UNIVERSITY OF TWENTE.

Faculty of Electrical Engineering,
Mathematics & Computer Science

The effect of writing and
transmitting SD card data
on the consistency of
SD card write performance

Robbert Willem Krawinkel

. B.Sc. Thesis
June 2020

~ Supervisors:
=] prof. dr. ir. L. Abelmann
' ir. M. Welleweerd

ir. E. Molenkamp
4 Robotics and Mechatronics Group

' Faculty of Electrical Engineering,
Mathematics and Computer Science

University of Twente

P.O. Box 217

7500 AE Enschede

The Netherlands

Abstract

In this paper, we study the effect of writing data to an SD card over SPI and transmitting that
wirelessly on the consistency in write performance. Our prime objectives are to determine if
the performance while writing to an SD card can be predicted on both throughput and latency
and what the effect is of running an HTTP SD web server in parallel to it using the ESP32
microcontroller dual core functionality. We demonstrate that there are peaks in SD card
write time of at minimum 50 ms/100B that are unpredictable in both height and occurrence
and can increase write time by 1500%, it is also demonstrated how the general throughput
can be increased through a variety of tests. Finally, it is shown that an HTTP SD web server
running in parallel hurts write performance by 12% and how its wireless transfer speed can
be maximized when a file write is happening simultaneously. These results can be directly
applied to the engineering of a performance-optimized SD-based storage solution and an
HTTP SD web server that can run separately or concurrently.

Contents

Abstract

1 Introduction
1.1 Requirements

2 Theory
2.1 Datasize
2.2 SDWebServer
2.3 Parallelprocessing e
2.4 SDtransferspeed L

\)

© 0o o~ b

5

6

Methods

3.1 Testsetup o o
3.2 Parallel performance (impact)
3.3 SDtransferspeed

Results

4.1 Parallelprocessing e e
42 SDtransferspeed
4.3 OVervIieW o e

Discussion

Conclusions

References

Appendices

A SD consistency function

13

14
16

18
18
21
34

36

39

41

42

Chapter 1

Introduction

The MagOD2 measurement system is a magnetic optical density meter dedicated to the
analysis of magneto-tactic bacteria. The system uses an ESP32 microcontroller with built-
in WiFi connection and an SPI controlled micro SD card. Currently, measurement data is
saved to the SD card, measurements are done in sections called recipes and are saved to
the SD card as a file per recipe. To ease the operation of the MagOD2 system it would be
ideal if the SD card would be accessible over WiFi. The ESP32 has a secondary processing
core which could, in theory, take care of this task. However, the WiFi capabilities should
not interfere with the measurements done, meaning the system should perform reliably and
consistently. It is known that in general, flash storage has some caveats regarding consis-
tent performance. However, the effect in this particular scenario was unknown. Therefore
further research was required into the consistency of writing data to the SD card itself and
the effect that running code in parallel on a secondary core has on the primary core its mea-
surement task. Resulting in the question; what is the effect of writing data to an SD card and
transmitting that wirelessly on the consistency in write performance? This reports discusses
the measurement of performance of the SD card in various scenarios to attempt to identify,
and isolate the largest inconsistencies in write performance of the SD card. Also, the effect
of running parallel tasks on the ESP32 is quantified in both a bare calculation and more
representative web server scenario.

1.1 Requirements

When designing an implementation for the WiFi accessible SD card for the MagOD2 mea-
surement system there are design constraints to keep in mind. The most relevant options

are listed in the MoSCoW diagram in table 1.1.

Table 1.1

MoSCoW diagram showing the importance of different requirements for a SD web server
running on the ESP32 microcontroller

Must

Should

Could

Won't

Read measurement
data over WiFi

Be able to read data
from the SD card

Work with current
MagOD2

Not affect the
measurements in any
way

Perform consistently
and reliably

Be opensource

Transmit data per
recipe

Transmit data per day

Not lose data due to
transmission

Transmit data via
network router (no
WiFi direct)

Have a commandline

like interface

Have sufficient range
to transmit the data
wirelessly

Transmit live data

Transmit data via a
direct WiFi connection

Have a GUI

Work with MagOD1

Replace the
functionality of the
display

1.1.1 Datasize

In the current implementation of the MagOD2 system, the measurement data is saved locally
on an SD card. The data for each measurement is saved as one or multiple . csv files(s),
with each file containing one entry or line per measurement done. Every measurement con-
sists of 13 different data points, or columns in the . csv file. Each data point is saved with a
certain accuracy, depicted by the number of decimals. On average a 1000 line file is 82kB
in size, meaning that there are on average, 82 B used per line. That includes the data, all
the required commas to separate the values and the characters for specifying the end of the
line and starting the next (CR, \r, carriage return and LF, \n, line feed). In order to allow
expansion of the resolution or the number of data types in the future. It will be assumed from
now on that the data size of one measurement is saved as 100 B.

1.1.2 Datarate

A collection of measurements with its settings is known as a recipe, takes about 2 min to
execute. Measurements can be done at frequencies between 8 Hz and 860 Hz (as specified
by the recipe), every measurement results in one line of data in the final data file. The size
of a single line is 100 B so the wireless data rate should at minimum be equal to or higher
than 86 kBs ! when transmitting simultaneously to the measurements.

When transferring after an entire day, it is assumed that the 8 Hz measurement rate is
used, that totals to about 7 - 10° measurements per day. If we wish to transfer that infor-
mation within 10 min that would require a datarate of 117kBs~! (again assuming 100 B per
measurement).

Combined this means that if the achieved data rate is above 117kBs ! all the required
functionality could be fulfilled. According to the documentation of the ESP32 microcontroller,
the maximum attainable speed when using the TCP protocol is 20 Mbits—! which equals
20/8 = 2.5 MBs~! = 2500kB s~! [1]. Meaning this requirement should be attainable judging
by the Wi-Fi connection.

Chapter 2

Theory

2.1 Datasize

The data that is saved to the SD card is not the same as what is measured or stored tem-
porarily in the RAM of the microcontroller after the measurement. The microcontroller can
save everything in a multitude of different data formats. The most important formats are
listed in Table 2.1. The 13 data types that are saved on the SD card are also represented
by these data formats. Specifically, the used data formats for the different data types can be
found in Table 2.2.

The data can be sent in two different formats; as it is currently saved on the SD card, or as
the raw data formats in which the data is stored. Both have advantages and disadvantages
that are discussed below. But first, the differences between the two will be highlighted.

As an example, 7 is used as the value that is to be stored. Saving it in a double
dataformat (8 B, 64 bit), it can be represented as

m(double) = 501000000 00001001 00100001 11111011 01010100 01000100 00101101 00011000
= 0x400921FB54442D18 = 3.14159265358979311599796346854.

This is the most accurate representation of = using the double format that is possible.
Saving this double to the SD card with let’s say 7 digits would result in 3.141592 being saved.

Table 2.1
Datasizes of various dataformats on the ESP32

Type Size (bytes)

Char
Int
Short
Long
Float
Double

(o R S R N

Table 2.2
Data as it is stored on the SD card. In order to decrease the total table size the shorthand
nx s used to indicate that n variables with the same type are saved consecutively

Name Time 6x V Temperature oD LED type Loop 3x Vi, Sum
Format unsigned long 6x double double double int int 3x double
Bytes 4 6-8=48 8 8 4 4 3-8=24 100

Numbers in text form are represented through the use of the ASCII table, in this table, each
character is represented by a single byte. This byte can tell a computer which character to
display and allows humans to more easily interpret data. After all, a binary string or a set
of hexadecimal characters are not very easy to read. To save 3.141592 to the SD card in a
readable format (through the ASCII table) requires 8 B, 7 for the digits and 1 for the decimal
point. The double data format also uses 8 B but has a much higher resolution of 30 digits
compared to the 7 that are being saved now. However, if the binary string was written to
the SD card without conversion through the ASCII table the following string would appear
once the file is opened: @ [HT] !GTD-[CAN] (both [HT] and [CAN] are what are known as
control characters, these are not actual characters). This happens because the computer
will assume the file to be in the ASCII format and represent the bytes in such a way.

SD formatted data

The way the data is currently stored on the SD card is readable by simply opening the
.csv files in any spreadsheet editor like Excel. This means that it is easy to interact with.
However, by representing the values as readable text, either resolution is lost, or the file size
increases significantly. An increase in file size would require a higher data rate to have the
same amount of information transferred in the same amount of time.

Raw dataformats

By transferring the data that is located in ram on the microcontroller in a raw, non-readable
format. The data can be represented in a more efficient manner, minimizing data size, while
maximizing the resolution. The resolution that is transferred might even be higher than that
of the sensors that are used, however in any case, no resolution is lost.

Chosen format

As the extra resolution that could be provided by the raw data formats was not required for
the use of the MagOD2 system, the preference was given to ease of use that is brought by
saving the data in readable CSV files.

Table 2.3
HTTP commands that the SDWebServer can receive by default

HTTP URL Result

request

GET http://[address]/list Returns the content in the folder specified by the dir
?dir=/data argument

GET http://[address]/data Retrieves the file specified by the URI
/filel.txt

PUT http://[address]/edit Creates a new folder or empty file with the name and
?dir=/dataNew location specified by the argument

DELETE http://[address]/edit Deletes the file or folder specified by the argument
?dir=/data/filel.txt

POST http://[address]/edit Uploads a file specified in the body of the HTTP command
?dir=/data/file2.txt (not listed here) to the file specified by the argument,
creating or overwriting it if necessary

2.2 SDWebServer

In the example sketches that come with the ESP32 libraries for the Arduino IDE, there is an
example called sbWebsServer.ino. This is a simple HTTP server that can interface with a
connected SD card to allow the contents of the SD card to be accessible through the WiFi
connection. As this is a very good starting point for what is, in essence, a large portion of
the original design assignment, the workings of this example will be explored to be able to
grasp what is going on and why choices are made.

In the basis a simple HTTP server is used, an HTTP server can receive different types
of requests; GET, PUT, POST and DELETE for example. Each of these types can be
used while requesting a certain URI with any arguments added to it. The URI is any-
thing after the initial web address or IP equivalent. So in the case that the entered URL
is: 192.168.1.1/11ist, the /1ist portion is what is known as the URI. Arguments can
be added to the URL by appending a question mark followed by the argument, for example,
192.168.1.1/1ist?dir=/files. The combination of these three options; request type,
URI and arguments can be used to request a variety of things from the HTTP server. In this
example, the URI is used to set a function and either the URI or the arguments are used to
set which folder or file they should act upon. Finally, the type of request determines what is
done to the specified file specifically. Some examples are listed in table 2.3.

A downside to this approach is the fact that only the HTTP GET commands can be exe-
cuted by entering the URL in the address bar of a web browser, for the other types of HTTP

6

O N O OB~ WO =

—_ i =
W N = O ©

requests another way to transmit data is required. This can be done through for example a
simple MATLAB or Python sketch. In order to simplify operation, as many commands should
be HTTP GET commands to allow basically full operation through the address bar only. To
simplify even further, the URI should always be used to specify the location. This could
both be the location that should be read from or the location in which something should be
created. Everything else can be handled using arguments to specify the operation that is
desired on the specified location. The only operation which is not possible this way is upload-
ing a file, an HTTP POST request is required for this in which a file is attached to the request.

Uploading and downloading files to and from the SD card using the HTTP web server
are done in a similar fashion. In particular, the reading from the SD card will be elaborated
on. When the HTTP server receives a request of the correct format, in this case for a file
download, it asks to stream the file:

server.streamFile (dataFile, dataType)

server is a variable of the webserver type. Looking into the respective header file the
streamF1ile function can be found:

template<typename T>

size_t streamFile(T &file, const Stringé& contentType) {
_streamFileCore(file.size (), file.name (), contentType);
return _currentClient.write (file);

}

At the very bottom, it returns the value from the write function, what is returned is ac-
tually the number of bytes that have been transmitted. _currentClient is of the type
WiFiClient where the write function can be found in the respective header file:

size_t WiFiClient::write(Stream &stream)
{
uint8_t + buf = (uint8_t *)malloc (1360);
if ('buf) {
return 0O;
}
size_t toRead = 0, toWrite = 0, written = 0;
size_t available = stream.available();

while (available) {
toRead = (available > 1360) ? 1360 : available;
toWrite = stream.readBytes (buf, toRead);
written += write (buf, toWrite);

avalilable = stream.available();

7

14

}

15 free (buf);
16 return written;
171}

Here 1360 B are preallocated, while the file is still available, or in other words, while the
end of the file has not been reached yet. It reads either 1360 B or else how many of are left
in the file from the SD card. Next, it writes the buffer to the HTTP stream. This way the entire
file is sent in 1360 B long sections. Why 1360 B was chosen and if it is the optimal size for
the fastest file transfer has not been determined.

File uploading to the SD card is handled in mostly the same way, with obviously the
HTTP stream buffer being the input and the SD card being the output. In this case, it writes
in blocks of 1436 B.

2.3 Parallel processing

The ESP32 microcontroller has two separate cores and runs a modified version of the
FreeRTOS operating system known as ESP-IDF FreeRTOS [2]. CPU 0 or PRO_CPU han-
dles the WiFi, Bluetooth and peripherals like SPI, 12C and the ADC, while CPU 1 or APP_CPU
can be used for application code [3]. Both cores share the same memory meaning that they
can perform tasks interchangeably. The ESP32 can be programmed using the Arduino IDE,
in which case by default only APP_CPU is used for executing code in the main loop and
setup of the code. They are executed by what is known as the LOOPTASK, a task that is
created by default through use of the Arduino IDE and is pinned to run on APP_CPU. Tasks
can also be created manually, they allow a user to have the microcontroller execute multiple
tasks on each processor core. Doing so it is also possible to assign a task to PRO_CPU
essentially creating the possibility to run two tasks mostly independently.

Hypothetically it would make sense if tasks run on PRO_CPU would run slower than on
APP_CPU assuming any of the features listed above are used in this or any other task. It
would also make sense that when tasks are run on both cores at the same time both tasks
would have a performance penalty as they are using the same memory.

When running a task pinned to a core, the CPU needs time to tailor to other tasks running
on that core as well, one of these tasks is the IDLE task. If the IDLE task is not run within the
set timeout period it will cause a watchdog timeout rest, causing the ESP32 to reboot. This
is not an issue when running code in the main loop as it has the watchdog timer disabled
by default when using the Arduino IDE. The watchdog timer is in place to make sure that
one task is not holding up the entire system which may have more than one task running.
To circumvent this there are multiple options, the function vTaskbDelay () ; suspends the
currently running task for a set amount of time. In this time other tasks such as the IDLE task

8

can be run, preventing a reset. Another option is changing the priority of the tasks, the IDLE
task has a priority of 0, the lowest possible. By also setting your task to have a priority of 0
the CPU can alternate between those two tasks. Which will inevitably slow down the custom
task. There is also the yield () ; function, which will suspend the current task and allow a
higher priority task to run. This will not work for the IDLE task as that will always have the
lowest priority and therefore never be higher. In any case, by keeping the watchdog active,
some performance impact will always be measurable by having to tailor to the IDLE task. In
return, the watchdog will guarantee that the code is not stuck in a loop causing the program
to halt.

2.4 SD transferspeed

SD cards are in essence flash chips with an integrated microcontroller managing the filesys-
tem, the interface with the outside world and access to the flash chip. SD cards can be
formatted using multiple filesystems; NTFS, exFAT and FAT32 to name a few on the Win-
dows operating system. As FAT32 is the default for SD cards that are equal or smaller than
32 GB, it will be assumed as the used filesystem for now. When formatting an SD card there
is an option to change the ’allocation unit size’ or ’cluster size’, these refer to the sizes of
memory blocks on the SD card. When reading or writing to a FAT32 system it is accessed
per cluster, a single file can span just a single cluster or be spread over multiple clusters if
the file is too big to fit in a single cluster.

SD interfaces

SD cards can be accessed in two different modes, the default SD mode and the alternate
SPI mode. While the SPI mode is much easier to implement it does also have its downsides.
For example;

"The disadvantage is the loss of performance of the SPI mode versus SD mode (e.g.
Single data line and hardware CS signal per card).” [4]

and

”[In case of SDHC and SDXC cards in SPI mode] partial block read/write operations are
also disabled.” [4].

Both are referring to a reduction in performance when using the SPI mode. This can
partially be explained by looking at the pinout of the two modes. Where in SPI mode the
SD card has one dedicated pin for data input and one for output (which are never used si-
multaneously), SD Mode allows up to 4 pins for both input and output in parallel. Which if
everything else is kept the same would allow a factor 4 higher throughput in comparison to
SPI mode. Moreover, the speed of the SPI bus is determined by the clock speed that the
used microcontroller, in this case, the ESP32, can reach on the SPI clock.

According to the SD card association Class 4 and 10 SD cards can reach 4MBs~! and
10 MBs~! respectively [5]. However, from the SD card specifications: "As opposed to SD
mode, the card cannot guarantee its Speed Class. In SPI mode, host shall treat the card
as Class 0 no matter what Class is indicated in SD Status.” [4]. Meaning that even though
the classes of the different SD cards indicate the attainable performance in SD mode, this
performance can not be guaranteed when the SD cards are being accessed over SPI.

From the SD card specifications it can be read that in SPI mode;

"In the case of SDHC and SDXC cards, block length is fixed to 512 bytes” [4]
In this case block length is the size of data which can be read in one operation.

By default when setting up the SD card using SPI the SPI bus speed is set to 4 MHz,
in the initialization a higher frequency can be given. The ESP32 will, in that case, use the
closest lower frequency possible. It is limited by the onboard crystal and divisions of that
frequency meaning that not simply all frequencies are possible. [6]

Cluster and buffer size

The buffer size is the size of the buffer variable on the microcontroller used to store the
results of a read operation. If this is smaller, more read cycles are required to read a file
with set size. The allocation size is the size of one memory block on the SD card, files can
occupy just one block or span multiple depending on the file size.

Flash chips

Flash consists of planes, blocks, and pages (from large to small). Write and read operations
happen on a page level but erase happens on a block level. Erasing also takes an order of
magnitude more time than a read or write. Erasing also hurts the lifetime of the flash chip
as it has a limited amount of erases and writes. This is why if a set of data in a page is to be
changed, its newer version is simply written to another page and the old page is marked as
invalid to be eventually cleaned up. [7]

10

The management of the flash chip for distributed writing and clean up is known as the
flash translation layer (FTL). In short, the FTL can be seen as having the following tasks: [8]

1. Write updated information to a new empty page and then divert all subsequent read
requests to its new address (logical block addressing)

2. Ensure that newly-programmed pages are evenly distributed across all of the available
flash so that it wears evenly (wear levelling)

3. Keep a list of all the old invalid pages so that at some point, later on, they can all be
recycled ready for reuse (garbage collection)

Logical block addressing (LBA) is used to make the change in the location of data on
pages, it is invisible to the user. If the user requests dataset A, LBA will make sure to access
the correct page on which this dataset is stored, which could be a different location than
before without the user knowing.

Wear levelling is the act of writing data to different blocks to spread out the load over the
entire flash chip. The issue is with blocks that contain data that rarely changes. To make
sure the chip wears evenly these should be moved such that their block can also be erased
and reused. But moving data adds writes and with it more wear. More aggressive wear lev-
elling thus causes more wear and has a higher performance impact, less aggressive wear
levelling causes hot and cold spots. The balance between these two extremes is key to a
good wear levelling scheme, it is up to the manufacturer of the flash controller to implement
this.

Through the use of garbage collection, blocks containing invalid pages are erased. The
non-invalid pages need to be moved to a different block before erasing as otherwise data is
lost. There needs to be a balance between how many pages need to be relocated and how
many are invalid. Moving pages requires writes, taking time and causing wear.

In addition, each flash die (or plane) can only perform one operation at a time. So while
erasing (which takes a long time) no data can be read or written to the same plane. Opera-
tions will be queued. For multi-level cell (MLC) the read time is =~ 50 ps and the erase time
is &~ 3ms. So read operations could be slowed by 60x randomly if an erase is taking place
in between. Background garbage collection (BGC) happens without effect on 1/0O operations
from the user, resulting in predictable I/O times. If more data is being changed than BGC
can keep up with user I/O operations will have to wait for the background tasks to complete.
This is known as active garbage collection (AGC) and is bad for latency and performance.
Once the buffer zone of overprovisioned space is used completely the FTL will switch to
AGC until enough buffer room is cleared again and BGC can kick in again. [9]

11

MB/s

Figure 2.1

Write speed of a commercial MLC (a) and SLC (b) SSD at two different write loads using
512 kB files. Both SSDs exhibit a pattern of dips in write speed whose frequency increases
as the load on the drive increases. [11]

270
260y o . ER A A 5
250 =AWl o
2 240 i \i - ¥
m AAA pbb
S 2304, daa M4 R, 40 0, a0, o0 st 404 MY M 4
10 A] VA r 8 T AT TAY i N 1 A
220 %7 Ry AN A7 F A A AT Y
i X K X XK X Xy Y i X
210 | X i ¥k
200
0 10 20 30 40 50 60
Time (Sec) Time (Sec)
40% Write —B— 80% Write -l 40% Write —HB— 80% Write --lw-

(@) (b)
However, even if no erases occur between reads or writes;
"Some cards may require long and unpredictable times to write a block of data” [4]
as

“The responsiveness of flash memory cells typically changes over time as a function of
the number of times the cells are erased and re-programmed.” [10].

In conclusion, a flash chip has a lot of tasks happening in the background which are not
visible for the user. Performance is dependent on both foreground tasks and background
tasks meaning one can not simply be ignored when comparing performance.

Looking at the write performance of commercial single-layer cell (SLC) and MLC type
SSDs in figure 2.1, the effect of the FTL becomes obvious. Rhythmic dips in write speed
indicate the background processes that are running and have to run more frequently if data
is written to the drives faster.

Worst case

In order to approximate the maximum time a write of a set amount of bytes would take, it is
assumed that for every byte written a block erase has to take place. If 100 B are written and
a block erase takes =~ 3 ms, this would take 300 ms for just the erases to happen. In this case,
it is assumed that all of the pages were invalid and none of them have to be moved before
the erase. Without knowing the number of pages within a block it is impossible to calculate
what the actual worst-case would be. Also, the write time is assumed to be negligible in
comparison to the erase time.

12

Chapter 3

Methods

3.1 Test setup

All tests were done on the same setup consisting of a breadboard mounted ESP32 with an
SPI connected micro SD cardholder. The setup can be seen in figure 3.1. The connections
between the ESP32 and the SD card are described in table 3.1. Everything is powered over
the USB connector on the ESP32, the 5V from the USB connector is stepped down to 3.3V
using an onboard regulator, this same 3.3V line powers both the ESP32 and the SD card.

Figure 3.1
Test setup showing the ESP32 microcontroller and micro SD card holder attached and
interconnected on a breadboard

13

0O N O OB~ WD =

11
12
13

Table 3.1
Description of the connections between the ESP32 microcontroller and the SD card

ESP32 SD card
3v3 Vce
GND GND

D5 (CS) DAT3 (CS)
D18 (SCK) CLK (SCK)
D19 (MISO) DATO (DO)
D23 (MOSI) CMD (DI)

3.2 Parallel performance (impact)

To investigate the effect of using both cores a test script was designed that can do simple
calculations not using any of the special features mapped to PRO_CPU. The execution time
can be compared between both cores and both cores simultaneously. Separately a different
test file was created to benchmark the performance of SD and WiFi access on both cores.
The effect of using the SD card on both cores at the same time will also be investigated.

3.2.1 Basic performance

By doing a repeatable calculation the performance of both cores can easily be evaluated.
The code that was ultimately used can be found below:

float tl1;
int t2;
int t3;
void artificialLoad () {
for (long i = 0; 1 < 1000; i++) {
for (long J = 1; j < 1000; J++) {
tl = 5000.0 % ij;

£t2 = 150 = 1234 * 1i;
t3 = § % 554 ;

It performs fairly simple operations with type conversions but does so 1 million times. The
time it took to execute this function was timed using the mi11is () function, this returns the
number of milliseconds passed since the start of the program, by comparing this number
before and after the execution time can be deducted. The function xPortGetCoreID ()

14

returns the core on which the code is running, using this it was possible to determine on
which core the calculation was actually run. And finally xTaskCreatePinnedToCore could
be used to create a new task separate from the LOOP task that was pinned to a certain core,
in this case, that would be CPU 0 or PRO_CPU.

3.2.2 Application specific performance

Next in order to stimulate the access of the SD card and the WiFi communication, the
SDWebServer.ino sketch that was discussed in section 2.2 was taken as a basis. As
a repeatable test a 1 MB file stored on the SD card was downloaded through MATLAB 10
times and the transfertime per file as reported by MATLAB was saved to compare. As a
baseline test the bare sbwebServer. ino sketch was used. For the measurements where
any of the tasks was pinned to a core a vTaskDelay (); of 5ms was inserted to prevent
the watchdog timeout discussed in section 2.3. Next a simulation of the MagOD2 system
was designed, the key functionality that could have an effect on the performance of the WiFi
transfer is the periodic writing to the SD card of the measurement data. With a frequency
of 8 Hz a file on the SD card is opened, a single line of measurement data is added before
the file is closed again. In the simulation this single line is 100 B in size and built up in the
following way:

Recorded write time 2B

5 constant characters written 16 times 80 B

16 commas to separate the values 16B

2 characters to indicate the end of the line (\xr\n) 2B

100B

1000 lines are written in a file before the next file is created, this repeated indefinitely.
On boot up, all previous files are deleted and files are created from scratch to make sure
that comparisons are fair. In the MagOD2 system the file on the SD card is opened and
closed on every cycle when writing measurement data. The advantage of doing this is that
if a power outage or error occurs, the newest measurement is always saved properly. If
power fails while a file is still open, the data that has been written to that file without closing
is lost. The expectation is, however, that opening and closing the file every time will have a
significant effect on the transfer speed of the HTTP server running on the other core. So as
a test this will be compared to only opening and closing a file once the 1000 line limit has
been reached. Performance on both cores will also be compared.

15

3.3 SD transfer speed

To be able to investigate the SD performance properly, different to be tested parameters have
to be determined based on the hypothesis from the currently known facts. The expectation
is that the performance has something to do with:

e ESP32 operating system background e Amount of files in a folder

tasks e Time between writes
e Block size of the SD card e How bytes are written (open and close
e File size file or keep it open)

Wear levelling
Garbage collection

— Bytes per line
— Lines per file

In order to be able to test all these aspects criteria for a test were determined:

e Be able to vary settings for the write — Open and close file for every write
test or keep open per file
— Bytes per line e Be able to measure the power draw of
— Lines per file the SD card
— Files per folder e Be able to easily test multiple scenarios
— Time between writes to speed up testing

3.3.1 SD consistency function

In order to accurately and reproducibly test these parameters, a single test function was
designed. In the basis, the script creates a variable of a set size that will contain the data
that will be written to the SD card with every write cycle. This variable is filled with the
same character on every test to prevent possible CRC functions from having an effect. Also,
a temporary folder is created to which the temporary data will be written. Next (if the to
be written file is to be opened and closed on every write), the current time is recorded
with the micros () ; function which returns the time since bootup of the microcontroller in
microseconds. The file is opened, the variable is written to the file and the file is closed
again. Next, the current time is saved again using the same function. Both the start and end
time are now saved to a separate variable and the next cycle starts. This is repeated for the
set amount of times that the data should be written to the file. This can be repeated over
for a set amount of files in the same folder or, by calling the consistency function multiple
times, in multiple folders too. Once all the test writes have been completed the data write
times that were recorded are saved to a different file and folder on the SD card together with
all the settings for the test. By saving them separately the test data that is written is always
consistent.
The complete test function can be found in Appendix A.

16

3.3.2 Energy consumption measurement

In order to measure the energy consumption of the SD card, the Vcc line was cut up and a
1 Q resistor was placed in between. The resistance was verified using a Fluke 289 multimeter
with a maximum error of 0.05% or 50 m€2. Next, the voltage over this resistor was measured
using two voltage probes (V1 and V2) and a Siglent SDS1102x Oscilloscope. The scope
samples the voltages at f; = 10kHz with a resolution of 8 bit on a 1.2V range (offset by
—3.3 V), meaning the maximum error in a voltage measurement is 4.7mV.

The current draw is calculated using I = & = Y1=2 next the power draw is calculated
using P=U -1 =V2.(V1-V2) and finally the energy consumption is calculated using

E=P- At At = fl = 0.1ms. In order to visualise the peaks in energy usage better the

energy consumption was summed over 10 ms.

17

Chapter 4

Results

For the figures in the report the measurement points are indicated by dots and dotted lines
are used to interconnect these dots. The lines are there to guide the reader and make it
easier to see relations, they do not represent the (in this case linear) behaviour between the
points.

4.1 Parallel processing

By doing a repeatable calculation and varying the core to execute the calculation on the
parallel performance can be evaluated. These results can be seen in table 4.1.

Table 4.1

Results of a test comparing the processing speed of the two cores of the ESP32 by running
the same calculation in all scenarios. Taking the loop as a baseline performance, Core 1
performs identically and Core 0 actually performs better. Running the calculation on both
cores at the same time comes with a 15% penalty. Running the same calculation twice on
the same core simply doubles the execution time.

Execution time (ms)

Code location Execution location (core
() Core 0 Core 1

Loop 1 823
Core 1 1 823
Core 0 0 820

Core 0,1 0,1 968 968
2x Core 0 0 1640
2x Core 1 1 1638

18

Raw computation takes 0.36% less time on core 0 (PRO_CPU) than it does on core 1
(APP_CPU) this can be assigned to the fact that the flash and ram do not need to be shared
between the two cores. As core 0 also has the background tasks of the peripherals running
it is the only core accessing the memory. The computational time is 18% higher if the same
calculation is run on both cores at the same time, in comparison to just running the same
calculation twice on the same core, which can also be pointed towards the fact that both
cores share the same memory.

Knowing the performance impact of running code on two cores simultaneously, the per-
formance on a real-world example was investigated next. Comparing the performance of the
SD web server discussed in section 2.2 running across both cores and adding a consistent
SD card write simulating the MagOD2 on the other core. The results can be found in table
4.2.

Looking at the performance of the HTTP file server, the download speed is decreased by
17.3% by moving the HTTP server from core 1 to core 0. It is known that tasks such as WiFi
and SPI are handled on core 0, so the performance decrease by also moving the handling
of the server to core 0 is expected. If the file that is being written to is left open, the effect
on the download speed is only 4.1%, compared to 13.4% when the file is opened and closed
every time.

Table 4.2

Test comparing the download speed of 10, 1 MB files in multiple scenarios. Once again
taking the main loop as the baseline, the performance stays fairly consistent with the server
running on Core 1. Moving it to core 0 has a significant performance penalty. Writing to the
SD card simultaneously on core 1 hurts performance even more if the file is opened and
closed on every write. If the file is kept open, the parallel writing has an almost negligible
performance impact on the transfer speed.

Download speed (kBs—1
Test Details P (kBs™)

Avg Min Max
1 Baseline test, SD card HTTP server running in 232.7+7 175.5 247.2
main loop
2 SD card HTTP server running on core 1 229.2+6 183.0 246.0
3 SD card HTTP server running on core 0 189.4 +4 155.3 202.9
4 8 Hz file write on core 1 opening and closing the 164.0+ 3 134.4 172.2
file on every iteration, SD card HTTP server on
core 0
5 8 Hz file write on core 1 but keeping the file open, 1816 £5 155.5 196.5

SD card HTTP server on core 0

19

Figure 4.1

Write time of 1000, 100 B lines to a file. The area marked between the dashed red lines is
where a file download is occurring simultaneously. Judging by the write time the transfer
took 62.375s. Outside of the window where the transfer was happening there are two
random spikes in write time higher than during the transfer and over 70 ms in height. This
and the other apparent events happening around the transfer will be discussed in section
4.2. The average write time (indicated by the dashed magenta lines) in the section where
the transfer is happening is 3 ms higher compared to the steady-state after the transfer.

80 T

T T T

t=31.750s

T

t=94.125s

70

I

|

|

|

|

60 |
|

50 |
|

|

|

30 I bR 1] ‘;.J lx i i n o B A 7

Write time (ms/100B)

W
20
mean =

24ms/100B

mean =

mean = 28ms/100B 25ms/100B

T

10

SD card performance

As was mentioned before, the write time for the 100B is saved as part of those 100B, or
actually, the previous write time is saved. This was done to be able to analyse the effect on
the write time if files were downloaded simultaneously. The write time of one 1000 line file
can be seen in figure 4.1.

Immediately obvious is the inconsistency and increase in write time during the file trans-
fer. Judging from the write time the transfer took 62.375s, which is close to the 64.02s that
were measured by MATLAB to complete the file transfer. What is much more interesting
however are the strange peaks in write time to over 70 ms. This will be further elaborated on
in section 4.2. The average write time is 12% higher during the file transfer compared to the
steady-state after the transfer.

20

4.2 SD transferspeed

Unless mentioned otherwise in the caption of the figure the Buffersize = 512B and the
Allocationsize = 8192 B for all measurements.

Firstly different types of SD cards were compared to get a baseline measurement, both
the allocation unit size and buffer size were kept constant throughout the tests. The results
can be seen in figure 4.2.

When operating in SPI mode SD cards are unable to guarantee their specified transfer
speeds, meaning even lower class 4 cards can outperform class 10 cards by as much as
6.8%.

Figure 4.2

Read speed of various SD cards at different file sizes. Allocationsize = 4096 B. There is a
obvious dip in read speed independent of the used SD card at a file size of 5 kB, the class 4
SD card also consistently outperforms the class 10 card.

390
4GB SDHC Class 4
380 + 4 EI*_.- > -
370 ¢
16GB SDHC Class 10
-
5 360
= : v
© L
@ 350 2GB SDSC
Q)
(7] R 3
E 340 - I ----- A S S _.'-0- -
o .
5 1
= 330 | E
320 |
310
300 . 1 1 1 1
1 10 100 1000 10000
File size (kB)

21

Figure 4.3

Read speed of the 16 GB Class 10 SDHC card versus the allocation size at various file
sizes. (a,b) Read speed decreases if the chosen allocation size is lower than the file size if
the file comparable in size to the chosen allocation size. (c) If the file is much larger than
the allocation size the impact becomes negligible.

[N
o O

D Forn I

|
............... ,_E-"W'Filesize = 10kB
|

Ny
o O
FH—e—

1 L 1 1

4.096 8.192 16.384 32.768 65.536

Read speed (kB/s)
w W W w

Allocation size (kB)

0 b

g370 i

8360 L % PRSPPI 3

$ 350 Fooere o ¥ o

3 | Filesize = 20kB

© 340 1

© I L L Y B 1 F| L L N R

8:) 4.096 8.192 16.384 32.768 65.536
Allocation size (kB)

0 c

gS?O

- 360 B R R B TR el B -

()

8 350 ——

o Filesize = 500k

o 340

I Hl R Y R 1 R | R R N

&J 4.096 8.192 16.384 32.768 65.536

Allocation size (kB)

Looking into the dip in read speed at a file size of 5 kB was done by analysing the effect
of the allocation size. At various allocation unit sizes for the different files sizes the effect
becomes obvious, see figure 4.3

The formatted allocation size of the SD card can hurt the read speed by as much as
5.6% if the filesize is chosen very close to the allocation size. This is due to the fact that
only entire sections of the size set by the allocation size can be read. Meaning that if the file
is just slightly larger than one of those sections, two sections have to be read. If the file is
much larger than the allocation size, many sections have to be read anyway. Meaning the
impact on performance becomes negligible.

22

Figure 4.4

Read speed of the 16 GB Class 10 SDHC card versus buffer size for various file sizes. The
buffer size has an effect on read speed, with performance plateauing from around 512 B.
Read speed is also higher for larger file sizes.

365
Filesize = 500kB

360 |

as5 | } } } _____ } } _ }FTTOKT

345 1 } Filesize = 10kB

340 | }
335 f

330 [

w

A

o
T

Read speed (kB/s)

325

320 Il Il Il I
0.1 1 10 100

Buffer size (kB)

In figure 4.4 the effect of the buffer size can be seen for three different file sizes. The file
size also has a significant effect it seems, with the constant allocation unit size of 8192 B at
least.

Looking at the size of the buffer on the ESP32 side when initiating a file read it can be
observed that from Buffer size = 512 B and higher the read speed plateaus. Knowing that
over SPI at maximum 512 B can be transmitted per transfer. It makes sense that a lower
buffer size would require extra read operations and therefore have a lower transfer speed.
And that a larger buffer size would be very comparable to just emptying the buffer more often
as more transfers are necessary to fill the buffer in that case. Increasing the buffer higher
than 512 B has at maximum a 0.7% increase in performance, most likely due to the fact that
the buffer has to be emptied less often.

23

Figure 4.5

Read speed of the 16 GB Class 10 SDHC card at various SPI bus frequency settings
Filesize = 100 kB, Allocationsize = 4096 B. The higher the SPI bus frequency setting the
higher the attained read speed up to a limit at 26.6 MHz.

Note: These are the frequency settings not the actual measured frequencies.

1000
Read speed

@ S O °

900 |
800 |
700 |
600 |

500 |

Transfer speed (kB/s)

Write speed
400 -

300F &

200 Il Il Il Il Il Il Il I
0 10 20 30 40 50 60 70 80

SPI bus speed setting (MHZz)

The effect of the SPI bus speed on the transfer speed can be seen in figure 4.5.

The frequency of the SPI bus has a large effect on the transfer speed, from the default
4 MHz the read speed can be improved by 150% by increasing the frequency to 26.6 MHz.

24

Figure 4.6

Write time of 1000, 100 B lines to 10 files stored in the same folder, closing the file between
writes, versus the amount of written bytes. (a) Peaks higher than 100 ms occur seemingly
randomly but on mostly the same interval as the 70 ms peaks. (b) Write time is lower for the
first few bytes of a new file, peaks of around 70 ms are repetitive with about 80 kB. Average
write time is 22 ms (dashed magenta line)

N

o

)
T

1

w
o
o

T
1

N
o
o

T
1

100 F b .

T L o b

0 200 400 600 800 1000
Written data (kB)
b

Write time (ms/100B)

o

(0]
o
1

mean = 22ms

(o2}
o
T

Write time (ms/100B)
N
o

)]
o

50 100 150 200 250
Written data (kB)

o

Using the SD consistency function described in section 3.3, a first test was done that
mimics the MagOD2 system. Writing 1000, 100 B lines to files stored in the same folder ev-

ery 100 ms, the file was closed between every write. The results for this test can be found in
Figure 4.6.

When writing continuously in sets of 100 B, peaks in write time of around 70 ms and higher
occur mostly on a 80 kB pattern.

25

Figure 4.7
Write time of 2048, 64 B lines to a single file versus the amount of written bytes. Write time
is lower until the total file size becomes larger than the set allocation size.

o Allocation size = 4096B

840

—

)

£30

(0]

IS

=20

8 1 A 1 1 1 1 1 1 1 1

= 0 2 4 6 8 10 12 14 16 18 20
Written data (kB)

) Allocation size = 8192B

8 40 \

—

B \

E30 |

()

£

=20

8 I I I i I I I I I I

= 0 2 4 6 8 10 12 14 16 18 20
Written data (kB)

o Allocation size = 16384B

g 40

—

)

£E30

(&)

£

=20

2 I I I I I I I i I I

= 0 2 4 6 8 10 12 14 16 18 20

Written data (kB)

Looking into the small step at the start of a new file shows its dependency on the chosen
allocation size in Figure 4.7.

When writing to a new file the write time of a set amount of bytes is about 13% smaller
until the file is equal or larger than the set allocation size.

26

Figure 4.8

Written bytes between peaks in Figure 4.6 higher than 50 ms plotted as a cumulative
distribution for two different allocation unit sizes. The amount of written bytes between
peaks is not significantly dependent on the allocation size, the majority of peaks still occur
every 80 kB

Allocation size = 8192B

1 T T T

Factor of occurance

0 10 20 30 40 50 60 70 80
Written data (kB) between peaks > 50ms
Allocation size = 4096B

1 T T T

Factor of occurance

0 10 20 30 40 50 60 70 80
Written data (kB) between peaks > 50ms

Analysing Figure 4.6 using a cumulative distribution and comparing that with the same
test with a smaller allocation size of 4096 B shows that the 80 kB steps are not dependent on
it. This can be seen in figure 4.8. The previously discovered 80 kB period is independent of
the allocation size.

27

Figure 4.9

(a) Write time of 1000, 100 B lines to 10 files stored in the same folder, keeping the file open
between writes, versus the amount of written bytes. The write time in general is lower
compared to figure 4.6, due to the file not being opened and closed on every write. (b) In
the zoomed in plot there are portions where the write time is orders of magnitude lower
between apparent 2 ms peaks. Either 4 or 5 of these writes occur between the peaks, there
are 8 sections between each 5 write block. Average write time is 0.5 ms (dashed magenta
line) (c¢) About half of the peaks larger than 5 ms are more than 30 kB apart.

a
50 T T T T
m 40 - 1
o
o
o
[2]) - -
é 30
(O]
E 20 1
(]
S0}/
0
0 200 400 600 800 1000
Written data (kB)
o= b
83 0
g mean = 0.5ms
éz L] [] ° 'y L] L] [] L] l
) E
E1 :
Bl setei sdes stes ides opes spes opes stes sqess §
2 3 35 4 45 5 55 6 6.5 7 7.5 8

Written data (kB)

C
1 T T T T T T

Olﬂ|x|||x|II||H||H|T

0 5 10 15 20 25 30 35
Written data (kB) between peaks > 5ms

Factor of occurance
o
a1
T
1

So far the tests have simulated the MagOD2 system closely, however analysing what
happens if the file is kept open instead of being closed between every write proved to be
interesting as can be seen in figure 4.9.

If the file that is being written to is kept open between writes it can be observed that the
write time is; lower in general, has peaks periodic over about 30kB and has periods where
the write time is in the ps range instead of the ms range.

28

Figure 4.10

(a) Write time of 1000, 100 B lines to 10 files stored in the same folder every 100 ms, keeping
the file open between writes, versus the elapsed time. Note the very small dots of us write
time between the 3 ms bars (b) Compared to the energy usage of the SD card (At = 10 ms).
The small 2 ms and large 50 ms peaks line up with the energy usage of the SD card while in
the flat portions of the write time plot the energy usage is much closer to 0J. The energy
usage is higher if the write time is longer.

a
60
m
o
S
o 40r
£
(O]
E20r
Q
= of [e Lo [| | | |
1 1 | 1 1 | 1 L 1 1
95 95.5 96 96.5 97 97.5 98 98.5 99 99.5
Time (s)
%107 b
T T T T T T T T T T
2 - -
D
>
o
21r ﬂ
; NJVWM
0]

95 95.5 96 96.5 97 97.5 98 98.5 99 99.5
Time (s)

In order to analyse the very low write time in the zoomed-in portion of figure 4.9 a en-
ergy usage measurement was done on the VCC line of the SD card, showcasing a very low
energy consumption in those portions of figure 4.10.

The peaks in write time are very bad from a consistency point of view, the write time is
increased by 1500%. The origin of these inconsistencies has been traced back to the SD
card as spikes in energy consumption can be seen during these peaks in write time. It can’t
be said for certain what it is in the SD card that takes such a long time to process a mere
100 B write. By looking at the energy consumption, there is basically no energy consumed
in the periods where the write time is in the ps range.

29

To look at the effect of storing a large number of files in a single folder, a lot of small files
were written to the same folder the effects are shown in figure 4.11.

When storing a lot of files in the same folder, the lower limit of the write time becomes
progressively larger for every 16 kB that is stored in the folder in steps of 4 ms in most cases,
the difference between the lowest and highest write time also grows on the same interval.
If these parameters are dependent on for example file size, write size or allocation size was
not investigated further.

30

Figure 4.11

(a) Write time of 10, 100 B lines to 1000 files stored in the same folder, closing the file
between writes, versus the number of written bytes. The write time and the write time
deviation increase as the number of written bytes and with it the number of files in the folder
increase. The orange arrows indicate 3 points where the staircase like steps are larger than
in all other areas, coinciding with a small peak. The very large spikes seem to be on a sort
of interval like was analysed in figure 4.8. (b) There are 16 steps between the two larger
steps. (¢) The larger steps are about twice the size of the regular steps, both are consistent
across all the steps. (d) Every step is about 16 kB in width

1000

a

800

600 -

400

Write time (ms/100B)

200

400 600 800 1000
Written data (kB)

b
8200 T T T T T Hul"l
o
5 e ‘\“
1S
::150 ATC
E \ \
£ 100 L— g =
; lﬁ 1 1 1 1
200 250 350 400 450 500 550
Written data (kB)

1707 220 d
s T, = i
2] B
E A 4.0ms/1008 £ HIHEHEREHE R
£ 155 | -2 £ 160 U\“H AL JH
2 A 8.3ms/100B 2 e | |
SUOML _ S1201 | AekB |

145 + 00

: : : : 1
510 520 530 540 550 560 490 500 510 520 530
Written data (kB)

Written data (kB)

31

Figure 4.12

(a,b,c) Write time of 20000, 100 B lines to a single file, versus the amount of written data. it
can be seen that the higher class cards have fewer and or lower peaks in the write time.
(d,e,f) Zoomed in versions of the left side of the figure, the ~ 35 kB separated peaks that
appear on all three cards are lower for the higher class cards. Note the varying y-axis to
make the peak height readable.

a: 2GB SDSC a: 2GB SDSC

50
d

" oo i ‘.

0 500 1000 1500 2000 0 50 100 150
Written data (kB) Written data (kB)
b: 4GB SDHC Class 4 b: 4GB SDHC Class 4

Write time (ms/100B)
S
o

Write time (ms/100B)

e

et L L L g

0 500 1000 1500 2000 0 50 100 150
Written data (kB) Written data (kB)

c: 16GB SDHC Class 10 c: 16GB SDHC Class 10

Write time (ms/100B)
S
o o
Write time (ms/100B)
=
o

i bl
0 500 1000 1500 2000 0 50 100 150
Written data (kB) Written data (kB)

Write time (ms/100B)
S
o o
Write time (ms/100B)
=
o

To get a better understanding of the write time spikes, three different SD cards (the same
three cards from figure 4.2) were written to continuously for 2 MB in 100 B sections.

It can be seen that regular peaks in write time do occur and that the peaks of the class 4
card are 70% higher than those of the class 10 card.

32

Figure 4.13

(a) Write time of 20000, 100 B lines (2 MB total) to a single file with 100 ms delay between
each write, versus the amount of written data. The file is kept open between writes. Even
though the occurrence rate is low, there are still peaks to over 50 ms but not periodic. (b)
Write time of 400, 100 B lines (40 kB total) to 50 files for a combined total of 2 MB with

100 ms delay between each write. The files are kept open between writes, the opening and
closing of the files is not included in the write time measurement. Peaks still reach to about
75ms. (¢) Write time of 80, 100 B lines (8000 B fotal) to 250 files for a combined total of 2 MB
with 100 ms delay between each write. The files are kept open between writes, the opening
and closing of the files is not included in the write time measurement. The write time is very
consistent in the area where the 120 ms peak is not located

o a

8 150 T T T T T T T T T

o

g 1001 .

(]

E 50 k _

g 0 L L L L L L L L 1 ‘

= 0 200 400 600 800 1000 1200 1400 1600 1800 2000
Written data (kB)

) b

8 150 T T T T T T T T T

k)

2 1001 .

(0]

£ sof

2 0 . . ‘ - ul . .

§ 0 200 400 600 800 1000 1200 1400 1600 1800 2000
Written data (kB)

o c

8 150 T T T T T T T T T

o

2 1001 .

]

£ sof 1

Q 0)) ")) i —) .

§ 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Written data (kB)

As a test to get around the high write time peaks three different philosophies were tested.
A 2 MB file written to in bursts of 100 B with 100 ms delay between every write without closing
the file. The idea is to allow for garbage collection to occur in between writes and therefore
prevent the peaks due to garbage collection. Next files are written to a maximum size of
40kB, judging by the distribution of figure 4.8 the peaks are usually 80 kB apart meaning
those should be undercut in this case. Once again the file will be kept open when writing to
the same file. The time of opening and closing the file in not included in the measurement.
Finally, files are written up to a maximum size of 8000 B undercutting the allocation size of
8192 B. Knowing the effect of storing many files in a single folder, every file was written to its
own folder.

33

When leaving 100 ms between each write and keeping either the file open or closing it
every time, peaks in write time still occur. Meaning that garbage collection is at least not
the sole reason for the peaks. That garbage collection can not run in the background in SPI
mode or that 100 ms is simply not enough. As another possible way to get rid of the write
time peaks a test was done with a filesize of 40kB and 8000 B. However, neither of these
options proved to be a solution to the peaks. It can be said however that the peaks in write
time occurred at a seemingly lower rate for the smaller file size.

4.3 Overview

In order to give an overview of the results, they will be presented below in two tables in order
to better condense the information and ease comprehension. Firstly the parallel transmis-
sion results will be presented in table 4.3. And the SD transfer results will be presented after
in table 4.4

Table 4.3
Overview of results related to parallel computation and web server performance

Description Result

Raw computation on core 0 compared to core 1 0.36% faster

Simultaneous computation on both cores compared to computing twice 18% longer
on one core

Change in download speed by moving webserver from core 1 to core 0 17% slower
Change in write time on core 1 due to simultaneous file transfer on core 0 12% longer

Change in download speed due to simultaneous file write, when opening 13% slower
and closing the file for every write

Change in download speed due to simultaneous file write, when keeping 4.1% slower
the file open between writes

34

Table 4.4
Overview of results related to SD file transfers

Description

Result

Lower class 4 cards can outperform class 10 cards

Write time peaks of class 4 cards are larger than the peaks of the class
10 card

Increasing the default SPI bus speed from 4 MHz to 26.6 MHz improves
read speed

By increasing the buffersize on the ESP the read speed can be improved

By choosing a filesize very close to the chosen allocation size read
speed is decreased

When writing data to a new file the write time is initially lower until the
filesize surpasses the allocation size

Likeliest amount of bytes between write peaks of over 70 ms

Increase in write time at highest write time peaks due to the SD card (as
seen by the aligned energy consumption)

Keeping a file open between writes lowers write time in comparison to
opening and closing between writes

If a file is kept open for writing there are either 4 or 5, 100 B fast writes
between the slow writes. The slow writes are much slower than the fast
writes

Likeliest amount of bytes between write peaks of over 5 ms when the file
is kept open

If a lot of files are written to the same folder the lower limit in write time
becomes larger in constant steps

6.8% faster
70% higher

peaks

150% faster

0.7% faster

5.6% slower

13% faster

80kB
1500% slower

4300% lower

3500% slower

30kB

step height =
4 ms,
step length =
16 kB

35

Chapter 5

Discussion

Knowing the performance of an HTTP web server that is running in parallel, the required
performance of 117kB s~ ! can be reached independently of the application that was tested.
In every scenario, the minimum data rate was reached. However, if implementing such a
web server one should make sure that when writing files to the same SD on the other core
that the file is kept open between writes as that greatly improves the performance of the
webserver.

When writing to data to SD cards over SPI special care has to be taken in selecting
the SD cards that will be used. Looking at the performance between different cards from a
transfer speed and consistency perspective tells a different story for both factors. Meaning
the best card in one scenario might not be the best in all scenarios, depending on if average
transfer speed or performance consistency is more important.

Continuing on the topic of consistency, many attempts have been made to circumvent
the large peaks in write time, however, no solution has been found. It has been verified
that the origin of the delays most likely resides in the SD card itself, indicated by the in-
creased energy consumption during said peaks. It is known that flash chips require a form
of garbage collection, wear levelling and other practices to guarantee the lifetime of the flash
chips. However, the exact practices used on SD cards are not known as such methods are
not required by the SD card specification documents. Meaning in theory a manufacturer
could produce SD cards without any wear levelling techniques, severely limiting the possible
lifetime of the flash chip inside. In general, it is usually possible for garbage collection like
tasks to be performed in the background, however as there are no requirements for this a
manufacturer could opt to only implement this in the regular SD operation and not in SPI
mode. From the SD card documentation, it is known that the SPI communication protocol is
more limited in both features and transfer speed compared to the regular SD protocol.

36

The spikes in write time may be caused by one of the following reasons, sorted on most
likeliness top to bottom.

e Foreground garbage collection

— As background GC is not implemented in SPI mode
— As background GC is not implemented in the SD SPI library for the ESP32

e Wear levelling

— Pages requiring multiple tries to be written correctly

Further research is required to be able to determine what in the SD card causes the signifi-
cant peaks and to be able to find a possible way to mitigate these peaks.

If the current implementation of SPI SD cards is to be used anyway there are some ways
to make sure to maximize its performance. For starters, not closing the to be written file un-
necessarily has the largest speed advantage while risking data loss, this is a design choice.
Increasing the SPI bus speed has a large positive effect too. Also, making sure that the to
be saved file is not very close in size to the formatted allocation size of the SD card will help
in this regard. Finally storing many files in a folder not a good idea as seen in figure 4.11, the
assumption is that the slow down is caused by having to go over all files in a folder before a
new file can be written. Meaning splitting up the files over different folders solves this issue,
no significant extra delay was seen over the writes in figure 4.6 where 10 files were saved in
the same folder compared to the 1000 files in figure 4.11.

Next, there are also aspects where their effect on write time is unknown. In figure 4.9 at
maximum 5 writes of 100 B with the ps write time occur between the ms peaks. As no signifi-
cant energy is consumed in this time it is most likely that the data is merely written to a buffer
on the ESP32, this buffer appears to be slightly larger than 500 B (judging by the mostly 4
and sometimes 5 fast writes between the slow writes) meaning 512 B is a logical option. It is
unknown if this buffer can be changed in size and if that has an effect on the transfer speed.
Something can also be said of the implementation of the SD card in general, why is it that
the microcontroller is halted while the SD transfer is happening if it could in theory just be
handled by the SPI interface once the task has been given. It is understandable that during a
file read the microcontroller would have to wait for the transfer to complete. However, during
a write there seems to be no particular reason other than keeping the process sequential
and with it predictable. Perhaps there could be a workaround to this using a different SD or
SPI library for example.

Summarizing for the MagOD2 measurement system, if the mainboard is not to be changed
and the SPI bus can not be altered the best option it to save measurements after the com-
plete measurement cycle (recipe) is completed. This is with the current knowledge the only
way to guarantee that possible peaks in write time won’t have an effect on the consistency of
the measurement. The measurements could be saved to an internal buffer first and after the

37

recipe is completed the data could be flushed to the SD card. In which case the time it takes
to complete this transfer is much less important. If the file write is no longer happening con-
tinuously that would also be beneficial for an HTTP web server implementation as it would
have free access to the SD card while the measurement is happening, possibly reducing
its effect even further. The fact that the transfer will be slower when the measurement data
is flushed to the SD card should not impact the performance very much. Knowing that if
the measurement file is not closed midway through the writing the impact on the wireless
transfer speed is limited.

38

Chapter 6

Conclusions

We have investigated the effect of writing data to an SD card and wireless transmission of
that data on the consistency of the write performance. It can be concluded that inconsis-
tencies due to the SD card cause peaks in write time of over 1500% that are unpredictable
in both heights and in occurrence. The webserver running in parallel hurts the write perfor-
mance by about 12%.

General write performance can be increased by 4300% if the to be written file is kept open
between writes, 150% by increasing the SPI bus speed to 26.6 MHz, 6.8% through choosing
the correct SD card and 5.6% by choosing the allocation size an order of magnitude lower
than the file size. Though none of these methods lowers the write time peaks below 50 ms.
Webserver download performance is decreased 17% by moving the server to core 0 and a
further 13% if the other core is writing data and closing the file between writes or only 4.1%
if the file is kept open.

In conclusion, the write time to an SD card over an SPI interface using the ESP32 micro-
controller is unpredictable due to the at minimum 50 ms SD card induced peaks in write time
that occurred in all scenarios. The effect of a webserver on the write time can be minimized
through careful planning of the implementation

39

40

Bibliography

[1] “Wi-Fi Driver - ESP32 - Wi-Fi Throughput.” [Online]. Available: https://docs.espressif.
com/projects/esp-idf/en/latest/esp32/api-guides/wifi.html#esp32-wi-fi-throughput

[2] “ESP-IDF FreeRTOS.” [Online]. Available: https://docs.espressif.com/projects/esp-idf/
en/latest/esp32/api-guides/freertos-smp.html

[3] “Overview of features ESP32.” [Online]. Available: https://www.exploreembedded.com/
wiki/Overview_of ESP32_features._ What_do_they_practically_mean%3F

[4] “SD Specifications Part 1 Physical Layer Specification Simplified Specification,” Tech.
Rep., 2020. [Online]. Available: https://www.sdcard.org/downloads/pls/index.html.

[5] “Speed Class - SD Association.” [Online]. Available: https://www.sdcard.org/
developers/overview/speed_class/

[6] “SPI Master Driver - ESP32.” [Online]. Available: https://docs.espressif.com/projects/
esp-idf/en/latest/esp32/api-reference/peripherals/spi_master.html

[7] “Understanding Flash: Blocks, Pages and Program /
Erases,” 6 2014. [Online]. Available: https://flashdba.com/2014/06/20/
understanding-flash-blocks-pages-and-program-erases/

[8] “Understanding Flash: The Flash Translation Layer,” 9 2014. [Online]. Available:
https://flashdba.com/2014/09/17/understanding-flash-the-flash-translation-layer/

[9] “Understanding Flash: The Write Cliff,” 11 2014. [Online]. Available: https:
/[flashdba.com/2014/11/24/understanding-flash-the-write-cliff/

[10] S. Anatolievich Gorobets, “MANAGING HOUSEKEEPING OPERATIONS IN FLASH
MEMORY ,;” SANDISK CORPORATION, Edinburgh, Tech. Rep., 5 2007. [Online].
Available: https://patentimages.storage.googleapis.com/16/a9/1f/52d10b1a2a49bc/
US20080294813A1.pdf

[11] J. Lee, Y. Kim, G. M. Shipman, S. Oral, and J. Kim, “Preemptible /0O Scheduling of
Garbage Collection for Solid State Drives,” IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, vol. 32, no. 2, pp. 247—-260, 2013.

41

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/wifi.html#esp32-wi-fi-throughput
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/wifi.html#esp32-wi-fi-throughput
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/freertos-smp.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/freertos-smp.html
https://www.exploreembedded.com/wiki/Overview_of_ESP32_features._What_do_they_practically_mean%3F
https://www.exploreembedded.com/wiki/Overview_of_ESP32_features._What_do_they_practically_mean%3F
https://www.sdcard.org/downloads/pls/index.html.
https://www.sdcard.org/developers/overview/speed_class/
https://www.sdcard.org/developers/overview/speed_class/
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/spi_master.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/spi_master.html
https://flashdba.com/2014/06/20/understanding-flash-blocks-pages-and-program-erases/
https://flashdba.com/2014/06/20/understanding-flash-blocks-pages-and-program-erases/
https://flashdba.com/2014/09/17/understanding-flash-the-flash-translation-layer/
https://flashdba.com/2014/11/24/understanding-flash-the-write-cliff/
https://flashdba.com/2014/11/24/understanding-flash-the-write-cliff/
https://patentimages.storage.googleapis.com/16/a9/1f/52d10b1a2a49bc/US20080294813A1.pdf
https://patentimages.storage.googleapis.com/16/a9/1f/52d10b1a2a49bc/US20080294813A1.pdf

0 N O OB~ WO =

_ -
NN = O O

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Appendix A

SD consistency function

void SDwriteConsistencyTest (uintl6_t bytesPerWrite,
uintl6_t linesPerFile, uintlé6_t totalFiles,
uintl6_t delayBetweenWrites, bool openCloseFile) {

// Variables to store results in

uint32_t startTime[totalFiles] [linesPerFile];
uint32_t endTime[totalFiles] [linesPerFile];
uint32_t startWriteTime;

uint32_t endWriteTime;

char bytesToWrite[bytesPerWrite-1];

// Two characters less as the return and new line
character will be attached one extra to add \0 to
end the character array

uint32_t startTestTime;

uint32_t endTestTime;

uintl6_t nFiles;
uintl6_t nLines;
uintl6_t nBytes;
String fileName;
File dataFile;

// Create folder to store the temp data in

fileName = "/writeTimeTemp/test_" + (String)nTests;

createDir (fileName.c_str());
Serial.print ("[Test] _,Starting test_"); Serial.println(nTests);
Serial.println (" [Setup] Creating_variable_ to_write");

42

29
30
31

32
33
34
35
36
37

38
39
40
41

42
43
44
45

46
47
48
49
50
51
52
53
54
55
56
57
58

59
60
61
62
63

memset (bytesToWrite, ’"7’, sizeof (bytesToWrite)-1);
// Fill array with the set amount of ~ characters (
total minus 2)
* (bytesToWrite + sizeof (bytesToWrite) - 1) = '\0’;
// Set final byte to /0 to close of the array

Serial.println("[Test] Writing files");
if (openCloseFile == true) {
// If opening and closing the file on every write (

placed here and not in loop to eliminate extra if

statement that could have effect on execution speed

of the loop)
startTestTime = micros{();
for (nFiles = 0; nFiles<totalFiles; nFiles++) {

// Loop over all to be written files

fileName = "/writeTimeTemp/test_" + (String)nTests + "/

temp_" + (String)nFiles + ".txt";

// Set file name to write to

for (nLines = 0; nLines<linesPerFile; nLines++) {
// Loop over all lines that should be written
to the file
startWriteTime = micros();
// Log the start time of the write in us
dataFile = SD.open(fileName, FILE_APPEND) ;
// Open file now
dataFile.println (bytesToWrite);
// Write bytes to file
dataFile.close();
// Close file now
endWriteTime = micros();

// Log the end time of the write in us

startTime [nFiles] [nLines] = startWriteTime;

// Save the start and end time of the file

write
endTime [nFiles] [nLines] = endWriteTime;
delay (delayBetweenWrites);
// Delay the set amount of time

43

64
65
66
67
68
69
70

71
72
73
74
75
76
77

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

endTestTime = micros();
} else {

// If not opening and closing the file on every write
startTestTime = micros();
for (nFiles = 0; nFiles<totalFiles; nFiles++) {

// Loop over all to be written files
fileName = "/writeTimeTemp/test_" + (String)nTests +
temp_" + (String)nFiles + ".txt";

// Set file name to write to

dataFile = SD.open (fileName, FILE_APPEND) ;
// Open the file now

for (nLines = 0; nLines<linesPerFile; nLines++) {
// Loop over all lines that should be written
to the file

startWriteTime = micros();

// Log the start time of the write in us
dataFile.println (bytesToWrite);

// Write bytes to file
endWriteTime = micros{();

// Log the end time of the write in us

startTime[nFiles] [nLines] = startWriteTime;
// Save the start time
endTime [nFiles] [nLines] = endWriteTime;
// Save the end time
delay (delayBetweenWrites) ;
// Delay the set amount of time
}
dataFile.close();
// Close file now
}

endTestTime = micros();

Serial.println("[Test] [Test_complete, ,saving_data...");
//Count the amount of files already in the folder

dataFile = SD.open("/writeTimeResults");

dataFile.rewindDirectory () ;

44

"/

104
105
106
107
108
109
110
111
112
113

114

115

116
117
118
119
120
121
122

123

124

125

126

127

128

129

130

131

132

133

134
135

File entry;

for(nFiles = 0; true; nFiles++) {
entry = dataFile.openNextFile();
if (!entry) {break;}

entry.close();

dataFile.close();

// Set new save data filename based on the amount of files 1in

the folder (don’t overwrite old files)

fileName = "/writeTimeResults/results_" + (String)nFiles + ".
csv";
Serial.print ("[Info] _Saving_results_as:"); Serial.println(

fileName) ;

// Open results file
dataFile = SD.open(fileName, FILE_APPEND);

// Save test information

dataFile.println("Test ,information:");

dataFile.print ("Bytes per_line,"); dataFile.println(
bytesPerWrite) ;

dataFile.print ("Lines per_file,"); dataFile.println(
linesPerFile);

dataFile.print ("Amount of files,"); dataFile.println(totalFiles
)i

dataFile.print ("Delay, between writes,"); dataFile.println(
delayBetweenWrites);

dataFile.print ("Open_and close file between writes,"); dataFile
.println (openCloseFile);

dataFile.print ("Test ,start_time_(us),"); dataFile.println(
startTestTime) ;

dataFile.print ("Test_end _time_ (us),"); dataFile.println(
endTestTime) ;

dataFile.print ("Text ,string,"); dataFile.println (bytesToWrite);

dataFile.printIn("_");

// Save test results
dataFile.println("Test ,results_(us):");
for (nFiles = 0; nFiles<totalFiles; nFiles++) {

// Create header for save data

45

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

dataFile.print ("File_");

(
dataFile.print (nFiles);
dataFile.print (" _start,");
dataFile.print ("File_ ");
dataFile.print (nFiles);

(

" end, ") ;

[l

dataFile.print

}
dataFile.printlIn("_");

for (nLines = 0; nLines<linesPerFile; nLines++) {
// Loop over the different lines
for (nFiles = 0; nFiles<totalFiles; nFiles++)
// Loop over the files
dataFile.print (startTime[nFiles] [nLines]);
// Write the results
dataFile.print (", ");
// Add comma for .csv seperation
dataFile.print (endTime[nFiles] [nLines]);
// Write the results
dataFile.print (", ");
// Add comma for .csv seperation
}
dataFile.println("_");
// Print a new line
}
dataFile.close();
// Close results file

Serial.println("[Test] Data, saved_succesfully!");

nTests++;

// Increase test counter

return;

{

46

	Abstract
	Introduction
	Requirements

	Theory
	Datasize
	SDWebServer
	Parallel processing
	SD transferspeed

	Methods
	Test setup
	Parallel performance (impact)
	SD transfer speed

	Results
	Parallel processing
	SD transferspeed
	Overview

	Discussion
	Conclusions
	References
	SD consistency function

