UNIVERSITY OF TWENTE.

Faculty of Electrical Engineering,
Mathematics & Computer Science

FPGA-based AES
Variants Against
Side-Channel Attacks

Emil Kerimov

M.Sc. Thesis
June 2020

Supervisors:
dr. ir. D. M. Ziener
M.Sc. Ali Asghar

Computer Architecture

for Embedded Systems Group
Faculty of Electrical Engineering,
Mathematics and Computer Science
University of Twente

P.O. Box 217

7500 AE Enschede

The Netherlands

Summary

Nowadays, encryption is used as a means to protect one’s personal information from unautho-
rized parties. Advanced Encryption Standard (AES) that is commonly used in various communi-
cation and storage systems is practically immune to mathematical cryptanalysis. However, it has
been shown to be susceptible to side-channel attacks (SCA). Regular cryptanalysis methods ex-
ploit weaknesses of the encryption algorithm itself. SCAs, instead, rely on the phenomenon that
power consumed by an electronic circuit is correlated to the data being processed by that circuit.
Statistical analysis of repeated measurements of consumed power leads to exposing information
that was meant to be hidden.

Field Programmable Gate Array (FPGA) devices are widely used to implement a variety of
systems, including those operating on sensitive data. These devices are capable of Dynamic
Partial Reconfiguration (DPR) that allows run-time switching between various configurations of
the FPGA. This feature gives rise to a class of countermeasures against SCAs based on the
implementation diversity of the system to be protected. Rather than modifying its algorithm or
system-level architecture, variants of the system are generated by manipulating its physical im-
plementation on the FPGA. These variants maintain functional integrity of the original design but
may exhibit varying power consumption profiles. If the variants are interchanged in run-time, when
the system is active, then the correlation between power and data can be distorted when com-
pared to a static implementation. If the correlation is reduced, it may lead to an increase in the
number of measurements, time, or processing necessary for analysis, and therefore improve SCA
immunity.

The following work explores synthesis-level design modifications to generate variants of an
FPGA-based AES implementation. First, existing countermeasures found in relevant literature
sources are studied. Based on the identified methods a number of design variation concepts are
proposed and evaluated. Generated variants are verified for functional integrity and implemented
into a system prepared for measurements of power consumption. The effectiveness of the variants
on the immunity against SCAs is measured by performing Correlation Power Analysis (CPA) on
the acquired power consumption traces. Variants are first evaluated individually, followed by trace
shuffling to emulate the DPR effect. Results show up to 12x incremental improvement in number
of traces required to extract secret information compared to 2-3x of existing approaches.

Contents

(1.2 Report Organization| e
(1.3 Main Concepts| e

|2 Background|

2.1 Advanced Encryption Standard| o oo
[2.2 Correlation Power Analysis|
[2.3 Field Programmable Gate Arrays|
231 FPGADesignFlow|.
[2.3.2 Design of Partially Reconfigurable Modules|
[2.3.3 Third-party tools for FPGA Development|.

nterm r PA

.1__Meth VEIVIEW| o o e e e e e e e e e e e e e e
[3.1.1 Masking|.
(3.1.2 Hiding|

2 _Literature Beview! L e e e e e e e

2.1 _Menten L InIACR2008

[3.2.2 Sasdrichetal. InIACR 2015
3.2.3 Beteetal. in HOST 2018!

al. In DATE 2019

4 _Proposed Variants|

[4.1 Proposal Discussion| e
[4.2 Variants of round-based AES implementation| oL
4.2.1 Variant Cl 1 for round- AES|.
4.2.2 Variant Class 2 for round-based AES|.
4.2.3 Variant Class 3 for round-based AES|.

12
13
15
16

17
17
17
18
19
20
24
29
33

CONTENTS

[4.3 Variants of serial AES iImplementation|
[4.4 Yosys Overview|

Proposal Evaluation|
(5.1 __Functional Verificationl

5.3 Measurements Setup|
(5.4 Power Analysis Attack Model|
[5.5 Correlation Analysis of Individual Variants|
[5.6 Correlation Analysis of Shuffled Variants|

6 Conclusion|

59

.......................... 60

|A Verifying Implemented Variants|

B Testing Implemented Variants|

[C Yosys Commands|

rement R

[F Analysis for All Bytes|

ecret Key for -1

61

70

72

74

76

79

83

84

Chapter 1

Introduction

1.1 Motivation

The following work will explore safeguards in the context of embedded systems that are a combi-
nation of hardware and software resources implementing a specific function or a set of functions.
In the modern world, smart embedded systems accessing and managing personal data capable
of intercommunication over the internet are integrated into our lives. Examples of these systems
are smart house appliances, mobile devices, etc. Due to the nature of the information contained
within these systems, they are frequent targets of attacks from third parties seeking access to the
hidden information. Thus, privacy and security are important metrics of these systems among
others, such as performance, reliability, cost, etc. Attacks on systems that contain personal,
confidential government, or commercial data are increasing in number as the systems get more
complex by design and may have more vulnerabilities exposing what should have been kept hid-
den [1]. These cyberattacks are usually carried out with malicious intent by parties with conflicting
interests on random or targeted victims. The attackers are looking to gain advantage by extract-
ing proprietary or secret information [2], [3]. Damage inflicted reflects itself in personal data being
compromised or can be quantified in monetary value [4] for commercially valuable and confiden-
tial information. It is thus in the interest of system designers to implement features that mitigate
the effects of these attacks or prevent them altogether.

In particular, the following discussion is on Field Programmable Gate Arrays (FPGAS) running
an implementation of an Advanced Encryption Standard (AES) and increasing immunity of such
a system against a type of cyberattacks known as the side-channel attacks. Synthesis-level mod-
ifications are explored within this work to generate alternative configurations (variants) for the dy-
namic partial reconfiguration (DPR) feature of modern FPGAs. This feature allows to interchange
the physical configuration of the system while maintaining its functional integrity and availability.
Proposed variants are evaluated using an experimental test setup and compared against relevant
published studies.

2 CHAPTER 1. INTRODUCTION

1.2 Report Organization

The remainder of this report is organized as follows. The current chapter continues with a brief
introduction of underlying concepts such as security, encryption, and FPGAs. In Chapter 2, Ad-
vanced Encryption Standard will be introduced in detail, along with Correlation Power Analysis
and reconfigurable modules for FPGAs. Countermeasures to CPA are studied in Chapter [3] re-
ferring to relevant state-of-the-art literature. The report continues with Chapter [4] presenting the
countermeasure proposals of the current work. Evaluation method and results from the power
consumption measurements are discussed in Chapter [5] The report is concluded in Chapter [6]
followed by Appendices.

1.3 Main Concepts

Dependability and Security

As systems increase in their complexity [5], their dependability becomes more important. Depend-
ability, as defined by the IFIP Working Group 10.4 on Dependable Computing and Fault Tolerance,
is a term used to describe “the trustworthiness of a computing system which allows reliance to be
justifiably placed on the service it delivers” [6]. To design a dependable system several attributes
have to be satisfied, with the following list defined by J. C. Laprie in the book “Dependability: Basic
Concepts and Terminology” [7]:

- Reliability - Confidentiality
- Maintainability - Integrity
- Safety - Availability

Reliability is the ability of a system to perform its required function with the emphasis on conti-
nuity of the service. Maintainability is the ability to undergo modifications and repairs, while safety
is the prevention of catastrophic events on the environment. Security can be used as an umbrella
term for the three remaining attributes defined above — confidentiality, integrity, and availability.
First is the absence of unauthorized information access, second is the absence of improper sys-
tem alteration, and the last attribute is the readiness for usage by authorized parties. Thus, to
maintain its security, a system must deliver these three attributes [8]. Furthermore, to implement
a secure system, three main properties of security need to be established — goals, threats, and
means. Goals define what is to be protected, such as the system under observation. Threats are
defined as against what or whom this system should be protected, such as malicious parties or
attackers. Means define how this protection will be carried out [9]. With a system in mind to pro-
tect against malicious parties as discussed above, safeguards or countermeasures are used as
the means to protect this system. While safeguards are meant to prevent an attack, the latter are

1.3. MAIN CONCEPTS 3

used to detect and respond to an attack — a priori and a posteriori defences, as per explanation
by Stajano in [9].

Encryption

As mentioned earlier, modern systems are often equipped with data encryption — a method to
transform the original piece of information into a secret code such that its original meaning is
hidden. Access to the original data and the system is only available per request of the autho-
rized parties that have a key to unlock the meaning of the secret code. Thus, all three attributes
defining the security of a system can be achieved through the means of encryption. Several dif-
ferent methods and types of encryption exist, allowing users to protect their data from unwanted
third parties [10]. Examples include widely known encryption algorithms such as Rivest-Shamir-
Adleman (RSA) [11] and Data Encryption Standard (DES) [12]. Advanced Encryption Standard
(AES) is a successor to the latter [13], defined by National Institute of Standards and Technology
(NIST) of the United States of America. This algorithm is used within the current work and will be
explained in detail in the following chapter.

Field Programmable Gate Arrays

The next concept to be introduced is the Field Programmable Gate Array, known as FPGA. These
devices are configurable arrays of transistors interconnected to each other. Designers can imple-
ment any type of functionality required, including encryption using AES. Flexibility and low design
time make FPGAs a preferred choice over Application-Specific Integrated Circuits (ASICs) for a
lot of applications [14], [15], [16]. ASICs can deliver better energy efficiency and performance
due to circuit optimizations, however, they require more time for development and manufacturing.
A change in the functionality of ASICs necessitates redesign and production of the device from
scratch.

To configure an FPGA, desired functionality is described using a Hardware Description Lan-
guage (HDL) such as VHDL or Verilog HDL. Then, the design is passed through several trans-
formations (synthesis, placement, and routing) and a file known as bitstream is generated at the
output [17]. This file is used to program the device, specifying which logic blocks in the FPGA
will be utilized and how they will be interconnected to each other. The configuration of the FPGA
then remains static until it is powered off or reconfigured. An important feature of modern FPGAs
is the Dynamic Partial Reconfiguration (DPR). Selective areas of an FPGA can be reconfigured
in run-time by using DPR, while the rest of the system remains unchanged [18]. To achieve this
functionality, FPGA is split into regions defined as static and partially reconfigurable (PRR). Two or
more partially reconfigurable modules (PRM) can be loaded onto each PRR [19]. These modules
can be designed to enable additional functionality which is not part of the original design or carry
an alternative implementation of it.

4 CHAPTER 1. INTRODUCTION

Side-channel Attacks and Countermeasures

AES maintains its performance and efficiency throughout implementations in both hardware and
software and is known to be among the most secure encryption algorithms [20]. Currently, the only
known feasible attacks that can extract the secret key of AES are side-channel attacks (e.g. power
analysis, electromagnetic analysis, etc.), as well as fault injection attacks. Power analysis attacks
were pioneered by P. Kocher in the late 1990s and shown to be successful [21], [22]. The un-
derlying principle of side-channel attacks is exploiting weaknesses in the system that implements
the encryption algorithm, rather than the weaknesses in the algorithm itself. Typical properties
of a system that may leak information about its operation are power consumption, electromag-
netic radiation, timing information, etc. Power consumption analysis is among the most widely
used and studied approaches and has been proposed by Kocher et al. in [23]. This method re-
lies on collecting measurements of power consumed by the system during its normal operation.
Then, statistical methods can be used to analyze acquired data and extract the secret informa-
tion. Several variations of this attack are available among which simple [24], differential [23], and
correlation power analysis [25] are the best known (see also IPA [26]). They rely on the principle
that electronic circuits consume power proportional to the data being processed, due to the nature
of transistors used to implement these circuits. Attackers can analyze and find the secret key with
a leakage model based on certain properties of the data processed [27].

An important factor in the success of power analysis attacks is repeated measurements of
power consumed under normal operation of the device. If the configuration of the device is static
and does not change over time, then the statistical methods used by the attackers will be suc-
cessful. Since PRMs can be alternative implementations of the existing functionality, they could
be used to increase immunity of the design against side-channel attacks as described earlier.
DPR could be used to switch between configurations of the design that maintain logical function-
ality but differ in physical implementation. Alternating between these configurations introduces
deviations in power consumption measurements, thus, reducing the effectiveness of statistical
analysis. A common criterion to evaluate the immunity of a design against power analysis attacks
is the number of repeated measurements required. Increasing the number of these measure-
ments is considered to make the attack less feasible due to more time necessary to acquire and
more processing power to analyze collected data [28].

Several methods and approaches exist to design PRMs that introduce implementation diversity
by using different logic blocks, interconnect routing, or adding extra circuitry. Approaches vary
based on what level of the design is considered for the modifications — algorithmic, synthesis, or
placement and routing. Several studies have explored the first and last methods of generating
variants and will be introduced later. Only one recent work has been identified as using the
synthesis-level modifications. This work also proposes variants on that level, discussing them
and presenting experimental results for evaluation.

Chapter 2

Background

Three main concepts were introduced in the previous chapter — encryption (AES), reconfigurable
modules, and side-channel attacks (SCA). The following sections will describe each of these
concepts in further detail.

2.1 Advanced Encryption Standard

Advanced Encryption Standard is a method to encode data such that its true meaning is hidden
and is accessible with a secret key that should be possessed by authorized parties only. This
standard was defined by the National Institute of Standards and Technology of the United States
of America in 2001 and is based on the Rijndael Block Cipher algorithm [13], [29]. AES is widely
used around the world in different applications and is implemented both in hardware and software,
or a combination of the two. It was developed as a successor to Data Encryption Standard (DES)
that was in use at the time but was becoming susceptible to brute-force attacks [30]. The Rijndael
algorithm is a block cipher, meaning that it accepts data in larger groups of bits, rather than one
bit (or a byte) at a time like stream ciphers [31], [32]. Input data is known as the plaintext and a
secret key is used to encode the incoming plaintext and produce a ciphertext as the output. Rijn-
dael algorithm was designed to support varying data and secret key length, however, for AES, the
secret key has been defined as 128-bit, 192-bit, or 256-bit long string and the data block length
is fixed at 128 bits. The same key can be used to encode the plaintext or decode the ciphertext,
meaning that AES is a symmetric block cipher [13].

Rijndael algorithm (further referenced as AES) works based on the iterative confusion and
diffusion principle for cryptographic systems described by C. Shannon in [33]. The underlying
principle of AES is also referred to as a substitution-permutation network [34]. Confusion ensures
that every bit of the output data (ciphertext) is represented by multiple parts of the secret key,
thus, lessening the connection between the two and increasing ambiguity of the ciphertext. AES
replaces every bit of the input from a non-linear look-up table to eliminate patterns that might make

5

6 CHAPTER 2. BACKGROUND

it easier to deduce the plaintext or the secret key. Diffusion is intended to spread the dependency
of one part of the input on the output and vice versa. AES performs both of these operations
multiple times in stages known as rounds. For three defined key lengths of 128, 192, and 256
bits there are 10, 12, and 14 rounds of transformations, respectively. Operations performed within
these rounds are discussed next. The steps of the algorithm are summarized below.

o Key expansion: round keys are derived from the secret key for every round; an additional
round key is derived for the final round

¢ Initial round: plaintext arranged as a 4x4 byte matrix is added to a round key using bitwise-
XOR operation for every byte — this operation is known as AddRoundKey

¢ Intermediate rounds: 9, 11, or 13 rounds (for 128, 192, 256-bit keys) of the following
operations:

— SubBytes: each byte of the state matrix replaced with a byte from a non-linear look-up
table

— ShiftRows: last three rows of the state matrix are cyclically shifted to the left by 1, 2,
and 3 positions

— MixColumns: each column of the state matrix is linearly transformed using matrix mul-
tiplication

— AddRoundKey: state matrix is combined with a round key using bitwise-XOR

¢ Final round: SubBytes, ShiftRows, and AddRoundKey operations are repeated for the last
time and the output (ciphertext) is produced.

First, AES begins with arranging the plaintext into a 4x4 byte matrix, known as the state. The
secret key is also arranged in such a matrix. This key is used to derive several round keys based
on a schedule defined in the Rijndael algorithm. Each round key is an expanded version of the
original key, configured as a 4x4 byte matrix, and thus longer 192 and 256-bit keys require more
rounds to complete all transformations required for the encryption. For AES-128, AES-192, and
AES-256 a total of 11, 13, and 15 keys are required, respectively. After initializing the state with
the plaintext the first round key is added to it by performing a bitwise XOR operation. This is an
operation that outputs a logical “1” only if one of the inputs is “1” and the other is “0”. Otherwise,
output is set to “0”. Figure depicts the AddRoundKey operation.

The next operation is SubBytes, shown in the Figure 2.2] Here, each byte in the state matrix
will be replaced with a byte from the look-up table known as the S-box which is defined by the
Rijndael algorithm. It is designed to prevent bit pattern propagation of the current state to the next
one. This achieves high non-linearity of the output and thus makes AES a strong encryption algo-
rithm [35]. Subsequently, the highest number of bits changing at the same time happens during
this operation. This nature should be kept in mind when the operating principle of side-channel
attacks will be explained in the next section.

2.1. ADVANCED ENCRYPTION STANDARD 7

input state matrix round key matrix
20,0 do,1 Q0,2 Qo3 ko,0 ko,1 ko,2 ko3
di1o IR} a a3 k1,0 k1,1 k1,2 k1,3
2,0 a1 CPP) 3 ka0 ka1 ks k3
CEX CEX CEW) a3 ks ks 1 k) ks 3
N - —
- / N\ /
N le—
NG

b3,0 b3,1 b3'2 b3,3

output state matrix

Figure 2.1: AddRoundKey function of AES

input state matrix Rijndael S-box
0.0 a1 g, a3 Input byte | Output byte
ag a, a, a3 0x00 0x63
a0 Ay, ay, as 0x01 0x7C
azq Az, 3z, az3 0x02 0x77
0x03 0x7B
output state matrix 0x04 OxF2
Bo.o bo1 bo, bos 0x05 0x6B
bio b1 by, bys 0x06 Ox6F
bZ 0 I:)2 1 b2,2 b2 3
b3 0 b3 1 b312 b3 3 . .
OxFF 0x16

Figure 2.2: SubBytes function of AES

The third operation within AES is ShiftRows. Here the second, third, and fourth rows of the
state matrix are cyclically shifted to the left by one, two, and three positions, respectively. The first
row is left unchanged. This operation contributes to the diffusion principle. Refer to Figure [2.3]for
a visual representation.

8 CHAPTER 2. BACKGROUND

input state matrix output state matrix

Figure 2.3: ShiftRows function of AES

The last operation is MixColumns, where each column of the state matrix is multiplied with a
4x4 matrix. Each byte of this matrix is based on the four-term polynomial a(z) = 32° + 22 + = + 2.
This operation produces a new column where each byte is now dependent on the original input
bytes, further contributing to the diffusion principle. See Figure [2.4] for reference.

input column of the state matrix polynomial matrix
a0 2 3 1 1
ato 1 2 3 1
a0 1 1 2 3
3 1 1 2

b0,0
bl,O
bZ,O
b3,0

output column

Figure 2.4: MixColumns function of AES

2.2 Correlation Power Analysis

Cyberattacks can be categorized as invasive and non-invasive. Each group can have logical and
physical types of attacks [36], [37]. Logical attacks usually exploit vulnerabilities in software or by
phishing users to trick them into giving attackers access to their private data. Software attacks
attempt to bring the system to a state where it will perform functions it was not supposed to or
completely halt its operation (denial of service). Physical attacks, on the other hand, imply that
malicious parties have direct access to the device or system that they are interested in exploiting.
Attackers can use reverse engineering, circuit modifications, microprobing, and simply damaging
the device and these would be considered as invasive physical attacks [38], [39].

Side-channel attacks are known as non-invasive physical attacks. A malicious party does not
damage or interfere with the system but rather exploits its physical properties and tries to use

2.2. CORRELATION POWER ANALYSIS 9

found vulnerabilities to their benefit. Attackers can introduce faults or glitches in the data stream
or the operating clock. Details about the secret data could be revealed due to the system prop-
agating those intentional faults and the attackers observing the behaviour and the outputs of the
system. Operating frequencies, temperature, or power supply levels could manipulated to trigger
improper functioning of the system and induce a fault or a glitch. These types of attacks can be
classified as active. Passive attacks, in contrast, are carried out by analyzing power consump-
tion, electromagnetic radiation, or timing of the operations. The malicious party does not interfere
and only observes the system collecting information about its behaviour. Then, performing sta-
tistical analysis of the acquired data can reveal the secret information that the attackers were
seeking [40], [21], [22].

Among the aforementioned passive attacks power consumption analysis is of the main interest
to the discussion in this work. It starts with the attacker measuring how much power is consumed
by the system during its normal operation and once enough data points have been acquired, they
can use statistical methods to analyze that data and extract what they were looking for. The un-
derlying principle of these attacks is based on the fact that when an electronic circuit comprised
of transistors processes a logical value “1” it will consume more power than if it was processing
a “0” [41]. This is due to the structure of a CMOS transistor - the basic building element of most
digital electronic circuits available today. These transistors act as electrical switches by allowing
current to pass when they are switched “on” (by applying voltage to the control gate) or blocking
current by removing voltage applied to the gate and switching the device “off”. This switching
results in variations in the instantaneous power consumed by the overall circuit depending on
what data is being processed at that given moment. Therefore, it is possible to observe power
consumed and deduce what kind of operations are being performed by the circuit or what data is
used during these operations. As an example, AES has a power consumption profile similar to the
Figure [2.5] referred from [42]. Ten rounds of encryption can be identified as the ten lowest points,
due to the way voltage levels were measured. Systems with a lot of switching activity, such as
AES, are susceptible to power consumption analysis and may leak sensitive data despite being
immune to regular differential and linear cryptanalysis methods [43].

The power analysis attack was first introduced by P. Kocher and demonstrated to be successful
[41]. Depending on the method of analyzing data, three main types of power analysis attacks can
be identified:

e Simple power analysis (SPA)
¢ Differential power analysis (DPA)
e Correlation power analysis (CPA)

Details of the analysis methods presented next are based on [42] and [44]. All power analysis
methods begin with acquiring measurements of consumed power (traces) by monitoring supply

10 CHAPTER 2. BACKGROUND

b
)
~

oo
o
o

Voltage (V)

© o
=S (V]
—_
—_—
EJ—_

3.93

Figure 2.5: Example power profile of AES-128, as measured from Arduino Uno [42]

line voltages or current. Traces can be collected and displayed using an oscilloscope or trans-
ferred to a computer for further detailed inspection. Simple power analysis (SPA) implies that the
attacker looks at the profile of acquired traces and tries to identify what kind of operation was
performed at a given moment. Functions that require more power will appear as spikes. This
method works well for systems with little background noise from operations in parallel or in the
absence countermeasures such as intentionally adding noise or equalizing power consumption.
SPA is thus more useful to identify design features, such as what kind of encryption algorithm is
used and any other information about timing and power levels that might be helpful for a more
in-depth analysis.

Differential and correlation power analysis techniques (DPA and CPA, respectively) are more
thorough and require a higher number of traces compared to SPA. The underlying principle of both
of these methods is similar but differs how the correlation between the hypothetical (guessed) and
the actual measured power consumption is calculated. For DPA, the attacker uses a selection
function D(C;, K,) where C; is the i ciphertext that was recorded during the acquisition of power
consumption traces and K, is the attacker’s guess of a subset of the secret key with 0 < K, < 28
for a byte-long subset. The attacker then computes the difference between the average of the
traces for which D(C;, K) is equal to one and the average of the traces for which selection func-
tion D yields a zero. If the guess K was incorrect, then the difference between the two sets of
averages will approach zero as the number of points approaches infinity since there is no correla-
tion. If the guess K, was correct, then there will be a spike in the plot of the computed difference
and the attacker knows that they have found a subset of the key. Repeating this procedure for the
remaining subsets will reveal the entire key.

In the case of a correlation power analysis (CPA), the attacker also begins with measurements
and guessing a subset of the key. However, a power model will be used to calculate the correlation

2.2. CORRELATION POWER ANALYSIS 11

between the guess and the actual measurement. A power model can be the Hamming weight
H,, of the binary value of interest, which is defined by the number of bits set to “1” [45]. For
example, for a byte value “011101001”, H,, = 5 as there are five bits set to “1”. As mentioned, the
number of the bits changing their value is correlated to the power consumed — the more bits are
switching, the more power would be required at that instant. Therefore, it is possible to show that
the Hamming weight of a binary value is related to the power consumed to process that value. To
quantify this relationship, CPA uses Pearson’s correlation coefficient commonly used in statistics
to evaluate the correlation between two variables [46]. Expressed as p(X,Y), it is defined as the
ratio of covariance cov(X,Y’) of two variables X and Y to the product of their standard deviations
ox and oy. Since covariance is defined by the mean and probability values of X and Y. Pearson’s
correlation coefficient can be re-written as in the Equation 2.1]

cov(X,Y) E[(X —px)(Y — uy)]

LYY = ox * oy Ox * Oy @1
px = E[X] (2.2)

py = E[Y] (2.3)

oy = E[X?] — B[X]? (2.4)

o2 = E[Y? - E[Y)? (2.5)

Equations[2.2]- [2.5) define the components of p(X,Y"). ux and uy are the means, and E is the
expectation or probability of X and Y, respectively. Further expansion of the formula for p(X,Y’) is
possible but not relevant to the discussion in this work. Pearson’s correlation coefficient can take
values in the range [-1, +1], where:

e p(X,Y) = —1:Y always increases when X decreases
e p(X,Y) = +1:Y always increases when X increases
e p(X,Y) =0:Y is independent and not correlated to X

It is now necessary to apply the principle of CPA to the AES algorithm described earlier. As
mentioned, the attacker would be interested in the point where intermediate values change the
most — that is the point in the algorithm where the highest number of bit swapping happens and
subsequently results in higher power consumption. For AES, this is the SubBytes operation where
all 16 bytes of the state will be replaced with different values from a pre-defined look-up table. This
table, known as the S-box, is designed to be non-linear and prevent propagating bit sequence pat-
terns of the input data to the output. As such, a design choice for AES that protects it from regular

12 CHAPTER 2. BACKGROUND

cryptanalysis techniques makes it vulnerable to side-channel attacks.

The attacker picks a point in the algorithm where part of the intermediate value is known,
such as the input of the S-box in the first round (alternative locations, such as the output of
the last round, are also possible). Recall that at this point in time, the original input plaintext is
bitwise XOR’ed with the secret key and passed as the input to the SubBytes function. For this
intermediate value the power estimate can be modelled as H,,[Sbox(ps @ 7)]. Here, p, refers to a
byte of the known input plaintext and i refers to attacker’s guess for a byte of the secret key. The
attacker can then calculate the Hamming weight of each of the 28 = 256 possible combinations for
each key-byte guess. Assuming that the attacker has obtained a sufficient number of points with
a sufficiently high sampling rate, it is now possible to define two variables ¢, ;) and &4, for which
correlation would be calculated:

e t(y; - point j in trace d for D power traces with 1" points, given that:
1<d<Dand0<j<T
e h, - point 7 in estimates for a trace d with I guesses, given that:

1<d<Dand0<i<]

Having these two variables it is possible to calculate their correlation r(; ;) for each measure-
ment ;7 and each guess i for D traces in total. Then, the attacker will pick the highest values of
I7j)| for every i, using absolute values since only the presence of correlation is important. The
highest r; will indicate the guess with the highest correlation which corresponds to a byte of the
secret key. Performing this procedure for the remaining bytes will yield the full secret key used for
the encryption. Considering AES-128, brute-force check of every possible key combination would
require 2!® tries for all 16 bytes of the secret key. This is a very large number with an order of
magnitude equal to 38. Using CPA, the number of guesses is equal to 16 x (2%) = 2'2, or just 4096
tries, which is a substantial reduction in the attack complexity and these guesses can be analyzed
in a shorter amount of time. Countermeasures to prevent or mitigate this type of power analysis
attacks are discussed in the next chapter.

2.3 Field Programmable Gate Arrays

As it was mentioned previously, Field Programmable Gate Arrays (FPGASs) are devices that can be
programmed to execute any function in hardware by configuring the connections between basic
computational logic blocks (CLBs) which contain look-up tables and flip-flops to store data [47],
[14], [15], [16]. This configuration is usually loaded when the device is first powered and retained
until it is either overwritten or the power is removed. During this process, the entire FPGA is
programmed, even if only a part of CLBs have changed their configuration. Dynamic Partial

2.3. FIELD PROGRAMMABLE GATE ARRAYS 13

Reconfiguration, shortened to DPR, is a feature that allows reprogramming pre-defined parts of
FPGA, referred to as reconfigurable regions, rather than the entire device [48], [49]. This enables
the ability to implement additional functions that are not always required and can be replaced by
different functional blocks, rather than being disabled or consuming residual power even when not
being actively used [50], [51], [52], [93]. Examples can be an arithmetic logic unit (ALU) that is
only required to execute simple mathematical operations such as addition and subtraction. When
the system is required to perform a more complex operation, this ALU can be swapped with an
alternative, more functional one. Once the result is ready, the simpler ALU can be brought back.
Overall, this swapping may lead to better efficiency and performance of the system. Another
example can be demonstrated in the context of approximate computing where calculations are
executed with intentional deviations or inaccuracies that allow for much faster, simpler circuits with
lower footprint and energy consumption. When the result is ready to be sent to the output, DPR
allows loading a functional block that will correct intermediate deviations and produce a precise
result. Thus, the circuit can produce results faster and use less energy compared to only using
the precise functional block for the whole operation. The tradeoff is some inactivity time while
DPR is in progress and the extra memory that is required to store the configuration files used to
re-program parts of the FPGA. During this process, the rest of the FPGA remains functional and
executes its originally programmed functionality. This region is referred to as static and usually
includes, but not limited to, the logic that controls the reconfigurable regions.

2.3.1 FPGA Design Flow

To program an FPGA, it is necessary to develop the desired functionality in a hardware description
language (HDL) such as VHDL or Verilog HDL, similar to developing software in programming
languages like C or C++. The HDL sources are then passed through several transformations
to generate an output file called the bitstream. This is a binary sequence that will be used to
configure CLB interconnects, look-up table initialization values, and any other parameters that will
enable the FPGA device to execute the functionality described by the HDL source. This bitstream
can be loaded to the FPGA board via a computer and a wired connection or stored in an on-
board memory chip and used by a dedicated control circuit to configure the FPGA every time
it is powered on. The process is similar for DPR, however, as there is now a requirement to
have alternative configurations that could be loaded to a reconfigurable region, multiple bitstream
files have to be generated. These bitstreams are then stored in an on-board memory or some
external location that is accessible to the DPR controller that takes care of reading and loading
new configuration to the reconfigurable region on the FPGA [54], [55], [56]. To summarize, the
levels are listed below:

¢ Algorithm level development

— Defining the architecture, i.e. system-level design

14 CHAPTER 2. BACKGROUND

HDL level development

— Implementing functionality in VHDL or Verilog, i.e. register-transfer-level design

Logic synthesis

— Processing abstract descriptions of HDL sources to produce the gate-level design

Implementation

— Mapping the gate-level description to the FPGA fabric, i.e. switch-level design

Generating bitstream

— Producing a file that is used to load results of the implementation stage to the FPGA

Development starts at the system and HDL design levels, where desired functionality and
system behaviour is described using certain keywords and constructs that can be translated to
simpler logical operations, such as storing a value in a register, performing an arithmetic opera-
tion, etc. The process of translating an HDL source into a lower level is called synthesis and there
exist several tools capable of this process, usually provided by the vendors of the FPGA device.
During synthesis, constructs in the HDL source are identified and represented at the gate-level.
For example, the HDL level may describe an entity that stores a multi-bit value on a certain peri-
odic event by latching the value available at its input. That value is then available as the output
from this entity until it is overwritten with a new value or it is reset by an external trigger signal.
This entity is recognized as a register and at the gate-level it is implemented as a special primi-
tive called a flip-flop. Primitives are basic unit blocks that can implement a certain type of logic.
Usually, FPGA devices will contain a matching hardware resource that is capable of executing
the same behaviour. During synthesis, besides translating to gates (simple Boolean functions
such as XOR or flip-flops), the logic described in the HDL is also optimized to produce a circuit
that uses the least amount of resources, delivers the best performance, or attempts to achieve a
trade-off in between the two extremes. Once the synthesis procedure is completed, the design is
described as a netlist file in a specific format and syntax understood by the implementation stage.

The implementation stage consists of further logic optimizations and mapping a set of primi-
tives to the available resources of the intended FPGA device. Most Boolean functions are mapped
to look-up tables, however, if the device provides a digital signal processing unit (DSP), or any
type of a dedicated functional unit (FIFO, interface controllers, etc.) and if the original design con-
tained a description matching the functionality of these blocks, this stage will attempt to make use
of these resources to deliver the most optimal solution. The implementation stage places all the
functions in the CLBs available and also connects them using the interconnect resources of the
FPGA device. This process is generally referred to as placement and routing, often shortened to
P&R (or PnR). The output of the implementation stage is a netlist that contains information about
which CLBs on the FPGA should be used, what values they should be initialized with, and how
they are interconnected. This netlist is then used to generate a bitstream file that will include any

2.3. FIELD PROGRAMMABLE GATE ARRAYS 15

other information necessary to program the FPGA. Generally, all of the stages introduced above
are contained within the FPGA vendor-provided software suite, such as Intel Quartus, Xilinx Vi-
vado, or Lattice Diamond [57], [58], [59]. It is also possible to use third-party tools from different
vendors, as well as solutions developed by the open-source community. However, their availability
and functionality might be limited compared to vendor-provided tools [60].

2.3.2 Design of Partially Reconfigurable Modules

As mentioned, additional functions that will be loaded into partially reconfigurable regions (PRRs)
may be completely new to the system or implement an existing function differently, e.g. energy
efficiency or performance-focused variations of the same function. In both cases, it is first nec-
essary to develop these partially reconfigurable modules (PRMs). While for a new function the
design process will start at the HDL level or higher, such as the abstract system-level, alterna-
tive implementations of an existing function can be generated from the lower levels too. Each
level has its disadvantages and advantages over the others. Depending on the requirements, any
level may provide the best result. Generally, the flexibility and available design space freedom
decreases from the algorithm to the implementation level. When the design is at the architectural
or system-level, developers may change the order of the operations, use different functions that
give the same result, etc. Once the design is described in an HDL, its implementation details start
to become more visible. Although, it is still possible to alter minor details to produce the desired
result, such as performance-optimized or area-efficient multiplication. At the output of the syn-
thesis process, the design is described as a set of primitives (i.e. basic logic blocks) and is less
open to modifications. After the implementation level the design is fully constrained to the physi-
cally available resources of the selected FPGA device. Depending on the original requirements,
it might be possible to introduce changes to the design only after P&R — an example would be
protected source files, proprietary pre-synthesized or pre-implemented IP cores, etc. This would
require extra effort from the designer as at this stage the design is not easily read or understood
by a human since it’s intended for the machine processing. Changes on the architectural level
could introduce deviations from the intended functionality or standards. Additional time and ef-
fort may be required to identify what parts of the design are more suitable for changes, such as
understanding the theoretical background of an algorithm (complex signal processing, encryption
algorithms, etc.).

HDL level changes may require the least amount of extra effort from the designer, as this is
the primary level at which most projects are developed [61]. However, in the case of protected
sources, as mentioned already, this might not always be an available option. It is also possible that
by the project requirements, the HDL sources are to be kept unchanged, even though they are
openly available. Another option is to generate alternative implementations of the original design
during the synthesis process. Designers could introduce modifications if they have control over

16 CHAPTER 2. BACKGROUND

this process. The representation is relatively high-level and changes can be propagated through
the logic optimization, mapping, and further down to the P&R level. However, this approach
is limited in options when using a vendor-specific software suite. Algorithms and functions to
synthesize a design are proprietary intellectual properties of FPGA vendors. Usually hidden from
the end user, only certain options are available that will operate on the entire design. Open access
to the HDL sources may be required to split the project into smaller ones and target a specific part
of the design. Some examples of synthesis options available within a vendor tool are restricting
the size of the look-up tables or changing logic optimization goals (area- or performance-driven).
In certain cases, these options may suffice, however, it would be preferred to have a greater
degree of control to produce a well-optimized alternative design variant [62], [63].

2.3.3 Third-party tools for FPGA Development

Third-party FPGA development tools may be useful for cases when the vendor-specific tool is not
sufficient for the designer’s needs. These tools provide greater flexibility to the synthesis process
by having free, unrestrained access to all of its parameters. Although they may be based on
algorithms less optimized for a particular FPGA platform when compared to the vendor-supplied
tools [64], [65], [66]. This means that an open-source synthesis tool could deliver a netlist that
will use more resources than a vendor-generated one under the same optimization goals (area or
performance). In practice, however, these differences are not significant enough, as will be shown
by analyzing resource utilization of variants proposed within this work. If the implementation is
done by the vendor tool, it can optimize the design further and minimize deviations from a design
completely processed by the vendor’s tool.

Out of several options available, some tools are either obsolete, e.g. SIS [67], or aim to be
replacements to vendor-specific tools and rely on academia developed algorithms, e.g. ODIN [68]
and Verilog-to-Routing projects [69]. Other examples include RapidSmith [70], Torc [71], IceS-
torm [72], etc. Another option is to use an open-source tool such as Yosys, originally developed
by Clifford Wolf [73]. Yosys performs synthesis and links other open-source driven tools for logic
optimizations (ABC from Berkeley Logic Synthesis and Verification Group [74]) and is also avail-
able as a commercial software suite including tools for P&R [75]. The following discussion is
about the open-source version available on an online code sharing and version control platform
GitHub [76]. Yosys can be modified by any user to their needs and it provides a greater degree
of control over the synthesis process when compared to vendor-specific tools. A special internal
structure is used to translate and transform an input design. Yosys produces synthesized netlists
for the implementation step in formats compatible with most open-source and vendor-specific
tools (EDIF or BLIF). Some parts of the inner workings of this tool are described in Chapter 4]

Chapter 3

Countermeasures to CPA

This chapter discusses countermeasures to the correlation power analysis attack described ear-
lier. Masking and hiding techniques using dynamic partial reconfiguration and published research
papers related to this work will be introduced.

3.1 Methods Overview

As it has been discussed in the previous chapter, correlation of processed data and power con-
sumed is one the main factors in the success of side-channel attacks. Therefore, to protect the
system and avoid compromising the privacy of sensitive data, it is necessary to minimize this cor-
relation. Countermeasures can be divided into two main categories — masking and hiding. While
the former attempts to manipulate the data being processed, the latter aims to affect the power
consumed during the operation of the system [77]. In the following sections selected papers are
used to demonstrate these approaches.

3.1.1 Masking

The idea behind masking type countermeasures is to not use the true value of the data for pro-
cessing. Instead, values are masked through mathematical transformations that can be reversed
when the true value is requested. The attackers will collect and analyze power consumption of the
system while it processes false values. Thus, minimizing correlation between the true values and
power consumed reduces effectiveness of the attacks. This approach has been first introduced
by Messerges in their work on analyzing AES candidate algorithms [78]. The concept of manipu-
lating data to increase side-channel attack immunity was already proposed in the works of Chari
et al. [79] and Goubin et al. [80] for DES (the predecessor to AES), both of which are referenced
by Messerges. These studies suggested a method to mask data using some secret scheme that
would distribute the intermediate values during processing. It would require attackers to perform
a more thorough statistical analysis and look at multiple points in the measured traces. It was pro-
posed to only mask some of the intermediate values, such as the first and few of the last rounds

17

18 CHAPTER 3. COUNTERMEASURES TO CPA

of DES. Inferential power analysis (IPA) was developed by Fahn et al. [26] and demonstrated the
possibility of attacking middle rounds of the encryption algorithm and thus avoid the implemented
countermeasure. Messerges avoided this drawback by proposing to mask all of the intermediate
values for all rounds of encryption. Data is masked by applying either a Boolean transformation
(such as bitwise XOR proposed by Messerges) or an arithmetic operation (addition, subtraction,
modulo) to the intermediate values during encryption. However, not all of the operations within
the encryption algorithm can use both methods. Boolean masking is not supported by addition
and multiplication [78] and arithmetic masking is used for these. Then, it would also be necessary
to convert between the two approaches from one operation to another. The mask itself is random-
ized and applied to both the plaintext and the secret key prior to the execution of the algorithm.
Thus, the encryption process is completed with randomized masked values and simpler statisti-
cal analysis methods will not be successful. Attackers will need to perform higher-order power
analysis and use joint probability distribution functions to analyze multiple points in the measured
traces.

3.1.2 Hiding

The idea behind hiding is to directly influence the power consumed by the system and thus re-
duce the correlation of the processed data to the power consumption [77], [81]. Several methods
have been proposed, such as reducing signal to noise ratio [82] or implementing dual-rail logic
technique such as the Wave Dynamic Differential Logic (WDDL) [83]. The latter requires a sec-
ondary, copy circuit of the design which will operate on data that is complementary to the main,
true values. In the context of FPGAs, this method was first presented by Yu and Schaumont as
part of their proposal of a symmetrical routing method. This technique was found to be useful in
increasing immunity against side-channel attacks [83]. The idea is based on the following expec-
tation - that the total power consumed over time would be equalized if true and complementary
values of data are processed in parallel by two identical circuits. When the true value is a logical
“1”, the secondary copy of the circuit will operate on a logical “0”, and vice versa. Thus, power
consumption profiling and data to power correlation would be minimized or eliminated. However,
achieving this effect requires an exact copy of the main circuit. The discrepancy between the two
circuits has to be minimized to achieve equal power consumption levels. This is a straightforward
task in the context of ASICs where the circuit design can be copied to maintain its symmetry. For
the FPGAs, however, this approach requires inferring the same placement and routing for both
parts of the whole design. To achieve this, Yu and Schaumont [83] have developed a custom rout-
ing algorithm which controls the implementation stage of the FPGA design flow. The symmetry
between the two circuit copies is achieved and discrepancies that lead to the success of statistical
analysis are minimized.

While the dual-rail complementary logic approach has been shown to be successful, it also

3.2. LITERATURE REVIEW 19

comes with a significant penalty to performance — the authors reported 20.88 ns delay for the
secure implementation, compared to 3.99 ns delay for the unmodified design. Area overhead
is also significant — 818 LUTs in the case of Double Wave Dynamic Differential Logic (DWDDL)
and 70 LUTs for the unmodified circuit. Note that DWDDL is essentially a double copy of WDDL.
The latter approach utilized 409 LUTs and was not found to be secure against the DPA attack
performed by Yu and Schaumont. As expected, doubling the logic to achieve full symmetry and
parallel processing results in twice the amount of area and resources utilized. Thus, the decision
to use this approach should be made with caution during design planning.

3.2 Literature Review

Considering the concepts introduced above and in the previous chapter this section will present
how they can be combined by referring to relevant literature.

First, the work of Mentens et al. will be introduced [84]. Published in 2008 by the Interna-
tional Association for Cryptologic Research (IACR), this paper presents dynamic reconfiguration
to increase resistance against power and fault analysis. The proposed technique is based on
temporal and spatial jitter introduced on the architectural level. The second work to be reviewed is
by Sasdrich et al. published by IACR 2015, where authors proposed to use run-time configurable
look-up tables to achieve dynamic reconfigurability of the original design [85]. This work can be
categorized under implementation level changes when considering design levels introduced in the
previous chapter. In 2018, Bete et al. published their work at the IEEE International Symposium
on Hardware Oriented Security and Trust (HOST) [86], with an extended publication in April of
2020 [87]. Their method is based on introducing HDL level datapath modifications to allow re-
configuring S-box implementations generated from the synthesis level. Additionally, extra logic
was introduced to create a randomized delay in latching the data by the state register. Lastly,
the paper published by Hettwer et al. in 2019 for Design, Automation & Test in Europe (DATE)
conference will be presented [88]. Here, the authors are generating alternative implementations
of an FPGA-based AES by randomized constraining of routing and placement process for a single
synthesized netlist as the base design. The next chapter will present a countermeasure that is
an alternative to this approach, due to their similarities in the underlying principle of preserving
the original HDL level implementation, as well as shared measurement setups. Table relates
selected papers to the design flow levels presented earlier.

In summary, all studies reviewed demonstrate improvements in immunity against the common
types of side-channel attacks. A characteristic shared by these approaches is that when counter-
measures are implemented individually, their benefits are negligible. Thus, authors recommend
combinations of their proposals to achieve a higher degree of immunity. Another shared charac-
teristic is increased resource usage and introducing latency to the encryption process. This is an

20 CHAPTER 3. COUNTERMEASURES TO CPA

Table 3.1: Papers reviewed and corresponding design levels
Algorithm | HDL | Synthesis | PnR

Mentens [84]
Sasdrich [85]
Bete [86], [87]
HettwerT88]
Proposed method

expected effect, as the countermeasures proposed are based on extra circuitry introduced to the
system, modifications of the existing data path, as well as the overhead from using the dynamic
partial reconfiguration system itself. All of these methods are dependent on hardware resources.
In general, increased security is shown to come at an increased cost of resources [89], [90].

3.2.1 Mentens et al. in IACR 2008

Power and Fault Analysis Resistance in Hardware through Dynamic Reconfiguration

The work of Mentens and others is aimed at reducing the effectiveness of power analysis and
fault injection attacks. The concept of power analysis has been introduced in the previous chapter
and fault analysis is based on forcing the system into a state where it does not function as in-
tended. This can be done by exerting physical stress such as temperature changes, out-of-spec
power supply levels, slower operating clock frequencies, etc. The authors identify three cate-
gories of side-channel attack countermeasures. The first category is for attacks that are meant to
make fault injections difficult by spreading the time instant ¢. or the physical location at which an
operation is executed. The second category is for the detection of an attack, which requires re-
dundancy of execution or comparison of results. The last category covers detection of an attempt
to attack, usually done by sensors or special circuits built into the system. The authors consider
countermeasures that fall under these categories and are implemented for reconfigurable devices.

To evaluate the countermeasures, Mentens et al. refer to the following two criteria, as defined
by Lemke-Rust et al. and their work on An Adversarial Model for Fault Analysis Against Low-Cost
Cryptographic Devices [91]. An attack will be considered successful if enough data has been
collected to extract the secret key:

e Spatial resolution: p,..m. defined as the probability of stimulating the correct volume/area
of the chip to induce a fault attack

e Temporal resolution: p;;,.. defined as the probability of injecting a fault at a time instant that
leads to a successful attack.

To proceed further with the countermeasures, the baseline system configuration has to be de-
fined first. Figure shows the prototype implementation of AES-128 proposed by the authors

3.2. LITERATURE REVIEW 21

clack st start key plaintext FLOORPLAN

| | T

la—
-—
.-

key plaintaxt

o 1
n-1

*re e

ARCHITECTURE
.
.
.

Figure 3.1: Reference design (left); floorplan (top right); general archictecture (bottom right) [84]

(left), floorplan on the top right, and the overall algorithm architecture on the bottom right. The
floorplan refers to the spatial arrangement of n functional blocks used to implement subfunctions
described in the architecture diagram. Each of these blocks corresponds to repetitive instructions
that can be used to implement the encryption algorithm itself.

The first countermeasure under review is called temporal jitter and it is based on spreading
calculations in time. For hardware implementations this is achieved by inserting registers between
the functional blocks and using multiplexers to choose if a particular register is used. A single
register corresponds to a single clock cycle delay, thus de-synchronizing the observations of the
attackers. However, as the authors note, having registers in between all blocks would result in
a significant resource and area overhead. Thus, a dynamically reconfigurable switch matrix is
proposed. Depicted in Figure 3.2, this matrix randomly inserts one or more registers into the
datapath. It connects the inputs and outputs of the consecutive functional blocks or re-routes
them through the inserted registers. The total number of possible configurations is m x n, where
m is the number of the registers and n is the number of functional blocks. Allowing to cascade the
registers increases the total number of possibilities. Thus, the number of distinct configurations is
¢ = ("""=1) or the number of combinations of m elements out of n. A random number generator
is used to pick one of the possible matrix configurations. Its implementation is assumed to be
secure and resistant against the side-channel attacks.

e Motivation: spread calculations over time to reduce the efficiency of power and fault analysis
attacks
e Method: dynamically reconfigurable switch matrix that randomly inserts registers between

22 CHAPTER 3. COUNTERMEASURES TO CPA

FLOORPLAN ARCHITECTURE

s for

Figure 3.2: Proposed DPR switch matrix architecture to introduce temporal jitter [84]

the functional blocks
e Implementation:

— Select the number of functional blocks n to be used and registers m to be inserted
— Generate configurations of the switch matrix
— Use DPR to configure the next matrix selected by the true random number generator

e Benefits: timing of the operations is now less predictable and thus power and fault analysis
attacks will be less successful
e Downsides: resource overhead, output latency proportional to the registers inserted

The authors also present experimental results of using this countermeasure on their fully paral-
lel implementation of AES-128. The following four functional blocks are identified — AddRoundKey
(ARK), SubstituteBytes (SB), ShiftRows (SR), and MixColumns (MC). Two registers were set to
be randomly inserted between the functional blocks, allowing cascading the registers. Then, the
total number of distinct configurations is equal to ¢ = (**27") = 10. DPR latency of the matrix was
found to be around 3ms. Depending on technological improvements this can be reduced signifi-
cantly. The operational clock frequency of the system was reduced by approximately three times
compared to the original design — 111MHz vs 33MHz, respectively. Splitting the design into static
and dynamic parts requires additional control logic, communication between the two domains, as
well as an extra 128-bit register. Combined, this leads to a static region that is larger than a fully
static unmodified design and slower operating clock frequency. Resource usage overhead was
3251 logic slices (23% of available slices) of the Virtex-1l Pro FPGA versus 685 slices (5%) for the

original design.

3.2. LITERATURE REVIEW 23

The next countermeasure is presented as a combination of spatial and temporal jitter. In this
case, the intent is to protect the design against localized attacks. An example of these would
be optical fault injection using a laser-focused on a particular area of the chip, thus triggering an
incorrect state of one or more bits of the intermediate data [92].

e Motivation: protect the design against localized fault inducing attacks
e Method: randomly re-locate the subfunctions of the algorithm to introduce spatial jitter
e Implementation:

— For a given order of execution [fy, f1,..., fu_1], fi is the function implemented by the
block . Then, the possible number of positions for every block is n.

— Define regions in the FPGA, where each region can be configured to execute all sub-
functions of an AES algorithm (ARK, SB, SR, or MC).

— Randomly load each of the regions with one of the functions. Order of SR and SB can
be swapped without repercussions on the algorithmic level; therefore, the number of
possible configurations is higher than the number of allocated regions.

— Combining this method with the previously introduced one results in the combined spa-
tial and temporal jitter countermeasure.

e Benefits: both timing and location of operations are now less predictable, thus making the
design more immune against side-channel attacks. Additionally, implementing all of the
subfunctions of the algorithm in the reconfigurable area of the FPGA allows it to recover
from attack attempts and overcome short-term effects.

e Downsides: similar to the previous countermeasure — resource overhead.

The proposed architecture for the spatial jitter countermeasure can be seen in the Figure 3.3
Floorplan figure shows the division of the logic area into subfunction and the architecture shows
the execution order. Each block drives an input of an OR gate, however, only the last block sends
actual value while the rest send zeros. The output of the gate is then the output of the algorithm.

Remaining countermeasure is the detection of injected faults. The authors proposed a method
where several bitstreams (one to all) are read back and compared with the reference bitstreams
stored in a block RAM resource. However, this implies that the chosen FPGA device can read
back bitstreams. The process for comparison is executed by using protected logic gates or by
looking at the cyclical redundancy check bits that vendors provided with the bitstream generation.
Faults in the bitstreams in the reconfigurable area can be detected only if the reference bitstreams
are assumed to be intact and unmodified. The fault model chosen by the authors does not leave
room for such an attack and the probability of compromised reference is thus negligible. It is also
possible to duplicate and execute the algorithm twice. Done either in parallel or sequentially, this
approach comes with large overhead of utilized resources and output latency.

24 CHAPTER 3. COUNTERMEASURES TO CPA

AL LLL L URD

input

FLOORPLAN

ble — ;
¥ := pesitieon of the functiocnal bleocks tnenable
v 1= presence of the regizaters
in ketween the Iunctisnal plocks Bl
"
mod n
TRNG L _reg 0 |
X,y ¥
L]
-
-
e
N b 4
] &7
'y % -, bleock
» ‘O +=¢'\' X+r—-1
q? ~ mod n
L T 1 e Y D B)
_reg n-1

out_esnable

outnpuat

Figure 3.3: Proposed spatial jitter architecture [84]

3.2.2 Sasdrich et al. in IACR 2015

Achieving Side-Channel Protection with Dynamic Logic Reconfiguration on Modern FPGAs

This paper presents a method to increase immunity against side-channel attacks by using
configurable look-up tables (CFGLUT) found in Xilinx Spartan-6 FPGAs. This type of LUTs can
change its configuration during run-time, as opposed to standard LUTs that are initialized when
the FPGA is programmed [93]. The authors demonstrated that the secret key used by the encryp-
tion algorithm PRESENT [94] was not found after performing a DPA attack on 10 million traces
of power consumption. This algorithm is more lightweight but similar to AES in structure. 64-bit
blocks of input plaintext are encrypted by a substitution-permutation network using 4x4 S-boxes.
For this countermeasure, the S-box was implemented by using the CFGLUT primitives explained
further below.

The authors of this paper also refer to a method based on block RAM scrambling proposed by
Guneysu and Moradi [82]. In this case, S-box contents are dynamically randomized in memory.
The S-box is stored in a dual-port BRAM, where one side A is denoted as the active context and
the other side B is the inactive context. The latter is used to apply a Boolean mask m on the
S-box while the A side stores the most recently masked copy of the S-box. The algorithm then
interacts with the active side during the encryption process that has the current masked version
of the S-box. If the S-box changes during an active encryption cycle it may lead to data mismatch
on the output. Scrambling is in parallel with the encryption algorithm and context switching is
controlled by an FSM as shown in Figure [3.4]

In their work, Guneysu and Moradi list several possible countermeasure methods, including

3.2. LITERATURE REVIEW 25

4—| OUTx OUTs | RNG
< L v r ||

~ Mask m
— Context A 5 Context B IN E - %
E Active o S-box under 8 =
< S-box scrambling (€] Lx) [| ©
5 m e, | T g

1 + FSM

ADDRa ADDRg

| Active Context I€ |

Figure 3.4: BRAM scrambling [82]

CFGLUT

a AN

| |
CDI CLK CE

Figure 3.5: CFGLUT [85]

shift-register based LUTs. These look-up tables are similar to the CFGLUTs used by Sasdrich et
al. in their work. In fact, for devices that do no support this primitive it is possible to implement the
same behaviour by using shift-registers and some additional adjustments. Dedicated configurable
look-up tables can be represented as a multiplexer with inputs driven by a shift-register (see Fig-
ure [3.5). Using a control signal new data can be loaded into the shift-register, thus changing the
configuration of the LUT.

These primitives are limited to 16-bit memory blocks and at most they can only implement a
4-input and 1-output Boolean function. Therefore, the authors presented a Reconfigurable Func-
tion Table (RFT) that can implement any Boolean n x m function using CFGLUTs. Boolean nz1
functions are built by cascading multiplexers and using CFGLUTs as the inputs. To build any n
x m function, it is possible to replicate this structure m times and share the inputs. The resulting
structure is a basic Reconfigurable Function Table with m x2"~* CFGLUTSs. Referring to the exam-
ple by the authors, an 8x8 S-box of the AES algorithm can be created as an 8x1 Boolean function
instantiated eight times. Sixteen CFGLUTs and fifteen 2-to-1 multiplexers are used to build one
8x1 function and subsequently 128 CFGLUTSs sharing their inputs correspond to a full AES S-box.
An example of a 6x4 RFT can be found in the Figure [3.6] It should be noted, however, that this
method is not efficient for such large S-box configurations. Only 32 6-input LUTs are necessary
to implement a standard AES S-box, compared to mapping 128 CFGLUTs to 64 6-input LUTs.

26 CHAPTER 3. COUNTERMEASURES TO CPA

I 1T T T T T 1T 1 T T I 1T 1 T T I T T 1 11
ICFGLUTlICFGLUTllCFGLUTllCFGLUTl|CFGLUT||CFGLUTIICFGLUTlICFGLUTl

ICFGLUTlICFGLUTllCFGLUTllCFGLUTl|CFGLUT||CFGLUT||CFGLUT||CFGLUT|
11 1 1 11 1 | - 111 111 11 1| 11 1 1 11 1 1

Figure 3.6: 6x4 Reconfigurable Function Table (RFT) built using CFGLUTs [85]

Table 3.2: Implementation statistics for [85]

Design component Unprotected Protected
LUT FF LUT FF
Key schedule 48 85 48 85
Round function 128 64 224 128
Countermeasure instance | N/A | N/A | 1236 338
s-box decomp. N/A 16 (avoided if in parallel)
Latency | reconfiguration N/A 16
encryption 31 62

To avoid costly doubling of the resources, the authors recommend using this method for more
lightweight algorithms, such as PRESENT and its 4x4 S-box.

The structure of the PRESENT algorithm is shown in the Figure 3.7} The round-based imple-
mentation of the algorithm uses two clock cycles per round. A total of 31 rounds of operations are
performed on a 64-bit block of input data with 32 subkeys derived from the initial 80-bit or 128-bit
secret key. Substitution is performed by 16 parallel S-boxes. The authors provide implementa-
tion statistics for the unprotected and protected versions of the algorithm, a copy of which can be
found in Table 3.2

lRound Key

| ; | Ciphertext
—
Plaintext m N

L1 u
(DS H|P

Figure 3.7: PRESENT encryption algorithm datapath [85]

3.2. LITERATURE REVIEW 27

Several countermeasure methods are proposed, as listed below and summarized in the block
diagram of an S-box in the Figure [3.8] First one involves decomposing S-box into stages:

e Motivation: avoid storing S-box outputs in registers as they are common targets for SCA
e Method: split S-box into two random mappings storing incorrect outputs in registers
¢ Implementation:

— using two 4x4 RFTs configure the first RFT to implement a random bijection R1
— second RFT is configured such that for all values of =, R2(R1(z)) = S(z)

— correct S-box output value is found only by executing both mappings

— R1 and R2 are computed before the encryption cycle in which they are used

e Benefits: only intermediate and randomized output of R1(x) is stored in the memory, hiding
the true value of the correct S-box output

The next countermeasure is Boolean masking of the S-box contents:

e Motivation: masking intermediate values to decrease data to power consumption correlation
exploited by SCA

e Method: implement two random Boolean masks m; and m, to maintain compatibility with
S-box decomposition countermeasure

e Implementation:

configure new RFT R1’ based on R1: R1'(x) = R1(x & ml) & m2
x R1is computed with data masked by m;
x R1’ then stores output of R1 masked by ms
configure new RFT R2: R2'(x) = R2(x ® m2) ® P — 1(ml)
x R2 is computed with data masked by ms
x R2' then stores output of R2 masked by the inverse of m;, which keeps the final
output of every round masked by m;

4-bit masks m; and m; are recalculated for every round to avoid reusing
masking is disabled by setting m; and m, to zero

e Benefits: in addition to S-box decomposition, intermediate values are masked, decreasing
efficiency of SCA

The last countermeasure proposed by the authors is register precharging:

e Motivation: the same mask is applied to both input and outputs of a round and a single
register stage is used between the consecutive rounds, thus making the design vulnerable

e Method: split the single register stage into two

e Implementation: a dummy encryption round is necessary to propagate through two registers
between the rounds

¢ Benefits: single state register leakage is avoided at the cost of doubling the latency

28 CHAPTER 3. COUNTERMEASURES TO CPA

T T
Sin W W Sour
& A RFTR, 2 A RFTRY
[[[\
CLK CE S-Box CLK CE
CFG, CFG,

Figure 3.8: S-box using RFTs, masking, and register precharge [85]

Table 3.3: Evaluation setup for [85]
Processing platform Xilinx Spartan-6 FPGA

PicoScope 6402B monitoring voltage drop over
1 Ohm resistor connected to Vdd line
Test vector leakage assessment by Goodwill et al. [95r
using specific t-test method

Power trace collection

Attack and analysis method

The setup described in the Table was used for evaluations of countermeasures. The
authors employed a statistical t-test [95], rather than the full attack. Known as Welch’s t-test or
unequal variances test, it calculates the equality of means of two data sets. Using this method, the
authors analyzed collected traces and if the t-test confirms the null hypothesis, then the two groups
of data are not correlated. For values of t, where |t| > 4.5, it shows that an actual DPA attack would
be successful. In total, eight evaluations profiles were set up. Each included a combination of the
countermeasures described earlier and 1,000,000 encryption runs with random plaintexts and a
fixed key. The profiles are grouped in three categories based on the point of attack: (1) S-box
output bits of one round, (2) XOR-result bits of the inputs of two rounds, (3) 4-bit value of two
S-box outputs. Profiles are listed below:

¢ Profile 0: Reference measurement
Profile 1: S-box random decomposition

— Leakage detected for S-box outputs

Profile 2: Boolean masking

— Leakage detected for consecutive round value

Profile 3: Register precharge

— XOR between rounds leakage is reduced, but not the S-box output

Profile 4. S-box decomposition and Register precharge

3.2. LITERATURE REVIEW 29

— Significantly reduced, but some leakage is detectable
e Profile 5: Boolean masking and Register precharge
— Significantly reduced, but some leakage is detectable
e Profile 6: S-box decomposition and Boolean masking
— Leakages not compensated sufficiently
e Profile 7: S-box decomposition, Boolean masking, and Register prechage

— Proposed countermeasures all together withstand 10 million traces collected

In conclusion, the work presented by Sasdrich et al. on using reconfigurable look-up tables
as a method to employ a type of DPR is successful when all proposed countermeasures were
combined. However, it should be noted that this work depends on a special type of a resource
primitive, which may not be available on all platforms. Additionally, resource usage overhead is
significant. Taking into account additional logic required to mimic CFGLUTSs on platforms that do
not have them, this method is useful for only certain applications. Moreover, Roy et al. demon-
strated a big security risk of using CFGLUTs [96]. They showed that it is possible to inject a
so-called Trojan-attack in applications that use reconfigurable look-up tables and thus undermine
immunity introduced by using these primitives in the first place.

3.2.3 Bete et al. in HOST 2018

Side-channel Power Resistance for Encryption Algorithms using Dynamic Partial Recon-
figuration (SPREAD)

The countermeasure presented by the authors of the SPREAD system is the only one based
on synthesis level modifications, other than the proposal of this work. Differences between the two
approaches will be highlighted in the next chapter. Additionally, modifications introduced by the
SPREAD system require HDL level modifications to the source code to implement the intended
control logic. At the moment, the SPREAD is the most recent work published, although it was
initially conceived in 2017 [97], details of their approach were not available until publication in [87].

SPREAD is aimed to reduce the data to power correlation, similar to most countermeasures
proposed. However, as the authors note, their approach does not strictly fall under “noise en-
hancing” or “signal reducing” categories (hiding and masking, respectively, within the context of
the current work). The authors describe their approach as the “moving target architecture”. While
a standard AES-128 implementation requires 16 Sbox modules working in parallel, this work in-
troduces an extra module that can be swapped by the DPR controller in run-time. This work has
been extended and in a recent publication from April 2020 [87], the authors introduce two extra
Sbox modules. Alternative implementations of the modules are derived in two methods labelled

30 CHAPTER 3. COUNTERMEASURES TO CPA

DPR 9hifter%
control: - e o o i 0 5
signals, ‘j 3 :
vy v
|SBOX1| \sgox] |SBOX3|
18, <= YV - vyv
8 8
vieR A 8 v
?MUX £

Figure 3.9: 16 Sboxes plus two redundant modules for reconfiguration [87]
as the synthesis- and circuit-directed, which will be described below.

Overall, since each Sbox module is a reconfigurable region, there are 18 reconfigurable re-
gions comprised of original 16 parallel Sboxes and two new modules. This allows for spatial
diversity as the Sbox modules can be moved by the DPR controller and placed in any of the re-
gions. A system of shifters and multiplexers is reconfigured to reflect the new path for data, as
shown in the Figure [3.9] Additionally, the SPREAD system supports multiple alternative imple-
mentations, however, for the demonstration authors generate 16 variants of the Sbox modules.
Synthesis and circuit directed methods are used to generate one half each, respectively. The two
extra regions allow creating a “hole” where no active Sbox is present or to use it as the reconfigura-
tion target for an alternative implementation in the case of more than 18 variations. Having fewer
variations than the regions available allows avoiding using external memory. Partial bitstreams
can be embedded within the system and the main bitstream to be stored within the on-chip mem-
ory. The controller can read out the configurations during the start-up and store them in BRAM
for subsequent reconfigurations. It should be noted that other functional blocks of AES, such as
the AddRoundKey, ShiftRows, and MixColumns, were not manipulated, although, they can also
be implemented within the reconfigurable regions. The delay and skew variations caused by the
Sbox manipulation are expected to propagate through the whole system even when these mod-
ules remain static. Additionally, all Sbox regions support relocatable partial bitstreams and this
reconfiguration approach requires excluding the static routing paths from the dynamic regions.
This is not supported by the default Xilinx Vivado tool flow which will attempt to place static paths
(e.g. controller, shifters, and MUXs connections) within the relocatable dynamic regions. Thus,
the authors develop a custom tool flow to support their approach and will present it in the future.

The synthesis-directed approach is based on using the Cadence RTL compiler and targeting
different standard cell libraries to generate a netlist, which is then used by Xilinx Vivado for the
P&R process. This approach is in contrast to the traditional device-oriented synthesis process,
where the synthesis tool (e.g. Xilinx Vivado itself), will map the logic of the system to the cells

3.2. LITERATURE REVIEW 31

available within the target architecture. SPREAD synthesis-directed method relies on modified
cell libraries which vary in terms of available logic gates and would have an impact on the output
netlist. A VHDL behavioural description of the Sbox module was passed through the Cadence
RTL compiler using eight different cell libraries. The authors reported the total number of gates
used by the first four versions, citing that the remaining four had similar results, shown in Table[3.4]
Cell library variations include limiting available cells, such as removing different widths of AND,
OR, AND-OR gates. Detailed overview of the libraries can be found in Table 1 in [87].

Table 3.4: Gate usage of alternative Sbox netlists generated by the Cadence RTL compiler [87]
Variant | Total gates

Design 1 300

Design 2 312
Design 3 312
Design 4 317

The total number of gates used is similar for the alternative designs, however, the resulting
netlists are structurally different. After the P&R process, the authors observed the number of
LUT2 to LUT6 primitives used to be between 128 and 206 and 13 to 57 of MUX7 and MUX8
primitives across all eight design variations. This countermeasure can be summarized below:

¢ Motivation: introduce structural diversity to the Sbox implementation

e Method: synthesize the VHDL description of the Sbox to different standard cell libraries
using the Cadence RTL compiler

¢ Implementation: cell libraries vary in logic gates available for mapping

e Benefits: an automated and fast way of introducing various implementations of the design,
delay paths ranging from 100ps to 5ns

e Downsides: limited variety and non-standard cell libraries

The circuit-driven method is meant to introduce delays to the buffers or other internal signals.
The authors exploit increasing fan-out by using dummy loads and manipulating the clock network.
The 128-bit state register used to store the intermediate results between the rounds is driven by
a network of an AND gate, a buffer, and a 2-to-1 MUX to the clock input. The overview of the
delay logic introduced can be seen in the Figure [3.10] Multiplexer select signal is derived from a
different set of bits of the plaintext passed through the XNOR gate, thus each one of the flip-flops
has a different clock delay. This introduces distortion of input latching among the bits of the whole
state register. Two further modified versions of this clock delay circuit were introduced, giving a
total of three circuit-driven design variations. This countermeasure is summarized below:

e Motivation: introduce temporal jitter in the system
e Method: randomize clock delay of the state register

32 CHAPTER 3. COUNTERMEASURES TO CPA

plaintext key A
1T 128 bits 1] [11 128 'I’i" 1T

777777777777777777777777777
_\—) :
-
Rnd1?)
round reg |\lu -

plaintext[i] :

plaintext[(i+4) mod 128] — |

plaintext[(i+8) mod 128 plaintext XOR\

plaintext[(i+16) mod T28] j I
128 bits

I
I
I
I
I
|
I
8 ! | ciphertextyg., [i]

I keyl[i]

[SBox| [SBox] [SBox] | .
: L buffer
]
]
I
I

Shllt rows Clk
32 ~
|N|IKC(I~| {\IIKCI IsJ |\-1GC0[\| I\‘llx('nlxl %

(Clk_delayed
(b) Clock delay circuit

round keyy I—\D - A ________!

ciphertext;,4.
(a) (b)

Figure 3.10: Delay circuit driving the clock input of the AES state register [87]

e Implementation: extra combinational logic to derive dynamic, data-dependent delay to the
clock signal

¢ Benefits: more switching nodes introducing distortion to the power consumption and creating
time offsets to the switching events

e Downsides: possible faults introduced due to the desynchronized individual bits of the same
register

The evaluation method used for SPREAD was to measure the power consumption of different
variations separately, rather than a full DPR implementation. Each of the reconfigurable regions
is still defined but configured once and statically. A total of twelve variations were generated
from the methods explained above. Three reference versions (as per authors notation) included
only the synthesis-directed approach with 16 unique Sbox implementations each. Further, us-
ing these three variations, nine more were generated by incorporating the aforementioned three
circuit-directed modifications. 30,000 power traces for each of the twelve variants were recorded
and then randomly mixed to create an effect similar to DPR switching between these implemen-
tations. Power traces from different implementations are mixed, thus affecting the average of the
statistical analysis. The authors also analyzed the variants individually using the CPA method
described earlier and observed that the secret key can be extracted easily. The circuit-driven
variants could expose the true value of Byte 3 of the secret key after analysis of fewer than 1000
traces.

An equal number of traces for each variant were combined, to give a total of 8192 traces
(682 traces for each variant) as the smallest set and 360,000 traces as the biggest set (30,000
traces for all 12 variants). Increments were in powers of 2, for a total of 7 sets of traces. In
the Figure the authors demonstrate the effectiveness of the attacks by plotting Pearson’s
correlation coefficient (PCC) difference against the attacked secret key byte. PCC difference is
defined as PCC.orrectkey — PCClargestincorrectkey, aNd its positive value corresponds to a successful
guess. Correct key guess rank is an additional metric defined to order PCC . eciiey Dy their mag-
nitudes for all sets of traces analyzed. As expected, a higher number of traces results in higher

3.2. LITERATURE REVIEW 33

PCC Differences Correct Key Guess Rank

LA {11 (T HHN

4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Attack Byte Attack Byte

=]
(=}
&

=]
(=1
~

200

o

; 150

o
(=]
&

Correct PCC - Largest Incorrect PCC
s o
[=] [=]
o ~N
Correct Key Guess Rank, 1 is top ranked

-

Figure 3.11: CPA efficiency for 7 sets of traces collected for 12 variants [87]

correlation, with the exclusion of Byte 7. The authors were not able to find an explanation as to
why this particular byte has a decreasing first, then increasing correlation profile. Bytes 4 and 10
never reported positive PCC difference, even for the maximum amount of 360,000 traces. Most
remaining bytes did not expose their true value until 262,144 power traces were analyzed, which
is the second biggest set.

By a worst-case estimation from the authors, a 1ms period would be necessary for a complete
reconfiguration of the system and a maximum of about 5000 traces for each variant can be col-
lected before the countermeasures start to fail against the analysis. Attackers can acquire up to
313 traces within this reconfiguration period and even for a set of 16 variations of the Sbox mod-
ule, the total number of traces that could be acquired stays within the limit of 5000 (313*16=5008).
These results are based on extrapolation of the available data per each variant and a future report
is expected where the system will include a true DPR implementation. This will allow for a more
detailed analysis and accurate evaluation of the countermeasures proposed.

3.2.4 Hettwer et al. in DATE 2019

Securing Cryptographic Circuits by Exploiting Implementation Diversity and Partial Recon-
figuration on FPGAs

In this work, the authors present a countermeasure that focuses on the implementation of AES
on an FPGA. This approach is generic and thus applicable to other applications and algorithms.
As in previously presented papers, Hettwer et al. explore methods of generating implementations
of the AES algorithm on an FPGA that are more secure against side-channel attacks. Based on
a single input design, this work focuses on generating multiple variations of the same synthe-
sized netlist on the implementation level. The approach is based on applying random resource
constraining during the placement and routing process. Various generated implementations of
the AES algorithm are then used for dynamic partial reconfiguration. The authors achieve the

34 CHAPTER 3. COUNTERMEASURES TO CPA

following benefits by using this approach:

e Varying dynamic power consumption — countermeasure to power analysis attacks
e Location of logical operations is not static — countermeasure to fault analysis attacks
e Generic methodology of circuit manipulation allows applying it to a variety of designs

This method has been verified on a Xilinx ZYNQ Ultrascale+ board using a serial implemen-
tation of AES-128. Dedicated Partial Reconfiguration Controller (PRC) IP core is used to do the
switching of partial bitstreams. The authors present their work for self-adaptive and self-healing
hardware concepts, which are based on using partial reconfiguration [98]. As such, the overhead
of introducing the concept of reconfiguration into a static design is reduced when compared to
previously discussed approaches. Constraining the placement and routing process allows con-
trolling the physical and timing aspects of a design. Physical constraints allow restricting locations
of logical blocks to a certain cell on the FPGA, thus affecting the layout and routing within a de-
sign. Timing constraints have similar effects but achieve it through a more fine-grained approach
by specifying path delays for individual signals and thus affecting their routing options. The size of
a partial bitstream and the time required to execute DPR are among the main factors in deciding
what parts of the design to reconfigure. Including only sensitive blocks such as the S-box leads
to smaller bitstreams and faster reconfiguration time but leaves most of the algorithm in the static
region. Alternatively, the entire design can be located in the dynamic region but at the price of
higher latency and memory space. This countermeasure can be summarized as follows:

¢ Motivation: a generic approach to countermeasure power, FA, and EM attacks
Method: random placement and routing constraining of a single synthesized netlist input
Implementation:

— Dynamically switching the complete AES with static control logic using Tool Command
Language (Tcl) script automation

— Define 25% of the FPGA fabric as reconfigurable and randomly constrain 80% of the
slices available for placement and routing

— Generate 128 variations with their partial bitstream files

Benefits: high efficiency against EM and FA attacks, generic approach applicable to different
designs, and a possibility to combine with other countermeasures

Downsides: higher resource utilization, need to store a large number of partial bitstreams in
external flash memory (approx. 790MB)

The authors report that unprotected AES implementation was compromised after collecting
8250 traces, in contrast to more than 24500 traces necessary for the protected version with 128
variations. For reference, see Figure [3.12] Linear decrease of correlation when the number of
variations was increased from 1 to 128 was not observed. However, the maximum correlation
decreased by a factor of 2.2 between the two extremes. The method of attack was CPA with

3.2. LITERATURE REVIEW 35

0.15

|
g

Correlation
Correlation

0.05 Fi8

0.5 1 L5
Number of traces x10*

(a)

Figure 3.12: Correlation for unprotected (a) and countermeasure (b) implementations [88]

10 0.1 10 0.06
8 0.08 5
g 0.04
6 0.06 _i 6
=
B
04 g
4 < 4 0.02
0.02
2 2
0 0
5 10 15 5 10 15

(@ (b)

Cocre lation

Figure 3.13: Correlation heat maps for unprotected implementation (a) and first configuration of
the countermeasure (b) [88]

the Hamming distance model that was described earlier in this work. Two consecutive outputs of
the S-box from the first round were the targets in this attack. The authors measured the current
flowing through decoupling capacitor of the power supply to the system, based on the proposal
in the work of O’Flynn and Chen [99]. This approach is an alternative to measuring voltage drop
over a shunt resistor, as the high-frequency components present in the supply line flow through
the decoupling capacitor, rather than the shunt, when both are present. These high frequency
components prove to be useful for SCA and increase the success rate of a CPA attack. Stronger
effects of the proposed countermeasure were found for electromagnetic and fault injection at-
tacks. See Figure for correlation heat maps. Unprotected and proposed countermeasure
implementations are presented, with the latter showing considerable changes in the spatial distri-
bution of the sites with higher leakage. On average, the number of measurements increased by
n times for n different variations of the design when analyzing EM attacks. In the case of FA, the
authors observed less than 1% probability of successful fault injection with the maximum number
of variations enabled.

Chapter 4

Proposed Variants

This chapter introduces the countermeasures proposed within this work. Discussion includes
motivation, methods, and technical details of the implemented designs.

4.1 Proposal Discussion

Given the information and concepts introduced in previous chapters the following conclusions
could be made about countermeasures for side-channel attacks. Effectiveness depends on how
much the design changes will affect the correlation between data processed and the power con-
sumed by the system. The flexibility of the changes in terms of their variety and options, as well as
keeping resource usage overhead to the minimum are also important. As it was discussed in the
Section [2.3.3] this work chooses to employ a third-party synthesis tool Yosys [73]. This decision
is based on the openness of the design space during the synthesis process when compared to a
vendor tool, such as Xilinx Vivado. Although, the latter still includes many useful options to control
different stages of the design flow. During synthesis, options such as retiming of the logic, thresh-
olds for net fanouts or comparator sizes, LUT input size, etc. are available [100]. Vivado does
also provide the granularity to control which entity or instance will be affected by user-defined
constraints. However, these options are still limited. LUT sizes are restricted from 4 to 6 input
bits and cannot assign cost values to different LUT sizes. Cost values allow the mapping tool to
prefer or avoid certain LUT sizes based on the value assigned to them, rather than completely
excluding them from the logic mapping process. ABC mapping tool invoked within Yosys employs
several priority mapping methods based on area or delay costs [101], [102]. These values can
be modified using the command invoking ABC within Yosys [103]. In the case that the source im-
plementation is in some way protected and cannot be modified at the HDL level, Yosys allows for
logic manipulation through its built-in commands. This opens possibilities to add or remove logic
or create structures within the project that serve a specific purpose to the designer. Moreover,
being an open-source and a platform-independent tool, Yosys can be utilized for the synthesis
process by anyone and for any target architecture. However, as it was already mentioned in Sec-

36

4.1. PROPOSAL DISCUSSION 37

tion [2.3.3] such flexibility comes at a cost of less optimized output netlist for a vendor-specific
target FPGA device.

Countermeasure variants that are proposed within this work rely on the concepts that were
already defined by previous publications and studies — masking the true value of data and influ-
encing switching activity of the system. Detailed implementations will be described shortly but
they can be generalized as the following three ideas:

(1) Manipulating data between rounds or submodules of AES

— contributes to switching activity and noise in power consumption
(2) Extra circuits running in parallel with AES

— contributes to noise in power consumption
(3) Manipulating the logic to primitives mapping

— contributes to a different implementation and possibly power consumption profile

Within the scope of the current work, the first idea is realized as the inversion of state values
being stored in registers that are either part of the source implementation or have been introduced
on top of the logic. This contributes to additional switching activity and allows to mask intermediate
state values. Inversion could be replaced or accompanied by other types of Boolean transforma-
tions for a greater diversity of variants. The second one is presented in the form of register chains
that include a series of flip-flops connected through inverters. This contributes to an increase in
the noise and overall power consumption. This method can be extended to implement different
types of Boolean operations between the registers. The last method is based on controlling the
process of mapping the logic to primitives such as the look-up tables of an FPGA. Implementing
the same logic on an alternative set of primitives would result in a different final configuration of
the device. Thus, it would be expected to have influence on the power consumption profile of the
system and the data to power correlation. These ideas can be extended and implemented in a
variety of ways as part of a future study. However, the current work serves as a proof-of-concept
experiment. It aims to show the possibility of using an open-source tool like Yosys and to deter-
mine whether countermeasures produced provide any benefit over existing approaches.

As it will be introduced in the Chapter [5] proposed ideas are implemented as standalone vari-
ants of the AES encryption algorithm. Two versions of the algorithm have been modified - round-
based and serial-based. The outlined countermeasure concepts are applicable to both versions
with slight modifications due to their differences in the implementation. A partial reconfiguration
system is not included in this work and is intended for future projects. Each generated variant
is then individually measured and analyzed to determine the effect of introduced changes. Addi-
tionally, recorded power consumption traces are shuffled to emulate the effect of a DPR-capable

38 CHAPTER 4. PROPOSED VARIANTS

AES_KeySchedule AES_Counter

InputBuffer | t T f —| AES_Round [— OutputBuffer - | Cioher
text text

B AES_Controller [—

state
AddRoundKey FF SubBytes ShiftRows MixColumns. next state
key

Figure 4.1: Round-based AES: full system (top) and expanded AES_Round module (bottom)

system and set expectations of a fully reconfigurable system with countermeasures against side-
channel attacks. This approach has also been used for the SPREAD system [86], [87].

This work is compared and related to the recent work of Hettwer et al. Both studies are using
the same source implementation of the AES algorithm and they share the measurement setup.
While in [88] the authors are using only one, serial-based implementation, this work develops
variants for both serial and an alternative round-based version of the algorithm. Due to certain
timing constraints, unfortunately, only the latter one has been measured and results presented
within this report. Due to this, it was not possible to include a baseline unmodified (unprotected)
AES in the measurements. Variants of the serial implementation are expected to be tested in the
future and results will be reported. These variants form a more complete set of implementations
ranging from the unmodified baseline to multiple variations. They demonstrate randomization and
diversity capabilities of the approach presented in this work. In addition to [88], during evaluation
comparisons are also made to the SPREAD system [86], [87]. This is the only other publication
that explicitly aims at the synthesis-level manipulations. Several similarities can be observed,
such as using a third-party synthesis tool, manipulating the mapping process, and tempering with
the switching activity of the encryption algorithm. The results, which will be discussed later, also
exhibit similarity in the number of power traces to be collected until the secret key is exposed to
the attackers.

4.2 Variants of round-based AES implementation

This section introduces three variants generated for the round-based AES. Labeled as Variant
Class 1, 2, and 3, these correspond to the three ideas presented earlier. Figure [4.1]demonstrates
the block diagram of the round-based AES implementation referred by the following explanations.

4.2. VARIANTS OF ROUND-BASED AES IMPLEMENTATION 39

Pt H]_
| | b=y
- —-"/ﬂ\'-— —

e ™

SubBytes |—~| e |—-| ShiftRows H :‘L‘l |—-| MixColumns H next state

| now storing a false value in the register |

Lstate —,1 pddRoundKey }=3
ey T ‘1 v

Figure 4.2: Variant Class 1 concept diagram

4.2.1 Variant Class 1 for round-based AES

The first countermeasure proposed by this work is referred to as Variant Class 1 (VC1). In this
approach the aim is to introduce background switching activity that will impact the power con-
sumption of the system while it is executing a round of encryption. This variant is implemented
using two approaches that affect the system during both its active and inactive states. The system
includes a register that stores the result of AddRoundKey operation (bottom half of the Figure [4.1)
is the only point of the system that stores intermediate state values and thus it can be a point of in-
terest for the attackers. An inverter is placed at the input of this register to avoid storing a true state
value during the execution of a round. To avoid working with the now wrong value of the state, the
output of this register is inverted again before it goes into the SubBytes module. By design, there
cannot be a register inserted in between SB, SR, and MC modules (to avoid timing issues due to
a cycle delay from a flip-flop), a block comprising of three multiplexers is constructed, called mask
select. In this block the input signal can go through two paths - either retaining its original value or
being inverted and then inverted back before the next block (i.e. SR after SB) processes it. This
path is defined by the first and the third (last) multiplexers, which are controlled by a selector signal
generated from a reduce-XOR operation of the state input. This operation takes 128 bits of the
input and performs a bitwise XOR operation to produce a single bit output. The middle multiplexer
of the mask select block introduces a register into the path of the inverted intermediate data. This
MUX is operated based on an inverted ENABLE control signal supplied to the AES Round module.
In this manner, it is ensured that no extra delay is inserted when encryption is active. When the
round is inactive, the alternative path with the register is selected and due to the clock signal still
being active, this part of the system will exhibit some switching activity. This changing operation
of the circuit will contribute to both the active and inactive states of the round function and affect
the observed power consumption profile. The expectation would be that power spikes correlated
to the active round execution will be minimized compared to the drops in between the rounds. The
concept of this variant can be summarized in the Figure [4.2] The actual implementation that has
been measured for the evaluation is shown in the Figure [4.3] The realization slightly differs from
the concept and is expected to be finalized in the future. Namely, the mask select block will be
added in between SR and MC blocks, as well as at the output of MC. At the moment, these blocks
only have the register part of the mask select block inserted between them. Code excerpts for
this variant can be found in the Appendix.

40 CHAPTER 4. PROPOSED VARIANTS

Control signals to AES_Round:

ENABLE — start the execution 0
ROUND_IN = encryption input ﬂi_
i -5

l

k1

-,

0
1
i

Reduce
ROUND_IN wos

not{ENABLE) _——

__Lﬂ\‘

reLstte |—)|
\
AddRoundkey m FF SubBytes | | ShiftRows [+ MixColumns
key |

Figure 4.3: Variant Class 1 implementation diagram

8011011101 |+{ FE -{ inv [={ FE [inv |-, ., = | v [FF | i e

10x

Figure 4.4: Variant Class 2 implementation diagram

4.2.2 Variant Class 2 for round-based AES

Variant Class 2 (VC2) is based on a straightforward idea to increase background noise in power
consumption. This is expected to reduce the correlation of data to power consumption. For this
purpose, a chain of registers and inverters is added to the system. This chain can be seen as a
pair of a register driving an inverter. It is easy to waste hardware resources with this countermea-
sure and therefore, the chain in Variant Class 2 is limited to 10 pairs of registers and inverters.
The first input is set to a static value and the output of the chain is left unconnected for the eval-
uated version. This idea has been visualized in the Figure [4.4] It is possible to extend this idea
further by implementing a dynamically changing input value, as well as swapping the inversion
with other types of Boolean operations, which will differently contribute to the switching activity
and power consumption profile. The chain has been inserted into 10 modules of the round-based
AES system: AES Core, AES_Controller, AES_Counter, AES_Round, AES_SubBytes, AES_ShiftRows,
AES MixColumns, AES MixSingleColumn, AES SBox, and AES KeySchedule. All of these modules
have been introduced, except for AES MixSingleColumn and AES_SBox, which are simply the build-
ing blocks of the AES MixColumns and AES_SubBytes modules, respectively. Since there are four
columns within a 4x4 matrix representing a 128-bit state value in AES, there are 4 parallel in-
stances of AES MixSingleColumn in AES MixColumns and 16 instances of AES_SBox (each referring
to a single byte) in AES SubBytes. Code excerpts for this variant can be also be found in the
Appendix.

4.3. VARIANTS OF SERIAL AES IMPLEMENTATION 41

4.2.3 Variant Class 3 for round-based AES

The remaining variant (VC3) for the round-based AES is directly manipulating the mapping pro-
cess during synthesis. The command responsible for invoking the ABC tool within Yosys was
modified to implement this variant. Originally, this command is as follows:

original: abc -luts 2:2,3,6:5,10,20
modified: abc -1luts2:2,3,5 AES_Round AES_SBox AES_Core

Here every number refers to the cost associated with a LUT of an input width that corresponds
to the position of the number. Respectively, "2:2” refers to one and two input LUTs costing "2”
units, "3” refers to three input LUTs costing "3” units, and ”6:5” refers to LUT4, LUT5, and LUT6
each costing ”"5” units. Lastly, "10” and "20” correspond to seven and eight input LUTs with con-
siderably higher cost values. This aligns with the fact that 7-series Xilinx FPGAs have at most
6-input LUTs available and functions that require a larger number of inputs are constructed us-
ing multiple LUT6 and multiplexers [104]. Therefore, it is expected that they will cost more than
already available LUT sizes. In its original form the command is applied to the entire design with
all possible LUTs and therefore it has been modified to limit mapping to a maximum of 4-input
LUTs, as shown above. This setting is applied to only three of the modules AES Round, AES_SBox,
AES Core. The SBox module was chosen as it is the most attractive point to attackers due to its
high switching activity nature.

This subpar (less than optimal) mapping method is expected to influence the power consump-
tion profile. However, it is also expected to have the highest negative impact on resource uti-
lization, since the best available resources of the FPGA are excluded from the mapping process.
This variant has some underlying similarity to the synthesis-driven approach used by Bete et al.
in [87]. However, in this work the design is mapped to LUTs directly, while the SPREAD system
relies on a cell library consisting of logic gates that is later synthesized and placed by Vivado.
This method of mapping is also available through ABC within Yosys. During the development of
the proposed variants this approach was tested as an experiment but was not investigated further
due to higher resource utilization during the Vivado P&R process. In contrast, the authors of the
SPREAD system did not report higher utilization for their synthesis-driven approach. In their work,
the netlist generated within Cadence RTL is passed through both synthesis and P&R processes
within Vivado. It is possible that the Vivado syntesis algorithm performed an optimization of the
logic and did not result in significant utilization overhead.

4.3 Variants of serial AES implementation

At the moment, this version of AES has not been measured or evaluated. However, it was origi-
nally developed as the main set of variants intended for measurements. It is also used as an ex-

42 CHAPTER 4. PROPOSED VARIANTS

ample of a broader implementation diversity that can be achieved through Yosys. The underlying
ideas for the variants remain the same as already presented and therefore serial-based variants
will be discussed briefly. Round-based AES introduced previously is, in fact, operating in a serial
fashion: every round is executed one by one and no other encryption process is running in paral-
lel. Therefore, the version of AES referred to as serial in this section is similar in its structure to
the previous implementation. There is a top-level called AES128 which includes the ControlLogic
(state controller and counter), RoundFunction (implementing AES functions), and KeySchedule
(key expansion) modules. RoundFunction implements the SubBytes, ShiftRows, MixColumsn,
and AddRoundKey functions as expected. An extra module called Cell is introduced in this ver-
sion of AES, which is an 8-bit register that includes a multiplexer. This register is instantiated
within the RoundFunction module and corresponds to 16 bytes of the 128-bit state. All the sub-
functions of AES operate on these 16 instances of the Cell module. Variants of this AES were
generated from a C program that produced randomized Yosys scripts. Several parameters were
considered for randomization (excerpts of the code can be found in the Appendix). Assuming that
RoundFunction (RF) module is the main building block of the system, this module must undergo
modifications for countermeasures. Then, KeySchedule (KS) and ControlLogic (CL) modules are
chosen randomly, either both or one of them, and modifications are applied. The modifications
based on the three ideas presented earlier are parametrized and listed below. Five sets of vari-
ants were generated with each corresponding to one or a combination of these ideas. For each
set, multiple variations are possible, since each variant can be generated with randomly chosen
parameters. The list of variants intended for measurements is shown in the Appendix Table [D.1]

e Idea 1: Value stored in a Ce11 module is inverted (one, some, or all bits).
e Idea 2: The length of the register-inverter chain is set randomly (50 to 100 pairs).
e |dea 3: LUT mapping is applied to different modules (maximum size varied from 3 to 6).

4.4 Yosys Overview

Given the technical details of the variants, a brief overview of the tool that allowed to generate
them is presented below.

Yosys has been developed as an alternative, free, and open-source tool for situations where
a custom synthesis flow or algorithm cannot be used with the existing proprietary tools [105]. It
supports Verilog HDL based designs in its open-source version. However VHDL support can be
added through external translators available within the commercial edition of Yosys [75]. It can
output the design in several netlist formats, such as BLIF or EDIF. Support for synthesizing and
mapping the input design to a specific cell library or some FPGA devices, as well as mapping and
final logic optimizations are available through the ABC tool included in all versions of Yosys [74].
As can be seen in the Figure among the levels of the FPGA design flow, Yosys targets levels

4.4. YOSYS OVERVIEW 43

System Level ‘

High Level |5
High Level Synthesis (HLS)

Behavioral Level T

Behavioral Synthesis

RTL Synthesis Yosys
Logical Gate Level ‘ ----- *

Logic Synthesis

Physical Gate Level T

Cell Library

‘ Register-Transfer Level (RTL) ‘ T

Switch Level ‘

Figure 4.5: Yosys and design flow levels [105]

from HDL down to the physical gate level. Meaning that the output from this tool is a netlist that
refers to hardware resources available on the target architecture, such as FPGA primitives. This
netlist is then available for P&R process by tools such as nextpnr [106] or Xilinx Vivado.

Yosys processes the input HDL design into an internal format that allows further modifica-
tions to the design without referring to the original HDL. The internal representation is using
the Register-Transfer-Level-Intermediate-Language (RTLIL). By using a unified internal language,
Yosys processes an input design in "passes”, which refer to various transformations and manip-
ulations that could be done. These include logic optimizations, insertion and removal of cells or
gates, and mapping of the design to hardware resources. The advantage of Yosys is that it op-
erates on the design on both coarse (RTL) and fine (Logic Gate) grain levels. Objects such as
coarse multi-bit wide cells are used to describe the input design initially. Later, they are converted
to fine-grain objects such as bit-wide gates. These level changes allow for a greater variety of
logic optimizations and design manipulations. After this, the ABC tool is invoked to transform the
Gate Level representation of the design to the Physical Gate Level that refers to target specific
resources.

Internally, Yosys supports a variety of cell types to describe an HDL source and it is possible
to add custom objects as well. Registers, wires, RAM blocks, multiplexers, arithmetic units, logic
gates, etc. are among many available cell types. There is also a variety of commands avail-
able, such as adding or removing logic, visualizing the design, solving Boolean Satisfiability (SAT)
problems, equivalence checking, etc. For a full list, refer to the Yosys Manual [105]. Yosys also
supports scripting, meaning that it is possible to create and automate custom synthesis flows.
Some synthesis flows are built-in, such as targeting certain Xilinx, Intel, Anlogic, and Gowin FP-
GAs. Although limited support is available for proprietary platforms, as their cell structures are
not publicly available and thus logic mapping cannot be performed to the best of the tool’s ability.

44 CHAPTER 4. PROPOSED VARIANTS

However, it is possible to add custom cell libraries and allow for well-optimized output netlists.
Among the available commands, the following two are of interest to the current discussion:

e add - adds objects to the design
e synth xilinx - synthesis script targeting Xilinx FPGAs

While the first command is self-explanatory, the second one is a script that performs synthesis
for Xilinx FPGAs. It performs mapping of sequential processes and finite state machines from the
input HDL to gates, as well as logic optimizations. If the original design described a structure that
refers to dedicated resources such as Digital Signal Processing (DSP) units or First-In-First-Out
(FIFO) memory structures, these can be detected by the internal solver. They are then mapped
to the corresponding primitives available within the Xilinx FPGA library built into Yosys. It is possi-
ble to prevent such optimization and use regular LUT primitives for resource-intensive logic. This
would be equivalent to synthesis for a generic target architecture, where no special primitives are
available. Xilinx cell library used by Yosys has been collected from the design guides available
from the vendor itself, as the full libraries are not public. Therefore, only 7-Series Xilinx devices
are supported at the moment [107]. In the end, "synth xilinx” invokes ABC to perform mapping
of the remaining design to LUTs to prepare the design for placement and routing on an FPGA.

The open-source version of Yosys used within this work does not support all of the cell types
that are available within the tool. Only wires could be added to the design out of the box. Modifica-
tions for the "add” command were necessary since generating any of the variants implied adding
registers, logic gates, and re-routing some signals within the design. These cell types could be
added with relative ease as the source code of Yosys is open and available in the C++ program-
ming language. After analyzing the internal code structure of the tool, new cell types were added
based on the existing example of the wires type. Added cells include unary (single input) and
binary (two input) operators, multiplexers, and registers. These are coarse-grain type cells as
they operate on multi-bit wide inputs. When the design is represented at the fine-grain level it is
also possible to make manipulations using corresponding single-bit cells (such as a single D-type
flip-flop). However, the scale of the design may be too large for manually introduced modifications.
Pinpoint changes could be done to a small number of specifically targeted cells but with extreme
care. The designers risk damaging the design unintentionally by removing a cell or connecting a
wire to the wrong port. Therefore, global changes such as generating variants are better suited for
the coarse-level representation. The second command is easier to modify since it is essentially a
script that invokes several commands available within Yosys. Here, the modification is done to the
"map_luts” process which is responsible for invoking the ABC tool with specific LUT cost values
and size limits. By varying the parameters of the "abc” command called within the "map_luts”
process, it is possible to specify the cost of 1 to 8 input LUTs in terms of area and delay. These
values are processed by the ABC tool internally. It should be noted, however, that when the output
netlist goes through the P&R flow, changes might be made to the LUT structures if no matching

4.4. YOSYS OVERVIEW 45

primitive is available on the target FPGA device. Therefore, changes introduced here should be
done with the platform in mind. In addition to the mentioned commands and changes introduced,
producing the synthesized output netlist for the subsequent P&R process is also slightly modi-
fied. When generating the variants, special keywords (attributes) are used to prevent the tools
from optimizing or combining the introduced logic [100]. If the modifications of the design do not
include top-level input-output signals or are found to perform logic that does not affect the rest
of the system, synthesis and implementation algorithm may eliminate these parts. For example,
the proposed register-inverter chain would be an ideal target for removal during synthesis due to
not having any impact of the logic of the system. Therefore, keywords such as "DONT_TOUCH" and
"KEEP" are used to denote the blocks of logic that the tools should not attempt to optimize or affect
in any other way. By default, these attributes do not carry over into the output netlist and thus, the
command is modified accordingly (refer to code excerpts in the Appendices).

Chapter 5

Proposal Evaluation

This chapter compares round-based AES variants to the original, unmodified AES implementation
in terms of functionality and resource utilization. Then, the results of the power consumption
measurements are discussed and evaluated.

5.1 Functional Verification

One of the main conditions for reconfigurable variants of any design is that they must maintain the
functional integrity of the system. The proposed changes cannot be used if they result in a wrong
output or unintended behaviour of the system. First, Vivado can be used for both synthesis and
P&R of the unmodified AES. This version could be referred to as the reference implementation.
Then, unmodified AES synthesized by Yosys and implemented by Vivado is verified for correct
functionality by comparing it to the reference. Once this is established, Yosys can be used further
to modify AES and generate variants as explained in the previous chapter. AES implementation
used in this work includes a testbench that compares output ciphertext with an expected ciphertext
for a given plaintext input. By using this testbench, as well as third-party online resources such
as [108] that can execute AES encryption on a given data, the results can be verified to be true.
For testing purposes, the secret key, the input plaintext, and the expected ciphertext are given
below in hexadecimal representation. Figure shows the results from the online tool used to
verify the correctness of AES implementation used in this work [108].

e Key: 2b7e151628aed2a6abf7158809cf4f3c
e Plaintext: 3243f6a8885a308d313198a2e0370734
e Ciphertext: 3925841d02dc09fbdc118597196a0b32

Figure[5.2]shows the simulation output from the Vivado reference design. Figure[5.3/shows the
simulation of unmodified AES synthesized by Yosys. The netlist in the EDIF format was imported
to Vivado, where a post-synthesis functional simulation was performed using the same testbench
as the reference. As can be seen, Yosys generated netlist behaves as expected. Round-based

46

5.2. RESOURCE UTILIZATION 47

AES - Symmetric Ciphers Online

Input type: Ted
I ot 32431628885a308d313198a220370734
(hex)
B
Plaintext o Hex Autodetect: ON | OFF
Function: AES
Mode: ECB (electronic codebook)

e 2b7e151628aed2atabf7158800cf4fac

Plaintext o Hex

A

! DATA_COUT[127:0]§3925841d02dc09fbdc118587195a0b32
{ CLK_PERIOD 10000 ps

Figure 5.2: Reference design simulated in Vivado

AES variants generated from Yosys have also been verified for functional integrity. Corresponding
simulation results can be found in the Appendix [Al Three waveforms are presented for "mod7”,
"mod8”, and "mod9” corresponding to VC1, VC2, and VCS3, respectively.

5.2 Resource Utilization

The Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit [109] was used within this work for the test
measurements and evaluation. It includes the Zynq UltraScale+ XCZU9EG-2FFVB1156 MPSoC
device - an FPGA with an integrated ARM processor, making it suitable for a variety of applica-
tions. This combination enables software access to the system and reserves the FPGA for the
programmable logic functionality. This device will be referred to as ZCU102 for convenience. For
this platform, resource utilization is reported as the number of look-up tables and flip-flops (reg-

48 CHAPTER 5. PROPOSAL EVALUATION

SIMULATION - Post-Synthesis Simulation - Functional - sim_1 - TE_AES_Core

Sources Untitled 3
a = = + # | W @ a X o M M o= oo o
w [Design Sources (1

v EDIF (1
AES_CORE_FF.edif (top
v Constraints (1
v constrs_1 (1
I" DPAM_E.xdc
~ [Simulation-Only Sources (1
v sim_1 (1
w [WHDL (1
~ il ®il_defaultlib (1
@ TB_AES_Core.whd
w [Utility Sources
utils_1

Libraries = Compile Order

Figure 5.3: Unmodified AES from Yosys simulated in Vivado

isters) used. To successfully implement a design on an FPGA, some additional constraints, such
as the clock frequency, have to be specified. These constraints are used by the P&R algorithm
to physically place the logic within available resources such that the designer-specified path de-
lays and timings are met [110]. If the design is constrained to run at higher clock frequencies it
might require stricter allocation of resources (i.e. shorter interconnect paths). In certain cases,
if the logic is too large, the P&R solver algorithm might not find an optimal solution for the given
constraint and the process will exit with an error. In this work the system was successfully im-
plemented and satisfied all design constraints with a 50MHz clock. The system, including the
variants, were found to successfully pass timing analysis stage at up to 400MHz. Table lists
utilization for all configurations of the round-based AES.

As it can be seen, reference and Yosys synthesized unmodified AES are very close in the
utilization numbers. This shows that a third-party synthesis tool can deliver netlists optimized close
to what a vendor tool can produce. Resource utilization for the variants changes as expected.
For example, VC1 causes an increase in the number of both flip-flops and look-up tables, as it
introduces extra logic and registers into the system. Variant Class 2 exhibits a similar increase in
the registers used, but with a smaller overhead on the LUT usage. Variant Class 3 is purely LUT
driven modification and therefore its flip-flop usage does not change from the original version.
However, the LUT usage spikes up by 349%, which is a considerable overhead. While it is still a
relatively low usage of the resources available on the FPGA in total (2.64%), other variants show
much lower overhead. For reference, target FPGA has 274080 LUTs and 548160 registers.

5.3. MEASUREMENTS SETUP 49

Table 5.1: Resource utilization for all configurations

Configuration Utilization Overhead
Reference LUT: 1319 (0.48%) -
(Vivado only) FF: 533 (0.09%) -
Unmodified LUT: 1652 (0.6%) 25.24%

(Yosys and Vivado) | FF: 530 (0.09%) -0.56%
LUT: 2281 (0.83%) 38%
FF: 658 (0.12%) 24.15%
LUT: 1910 (0.69%) 15.6%
FF: 658 (0.12%) 24.15%
LUT: 7254 (2.64%) 349%
FF: 530 (0.09%) -0.56%
Combination of | LUT: 7278 (2.65%) 351%
VC1, VC2, VC3 FF: 658 (0.12%) 24.15%

Variant Class 1

Variant Class 2

Variant Class 3

5.3 Measurements Setup

Once the functional integrity of the variants has been established, they can be integrated into the
full system to be used for measurements. The round-based AES is a stand-alone hardware im-
plementation of the algorithm but controlling it through software gives more flexibility. Therefore,
it is packaged as an IP block which can be instantiated within a larger system. Xilinx provides
an IP block that enables the use of the software and hardware combination within ZCU102 [111].
Figure [5.4] shows what the system looks like when all the necessary components have been in-
stantiated. It contains the processor and its corresponding reset controller. Advanced eXtensible
Interface (AXI) is used to communicate with the AES core. This is a flexible interface system
that is part of the ARM-based microcontroller bus architecture [112]. It supports lite, streaming,
and high-performance memory-mapped configurations to establish a link between the processor
and a peripheral device. In this system, Zynq Ultrascale+ is the processor and AES Core is the
peripheral device. The full system is then implemented and loaded onto the board. A software
development kit (SDK) interface is available to control the system and can be launched through
Vivado. A program is developed using the C programming language and loaded onto the proces-
sor through this interface. This program handles sending plaintexts to the AES core and reading
the output ciphertext back over the AXI bus. Data being sent can be displayed in a built-in console
of the SDK and used for verification.

In addition to the main system components, there is an external trigger signal that can be seen
in the IP block diagram. This signal is used by the measurement setup to align and start collect-
ing power consumption traces. It is generated by the AES Controller module on purpose and
facilitates easier trace collection. The result is that the traces are less likely to contain power con-

50 CHAPTER 5. PROPOSAL EVALUATION

2yng Ultrascale Processor IP block AXI communication bus

A
r 1

A
N
| [o ZYNQ S External output
s . L - w5100 trigger signal

UltraSCALE* . —

4

z

aEEn

- EE
X

- AL ENABLE OUT = —

|
|_k AES variant IP block

1 I L i

) SN

I—'—l
Reset controller for the processor

Figure 5.4: Block diagram of a complete system

sumption of the system when encryption was not running. This makes the analysis of the traces
easier for experimenting. In reality, however, attackers are not likely to know the starting moment
with such high precision and will need to spend more time measuring and analyzing the system.
Before the packaged system was sent for measurements, this trigger signal was mapped to a
general-purpose input/output (GPIO) pin of the Zynq board and observed using an oscilloscope.
The functionality of the implemented system was also verified by applying a range of plaintexts
through the SDK and cross-referencing the output using the online tool mentioned earlier. An
example of the trigger signal can be seen in the Figure in the Appendix. This signal is set to
"high” while the AES encryption is running and is set to "low” otherwise. The system was config-
ured to run at 100MHz clock frequency (i.e. one clock cycle is 10ns) and this clock is also supplied
to the AES core. As previously explained, one round takes one clock cycle to complete and it can
be deduced that one full cycle of encryption should take about 100ns in total. This is confirmed
by observing the trigger signal stay on "high” for approximately 100ns on the oscilloscope screen.

To collect the traces, the current flowing through the decoupling capacitor of the FPGA power
supply was measured, as it has been proposed in the Chapter Langer ICR HV500-75 EM
probe [113] was used to measure the current and a Picoscope 6404D USB oscilloscope [114]
with 1.25GS/s sampling rate was used to capture the values and offload them to a PC. The mea-
surement process consists of using the same plaintext input 250 times which are then averaged
into 1 trace corresponding to 1 encryption. Each trace contains 2000 data points. A total of 10000
traces were collected in this manner for each variant of the round-based AES: VC1, VC2, and
VC3. All encryption runs were performed using the same secret key. The set of 10000 traces
for each variant is then analyzed individually. As mentioned previously, designing a fully recon-
figurable system was not part of this work. Therefore, to emulate the effect of DPR, traces from
different variants were randomly shuffled for the analysis, similar to the method used by the au-
thors of the SPREAD system [87].

Additionally, the system was set to run with a 10MHz clock frequency during the measure-

5.4. POWER ANALYSIS ATTACK MODEL 51

ments. Configuration of the test setup used in this work provides some advantages from the at-
tacker’s point of view. Mainly, averaging each encryption cycle removes the noise in the recorded
values and lower operating speed coupled with a high sampling rate form the oscilloscope allow
for cleaner measurements and easier analysis.

5.4 Power Analysis Attack Model

To perform an attack on the collected traces, Hamming distance between the input of the Sbox
during the last round and a byte of the ciphertext is calculated. Since the attack is performed
using the ciphertext and not the plaintext as it was described in Section 2.2} the equation can be
re-written as follows:

H,[Sbox ' (CT(i)(j) ® LRK (j)) ® CT(i)(k)] (5.1)

Here, C'T'(i)(j) corresponds to the ji* byte of the ciphertext for the i* encryption. LRK(j)
refers to the j** byte of the last round key, which would be the value the attackers will guess.
Sbox~! is the inverse operation of the regular Sbox described earlier. CT(i)(k) refers to the k"
byte of the ciphertext for the i'* encryption. It is necessary to refer to the same byte to find the
Hamming distance between the output ciphertext and the input to the last round. Since AES shuf-
fles the bytes of the state in each round, the ;" byte of the output state in each round is not the ;"
byte of the input state to that round. Therefore, the round operations have to be traversed back to
the start of the round. The last round of AES is different from the rest, as it skips the MixColumns
operation. This means that its power consumption profile is expected to be different and it has a
fewer number of operations to traverse back. As an example, see the Figure 5.5 for a visualization
of the backtracking process for byte 11 of the last round output (essentially the ciphertext).

As shown in the figure, after traversing the round operations back to the start, the ciphertext
byte 11 is found to occupy the position of the ciphertext byte 7. Thus, the Hamming distance will
be calculated between the bytes that are located in those positions. Hence why the reverse Sbox
operation is performed on byte 11 and its output is compared to byte 7. Byte 11 of the last round
key is the value to be guessed by the attacker and it corresponds to the expanded secret key, per
the KeySchedule algorithm of AES. As further examples, guessing the secret key byte 15 corre-
sponds to ciphertext byte 11, while guessing the secret key byte 4 to corresponds to ciphertext
byte 4. This is because ShiftRows operation does not affect the first row and only modifies the
bottom three rows.

By using this method, a hypothetical value of consumed power (the Hamming distance) is
calculated for each guess (a total of 256 guesses) of each byte of the secret key. Then, correlation
between each hypothetical power value and each point in a power consumption trace is computed

52 CHAPTER 5. PROPOSAL EVALUATION

step #5 step #4 step #3
r—‘—\

last round Sbox output or

last round input state . .
P last round ShiftRows input

last round ShiftRows output

Byte0 | Byte4 Byte 8 | Byte 12 Byte0 | Byte4 Byte 8 | Byte 12 Byte0 | Byte4 Byte 8 | Byte 12
Byte 13 | Byte 1 Byte5 | Byte 9 Byte 13 | Byte 1 Byte5 | Byte9 Byt\e 1 Byte)S Byte9 | Byte 13
Byte 10 | Byte 14 | Byte 2 Byte 6 Byte 10 | Byte 14 | Byte 2 Byte 6 Byt\e 2 | Byte6 Byte‘lo Byte 14
Byte 7/I Byte 11 rB;Qe 15 | Byte3 Byte 7 | Byte 11 | Byte 15 | Byte 3 Byte 3 W Byte 11 | Byte 15

I N
\.
|

ByteO | Byte4 | Byte8 Bl'yte 12

Byte0 | Byte4 | Byte8 | Byte 12

Byte i Byte5 | Byte9 | Byte13 Bytel | Byte5 | Byte9 | Byte 13
-]

Byte A Byte 6 | Byte 10 (’Syte 14 W Byte2 | Byte 6 | Byte 10 | Byte 14
N N7 =7 AddRoundKey
Byte 3 I Byte 7 | Byte 11 { Byte 15 (in reverse)
last round output state
(ciphertext)

Byte3 | Byte7 | Byte11 | Byte 15

last round key
L J

step #1 step #2

Figure 5.5: Reversal of last round operations in AES

by using the Pearson’s Correlation Coefficient (PCC). The expectation is that for each guess, one
PCC value will be larger than the rest. The guess with the highest PCC is most likely the correct
value for that particular byte of the key. Performing these calculations for a larger set of power
consumption traces recorded will increase the confidence in the guess. Repeating this method
for all 16 bytes will reveal the entire last round key which can be converted to the initial secret
key used by the algorithm. A simplified explanation for a case of one power trace recorded is
presented below.

Given one trace of power consumption with 2000 data points

Perform the first guess of the 11" byte of the last round key (i.e. 0)

Use the 11" byte of the ciphertext and XOR it with the guess to get value X

Use the reverse Sbox to find the transformation of X into Y

Perform XOR of the 7*" byte of the ciphertext with Y to find the Hamming distance H,,
Calculate PCC value of H,, with each of the 2000 data points in the given trace
Record the highest correlation point and its absolute value, (i.e. Cj)

Repeat previous steps for all 255 remaining guesses of the 11" byte of the secret key
Among all recorded peak correlation values (Cy to Cy55), pick the highest one (i.e. ;)
Value guessed on the " iteration is the 11" byte of the last round key

. Perform key schedule reverse operation to get the 11** byte of the initial secret key

. Repeat this process for all bytes to get the full secret key

©ONOOROGDND=

-t emh b
M2 oo

5.5. CORRELATION ANALYSIS OF INDIVIDUAL VARIANTS 53

5.5 Correlation Analysis of Individual Variants

Having explained the procedures to collect power traces and perform the attack, the results of the
analysis can be presented. System designers and attackers are the same parties and therefore
the secret key is known in advance. For simplicity, the secret key was set to [FF]s for all 16
bytes. This allows preemptive calculation of the secret key expansion and skips the two last steps
of the attack procedure described earlier. For the given secret key, its expansion is presented
in Table [G.1] If the results of the analysis yield the values found in the “last key” column, the
attack will be considered successful and the secret key was found. For each of the AES variants
submitted for measurements, three files have been obtained: input plaintexts (10000 entries with
16 bytes each), output ciphertexts (10000 entries with 16 bytes each), and trace values (10000
entries with 2000 points each). The latter two are of interest in this analysis. The plaintexts would
be used to verify the secret key that was guessed by generating a ciphertext and comparing
the value to those recorded during measurements. If the ciphertexts match, the secret key was
correct. A Python program was developed to process the ciphertexts, generate a guess, calculate
the hypothetical power value, and perform the correlation analysis. Generated values are written
to a file for comparing and determining the best guess. Figure shows the raw trace values
for one of the measurements. This corresponds with the Figure shown earlier and identifies
the executed AES rounds. Figure [5.7|represents the peak correlation values of all guesses made
for one of the bytes of the Variant Class 3. Plots for Classes 1 and 2 are added to the Appendix.
Figure[E.6shows the output from the program determining the guess corresponding to the highest
correlation among the maximums of each of the 10000 traces. Reported best guess for byte 11
is 8516 and the expanded round key byte 11 was calculated to be 85,4 too. This coincides with the
value shown in Table This experiment was repeated for other bytes and it was concluded
that the full secret key can be revealed.

Table 5.2: Analysis summary of the variants and their combinations

Variant: VCi1 VC2 VC3 | VC1&VC2 | All shuffled
Peak Correlation (PC): | 0.15081 | 0.16122 | 0.24252 | 0.05815 0.07364
PC factor (over VC3): 1.61x 1.5x - 4.17x 3.29x
Traces to get the key: 1250 1350 750 9500 7500
Traces factor (over VC3): | 1.66x 1.8x - 12.67x 10x

Peak correlation values for a given byte for all variants are listed in the Table 5.2l Refer to
Figure and Table [F.1] for an overview on all bytes. It can be observed that the VC1 and VC2
show lower correlation values when compared to Class 3. The subpar mapping of the logic to the
LUTs does not have the desired effect of reducing or changing the switching activity profile. As a
result, the correlation between data and power was found to be significantly high. Thus, VC3 was
chosen as the comparison reference in the absence of the unprotected system measurements.

54 CHAPTER 5. PROPOSAL EVALUATION

Trace Values
3000000

2500000

2000000

1500000

1000000

S00000

-500000

-1000000

-1500000

-2000000

Figure 5.6: Power profile of a measured AES-128 encryption cycle

peak correlation values for all guesses of byte 11
03

035
- 0.24252

02

015

005

NAMPANS A AAAANMMNS A WA At It A

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 B6 91 96 101 106111116121 1261311365141 146151 156161166171 176 181 186191196 201 206211 236221 206 231 236 241 246 251 256

Figure 5.7: VC3 peak correlation values of all guesses for a given byte

5.6. CORRELATION ANALYSIS OF SHUFFLED VARIANTS 55

CPA values for correctly guesses bytes for all variants

0.30000

0.25000

0.20000
015000
0.20000
- ‘ ‘ ‘ ‘ ‘
0.00000 ‘
z 3 q 5 G 7 B 9 10 11 1z 13 14 15 16

mVCl mVC2 eV e VCIED mal

Figure 5.8: Plot of PCC values for each byte (1-16) for all variants using 10000 traces.

5.6 Correlation Analysis of Shuffled Variants

Collected individual traces were combined and shuffled to estimate how the variants would per-
form in a DPR-based system. A new set of 10000 traces was created using a number of the
original traces from each variant. For a combination of VC1 and VC2 5000 traces from each set
were put together. For a combination of VC1, VC2, and VC3, 3333 traces from each set were
collected. These sets are then shuffled in random order and analysis is performed using the pre-
viously described method.

Shuffled traces of VC1 and VC2 show a significant improvement (drop) in correlation (see
Figure 5.9). Maximum CPA values of less than 0.1 were reported for each guess. The new
peak was recorded at just 0.05 - a 3x decrease from the best individual result (0.15 for VC1)
and ~4.2x from the worst (0.24 for VC3). In contrast, Hettwer et al. reported a maximum of
2.2x decrease in correlation when comparing 1 to all 128 variants generated in their work [88].
Shuffling all three classes of variants shows a similar, but slightly higher peak correlation at 0.07
(see Figure [E.3). This corresponds to a 3.7x decrease in correlation from the worst individual
result. The negative contribution of VC3 once again shows that it is not a good candidate for
countermeasures. However, overall improvements over results presented by are shown using
a considerably smaller number of variants. Another downside of the approach used by Hettwer
et al. is the total size of the bitstream files (approx. 790MB). For the variants generated within

56 CHAPTER 5. PROPOSAL EVALUATION

peak correlation values for all guesses of byte 11

0.05815

6 21 26 31 36 41 46 51 56 61 66 71 76 81 BE 91 96 100 106 111 116 121 126 131 136 141 146 151 156 161 165 171 175 181 166 191 196 201 206 211 216 221 226 231 236 241 246 251 256

Figure 5.9: Peak correlation values for shuffled VC1 and VC2 for DPR emulation

this work the bitstream files for the full system were considered including the processor. Each
configuration resulted in a ~26MB bitstream file. Difference of 8 bytes was observed from the
unmodified AES version that was synthesized and implemented by Vivado.

5.7 Number of Traces for CPA

Lastly, the number of traces required to find the correct guess is considered. In [88], the un-
protected version was compromised at 8250 traces collected and the full reconfigurable system
required 24500, yielding a 3x increase in immunity. The authors of the SPREAD system used a
method of testing similar to the current work and reported ~1000 traces for the weakest single
variant configuration [87]. Applying the shuffling method improved the results by about 5x to 5000
traces using 12 variants. Note that for the evaluation of the SPREAD system the AES core was
running at 3.383MHz and 16 iterations were averaged for each encryption with 5000 data points
for a total of 30000 traces per each variant. AES core of this work was measured at 10MHz over
250 averaged runs with 2000 data points for a total of 10000 traces per each variant. During the
analysis the number of traces was gradually increased in increments of 500 while observing the
results. The analysis was stopped once all bytes were guessed successfully.

For VC1, a minimum of 1250 traces was necessary to guess all of the bytes of the last round
key correctly, specifically bytes 13 and 15 were found last. Some of the bytes (e.g. 0 and 11) were
guessed in as low as 250 traces and most bytes were guessed after analyzing 750-1000 traces.
For a representation of the correlation coefficient values for VC1 when guessing byte 11 with 250
traces available, refer to Figure [E.4] The peak is close to the rest of the values, but the key byte

5.7. NUMBER OF TRACES FOR CPA 57

Correlation for all bytes for a given number of traces

0.14

g

=]

1 2 3 4 5 13 7 a 9 10 11 12 13 14 15 16
W750 traces W 1500traces 2250traces 3000traces mM3750traces mMAS00traces WETS0traces W 7500traces

m5S0traces WE000traces

Figure 5.10: Peak CPA values for each byte (1-16) for sets of all shuffled traces

was guessed correctly. Increasing the number of traces will make the peak more prominent in
comparison to other values. Variant Class 2 performed similarly to VC1 but byte 1 was guessed
after analyzing 1750 traces. Bytes 0, 5, and 11 were exposed at 250 traces in the case of VC3
and the rest were found after 750 traces. Figure [E.5 shows a plot of the correlation values for all
guesses with increasing number of traces until all bytes were identified correctly. While correlation
values for lower number of traces appear to be higher, they correspond to the incorrect guesses.
As the number of traces increases and noise values are averaged out, the difference between the
peak correlation value and the rest is emphasized, even though values themselves get smaller.

In the case of trace shuffling greater improvements were observed, as expected. All variants
were mixed to form multiple sets of traces. The smallest set includes 250 traces from each variant
for a total of 750 traces. 250 traces are incrementally added to each set until 3250 traces from
each variant are included. In total there are 13 sets of 750 to 9750 traces from VC1, VC2, and
VC3. Performing the same type of experiment as with the individual variants, the full key was
revealed starting from the second largest set of 7500 traces. The CPA values for every byte for
every set of traces are shown in the Figure Overall, lower correlation values were observed
than in the Figure[E.5] Considering these results, the smallest increase in the number of required
traces observed is ~4.3x when compared to a single VC2 case, given that CPAyca/CPAshuffica
is ~2.2x. The highest increase in the number of traces is ~10x when compared to VC3, given
that CPAvcs/CPAghuspiea is ~3.3x. These values are close to the expectations of [24], stating
that a 2x decrease in correlation should require 4x more traces for a successful attack. Hettwer
et al. also observed not quite, but a similar trend for their results.

58 CHAPTER 5. PROPOSAL EVALUATION

CPA values for all byte guess for all given traces

02

=

12 13 14 15 16

500 mVC12_BS00 mvCi2 5500

1 2 3 4 5 13 7 B 9 10 11
wVCI1Z_ 500 2 4500 mWVCI1Z 5500 mvOl2 6500 mvCiZ2 7

mVC12_ 1500 WC12_2500 WC12_3500 mWCl

Figure 5.11: Peak CPA values for each byte (1-16) for sets of VC1&2 shuffled traces

When the shuffling method was applied to only Variant Classes 1 and 2, the number of traces
required to extract the full key increased even further. Ten sets of traces ranging from 250 to
5250 traces per variant were analyzed. At 7500 and 8500 traces, four and two bytes out of the
entire secret key were still guessed incorrectly, respectively. The full key was only revealed after
using 9500 traces (4750 from each variant). This is considerably better than either of the variants
individually and than the combination of all three. Improvements over individual cases range from
~5.4x to ~12.6x. See Figure [5.11]for the plot of correlation points against all sets of traces.

These results further prove the point that Variant Class 3 requires a conceptual redesign. It
could be beneficial to explore the idea of subpar mapping based on the synthesis-driven approach
presented for the SPREAD system. Yosys and the ABC logic mapping tools are capable of map-
ping a design to a variety of gates and primitives. By tweaking which modules are affected, to
what extent, and what kind of resource manipulations are included, VC3 can be converted into a
better alternative. As it stands, this variant should not be included in DPR-capable or stand-alone
systems due to its high leakage and wasteful resource utilization characteristics.

In general, presented results are comparable to and [88], especially considering that a
smaller number of variants was generated - three static versions in contrast to twelve from
and 128 from [88]. Both the SPREAD system and the current work require further analysis based
on full DPR integration but already show promising results. Proposals within this work reported
the peak increase of about 12x for the number of traces necessary for analysis and peak reduction
of 4x in correlation of data to measured power, when compared to the least protected variant. As
such, the evaluation of the proposal of this work can be positively concluded.

Chapter 6

Conclusion

In conclusion, manipulating the implementation of an encryption algorithm using a third-party
synthesis tool has been successfully demonstrated. Generated variants, together and separately,
have shown improvements in the immunity of a design against side-channel attacks.

Each variant was evaluated individually to provide a detailed insight into the influence on immu-
nity against correlation power analysis. Decrease in correlation was observed among the variants,
however, these are intended to be part of a reconfigurable system. Thus, DPR effect was emu-
lated using trace shuffling method and considerable improvements to immunity against CPA were
demonstrated. Results were similar to the only other proposal available that uses synthesis-level
modifications by Bete et al. The variants generated within this work are conceptually different from
each other and thus come in lower quantity and lack implementation diversity. This is in contrast to
the work of Hettwer et al., where a large number of variants is presented, but they lack conceptual
diversity. Nonetheless, CPA values and number of traces were on par with both studies used for
comparison. Proposal of this work can be used in a DPR system with none or minor tweaks.

Additionally, it was demonstrated that the effectiveness of the variants depends not only on
their contribution to immunity but also on resource utilization. Among the proposed and evaluated
variants, Variant Class 3 had the biggest utilization overhead and the worst CPA results. Thus,
manipulating the logic mapping process should be considered with diminishing benefits in mind.
Variant Classes 1 and 2 show that the established methods of countermeasures, namely masking
and hiding, perform better for both immunity and utilization even outside of the DPR framework.

59

60 CHAPTER 6. CONCLUSION

6.1 Recommendations and Future Work

The results of this work can be improved by following some changes to the work process as
summarized below. Yosys is a synthesis tool with a broad range of options that requires an in-
depth analysis to extract its full potential. Serial AES variants are an example of this approach
and prove that a greater implementation variety can be achieved by adding randomization and
generalization in variant designs.

e More extensive usage of the capabilities of Yosys

— side-loading designs developed in HDL, rather than manual modifications
— scripting and automation

e Designing variants with randomization and generalization in mind from the start

— to enable a broader range of supported systems
— to have lesser dependence on the structure of the original design

This study has fulfilled its original intent to explore synthesis level modifications and usage of
a third-party tool. Potential in improvement of SCA immunity has been shown and the work can
serve as a solid basis for future extensions, including, but not limited to:

Implement and evaluate a full DPR system with the proposed variants

Evaluation of the serial AES variants

Evaluation of the variants against other side-channel attacks (e.g. fault analysis)
Combination of the synthesis level approach presented here with the P&R method of [88]
Improvement of VC3-based variants using resource mapping inspired by SPREAD [87]
Exploration of the effect on other encryption algorithms

Study of methods alternative to reconfiguration (e.g. high-level synthesis [115], [116])

Bibliography

[1] Cisco, “What are the most common cyber attacks?” https://www.cisco.com/c/en/us/
products/security/common-cyberattacks.html.

[2] J. Hamer, R. van Est, L. Royakkers, and N. Alberts, “Cyberspace without conflict,” https:
//www.rathenau.nl/en/digital-society/cyberspace-without-conflict.

[3] CheckPoint, “What is a cyber attack?” https://www.checkpoint.com/definitions/
what-is-cyber-attack/.

[4] K. Bissel, R. M. Lasalle, and P. D. Cin, “Ninth annual cost of cybercrime study,” 2019, https:
/lwww.accenture.com/us-en/insights/security/cost-cybercrime-study.

[5] P. Burr, “The evolution of embedded devices: Addressing
complex design challenges,” 2018, https://www.embedded.com/
the-evolution-of-embedded-devices-addressing-complex-design-challenges/.

[6] I. F. for Information Processing, “Ifip working group 10.4,” https://www.dependability.org/
wg10.4/.

[7] J. C. Laprie, Dependability: Basic Concepts and Terminology. Vienna: Springer Vienna,
1992, pp. 3—245. [Online]. Available: https://doi.org/10.1007/978-3-7091-9170-5_1

[8] D. P. Troger, “Dependable systems dependability attributes,” https://osm.hpi.de/teaching/
depend/05_dep_attributes.pdf.

[9] F. Stajano, Security Issues in Ubiquitous Computing*. Boston, MA: Springer US, 2010,
pp. 281-314. [Online]. Available: https://doi.org/10.1007/978-0-387-93808-0_11

[10] M. Rouse, “What is encryption and how does it work?” https://searchsecurity.techtarget.
com/definition/encryption.

[11] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and
public-key cryptosystems,” Commun. ACM, vol. 21, no. 2, p. 120-126, Feb. 1978. [Online].
Available: https://doi.org/10.1145/359340.359342

61

https://www.cisco.com/c/en/us/products/security/common-cyberattacks.html
https://www.cisco.com/c/en/us/products/security/common-cyberattacks.html
https://www.rathenau.nl/en/digital-society/cyberspace-without-conflict
https://www.rathenau.nl/en/digital-society/cyberspace-without-conflict
https://www.checkpoint.com/definitions/what-is-cyber-attack/
https://www.checkpoint.com/definitions/what-is-cyber-attack/
https://www.accenture.com/us-en/insights/security/cost-cybercrime-study
https://www.accenture.com/us-en/insights/security/cost-cybercrime-study
https://www.embedded.com/the-evolution-of-embedded-devices-addressing-complex-design-challenges/
https://www.embedded.com/the-evolution-of-embedded-devices-addressing-complex-design-challenges/
https://www.dependability.org/wg10.4/
https://www.dependability.org/wg10.4/
https://doi.org/10.1007/978-3-7091-9170-5_1
https://osm.hpi.de/teaching/depend/05_dep_attributes.pdf
https://osm.hpi.de/teaching/depend/05_dep_attributes.pdf
https://doi.org/10.1007/978-0-387-93808-0_11
https://searchsecurity.techtarget.com/definition/encryption
https://searchsecurity.techtarget.com/definition/encryption
https://doi.org/10.1145/359340.359342

62 BIBLIOGRAPHY

[12] A. Barkati, “A complete description of data encryption standard (des),” 2019, https://
medium.com/@ahsanbarkati/the-des-data-encryption-standard-16466b45c30d.

[13] M. J. Dworkin, E. B. Barker, J. R. Nechvatal, J. Foti, L. E. Bassham, E. Roback, and
J. F. D. Jr., “Advanced encryption standard (aes),” 2001, https://www.nist.gov/publications/
advanced-encryption-standard-aes.

[14] R. Singh, ‘What is an fpga?” 2018, hhttps://numato.com/blog/
differences-between-fpga-and-asics/.

[15] Anysilicon, “Fpga vs asic, what to choose?” 2016, https://anysilicon.com/
fpga-vs-asic-choose/.

[16] C. P. SOLUTIONS, “Fpga vs. asic: Differences and choosing
best for your business,” 2019, https://resources.pcb.cadence.com/blog/
2019-fpga-vs-asic-differences-and-choosing-best-for-your-business.

[17] Altera, “An 311: Standard cell asic to fpga design methodology and guidelines,” 2009,
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/an/an311.pdf.

[18] W. Lie and W. Feng-yan, “Dynamic partial reconfiguration in fpgas,” in 2009 Third Inter-
national Symposium on Intelligent Information Technology Application, vol. 2, 2009, pp.
445-448.

[19] M. Stéttinger, S. Malipatlolla, and Q. Tian, “Survey of methods to improve side-channel
resistance on partial reconfigurable platforms,” in Design Methodologies for Secure Em-
bedded Systems, A. Biedermann and H. G. Molter, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 63-84.

[20] D. Crawford, “How does aes encryption work?” 2019, https:/proprivacy.com/quides/
aes-encryption.

[21] P. Kocher, “Differential power analysis,” 1998, https://cryptome.org/jya/dpa.htm.

[22] R. Press, “An introduction to side-channel attacks,” 2018, https://www.rambus.com/blogs/
an-introduction-to-side-channel-attacks/.

[23] P. Kocher, J. Jaffe, and B. Jun, “Introduction to differential power analysis and related at-
tacks,” 1998, http://web.mit.edu/6.857/0ldStuff/Fall03/ref/kocher-DPATechInfo.pdf.

[24] S. Mangard, E. Oswald, and T. Popp, Simple Power Analysis. Boston, MA: Springer US,
2007, pp. 101-118. [Online]. Available: https://doi.org/10.1007/978-0-387-38162-6_5

[25] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with a leakage model,’
in Cryptographic Hardware and Embedded Systems - CHES 2004, M. Joye and J.-J.
Quisquater, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 16-29.

https://medium.com/@ahsanbarkati/the-des-data-encryption-standard-16466b45c30d
https://medium.com/@ahsanbarkati/the-des-data-encryption-standard-16466b45c30d
https://www.nist.gov/publications/advanced-encryption-standard-aes
https://www.nist.gov/publications/advanced-encryption-standard-aes
hhttps://numato.com/blog/differences-between-fpga-and-asics/
hhttps://numato.com/blog/differences-between-fpga-and-asics/
https://anysilicon.com/fpga-vs-asic-choose/
https://anysilicon.com/fpga-vs-asic-choose/
https://resources.pcb.cadence.com/blog/2019-fpga-vs-asic-differences-and-choosing-best-for-your-business
https://resources.pcb.cadence.com/blog/2019-fpga-vs-asic-differences-and-choosing-best-for-your-business
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/an/an311.pdf
https://proprivacy.com/guides/aes-encryption
https://proprivacy.com/guides/aes-encryption
https://cryptome.org/jya/dpa.htm
https://www.rambus.com/blogs/an-introduction-to-side-channel-attacks/
https://www.rambus.com/blogs/an-introduction-to-side-channel-attacks/
http://web.mit.edu/6.857/OldStuff/Fall03/ref/kocher-DPATechInfo.pdf
https://doi.org/10.1007/978-0-387-38162-6_5

BIBLIOGRAPHY 63

[26] P. N. Fahn and P. K. Pearson, “Ipa: A new class of power attacks,” in Cryptographic Hard-
ware and Embedded Systems, C. K. Ko¢ and C. Paar, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1999, pp. 173—186.

[27] M. Joye and F. Olivier, Side-Channel Analysis. Boston, MA: Springer US, 2005, pp.
571-571. [Online]. Available: https://doi.org/10.1007/0-387-23483-7_394

[28] P. Sasdrich, A. Moradi, O. Mischke, and T. GUneysu, “Achieving side-channel protection with
dynamic logic reconfiguration on modern fpgas,” in 2015 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), 2015, pp. 130—136.

[29] J. Daemen and V. Rijmen, “Aes proposal: RIUNDAEL,” 1999, https://cs.ru.nl/~joan/papers/
JDA _VRI_Rijndael _V2_1999.pdf.

[30] B. Rothke, “‘Brute force: Cracking the data encryption stan-
dard,’ 2010, https://www.rsaconference.com/industry-topics/blog/
brute-force-cracking-the-data-encryption-standard.

[31] M. Bellare and P. Rogaway, “Introduction to modern cryptography,” 2005, https://www.cs.
ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf.

[32] A.J. Menezes, P. C. van Oorschot, and S. A. Vanstone, “Handbook of applied cryptography,”
1996, http://cacr.uwaterloo.ca/hac/.

[33] C. E. Shannon, “A mathematical theory of cryptography,” 1945, https://www.iacr.org/
museum/shannon/shannon45.pdf.

[34] A. Biryukov, “Substitution—permutation (sp) network,” 2011, https://doi.org/10.1007/
978-1-4419-5906-5_619.

[35] J. Daemen, “Annex to aes proposal rijndael, chapter 5: Propagation and correlation,” 1998,
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Standards-and-Guidelines/
documents/aes-development/PropCorr.pdf.

[36] D. Ziener, “Lecture notes: Security in embedded hardware.”

[87] H. Song, G. A. Fink, and S. Jeschke, Security and Privacy in Cyber-Physical Systems:
Foundations, Principles, and Applications. Wiley-IEEE Press, 2017.

[38] J. Baehr, M. Brunner, and A. Hepp, “Invasive attacks,” https:/www.ei.tum.de/en/sec/
research/hardware-reverse-engineering/.

[39] M. Weiner, “Invasive attacks,” https://www.ei.tum.de/en/sec/research/invasive-attacks/.

[40] N.I. of Standards and Technology, “Security requirements for cryptographic modules,” 2019,
https://csrc.nist.gov/publications/detail/fips/140/3/final.

https://doi.org/10.1007/0-387-23483-7_394
https://cs.ru.nl/~joan/papers/JDA_VRI_Rijndael_V2_1999.pdf
https://cs.ru.nl/~joan/papers/JDA_VRI_Rijndael_V2_1999.pdf
https://www.rsaconference.com/industry-topics/blog/brute-force-cracking-the-data-encryption-standard
https://www.rsaconference.com/industry-topics/blog/brute-force-cracking-the-data-encryption-standard
https://www.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf
https://www.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf
http://cacr.uwaterloo.ca/hac/
https://www.iacr.org/museum/shannon/shannon45.pdf
https://www.iacr.org/museum/shannon/shannon45.pdf
https://doi.org/10.1007/978-1-4419-5906-5_619
https://doi.org/10.1007/978-1-4419-5906-5_619
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Standards-and-Guidelines/documents/aes-development/PropCorr.pdf
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Standards-and-Guidelines/documents/aes-development/PropCorr.pdf
https://www.ei.tum.de/en/sec/research/hardware-reverse-engineering/
https://www.ei.tum.de/en/sec/research/hardware-reverse-engineering/
https://www.ei.tum.de/en/sec/research/invasive-attacks/
https://csrc.nist.gov/publications/detail/fips/140/3/final

64 BIBLIOGRAPHY

[41] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” 2019, https://www.paulkocher.
com/doc/DifferentialPowerAnalysis.pdf.

[42] O. Lo, W. J. Buchanan, and D. Carson, “Power analysis attacks on the aes-128 s-box using
differential power analysis (dpa) and correlation power analysis (cpa),” 2016, https://doi.org/
10.1080/23742917.2016.1231523.

[43] H. Kruppa and S. Umair, “Differential and linear cryptanalysis in evaluating aes candidate
algorithms,” 1998, http://www.cs.cmu.edu/~hannes/difflLiInAES.pdf.

[44] C. Wiki, “Correlation power analysis,” https://wiki.newae.com/Correlation_Power_Analysis.

[45] N. I. for Telecommunication Sciences, “Hamming weight. telecommunications: Glossary of
telecommunication terms,” 1996, https://www.its.bldrdoc.gov/fs-1037/dir-017/_2530.htm.

[46] S. Solutions, “Pearson’s correlation coefficient,” https://www.statisticssolutions.com/
pearsons-correlation-coefficient/.

[47] Xilinx, “What is an fpga?” https://www.xilinx.com/products/silicon-devices/fpga/
what-is-an-fpga.html.

[48] W. F.-y. Wang Lie, “Dynamic partial reconfiguration in fpgas,” Third International Symposium
on Intelligent Information Technology Application, 2009.

[49] Intel, “Partial reconfiguration,” https:/www.intel.com/content/www/us/en/programmable/
products/design-software/fpga-design/quartus-prime/features/partial-reconfiguration.htmi.

[50] E. Chen, V. Gusev, D. Sabaz, L. Shannon, and W. A. Gruver, “Dynamic partial re-
configurable fpga framework for agent systems,” http://www2.ensc.sfu.ca/~Ishannon/file/
edward_holomas_11.pdf.

[51] L. A. C. Cardona, “Dynamic partial reconfiguration in fpgas for the design and evaluation of
critical systems,” 2016, https://www.tdx.cat/bitstream/handle/10803/386416/laccidel.pdf?
sequence=1&isAllowed=y.

[52] A. Agrawal, J. Choi, K. Gopalakrishnan, S. Gupta, R. Nair, J. Oh, D. A. Prener, S. Shukla,
V. Srinivasan, and Z. Sura, “Approximate computing: Challenges and opportunities,” in 2016
IEEE International Conference on Rebooting Computing (ICRC), 2016, pp. 1-8.

[53] D. Ziener, “Improving reliability, security, and efficiency of reconfigurable hardware systems,”
CoRR, vol. abs/1809.11156, 2018. [Online]. Available: http://arxiv.org/abs/1809.11156

[54] Xilinx, “Fpga design flow overview,” https://www.xilinx.com/support/documentation/sw_
manuals/xilinx10/isehelp/ise_c_fpga_design_flow_overview.htm.

https://www.paulkocher.com/doc/DifferentialPowerAnalysis.pdf
https://www.paulkocher.com/doc/DifferentialPowerAnalysis.pdf
https://doi.org/10.1080/23742917.2016.1231523
https://doi.org/10.1080/23742917.2016.1231523
http://www.cs.cmu.edu/~hannes/diffLinAES.pdf
https://wiki.newae.com/Correlation_Power_Analysis
https://www.its.bldrdoc.gov/fs-1037/dir-017/_2530.htm
https://www.statisticssolutions.com/pearsons-correlation-coefficient/
https://www.statisticssolutions.com/pearsons-correlation-coefficient/
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html
https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/features/partial-reconfiguration.html
https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/features/partial-reconfiguration.html
http://www2.ensc.sfu.ca/~lshannon/file/edward_holomas_11.pdf
http://www2.ensc.sfu.ca/~lshannon/file/edward_holomas_11.pdf
https://www.tdx.cat/bitstream/handle/10803/386416/lacc1de1.pdf?sequence=1&isAllowed=y
https://www.tdx.cat/bitstream/handle/10803/386416/lacc1de1.pdf?sequence=1&isAllowed=y
http://arxiv.org/abs/1809.11156
https://www.xilinx.com/support/documentation/sw_manuals/xilinx10/isehelp/ise_c_fpga_design_flow_overview.htm
https://www.xilinx.com/support/documentation/sw_manuals/xilinx10/isehelp/ise_c_fpga_design_flow_overview.htm

BIBLIOGRAPHY 65

[55] Hardwarebee, “The ultimate guide to fpga design flow,” 2019, https://hardwarebee.com/
ultimate-guide-fpga-design-flow/.

[56] K. Parikh, “Detailed design flow for partial reconfiguration,” International journal of combined
research and development, vol. pISSN, pp. 2321-2241, 03 2014.

[57] Intel, “Intel quartus prime software suite,” https://www.intel.com/content/www/us/en/
software/programmable/quartus-prime/overview.html.

[58] Xilinx, “Vivado design suite,” https://www.xilinx.com/products/design-tools/vivado.html.
[59] L. Semiconductor, “Lattice diamond software,” http://www.latticesemi.com/latticediamond.

[60] K. Morris, “The fpga tool problem,” 2016, https://www.eejournal.com/article/
20161004-opensource/.

[61] N. Instruments, “Fpga fundamentals,” 2019, https://www.ni.com/en-gb/innovations/
white-papers/08/fpga-fundamentals.html#section-1863139369.

[62] Xilinx, “Constraints overview,” https://www.xilinx.com/support/documentation/sw_manuals/
xilinx11/ise_c_using_design_constraints.htm.

[63] EDN, “Fpga constraints for the modern world: Product how-to,” 2016, https://www.edn.com/
fpga-constraints-for-the-modern-world-product-how-to/.

[64] C. Souza, “Third-party synthesis tools free altera’s design resources,” 2000, https://www.
eetimes.com/update-third-party-synthesis-tools-free-alteras-design-resources/#.

[65] K. Morris, “Fpga synthesis showdown,” 2016, https://www.eejournal.com/article/
20160119-synthesis/.

[66] B. E. Nelson, “Third party cad tools for fpga design—a survey of the current landscape,’
in Applied Reconfigurable Computing, C. Hochberger, B. Nelson, A. Koch, R. Woods, and
P. Diniz, Eds. Cham: Springer International Publishing, 2019, pp. 353-367.

[67] E. M. Sentovich, K. J. Singh, L. Lavagno, A. Saldanha, R. K. Brayton, C. Moon, R. Murgai,
H. Savoj, P. R. Stephan, and A. Sangiovanni-Vincentelli, “Sis: A system for sequential circuit
synthesis,” 1992, https://ptolemy.berkeley.edu/projects/embedded/pubs/downloads/sis/.

[68] P. Jamieson, K. B. Kent, F. Gharibian, and L. Shannon, “Odin ii - an open-source verilog
hdl synthesis tool for cad research,” in 2010 18th IEEE Annual International Symposium on
Field-Programmable Custom Computing Machines, 2010, pp. 149—-156.

[69] J. Rose, J. Luu, C. W. Yu, O. Densmore, J. Goeders, A. Somerville, K. B. Kent, P. Jamieson,
and J. Anderson, “The vir project: Architecture and cad for fpgas from verilog to routing,”

https://hardwarebee.com/ultimate-guide-fpga-design-flow/
https://hardwarebee.com/ultimate-guide-fpga-design-flow/
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/overview.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/overview.html
https://www.xilinx.com/products/design-tools/vivado.html
http://www.latticesemi.com/latticediamond
https://www.eejournal.com/article/20161004-opensource/
https://www.eejournal.com/article/20161004-opensource/
https://www.ni.com/en-gb/innovations/white-papers/08/fpga-fundamentals.html#section-1863139369
https://www.ni.com/en-gb/innovations/white-papers/08/fpga-fundamentals.html#section-1863139369
https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ise_c_using_design_constraints.htm
https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ise_c_using_design_constraints.htm
https://www.edn.com/fpga-constraints-for-the-modern-world-product-how-to/
https://www.edn.com/fpga-constraints-for-the-modern-world-product-how-to/
https://www.eetimes.com/update-third-party-synthesis-tools-free-alteras-design-resources/#
https://www.eetimes.com/update-third-party-synthesis-tools-free-alteras-design-resources/#
https://www.eejournal.com/article/20160119-synthesis/
https://www.eejournal.com/article/20160119-synthesis/
https://ptolemy.berkeley.edu/projects/embedded/pubs/downloads/sis/

66

BIBLIOGRAPHY

[70]

[71]

[72]

[73]

[74]

[75]
[76]

[77]

[78]

[79]

[80]

[81]

in Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, ser. FPGA ’12. New York, NY, USA: Association for Computing Machinery, 2012,
p. 77-86. [Online]. Available: https://doi.org/10.1145/2145694.2145708

C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, and B. Hutchings, “Rapidsmith:
Do-it-yourself cad tools for xilinx fpgas,” in 2011 21st International Conference on Field
Programmable Logic and Applications, 2011, pp. 349-355.

N. Steiner, A. Wood, H. Shojaei, J. Couch, P. Athanas, and M. French, “Torc:
Towards an open-source tool flow,” in Proceedings of the 19th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, ser. FPGA ’'11. New York, NY,
USA: Association for Computing Machinery, 2011, p. 41-44. [Online]. Available:
https://doi.org/10.1145/1950413.1950425

C. Wolf, “lcestorm,” http://www.clifford.at/icestorm/.
—, “Yosys: Yosys open synthesis suite,” http://www.clifford.at/yosys/about.html.

B. L. Synthesis and V. Group, “Abc: A system for sequential synthesis and verification,”
http://vlsicad.eecs.umich.edu/BK/Slots/cache/www-cad.eecs.berkeley.edu/~alanmi/abc/.

S. EDA, “Symbiotic eda,” https://www.symbioticeda.com.
C. Wolf, “yosys — yosys open synthesis suite,” https://github.com/YosysHQ/yosys.

R. Chaves, L. Chmielewski, F. Regazzoni, and L. Batina, “Sca-resistance for aes: How
cheap can we go?” in Progress in Cryptology — AFRICACRYPT 2018, A. Joux, A. Nitaj,
and T. Rachidi, Eds. Cham: Springer International Publishing, 2018, pp. 107-123.

T. S. Messerges, “Securing the aes finalists against power analysis attacks,” in Fast Soft-
ware Encryption, G. Goos, J. Hartmanis, J. van Leeuwen, and B. Schneier, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2001, pp. 150—164.

S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi, “Towards sound approaches to counteract
power-analysis attacks,” in Advances in Cryptology — CRYPTO’ 99, M. Wiener, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1999, pp. 398—412.

L. Goubin and J. Patarin, “Des and differential power analysis the “duplication” method,” in
Cryptographic Hardware and Embedded Systems, C. K. Ko¢ and C. Paar, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1999, pp. 158-172.

M. Stéttinger, S. Malipatlolla, and Q. Tian, “Survey of methods to improve side-channel
resistance on partial reconfigurable platforms,” in Design Methodologies for Secure Em-
bedded Systems, A. Biedermann and H. G. Molter, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 63—84.

https://doi.org/10.1145/2145694.2145708
https://doi.org/10.1145/1950413.1950425
http://www.clifford.at/icestorm/
http://www.clifford.at/yosys/about.html
http://vlsicad.eecs.umich.edu/BK/Slots/cache/www-cad.eecs.berkeley.edu/~alanmi/abc/
https://www.symbioticeda.com
https://github.com/YosysHQ/yosys

BIBLIOGRAPHY 67

[82] T. Glineysu and A. Moradi, “Generic side-channel countermeasures for reconfigurable de-
vices,” in Cryptographic Hardware and Embedded Systems — CHES 2011, B. Preneel and
T. Takagi, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 33—48.

[83] P. Yu and P. Schaumont, “Secure fpga circuits using controlled placement and routing,”
in Proceedings of the 5th IEEE/ACM International Conference on Hardware/Software
Codesign and System Synthesis, ser. CODES+ISSS ’07. New York, NY, USA:
Association for Computing Machinery, 2007, p. 45-50. [Online]. Available: https:
//doi.org/10.1145/1289816.1289831

[84] N. Mentens, B. Gierlichs, and |. Verbauwhede, “Power and fault analysis resistance in hard-
ware through dynamic reconfiguration,” in CHES, 2008.

[85] P. Sasdrich, A. Moradi, O. Mischke, and T. Glneysu, “Achieving side-channel protection with
dynamic logic reconfiguration on modern fpgas,” in 2015 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), 2015, pp. 130—136.

[86] N. Bete, F. Saqib, C. Patel, R. Robucci, and J. Plusquellic, “Side-channel power resistance
for encryption algorithms using dynamic partial reconfiguration (spread),” 2018, http://www.
hostsymposium.org/host2018/hwdemo/HOST 2017_hwdemo_1.pdf.

[87] I. Bow, N. Bete, F. Saqgib, W. Che, C. Patel, R. Robucci, C. Chan, and J. Plusquellic,
“Side-channel power resistance for encryption algorithms using implementation diversity,”
Cryptography, vol. 4, no. 2, p. 13, Apr 2020. [Online]. Available: http://dx.doi.org/10.3390/
cryptography4020013

[88] B. Hettwer, J. Petersen, S. Gehrer, H. Neumann, and T. Glneysu, “Securing cryptographic
circuits by exploiting implementation diversity and partial reconfiguration on fpgas,” in 2019
Design, Automation Test in Europe Conference Exhibition (DATE), 2019, pp. 260—263.

[89] P. Sailer, C. Schmittner, and M. Tauber, “Managing the trade-off between security and power
consumption for smart cps-iot networks,” 2019, https://ercim-news.ercim.eu/en119/special/

managing-the-trade-off-between-security-and-power-consumption-for-smart-cps-iot-networks.

[90] K. Wolter and P. Reinecke, Performance and Security Tradeoff. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 135—167. [Online]. Available: https://doi.org/10.1007/
978-3-642-13678-8 4

[91] K. Lemke-Rust and C. Paar, “An adversarial model for fault analysis against low-cost crypto-
graphic devices,” in Fault Diagnosis and Tolerance in Cryptography, L. Breveglieri, . Koren,
D. Naccache, and J.-P. Seifert, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,
pp. 131-143.

https://doi.org/10.1145/1289816.1289831
https://doi.org/10.1145/1289816.1289831
http://www.hostsymposium.org/host2018/hwdemo/HOST_2017_hwdemo_1.pdf
http://www.hostsymposium.org/host2018/hwdemo/HOST_2017_hwdemo_1.pdf
http://dx.doi.org/10.3390/cryptography4020013
http://dx.doi.org/10.3390/cryptography4020013
https://ercim-news.ercim.eu/en119/special/managing-the-trade-off-between-security-and-power-consumption-for-smart-cps-iot-networks
https://ercim-news.ercim.eu/en119/special/managing-the-trade-off-between-security-and-power-consumption-for-smart-cps-iot-networks
https://doi.org/10.1007/978-3-642-13678-8_4
https://doi.org/10.1007/978-3-642-13678-8_4

68 BIBLIOGRAPHY

[92] J. G. J. van Woudenberg, M. F. Witteman, and F. Menarini, “Practical optical fault injec-
tion on secure microcontrollers,” in 2011 Workshop on Fault Diagnosis and Tolerance in
Cryptography, 2011, pp. 91-99.

[93] Xilinx, “Cfglut5 in ultrascale architecture libraries guide ug974,” 2014, https://www.xilinx.
com/support/documentation/sw_manuals/xilinx2014_1/ug974-vivado-ultrascale-libraries.
pdf.

[94] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Robshaw,
Y. Seurin, and C. Vikkelsoe, “Present: An ultra-lightweight block cipher,” in Cryptographic
Hardware and Embedded Systems - CHES 2007, P. Paillier and I. Verbauwhede, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 450—466.

[95] G. Goodwill, B. Jun, J. Jaffe, and P. Rohatgi, “P.: A testing methodology for side-channel
resistance validation, niat,” 2011.

[96] D. B. Roy, S. Bhasin, S. Guilley, J.-L. Danger, D. Mukhopadhyay, X. T. Ngo, and Z. Najm,
“Reconfigurable lut: A double edged sword for security-critical applications,” in Security,
Privacy, and Applied Cryptography Engineering, R. S. Chakraborty, P. Schwabe, and J. Sol-
worth, Eds. Cham: Springer International Publishing, 2015, pp. 248—268.

[97] N. Bete, M. Nakka, F. Saqgib, C. Patel, and R. Robucci, “Implementation diversity and dy-
namic partial reconfiguration for impeding differential power analysis attacks on fpgas,’
2017, http://www.hostsymposium.org/host2017/hwdemo/HOST_2017_hwdemo_25.pdf.

[98] D. C. Keezer and J. Yang, “Biologically inspired hierarchical structure for self-repairing fp-
gas,” in 2017 International Conference on ReConFigurable Computing and FPGAs (ReCon-
Fig), 2017, pp. 1-8.

[99] C. O’'Flynn and Z. Chen, “A case study of side-channel analysis using decoupling capacitor
power measurement with the openadc,” in Foundations and Practice of Security, J. Garcia-
Alfaro, F. Cuppens, N. Cuppens-Boulahia, A. Miri, and N. Tawbi, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 341-356.

[100] Xilinx, “Vivado design suite user guide. synthesis. ug901,” 2017, https://www.xilinx.com/
support/documentation/sw_manuals/xilinx2017_1/ug901-vivado-synthesis.pdf.

[101] B. Verification and S. R. Center, “Command summary. mapping: Luts,” https://people.eecs.
berkeley.edu/~alanmi/abc/abc.htm#_Toc179291839.

[102] S. Cho, S. Chatterjee, A. Mishchenko, and R. Brayton, “Efficient fpga mapping using priority
cuts,” 2007, https://people.eecs.berkeley.edu/~alanmi/publications/2007/tpga07 fast.pdf.

[103] C. Wolf, “abc - use abc for technology mapping,” http://www.clifford.at/yosys/cmd_abc.html.

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug974-vivado-ultrascale-libraries.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug974-vivado-ultrascale-libraries.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug974-vivado-ultrascale-libraries.pdf
http://www.hostsymposium.org/host2017/hwdemo/HOST_2017_hwdemo_25.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug901-vivado-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug901-vivado-synthesis.pdf
https://people.eecs.berkeley.edu/~alanmi/abc/abc.htm#_Toc179291839
https://people.eecs.berkeley.edu/~alanmi/abc/abc.htm#_Toc179291839
https://people.eecs.berkeley.edu/~alanmi/publications/2007/fpga07_fast.pdf
http://www.clifford.at/yosys/cmd_abc.html

BIBLIOGRAPHY 69

[104] Xilinx, “7 series fpgas configurable logic block user guide. ug474,” 2016, https://www.xilinx.
com/support/documentation/user_guides/ug474_7Series_CLB.pdf.

[105] C. Wolf, “Yosys manual,” http://www.clifford.at/yosys/files/yosys_manual.pdf.

[106] ——, “The nextpnr foss fpga place-and-route tool,” http://www.clifford.at/papers/2018/
nextpnr/slides.pdf.

[107] —, “synth xilinx - synthesis for xilinx fpgas,” http://www.clifford.at/yosys/cmd_synth_xilinx.
html.

[108] OnlineDomainTools, “Aes — symmetric ciphers online,” http://aes.online-domain-tools.com/.

[109] Xilinx, “Zynq ultrascale+ mpsoc zcu102 evaluation kit,” https://www.xilinx.com/products/
boards-and-kits/ek-u1-zcu102-g.html#overview.

[110] R. Cofer and B. F. Harding, “Chapter 9 - design constraints and optimization,” in
Rapid System Prototyping with FPGAs, ser. Embedded Technology, R. Cofer and
B. F. Harding, Eds. Burlington: Newnes, 2006, pp. 137 — 154. [Online]. Available:
http://www.sciencedirect.com/science/article/pi/B978075067866750010X

[111] Xilinx, “Zynq ultrascale+ mpsoc processing system ip,” https://www.xilinx.com/products/
intellectual-property/zyng-ultra-ps-e.html.

[112] ——, “Axi reference guide ug761,” https://www.xilinx.com/support/documentation/ip_
documentation/axi_ref_guide/v13_4/ug761 _axi_reference_guide.pdf.

[113] Langer, “lcr hv500-75 near-field microprobe 200 khz to 1 ghz” |https:
/lwww.langer-emv.de/en/product/near-field-microprobe-icr-hv-h-field/40/
icr-hv500-75-near-field-microprobe-200-khz-to-1-ghz/115.

[114] P. Technology, “Picoscope® 6000c/d series,” https://www.picotech.com/oscilloscope/6000/
picoscope-6000-overview.

[115] L. Zhang, W. Hu, A. Ardeshiricham, Y. Tai, J. Blackstone, D. Mu, and R. Kastner, “Examining
the consequences of high-level synthesis optimizations on power side-channel,” in 2018
Design, Automation Test in Europe Conference Exhibition (DATE), 2018, pp. 1167-1170.

[116] S. T. C. Konigsmark, D. Chen, and M. D. F. Wong, “High-level synthesis for side-channel
defense,” in 2017 IEEE 28th International Conference on Application-specific Systems, Ar-
chitectures and Processors (ASAP), 2017, pp. 37—44.

https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
http://www.clifford.at/yosys/files/yosys_manual.pdf
http://www.clifford.at/papers/2018/nextpnr/slides.pdf
http://www.clifford.at/papers/2018/nextpnr/slides.pdf
http://www.clifford.at/yosys/cmd_synth_xilinx.html
http://www.clifford.at/yosys/cmd_synth_xilinx.html
http://aes.online-domain-tools.com/
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html#overview
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html#overview
http://www.sciencedirect.com/science/article/pii/B978075067866750010X
https://www.xilinx.com/products/intellectual-property/zynq-ultra-ps-e.html
https://www.xilinx.com/products/intellectual-property/zynq-ultra-ps-e.html
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/v13_4/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/v13_4/ug761_axi_reference_guide.pdf
https://www.langer-emv.de/en/product/near-field-microprobe-icr-hv-h-field/40/icr-hv500-75-near-field-microprobe-200-khz-to-1-ghz/115
https://www.langer-emv.de/en/product/near-field-microprobe-icr-hv-h-field/40/icr-hv500-75-near-field-microprobe-200-khz-to-1-ghz/115
https://www.langer-emv.de/en/product/near-field-microprobe-icr-hv-h-field/40/icr-hv500-75-near-field-microprobe-200-khz-to-1-ghz/115
https://www.picotech.com/oscilloscope/6000/picoscope-6000-overview
https://www.picotech.com/oscilloscope/6000/picoscope-6000-overview

Appendix A

Verifying Implemented Variants

This appendix section includes results of functional simulations performed on variants of round-
based AES implementation. These variants were generated through Yosys, exported as a netlist
and simulated using Xilinx Vivado. The inputs and expected output of the system are shown
below:

e Key: 2b7e151628aed2a6abf7158809cf4f3c
e Plaintext: 3243f6a8885a308d313198a2e0370734
e Ciphertext: 3925841d02dc09fbdc118597196a0b32

SIMULATION - Post-Synthesis Simulation - Functional - sim_1 - TB_AES _Core

Sources Untitled 3
Q = s + & #)|] QO W @ 9 X = 4 M = 2 4 &
~ [Design Sources (1
v EDIF (1
AES_CORE_MOD7.edif
w = Constraints (1 e CLK
~ = constrs_1 (1 @ RESET
" DPAM_E.xdc
w [Simulation-Only Sources (1
w [osim_1 (1 > B DATA...7
v WHDL (1 e DAT...ADY

~ §ii ¥il_defaultlib (1
® TB_AES_Core.whd
w [Utility Sources
utils_1

Libraries = Compile Order

Figure A.1: Variant Class 1. Yosys generated netlist ’"AES_CORE _MOD?7.edif”.

70

71

SIMULATION - Post-Synthesis Simulation - Functional - sim_1 - TE_AES_Core

Sources
a = = + » £
v Design Sources
~ [EDIF (1

AES_CORE_MODS. edif
~ Constraints (1
v constrs_1 (1
I DPAM_E.xdc
« [Simulation-Only Sources
v sim_1
~ [WHDL (1
v il xil_defaultlib (1
® TB_AES_Core.whd
w [Utility Sources
utils_1

Libraries

Compile ©

Untitled 3

QO W @ @ 2« M = o2 A o

e RESET
e DATA_AVAI

> Mk

10060 ps

Figure A.2: Variant Class 2. Yosys generated netlist ’AES_CORE_MOD8.edif”.

SIMULATION - Post-Synthesis Simulation - Functional - sim_1 - TE_AES Core

Sources
Q T 2 + 4 o
~ [Design Sources (1
~v [EDIF (1

AES_CORE_MOD9.edif
~ [Constraints (1
~ [constrs_1
I DPAM_E.xdc
w [Simulation-Only Sources (1
v sim_1 (1
~ [WHDL (1
v il xil_defaultlib (1
® TBE_AES_Core.vhd
w [Utility Sources
utils_1

Libraries

Compile Order

Untitled 3
O W & o X =

1,000.000 ns

g (
e RESET
e DATA AVAI

> Mk

10000 ps

Figure A.3: Variant Class 3. Yosys generated netlist "AES_CORE_MOD?9.edif”.

Appendix B

Testing Implemented Variants

B.1 Trigger signal

Trigger signal as observed from the scope (the same signal was observed for all variants). Due
to currently limited access to resources, input and output values from the AES core running in the
SDK console are not available and could not be included to this Appendix. Excerpts of the code
loaded through SDK are available below.

2.5 GS/s

File Vertical Timebase Trigger ‘Dlsp|ay Cursors Measure Math Mlm Help ”

-1 B e

Measure P1:phase(C1,C1) P2:mean(C1) P3:min(C1) P4:max(C1) P5:freq(C1) P6:ampl(C1)
value - M7.2mv -448 mv 3776V 3.3603Vv
status A v v

v a v

AVG DCIM
1.00 Vid !“!M MH! 600 q
ofs 125k8 2.508/s/|[Edge Positive

Waiting for Trigger

Figure B.1: Trigger signal observed using an oscilloscope.

72

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

B.2. CODE TO OPERATE THE AES CORE

73

B.2 Code to operate the AES core

/ *
/ *
/ *
/ *

/ *
/ *

/ *

note: this is an excerpt and not complete code */
plaintexts are generated randomly using an LFSR*/
values are written to corresponding registers */

and output is read back from the registers */

t0 = lfsr_step(); //8
tl1 = lfsr_step(); //16
t2 = lfsr_step(); //24
t3 = lfsr_step(); //32
t4 = 1fsr_step(); //40
ts = lfsr_step(); //48
t6 = lfsr_step(); //56
t7 = lfsr_step(); //64

Plain_1 = (uint64_t) t7 | ((uint64_t) t6 << 8) | ((uint64_t) t5 << 16) | ((

uint64_t) t4 << 24) | ((uint64_t) t3 << 32) | ((uint64_t) t2 << 40)

uint64_t) tl1 << 48) | ((uint64_t) tO0 << 56);

AES_BaseAddr_Plain_1 = (uint32_t) (Plain_1 >> 32);

I ((C

Xil_Out32 (XPAR_AES10_0_SOO_AXI_BASEADDR + 32, (uint32_t) (Plain_1 >> 32));

*/
*/

Xil_Out32 (XPAR_AES10_0_SOO_AXI_BASEADDR + 44, (uint32_t)(Plain_2));

// Data written to the core
xil_printf ("Data_In = %x%x%x%x\n\r", AES_BaseAddr_Plain_4,
AES_BaseAddr_Plain_3, AES_BaseAddr_Plain_2, AES_BaseAddr_Plain_1);

.. */

{
/* .. . x/
Xil_Out32 (XPAR_AES10_0_SO00_AXI_BASEADDR + 52, 0x00000001);
data_avail = Xil_In32(XPAR_AES10_0_SOO_AXI_BASEADDR + 52);
//Reading DATA_OQUT
DATA_OUT1 = Xil_In32(XPAR_AES10_0_SO00_AXI_BASEADDR);
DATA_QUT2 = Xil_In32(XPAR_AES10_0_SOO_AXI_BASEADDR + 4);
DATA_OUT3 = Xil_In32(XPAR_AES10_0_SOO_AXI_BASEADDR + 8);
DATA_QUT4 = Xil_In32(XPAR_AES10_0_SOO_AXI_BASEADDR + 12);
xil_printf ("DATA_QUT = %x%x%x%x\n\r", DATA_OUT4, DATA_OUT3, DATA_OUT2,

DATA_QOUT1) ;

/* . . . x/

Appendix C

Yosys Commands

C.1 Modified "add” command

1 /*%*% note: the following is an e

2

3 include "kernel/yosys.h"

4

5 USING_YOSYS_NAMESPACE

6 PRIVATE_NAMESPACE_BEGIN

7

8 // EK: function to add unary cel
, sig_y, is_signed

9 static void add_unary_cell (RTLIL
string name, std::string type
false)

10 {

11 RTLIL::Cell *cell = NULL;

xcerpt and not the complete code *xx*/

ls as per Section 5.1.1 Yosys Manual: name, sig_a

::Design *design, RTLIL::Module *module, std::
, int width_a, int width_y, bool flag_signed_a=

13 name = RTLIL::escape_id(name) ;

14

15 if (module->count_id (name) != 0)

16 {

17 if (module->cells_.count (name) > 0)

18 cell = module->cells_.at(name);

19

20 if (cell == NULL)

21 log_cmd_error ("Found incompatible object with same name in module %s!'!\n",

module ->name.c_str());

23 log("Module %s already has such an object.\n", module->name.c_str());
24 T

25 chlisie

26 {

27 if (type == "$not")

74

28

29

30

32

33

34

35

36

37

38

39

40

41

42

43

44

20

21

22

C.2. MODIFIED SYNTH_XILINX COMMAND 75

/ *
VE:

/ *
/ *

cell = module->addNot (name, module->addWire ((name + "_A"), width_a), module

->addWire ((name + "_Y"), width_y), flag_signed_a, "");

else if (type == "$pos")
cell = module->addPos (name, module->addWire ((name + "_A"), width_a), module
->addWire ((name + "_Y"), width_y), flag_signed_a, "");
*/
*/
else
{

log("Cell type %s not supported or incorrect.", type.c_str());

return;

// log cell addition

log("Added cell %s to module %s.\n", name.c_str(), module->name.c_str());

*/
*/

C.2 Modified synth xilinx command

/*** note: the following is an excerpt and not the complete code *xx/

VE:
/ *

/ *
/ *

/ *

/ *
VE:

/ *

if (check_label ("map_luts")) {
*/
*/
else {
if (nowidelut)
run("abc -luts 2:2,3,6:5" + string(retime 7 " -dff" : ""));
else
run("abc -luts 2:2,3,6:5,10,20" + string(retime ? " -dff" : ""));
¥
run("clean");
*/
*/

during synthesis, logic introduced is preserved by attributes */
by default, writing an EDIF netlist removes them x*/
therefore, the command has been modified to preserve these changes */
if (check_label("edif")) {
if (ledif_file.empty() || help_mode)

run(stringf ("write_edif -attrprop -pvector bra %s", edif_file.c_str()));

*/

Appendix D

Serial-based AES Variants

D.1 Sample C code to generate a Yosys script

Automating and introducing randomization in the variants generated for the serial AES version.

1 // note: this is not a complete representation of the code
2 // details omitted for simplicity

3 int main() {

4 /*x .. L x/

5 RF_cmd_gen (k, fp);

6 Cell_cmd_gen (fp);

7 /% . . . %/

8 int module_pick_KS, module_pick_CL;

9 module_pick_KS = rand()%3;

10 if (module_pick_KS == 1)

11 KS_cmd_gen (k, fp);

12 module_pick_CL = rand()%3;

13 if (module_pick_CL == 2)

14 CL_cmd_gen (k, fp);

15 /* . . . %/

16 fprintf (fp, "cd; synth_xilinx -top AES128 -run :edif;;\n");

17 fprintf (fp, "cd RoundFunction;\n");

18 fprintf (fp, "setattr -set KEEP 1 xdffex r0UT;\n");

19 fprintf (fp, "setattr -set DONT_TOUCH 1 *dffex r0UT;\n");

20 fprintf (fp, "cd;\n");

o1 /* . . . %/

22 fprintf (fp, "synth_xilinx -top AES128 -run edif: -edif ./circuits/
SerialAES_serial_cellmod_Y%d.edif", k);

23 // close the filename

24 fclose (fp);

25 }

26 return O;

27 }

76

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

D.2. SAMPLE SCRIPT TO BE IMPORTED INTO YOSYS

D.2 Sample script to be imported into Yosys

design -reset; //

read_ilang ./circuits/SerialAES.ilang;

hierarchy -check

cd Cell(size=

8);

clear the workspace

-top AES128; // checking design structure and top level entity

// select a submodule to work in

// add an inverter with 8-bit input, 8-bit output, unsigned

add -unary invO $

add -unary invl $

add -unary inv3 §$

add -unary inv4d $

not 8
not 8
not 8

8

not

connect -set invO_A DINO; // set connections for the added cells

connect -set inv1i_A DIN1;

connect -port $verificPmux_7$./circuits/s-aes/Cell.vhd:68$309 \A
connect -port $verificPmux_7$./circuits/s-aes/Cell.vhd:68$309 \B

connect -set DOUT inv3_Y;
connect -port $verific$DOUT_reg$./circuits/s-aes/Cell.vhd:70$313

connect -set inv4_A DOUT;
connect -port $verificPmux_9$./circuits/s-aes/Cell.vhd:69$311 \A inv4_Y;
connect -port $verificPmux_10$./circuits/s-aes/Cell.vhd:69$312 \B inv4_Y;

// prevent synthesis from optimising away the extra logic

setattr -set
setattr -set
setattr -mod

setattr -mod

KEEP
DONT
-set

-set

1 invx*;
_TOUCH 1 inv*;
KEEP 1;
DONT_TOUCH 1;

// execute Xilinx oriented synthesis until saving a netlist

cd; synth_xilinx

-top AES128 -run :edif;

// prevent P&R tool from optimising away the extra logic

cd Cell(size=

setattr -mod
setattr -mod
setattr -set
setattr -set
cd;

8);

-set
-set
KEEP
DONT

KEEP 1;
DONT_TOUCH 1;
1 *
_TOUCH 1 *;

// finalize the synthesis process and output a netlist
AES128 -run edif: -edif ./circuits/SerialAES_cellonly.edif

synth_xilinx

-top

// process the input design

invO_Y;

invl_Y;

\Q inv3_A;

78 APPENDIX D. SERIAL-BASED AES VARIANTS

D.3 List of generated Serial-based AES variants

Table D.1: Serial AES variants generated using randomized scripts

Variant Name Description
randmod FF+INV chains inserted in RoundFunction and ControlLogic modules
cellonly Cell module modified to invert 8-bit values stored in a register (all bits 7:0)
Cell module modified to invert 8-bit values stored in a register (only LSB 0:0)
cellmod v0 o . .
FF+INV chain inserted in RoundFunction
cellmod vi Cell module modified to invert 8-bit values stored in a register (all bits 7:0)
FF+INV chain inserted in RoundFunction and KeySchedule
cellmod v3 Cell module modified to invert 8-bit values stored in a register (bits 3:0)
FF+INV chain inserted in RoundFunction, KeySchedule, and ControlLogic
cellmod v4 Cell module modified to invert 8-bit values stored in a register (bits 5:0)
FF+INV chain inserted in RoundFunction and ControlLogic
cellmod V6 Cell module modified to invert 8-bit values stored in a register (bits 4:0)
FF+INV chain inserted in RoundFunction, KeySchedule, and ControlLogic
lutonly Constraining LUT mapping (max 4-input) during synthesis in RoundFunction, SBox, MixColumn modules
Cell module modified to invert 8-bit values stored in a register (bits 2:0)
lutmod FF+INV chain inserted in RoundFunction, KeySchedule, and ControlLogic
Constraining LUT mapping (max 4-input) during synthesis in RoundFunction, SBox, MixColumn modules

Appendix E

Measurement Results

E.1 Peak Correlation Plots

peak correlation values for all guesses of byte 11

0.15081

i 1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 B1 86 91 96 1001061111161 105131135141 146151156161 166171176181 186191196200 206 210 206221 226 231 236 241 346 251 255
Figure E.1: Peak Correlation Values for Variant Class 1

79

80

APPENDIX E. MEASUREMENT RESULTS

a1

o.0e

D.oe

o

0.0z

0.8

oo

0.06

0.8

0.

0.03

0.2

0.

a

peak correlation values for all guesses of byte 11

- 0.16122

IR 19 B VI T A P 1|5 PP PPORTY Y TV, o

1 & 11 16 21 26 31 36 41 46 51 56 61 66 71 76 Bl BE 91 96 101 106111116121 126131 136 040 S46 50 A5G 1R 166171176181 180190 106 200 206 211 216 221 226 231 236 241 246 251 256

Figure E.2: Peak Correlation Values for Variant Class 2

peak correlation values for all guesses of byte 11

- 0.07364

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 B1 B6 91 96 101 106 111 116 121 176 131 136 141 146 151 156 161 166 171 176 161 186 191 196 201 206 211 216 271 226 231 236 241 246 251 256

Figure E.3: Peak correlation values for all variants shuffled for DPR emulation

E.1. PEAK CORRELATION PLOTS 81

peak correlation values for all guesses of byte 11
03

0.28
- 0.27634
0.26

0.24

022

a2

038 r

046

0.4

D12
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 BE6 91 95 101 106 111 116 121 126 131 136 141 146 151 156 161 166 171 176 181 186 191 196 201 206 211 216 221 226 231 236 241 246 251 256

Figure E.4: Variant Class 1 peak correlation values for 250 traces
Maximurm CPA values for guessed byte values for a given number of traces
[

035

03
035
0z
015
01
0.05
1]

Byt= 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte & Byt 7 Byte B Byt= 2 Byte 10 Byte 11 Byte 12 Byte 13 Byte 14 Byte 15
VC1_250 mVC1_750 mvVCl_1250 mWvC2_250 mVC2_750
mVC2_1250 w@WC2_1750 mWC3_250 mVC3_750

Figure E.5: Peak CPA values for all bytes and number of individual traces used

82 APPENDIX E. MEASUREMENT RESULTS

E.2 Code excerpt for key byte guessing

cpa_yosys_clean.py X

emik > Downl » CPA-2 » cpa_y clean.py

for vnum ranoald _suctoaeesyt

hyp[vnum] = HW[intermediate(ciphertext[vnum] [11], kguess) ~ {ciphertext[vnum] [7])]
np.mean(hyp, dtype=np.float&d)
np.mean(traces, axis = @, dtype=np.floaté4)

or cnum range (@, numtraces}:
hdiff = (hyplcnum] - meanh)
tdiff = traces[cnum, :] - meant

sumnum = sumnum + (hdiff * tdiff)
sumdenl = sumdenl + (hdiff * hdiff)
sumden2 = sumden2 + (tdiff # tdiff)

cpaoutput [kguess] = (sumnum) / np.sqrit(sumdenl % sumdenz)
maxcpalkguess] = max{abs(cpaoutput [kguess]))

cpa_file = open("/Users
for cpanum range (@,256)
cpa_file.write(" n"%maxcpa [cpanum] }

bestguess
] ' %hestguess)
print{“Last Roun 3 " %last_rkey[11])

7 OQUTPUT TERMINAL DEB

amil@Emilo MasBank Bra o8 fusr/local/bin/python3 fUsers/emik/Downloads/CPA-2/cpa_yosys_clean.py
3est key-byte guess: 85
Last Round Key-Byte: 85

CILAACIL LS=FdLDUUR=r U ~ & I

Figure E.6: Highlighted sections refer to the Hamming weight model, calculation of maximum
CPA values, and the observed output for the correct guess.

Analysis for All Bytes

Appendix F

The Table (refer to Figure for visual representation) shows PCC values for correctly
guessed byte values when using 10000 traces for a correlation power analysis attack.

Table F.1: PCC for all bytes for each variant at 10000 traces

Configuration

Byte# ve1 T vez v%3 vciaz | an | hverage perbyte
Byte O | 0.207 | 0.140 | 0.254 | 0.064 | 0.061 0.145
Byte1 |0.194|0.128 | 0.275 | 0.049 | 0.062 0.142
Byte2 | 0.149 | 0172 | 0.295 | 0.057 | 0.057 0.146
Byte3 | 0.178 | 0.181 | 0.193 | 0.064 | 0.072 0.138
Byte4 | 0.156 | 0.145 | 0.213 | 0.070 | 0.064 0.130
Byte5 | 0.152 | 0.155 | 0.241 | 0.060 | 0.068 0.135
Byte6 | 0.194 | 0.180 | 0.248 | 0.050 | 0.051 0.145
Byte7 | 0.169 | 0.187 | 0.231 | 0.061 | 0.066 0.143
Byte8 | 0.156 | 0.171 | 0.273 | 0.050 | 0.063 0.142
Byte9 | 0.164 | 0.156 | 0.223 | 0.060 | 0.065 0.134
Byte 10 | 0.197 | 0.169 | 0.220 | 0.063 | 0.059 0.141
Byte 11 | 0.151 | 0.161 | 0.243 | 0.058 | 0.074 0.137
Byte 12 | 0.206 | 0.153 | 0.225 | 0.060 | 0.061 0.141
Byte 13 | 0.135 | 0.167 | 0.231 | 0.050 | 0.062 0.129
Byte 14 | 0.218 | 0.179 | 0.254 | 0.073 | 0.069 0.159
Byte 15 | 0.170 | 0.221 | 0.238 | 0.061 | 0.070 0.152
average | 0.175 | 0.167 | 0.241 | 0.059 | 0.064

minimum | 0.135 | 0.128 | 0.193 | 0.049 | 0.051

maximum | 0.218 | 0.221 | 0.295 | 0.073 | 0.074

83

Appendix G

Expanded Secret Key for AES-128

Table G.1: All round keys derived from the secret key used for measurements

» Round | Round | Round | Round | Round | Round | Round | Round | Round
Key: | Initial Last
#1 #2 #3 #4 #5 #6 #7 #8 #9

Byte 0 | OXFF | OxE8 | OxAD | 0x09 | OxE1 | OxE5 | 0x71 OxE9 | 0x96 | 0x8B | 0xD6

Byte 1 | OXFF | OXE9 | OXAE | OXxOE | Ox6A | OxBA | 0xDO | OxOD | 0x33 | OxFO | Ox0A

Byte2 | OXFF | OXE9 | OXAE | 0x22 | OxBD | OxF3 | Ox7D | 0x20 | 0x73 | Ox3F | 0x35

Byte3 | OXFF | OXxE9 | 0x19 | 0x77 | Ox3E | OxCE | 0xB3 | 0x8D | 0x66 | 0x23 | 0x88

Byte 4 | OXFF | 0x17 | OxBA | 0xB3 | 0x52 | 0xB7 | 0xC6 | Ox2F | 0xB9 | 0x32 | OxE4

Byte5 | OxFF | 0x16 | OxB8 | 0xB6 | OxDC | 0x66 | O0xB6 | OxBB | 0x88 | 0x78 | 0x72

Byte 6 | OXFF | 0x16 | 0xB8 | Ox9A | 0x27 | 0xD4 | OxA9 | 0x89 | OxFA | 0xC5 | OxFO

Byte 7 | OXFF | 0x16 | OxOF | Ox78 | O0x46 | 0x88 | 0x3B | OxbB6 | OxDO | OxF3 | 0x7B

Byte 8 | OXFF | OxE8 | 0x52 | OxE1 | OxB3 | 0x04 | OxC2 | OxED | 0x54 | 0x66 | 0x82

Byte 9 | OXFF | OxE9 | 0x51 OxE7 | 0x3B | Ox5D | OxEB | 0x50 | OxD8 | OxAO0 | 0xD2

Byte 10 | OXFF | OxE9 | O0x51 | OxCB | OXxEC | 0x38 | 0x91 0x18 | OxE2 | 0x27 | 0xD7

Byte 11 | OXFF | OXxE9 | OxE6 | Ox9E | OxD8 | 0x50 | Ox6B | OxDD | OxOD | OxFE | 0x85

Byte 12 | OXFF | O0x17 | 0x45 | OxA4 | 0x17 | Ox13 | OxD1 | Ox3C | 0x68 | OxOE | 0x8C

Byte 13 | OXFF | 0x16 | 0x47 | OxAO | Ox9B | O0xC6 | 0x2D | 0x7D | OxA5 | 0x05 | 0xD7

Byte 14 | OXFF | 0x16 | Ox47 | 0x8C | O0x60 | O0x58 | 0xC9 | O0xD1 | 0x33 | Ox14 | OxC3

Byte 15 | OXFF | 0x16 | OxDO | Ox6E | O0xB6 | OxE6 | Ox8D | 0x50 | Ox5D | OxA3 | 0x26

84

	Summary
	Introduction
	Background
	Countermeasures to CPA
	Proposed Variants
	Proposal Evaluation
	Conclusion
	References
	Verifying Implemented Variants
	Testing Implemented Variants
	Yosys Commands
	Serial-based AES Variants
	Measurement Results
	Analysis for All Bytes
	Expanded Secret Key for AES-128

