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ABSTRACT
A large part of deep learning research is devoted to image
classification. The research in this paper will show that
the same neural networks developed for image classifica-
tion can also be used to accurately classify electrocardio-
grams (ECGs). Even though this is a novel approach for
ECG classification, the early results appear to be promis-
ing. Since both accuracy and efficiency are much valued in
the applications of ECG classifiers the research will focus
on using lightweight image classifiers such as ResNet and
MobileNet. In order to (maximally) utilise the architec-
ture of the image classifiers, we need to cleverly reshape
the ECG signals. In this paper, we will investigate numer-
ous ways of doing so. Using the VEB en SVEB evaluation
metrics, the research in this paper will be compared to the
state-of-the-art. The best performing ECG classifier pre-
sented in this paper achieved a VEB- and SVEB-accuracy
of 96.8% and 98.1% respectively.

Keywords
ECG classification, Deep Learning, ResNet, MobileNet,
AAMI, VEB and SVEB evaluation metrics, Embedded
Devices.

1. INTRODUCTION
An electrocardiogram (ECG) is a measurement of electri-
cal activity in the heart. An ECG is usually represented
as a graph with voltage on the y-axis versus time on the
x-axis, figure 1 is an example of such a graph. All over the
world ECGs are used to detect numerous kinds of cardiac
abnormalities. As the leading leading cause of mortal-
ity worldwide [22], cardiovascular diseases can be better
treated and earlier identified with the help of an auto-
mated ECG classifier.

Many ECG classifying software solutions exist today, most
of these solutions are machine learning based classifiers
that can precisely detect some cardiac abnormalities [15].
Be that as it may, no cardiologist-replacing all-purpose
ECG classifier exist yet. However, with the rise of new
promising deep learning applications in the healthcare sec-
tor [3], this might change. The best performing state-
of-the-art ECG classifiers mostly make use of denoising
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Figure 1. ECG of a regular cardiac cycle.

autoencoders (DAE) in combination with a deep neural
network [20, 23], or with the use of support vector ma-
chines (SVM) [17, 2]. Within the the ECG classifying
research community there are no clear guidelines on what
classes should be classified. Many researchers use differ-
ent classes which makes it difficult to fairly compare most
ECG Classifiers. The variation in focus and classes in dif-
ferent research is most likely caused by the large number
of possible cardiac disorders that could be derived from an
ECG.

In this paper a novel approach for classifying ECGs will be
presented. The novel approach involves the use of image
classifiers, by doing so, all image classification research can
now be used to classify ECGs. As all images have height,
width and colour image classifiers are made for three di-
mensional input. ECG signals are one dimensional, so in
order to make use of an image classifiers architecture, the
ECG signal needs to be reshaped. In this research we will
investigate numerous ways of doing so. As many useful
applications of the ECG classifier are in wearable devices,
it is not only important that the classifier is accurate, but
also efficient. Some image classifiers can be rather complex
networks, so in order to assure the efficiency of the ECG
classifier, the research will focus on some of the more ef-
ficient and lightweight image classifiers. More specifically,
ResNet50 and ResNet50V2 [8], DenseNet121, 169 and 201
[10], NasNetMobile [25] and, MobileNet and MobileNetV2
[9].
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2. RELATED WORK
Rahhal et al. [20], observed that the feature representation
of ECG signals in most state-of-the-art methods on relied
handcrafted features. They found an automatic way of
doing this using an DAE.

The reseach of Xia et al. [23] achieved very accurate re-
sults1 on multiple public ECG databases with the use of
stacked DAEs combined with a deep neural network.

Ma et al. [16] popularised the use of SVMs for ECG clas-
sification. With the use of particle swarm optimisation,
they achieved an overall accuracy of 89.72%.

Rajesh et al. further improved the performance of SVM
based ECG classifiers. They also classified more specific
beats, meaning they had to more classes compared to other
state-of-the-art research. They achieved an overall accu-
racy of 94.12%.

In the work of Acharya et al. [4] and Zheng et al. [24]
it has been found that convolutional neural networks can
also be used to effectively classify ECGs.

Le Cun et al. [1] are often credited for developing the first
real deep convolutional neural network. Krizhevsky et al.
invented AlexNet [14] and made great progress in creating
more accurate and faster CNNs for image recognition.

Inspired by constructs of neurons in the human brain,
residual neural networks (ResNets) were invented by He et
al. in 2016 [8]. ResNets drastically improved the training
times of deep neural networks while maintaining accurate
results. ResNets achieve this by making ”shortcuts” be-
tween between layers which creates a much smaller (and
therefore easier to train) neural network.

3. ECG CLASSIFICATION
3.1 Classes
Classifying ECGs can be quite a challenging task as there
are a great number of different types of classes we could
classify beats as. Even experts sometimes disagree on the
classification of certain beats as the differences between
classes is not always obvious. According to the Association
for the Advancement of Medical Instrumentation (AAMI)
standard there are 5 important classes we should classify
ECGs as, Normal (N), Supraventricular (S), Ventricular
(V), Fusion of normal and ventricular (often referred to as
Fusion beat or F) and Unknown beats (Q) [5]. A visual
representation of of every AAMI class is presented in figure
2, every class is presented as a traditional one dimensional
signal, and its reshaped version. In section 4.1 a more
elaborate explanation of the reshaped signal is given.

3.2 Data set
The data set used to train the ECG classifier will be the
MIT-BIH Arrhythmia Database [18]. This is a publicly
available database containing 48 records all of which are 30
minutes long. They are 2 leads ECGs recorded at 360Hz.
The ECGs were obtained from 47 subjects between 1975
and 1979. The 48 records are divided into two categories,
the first 23 belong to the ”100 series”, these records are
representative of general population. The remaining 25
belong to the ”200 series”, these contain uncommon but
clinically important cardiac arrhythmias that would not
be well represented in a small random sample [19]. Mul-
tiple independent experts have annotated every beat, in
table 1 you can find an overview all beats annotations
(BA) contained in the database, their frequency, and their

1The exact results of Xia et al.’s method can be found in
table 5

2(a) Example of Normal beat, BA class N

2(b) Example of Supraventricular beat, BA class A

2(c) Example of Ventricular beat, BA class V

2(d) Example of Fusion beat, BA class F

2(e) Example of Unknown beat, BA class Q

Figure 2. Examples of all AAMI classes as both
a traditional one dimensional signal, and a visual
representation of the reshaped signal.

corresponding AAMI class.
The MIT-BIH database is well-known among researchers
occupied with creating ECG classifiers, [6, 13, 16, 20, 23]
all used the database to train and analyse the accuracy of
their developed solutions. The data will be split into the
following two sets; DS1 = {101, 106, 108, 109, 112, 114,
115, 116, 118, 119, 122, 124, 201, 203, 205, 207, 208, 209,
215, 220, 223, 230} and DS2 ={100, 103, 105, 111, 113,
117, 121, 123, 200, 202, 210, 212, 213, 214, 219, 221, 222,
228, 231, 232, 233, 234}. DS1 will be used to train the
classifier, DS2 will be used to test the performance. The
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AAMI BA Description Frequency Count

Normal

N Normal beat 70.86% 74790

L Left bundle branch block beat 7.65% 8075

R Right bundle branch block beat 6.88% 7259

e Atrial escape beat 0.02% 16

j Nodal (junctional) escape beat 0.22% 229

Supraventricular

A Atrial premature beat 2.41% 2546

a Aberrated atrial premature beat 0.14% 150

S Supraventricular premature beat 0.01% 2

J Nodal (junctional) premature beat 0.08% 83

Ventricular

V Premature ventricular contraction 6.75% 7124

! Ventricular flutter wave 0.45% 472

E Ventricular escape beat 0.10% 106

Fusion Beat F Fusion of ventricular and normal beat 0.76% 803

Unkown beats

/ Paced beat 3.43% 3620

f Fusion of paced and normal beat 0.25% 260

Q Unclassifiable beat 0.01% 15

Table 1. Overview of MIT-BIH Database beat annotations.

frequency of the classes is proportionate in these datasets,
they are the same datasets used in the research of [6,
20]. The records with serial number 102, 104, 107 and
217 are in neither of the datasets, most ECG classifying
researchers exclude these records as they contain paced
heartbeats. In order to make fair comparisons in the fi-
nal evaluation of the classifier, these records will also be
excluded in this research.

4. METHODOLOGY
4.1 Signal reshaping
To make use of the image classifiers we need need to re-
shape our ECG signal. As aforementioned, all modern
image classifiers take three dimensional tensors as input.
The minimal dimensions of the input required for most
image classifiers is 32× 32× 3, the first two numbers sim-
ply mean that the image has to have at least a height and
width of 32 pixels. The third and final dimension repre-
sents the three RGB channels, i.e. every pixel has three
values that make up its colour. Since an ECG signal is
one dimensional, we need to reshape the signal in order to
make it work with image classifiers’ architecture. Firstly,
a good window size has to be determined, which can be
more difficult than one might expect. This is mostly be-
cause of the large differences in cardiac cycles. E.g. some
patient’s average heartbeat lasts only 600ms, while for
other patients it lasts 1500ms. And then of course there
are the outliers, some ”beats” in the database last for over
5s. In this research we have chosen for a window size of
3.6s. Since the ECGs are recorded at 360Hz, this means
we have 3.6×360 = 1296 measurements per window, which
is the perfect square of 36. We can then reshape the sig-
nal into a 36× 36 matrix, and copy it into all three RGB
channels, similar to how grayscale images are passed into
image classifiers. The QRS-complex is the most signifi-
cant part of the ECG signal and therefore also the most
important for classifying beats [13]. For this reason, the
top of the QRS-complex is always placed in the centre
of the window (in visual representations of the signal, a
blue diamond is placed at the top of the QRS-complex for
clarifying purposes).

3(a) Signal, and tensor format OS

3(b) Signal, and tensor format IS

3(c) Signal, and tensor format ES

3(d) Signal, and tensor format MS

Figure 3. Visual representation of the different
ECG formats, as signal and as tensor.
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With a 3.6s window, it often occurs that multiple other
beats are contained within the same window, because this
might have a negative effect on the classifiers’ performance,
four different signal formats are presented; the original
signal OS where no modifications to the signal are made,
the isolated signal IS where only the centre heartbeat’s
PQRST-wave is represented in the window, the extended
signal ES where the first and last value of the centre heart-
beat’s PQRST-wave are extended to the beginning and
end of the window, and finally, the minimised signal MS
where all values that are not in the centre PQRST-wave
are minimised. Since these four formats result in differ-
ent tensors when reshaped, all are interpreted differently
by the image classifier. In this research, we will examine
what the most efficient format is. In figure 32 a visual
representation of the different formats can be found.

4.2 Classifier architecture
The ECG classifier has three core components; the signal
reshaper, the image classifier, and the interpretation layer.
In figure 3 you can find an schematic overview of the ECG
classifier’s architecture. The first core component of the
ECG classifier is the signal reshaper, this component is re-
sponsible for transforming the one dimensional ECG signal
into into something the image classifier can work with. To
the determine the best performing signal shape, the image
classifier’s performance with different signal formats will
be investigated. The largest and second core component is
the image classifier. The image classifier could be consid-
ered the ”engine” of the ECG classifier, as the ECG clas-
sifier is highly dependant its engines performance. How-
ever, this engine can easily be replaced by any other image
classifier. This allows for easy testing between the accu-
racy of the different image classifiers. In order to examine
what kind of image classifier’s architecture is best suited
for serving as part of the ECG classifier, we will compare
the performance of multiple image classiers. When making
use of the image classifiers, we can either use the publicly
available pre-trained weights used in the ImageNet [21]
competition, or have the weights be initialised randomly.
In table 2 an overview of all researched image classifiers
is shown, as well as their ImageNet top 1 accuracy, num-
ber of default trainable parameters (DTP), number of lay-
ers, and the size of the image classifier in MB. Generally,
the more trainable parameters a neural network has, the
longer it takes to train and run the classifier. In order to
use the image classifier as an ECG classifier, an interpreta-
tion layer (IL) is required. This is the third and final core
component of the ECG classifier. In order to determine
what the best kind of structure for the IL is, three inter-
pretation layer configurations ILCs are proposed; ILC1 :
one fully connected layer with five neurons. ICL2 : two
fully connected layers with 64 and 5 neurons respectively,
and ICL3 : three fully connected layers with 124, 64 and
5 neurons respectively. In this research we will investigate
the optimal configuration of these interpretation layers.

4.3 Evaluation
To evaluate the ECG classifier we will use the VEB, and
SVEB evaluation metrics, as introduced by [7]. The Ven-
tricular and Supraventricular are the classes that come
with the most health risks, and are therefore the most
important to identify. The VEB and SVEB metrics are re-
spectively Ventricular versus all other classes, and Supraven-
tricular versus all other classes. These are well-known
evaluation metrics in ECG classification research, and also

2The ECG used in this figure has BA-classification N and
is the 200th beat in record 100 of the MIT-BIH database.

ECG classifier

ECG signal Signal
reshaper

Image
classifier

Interpretation
layer

V F QSN QF

Figure 4. Schematic summary of the ECG classi-
fier’s architecture.

Image Classifier Acc DTP Layers MB

ResNet50 0.749 23,534,592 172 98

ResNet50V2 0.760 23,519,360 191 98

DenseNet121 0.750 6,953,856 428 33

DenseNet169 0.762 12,484,480 596 57

DenseNet201 0.773 18,092,928 708 80

NasNetMobile 0.744 4,232,978 771 23

MobileNet 0.704 3,206,976 88 16

MobileNetV2 0.713 2,223,872 156 14

Table 2. All researched image classifiers, their ac-
curacy in the ImageNet competition and some in-
formation about their architecture.

used by [23]. When comparing the classifier’s performance,
the following VEB and SVEB metrics are used; accu-
racy (Acc), positive predictivity (Pp), Sensitivity (Se) and
Specificity (Sp). Since the same metrics are used in some
of the state-of-the-art related research, the ECG classifier
from this paper can be fairly compared to other classifiers.

4.4 Open source
Once the research has been published, all code written
for the project will be made publicly available on GitHub.
There, everyone is free to use the code for further research,
or improve upon it.

5. RESULTS
5.1 Setup
Because of the limited amount of time available for this
research, the optimal configurations for each of the clas-
sifier’s components were determined by testing them with
only some of the other component’s configuration. E.g.
when investigating the best performing interpretation layer
configuration, only MobileNetV2 and ResNetV2 were con-
sidered. Even though ResNetV2 performed better with
ILC1, it is possible that DenseNet121 or NasNetMobile is
more more accurate when combined with ILC3.

First, the best performing architecture configuration was
determined. Table 3 shows an overview of different ar-
chitecture configurations and their corresponding perfor-
mance. The architecture configuration includes (From left
to right as shown in table 3): ILC , the interpretation
layer configuration that was used. Trained layers, the lay-
ers that were trained in the model, e.g. DTP + IL means
that all default trainable parameters and the interpreta-
tion layers were trained. Epochs, the number of epochs
the model has trained for. The epoch steps are 30, 60,
100 and 150. If after an epoch step the model does not
seem to be improving any further, no more epoch steps
are taken. The fourth configuration column s/epoch rep-
resents the average number of seconds it took to execute
one epoch3. Weights, when using the image classifiers it

3The models were all trained in Google Colab notebooks
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Image Classifier Configurations Accuracy

ILC Trained layers Epochs s/epoch Weights Test VEB SVEB Train

MobileNetV2 ILC1 IL 30 9 ImageNet 0.872 0.935 0.958 0.967

MobileNetV2 ILC1 IL 60 9 ImageNet 0.834 0.918 0.943 0.971

MobileNetV2 ILC1 IL 100 9 ImageNet 0.814 0.893 0.938 0.975

MobileNetV2 ILC2 IL 30 10 ImageNet 0.883 0.953 0.947 0.995

MobileNetV2 ILC2 IL 60 10 ImageNet 0.798 0.915 0.912 0.997

MobileNetV2 ILC3 IL 30 10 ImageNet 0.845 0.924 0.942 0.991

MobileNetV2 ILC3 IL 60 10 ImageNet 0.834 0.935 0.925 0.966

MobileNetV2 ILC1 DTP + IL 30 52 ImageNet 0.802 0.897 0.834 0.996

MobileNetV2 ILC1 DTP + IL 60 52 ImageNet 0.816 0.904 0.937 0.996

MobileNetV2 ILC1 DTP + IL 100 52 ImageNet 0.904 0.950 0.962 0.999

MobileNetV2 ILC1 DTP + IL 150 52 ImageNet 0.867 0.968 0.952 0.999

ResNetV2 ILC1 IL 30 38 ImageNet 0.923 0.968 0.963 0.949

ResNetV2 ILC1 IL 60 38 ImageNet 0.917 0.908 0.956 0.960

ResNetV2 ILC1 IL 100 38 ImageNet 0.803 0.894 0.947 0.968

ResNetV2 ILC2 IL 30 38 ImageNet 0.903 0.950 0.963 0.949

ResNetV2 ILC2 IL 60 38 ImageNet 0.914 0.957 0.963 0.960

ResNetV2 ILC2 IL 100 38 ImageNet 0.913 0.957 0.963 0.955

ResNetV2 ILC3 IL 30 38 ImageNet 0.875 0.921 0.963 0.955

ResNetV2 ILC3 IL 60 38 ImageNet 0.899 0.943 0.963 0.955

ResNetV2 ILC3 IL 100 38 ImageNet 0.913 0.957 0.963 0.955

ResNetV2 ILC1 DTP + IL 30 152 ImageNet 0.826 0.897 0.953 0.992

ResNetV2 ILC1 DTP + IL 60 152 ImageNet 0.801 0.875 0.930 0.999

ResNetV2 ILC1 DTP + IL 100 152 ImageNet 0.792 0.860 0.921 0.999

Table 3. Classifier performance with different architecture configurations.

is possible to either use the pre-trained ImageNet weights,
or have all weight be randomly initialised. Since, a lucky
random initialisation can have a big impact on the clas-
sifiers performance, numerous attempts of initialising the
weight randomly were made, unfortunately without any
success, as the classifiers performance with the ImageNet
weights were in every scenario considerably better. Ta-
ble 3 contains the highest performances obtained with the
specified configurations.

Secondly, the optimal image classifier was determined by
applying the best performing architecture configuration
to all image classifiers, and choosing the one with the best
overall results.

Finally, the most efficient signal shape was determined.
Because of time constraints, the best performing archi-
tecture and image classifier were determined while only
using signal format ES. This is because it is presumably
the optimal signal shape, as the QRS-complex is the most
significant feature in this tensor, whereas formats IS and
MS also have high contrast between the the PQRST-wave
and the rest of the signal. The best performing architec-
ture and image classifier are then combined with the four
signal formats, to determine the optimal signal format.

5.2 Experimental results
In table 3, the experimental results for determining the op-
timal architecture are presented. Even though MobileNetV2’s
optimal architecture configuration differs from ResNet50V2’s
configuration, the following optimal architecture configu-

with GPU hardware acceleration enabled. These number
might be difficult to reproduce, since every time you recon-
nect to a Google Colab Notebook, you could be assigned
different hardware.

ration was determined. The best configuration is ILC1,
training only the interpretation layer for 30 epochs, and
initialise the weights as the pre-trained ImageNet weights.
The choice for this configuration was made because of two
reasons; these results are better when compared to the
optimal configuration for MobileNetV2, and simply be-
cause it would take significantly longer to train all other
image classifiers with the optimal MobileNetV2 configura-
tion. E.g. training both the DTP and IL for 100 epochs
took over four hours when applied to ResNet50V2. In
the rest of the results section, all models will have these
architecture configurations applied.

In table 4, the performances of all the different image clas-
sifiers are presented. All models are trained for 30 epochs
with ILC1 and signal format ES. With these configura-
tions, ResNet50V2 appears to be performing the best. Fi-
nally, the optimal signal format was determined, from the
results presented in table 5 we can derive that ES is the
optimal format. However, there could be argued against
this conclusion, as every other optimal component was de-
termined by using the ES format as a baseline, and it
therefore has an unfair advantage over the other formats.

6. DISCUSSION
Considering the likelihood that there exists an even more
optimal configuration, combined with the rather decent
accuracy of the best performing classifier presented in this
paper, this novel approach of classifying ECGs suggests
potential. This way of using image classifiers, as the ”en-
gine”of an ECG classifier is an interesting way to make use
of the state-of-the-art image classification research. If an
even better image classifier is developed and published, it
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Image Classifier Acc VEB SVEB

(General) Acc Pp Se Sp Acc Pp Se Sp

ResNet50 0.901 0.952 0.614 0.692 0.970 0.963 0.000 0.000 1.000

ResNet50V2 0.924 0.968 0.679 0.586 0.963 0.981 0.213 0.069 0.990

DenseNet121 0.759 0.863 0.307 0.875 0.863 0.963 0.517 0.017 0.999

DenseNet169 0.790 0.901 0.389 0.911 0.901 0.962 0.185 0.008 0.999

DenseNet201 0.883 0.958 0.621 0.899 0.962 0.958 0.103 0.002 0.994

NasNetMobile 0.854 0.928 0.488 0.839 0.920 0.963 0.184 0.057 0.999

MobileNet 0.835 0.866 0.111 0.153 0.915 0.963 0.204 0.001 0.999

MobileNetV2 0.872 0.935 0.470 0.772 0.940 0.958 0.092 0.023 0.991

Table 4. Image classifier comparison.

Image classifier Format VEB SVEB

Acc Pp Se Sp Acc Pp Se Sp

ResNet50V2 OS 0.842 0.394 0.773 0.842 0.921 0.127 0.004 0.952

ResNet50V2 IS 0.892 0.425 0.869 0.931 0.963 0.002 0.004 0.999

ResNet50V2 ES 0.968 0.679 0.586 0.963 0.981 0.213 0.069 0.991

ResNet50V2 MS 0.942 0.643 0.531 0.942 0.952 0.120 0.012 0.982

Table 5. Signal format performance comparison.

Method VEB SVEB

Acc Pp Se Sp Acc Pp Se Sp

Ince et al. [11] 0.976 0.874 0.834 0.981 0.961 0.567 0.621 0.985

Kiranyaz et al. [12] 0.986 0.895 0.950 0.981 0.964 0.621 0.646 0.986

Xia et al. [23] 0.995 0.973 0.979 0.997 0.997 0.956 0.961 0.999

This paper 0.968 0.679 0.586 0.963 0.981 0.213 0.069 0.991

Table 6. Comparison to the state-of-the-art research.

can without much effort be applied in the ECG classifier.
From the results in tables 3, 4 and 5, we can also conclude
that the ECG classifier seems to particularly struggle with
the Supraventricular class. As seen in the visualisation of
the tensors in figure 2, the current setup does not show a
very big difference between the Normal and Supraventric-
ular class. Experimenting with different signal formats,
even different from the ones presented in this paper, could
help the ECG classifier perform better on the Supraven-
tricular class. There are also disadvantages to this ap-
proach. In healthcare it is of high importance that a diag-
nosis is not only made, but can also be explained. At this
moment, the classifier could be considered a black-box.
We can see the classification it makes, but we have no
idea how it reached this classification. There is plenty of
research being done as how making deep neural networks
explainable. If ever applied in the real world, it would be
necessary for the ECG classifier to be able to point to the
features in the original signal that led to the decision of
giving it a certain classification.
There are numerous ways to further improve upon the ac-
curacy of the ECG classifier. Right now the raw ECG
signal is fed to the signal reshaper, however, research in
[23] has shown denoising the signal could help with fea-
ture extraction and improve the overall performance of
the classifier. Also barely any hyper-parameter optimi-
sation was preformed. Exploring different optimisers and
loss functions could drastically improve the classifiers’ per-
formance. The classifier presented in this paper has a
low Pp and Se, these results could be enhanced with im-
proved feature extraction, or by having the classifier train
or more data. Besides the regular MIT-BIH arrhythmia

database as used in this paper, there also exists an MIT-
BIH Supraventricular Arrhythmia Database. This database
contains a larger portion of Supraventricular beats. This
database can be used to further enhance the classifier’s
performance. Plenty of research is still to be done in the
optimal signal formatting. Especially considering 12-lead
ECGs, the RGB channels could used for holding different
leads, rather than duplicating one lead. Another approach
for the signal reshaping could be to turn the one dimen-
sional ECG signal into a spectrogram. This could perhaps
help improve feature extraction.

7. CONCLUSION
In this paper a novel approach for classifying ECGs is pre-
sented. The novel approach makes use use of image clas-
sifiers, this means the state-of-the-art image classification
research can now be applied for ECG classifying research.
The early results presented in this paper are worse when
compared to SVM or DAE based ECG classifiers from re-
lated works. However, when taken into consideration the
minimal optimisation that was performed, these early re-
sults suggest potential. The biggest shortcoming of the
current presented solution is its struggle with Supraven-
tricular class, this could be improved with enhanced fea-
ture extraction, better signal reshaping, or more training
data. In order to determine if this novel approach is of
any value, further research will have to be conducted.
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