
Modular Neural Networks using Multiple Gradients
Adjorn van Engelenhoven

University of Twente
P.O. Box 217, 7500AE Enschede

The Netherlands
a.vanengelenhoven@student.utwente.nl

ABSTRACT
Artificial neural networks are often not able to show how
they generate their results. By defining subtasks the inter-
pretability of neural networks can be improved. Modular
neural networks can use hyperparameters to define sub-
tasks with which it should solve the problems it is trained
for. However, parts of the Modular Neural Network are
trained solely on the accuracy of their subtask and not the
amount of useful information this subtask can provide for
the entire task. In this paper the Shared Layer Modular
Neural Network is proposed which could be an improve-
ment on the standard Modular Neural Network. The ac-
curacy could be improved by combining the layers before
the output of the subtask so more relevant information of
these subtasks can be combined. Furthermore, the accu-
racy could be improved by optimizing the weights based
on a combination of the loss functions of both the subtask
and the global task. In this paper, the Shared Layer Mod-
ular Neural Network is developed and tested to see if it
is an improvement compared to other models. CIFAR-10
was used in the evaluation of the model. If this model is
an improvement, a more accurate explainable neural net-
work has been created which can help solve problems that
are currently not completely understood.

Keywords
Modular Neural Network, Multiple Gradients, Explain-
able Neural Networks, Neural Network Architecture

1. INTRODUCTION
Many seemingly complex tasks in the brain can be divided
into subtasks [8]. Modularity in the brain is thought to
give the ability to handle different tasks with common sub-
tasks [18]. Artificial neural networks that use weight prun-
ing, which is similar to the brain’s synaptic pruning, also
seem to have high modularity [7]. However, it is unknown
what problems the modules in these neural networks are
solving, which is not useful when the inner workings of the
neural network need to be analyzed. Modular neural net-
works (MNNs) are made of multiple independently trained
neural networks each of which has a predefined subtask
given by the designer. These clear predefined subtasks
improve the transparency and explainability of the entire

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
33rd Twente Student Conference on IT July 3rd, 2020, Enschede, The
Netherlands.
Copyright 2020, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

neural network. The individual subsystems can be sepa-
rated and analyzed to understand their function which can
be used to understand the entire system. Explainable neu-
ral networks are especially useful when solving a task with
high accuracy of which we do not know a standardized so-
lution. However, the training of the sub-neural networks
is based only on the success of their subtask and not the
success of other sub-neural networks or the whole system,
which could be an oversimplification of the problem.

To complete the entire task MNNs combine the output
of all sub-neural networks through some intermediary [2].
This can for instance be done through gating networks,
voting schemes or other neural networks. In this paper,
the focus will be on the use of neural networks as the
intermediary. The intermediary network uses the output
of the sub-neural networks as input to complete the entire
task. Intermediary networks are trained after all the sub-
neural networks are trained. This kind of MNN will from
now on be called the standard MNN.

The intermediary network could also use the output of the
sub-neural network’s hidden layers as input. The interme-
diary network then needs to learn the entire task from
neurons that were used to solve the subtasks. This will
increase the number of parameters in the network but, as
seen in this paper, it can also increase the accuracy. This
type of MNN will from now on be called the Hidden Layer
Modular Neural Network (HL-MNN).

In this paper, a new type of Modular Neural Network using
an intermediary network is proposed. The Shared Layer
Modular Neural Network (SL-MNN) is made with the in-
tent to increase the accuracy of Modular Neural Networks
while staying interpretable. The SL-MNN does not receive
the output of the sub-neural network but rather it receives
the output of their hidden layers. In the SL-MNN the sub-
neural networks share their layers with the intermediary
network. The weights in these shared layers are updated
based on both the gradient of the sub-neural network and
the intermediary network. These two changes were made
with the idea to force the hidden layers to contain informa-
tion with which is useful for both the sub-neural network
and the intermediary network.

Figure 1. Example of the CIFAR-10 dataset



The CIFAR-10 dataset is used in all experiments, an ex-
ample of the dataset is given in Figure 1 [12]. Much higher
accuracy can be achieved by using Convolutional Neural
Networks or Residual Neural Networks [11, 9]. However,
the goal of this paper is not to achieve higher accuracy
than these networks but rather to improve current MNNs
using only fully connected layers.

In section 2 the research questions are stated. In section
3 background information on Artificial Neural Networks
and Modular Neural Networks is given. In section 4 the
SL-MNN is explained in more detail. In section 5 the ex-
periments and results are shown. In section 6 a discussion
is presented and in section 7 a conclusion is made.

2. RESEARCH QUESTIONS
This research will focus on the creation and optimization
of this modular neural network model, the comparison of
accuracy between this model and similar models, and the
significance of the intermediate outputs to the final output.

2.1 Optimization
To be able to fairly compare the models on accuracy the
proposed model first needs to be optimized. This opti-
mization can be done in two parts. The combining of
multiple gradients and the definition of the subtasks. As
such the following research questions (RQ) should be an-
swered.

RQ1 : How does the way of combining the gradients of
the final and intermediate output influence the accuracy
of the entire model?

RQ2 : Which types of subtasks can increase the accuracy
of the entire model?

2.2 Accuracy
When the model has been optimized its accuracy can be
compared to others models. The accuracy of the SL-
MNN is of high importance since MNNs are already in-
terpretable [2]. The SL-MNN should be compared to an
MNN and HL-MNN which use the same subtasks to de-
termine whether an improvement has been made. The
SL-MNN should also be compared to a Multi-Layer Per-
ceptron (MLP) to determine whether the adding subtasks
actually improves accuracy. From this we can conclude
that the following research question needs to be answered.

RQ3 : How accurate is the SL-MNN compared to a nor-
mal MLP, an MNN and HL-MNN which use the same
subtasks?

2.3 Interpretability
After the SL-MNN has been trained it should be checked
whether the sub-neural networks (SNNs) can explain the
output of entire model. By removing a certain SNN from
the SL-MNN it can be seen how much of an impact this
SNN had on the final classification. Thus explaining how
the SNN helps classify some input. As such the following
questions should be answered.

RQ4 : How does the classification accuracy of specific
classes change as different types of sub-neural networks
are removed?

3. BACKGROUND
Some background knowledge of neural networks is needed
to understand this paper. This background knowledge is
specifically about supervised learning, neural networks in
general, and modular neural networks.

3.1 Artificial Neural networks
Artificial Neural Networks (ANN) were first made as an
imitation of the neurons and synapses in the brain. While
ANNs do follow some of the basic principles of neurons,
they are a simplified formalization of the brain. ANNs are
a collection of connected neurons that are loosely based
on the brain. A connection can transmit a signal from one
neuron to other neurons. In ANN this signal is a number.
Every connection has a weight associated with it, as learn-
ing in the ANN progresses this weight can change value.
The weight of a connection can increase or decrease the
signal. The value of the signal a neuron transmits, the
activation, is based on the signals it receives from other
neurons. The activation of a neuron is calculated using the
sum of all received signals as input for an activation func-
tion. There are many activation functions with the most
notable being: Rectified Linear Unit, Sigmoid, Hyperbolic
Tangent, and Softmax [14, 15]. When the activation of a
neuron has been calculated it then sends out signals based
on this activation. A group of neurons that are not inter-
connected is called a layer. A neural network takes input
from an input layer feeds forward signals to the other lay-
ers until it gets to the output layer.

A loss function is used to determine how far the current
output is from the desired output for any given input. The
result of this loss function is then used by the backpropa-
gation algorithm to calculate a gradient. [5] This gradient
can be used by an optimization algorithm to create up-
dates to the weights such that the current output will be
closer to the desired output. Some notable optimization
algorithms are : Stochastic Gradient Descent, Adaptive
Moment Estimation and RMSprop [19, 10, 20]. Although
all of these algorithms minimize the loss through gradient
descent they do so in different ways. By repeatedly using
backpropagation and an optimization algorithm a neural
network can be taught to give the right output for input
it has never processed. At some point in this repetition
the loss no longer decreases, meaning that the ANN has
converged and is no longer improving.

3.2 Modular Neural Networks
Modular Neural Networks draw further from the biologi-
cal inspiration of neural networks and emulate the mod-
ularization of the brain. In the brain there are many re-
gions which all have different tasks, in a similar way neural
networks can be made to divide one big task into many
smaller tasks. This can be done by creating many inde-
pendent sub-neural networks which solve the smaller tasks.
The sub-neural networks then send the results to an in-
termediary which combines all results into one. The most
biologically plausible intermediary would be another neu-
ral network, but other intermediaries also exist. One of
those other intermediaries is a gating network. A gating
network is used in a technique called Mixture of Experts
(MoE) [13]. First, the experts are defined to divide the
problem space, then they are trained to solve the specific
problem space they have been assigned. These experts
can be neural networks but they can also be other learn-
ers like: Decision Trees, Support Vector Machines, and
Bayesian Networks. Then the intermediary, the gating
network, is trained to decide which expert to use on which
input. Designing Modular Neural Networks can have a
plethora of advantages, including speed up in training and
interpretability [2]. A speed-up in training can be achieved
by parallelizing the training of the sub-neural networks.
Interpretability is achieved since the sub-neural networks’
output should match the result of the subtask. The mo-
ment this output is given to the intermediary we can de-



Figure 2. A visualized graph of the Shared Layer Modular Neural Network

termine how the subtasks are combined by analyzing the
weights. Modularity can be designed into a neural network
but it can also be achieved naturally. Weight pruning has
been proved to also create a degree of modularity in neu-
ral networks. [7] This technique however does not always
receive any of the previously mentioned advantages.

4. SL-MNN
In this section the Shared Layer Modular Neural Network
is explained. This is done in three parts. In Figure 2 a vi-
sualization of the SL-MNN can be found. In this graph the
weights that use the new gradient application are colored
blue and green.

4.1 Subtasks of SNNs

One-vs-Rest and One-vs-One subtasks.
SNNs can be used to split the K-class problem non-modular
neural network face into multiple subtasks that can be
solved in a modular way. When it comes to image classifi-
cation these subtasks can be defined as one-vs-rest (OvR)
or one-vs-one subtasks (OvO) [3]. OvR SNNs are binary
classifiers which distinguish one class from all remaining
classes. In these SNNs the remaining classes are consid-
ered as one class. OvO SNNs are also binary classifiers
but distinguish between only 2 classes and disregard all
the other remaining classes. If there are K classes in a
dataset then K OvR SNNs or K(K-1)/2 OvO SNNs to
distinguish between all classes.

Superclass task.
Another type of SNN that is used is the superclass classi-
fier. This SNN regards multiple classes with similar phys-
ical features as one class. In the used dataset, CIFAR-10,
this SNN classifies images as either animals or vehicles.
Although this SNN cannot distinguish specific classes it
could decrease the number of misclassifications between
superclasses which in turn could improve the final accu-
racy.

Class imbalance problems in SNNs.
The CIFAR-10 dataset is balanced, i.e. all classes have an
equal amount of images in the dataset. However, to the
SNN the dataset does seem imbalanced. An OvR SNN
in CIFAR-10 would view 90% of the images as one class,
thus creating an imbalanced dataset for the SNN. If no
precautions are taken this usually creates SNNs that con-
sider every image as ’the rest’. To ensure that the SNN
learns all classes evenly, class weights were used in the loss
function [2].

4.2 Feeding forward intermediate layers
The SNNs in any Modular Neural Network essentially
compress the input image to a single value. This value
represents the result of the subtask that a specific SNN is
solving. The compression is could be lossy, meaning that
the input that has been compressed can no longer be re-
turned to the original input. The intermediary network of
an MNN receives the output from the SNNs and creates
the final output. However, because all SNNs compress the
input image some important information could have been
lost. Compressing the input less could result in less im-
portant information being lost. The output of an SNN is
directly influenced by the layer that comes before it. This
layer holds all the necessary information to create the out-
put of the SNN. Feeding forward the output of this layer
to the intermediary network the input is less compressed.
The intermediary network then uses the information from
these layers to create the final output. The intermediary
network essentially relearns how to solve all subtasks from
the hidden layers in the SNNs, but it can use the informa-
tion of all SNNs to do so.

4.3 Gradient application
While normally the SNNs are trained independently it
could prove useful to also train the SNNs based on the
value of the context that they feed forward to the inter-
mediary network. Here I propose a technique which uses
multiple gradients to try and achieve this. LetW be all the
weights in a neural network, let n be the number of SNNs
and let Wk be the weights of SNN k where k ∈ {1..n}.



The set of weights of all SNNs are disjoint, i.e. :

∀i, j ∈ {1..n}i 6= j ⇐⇒ Wi ∩Wj = ∅

Let Wc be the weights of the intermediary network and let
W o

k be the weights connecting to the output layer of SNN
k. Then in the proposed model the following holds

∀k ∈ {1..n},Wc ∩Wk = Wk ∩ ¬W o
k

All the weights in Wk except for the weights in W o
k are in

Wc. When training the SL-MNN every training step an
update ∆w is computed for every model’s weights. So the
weights in Wc ∩Wk have two updates associated to them.
These updates are then combined into one update

∆w+ = ωs∆wk + ωc∆wc

Where ωs denotes the update weight assigned to the SNNs
and ωc the update weight of the intermediary network. By
choosing an ωs and ωc such that ωs +ωc = 1 it is ensured
that the weights in Wc ∩Wk can not experience a higher
learning rate than the other weights.

5. EXPERIMENTS AND RESULTS
To answer the research questions experiments are done
on the SL-MNN. As mentioned before all experiments are
done using the CIFAR-10. dataset [12]. Keras and Ten-
sorflow were used to implement and experiment on all net-
works [6, 1]. The used program can be found at https:

//github.com/adjorn-e/SL-MNN. The current implemen-
tation of the SL-MNN is not well optimized, accordingly
only a small amount of experiments could be done. In the
following experiments all models used the same hyperpa-
rameters. Stochastic Gradient Descent with Nesterov mo-
mentum was used as the optimizer [16, 19]. To ensure that
the models are compared fairly the same stopping criteria
were used. 10% of the training data was used as valida-
tion data. Every epoch the validation data was used to
determine if the validation loss is still decreasing. If the
validation loss has not decreased within 20 epochs training
ends, this is called early stopping [4]. In these experiments
it was chosen to use 10 OvR SNNs to create the baseline
SL-MNN. If OvO SNNs were to be used then 45 SNNs
would have to be created and trained. Training and man-
aging these SNNs would take up significantly more time
and as such it was chosen to use OvR SNNs instead.

5.1 Weight updates impact on accuracy
To see which weight updates are optimal four different
variations of ωs and ωc were tested and compared. The
tested weight updates were : ωs = 1.0, ωc = 1.0; ωs =
0.5, ωc = 0.5; ωs = 0.3, ωc = 0.7 and ωs = 0.7, ωc =
0.3. All variations were trained fifteen times, with each
variation having the same architecture.

For ωs + ωc > 1 if both updates are negative or positive
then this is similar as having a higher learning rate in the

Table 1. Epoch distribution and Accuracy distri-
bution of SL-MNNs using different update weights

Update weights

Epoch
Distribution

Accuracy
Distribution

µ σ µ σ

ωs = 1.0, ωc = 1.0 131.80 28.02 48.22% 0.719%
ωs = 0.5, ωc = 0.5 158.87 19.78 49.26% 0.330%
ωs = 0.3, ωc = 0.7 174.80 23.50 49.14% 0.527%
ωs = 0.7, ωc = 0.3 166.6 28.43 48.71% 0.725%

layers which are shared. While having different learning
rates per layer is not new, having a high learning rate in
early layers is generally not recommended [17].

In Table 1 it can be seen that choosing weight updates
such that ωs + ωc > 1 holds similar characteristics to
having a higher learning rate. The SL-MNNs with ωs =
1.0, ωc = 1.0, converge more quickly but to a slightly lower
accuracy. As can be seen in figure 2, variations where
ωs = 0.5, ωc = 0.5 and ωs = 0.3, ωc = 0.7 seem to converge
almost identically. The model with ωs = 0.7, ωc = 0.3
seems to take slightly longer to converge, without any
gain in accuracy of the final model. This time to con-
vergence can also be seen in Table 1, the final accuracy of
all models are quite similar, however, the accuracy of the
ωs = 1.0, ωc = 1.0 model seems to be slightly lower than
all the others.

5.2 Impact of subtasks on SL-MNN accuracy
To determine which subtasks can increase the accuracy
of the SL-MNN four different variation were trained. SL-
MNN1 has 10 OvR SNNs, this is the baseline SL-MNN
to which the others are compared. SL-MNN2 has 10 OvR
SNNs and an additional superclass SNN that distinguishes
animals and vehicles. SL-MNN3 has 10 OvR SNNs and
two additional OvO SNNs. The first OvO SNN classifies
an image as an airplane or a ship. The second OvO SNN
classifies an image as an automobile or a truck. SL-MNN4

has 10 OvR SNNs, a superclass SNN and the two OvO
SNNs from SL-MNN3. SL-MNN1 was used as baseline to
see if the other variations were improvements. SL-MNN2

was used to determine whether the addition of a super-
class SNN is an improvement on the baseline. SL-MNN3

was used to determine whether OvO SNNs can lower the
misclassification rate between the two classes it classifies.
SL-MNN4 was used to determine whether combining all
the additional SNNs can further increase the accuracy of
the SL-MNN. For this experiment every single SNN has
an architecture of (51x51x1), the update weights ωs = 0.5
and ωc = 0.5 were chosen.

The SL-MNNs which have the superclass SNN seem to
have a higher accuracy than the others. The two OvO
SNNs do not seem to positively affect the final accuracy
of an SL-MNN. As seen in Figure 4, the two OvO SNNs
do seem to boost the validation loss decrease in the early
stages of training. It can be noticed that the SL-MNN4

has the early boost of SL-MNN3 and also converges to

Figure 3. Average validation loss per epoch of SL-
MNNs using different update weights

https://github.com/adjorn-e/SL-MNN
https://github.com/adjorn-e/SL-MNN


Table 2. Epoch distribution and Accuracy distri-
bution of SL-MNNs using different subtasks (N =
10)

Variation Parameters

Epoch
Distribution

Accuracy
Distribution

µ σ µ σ

SL-MNN1 1860512 164.7 29.17 49.10% 0.54%
SL-MNN2 2045999 167.0 23.20 49.71% 0.26%
SL-MNN3 2231486 153.0 30.85 48.79% 0.89%
SL-MNN4 2416973 152.9 25.01 49.37% 0.83%

Table 3. Superclass predictions per variation (N =
10)

Variation
False

Vehicles
True

Vehicles
False

Animal
True

Animal

SL-MNN1 722.4 3277.6 746.8 5253.2
SL-MNN2 657.2 3342.8 652.8 5347.2
SL-MNN3 642.3 3357.7 802.7 5197.3
SL-MNN4 671.1 3328.9 637.5 5362.5

the same final accuracy of SL-MNN2. Furthermore, the
additional OvO SNNs do not seem to lower the misclassi-
fication rate between airplanes and ships, and automobiles
and trucks. In Table 3 the superclass predictions of each
model can be seen. It can be noticed that the addition
of a superclass classifier lowers the amount of misclassified
images between superclasses. I.e. animals and vehicles are
classified as the right superclass more often.

5.3 Comparison with other methods
To determine whether the SL-MNN is an improvement, it
is compared the three other neural networks: an MNN,
an HL-MNN, and an MLP. The subtasks from SL-MNN3

in section 5.2 were used in the comparison of all three
Modular Neural Networks. For all MNNs the same SNN
architecture is used (51x51x1). Then the intermediary net-
work has the architecture (512x10), here the 512 neurons
are connected to a certain layer in the SNNs. The same
types of SNNs are used as well, one OvR SNN per class,
and a vehicle versus animal binary classifier. The MNN
has all of its SNNs trained independently. SNNs feed for-
ward their output to the intermediary network which is
then trained for the final result. [2] The Hidden Layer
Modular Neural Network (HL-MNN) is an MNN but the
SNNs feed forward the outputs of the layer before the final
output layer. The SL-MNN works as described in section
4. The Multi-Layer Perceptron (MLP) will be a standard
neural network which has no predefined modularity. The
architecture of this MLP is (512x512x512x10). In Table 4
the epoch distribution and accuracy distribution in terms
of the mean and standard deviation of the intermediary
network can be seen. In Figure 5 the validation loss over
epoch can be seen. It can be noticed that the SL-MNN

Table 4. Comparison with other methods (N = 20)

Model Parameters

Epoch
Distribution

Accuracy
Distribution

µ σ µ σ

MNN 1,764,971 126.50 46.43 48.20% 0.259%
HL-MNN 2,045,999 54.90 12.90 50.41% 0.227%
SL-MNN 2,045,999 157.55 23.04 49.81% 0.518%
MLP 2,103,818 160.2 23.01 51.41% 1.337%

Figure 4. Average validation loss per epoch of SL-
MNNs using different subtasks

has a much more stable accuracy than the MLP. But the
mean accuracy of the MLP is still higher than that of the
SL-MNN.

5.4 Interpretability
The gradient created by the intermediary network may
overpower the gradients of the SNNs. If this were to be
true then the SL-MNN would be more similar to a Multi-
Layer Perceptron (MLP) and not a Modular Neural Net-
work. To determine whether the SL-MNN is still modu-
lar the interpretability is tested. This is done by cutting
specific weights that connect the SNN to the intermedi-
ary network. The neurons which have a positive weight
toward the output of an SNN have all of their weights
cut. This causes neurons that are supposed to activate
the SNN’s output to feed forward no information to the
intermediary network. The effect of these cuts is analyzed
through a confusion matrix to observe which classes are
affected. The experiment is done on an SL-MNN which
was created to compare to the other methods. Two kinds
of SNNs are cut, the airplane OvR SNN and the superclass
SNN. An OvR SNN is cut to show that the OvR models
are still interpretable. The superclass SNN is cut to show
that it is interpretable and to further support the theory
that this SNN decreases misclassifications between super-

Figure 5. Average validation loss per epoch of mul-
tiple methods



Figure 6. Confusion matrices of an SL-MNN, before cutting any weights (bottom), after cutting the
airplane OvR SNN (top left), and after cutting the superclass SNN (top right)

classes. Cutting the weights of the airplane OvR SNN
causes airplanes to be misclassified as other classes more
often, see Figure 6. This suggests that the OvR models are
interpretable. Cutting the weights of the superclass clas-
sifier causes vehicles to be misclassified as animals many
more times, see figure 6. This further suggests the super-
class classifier is interpretable and decreases the number of
misclassifications. The HL-MNN and SL-MNN were also
compared to determine if there was any major difference
in the impact of cuts. The impact of cutting weights seems
higher in SL-MNN than in HL-MNN. However, not enough
data was gathered on this to statistically differentiate the
two.

6. DISCUSSION
While the SL-MNN has a lower accuracy than the HL-
MNN it has other benefits. The SL-MNN allows for real
time performance measurements of the final model while
the HL-MNN first needs to have all of its SNNs trained be-
fore the performance of the final model can be determined.
The SL-MNN could also be better with different architec-
tures and hyperparameters. The current implementation
is not optimized so only a small amount of experiments

could be done in the time alotted for this paper. Vari-
ous other methods that could improve the accuracy of the
SL-MNN are further mentioned below.

6.1 Fitting and fine-tuning SNNs
The SNNs of the MNN and HL-MNN are trained inde-
pendently before the intermediary network is trained. On
all SNNs early stopping is used to not overfit the SNNs,
after the SNNs are trained their weights are frozen [4].
This means that these weights are no longer being up-
dated. The SL-MNN does use an early stopping mecha-
nism for any of the SNNs which can cause the underfitting
and overfitting. Freezing the earlier layers in a model also
generally results in a higher accuracy, this is known as
fine-tuning. The SL-MNN does not do this either and as
such does not gain the benefits of this technique. Thus two
techniques that are used in the MNN and HL-MNN are
not being used in the SL-MNN. These techniques could
be implemented using a custom early stopping mecha-
nism. All SNNs would have their validation losses tracked,
if the validation loss has not decreased within a certain
amount of epochs then the weight updates of the SNN are
no longer applied. Only the weight updates of the inter-



mediary network are still being applied. After a certain
amount of epochs, the layers in the SNN are frozen and
no updates can be applied anymore. The intermediary
network cannot stop its training until all SNNs are frozen
and its validation loss has not decreased within a certain
amount of epochs. Using this custom early stopping and
fine-tuning mechanism the SL-MNN could have a higher
accuracy than the HL-MNN.

6.2 Update rules
Both updates are in the same direction when ∆ws >
0∧∆ws > 0 or ∆ws < 0∧∆ws < 0 . When this holds the
loss for both the intermediary network and the correspond-
ing SNN are lowered by the resulting update. But the mo-
ment that the weights are not in the same direction, i.e.
∆ws > 0 > ∆wc ∨ ∆ws < 0 < ∆wc, the resulting update
only decreases the loss for either the intermediary network
or the SNN. In the next training step, the weight update
of the model corresponding to the opposite direction could
become more extreme, if this is repeated many times an
equilibrium could be reached. ∆w = ωs∆ws +ωc∆wc = 0
In this equilibrium neither model will have this weight con-
verge to a value which minimizes their loss. Some mecha-
nisms could be made to undermine this effect.

7. CONCLUSION
The Shared Layer Modular Neural Network allows for the
simultaneous training of both the Sub-Neural Networks
and the intermediary network. When trying new architec-
tures for a model, the SL-MNN can instantly give an idea
of how good the current model is performing. The stan-
dard MNN and HL-MNN first need to have their SNNs
trained before it is possible to determine how the final
model is performing. The update weights do not seem
to significantly impact the accuracy of the SL-MNN as
long as the sum of the update weights is equal to one.
The addition of a superclass SNN decreases the number
of misclassifications between superclasses, resulting in a
higher accuracy. The addition of OvO SNNs give an early
boost to the validation loss but do not result in a higher
final accuracy. The SL-MNN does not result in a higher
accuracy for the CIFAR-10 dataset than an HL-MNN and
MLP. Cutting the weights from SNNs to the intermedi-
ary network has the expected effect on the classification
accuracy, making the SL-MNN interpretable.

In future work, the effect that the weight updates have
on the SL-MNN can be further investigated. More ex-
periments can be done to determine whether the effect of
cutting SNNs in the SL-MNN has a bigger impact than
in other MNNs. Furthermore, a custom early stopping
mechanism could be implemented to further increase the
accuracy of the SL-MNN.

8. REFERENCES
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo,

Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015.
Software available from tensorflow.org.

[2] R. Anand, K. Mehrotra, C. K. Mohan, and
S. Ranka. Efficient classification for multiclass

problems using modular neural networks. IEEE
Transactions on Neural Networks, 6(1):117–124,
1995.

[3] C. M. Bishop. Pattern Recognition and Machine
Learning. Springer, 2006.

[4] R. Caruana, S. Lawrence, and L. Giles. Overfitting
in neural nets: Backpropagation, conjugate gradient,
and early stopping. In Proceedings of the 13th
International Conference on Neural Information
Processing Systems, NIPSâ00, page 381â387,
Cambridge, MA, USA, 2000. MIT Press.

[5] Y. Chauvin and D. E. Rumelhart, editors.
Backpropagation: Theory, Architectures, and
Applications. L. Erlbaum Associates Inc., USA,
1995.

[6] F. Chollet et al. Keras. https://keras.io, 2015.

[7] D. Filan, S. Hod, C. Wild, A. Critch, and S. Russell.
Neural networks are surprisingly modular. ArXiv,
abs/2003.04881, 2020.

[8] J. A. Fodor. The Modularity of Mind. MIT Press,
1983.

[9] Y. Huang, Y. Cheng, A. Bapna, O. Firat, M. X.
Chen, D. Chen, H. Lee, J. Ngiam, Q. V. Le, Y. Wu,
and Z. Chen. Gpipe: Efficient training of giant
neural networks using pipeline parallelism, 2018.

[10] D. P. Kingma and J. Ba. Adam: A method for
stochastic optimization, 2014.

[11] A. Kolesnikov, L. Beyer, X. Zhai, J. Puigcerver,
J. Yung, S. Gelly, and N. Houlsby. Big transfer (bit):
General visual representation learning, 2019.

[12] A. Krizhevsky. Learning multiple layers of features
from tiny images. Technical report, 2009.

[13] S. Masoudnia and R. Ebrahimpour. Mixture of
experts: A literature survey. Artif. Intell. Rev.,
42(2):275–293, Aug. 2014.

[14] V. Nair and G. E. Hinton. Rectified linear units
improve restricted boltzmann machines. In
Proceedings of the 27th International Conference on
International Conference on Machine Learning,
ICML’10, pages 807–814, Madison, WI, USA, 2010.
Omnipress.

[15] C. Nwankpa, W. Ijomah, A. Gachagan, and
S. Marshall. Activation functions: Comparison of
trends in practice and research for deep learning,
2018.

[16] S. Ruder. An overview of gradient descent
optimization algorithms. CoRR, abs/1609.04747,
2016.

[17] B. Singh, S. De, Y. Zhang, T. Goldstein, and
G. Taylor. Layer-specific adaptive learning rates for
deep networks, 2015.

[18] P. Sterling and S. Laughlin. Principles of neural
design. January 2015.

[19] I. Sutskever, J. Martens, G. Dahl, and G. Hinton.
On the importance of initialization and momentum
in deep learning. In S. Dasgupta and D. McAllester,
editors, Proceedings of the 30th International
Conference on Machine Learning, volume 28 of
Proceedings of Machine Learning Research, pages
1139–1147, Atlanta, Georgia, USA, 17–19 Jun 2013.
PMLR.

[20] T. Tieleman and G. Hinton. Lecture 6.5—RmsProp:
Divide the gradient by a running average of its
recent magnitude. COURSERA: Neural Networks
for Machine Learning, 2012.

https://keras.io

	Introduction
	Research questions
	Optimization
	Accuracy
	Interpretability

	Background
	Artificial Neural networks
	Modular Neural Networks

	SL-MNN
	Subtasks of SNNs
	Feeding forward intermediate layers
	Gradient application

	Experiments and results
	Weight updates impact on accuracy
	Impact of subtasks on SL-MNN accuracy
	Comparison with other methods
	Interpretability

	Discussion
	Fitting and fine-tuning SNNs
	Update rules

	Conclusion
	References

