
Algorithm to Detect Advertising Packets for
Bluetooth Low Energy Wake-up Receivers

Remon Cents
Integrated Circuit Design, University of Twente, Enschede, The Netherlands

Email: r.b.a.cents@student.utwente.nl

Abstract—This paper presents the design of an algorithm
to improve the detection of Bluetooth Low Energy advertising
events in wake-up receivers. The goal is to decrease both latency
and power consumption by reducing missed wake-ups and false
wake-ups. The algorithm takes into account the Bluetooth Low
Energy specifications including the packet length, packet interval,
channel hopping, and a self-learning procedure of the advertising
event interval. In the ideal case, the algorithm has a delay of 2
advertising events. Simulations show that in an environment with
white Gaussian noise, the main receiver will wake-up consistently
when required, with no false wake-ups, if the SNR is at least
0dB. Sensitivity can be sacrificed to decrease susceptibility to
interference and noise power variations.

I. INTRODUCTION

In internet of things (IoT) applications, low power consump-
tion is important and most of the power is consumed in the
communication link. Receivers have to monitor the channel
all the time in order to receive the data as fast as possible,
which results in wasted power if there is no data to receive.
Wake-up receivers (WuRx), which have a far lower power
consumption compared to the main receiver, can be used
to monitor the channel continuously and wake-up the main
receiver only when data is available. Bluetooth Low Energy
(BLE) is known to have low power consumption, and this can
be further improved by implementing a WuRx. The detection
of BLE signals in the WuRx has to be optimized to prevent
false wake-ups and reduce latency. Prior literature has already
shown techniques on how to optimize this detection. This
paper will use the research found in [1] as a foundation to
further enhance the detection of BLE signals in the WuRx.

II. SPECIFICATION

In order to initiate a connection in BLE, one device
will start transmitting advertising packets on the three
primary advertising channels 37, 38 and 39. This is called
an advertising event and is shown in Fig. 1. The other
device, which will contain a WuRx, will scan for these
advertising events. If the WuRx has detected a device which
is advertising, the main receiver is waken up and a connection
can be established [2].

Regarding Fig. 1, it is important to mention that within the
advertising event, the same packet is sent consecutively across
the 3 advertising channels. The length of the packet itself is
between 128 and 376 µs, and the time duration between each
packet in a single advertising event is 10 ms at maximum in

Fig. 1. Single BLE advertising event

Fig. 2. Three BLE advertising events

low duty cycle mode, and 3.75 ms at maximum in high duty
cycle mode. This time duration is called the packet interval,
and the low duty cycle mode is considered in the algorithm. If
we are looking at multiple advertising events as seen in Fig.
2, there is a certain time observed between the advertising
events. This time duration is called the advertising interval
and is fixed or is manually adjustable on the transmitting
device. This advertising interval can be set between 20 ms
and 10.24 s, with steps of 625 µs. Furthermore, the device
adds a pseudo-random delay of 0-10 ms to this advertising
interval. Also, with regard to analyzing noise and setting the
sampling frequency, it is important to know that all 3 primary
advertising channels have a bandwidth of 2 MHz [1] [2].



III. ALGORITHM

In order to minimize latency and prevent false wake-ups
of the main receiver, an algorithm will be implemented
which will take the specifications mentioned in section II
into account. The algorithm will be designed to operate with
a receiver which is only capable of detecting the signal’s
energy. Therefore, it is only possible to use information
regarding the amplitude and the time duration of the signal.

Further in this section, the design and analysis of the algorithm
are explained. This algorithm consists of two main parts: The
event detection and a self-learning procedure of the advertising
interval. First, the detection of an event in a noise-free environ-
ment is discussed, which is followed by an explanation of the
self-learning procedure of the advertising interval and finally,
the detection of events in a noisy environment is analyzed.

A. Event detection

The event detection procedure is based on the assumption
that the transmitter will operate in low duty cycle mode, as
described in section II. Also, it is mainly based on the work
that is discussed in [1], and is described in detail in this
subsection. A visualization of the event detection algorithm
is shown in Fig. 3.

Starting at channel 37, when the signal is above a certain
threshold, the system will start counting to calculate how long
the signal is above this threshold. When this measured packet
length is < 128 µs, this means the received packet is not
a BLE advertising packet and the system keeps monitoring
channel 37. However when the measured packet length is
> 376 µs, the system will switch to channel 38 as this
packet can be a BLE advertising packet with interference
extending it. In addition, this switch will happen as soon
as the signal is exceeding the maximum specified BLE
packet length of 376 µs. This will ensure the next packet
on channel 38 is not missed. In case the signal is within
correct time bounds, the system will also switch to channel
38 and remember a BLE advertising packet has been detected.

On channel 38, the situation is almost the same. However, if
the next packet (within bounds or too long) does not arrive
within the specified 10 ms packet interval, the system will
switch back to channel 37 instead of moving to channel 39,
as there is no (potential) BLE advertising packet observed.
Moving back to channel 37 prevents a false wake-up when
interference is detected in channel 39, as well as preventing
missing a Bluetooth packet in channel 37 because the system
is watching channel 39 for an additional 10 ms.

On channel 39, the situation is exactly as in channel 38. After
the detection of a packet which is either > 376 µs or within
bounds, the system will evaluate whether the length of two or
more of the detected packets in the three channels was within
bounds. If this is the case, the system has detected this as a
BLE advertising event. However, the main receiver will not

wake up yet. The time of the start of this detected advertising
event is saved and analyzed by the self-learning advertising
interval procedure, which is part of the algorithm.

Fig. 3. Block diagram of the event detection procedure

B. Self-learning advertising interval

To further reduce the number of false wake-ups, a self-learning
function is implemented which will measure the time between
detected advertising events. This is done by making use of
the saved timestamps when every detected advertising event
started. Also, note that the time of the start of an event is
saved instead of the actual timestamp it was detected. This
is because the set advertising interval is determined from the
start and not the end of an advertising event [3]. In terms
of the requirements, this system should be able to function
when multiple BLE devices are simultaneously advertising.
This means multiple intervals have to be detected out of
the single number sequence containing all the timestamps at
which advertising events were detected. An interval can only
be detected when there are at least three advertising events,



as with two advertising events, it is far less certain if those
two events were from the same device. The downside is that
every time a new device is within range, the first 2 advertising
packets are not causing a wake-up, and thus an unavoidable
delay of 2 advertising events is observed. An example of
the detection of such an interval is visually shown in Fig. 4,
and can be done by looking at the earlier mentioned number
sequence. This will be done every time a new advertising event

Fig. 4. Visualisation of the advertising event interval calculation

has been detected. Let us consider x[n] the sequence of the
timestamps of all detected events and N the total number of
detected events. We will first look at the interval from x[N ] to
x[N−1], called ”interval 1”, which is ”6” in Fig 4. After that,
the intervals from x[N −1] to all earlier events are calculated,
called ”interval 2” ({4, 13} in Fig 4). If there exists an ”interval
2” that matches ”interval 1”, a pattern has been detected and
the main receiver wakes up. However if no match is found,
as in the left part of Fig. 4, the system will repeat the same
steps but now ”interval 1” is the interval between x[N ] and
x[N−2] and ”interval 2” the interval between x[N−2] and all
earlier events. In the example in Fig. 4, this results in a match
(both intervals are ”10”) and the main receiver wakes up. If
no match is found, this process will repeat until ”interval 1” is
defined between x[N ] and x[2]. This process is mathematically
shown in equation 1 and 2. Equation 1 shows the calculation
of ”interval 1”, with y1[n] being ”interval 1”.

y1[n] = x[N ]− x[N − n], n = 1, ..., N − 2, N ≥ 3 (1)

The calculation of ”interval 2” is mathematically shown in
equation 2, with y2[k] being ”interval 2”.

y2[k] = x[N −n]−x[N −n−k], k = 1, ..., N −n−1, N ≥ 3
(2)

”Interval 1” and ”interval 2” match if the difference between
the two intervals is at most 10 ms, as the advertising interval
will be 0-10 ms longer compared to the predefined value,
as described in section II. After a match has been found,
the 3 corresponding timestamps will be deleted and are no
longer be saved as an event detection timestamp. This will
decrease the likelihood that event combinations from multiple
devices or interference can be recognized as an interval.
For further prevention of false wake-ups, events older than
2·(10.24s+10ms) will be deleted, as the advertising interval

can not be longer than (10.24s+10ms) as stated in section II.
Furthermore, detected intervals that are shorter than 20 ms (the
lower limit described in section II) will not cause a wake-up
to occur. The timestamp of the 3 advertising events associated
with this interval will also be deleted.

C. Event detection with white Gaussian noise

By adding noise, the event detection based on a threshold
becomes unreliable at low signal to noise ratios, as the
noise fluctuates above and below the threshold. Therefore, the
averaging of samples is implemented. This leaves the mean
unaltered but decreases the variance of the noise. As the noise
power of white Gaussian noise is defined as σ2, the SNR can
be written as: SNR =

PSignal

PNoise
=

PSignal

σ2 . Whenever the signal
averaging window is doubled, the variance is halved. So the
larger the averaging window, the higher the effective SNR.
However, averaging too much has a downside, as it increases
the window in which a packet length is in BLE range. This is
illustrated in Fig. 5 and Fig. 6. As the bandwidth is 2 MHz and
the minimum packet length is 128 µs (as specified in section
II), the sampling rate is assumed to be 4 MHz, resulting in a
minimum packet length of is 512 samples. Looking at Fig. 5, it

Fig. 5. averaging window with a long duration low power signal

can be seen that for a very low power signal, it can be possible
that the complete averaging window has to cover up the whole
packet length in order to result in an amplitude which is
higher than the detection threshold. Generally, this means the
minimum packet length for detection can be expressed as seen
in equation 3.

Lengthmin = packetlengthmin − (averagingwindow− 1) (3)

So with an averaging window of 512, this means a minimum
detection length of 1.
For short high power signals, the opposite is true as depicted
in Fig. 6. When a short and high power signal is observed, it
is possible that the amplitude is already above the threshold
when only one sample of this signal is a part of the averaging
window. This means that the maximum packet length for
detection can be expressed as shown in equation 4.

Lengthmax = packetlengthmax+(averagingwindow−1) (4)



Fig. 6. Averaging window with a short duration high power signal

An unfortunate side effect of this is that a short powerful signal
with a length of 10 samples for example, which is not in BLE
range and thus not a BLE-packet, at an averaging window of
512, can be measured as a signal of length 10 + (512− 1) =
521 samples, which is considered to be a BLE-packet, even
without the adjusted lower mentioned limit of 1 mentioned in
equation 3. This means that with averaging there is a trade-
off between good low-SNR performance and susceptibility to
high power interference signals shorter than 128 µs or low
power interference signals slightly longer than 376 µs.

IV. METHOD

The performance of the described algorithm has been
evaluated in a MATLAB simulation. For generating the BLE
packets, the timing specifications mentioned in section II
regarding the packet length and packet interval, are uniform
random generated within the specified range. The packet
length has been considered the same length on all three
channels for one event, as it can be assumed the same data is
transmitted. The advertising interval can be set and a uniform
random delay of 0-10 ms will be added. Noise has been
modeled with a fixed level of white Gaussian noise. The
SNR can be adjusted which will alter the signal strength.
This signal with noise will be squared in order to obtain the
signal power. The algorithm itself has been implemented as
described in section III, while making sure the analysis is
done in real-time and only one channel is monitored at the
same time, as this would also be the case in a real receiver.
For verifying the performance, a successful detection is
considered within ± 10 ms of the time an advertisement has
been sent in the simulation. Any wake-up outside of this time
interval is considered a false wake-up.

In order to verify that the simulation has been set up
correctly, the algorithm has temporarily been simplified to
using only 1 channel. The real performance will be compared
to the theoretical performance by the means of probability
calculations. Equations 34 until 37 from [4] have been used
to perform these calculations.

In order to verify whether the self-learning algorithm is

functioning as expected, three tests can be performed.
for all tests the noise will be removed in the simulation.
1. A single device transmitting with a 100 ms advertising
interval. It is expected that the receiver wakes up at the third
event.
2. Two ’devices’ transmitting at the same time with different
advertising intervals of 1 s and 100 ms, while removing the
0-10 ms random delay to prevent collisions. It is expected
that the receiver wakes up at the third event of both ”devices”.
3. A single device transmitting with a 1s advertising interval,
but increasing the random added delay to 0-500 ms. A
relatively high missed wake-up rate is expected as a large
portion of the advertisements violate the ± 10 ms difference
compared to the calculated interval.

For measuring the performance of the algorithm, multiple
tests will be performed. The performance will be measured
in terms of false wake-ups and missed wake-ups. Note that
the self-learning advertising interval procedure always adds
a delay of 2 advertising events when no missed wake-up is
observed. The key variables that will be changed to tune the
performance are the detection threshold and the size of the
averaging window. The impact on false wake-ups and missed
advertisements of these variables will be analyzed for a wide
range of thresholds and averaging window sizes for a fixed
SNR. Finally, with optimal values for these variables, the
performance dependency on the SNR will be evaluated and
also compared with an implementation that does not contain
the self-learning interval.

For modeling interference, short bursts will be created with a
power 10 times higher than the noise power, with a length of
50 µs and a uniform random interval between 1 and 2 ms.

V. RESULTS

The performed probability calculations mentioned in section
IV, result in less than 5% difference compared to theory, so
it can be assumed the simulation is valid.

Looking at the tests to verify the behaviour of the self-
learning function, mentioned in section IV, the results are
shown in table I.

TABLE I
VERIFICATION OF THE BEHAVIOUR OF THE SELF-LEARNING INTERVAL

FUNCTION, USING THE TESTS DESCRIBED IN SECTION IV

Test No. Expected Observed

1 2 out of 3 events do not
cause wake-up

382 events caused 127
correct wake-ups

2 2 out of 3 events do
not cause a wake-up for
both devices

440 events caused cor-
rect 146 wake-ups

3 more than 2 out of 3
events do not cause a
wake-up

only 15 out of 156
events caused a wake-
up (sum of 5 simula-
tions)



In table I it can be seen that the results match the expectations
and thus it can be concluded the self-learning interval function
behaves as expected.

Fig. 7. Simulation showing missed wake-up rate compared to the averaging
window size. Simulation time = 40s with advertising event interval = 100ms,
SNR = -1dB and threshold = 1.6 · Pnoise. No interference.

Fig. 7 shows that with regard to the averaging window size,
the lowest missed wake-up rate is observed with an averaging
window size of around 500 samples (with packet length
= 512 samples). When the packet length is at the highest
possible value of 1504 samples, the missed wake-up rate
does not start to increase above 512. Furthermore, with a
packet length of 1504 samples, a lower missed wake-up rate
is observed for the same averaging window compared to
a packet length of 512. False wake-ups were not observed
and are therefore not plotted. Expected is that the larger the
averaging window, the better the performance, as the effective
SNR increases. However, given that the packet length of a
BLE packet is between 512 and 1504 samples and the low
power, the performance is expected to decrease when the
averaging window exceeds the packet length. If the BLE
packet signal drops below the threshold due to the low power,
this would cause a higher missed wake-up rate for the shorter
packet compared to the longer packet. This is because with
the longer packet, the BLE packet signal can drop below the
threshold multiple times, while the observed packet length is
still longer than the calculated minimum from equation 3.

As it can be seen in Fig. 8, the threshold greatly impacts
the performance. When the threshold approaches the noise
power from either side, a number of false wake-ups are
observed. The missed wake-up rate has decreased to almost 0
between 1.4 and 1.8 multiples of the noise power. A threshold
approaching 2 · Pnoise will increase the missed wake-up rate,
as the signal starts to occasionally drop below this threshold.
Furthermore, the false wake-ups are caused by the averaged
noise being above the threshold for the right amount of time
(given the averaging window of 512 samples, this is between
1 and 2015 samples). The false wake-ups are not observed
very close to the noise power as the events are detected in

Fig. 8. Simulation showing missed wake-up rate and false wake-ups/40s
compared to the threshold. Simulation time = 40s with advertising event
interval = 100ms, SNR = 0dB and averaging window = 512. No interference.

Fig. 9. Identical setup as in Fig. 8, with the self-learning function disabled.

an interval shorter than 20 ms, thus a wake-up is prevented
by the self-learning function (Fig. 9 illustrates the result with
the self-learning function disabled). The dip in the missed
wake-up rate at around 0.7 · Pnoise is caused by these false
wake-ups occurring within the time the advertisements were
sent ± 10 ms (and thus considered as a correct detection). It
can be concluded that the threshold should always be greater
than approximately 1.4 ·Pnoise to prevent false wake-ups and
a high missed wake-up rate. Also the threshold should not be
too large as the missed wake-up rate will increase for low
SNR signals.

Looking at Fig. 10, it can be seen that when optimizing
the averaging window and threshold parameters, the missed
wake-up rate has decreased to almost 0 above a 0dB SNR,
regardless of the self-learning function being enabled or
disabled. False wake-ups were not observed and therefore not
plotted. However when enabling the self-learning function,
the missed wake-up rate approaches 1 at a slightly lower
SNR compared to the situation where this self-learning
function is disabled. With the self-learning interval enabled,
3 consecutive advertising events have to be detected correctly
to cause a wake-up, which explains this small difference.



Fig. 10. Simulation showing missed wake-up rate with regard to the SNR.
Simulation time = 40s with event interval = 100ms, threshold = 1.6·noise-
power and averaging window = 512. No interference.

TABLE II
SIMULATION WITH INTERFERENCE AS DESCRIBED IN SECTION IV,

SIMULATION TIME = 40S WITH EVENT INTERVAL = 100MS, SNR = 10DB,
AVERAGING WINDOW = 512, THRESHOLD = 1.6 · Pnoise . SELF LEARNING

INTERVAL ENABLED.
NOTE 1: WAKE-UPS TOO EARLY (20 MS MAX) BUT ASSOCIATED WITH AN

ADVERTISING EVENT.

Interference
on channels

Missed wake-up rate
(%)

false wake-ups/100s

37 11 0
38 40 0
39 0 0
37 & 38 22 0
37 & 39 11 0
38 & 391 0 0
All
(avg. window =
512 samples)

100 0

All
(self-learning
disabled)

0 7132

All
(avg. window =
100 samples)

0 0

Table II shows an increased missed wake-up rate when the
interference is on CH37, CH38 or both. When the interference
is present on all channels, no wake-ups are observed at all.
Disabling the self-learning function results in a very high
number of false wake-ups. When lowering the averaging
window, the interference does not have an effect at all on
the detections. From table II, it can be concluded that with
an averaging window of 512, the interference is detected as
a BLE packet. A downside also described in section III-C.
This is indicated by the large number of false wake-ups when
all channels contain interference and the self-learning interval
is disabled. This is also indicated by the higher error rate
when interference is present only on CH37 or CH38 (receiver
switches to next channel too early), but no error is observed
when the interference is at CH39 (interference causes the
detection in CH39, after a correct detection in CH37 and
CH38). the fact that no wake-ups are observed at all when

the self-learning function is enabled is because events are
detected with an interval smaller than 20ms, which means the
self-learning function prevents wake-ups. When lowering the
averaging, there are no missed detections or false wake-ups at
all when the interference is present on all 3 channels. This can
be explained by equations 3 and 4, and means the interference
packet is not recognized as a BLE packet anymore.

VI. CONCLUSION

The designed algorithm is able to consistently wake up the
main receiver when required, with a delay of 2 advertising
events and practically no false wake-ups, up to a SNR of 0dB,
assuming no variations in the noise power or interference.
By sacrificing the sensitivity a threshold can be adjusted to
improve robustness against variations in noise power and an
averaging window can be made smaller to improve interfer-
ence susceptibility in practice. The self-learning advertising
interval function has the potential to drastically reduce the
number of false wake-ups if they occur, at the cost of a delay
of 2 advertising events.

REFERENCES

[1] P. Wang and P. Mercier, “A 220µW -85dBm sensitivity BLE-compliant
wake-up receiver achieving -60dB SIR via single-die multi- channel
FBAR-based filtering and a 4-dimentional wake-up signature,” Proc.
IEEE Int. Solid-State Circuits Conf. - Dig. Tech. Papers (ISSCC), 2019.

[2] M. Afaneh, “Intro to bluetooth low energy,” 2018.
[3] “Bluetooth core specification v5.2,” p. 2939, Dec. 2019.
[4] H. Urkowitz, “Energy detection of unknown deterministic signals,” Pro-

ceedings of the IEEE, vol. 55, no. 4, Apr. 1967.


