive some upper
bounds, and an improved lower bound for the worst case performance of greedypacking
with some orderings.

1

2 Preliminaries

First, we state some de�nitions that will be used often in this thesis. Consider a set R of
interior-disjoint rectangles in the unit square U = [0, 1]2, with sides parallel to the sides of
U , and a �nite set S ⊂ U . In this thesis, we will assume (0, 0) ∈ S, unless stated otherwise
(which is only for the dppacking algorithm), and we will always assume no two points share
an x- or y−coordinate. We say a rectangle of R is anchored at a point p if p is the lower
left corner of the rectangle, and there is no point of S in the interior of the rectangle. We
denote the rectangle anchored at p by r(p). We call p the anchor of r(p). We call R an
anchored rectangle packing1 (ARP) of S if each rectangle in R is an anchored rectangle,
and there is one anchored rectangle for each point. De�ne NS = |S|, and denote by A(R)
the total area of the rectangles in R.
We say a point p = (xp, yp) dominates a point q = (xq, yq) if xp > xq, and yp > yq. We
de�ne the dominance hull D of a set X ⊂ U by

D(X) = {p ∈ U | p dominates x for some x ∈ X}

Figure 1: Example of a step in the greedypacking algorithm. In this case, p5 is
being treated, where p1, p2, p3, p4 have been treated before p5, hence they have an
anchored rectangle already (grey rectangles). Anchored rectangles cannot intersect,
but can touch other rectangles, so the anchored rectangle with the largest possible
area at p5 will touch the grey rectangles. In this case, the blue rectangle has a
larger area than the rectangles with dashed and dotted lines, so this will be the
choice for r(p5).

In this thesis, the greedypacking algorithm is the following algorithm to �nd an anchored
rectangle packing: treat the points of S in a speci�c order, and start with R empty. We
denote an ordering by π = (p1, p2, . . . , pNS). When a point is treated, �nd the maximum
area rectangle anchored at that point, that is interior-disjoint with all other rectangles of R
and all points of S, and add this to R (ties are decided arbitrarily). See Figure 1. When

1Sometimes this is called a `lower-left anchored rectangle packing', as there are versions of this problem
where the anchor can be on any corner, or on another place in the rectangle. In this article we will only
consider the version with the anchor at the lower left corner, hence we use this name for simplicity.

2

all points are treated, R is an ARP. This algorithm can be implemented in time Θ(N2
S)

(Muller-Itten [9]). A maximal anchored rectangle packing is a rectangle packing whose
area cannot be improved by changing one of the rectangles. Note that the greedypacking
algorithm always yields a maximal ARP.

3 Related work

In this section we discuss some of the results that have been found before on this subject.
The subject of anchored rectangle packings was �rst mentioned in a conference paper by
Tutte [10] in 1969. In this paper, an open conjecture proposed by Allen Freedman was
stated, which says that for each point set S, there exists an anchored rectangle packing of
area at least 1

2 .
The problem appeared again, a long time later in a puzzle of IBM [8] and in a book of Peter
Winkler [11], where the origin of the problem was unknown at �rst. After this, several
results were found, setting several lower bounds on the area that can be covered.

First, Müller-Itten [9] presented the greedypacking algorithm in her master's thesis.
Also, she presented a more complex algorithm for packing rectangles, and showed that this
algorithm always �nds an anchored rectangle packing R with A(R) ≥ 1

NS
. Finally, she

showed that any maximal anchored rectangle packing can be constructed by the greedy-
packing algorithm, which result we will use later.
Later, Christ et al. [5] improved this bound. They showed that, for su�ciently large r, the
following holds: If there is a set S for which A(R) ≤ 1

r for all anchored rectangle packings

R of S, then NS ≥ 22
r
2 . Reversing this statement would say A(R) ≥ 1

2 log2 log2Ns
for NS

large enough.
The �rst constant lower bound for the problem was established by Dumitrescu and

Tóth [6]. In their paper, it was shown that an algorithm that partitions U into disjoint
staircase-shaped areas, and picks the largest rectangle within each staircase, results in an
anchored rectangle packing R with A(R) ≥ 0.09121. We will improve this bound later.
Furthermore, they showed that the greedypacking algorithm, if the points are treated from
high to low in the `1-norm, performs at least as well as the staircase algorithm.
Some other results on lower-left anchored rectangle packing were found as well. Recently,
Gadea Harder [7] proposed in his bachelor's thesis a dynamic programming algorithm, that
computes the anchored rectangle packing with the largest possible area in exponential time.

Furthermore, the number of maximal anchored rectangle packings of a set S was shown
to be at least Ω(4NS√

NS
) and at most Θ(8

NS

N
3
2
S

) in a paper by Balas et al. [2]. They also proved

exponential upper and lower bounds for the related problem, where rectangles can be
anchored in any corner point (instead of at its lower left corner).

On related problems where the rectangles can be anchored in di�erent ways, Antoniadis
et al. [1] showed that the related problem where the rectangles each have a point of S
at their center is NP-hard. Moreover, they constructed for a given ε a polynomial-time
algorithm that approximates the optimal solution by a factor 1− ε, for the version of the
anchored rectangle problem where each rectangle has a point in its center instead of its
lower left corner.
Moreover, a paper from Balas et al.[3] describes the related problem where the anchors can
be at any of the four corners of the rectangles in R, and the problem where R can only
consist of squares instead of rectangles, and the combination of these two. It describes
simple algorithms, and derives lower bounds for the performance of these algorithms.
Finally, the related problem where all points of S are on the boundary of U , and the

3

anchors can be on any corner of the rectangle, was studied by Biedl et al. [4]. It gives a
polynomial-time algorithm that �nds the best solution.
From earlier found results, we derive some principles for orderings in the greedypacking
algorithm.

4 Some main principles

In this section we discuss some useful observations for ordering of points in a greedypacking
algorithm. Some simple observations that were made earlier by Muller-Itten [9] are the
following:

Observation 4.1. Let L be the set of points at the top right of U (that is, the points p in S
for which there is no other point of S that dominates p). The points of L can be dealt with

easily: we can assume the rectangles of the points in L cover exactly their whole dominance

hull, without limiting the area that can be covered by an anchored rectangle packing.

Observation 4.2. The rectangle r((0, 0)) can be chosen independently from all the other

points, as any rectangle anchored at the origin cannot a�ect the other choices and vice

versa.

Note that from Observation 4.1, we can derive that we can start an ordering with the
points of S that are not dominated by any other points. Also, we can put them in any
order, as it is not hard to see that their anchored rectangles cover their whole dominance
hull for any order.
Another observation that we can make is the following theorem:

Theorem 4.3. Let π be an ordering of the points of S, and let Rπ be the anchored rectangle
packing that is produced by the greedypacking algorithm, with the points ordered according

to π. Then there exists an ordering π′ of S such that:

1. The greedypacking algorithm with order π′ yields Rπ, for some choice of tie breaks.

2. For all points p, q ∈ S where p dominates q, p comes before q in π′.

Proof. First, note that Rπ is a maximal anchored rectangle packing, by de�nition of the
greedypacking algorithm. From Theorem 6.2 in Muller-Itten [9], Lemma 4.1 in Dumitrescu
and Tóth [6] we know that any maximal anchored rectangle packing R de�nes a partial
order ≺R on the points of S as follows: q ≺R p if p dominates q or if r(p) is the one
of the (at most) two rectangles that are hit by the two axis-aligned rays shot upwards
and to the right respectively, coming from q. Note that q ≺R p is a necessary condition
for r(p) to a�ect the choice for r(q). Now let ≺∗R be any linear extension of ≺R, and let π′

be the ordering that places the points from high to low according to ≺∗R. Clearly, the
greedypacking algorithm with order π′ will yield Rπ for some choice of tie breaks, since,
for all points q, the rectangles that a�ect the choice of r(q) are chosen before q is processed.
Furthermore, by de�nition of the partial order, we have q ≺R p if p dominates q, hence π′

also satis�es the second condition of the theorem.

We refer to the second condition of Theorem 4.3 as the dominance property. We can
now see that we only have to consider point orders that satisfy the dominance property.
Intuitively, this means that point orders can be assumed to start with the point at the
upper right corner and end with those at the lower left corner of U . Next, we will look at
the best possible anchored rectangle packings, and derive more principles from these.

4

4.1 Optimal anchored rectangle packings

This section concerns an algorithm to �nd optimal anchored rectangle packings, which we
de�ne as follows: An optimal anchored rectangle packing of a set S is an anchored rectangle
packing with the largest area over all possible anchored rectangle packings of S. De�ne an
optimal ordering of S to be an ordering for which the greedypacking algorithm creates an
optimal anchored rectangle packing of S. We know that for every maximal ARP, there is
an ordering that reconstructs the ARP. Also, if an ARP is optimal, then it is also maximal,
as choosing a rectangle with a larger area at one point will result in an ARP with a larger
area. Hence an optimal ordering exists for any set S. Also, de�ne for an ordering π of a
set S and a point p the following: if p /∈ S, their concatenation is (πp), which is an ordering
of S ∪ {p}, that starts with π and ends with p. If p ∈ S, de�ne the di�erence π \ p, which
is an ordering of S \ {p} that is the same as π, but with p removed.

First, one important note is the following: sorting points based on any function
g : U → R can never guarantee that the order is optimal. This follows from the following
theorem:

Theorem 4.4. Let p, q ∈ U be two distinct points such that none of the two dominates the

other point. Then there exist �nite point sets S1, S2 ⊂ U , with {p, q} ⊂ S1 and {p, q} ⊂ S2
such that:

1. For each optimal ordering π1 of S1, p comes before q.

2. For each optimal ordering π2 of S2, q comes before p.

Proof. By symmetry, it su�ces to prove that S1 exists. W.l.o.g. we assume xp < xq,
hence yp > yq. Consider for a su�ciently small ε > 0 the point

v = (1 +
1− xq
1− yq

(yp + ε− 1) + ε, yp + ε)

This point is chosen such that v is just left of the line through q and (1, 1). Furthermore,
de�ne the set S1 = {(0, 0), p, q, v} (see Figure 2). As there are only two maximal anchored
rectangle packings for S (resulting from orderings (v, p, q, (0, 0)) and (v, q, p, (0, 0))), we
can easily see that all orderings where p comes before q are optimal, and all orderings
with q before p are not. Hence we found a set S1 with the desired property.

From this theorem, it also immediately follows that for two orderings that are based
on functions g1 : U → R and g2 : U → R that satisfy the dominance property, there are
always point sets such that the �rst ordering performs better than the second, and the
other way around. So no such ordering is always better than another one.

To be able to compute optimal ARP's, we de�ne the dppacking algorithm (see also
Gadea Harder [7]). It works as follows. For a point set S (not necessarily containing the
origin), consider all possible subsets of S, and do the following for each subset T ⊆ S, from
smallest to largest cardinality of T : for all points t ∈ T , assume t is the last point in the
optimal ordering of T . Then retrieve the optimal ordering πt for T \ {t} (for |T | = 1, this
is trivial, for |T | ≥ 2, this has then been calculated before). Then apply the greedypacking
algorithm with ordering (πtt) on T . Compare the results for all t ∈ T , �nd the result
with the t that yields the largest area for T , and save this for T as the optimum (ties are
broken arbitrarily). Then the result of the algorithm for the last set, T = S, is an optimal
ordering for S. See Algorithm 1 for the pseudocode.

Note that the dppacking algorithm can be accelerated by the principles found in the
previous chapter. Due to Observations 4.1, 4.2 we only have to consider all subsets of S

5

Figure 2: Point set S1. If q comes before p, the blue rectangle is chosen at q,
as v is just above the line through q and (1, 1) (dotted line). Then this rectangle
is blocking a constant fraction (independent of ε) of the largest possible rectangle
anchored at p (dashed lines). If p comes �rst, the rectangle anchored at q is reduced
by less than ε, so an ordering with p before q yields a larger area for small enough ε.

Algorithm 1 Dppacking algorithm

1: procedure DP(S)
2: treatedsubsets←subsets(1, S) .Where subsets(i, S) yields all subsets of size i os S.
3: for p in S do

4: bestordersforsubset[p]←(p) . bestorderforsubset is a dictionary with the best

order for each subset.

5: end for

6: for 2 ≤ i ≤ size(S) do
7: current_subsets←subsets(i, S)
8: for T in current_subsets do
9: bestvalue←0

10: bestorder←[]
11: for t in T do . Find the t with the largest area if t is last in the order.

12: if greedypacking((bestorderforsubset[T \ {t}],t))>bestvalue then
13: bestvalue←greedypacking((bestorderforsubset[T \ {t}],t))
14: bestorder←(bestorderforsubset[T \ {t}],t)
15: end if

16: end for

17: end for

18: end for

19: return bestorderforsubset[S]
20: end procedure

6

without the origin and we can start the algorithm with the points that are not dominated
by any point in any order. Also, only t ∈ T that do not dominate any point in T have to
be considered due to Theorem 4.3.

Since the correctness of this algorithm has not been rigorously proved before, we prove
it here. To prove that this algorithm works, we �rst prove the following lemma:

Lemma 4.5. For each �nite point set S ⊂ U (that does not necessarily include the origin),

there is a point pf ∈ S such that, for each optimal ordering π′ of S\{pf}, the ordering (π′pf)
is optimal for S.

Proof. In the same way as in the proof of Theorem 4.3, we de�ne a partial order ≺R
on the points of S for any maximal anchored rectangle packing R (and therefore for any
optimal ARP). Let π be an optimal ordering of S that satis�es the dominance property,
and let Rπ be its resulting ARP. Let pf be the last point of π. We prove the lemma
for this pf . Furthermore, let π′ be an optimal ordering for S \ {pf}. Now, we assume
that ordering (π′pf) is not optimal for S and derive a contradiction. Note that, since
the greedypacking algorithm with ordering π′ is optimal for S \ {pf}, it covers at least as
much area as with the ordering π \ pf on S \ {pf}. Therefore (π′pf) must have a smaller
rectangle r(pf) than the rectangle r(pf) in π (see Figure 3).

Figure 3: Left: part of the ARP with ordering (π′pf) on S. The largest possible
rectangle at pf in π (dashed lines) is blocked by r(pr). Right: part of the ARP with
ordering π, where the rectangle with pr and pf as its corners (red) is nonempty.
The largest possible rectangle can now be chosen for pf , and we see that the ray to
the right from pt hits r(pf).

Therefore the r(pf) with the largest possible area in π cannot be chosen in the order-
ing (π′pf). We know the choice for a rectangle r(pf) is only restricted by the boundary
of the unit square, by points that dominate pf , and by rectangles that intersect one of
the two axis-aligned rays going from pf to the right and up (since anchored rectangles are
only stopped by the boundary of U and other rectangles, and these other rectangles either
dominate pf or intersect a ray if part of the rectangle dominates pf). Therefore, there
must be a rectangle r(pr) that intersects such a ray of pf in (π′pf) but not in π. W.l.o.g.
it intersects the ray going up. Now, we look at r(pf) in π. Because this rectangle was

7

restricted by r(pr) in π
′, we know that pr must lie to the left of pf w.r.t. the x-coordinate,

and above pf and below the top right corner of r(pf) in π with respect to its y-coordinate.
Now de�ne an axis-aligned rectangle ρ in U (not an anchored rectangle) with pr as its top
left corner and pf as its bottom right corner (red rectangle in Figure 3). Note that there
are no points directly under ρ as pf is not dominating any point of S, by the dominance
property of π. Suppose rectangle ρ has no points in its interior, then the horizontal ray
to the right from pr hits r(pf) �rst, as the horizontal line segment from pr to the left
boundary of r(pf) cannot intersect any other rectangles than r(pr), since since only an-
chored rectangles from points inside or directly below ρ could 'block' the ray. Therefore
pr ≺Rπ pf , hence pf cannot be the last point in the ordering π. However, this contradicts
the de�nition of pf . Likewise, if there are points in the rectangle, let pt be the rightmost
point not equal to pf inside this rectangle, then we �nd in a similar way pt ≺Rπ pf , with
again a contradiction. We conclude the assumption that (π′, pf) was not optimal for S
cannot be true, hence the lemma holds for this point pf .

Theorem 4.6. The dppacking algorithm yields an optimal ordering.

Proof. We prove this by induction on the size of the set of points. For a point set of size 1,
this is trivial. Now, as induction hypothesis assume the theorem holds for sets S of
size k ≥ 1. Then consider a point set S of size k + 1, and consider all
subsets S \ {pf} for all choices of pf ∈ S. By the induction hypothesis, the algorithm
calculates an optimal ordering πpf for all S \ {pf}, and by Lemma 4.5, we know that there
is a pf for which (πpf pf) is optimal. Therefore, since the dppacking algorithm yields the
ordering (πpf pf) which gives the largest area, we conclude that the result of the dynamix
programming algorithm must be an optimal ordering of S.

4.2 Simulation

The dppacking algorithm was implemented in a Python program (see Appendix A). The
worst case time complexity of the used implementation of the dppacking algorithm
is Θ(N3

S · 2NS). When there is one point dominating all other points, and of the other
points except (0, 0), no two points dominate each other, then only the place in the order
of (0, 0) and the point on the top right are determined by the extra assumptions. For
the other points, 2NS−2 subsets are considered, and for each subset T of size NT , the
greedypacking algorithm with time complexity O(N2

T) is run NT times, and NT is on
average 1

2NS , yielding a runtime of Θ(N3
S · 2NS) (we cannot have a higher runtime, as

there are at most 2NS subsets and NT ≤ NS). For this reason, only small point sets
were considered (for example, an optimal ordering for a set of size 20 can take up to two
minutes to calculate). To gain insight into the structure of optimal orderings of point sets,
two empirical experiments were performed.

The �rst experiment is very simple: for a number of di�erent orderings according to
a function of the x and y-coordinate (which satisfy the dominance property) and for a
random ordering (where any possible ordering, also orderings not satisfying properties
discussed before, has equal probability), test how many times these rules yield an optimal
ordering on a large number of point sets. To incorporate round-o� errors, it was assumed
that an ordering is optimal if the area it yields is less than 10−13 from the optimum.

8

We assume then that the probability that this happens for a non-optimal ordering is
negligible2. Results are in Table 2 in appendix B, for a simulation of 200000 point sets.

For the uniform distribution, ‖(x, y)‖2, −‖(1− x, 1− y)‖0, -‖(1− x, 1− y)‖−1
and −‖(1− x, 1− y)‖−2 have more optimal orderings than the others (the Z-score for the
smallest di�erence, "−‖(1−x, 1−y)‖−2 has more optimal orderings than ‖(x, y)‖1" is 7.75,
with a p-value of 0.0000). For the exponential distribution, this is similar, only ‖(x, y)‖1
is now close to the largest values (Z-score of the largest di�erence, "‖(x, y)‖2 has more
optimal orderings than ‖(x, y)‖1" is 2.99, with a p-value of 0.0014). This could also be
explained by the fact that these orderings are similar if all points are close to the left and
bottom edge of U .

Now for the second experiment, we de�ne a random variable X with probability density
function fX : [0, 1]→ R≥0, and a positive integer N . We de�ne a function
FfX ,N : U → [1, N] as follows: We consider random point sets S (including the origin) of
size N , where both the x and y−coordinate are distributed according to fX (except for
the origin). Furthermore, for each optimal ordering of S, we label the points from 1 to N ,
where the point that is �rst in the ordering gets 1, the second gets 2, etcetera. Denote the
label as l(p, π) for a point p and ordering π. For a point p = (x, y) ∈ U , we then de�ne
FfX ,N (p) as the expected value of the label of a point at p over all possible point sets
containing p and optimal orderings (where each optimal ordering has equal probability):

FfX ,N (p) = E[l(p, π)|p ∈ S ∧ π is an optimal ordering of S]

The values of this function can be approximated empirically by dividing the unit square
into small regions, and then generating random point sets of size N with coordinates
according to fX . Since tie-breaking for the dppacking algorithm occurs randomly, the
average label value of points inside the small region approximates the value of FfX ,N for
the points in the region. In Figure 4, the results of two simulations can be found. Results
of experiments with di�erent parameters yielded rather similar results for the uniform
distribution. More results can be found in Appendix B.

In all of the experiments, the resulting function FfX ,N has its minimum at the origin
and its maximum at (1, 1) (and high values around the top and right border). This is
logical, because points at the right and top are likely to have no dominating points, hence
they are likely to be treated �rst, and because points more to the bottom and left are
dominated by more points. Moreover, in all the results with X ∼ Uniform(0, 1), it seems
that FfX ,N showed concave level curves from the left border of U to the bottom or from the
top border to the right. The level curves were quite well approximated by the level curves
of
√

(1.1− x)(1.1− y), but it is not so clear why this is the case. When, however, the
distribution of the generated points changed, the shape of the distribution also changed.
For very skewed distributions of X, the level curves were straight lines or convex curves.
See for example Figure 17 in Appendix B.

In conclusion, in the �rst experiment, the orderings according to functions with concave
level curves (‖(x, y)‖2, −‖(1 − x, 1 − y)‖0, −‖(1 − x, 1 − y)‖−1 and −‖(1 − x, 1 − y)‖−2)
have a higher proportion of optimal orderings than the other orderings. This result is a
bit di�erent from the second experiment, where the more skewed distributions of points
yielded sorting functions with rather convex level curves. Note, however, that the shape

2From Balas and Tóth [2] we know there are at most 1
11

(
20
10

)
210 ≈ 1.7 × 107 maximal ARP's. In

simulations, it seemed that the area from greedypacking is mostly between 0.7 and 0.9. To give an
estimate, if the areas of ARP's were uniformly distributed between 0.7 and 0.9, the probability of an area
of an ARP being less than 10−13 from the optimum would be about 9 × 10−6, not even considering the
probability of choosing this ARP and the fact that often many ARP's have the same area.

9

Figure 4: Contour plot of values of FfX ,N (p), for X ∼ Uniform(0, 1), for N = 7
(left) and N = 10 (right), with division of U into 100×100 small squares, and
150000 generated point sets (label 0 means no data).

of the function FfX ,N is immediately dependent on the distribution of X, so this is not
a contradiction to what was found on the �rst experiment, The convex shape of the level
curves could also be explained by the observation that most of the points lie close to the
bottom and left boundary of U . So it seems that the above mentioned distributions often
yield optimal orderings compared to the other orderings.

5 Performance analysis

This section concerns performance analysis of di�erent simple ordering rules. Both average
case and worst case performance are considered.

Because Theorem 4.4 implies that good orderings might be dependent on relative lo-
cations of points, we introduce a new ordering strategy with three variations. It works as
follows: the ordering starts with the points that are not dominated by any other points,
and these are treated with the step of the greedypacking algorithm. When the rectangles
for those points are determined, the following step is repeated:

• First, the set M is determined, consisting of the points that are not dominated by
a point that is not treated yet. The next point p in the ordering is chosen from
M according to some criterion. Then, p is treated in the step of the greedypacking
algorithm.

For the three variantions, three di�erent criteria to select a point are used:

1. Euclidean ordering: Let Rc be the set of rectangles that have already been chosen.
Then choose the point p with the smallest Euclidean distance of p to the part of Rc
that is in the quarter-plane to the right and above p.

2. Area ordering: Find a largest possible anchored rectangle over all possible rectangles
anchored at any point in M . Choose as point p the anchor of this rectangle.

3. Combined ordering: Choose the point p with the smallest value of

Euclidean distance to Rc in the upper right quarter-plane

‖p‖2

10

In pseudocode:

Algorithm 2 Base algorithm for some orderings

1: procedure SomeOrderings(S)
2: ordering← NonDominatedPoints(S) . Where NonDominatedPoints(X) yields the

points of X that are not dominated by another point of X.
3: S.remove(ordering) . Remove the treated points from S.
4: while S not empty do

5: M ← NonDominatedPoints(S)
6: minvalue←∞
7: for q in M do

8: if Criterion(q,ordering)<minvalue then . For some function

Criterion(q,ordering).
9: p← q

10: minvalue← Criterion(q,ordering)
11: end if

12: end for

13: ordering.append(p)
14: S.remove(p)
15: end while

16: return ordering
17: end procedure

Finally, note that, as these orderings only consider points that are not dominated by a
point that is not treated, they satisfy the dominance property.

5.1 Average case performance

First, we look at average case performance of di�erent orderings. An analytic result is
possible for one case. We de�ne a function g : U → R, a probability density function
f : [0, 1] → R≥0 and a positive integer NS . Consider an ARP of a set S that consists
of NS points, where all the x and y-coordinates of the points of S (except the origin) are
pairwise independent and distributed according to f . Let the rectangles be decided by
the greedypacking algorithm, with as ordering the ordering of points from high to low by
value of g, where the points that are not dominated by any other point are always treated
�rst. The ordering expectation OEf,NS [g] of g is de�ned as the expected area of the ARP
given f and NS . We assume the ordering by g satis�es the dominance property.

It is possible to �nd OEf,NS [g] analytically for a given NS by integrating over the areas
of all di�erent con�gurations. For N = 4, there are only three cases that make the di�er-
ence between OEf,NS [g] and OEf,NS [min(x, y)], hence the di�erence can be calculated as
follows:

11

Theorem 5.1. Let g : U → R be a continuous function with g((x, y)) = g((y, x)) for

all (x, y) ∈ U , such that the ordering according to g satis�es the dominance property.

Let y = lc(x) for constant c be the level curve de�ned by g(x, y) = c in U . Finally, let

fS(x1, x2, x3, y1, y2, y3) be the probability density function of the set

S = {(0, 0), (x1, y1), (x2, y2), (x3, y3)}, where all x, y-coordinates of S \{(0, 0)} are pairwise
independent and distributed according to the probability density function f . Then, we have

OEf,4[g]−OEf,4[min(x, y)] =

12 ×

[∫ 1

0

∫ y3

0

∫ y3

x3

∫ x3

0

∫ x3

x1

∫ lg(x1,y1)(x2)

x1

Ψ(S)dy2dx2dx1dy1dx3dy3

+

∫ 1

0

∫ y3

0

∫ x3

0

∫ y1

0

∫ y1

x1

∫ lg(x1,y1)(x2)

x1

Ψ(S)dy2dx2dx1dy1dx3dy3

+

∫ 1

0

∫ x3

0

∫ y3

0

∫ y1

0

∫ y1

x1

∫ lg(x1,y1)(x2)

x1

Ψ(S)dy2dx2dx1dy1dy3dx3

]
(1)

If Ψ(S) =
(

(x3 − x2)(1− y1)− (y3 − y1)(1− x2)
)
· fS(x1, x2, x3, y1, y2, y3)

Proof. We say S = {(0, 0), p1, p2, p3}, with pi = (xi, yi), i = 1, 2, 3. By symmetry, we can
assume that x1 < x2 < x3, and multiply the answer by 6 (the number of permutations) in
the end. Now we will compare the ARP's produced by the orderings by g and by min(x, y).
From Theorem 4.3 and Observations 4.1,4.2, it is easy to derive that an ordering is always
optimal if not y2 < y1 < y3, so this con�guration is the only con�guration we have to
consider in comparing the di�erence3. In particular, we see that the only orderings that
need to be considered are (p3, p1, p2, (0, 0)) and (p3, p2, p1, (0, 0)). We will consider the
point sets where p1 comes before p2 when g is used, and p2 before p1 when min(x, y) is
used. Note that the other way around is the same when the point set is mirrored along
the line x = y and points p1 and p2 switch their labels, hence we can just multiply by an
extra factor 2 at the end.

Suppose x1 > y1. Since all level curves of g must be strictly decreasing (as its ordering
satis�es the dominance property), we see that all points to the bottom right of p1 have a
lower value of min(x, y) than p1 (as they have a lower y-value), but this contradicts the
assumption that p2 comes before p1 for ordering by min(x, y). Hence x1 < y1.

Now we distinguish three cases (see also Figure 5):

1. y1 > x3: In all cases p2 must be between the curves y = lg(x1,y1)(x)
and min(x, y) = x1, to have the right ordering according to g and min(x, y). Since
y1 > x3, the rightmost of the two intersections between y = lg(x1,y1)(x) and
min(x, y) = x1 has an x−coordinate greater than x3, so p2 lies in the area bounded
by x = x1, y = x1, y = x3 and y = lg(x1,y1)(x) (see Figure 5, left).

2. y1 < x3 and x3 < y3: If y1 < x3, then the rightmost intersection point
between y = lg(x1,y1)(x) and min(x, y) = x1 has an x−coordinate lower than x3.
Hence p2 must lie in the area bounded by x = x1, y = x1, and y = lg(x1,y1)(x) (see
Figure 5, right).

3. y1 < x3 and x3 > y3: This is similar to case 2. We consider x3 < y3 and x3 > y3
separately to be able to incorporate the condition y1 < min(x3, y3) into an integral.

3For y1 < y2 < y3, for y3 < y2 < y1 and for y1 < y3 < y2, any ordering is optimal. For y3 < y1 < y2 and
y2 < y3 < y1, we have to treat the points that are not dominated �rst, and therefore all allowed orderings
are optimal.

12

Figure 5: Left: the �rst case. p2 lies between y = lg(x1,y1)(x) and min(x, y) = x1,
and x2 < x3, so p2 must be in the red shaded area. Right: case 2 and 3, point p2
lies in the red shade area bounded by min(x, y) = x1 and y = lg(x1,y1)(x)

Note that the di�erence between the anchored rectangle packing for g and of min(x, y) is
given by (x3−x2)(1−y1)− (y3−y1)(1−x2). Now for each case of these three, multiplying
this formula by the probability density function of S, and integrating over the subset
of S for which the case holds, yields the contribution for each case to the total value
of OEf,4[g]−OEf,4[min(x, y)]. These three cases correspond to the three integrals of (1).
Finally, we multiply these integrals by 12 because of the symmetry assumptions that were
made, and we get the di�erence OEf,4[g]−OEf,4[min(x, y)].

For higher values of NS , deriving such results in a similar way involves many cases,
and they probably cannot be computed within reasonable time. Therefore, simulations
were done on a large number of sets with NS between 10 and 100. The uniform point
distribution over U was used (except for the origin). The sets are still relatively small,
because the implementation used for the algorithms described in this chapter is a bit slower
(Θ(N3

S) compared to Θ(N2
S) for the greedypacking algorithm). For simplicity, only the best

orderings from the simulations from last chapter were used. Results can be found in Table
3 in Appendix C.

At a signi�cance level of 0.1%, four orderings yield the highest area at NS = 10 (i.e. one
is not proven better than the other at this signi�cance level), namely −‖(1 − x, 1 − y)‖0,
−‖(1 − x, 1 − y)‖−1, ‖(x, y)‖1 and ‖(x, y)‖1. Two orderings yield the highest area at this
signi�cance level at NS = 25, namely −‖(1 − x, 1 − y)‖0 and ‖(x, y)‖1. Finally, ‖(x, y)‖1
yields the highest area on average at NS = 50 and NS = 100 at this signi�cance level.
Furthermore, we see that all orderings have a high approximation ratio on average: about
0.98 to 0.99.

5.2 Worst case performance

Now we consider the worst case performance of di�erent orderings (by "worst case" we
mean the smallest area attained by using the ordering). We derive some upper bounds for
the worst case performance and worst case approximation ratio.

13

First, we observe that if all points of S are close together on the line x = y, then
the total area of any ordering approaches 1

2 , so that gives an upper bound of 1
2 on the

performance of any ordering. For the performance relative to the optimum, we derive
some upper bounds on the approximation ratio.

Theorem 5.2. The worst case approximation ratios for the greedypacking algorithm with

an ordering according to min(x, y) from high to low, and for the area ordering are at most 1
2 .

Proof. For all positive integers n and small enough real number ε > 0, we construct a
�nite set Sn,ε ⊂ U . Next, we show that when �rst ε → 0 and then n → ∞, the area
resulting from the ordering according to min(x, y) on Sn,ε and the area resulting from the
area ordering on Sn,ε ⊂ U converge to 1

2 , while the area of the optimal ARP of Sn,ε ⊂ U
converges to 1.

The set Sn,ε that is used is shaped like a staircase from (0, 0) to (1, 1), with steps of
height and width about 1

n+1 , but with all points slightly perturbed. See also Figure 6.

De�ne the point v = (n
n+1 ,

n
n+1 + ε2). Let pi = (i−1n+1 + ε3, i

n+1) and qi = (i−1n+1 + ε, i−1n+1 + ε2)
for i = 1, 2, . . . , n. We will set Sn,ε = {(0, 0), p1, p2, . . . , pn, q1, q2, . . . , qn, v}, and show that
this set satis�es the claims. Because of dominating points, we see that v is �rst in both
orderings, and (0, 0) is last. We also see that pi, qi always come before pj and qj when i > j.
Regarding the perturbations, note that min(xpi , ypi) = i−1

n+1 +ε3 < i−1
n+1 +ε2 = min(xqi , yqi).

Moreover, the largest possible anchored rectangle at qi has larger area than the possible
anchored rectangles at pi. So qi comes before pi for all i in both orderings. Taking into
account all previous observations, we �nd that both the ordering according to min(x, y)
and the area ordering are equal to (v, qn, pn, qn−1, pn−1, . . . , q1, p1, (0, 0)).

Figure 6: Left: part of the ARP from the ordering according to min(x, y) for
point set Sn,ε. We see r(qi) 'blocks' the point pi. Right: part of the optimal ARP
for Sn,ε, almost the whole unit square is covered.

For the choice of r(qi) with 1 ≤ i ≤ n, we �nd the following: there are two or three
options for the rectangle, one that touches the top of U , one that touches the right of U ,
and for i < n, one where pi+1 is at the top edge of r(qi). The latter clearly has a much

14

smaller area than the other two options. The �rst rectangle has an area of(
(

i

n+ 1
+ ε3)− (

i− 1

n+ 1
+ ε)

)(
1− (

i− 1

n+ 1
+ ε2)

)
=
n− i+ 2

(n+ 1)2
− (n− i+ 2)ε+ ε2

n+ 1
+ ε3− ε5

and the second one has an area of(
1− (

i− 1

n+ 1
+ ε)

)(
(

i

n+ 1
+ ε2)− (

i− 1

n+ 1
+ ε2)

)
=
n− i+ 2

(n+ 1)2
− ε

n+ 1

We �nd that the rectangle touching the right edge of U is always the largest if i ≤ n and
ε is small enough.
Finally, note that the top edge of r(qi) has y-coordinate i

n+1 + ε2 for all i, so this edge
has a higher y-coordinate than pi, hence the rectangle at pi cannot extend beyond qi in
the x-direction, and it can have a maximum width of xqi − xpi = ε − ε3. See left half of
Figure 6. We see that, as ε → 0, all areas reduce to 0, except the areas of r(qi) and r(v),
which have areas approximating 1

(n+1)2
, 2
(n+1)2

, . . . , n+1
(n+1)2

(note that xp1 and yq1 approach

0, so the area of r((0, 0)) goes to 0 as well). Hence the total area approaches 1
2 + 1

2(n+1) ,

and we see that this approaches 1
2 as n→∞.

On the other hand, note that we can choose the ordering
of (v, pn, qn, pn−1, qn−1, . . . , p1, q1, (0, 0)) instead. It is not hard to see that the resulting
ARP covers the whole unit square except for O(n) strips with width of O(ε) per strip. See
also right half of Figure 6. Hence the area approaches 1 as ε→ 0, this holds for all n. So
the optimal ARP4 has an area approaching 1 as ε → 0, n → ∞ as well. Therefore, the
worst case approximation ratio is at most 1

2 .

Theorem 5.3. Let g : U → R be a continuous function with g((x, y)) = g((y, x)) for all

(x, y) ∈ U , and let that the ordering according to g from high to low satisfy the dominance

property. Then the worst case approximation ratio for the greedypacking algorithm with

ordering according to g is at most 3
4 .

Proof. We construct a set Sn,ε for a positive integer n and a small real number ε > 0.
We show that, as �rst n → ∞ and then ε → 0, the optimal area approaches 1 and the
area for the above orderings goes to 3

4 . We de�ne Sn,ε recursively. Let p1 = (ε2, ε − ε3),
let q1 = (ε, ε2 + ε3), v1 = (2ε, 2ε), w1 = (2ε − ε2, ε), and let S1,ε = {(0, 0), p1, q1, w1, v1}.
See also left side of Figure 7. Before de�ning the recursive relation, we �rst look at S1,ε.
We see that v1 dominates all other points, and w1 dominates all other points except v1.
Furthermore, the mirror image of p1 in the line x = y is p′1 = (ε − ε3, ε2), and this is
dominated by q1. Since g is symmetric around the line x = y and satis�es the dominance
property, q1 comes before p1 in the ordering by g. So the ordering by g gives the
ordering (v1, w1, q1, p1, (0, 0)). Now we look at the options for choosing a rectangle r(q1).
There are two options: one rectangle that touches the right edge of U , and one that touches
the top edge of U . The �rst option has an area of(

1− ε
)(
ε− (ε2 + ε3)) = ε− 2ε2 + ε4

and the second one has an area of(
(2ε− ε2)− ε

)(
1− (ε2 + ε3)

)
= ε− ε2 − ε3 + ε5

4In fact, from Theorem 4.3, we can derive that this ordering is optimal. We know that, to �nd the
optimum, taking into account the point dominating each other, we �nd that we only have to make n
independent choices for the order, namely between pi and qi, for all i independently. And clearly treating
pi before qi always yields a larger area.

15

Figure 7: Left: the set S1,ε, with the ARP resulting from the ordering according
to g (only r((0, 0)) is not drawn). Rectangle r(q1) `blocks' the point p1. Right:
set S2,ε, which is made by `pasting' a copy of S1,ε onto r(v1) in S1,0.1, and deleting
the two overlapping points. The choice of anchored rectangles is independent for
the two `L-shapes', which are separated by the red lines.

so we see that the �rst one has a larger area. Note that, with this choice for r(q1), the
choices for all anchored rectangles are �xed, (except for r(0, 0), but all three possible
rectangles are of area O(ε2)). We cover 1 − ε + O(ε2) of the unit square with anchored
rectangles. In particular, we cover 3ε+O(ε2) of the 4ε+O(ε2)-sized L-shape U \ r(v), so
we cover 3

4 +O(ε) of U \ r(v).
Now we de�ne the recursion, extending the principle from S1,ε. Consider Sn,ε, then we
get Sn+1,ε from it as follows: Take S1,ε, and map it onto U with the transformation
T : U → [xvn , 1] × [yvn , 1] given by T ((x, y)) = (xvn + x

1−xvn
, yvn + y

1−yvn
). Delete the

point vn, and delete the point that was (0, 0) in S1,ε (which was mapped onto vn). Relabel
the points that were labeled p1, q1, w1, v1 in S1,ε to pn+1, qn+1, wn+1, vn+1, respectively. The
resulting set is Sn+1,ε. See right side of Figure 7. Now we can easily see that, for the steps
in this recursion, the choice of rectangles of pi, qi, wi is similar to those for p1, q1, w1 in S1,ε,
because pi, qi, wi dominate pj , qj , wj if i > j, so the choices are independent. The only
di�erence in area is caused by replacing vi by two points close to each other in the steps of
the recursion. This creates a new possible rectangle, which is very small compared to the
largest option, and increases the area of the other two options by O(ε2), so the possible
area for r(wi) changes with O(ε2). Now, if we divide for the set Sn,ε the polygon U \ r(vn)
into L − shapes (see right part of Figure 7), we see that a fraction 3

4 + O(ε) of U \ r(vn)
is covered by anchored rectangles. Since limn→∞ area(r(vn)) = limn→∞(1− 2ε)2n = 0, we
conclude that a fraction 3

4 + O(ε) is covered when n → ∞. Letting then ε → 0, we see
that a fraction 3

4 is covered with the ordering according to g. Finally, using the ordering
(v1, w1, p1, q1, (0, 0)) on S1,ε clearly covers a fraction 1+O(ε) of U \r(v1), hence the ordering
(vn, wn, pn, qn, . . . , w1, p1, q1, (0, 0)) of Sn,ε covers a fraction 1+O(ε) of U \r(vn). Similar to
Theorem 5.2, we see that this ordering is optimal. Finally we derive that, as �rst n→∞
for a set Sn,ε and then ε → 0, we cover the whole unit square with the optimal ordering,
since 1 +O(ε) of the L-shapes is covered. Therefore, the worst case approximation ratio is
at most 3

4

16

Theorem 5.4. The worst case approximation ratio of the Euclidean ordering and the

combined ordering is at most 1−
√
2
4 ≈ 0.646.

Proof. We prove this in a similar way as Theorem 5.3. We construct a set Sn,δ,ε for n ∈ N
and for δ > 0 and ε > 0 small real numbers. Assume ε� δ. We show that, as �rst n→∞,
then ε→ 0, and then δ → 0, the ratio between the ARP area of these orderings compared

to the optimal area approaches 1−
√
2
4 .

The sets Sn,δ,ε are de�ned recursively, with the same recursive step as in the proof of
Theorem 5.3 (transforming S1,δ,ε onto Sn,δ,ε with transformation T , and then deleting vn
and the origin from S1,δε), but with a di�erent set for n = 1. De�ne p1 = (ε2, ε),
q1 = (ε(

√
2 − 1)(1 + δ) + ε2, ε2), w1 = (ε

√
2 − ε2, ε + ε2), and v1 = (ε

√
2, ε
√

2), and let,
again, S1,δ,ε = {(0, 0), p1, q1, w1, v1} (see Figure 8). Let Sn,δ,ε be derived from Sn−1,δ,ε with
a similar recursive step as in the proof of Theorem 5.3.

Figure 8: The set S1,δ,ε, with the ARP resulting from the ordering according to
the Euclidean ordering. The points are chosen such that q1 is just inside the circle
through p1 with center w1, and such that the anchored rectangle at q1 'blocks' the
point p1.

Note that, because the algorithms satisfy the dominance property, the order of all
points is already �xed, except for the choice between pi and qi, for i = 1, 2, . . . , n. Clearly,
the distance from pi and qi to the set of rectangles chosen before r(pi) and r(qi) is equal to
the distance between pi and wi and between qi and wi, respectively. The distance between
p1 and w1 is given by√(

(ε
√

2− ε2)− ε2
)2

+
(
(ε+ ε2)− ε

)2
=

√
2ε2 − 4

√
2ε3 + 5ε4 (2)

and the distance between q1 and w1 is√(
(ε
√

2− ε2)− (ε(
√

2− 1)(1 + δ) + ε2)
)2

+
(
(ε+ ε2)− ε2

)2
=

√(
2− 2δ(

√
2− 1) + δ2(

√
2− 1)2

)
ε2 (3)

17

We can see that distance(q1,w1)
distance(p1,w1)

=
√

1− δ(
√

2− 1) + 1
2δ

2(
√

2− 1)2 + O(ε). We also see

that, since the points pi, qi, wi are just scaled versions of p1, q1, w1, we �nd that also
distance(qi,wi)
distance(pi,wi)

=
√

1− δ(
√

2− 1) + 1
2δ

2(
√

2− 1)2 +O(ε). This implies that qi always comes

before pi in the Euclidean ordering. We �nd for S1,δ,ε the following: the total area of the
L-shape U \ r(v1) is 2

√
2ε+O(ε2), and the covered area if q1 comes before p1 is

ε(2
√

2 − 1) + O(δ) + O(ε2), and if p1 comes before q1, it is 2
√

2ε + O(ε2). Therefore,
if pi comes before qi, we �ll up a fraction 1 + O(ε) of the L-shape containing p1, q1 with

the ARP, and if q1 comes before p1, we cover a fraction 1 −
√
2
4 + O(δ) + O(ε) of the

L-shape. Since the shapes of all L-shapes are the same, this holds for all L-shapes. Now,
since qi comes before pi in the Euclidean ordering, we see that, letting n→∞, a fraction

1−
√
2
4 +O(δ)+O(ε) of the optimal area is covered in the Euclidean ordering, hence letting

�rst ε→ 0 and then δ → 0, this proves the theorem for the Euclidean ordering.
Now to prove the theorem for the combined ordering, de�ne iδ,ε ∈ N to be the smallest

natural number such that ‖piδ,ε‖2 > − 2ε√
1−δ(

√
2−1)−1

and ‖qiδ,ε‖2 > − 2ε√
1−δ(

√
2−1)−1

. As-

sume n ≥ iδ,ε. We know the distance between pi and qi is clearly always less than 2ε
(their x and y-coordinates are at most ε apart), so the triangle inequality says for all i ≥ iδ,ε
that ‖qi‖2 + 2ε ≥ ‖pi‖2, hence for all i ≥ iδ,ε, by dividing by ‖pi‖2:

‖qi‖2
‖pi‖2

≥ 1− 2ε

‖pi‖2
> 1− 2ε

− 2ε√
1−δ(

√
2−1)−1

=

√
1− δ(

√
2− 1) (4)

distance(qi,wi)
‖qi‖2

distance(pi,wi)
‖pi‖2

=
distance(qi, wi)

distance(pi, wi)
· ‖pi‖2
‖qi‖2

<
(√

1− δ(
√

2− 1) +
1

2
δ2(
√

2− 1)2 +O(ε)
)(1√

1− δ(
√

2− 1)

)
> 1 (5)

Now from (5), we see that, from a distance more than − 2ε√
1−δ(

√
2−1)−1

from the origin,

the point qi is treated before pi, hence we cover a fraction 1 −
√
2
4 + O(δ) + O(ε) of the

L-shapes further than − 2ε√
1−δ(

√
2−1)−1

away from the origin as n → ∞. Then, letting

�rst n → ∞ and then ε → 0, we see − 2ε√
1−δ(

√
2−1)−1

→ 0, hence the area of the part of

which 1−
√
2
4 +O(δ)+O(ε) is covered approaches 1, so the approximation ratio approaches

1−
√
2
4 + O(δ) as ε → 0. Finally, letting δ → 0 (since ε � δ, we can do this after ε → 0),

we �nd what we wanted to prove about the combined ordering, as the approximation ratio

goes to 1−
√
2
4 .

The worst case performances of the considered algorithms in the simulations are in
Table 4 in Appendix C. All worst case sets found had areas higher than the upper bounds
proven in this section compared to the optimum, and larger than 1

2 in absolute area.

5.3 Lower bound for worst case approximation

In this part, we prove a lower bound of 0.09612 for the performance of the ordering accord-
ing to ‖(x, y)‖1. We do this by making two slight improvements on the analysis done by
Dumitrescu and Tóth [6], which yields a lower bound of 0.9121. We introduce a variable α,
and change a right-angled trapezoid into a parallelogram. This lower bound also implies

18

that there exists an anchored rectangle packing of area 0.9612 for any point set S with
(0, 0) ∈ S.

First of all, we use the tilepacking algorithm to prove the lower bound. The tilepacking
algorithm works as follows: treat the points according to their value of ‖(x, y)‖1, from high
to low. When a point pi is treated, shoot two axis-aligned rays, one upwards and one to
the right, and call the staircase-like polygon that these rays create tile ti, which is disjoint
from the other tiles. Within each tile, choose the largest anchored rectangle in each tile.
See left half of Figure 9. Then we use the following lemma (which is equivalent to Lemma
2.1 of [6]):

Lemma 5.5. The greedypacking algorithm according to ‖(x, y)‖1 always covers at least as
much area as the tilepacking algorithm with the same ordering.

From this we conclude that it su�ces to prove the lower bound for the tilepacking
algorithm.

The main idea of the proof is that the area of the tiles that only allow relatively
small anchored rectangles (called β-tiles) is bounded by a multiple of the area of a certain
parallelogram associated with each β-tile. Also, the total area of the parallelograms of
all these β-tiles is bounded, hence we get an upper bound on the total area of all β-tiles,
which is less than 1. Finally, by using the integral equation from Theorem 3.1 in [6], we
get the lower bound.

First, some de�nitions. We introduce a constant α > 0, which we later optimize over
(this is the �rst improvement, as originally, α = 1 in [6]). Furthermore, we call a tile ti
a β-tile for β ≥ 3 + 2α if the largest possible anchored rectangle contained in ti has an
area of at most 1

β · area(ti). Let the right tip of such a tile be the smallest axis-aligned
polygon that is created by drawing a vertical (axis-aligned) line through a point of S that
is a corner of ti, and has area at least α

β · area(ti) (see Figure 9). Similarly, let the upper
tip be de�ned as the smallest axis-aligned polygon that is created by drawing a horizontal
line through a point of S that is a corner of ti, and has area at least α

β · area(ti). Also, let

the remaining part of ti without its upper and right tip be its main body t′i.

Let ai and bi be the bottom and left edge of ti, respectively. Let a
′
i be the bottom edge

of the main body t′i, and let b′i be the left edge of t
′
i. We call a β−tile ti wide if |a′i| ≥ |b′i|,

and we call it tall if |a′i| < |b′i|. Let ∆i be the isosceles right triangle with the bottom edge
of ti as its top edge, and with the 90◦ angle at the bottom right point of ti. Let 0 < λ < α,
and let Ai be the parallelogram with one side on the left edge of ∆i, with a

′
i as one other

edge, and with a height orthogonal to a′i of λ|a′i|. This is the second improvement, as Ai
was originally a right-angled trapezoid in [6]. Now we show that the area of a wide β-tile ti
is limited by a multiple of the area of Ai:

Lemma 5.6. The area of a wide β-tile ti is at most β
λeβ−3−2α area(Ai).

Proof. First of all, we show that the area of the right tip is less than 1+α
β area(ti). If it had

a larger area, we could move its left boundary one point (one `step' on the staircase) to the
right, and, as the di�erence is a small rectangle, which is part of some rectangle anchored
at pi, the di�erence in area is less than 1

β area(ti), Therefore the new right tip would also
have an area of more than α

β area(ti), which is a contradiction. Similarly, the area of the

upper tip is less than 1+α
β area(ti). Therefore, the area of the main body t′i is greater

than β−2−2α
β area(ti), which is at least 1

β area(ti), as β ≥ 3 + 2α. This implies that the
right and upper tip do not overlap, as otherwise the main body would be a rectangle that
is part of an anchored rectangle, which would have area at most 1

β area(ti). Furthermore,

19

Figure 9: Left: the tiling resulting from the tilepacking algorithm on a point set.
Right: a wide β-tile ti, with its right and upper tip in grey. Triangle ∆i is marked
with dashed lines, a′i and b

′
i are in red, and parallelogram Ai is in blue.

as the area of the largest anchored rectangle inside t′i is less than
1

β−2−2α area(t′i), we get

from Lemma 3.1 from [6] that area(t′i) <
β−2−2α
eβ−3−2α |a′i||b′i| (this lemma says if β ≤ 1 and t

is a staircase polygon- a polygon with axis-aligned sides, with one horizontal side on the
bottom, one vertical side on the left, and a decreasing curve from the top to the right -
and t has height h and width w, and every axis-aligned rectangle contained in t has area
less than area(t)

β , then area(t) < β
eβ−1hw).

Since |b′i| ≤ |a′i|, area(Ai) = λ|a′i|2 and area(t′i) >
β−2−2α

β area(ti), we get

area(ti) <
β

β − 2− 2α
area(t′i) <

β

β − 2− 2α

β − 2− 2α

eβ−3−2α
|a′i||b′i|

≤ β

eβ−3−2α
|a′i|2 =

β

λeβ−3−2α
area(Ai)

This proves the lemma.

Next, we prove an upper bound on the total area of all parallelograms Ai of wide β-tiles.
To do so, we de�ne a directed graph G, where the nodes correspond to the parallelograms
of wide β-tiles. If a parallelogram Ai intersects some other parallelograms, then Ai gets
exactly one outgoing edge to the node of the parallelogram Aj that intersects Ai and of
which the corresponding line segment a′j is the highest below a′i. We say the parallelograms
that do not have an outgoing edge are at level 1, the parallelograms with an outgoing edge
to a level 1 parallelogram, are at level 2, and so on. Clearly this is an acyclic graph. Then
we use a charging scheme for the parallelograms, where the area of each parallelogram Ai
at level 2 and higher is charged to the unique parallelogram at level 1 that it has a directed
path to. First, we derive an upper bound on the total area of the level 1 parallelograms:

Lemma 5.7. The total area of all parallelograms at level 1 is at most 2(1+α)2+λ(2+α)
2(1+α)2

.

Proof. The largest rectangle anchored at pi with a′i as its bottom edge has area at
most 1

β area(ti), but has a larger height than the right tip, which has area at least αβ area(ti)

(see Figure 9). Therefore |a′i| < α(|ai|− |a′i|), hence (1 +α)|a′i| < |ai|. Note that, as λ < α,

20

and since the bottom right corner of Ai is exactly λ|a′i| (which is less than α|a′i|) to the
right of line segment a′i, this implies that Ai is completely inside ∆i. Therefore, no parallel-
ogram crosses the right boundary of U . Furthermore, it is very clear that no parallelogram
crosses the top or left boundary of U or the line y = −x, as the parallelograms have an
angle of 45◦. Furthermore, since |ai| ≤ 1, we have |a′i| < 1

1+α , so the height of all par-

allelograms is less than λ
1+α . Therefore all parallelograms are above the line y = − λ

1+α .
Finally, note that the bottom right corner of Ai is λ|a′i| below and λ|a′i| to the right of the
right end of a′i. Also, the right end of a′i is at least α|a′i| to the left of the right end of ai.
Therefore, the line through the bottom right corner of Ai and the right end on ai has a
slope of at most λ

α−λ (see left half of Figure 10). As the right end of ai is inside U , the

parallelograms must therefore lie above the line y = λ
α−λ(x− 1). Hence all parallelograms

lie in the hexagon bounded by the six lines and edges described before. This hexagon has
as corners the corners of U and the points (λ

1+α ,−
λ

1+α) and (1+λ1+α ,−
λ

1+α) (see right half of

Figure 10). This hexagon consists of a square and a trapezoid with height λ
1+α and base

lengths 1 and 1
1+α , therefore it has an area of 1 + 1

2
λ

1+α

(
1 + 1

1+α

)
= 2(1+α)2+λ(2+α)

2(1+α)2
. If two

parallelograms at level 1 overlap, then the one with the highest y−coordinate of a′i must
have an outgoing edge in G, which is not possible. Hence no two level 1 parallelograms

overlap, and their total area is bounded by 2(1+α)2+λ(2+α)
2(1+α)2

.

Figure 10: Left: the slope of the line through the bottom right corner of Ai and
the right end of ai is at most λ

α−λ . Right: all parallelograms lie inside the blue
hexagon.

Now we derive an upper bound on the area of the parallelograms of level 2 and higher.
We do this by deriving an upper bound on the area that is charged to the level 1 parallel-
ograms (this is similar to Lemma 3.6 in [6]).

Lemma 5.8. For every parallelogram Aj at level 1, the total area of all parallelograms Ai,
i 6= j, with a directed path in G to Aj is at most 1

2(α−λ) area(Aj)

Proof. Let li be the line through line segment ai parallel to ai. Now we consider a
parallelogram Ai that intersects a parallelogram Aj , where a

′
i is above a′j , and we look

at the intersection of ∆i with lj (see Figure 11). First, from Lemma 3.3 of [6], we know

21

that there are no points of S in the interior of ∆i for any point pi. If the intersection of
Ai with lj contains any point of U left of a′j , then pj is inside Ai, hence inside ∆i, and
if it contains any point to the right of a′j , then the top left corner of the right tip of tj ,
which is a point of S, would be inside ∆i. From this it follows that if a parallelogram Ai
intersects a parallelogram Aj , and a

′
i is above a

′
j , then the intersection of ∆i with lj must

be a subset of a′j . Now, we de�ne for a parallelogram Aj , the triangle Bj as the triangle

Figure 11: Left:parallelograms Ai and Aj intersect, and a
′
i is above a

′
j . Therefore

the intersection of ∆i and lj is a subset of a′j . Right: parallelograms Ai and Aj
intersect, and a′i is above a

′
j . Therefore parallelogram Ai �ts inside triangle Bj .

that is bounded by a′j , by the line with slope −1 through pj and by the line with slope −λ
α

through the right end of a′j . See right half of Figure 11.
Consider a parallelogram Ai that intersects parallelogram Aj , and let a′i be above a

′
j .

Since we now know that the intersection of ∆i with lj is a subset of a′j , we �nd that
parallelogram Ai must be completely to the right of the left edge of Bj . Furthermore, we
know that (1 +α)|a′i| < |ai|, therefore the right edge of ∆i (and also the right end of a′j) is
at least α|a′i| to the right of a′i w.r.t. its x−coordinate (see right half of Figure 11). Since
we also know that a′i is at most λ|a′i| (the height of Ai) above a′j , we �nd that the right end
of a′i is below the right edge of Bj , as the slope of the line through the right end of a′i and
the right end of a′j is more than −λ

α . We conclude Ai is below the right edge of Bj and
since Ai is also to the right of the left edge of Bj , we see Ai is completely inside Bj ∪ Aj
(we refer to this as (i)).

Now let Ξi be the strip that is bounded by the two lines tangent to the left and
right edge of Ai (see Figure 12). With an induction proof, we see that the strips Ξi
of the parallelograms Ai at the same level, if the Ai have a directed path to the same
parallelogram Aj , are interior-disjoint (we refer to this statement as (ii)).

As induction basis, we show by contradiction that Ξi1 and Ξi2 are interior-disjoint
if Ai1 and Ai2 are both at level 2 and have an outgoing edge to the same parallelogram Aj
in G. Suppose there are two such parallelograms. If Ai1 , Ai2 do not intersect, then one
parallelogram must be completely above the other, and w.l.o.g. Ai1 is above Ai2 . But
then Ai1 cannot intersect Aj , as its bottom edge is above the top edge of Ai2 (that is a

′
i2
),

which is above the top edge of Aj (that is a′j) by de�nition. So Ai1 does not have an
outgoing edge to Aj . If, on the other hand, Ai1 and Ai2 intersect (see Figure 12), then
w.l.o.g. ai1 has a higher y-coordinate than ai2 . But then Ai1 cannot have an outgoing edge
to Aj in G, since a

′
i2
is above a′j , so a

′
j is not the highest among the parallelograms that

22

intersect Ai1 , and this proves the statement.
Now suppose as induction hypothesis that the strips Ξi of the parallelograms Ai at

level k are all interior-disjoint. From (i) we can see that Ξi ⊆ Ξj if there is an edge
from Ai to Aj in G. The Ξi of the parallelograms at level k + 1 have an outgoing edge to
a level k parallelogram, and we can repeat the argument of the induction basis to see that
all Ξi of Ai, going to the same parallelogram Ai0 that is at level k, are interior-disjoint.
Combining this with the induction hypothesis, we �nd that the Ξi of the Ai at level k+ 1
are interior-disjoint, and this completes the induction proof.

Figure 12: The strips Ξi1 , Ξi2 and Ξj . If the strips Ξi1 and Ξi2 overlap, parallel-
ograms Ai1 and Ai2 overlap, and if ai1 is above ai2 , there cannot be an edge from
Ai1 to Aj .

Now, for a parallelogram Aj at level 1, we apply a translation on all parallelograms Ai
with a directed path to Aj in G, and we claim that after the transformation all parallelo-
grams are inside Bj . We prove this by induction on the levels, using the two statements
(i) and (ii). The translation is as follows: �rst translate all parallelograms at level 2, then
those at level 3, 4, etc. When level k is translated, translate all parallelograms one by one,
parallel to the line y = −x upwards, and translate each parallelogram exactly far enough
so that they do not overlap with any parallelogram at a lower level. By (ii) we know they
also do not intersect with their own level, so no two parallelograms overlap at the end of
the translation.

For the induction basis, we know that no two parallelograms at level 2 can overlap
after the translation. Also, in exactly the the same way as (i), we �nd that after the
translation, a parallelogram Ai is inside Bj (since (i) also holds for a parallelogram Ai that
intersects Aj with the intersection area approaching 0). So the parallelograms at level 2
�t inside Bj after translation. Now, suppose as induction hypothesis that all translated
parallelograms �t inside Bj after level k is translated. Then, by (ii) we know all Ξi of
level k + 1 are interior-disjoint. Also, any parallelogram Ai at level k + 1 has an edge to
a level k parallelogram, say to Ai0 . Similar to (i), we �nd that after the translation, Ai
�ts inside the translated version of Bi0 (if Bi0 was translated along with Ai0). Clearly this
triangle �ts inside Bj , as its bottom edge is inside Bj and its shape is similar to Bj .

Now, from the slopes of the edges of Bj , we �nd that its height with base a′j is
λ

α−λ |a
′
j |,

hence its area is 1
2

λ
α−λ |a

′
j |2 = 1

2(α−λ) area(Aj), so the area of all parallelograms with a

directed path to Aj is bounded by 1
α−λ area(Aj)

Now we can combine Lemma's 5.6, 5.7 and 5.8, to get an upper bound on the area
of wide β-tiles. Since an upper bound for tall β-tiles can be derived analogously, we can

23

multiply by 2 to get an upper bound on the area of all β-tiles.

∑
ti is a wide β-tile

area(ti)
5.6
<

∑
Ai for ti a wide β-tile

β

λeβ−3−2α
area(Ai)

5.8
≤

∑
Ai for ti a wide β-tile at level 1

β

λeβ−3−2α

(
1 +

1

2(α− λ)

)
area(Ai)

5.7
≤ β

λeβ−3−2α
1 + 2α− 2λ

2α− 2λ

2(1 + α)2 + λ(2 + α)

2(1 + α)2∑
ti is a β-tile

area(ti) < 2
β

λeβ−3−2α
1 + 2α− 2λ

2α− 2λ

2(1 + α)2 + λ(2 + α)

2(1 + α)2
(6)

Finally, using the integral equation from chapter 3.3 from [6] (replacing the upper bound

on the area of β-tiles F (β, λ) = (3−3λ+λ2)(8+3λ−λ2)e5
2λ(1−λ)(2−λ)

β
eβ

by 2 e
3+2α

λ
1+2α−2λ
2α−2λ

2(1+α)2+λ(2+α)
2(1+α)2

β
eβ
,

and replacing the condition β0 ≥ 5 by β0 ≥ 3 + 2α), we get for the worst case area ρ, and
for some β0 ≥ 3 + 2α:

ρ ≥ 1

β0
− (1 + 2α− 2λ)(2(1 + α)2 + λ(2 + α))

(1 + α)2λ(2α− 2λ)
e3+2α

∫ ∞
β0

1

tet
dt

Taking the values α = 0.76981, β0 = 9.39405 and λ = 0.44588 yields ρ ≥ 0.09612. Note
that this also implies that the worst case approximation ratio is at least 0.09612. This
yields the following theorem:

Theorem 5.9. The greedypacking algorithm with ordering according to x + y from high

to low yields an anchored rectangle packing of area at least 0.09612 for any �nite point set

including the origin.

6 Conclusions

In this thesis orderings for the greedypacking algorithm that perform well were researched.
First, there are three assumptions that can be made for any ordering:

• The points that are not dominated by any other point come �rst in the ordering, and
the order among these points can be arbitrary.

• The origin comes last in the ordering

• The ordering satis�es the dominance property: for all p, q ∈ S where p dominates q,
p comes before q in π′.

A number of di�erent orderings were compared to an algorithm that �nds the optimal
anchored rectangle packing. From empirical experiments with orderings according to a
function g : U → R, it seemed that functions that increase with x that have concave level
curves have the highest probability to yield optimal orderings. However, no such ordering
always yields the optimum. For this reason, three variations of a new algorithm were
proposed, of which the ordering depends on the relative positions of the points.

A formula for the average case performance in terms of area of resulting ARP was
created for sets of size 4, and, and the average case performance was analyzed empirically
for larger point sets. For the larger sets, the ordering according to ‖(x, y)‖1 = x+y

2 was

24

either the best or among the best performing orderings, depending on the size of the point
sets. All orderings had a high approximation ratio on average: about 0.98 to 0.99.

Finally, some upper bounds and a lower bound on the worst case approximation ratios
of the orderings were established. These bounds are summarized in the Table 1.

Table 1: Upper and lower bounds on the worst case absolute performance and on
the worst case approximation ratio of di�erent orderings.

Ordering
Absolute Approximation ratio

L. bound U. bound L. bound U. bound

Symmetric g : U → R that
0 1

2 0 3
4satis�es dominance property

min(x, y)
0 1

2 0 1
2Area ordering

Euclidean ordering
0 1

2 0 1−
√
2
4 ≈ 0.646

Combined ordering

‖(x, y)‖1 0.09612 1
2 0.09612 3

4

7 Discussion and recommendations

The best results were found with an ordering that was known already: ordering according
to ‖(x, y)‖1. This may be the best of all functions g : U → R for which the ordering satis�es
the dominance property. In �nding even better orderings, these can probably be found in
orderings that incorporate relative point locations. Using a di�erent function than ‖p‖2
might for example improve the combined ordering. Furthermore, the time complexity
of Θ(N3

S) of the three variants of relative position-based algorithms presented here can
probably be improved, as in the current implementation the same distances and areas are
calculated many times.

For the simulations on the performance, only uniform point distributions were used. In
the comparison to optimal orderings, we saw that the performance of all algorithms was
dependent on the distribution, and the results found for the average performance is very
likely to be di�erent for di�erent distributions (although the relative performance between
the algorithms might stay quite the same). Furthermore, note that the comparison with
the optimum was only done for small point sets due to large computation times. The
results there might be slightly di�erent for large sets.

About the upper bounds on the worst case performance: it is likely that the upper
bound of 3

4 for the worst-case approximation ratio of the ordering that satis�es the domi-
nance property according to an arbitrary function g : U → R, can be sharpened to 2

3 by a
small adaptation of the proof. Also, it seems very likely that the bound of 1

2 for min(x, y)
is tight, and that the worst-case approximation ratio for all these functions g is between 1

2
and 2

3 . Finally, no cases were found where any of the used algorithms yielded an area less
than 1

2 , so also the bound for the absolute performance may be tight.
The main idea for increasing the lower bound on the performance of the greedypacking

algorithm with ‖(x, y)‖1 was to apply the observation that triangle ∆i does not contain
points of S to a larger part of ∆i in a better way, and use the β-tiles with smaller β more.
Still, a large part of ∆i is not used, and the fact that its dual Γi (the isosceles right triangle
on the left edge of ti) is empty of points of S is not used either, neither are the β-tiles with
β < 9.39. Using these more could increase the lower bound of 0.09612 by a large factor.

25

References

[1] Antonios Antoniadis, Andrés Cristi, Ruben Hoeksma, Peter Kling, Felix Biermeier,
Christoph Damerius, Dominik Kaaser, and Lukas Nölke. On the complexity of an-
chored rectangle packing. In Leibniz International Proceedings in Informatics, LIPIcs,
volume 144. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Pub-
lishing, sep 2019. doi:10.4230/LIPIcs.ESA.2019.8.

[2] Kevin Balas and Csaba D. Tóth. On the number of anchored rectangle pack-
ings for a planar point set. Theoretical Computer Science, 654:143�154, nov 2016.
doi:10.1016/j.tcs.2016.03.007.

[3] Kevin Balas, Adrian Dumitrescu, and Csaba D. Tóth. Anchored rectangle and
square packings. Discrete Optimization, 26:131�162, nov 2017. ISSN 15725286.
doi:10.1016/j.disopt.2017.08.003.

[4] Therese Biedl, Ahmad Biniaz, Anil Maheshwari, and Saeed Mehrabi. Packing
boundary-anchored rectangles and squares. Computational Geometry: Theory and

Applications, 88, jun 2020. doi:10.1016/j.comgeo.2020.101610.

[5] Tobias Christ, Andrea Francke, Heidi Gebauer, Ji°í Matou²ek, and Takeaki Uno. A
Doubly Exponentially Crumbled Cake. Electronic Notes in Discrete Mathematics, 38:
265�271, dec 2011. doi:10.1016/j.endm.2011.09.044.

[6] Adrian Dumitrescu and Csaba D. Tóth. Packing anchored rectangles. Combinatorica,
35(1):39�61, feb 2015. doi:10.1007/s00493-015-3006-1.

[7] Jonathan Gadea Harder. Anchored Rectangle Cover. SSRN Electronic Journal, dec
2019. doi:10.2139/ssrn.3463959.

[8] IBM. Ponder this. https://www.research.ibm.com/haifa/ponderthis/

challenges/June2004.html, 2004.

[9] Michele Muller-Itten. Packing Rectangles: A Cake Sharing Puzzle. SSRN Electronic

Journal, aug 2019. doi:10.2139/ssrn.3426472.

[10] W. Tutte. Recent progress in combinatorics: Proceedings of the 3rd waterloo confer-
ence on combinatorics. page 345, 1969.

[11] Peter Winkler. Mathematical mind-benders. CRC Press, 2007.

26

https://doi.org/10.4230/LIPIcs.ESA.2019.8
https://doi.org/10.1016/j.tcs.2016.03.007
https://doi.org/10.1016/j.disopt.2017.08.003
https://doi.org/10.1016/j.comgeo.2020.101610
https://doi.org/10.1016/j.endm.2011.09.044
https://doi.org/10.1007/s00493-015-3006-1
https://doi.org/10.2139/ssrn.3463959
https://www.research.ibm.com/haifa/ponderthis/challenges/June2004.html
https://www.research.ibm.com/haifa/ponderthis/challenges/June2004.html
https://doi.org/10.2139/ssrn.3426472

A Source code and data sets for Python

The used Python programs, the data sets and the results of the simulations of the per-
formance analysis can be found with the following link: https://git.snt.utwente.nl/

s1845004/bachelor-thesis

B More results of simulation dppacking

This appendix contains the results of the experiments that approximate FfX ,N (p). For all
experiments, U was divided into 100× 100 small squares. Furthermore, there is a table of
the simple counting experiment.

Figure 13: Contour plot for X ∼ Uniform(0, 1), for N = 7 and 150000 generated
point sets. Some level curves of

√
(1.1− x)(1.1− y) are drawn over the plot (label

0 means no data).

27

https://git.snt.utwente.nl/s1845004/bachelor-thesis
https://git.snt.utwente.nl/s1845004/bachelor-thesis

Figure 14: Contour plot for X ∼ Uniform(0, 1), for N = 8 and 100000 generated
point sets (label 0 means no data).

Figure 15: Contour plot for X ∼ Uniform(0, 1), for N = 10 and 150000 gener-
ated point sets, but where only sets are considered with exactly 2 points that are
not dominated by any other point (label 0 means no data).

28

Figure 16: Contour plot for X ∼ Uniform(0, 1), for N = 10 and 150000 gener-
ated point sets, but where only sets are considered with exactly 4 points that are
not dominated by any other point (label 0 means no data).

Figure 17: Contour plot for X distributed according to a triangular distribution
with range [0, 1] and mode 0, with division of U into 100×100 small squares, for
N = 10 and 150000 generated point sets. (label 0 means no data)

29

Figure 18: Contour plot for X distributed according to a triangular distribution
with range [0, 1] and mode 1, for N = 10 and 150000 generated point sets (label 0
means no data).

Figure 19: Contour plot for X distributed according to conditional distribution
of en exponential random variable with mean 1/5, with the condition X ∈ [0, 1],
for N = 10 and 150000 generated point sets (label 0 means no data).

30

Table 2: Number of optimal orderings for ordering by some functions of x and y
(from high to low) over 200000 randomly generated sets S of size 10. The x and y
coordinates were independent and distributed like a random variable X, for three
distributions: uniform with range [0, 1], triangular with range [0, 1] and mode 0, and
exponential with mean 1

5 , conditional to 0 < X < 1. Some norms of (1−x, 1−y) are
left out because sorting by minus the 1,−∞,∞-norms of (1−x, 1−y) is equivalent
to sorting by resp. 1,∞,−∞- norms of (x, y).

Ordered by: Number of optimal orderings
Uniform Triangular Exponential

Random 23290 20028 17992
‖(x, y)‖−∞ = min(x, y) 20398 16133 14211

‖(x, y)‖−2 =
√

2
1
x2

+ 1
y2

23157 19053 16854

‖(x, y)‖−1 = 2
1
x
+ 1
y

25294 21935 20055

‖(x, y)‖0 =
√
xy 30340 29575 30746

‖(x, y)‖1 = x+y
2 39167 41714 44152

‖(x, y)‖2 =
√

x2+y2

2 41679 43787 44940

‖(x, y)‖∞ = max(x, y) 37822 39803 41533
x 15530 11406 8980
y 15470 11492 9112

−‖(1− x, 1− y)‖−2 41130 43643 44618
−‖(1− x, 1− y)‖−1 41733 43717 44516
−‖(1− x, 1− y)‖0 41926 43361 44444
−‖(1− x, 1− y)‖2 33531 38362 43465

x+y−|x−y|
1−|x−y| 34631 26797 20467

31

C Tables with results performance analysis

This appendix contains the results for the average and worst case performance analysis.

Table 3: Average case performance of di�erent orderings. In the top rows, the
orderings are sorted by average performance at NS = 10, and in the bottom rows,
for average performance at NS = 50. A uniform distribution of points was used
(except for the origin).

NS = 10, for 105 sets NS = 25, for 105 sets
Ordering Absolute As part of optimum Absolute

Average σ Average σ Average σ

−‖(1− x, 1− y)‖0 0.83459 0.04780 0.98830 0.01556 0.84138 0.03212

‖(x, y)‖1 0.83424 0.04782 0.98797 0.01572 0.84176 0.03188

‖(x, y)‖2 0.83417 0.04781 0.98787 0.01616 0.83931 0.03220

−‖(1− x, 1− y)‖−1 0.83406 0.04793 0.98771 0.01624 0.83746 0.03287

−‖(1− x, 1− y)‖−2 0.83348 0.04803 0.98703 0.01694 0.83397 0.03344

−‖(1− x, 1− y)‖2 0.83300 0.04807 0.98649 0.01716 0.83896 0.03230

Combined ordering 0.83208 0.04821 0.98534 0.01891 0.83678 0.03231

‖(x, y)‖∞ 0.83124 0.04803 0.98433 0.01951 0.82506 0.03409

Euclidean ordering 0.83014 0.04855 0.98304 0.02142 0.83331 0.03276

Area ordering 0.82449 0.04977 0.97660 0.02770 0.82433 0.03465

NS = 50, for 25000 sets NS = 100, for 104 sets
Ordering Absolute Absolute

Average σ Average σ
‖(x, y)‖1 0.85249 0.02262 0.86239 0.01689

−‖(1− x, 1− y)‖0 0.85093 0.02292 0.86022 0.01728
−‖(1− x, 1− y)‖2 0.84877 0.02296 0.85840 0.01717

‖(x, y)‖2 0.84723 0.02318 0.85524 0.01759
Combined ordering 0.84622 0.02306 0.85539 0.01768
Euclidean ordering 0.84326 0.02337 0.85353 0.01785
−‖(1− x, 1− y)‖−1 0.84290 0.02409 0.84901 0.01825
−‖(1− x, 1− y)‖−2 0.83588 0.02497 0.83895 0.01903

Area ordering 0.82897 0.02594 0.83287 0.02017
‖(x, y)‖∞ 0.81916 0.02619 0.81343 0.02042

32

Table 4: Worst case performance in the simulation of di�erent orderings, both
absolute and relative to the optimum.

Ordering
NS = 7, for 2 · 105 sets NS = 10, for 105 sets NS = 25, for 105 sets
Absolute Relative Absolute Relative Absolute

−‖(1− x, 1− y)‖0 0.63721 0.85663 0.64242 0.86083 0.68262

‖(x, y)‖1 0.63721 0.85507 0.63997 0.86083 0.68714

‖(x, y)‖2 0.63721 0.85663 0.63997 0.84601 0.67958

−‖(1− x, 1− y)‖−1 0.63721 0.85663 0.64242 0.85937 0.68439

−‖(1− x, 1− y)‖−2 0.63721 0.85663 0.64242 0.85201 0.68621

−‖(1− x, 1− y)‖2 0.63721 0.84864 0.63326 0.86353 0.67222

Combined ordering 0.63371 0.81753 0.64242 0.83001 0.67574

‖(x, y)‖∞ 0.63721 0.84280 0.65355 0.83276 0.68421

Euclidean ordering 0.63371 0.80371 0.64242 0.81579 0.67270

Area ordering 0.63371 0.73681 0.61587 0.75561 0.66794

33

	Introduction
	Preliminaries
	Related work
	Some main principles
	Optimal anchored rectangle packings
	Simulation

	Performance analysis
	Average case performance
	Worst case performance
	Lower bound for worst case approximation

	Conclusions
	Discussion and recommendations
	Source code and data sets for Python
	More results of simulation dppacking
	Tables with results performance analysis

