

MASTER THESIS

Automatic container code

identification using Machine Learning

Denisa-Valentina Licu

Cofano Software Solutions B.V.

Under the supervision of:

Dr. Mannes Poel
Dr.Ing. Gwenn Englebienne

Leon de Vries MSc

 July 16, 2020

Faculty of Electrical Engineering, Mathematics and Computer Science

Contents
1 Introduction ... 1

1.1 Research questions ... 1

2 Background .. 2

2.1 Container management system .. 2

2.2 Container identification code ... 3

2.3 Natural Scene Text Understanding ... 4

2.4 Step wise vs end-to-end approach ... 5

2.5 Classic computer vision techniques vs machine learning ... 5

2.6 Methodology background ... 5

2.7 Datasets background .. 7

3 Challenges ... 8

4 Related work .. 9

4.1 Natural Scene Text Understanding ... 9

4.1.1 Before the Deep Learning Era .. 9

4.1.2 The Deep Learning Era ... 10

4.2 Container Code Recognition ... 17

5 Dataset and Methodology ... 20

5.1 Methodology ... 20

5.1.1 Detection .. 20

5.1.2 Recognition .. 22

5.1.3 Evaluation .. 23

5.2 Datasets .. 25

5.2.1 CNN container dataset ... 26

5.2.2 Overall evaluation container dataset ... 26

5.2.3 Character recognition dataset ... 27

6 Results .. 27

6.1 Detection results ... 27

6.2 Recognition results ... 27

6.3 Overall results ... 27

6.3.1 Proposed detection .. 27

6.3.2 EAST detection ... 30

6.3.3 Manual detection ... 30

7 Discussion ... 30

7.1 Detection ... 30

7.2 Recognition and the overall pipeline .. 31

7.3 Added value, limitations and future work .. 32

8 Conclusion .. 34

References .. 35

Automatic container code identification using Machine Learning
Denisa-Valentina Licu

Cofano Software Solutions/University of Twente
Enschede, The Netherlands

licu.denisa.valentina@gmail.com

ABSTRACT
With the accelerated development of the global industries and the
increasing number of containers that pass through a single terminal
every day, repetitive and slow parts of the shipping process need
to be automatized in order to keep up with the market. Possible
automations are numerous, but all start and make use of an au-
tomatic container code identification system, needed in order to
replace the manual identification that takes place nowadays at most
of the terminals. The goal of this research is to design and evaluate
such a system and also investigate the effect of damage on the
performance of the automatic identification. The proposed method
is composed by two parts, a detection step and a recognition step
and uses a Convolutional Neural Network and Gaussian heatmaps
for text detection and a kNN classifier for character recognition.
The results show a 100% detection rate for containers in good shape
and 80% for damaged containers. The overall identification results
show 40.4% of complete container codes identified for containers in
good shape and 12.0% for damaged containers. When the proposed
algorithm outputs a complete code, that is in 100% of the times
the real container code, with 0% false positive rate. The proposed
pipeline proved to be successful for the container identification
task, facing some challenges due to the chosen recognition method,
challenges that can be overcome increasing the recognition dataset.
Regarding the damage, the proposed pipeline has some issues de-
tecting heavily damaged characters at the extremities of a container
code.

KEYWORDS
container code identification, machine learning, container code
detection, container code recognition, CNN, deep learning, kNN

1 INTRODUCTION
Nowadays, the location on the planet, the soil and the weather
conditions do not stop us to have the desired fruit that grows only at
Ecuador or the special type of seeds that grow only in Asia, clothes
designed at the other side of the globe or the cheapest electronics
from China. We overcame the space and the climate constraints, we
pack, ship and transport everything we want, wherever we want,
using shipping containers. Thousands of containers pass through a
single terminal every day and, as the accelerated development of
global industries continues, the number will just increase. At most
trading gates, a person reads and registers manually every single
container that enters such a terminal. We all know that humans
are prone to mistakes, their focus decreases during the day, and it
is easy to incur errors. Moreover, the whole process is too slow to
efficiently manage all those thousands of containers every day.With
the development of the transportation industry, the competition
among terminals has also been increasing, and it is essential for

them to keep upwith the development of the market. Automation of
the repetitive and slow parts of the container management process
can make the businesses more productive, more efficient, but also
more cost effective. Possible improvements and automations are
numerous, from automated localization inside a terminal’s yard,
more efficient container loading and unloading and transportation
planning, but all those start and further make use of an automatic
container code identification system. The goal of this research is
to design and evaluate an automatic container code identification
system using Machine Learning.

Figure 1: Back door view of a container. Source: [19]

1.1 Research questions
The focus of this research is solving the first part of the container
identification task, namely the detection of the container code.
There are 3 attributes that differentiate the container code from
scene text in general: a container code is an alpha-numeric string,
the characters are always in upper-case and the corrugated sur-
face of the container body distorts the container code. Due to the
specific challenges, this is where the state-of-art in natural scene
understandingmay have troubles when applied to this task. The sec-
ond part of the task, the character recognition, is a largely studied
problem among the researchers in the field.

The research question of this paper is "To what extent is the
automatic identification of the container code possible using
machine learning ?"

This research question is further spit in 4 sub-research questions:
• To what extent is the automatic container code detection
from containers in good shape possible?

Figure 2: Examples of containers in good shape

• To what extent is the automatic container code identification
of containers in good shape possible?

• To what extent is the automatic container code detection
from damaged containers possible?

• To what extent is the automatic container code identification
of damaged containers possible?

It is important to mention that most of the containers present
damage, but for the sake of this experiment, a container is consid-
ered damaged when the container code printed on it is damaged.
Thus, if a container is damaged, but the container code printed on
it is not damaged, the container is considered in good shape. Figure
2 presents some examples of containers in good shape and Figure 3
presents examples of damaged containers.

2 BACKGROUND

2.1 Container management system

A shipping container or an intermodal freight container is
a standardized steel box with strength suitable to withstand ship-
ment, storage and handling, being designed to be moved from one

transport modality to another, by road, rail or sea, without unload-
ing and reloading. Those containers are reusable and they are used
as a storage unit for moving all kinds of products and raw materials
between different locations. They are the most used transportation
method for long distance international trade all over the world. Cur-
rently, there are around 17 million intermodal freight containers
in the world [130] and each container has an unique identification
code printed on its 5 visible sides (door end , 2 sides, top and front
end) according to the ISO standard 6346 [15]. The back door view
is presented in Figure 1.

A container terminal is "a facility where containers are trans-
ferred between various means of transportation for further trans-
port" [126]. The transfer can be between large ships and inland
vehicles, such as trains and trucks, in the case of a maritime ter-
minal and between barges (small ships), trains and trucks for the
inland shipping terminals.

How does the container management system work? Each
container is tracked through all the terminals it arrives at, using
its unique identification code. Every time, at every terminal gate, a
person has to inspect and manually type each container code into

2

Figure 3: Examples of damaged containers

an informatic system. Then the container can enter the terminal
and be loaded onto the next means of transportation.

2.2 Container identification code

Each container has a unique code consisting of 4 capital letters,
6 numbers, and 1 check digit. All codes have to follow the ISO
6346 standard, an international standard for coding, identification
and making of intermodal (shipping) containers. The standard is
managed by the International Container Bureau (BIC - Bureau
International des Conteneurs) and covers the serial number, owner,
country code, and size of the shipping container. The structure of
an ISO 6346 code is presented in Figure 4 and it contains [15] [42]:

(1) owner code: 3 capital letters
(2) category identifier: 1 capital letter
(3) serial number: 6 numeric digits (assigned by the owner)
(4) 1 check digit

The container owner’s code must consist of 3 capital letters
of the Latin alphabet, must be unique and must be registered at

Figure 4: Container code structure according to ISO 6346.
Source:[128]

the International Container Bureau in Paris to ensure uniqueness
worldwide [128] [82].

The category identifier can have one of the following values[15]:
• J: for detachable freight container related equipment
• R: for reefer (refridgerated) containers
• U: for freight containers
• Z: for trailers and chassis

The serial number consists of 6 numeric digits, assigned by the
owner and must be unique within that owner’s fleet [128] [82].

The check digit consists of 1 numeric digit used to validate the
transmission accuracy of the first 10 characters. The computation

3

Figure 5: Computing the check digit for the container code:
CSQU3054383. Source:[111]

of the check digit is done in 3 steps, as follows, and a step-by-step
example is presented in Figure 5:

(1) A numerical value equivalent is assigned to each letter of
the alphabet, beginning with number 10 for the letter A (11
and all its multiples are not used) as presented in Figure 6.
The numeric digits from the code keep their original value.

Figure 6: Equivalent numeric value for each letter of the
alphabet. Source:[111]

(2) Now, each of the 10 positions has a numeric value assigned.
Each of these numeric values has to be multiplied by 2 at
the power of the position in the code. Counting the position
starts at 0, from left to right [111] as presented in Figure 7.

Figure 7: Corespondent multiplier considering the position.
Source:[111]

(3) This step consists of multiple mathematical operations as
follows:

(a) Sum up all the numeric values multiplied by 2 at the power
of the corresponding position from the second step

(b) Divide this sum by 11
(c) Use the floor function to round the result down to 0, mak-

ing the result an integer
(d) Multiply the result by 11
(e) Subtract the result from (d) from the result from (a) and

this result is the check digit (if the final difference is 10,
then the check digit is 0). [111]

2.3 Natural Scene Text Understanding

In an era driven by visual information and with the continuous
development of the low-price cameras, vision techniques are more
and more used to solve from simple task to very complex problems.

Generally, an image can contain two kinds of content [49]:
• perceptual content: attributes such as colour, shape, intensity,
texture

• semantic content: objects, events, text
Natural Scene Text is the text present in images taken in the

outdoor environment. Very different from text in documents, natu-
ral scene text exhibits much higher diversity and variability. The
text can vary in terms of languages, colours, sizes, fonts, orienta-
tions, shapes and aspect ratios [99], as illustrated in Figure 8. Figure
9 presents the properties of text and all of them can bring variation
in natural scene text.

Figure 8: Variation in natural scene text. Source:[64]

Figure 9: Properties of text in images. Source:[49]

4

Moreover, scene text is affected by degradation, distortions and
cluttered backgrounds. Many approaches of scene text understand-
ing try to address a single issue, and just few approaches tackle a
combination of them [86].

Natural Scene Text Understanding or Text Information
Extraction (TIE) means the extraction of the text information
from images and video. Such a system involves 5 steps as presented
in Figure 10:

(1) Text Detection: there is no prior information if there is any
text in the image. This step determines if there is any text in
the current image/video frame.

(2) Text Localization: determines the location of the text in
the given image/frame.

(3) Text Tracking* (just for videos): makes the localization
easier in consecutive frames. It uses the position of the text
in the previous frame/frames to find the text in the current
frame. In this way, the searching is more optimal than search-
ing every frame from scratch.

(4) Text Extraction and Enhancement: text components are
segmented from the background and then enhanced.

(5) Recognition: transforms the pieces of image that contain
text in plain text.

Figure 10: Architecture of a Scene Text Understanding Sys-
tem. Source:[49]

Because this research focuses on images, tracking will not be
further analyzed in this research. Also, researchers often group
the text detection and text localization in one single step called
detection, and text extraction, enhancement and recognition again
in one single step called recognition.

2.4 Step wise vs end-to-end approach

Regarding the type of architecture, there are 2 approaches to
solve such a problem (Figure 11):

• Stepwise approach: Independent steps solve different parts
of the problem and then the output of one step is used as
input for the next one and so on. Changes in one step do not
affect the other steps.

• End-to-end approach: The steps represent a single en-
tity, with one single input and one single output. Tunes and

changes in one step influence all other steps and each step
uses the knowledge from all the others steps.

Figure 11: Step wise vs End-to-end approach

The type of pipeline can influence the end result in terms of
accuracy, but also in terms of time performance. For example, if
step A and B use the same features to compute their output, then
an end-to-end approach can reduce significantly the overall time,
computing the features just once, but also makes A and B to benefit
from each others knowledge. On the other hand, if step A and B
have to be unbiased by each other, a step wise approach has to be
chosen.

2.5 Classic computer vision techniques vs
machine learning

There are 3 main approaches to solve a computer vision problem
[107]:

(1) classic computer vision techniques: using different prop-
erties of images such as colour and edges and applying filters
and different thresholds.

(2) standardmachine learning: applying different algorithms/
models/ architectures already proven to work for certain
tasks such as YOLO (You only look once) for object detec-
tion.

(3) specialized machine learning(deep learning) : a lot of
algorithms are useful for their generality (being able to use
the same algorithm for the same task, in different condi-
tions), but some problems have very specific demands and
constraints. Those mostly use deep learning networks spe-
cially designed to fit a certain task such as EAST (Efficient
and Accurate Scene Text Detector) for the text detection
problem.

2.6 Methodology background
In this part, some background information about concepts, algo-

rithms or methods used and referred further in the Related work
or in the Methodology section will be briefly presented.

Bootstraping is a resampling technique used to estimate statis-
tics on a population by randomly sampling a dataset with replace-
ment [6].

Convolutional Neural Networks (CNN) is a class of neural
networks which take an image as input and assigns importance
to various aspects in the image, being able to differentiate one

5

from the other. A CNN is able to successfully capture the spatial
and temporal dependencies in an image through the application of
relevant filters [98].

R-CNN (Region-basedConvolutionalNeuralNetworks) com-
bines rectangular region proposals with Convolutional Neural Net-
work features [70]. R-CNN is a two-stage object detection algorithm.
The first stage identifies a subset of regions in an image that might
contain an object and crops them out of the image. The second
stage takes each cropped region, extracts features using the CNN
and with these features classifies the object in each region using a
Support Vector Machine (SVM) classifier [23].

Fast R-CNN [27] uses a similar approach as R-CNN, but instead
of feeding the cropped region proposals to CNN, it feeds the whole
input image and generates a convolutional feature map. From this
feature map, all region proposals are identified and their features
are extracted. Fast R-CNN is faster than R-CNN because it does
not have to compute features for every region proposal, it does it
once for the whole image. Then, the corresponding features are
extracted for each region, eliminating the multiple computations
for overlapping parts between regions [23].

Faster R-CNN [100] instead of using an external algorithm
for region proposals, as R-CNN and Fast R-CNN do, it generates
proposals directly in the network, using a region proposal network
(RPN) [70].

Mask R-CNN [34] extends Faster R-CNN, but in parallel with
bounding box recognition it also predicts an object mask.

CLAHE (Contrast Limited Adaptive Histogram Equaliza-
tion) is a technique used to enhance local contrast. CLAHE com-
putes several histograms corresponding to distinct sections of the
image, and uses them to redistribute the lightness over the image
[125]. See Figure 12 for an example.

Figure 12: Contrast Limited Adaptive Histogram Equaliza-
tion (CLAHE) example: a-initial image, b-image after apply-
ing the CLAHE technique

Delaunay triangulation is a particular way of joining a set of
points to make a triangular mesh, trying to avoid skinny triangles
[123].

EAST (Efficient and Accurate Scene Text Detector) is a nat-
ural scene text detection algorithm. The pipeline directly predicts
words or text lines of arbitrary orientations and quadrilateral shapes
in full images, using a single neural network, eliminating interme-
diate steps [149].

Histogram of oriented gradients (HOG) is a feature descrip-
tor used in computer vision and image processing for the purpose
of object detection [127]. The technique counts occurrences of

gradient orientation in localized portions of an image. The HOG
descriptor can serve as the feature vector in any machine learning
classification scheme (SVM, NN, Logistic Regression) [114].

kNN (k-Nearest Neighbours) is a supervised machine learn-
ing algorithm that can be used to solve both classification and
regression tasks. The kNN algorithm assumes that similar things
are in close proximity [31]. It computes a distance metric between
a new sample that has to be labeled and all the data points in the
training set. It takes the first k neighbours with the shortest dis-
tances to the new point. In the case of classification, it computes
the mode of those neighbours and, in the case of regression, it com-
putes the mean. This value is the label of the new point. A graphical
representation is presented in Figure 13.

Figure 13: K-Nearest Neighbours (kNN) graphical represen-
tation. Source:[31]

K-means is an unsupervised machine learning algorithm used
for clustering. Based on the provided features, the algorithm finds
k groups in the data. It is an iterative algorithm that assigns each
of the data points to one of the groups, based on feature similarity
[26].

LeNet5 is one of the classic CNN architectures. It consists of two
sets of convolutional and average pooling layers, a flattening con-
volutional layer, two fully-connected layers and finally a softmax
classifier [91].

Maximally Stable Extremal Regions (MSER) is a method for
blob detection in images. The MSER algorithm extracts a number of
co-variant regions called MSERs. MSERs are connected areas in an
image, with almost uniform intensity, surrounded by contrasting
background. [69].

Random Forest is a supervised machine learning algorithm
consisting of multiple individual Decision Trees that operate as an
ensemble. Each decision tree is build using a part of the training
data and a part of the features. When a new sample has to be
classified, all the decision trees are used and each of them outputs a
label. Using all those labels from all the individual trees, the random
forest takes the mode of them and assigns that label to the sample.
A graphical representation is presented in Figure 14.

Recurrent Neural Networks (RNN) is a class of neural net-
works with connections between nodes forming a directed graph
along a temporal sequence. Unlike feedforward neural networks,
RNNs can use their internal state (memory) to process sequences
of inputs and exhibit temporal dynamic behavior [129].

6

Figure 14: Random Forest graphical representation.
Source:[87]

LSTM (Long Short Term Memory Networks) are a special
kind of RNN, capable of learning long-term dependencies [81].

Single Shot Detector (SSD) is an object detection algorithm,
that needs only one shot to detect multiple objects within an image.
On the other hand, Region Proposal Network (RPN) based ap-
proaches such as R-CNN need 2 shots, one for generating region
proposals and one for detecting the object of each proposal [112].
SSD discretizes the output space of bounding boxes into a set of
default boxes over different aspect ratios and scales per feature
map location. At prediction time, the network generates scores
for the presence of each object category in each default box and
produces adjustments to the box to better match the object shape.
Additionally, the network combines predictions from multiple fea-
ture maps with different resolutions to naturally handle objects of
various sizes. SSD completely eliminates proposal generation and
subsequent pixel or feature re-sampling stages and encapsulates all
computation into a single network [59].

Spatial Transformer Network (STN) [72] is a module which
can be inserted into existing CNN architectures. It brings the advan-
tage of actively spatially transform feature maps, without any extra
training supervision or modification to the optimisation process.

Support Vector Machine(SVM) is a supervised machine learn-
ing algorithm used mainly for classification tasks, but it can also
be used for regression problems. SVM creates a hyperplane which
separates the data points into classes [88] [83]. It uses support vec-
tors, data points from each class that are closer to the hyperplane
and influence the orientation and position of the hyperplane [24].
A graphical representation is presented in Figure 15.

YOLO (You Only Look Once) [89] is a real-time state-of-art
object detection algorithm where a single convolutional network
predicts the bounding boxes and the class probabilities for these
boxes. It takes an image and splits it into an SxS grid and within
each of the grid it takes m bounding boxes. The network outputs
a class probability and offset values for each bounding box. The
bounding boxes having the class probability above a threshold are
selected and used to locate the object within the image [23].

Figure 15: Support Vector Machine (SVM) graphical repre-
sentation. Source:[24]

2.7 Datasets background
In this part, information about datasets referred in the Related work
section will be briefly presented.

CTW-1500 (CTW) consists of 1000 training and 500 testing
images. The images contain curved text instances and are annotated
by polygons with 14 vertices [3].

ICDAR2003 (IC03) consisting of 249 images, containing texts in
English. This dataset was used for the ICDAR 2003 Robust Reading
Competition for scene text detection [43].

ICDAR2013 (IC13) consists of 229 images for training and 233
for testing, containing texts in English. This dataset was used for
the ICDAR 2013 Robust Reading Competition for focused scene
text detection. The annotations are at word-level using rectangular
boxes [43].

ICDAR2015 (IC15) consists of 1000 training images and 500
testing images, containing texts in English. This dataset was used
for the ICDAR 2015 Robust Reading Competition for incidental
scene text detection. The annotations are at the word level using
quadrilateral boxes [43].

ICDAR2017 (IC17) consists of 7,200 training images, 1,800 val-
idation images, and 9,000 testing images, containing text in 9 lan-
guages. The text regions are annotated using quadrilateral boxes
[43].

IIIT 5K-Word consists of 5000 images with text in both natural
scenes and born-digital images. It exhibits variation in font, colour,
size, layout and the presence of noise, blur, distortion and varying
illumination. This dataset comes with three types of lexicons (small,
medium, and large) for each test image [3].

TotalText consists of 1255 training and 300 testing images, con-
taining curved text. The text regions are annotated by polygons
and word-level transcriptions [3].

SynthText consists of 800K synthetic images. These images are
obtained by blending natural images and text with random fonts,
sizes, colours, and orientations [3].

SCUT-CTW1500 consists of 1000 training images and 500 test
images, containing mainly curved text [3].

Street ViewText (SVT) dataset is a collection of outdoor images
with scene texts of high variability.

Total-Text consists of 1255 training images and 300 testing
images, containing English curved text [3].

7

Figure 16: Different container code layouts

3 CHALLENGES
At a first glance, the container code identification task seems to
be a classical digit and letter recognition problem, but it actually
arises a long list of challenges. The ISO standard only regulates the
pattern of the identification code, but does not regulate other pa-
rameters such as foreground and background colours, font size and
style, character orientation and so on. On top of these unregulated
parameters, environment conditions such as illumination and fog
and camera related parameters such as blur and photometric distor-
tions add extra complexity. Also, text printed on surfaces becomes
damaged or contaminated because of rust and structural damage
from rough handling and exposure to sea water. Thus, the main
challenge is to design a system as versatile as possible to handle
all the variability in daily life in real environmental conditions.
Following, a list of challenges, grouped in categories is presented.

(A) Business domain challenges: the challenges induced by
the different parameters of the container and container man-
agement system.

(1) Container related challenges: there is no prior infor-
mation of text location, size and orientation.
• unknown location of the code on the container
body: it is known that the identification code is some-
where in the right side of the container but this does
not provide significant information given the multitude
of possible layouts.

• unstandardized layout and orientation (horizontal/
vertical): the code layout is not standardized and there
are multiple layouts used, represented in Figure 16.

• curvy material and corrugated text over it: the cor-
rugated surface of some containers makes the 2D pro-
jection of the text on a 3D surface to be distorted.

• damage, mud, rust, peeling paint: parts of the con-
tainer and container code are damaged, scratched, par-
tially or totally covered bymud or rust. Figure 17 presents
some examples of characters with different degrees of
damage.

Figure 17: Example of damaged container code characters.

• occlusions: parts of the container and container code
are occluded by different objects such as stickers.

• objects cluttered into the code: metal pipes or logos
are present between the characters of the code or really
close to it.

8

• unstandardized foreground (text colour) and back-
ground colours: the ISO standard does not say any-
thing about colours. Figure 18 presents a container
where a part of the container and container code has
even a different colour than the other part.

Figure 18: Example of a container.

• reflexive/mat containers: not all the containers have
the same paint properties, and thus, some containers
have reflective surface in the sunlight, being sometimes
impossible to capture a photography from certain an-
gles.

(2) Environment related challenges:
• light: different light conditions are present in the envi-
ronment in different locations and different times of the
day (and the lack of light during the night). Moreover,
some containers have a part of the code in the sunlight
and a part in the shadow, creating uneven light at the
same time, on the same surface.

• weather conditions: fog , rain, snow
(3) Text related challenges: the text is also unstandardized

by the ISO standard and presents different variable param-
eters such as:
• font
• colour
• size
• stroke width
• occluded/missing characters

(B) Data driven/technical domain challenges: the challenges
given by the data handling and technical parameters

(1) Image acquisition (camera):
• resolution, image quality, noise, blur
• camera orientation, viewing angle
• image distortions/transformations: due to the camera
quality, but these occur alsowhen a truck stops closer/further
to the camera, more in the front/more in the back, in
the moment of image acquisition

(2) The lack of a public dataset: currently, there is no public
dataset for the container identification task. This means
first, the need of gathering and labelling a dataset, and
second, the results of this research are not comparable
with other models that solve the same problem because
they each use a different dataset.

(3) Fast processing, close to real time: the identification
algorithm has to be fast enough to make the whole con-
tainer management process faster. It is not desired for a
container to spend at the terminal’s gate more than 2-3
minutes for identification.

4 RELATEDWORK
4.1 Natural Scene Text Understanding
In this subsection, text detection consists of text detection and
text localization steps presented in Section 2 and text recognition
consists of text extraction, enhancement and recognition steps
presented in the same section.

There are a few survey papers that show an overview of the
methods used for Natural Text Scene Understanding, classifying
those methods form different perspectives:

• Zhang et. al (2013) [144] have mainly focused on papers/
methods related to scene text detection, but ignored methods
on text recognition.

• Uchida et al. (2014) [113] reviewed methods/papers for text
detection and recognition for images and videos, but for
text in images in general, mostly text from documents, not
natural scene text.

• Kim et al. (2003) [49] and Ye et al. (2015) [86] present also an
overview for text detection and recognition, but for text in
images in general, not natural scene text.

• Zhu et al. (2016) [141] tried to extend the work from [144]
and [113] with a special emphasis on the latest advances
in the scene text understanding area at the moment of the
study.

• Thillou et al. (2012) [9] present a natural scene text under-
standing overview focused on the extraction and segmenta-
tion methods.

• Long et al. (2018) [99] is the latest overview and presents
methods before and in the Deep Learning Era, focusing on
the Deep Learning Era.

4.1.1 Before the Deep Learning Era. The methods used be-
fore the Deep Learning Era mainly extract and use low and mid-
level hand crafted features with repetitive pre and post-processing
steps. Those methods are constrained by the limited representa-
tion of hand crafted features and mostly do not handle intricate
circumstances and blurred images [99].

A. Detection
There are 2 main methods used for detection before the deep

learning era [99]:

(1) Connected Component Analysis (CCA): method that ex-
tracts candidate components using a variety of ways and
then groups those components into bigger and bigger con-
structions, until a certain point, when the constructions are
classified as text or non-text. The non-text constructions are
filtered out and the text constructions are left. Epshtein et al.
[21], Huang et al. [39], Jain et al. [46], Neumann and Matas
[77], Yao et al. [134], Yi and Tian [13], Yin et al. [139], all use
Connected Component Analysis for scene text detection in
their research.

9

(2) SlidingWindow (SW): windows of different sizes slide over
the image and each window is classified as a text/ non-text
segment. Then all text segments are grouped further into
characters using various methods such as morphological
operations (Lee et al. [47]), Conditional Random Field (CRF)
(Wang et al. [119]) or graph based methods (Coated et al.
[14] and Wang et al. [121]).

Table 1 presents some of the detection algorithms with their
strengths and weaknesses, application domains, techniques and
reported performance.

B. Recognition
Table 2 presents some of the recognition algorithms with their

strengths and weaknesses, application domains, techniques and
reported performance.

The most used approach for text recognition before the Deep
Learing Era is the feature based approach. Shi et al. [103] and Yao et
al. [136] used character segments based algorithms for recognition,
Rodriguez et al. [93] [92], Gordo et al. [29] and Almazan et al. [1]
used label embedding to perform directly matching between images
and strings, Busta et al. [8] used the stroke as feature for recognition
and Phan et al. [84] used character key-points as features for their
algorithm.

Another widely used approach is to split the recognition problem
in multiple sub-problems which include text binarization (Lee et
al. [54], Mishra et al. [74], Wakahara et al. [116], Zhou et al. [150]),
text line segmentation (Ye et al. [137]), character segmentation
(Nomura et al. [79], Roy et al. [97], Shivakumara et al. [105]), single
character recognition (Chen et al. [10], Sheshadri et al. [101]) and
word correction(Karatzas et al. [48], Mishra et al. [73], Wachenfeld
et al. [115], Weinman et al. [122], Zhang et al. [20]).

C. End-to-end
There have been a few efforts to tackle the scene text understand-

ing problem using an end-to-end approach before the Deep Learn-
ing Era [78], [119]. Table 3 presents two end-to-end approaches with
their strengths and weaknesses, application domains, techniques
and reported performance.

4.1.2 The Deep Learning Era. The Deep Learning Era brings
not only changes and advancements in the algorithms used, but has
totally changed the way researches approach the problems, enlarg-
ing the scope of research by far. Besides the advantage of automatic
feature learning, that saves researchers from the repetitive work
of designing and testing large amount of potential hand-crafted
features, the deep learning paradigm brought a blossoming expan-
sion for the auxiliary tasks around the deep learning algorithms.
Thus, the deep learning era created the opportunity for new view-
points, faster and simplified pipelines, synthetic data generation
algorithms and more others [99].

A. Detection
The input for text detection is the whole image and the output

is a cropped text instance image which contains 1 word or 1 text
line. There are 3 main trends for text detection:

(1) Pipeline Simplification: Most of the methods before the
deep learning era and some early methods that use deep
learning have multi-step pipelines. More recent methods
have much simpler pipelines that simplify the training pro-
cess [99].

• Multi-step methods: the text detection task is split in
multiple steps([135], [146], [33]). Yao et al. [135] used a
convolutional neural network to predict if each pixel in the
image belongs to a character, if it is inside the text region
and also predict the text orientation around this pixel. Next,
they connected positive responses into characters or text
regions. Then, they applied Delaunay triangulation for
characters from the same text region, grouping characters
into text lines using graph partition based on the predicted
orientation [99]. A similar approach is used by Zhang et
al. in [146] to first build a dense map indicating the pixels
that are within text line regions, then for each text line, all
character candidates are extracted usingMSER [78]. Those
character candidates show information about the scale and
orientation of the text line. In the end, a bounding box is
used to isolate the final text line candidates.

• Simplified pipelines: recent methods of scene text detec-
tion use a 2-step pipeline made off by an end-to end neural
network and a post-processing step. These methods use
techniques from object detection considering the text as a
special type of object [99]. There are 2 main approaches:
– Anchor based methods are inspired from a general
object detection network called SSD (Single Shot De-
tector) [59]. A representative work by Liao et al. [57]
adapts the SSD network to fit different variations in
orientation and aspect rations of text lines. EAST [149]
is a version of the standard anchor-based box prediction
method that made a difference into the field of text de-
tection with its very simplified pipeline, efficiency and
speed [99].

– Region proposalmethodsmainly follow the standard
object detection framework of R-CNN [27], [28], [100]
where initially a set of regions that could contain text
are proposed and then a neural network classifies them
as text/non-text. Rotation Region Proposal Networks
[68] follow and adapt the standard Faster RCNN frame-
work. The standards axis aligned rectangles are replaced
by rotating region proposals to fit text of arbitrary ori-
entations. Further R2CNN [140] adapts the method to
solve the aspect ratios variations.

(2) Different Prediction Units: A very big difference between
text detection and object detection in general is that text
presents homogeneity and locality. This means that any part
of a text is still text, properties that are not valid for object
detection in general. This fact was the starting point for a
new branch of text detection methods, that first only predict
sub-text components and then assemble then into a text
instance. Considering the granularity of the text, there are 2
main levels of prediction granularity:
• text instance level: follows the general object detection
routine, first a region proposal network produces initial
and coarse guesses of text instances and then a refinement
network classifies these as text/non-text and corrects their
localization. This method is used by [16], [37], [140], [57],
[58], [62], [68], [145], [149].

• sub-text level:

10

Algorithm Strength Weakness Application
domain

Technique used Performance

Zhong et al.
[148] (1995)

can detect text in nat-
ural images

only simple images text localiza-
tion in colour
images

Horizontal spatial variance was uti-
lized to roughly localize texts and
then colour segmentation was per-
formed within the localized regions
to find texts

10 seconds process-
ing time, no perfor-
mance reported

Jain et al. [46]
(1998)

can detect text in nat-
ural images

only simple images
and relies on manu-
ally defined rules

text location
in images and
video frames

They decomposed images into sev-
eral non-overlapping components
by colour clustering, grouped com-
ponents into text lines through
component analysis, and then re-
moved non-text components ac-
cording to geometric rules.

accuracy lies be-
tween 72% and 99,2%
depending on the
type of images.

Kim et al.
[50](2003)

can detect text in
natural images and
videos

only simple images
and only applicable
to horizontal text

text detection
in images

They trained a SVM classifier to
classify each pixel by directly us-
ing the raw pixel intensity as local
feature. Text areas were sought via
adaptive MeanShift in probability
maps

2.4 % miss rate, 71.5%
false detection rate
and 0.72 seconds
average processing
time per image on
their dataset and 0.22
precision, 0.28 recall,
0.22 F-measure for
detection on ICDAR
2003 dataset

Li et al. [55]
(2000)

can detect and track
text in videos

only horizontal text text detection
and tracking
in videos

Images are decomposed by using
the mean of wavelet coefficients,
and the first-order and second-
order moments as local features

no performance re-
ported, just examples

Chen et al.
[11] (2004)

can detect text in
complex images and
it is fast

only horizontal text fast text detec-
tion

The detector is a cascade Adaboost
classifier, in which each weak clas-
sifier is trained from a set of fea-
tures. The feature pool includes
mean strength, intensity variance,
horizontal difference, vertical dif-
ference, and gradient histogram

97,2% detection rate
and 93% recognition
rate, 0,6 precision
, 0.6 recall, 0.58
F-measure for detec-
tion on ICDAR 2003
dataset

Lyu et al. [65]
(2005)

can detect text in
videos and can han-
dle multilingual text

only horizontal text multilingual
text detection
in videos

They proposed a coarse-to-fine
multi- scale search scheme. The
scheme used properties such as
strong edge and high contrast of
texts to distinguish between text
and non-text regions

91,1% detection rate,
90,8% detection ac-
curacy, 0.25 seconds
processing time

Wang et al.
[120] (2010)

can detect text in
complex natural im-
ages

only horizontal text
and requires a lexi-
con for each image

specific words
location in
natural
scenes

Firstly, single characters are de-
tected by sliding window. Then,
possible combinations are scored
according to the structural relation-
ships between characters. Finally,
the most similar combinations are
selected from the given list as the
output results.

51,5 % recognition
accuracy for the
CDAR03-CH dataset

Epshtein et al.
[21] (2010)

can detect text in
complex natural im-
ages, can handle mul-
tilingual text and it is
reasonably fast

only horizontal/
nearly horizontal
text and relies on
manually defined
rules

natural scene
text detection

They use the property that char-
acters have nearly constant stroke
width and propose a new im-
age operator: Stoke Width Trans-
form(SWT). This operator provides
an easy way to recover character
strokes from edge maps and is able
to efficiently extract text compo-
nents of different scales and direc-
tions from complex scenes

0,73 precision, 0,6 re-
call, 0,66 F measure,
0.94 seconds process-
ing time

11

Neumann et
al. [76](2010)

can detect text in
complex natural im-
ages and it is reason-
ably fast

only horizontal/
nearly horizontal
text

text local-
ization and
recognition
in real-world
images

They proposed a text detection al-
gorithm based on Maximally Stable
Extremal Regions (MSER). This al-
gorithm extracts from the original
imagesMSER regions as candidates,
and eliminates invalid candidates
using a trained classifier. At a later
stage, the remained candidates are
grouped into text lines through a
series of connection rules.

0.59 precision,
0.55 recall, 0.57
F-measure for de-
tection and 0.42
precision, 0.39 recall
and 0.4 F-measure
for recognition on
the ICDAR 2003
dataset

Yi et al. [13]
(2011)

can detect text of
different orientations
and can handle mul-
tilingual text

only simple natural
images and relies on
manually defined
rules

tilted text de-
tection in nat-
ural images

Firstly, the image is divided into dif-
ferent regions according to the dis-
tribution of pixels in colour space,
and then regions are combined into
connected components according
to the properties such as colour
similarity, spatial distance and rel-
ative size of regions. Finally, non-
text components are discarded by a
set of rules.

0.71 precision,
0.62 recall, 0.62
F-measure for detec-
tion on the Robust
Reading Dataset

Shivakumara
et al. [106]
(2011)

can detect text of dif-
ferent orientations

produces text blocks
instead of words or
lines and relies on
manually defined
rules

multi-
oriented
text detection

The method extracted candidate re-
gions by clustering in the Fourier-
Laplace space and divided the re-
gions into distinct components us-
ing skeletonization. However, these
components generally do not corre-
spond to strokes or characters, but
just text blocks.

0,76 precision,
0,86 recall, 0.81 F-
measure, 7,8 seconds
processing time on
ICDAR 2003 dataset

Yao et al.
[134] (2012)

can detect text of
different orienta-
tions, can handle
multilingual text and
it is reasonably fast

relies on manually
defined rules

detection
of texts of
arbitrary
orientations
in natural
images

Based on Stroke Width Trans-
form(SWT) [21], this algorithm is
equipped with a two-level classifi-
cation scheme and two sets of rota-
tion and rotation-invariant features
specially designed for capturing the
intrinsic characteristics of charac-
ters in natural scenes

0.69 precision,
0.66 recall, 0.67
F-measure for detec-
tion on ICDAR 2003
dataset

Huang et al.
[39] (2013)

can detect text in
complex natural im-
ages and can handle
multilingual text

only horizontal text
and relies on manu-
ally defined rules

text localiza-
tion in natural
scene images

Tehy presented a new operator
based on Stroke Width Transform
(SWT), called Stroke Feature Trans-
form (SFT).In order to solve the mis-
match problem of edge points in
the original Stroke Width Trans-
form, SFT introduces colour con-
sistency and constrains relations of
local edge points, produc- ing bet-
ter component extraction results.

0,81 precision, 0,74
recal, 0,72 F-measure
for detection on IC-
DAR 2005 dataset

Huang et al.
[40] (2014)

can detect text in
complex natural im-
ages and has excel-
lent performance

only horizontal text scene text de-
tection

They proposed a novel framework
for scene text detection, which inte-
grated Maximally Stable Extremal
Regions (MSER) and Convolutional
Neural Networks (CNN). TheMSER
operator works in the front-end
to extract text candidates, while a
CNN based classifier is applied to
correctly identify true text candi-
dates and separate the connections
of multiple characters in compo-
nents.

0.84 precision,
0.67 recall, 0,75
F-measure for detec-
tion on ICDAR 2005
dataset

Table 1: Comparison between existing text detection methods.
12

Algorithm Strength Weakness Application
domain

Technique used Performance

deCampos
et al. [109]
(2009)

can recognize char-
acters in natural im-
ages

only simple images
and it is sensitive to
font variation

character
recognition
in natural
images

The problem is addressed in an
object categorization framework
based on a bag-of-visual-words
representation. They assess
the performance of various
features(Geometric Blur, Scale
Invariant Feature Transform, Spin
image, Maximum Response of
filters and Patch descriptor) based
on kNN and SVM classification.

55,26% recognition
accuracy

Mishra et al.
[75](2012)

can recognize words
in natural images
and it is insensitive
to font variation

sensitive to font vari-
ation

scene text
recognition

This method uses sliding win-
dow to detect possible characters,
and treat the detection results as
bottom-up information. It also uses
top-down information that comes
from the statistics of a large dic-
tionary. The bottom-up and top-
down information are integrated
in a unified model through Condi-
tional Random Field (CRF).

73,26% recognition
accuracy on Street
View Text dataset
and 81,78% recog-
nition accuracy on
ICDAR 2003 dataset

Mishra et al.
[73] (2012)

can recognize words
in natural images

relies on large lexi-
con and it is sensitive
to font variation

scene text
recognition

They proposed a new text recogni-
tion method based on the algorithm
in [75]. This method introduces an
error correction model, which take
full advantage of higher order prior
information, further boosting the
recognition accuracy.

recognition accuracy
of 68% on Street
View Text dataset
and 72,01% on
ICDAR 2003 dataset

Novikova et
al. [80] (2012)

can recognize words
in natural images

relies on large lexi-
con and it is sensitive
to blur and occlusion

text recogni-
tion in natural
images

They proposed to characterize char-
acter appearance and the rela-
tionship between characters via
a unified probabilistic model. Un-
like the algorithm in [75], char-
acter candidates are extracted us-
ing MSER. This method adopts
Weighted Finite-State Transduc-
ers as the probabilistic model and
searches the most likely word by an
efficient reasoning algorithm.

82,8% recognition
accuracy for ICDAR
2003 and 72,9% for
Street View Text
dataset

Rodriguez-
Serrano et al.
[93] (2013)

can recognize words
in complex natural
images, it has re-
trieval based word
recognition and it is
efficient

requires a lexicon for
each image

text recogni-
tion

They explored a new approach for
text recognition, in which label em-
bedding was utilized to directly per-
formmatching between strings and
images, by- passing pre- or post-
processing operations.

76,1% recognition
accuracy on IIIT-5k
dataset

Shi et al. [103]
(2013)

can recognize words
in complex natural
images and it is in-
sensitive to blur, oc-
clusion, font varia-
tion

relies on manually
designed character
models and requires
detailed annotations
for parts

scene text
recognition

They proposed a part-based tree-
structured model to recognize char-
acters in cropped images.

79,3% recognition
accuracy on ICDAR
2003, 82,87% on
ICDAR 2011 and
73,51 on Street View
Text dataset

13

Yao et al.
[136] (2014)

can recognize words
in complex natural
images, can learn
character parts from
training data and
it is insensitive to
blur, occlusion, font
variation

inefficient scene text
recognition

They proposed a novel representa-
tion, called Strokelets, which con-
sists of a set of multi-scalemid-level
elements . Strokelets can be auto-
matically learned from character
level labels and are able to capture
the structural properties of charac-
ters at different granularities. More-
over, strokelets provide an alterna-
tive way to identify individual char-
acters and compose a histogram fea-
ture to describe characters

80,33% recognition
accuracy on IC-
DAR2003 and 75,89%
on Street View Text
dataset

Table 2: Comparison of existing text recognition methods.

Algorithm Strength Weakness Application
domain

Technique used Performance

Wang et al.
[119] (2011)

good performance on
street view images
and it is robust

only applicable to
horizontal texts and
it requires a lexicon
for each image

end to end
scene text
recognition

They consider characters as being
a special type of objects and per-
form object detection using a near-
est neighbor classifier trained using
HOG features [17]. Further, they
group the identified characters into
words using a Pictorial Structure
(PS) based model [22]

54% character classi-
fication accuracy on
Chars74K-15 dataset
and 64% on ICDAR
dataset

Neumann
and Matas
[78](2013)

fast and good per-
formance on ICDAR
2011 Robust Reading
dataset

unable to detect
single or two-letter
words and only ap-
plicable to horizontal
text

end-to-end
scene text
recognition

They used a decision delay ap-
proach and keep multiple segmen-
tations of each character until the
last stage when the context of each
character is known. They used ex-
tremal regions for the character
segmentations and a dynamic pro-
gramming algorithm for decoding
the recognition results [99].

85,4% precision,
67,5% recall and
75,4% F-measure
for text localization
and 39,4% precision,
37,8% recall for
text recognition on
ICDAR 2011 dataset

Table 3: Comparison of existing end-to-end methods.

– pixel-level: an end-to-end fully convolutional network
predicts for each pixel belongs to a text instance or
not. Then post-processing methods group pixel into
text instances, using different algorithms to separate
pixels from 2 adjacent instances: Deng et al. [18] add
link predictions to each pixel, while Wu and Natara-
jan [133] classify each pixel as being text, border or
background, assuming that border separates well text
instances. Other researches that use pixel level predic-
tion granularity for text detection are [33], [135] and
[146].

– components-level: refers to a local region or text in-
stance, sometimes containing one or more characters.
Lyu et al. [67] proposes corner localization and detects
all 4 corners of each text instance and uses those predict
which components are part of the same instance. Wang
et al. [117] use a clustering based method to cluster pix-
els using their colour consistency and edge information.

The clusters are further used to extract characters and
predict text instances. Another approach of component-
level methods is Connectionist Text Proposal Network
(CTPN) [110], [131], [151] that uses the idea of anchors
and recurrent neural networks for sequence labelling.
They usually consists of a CNN network and a RNN
in top of it. Each position in the feature map repre-
sents features in the region specified by the correspond-
ing anchor. The RNN labels each group of features as
text/non-text [99]. Other researches using component
level granularity are [32] and [102].

(3) Specific Targets: Most of the current detection researches
tackle unique difficulties of the scene text detection problem,
being designed for special purposes such as:

14

Figure 19: The overall training pipeline for the method proposed by Baek et al in [3]. Training is carried out using both real
and synthetic images in a weakly-supervised fashion. (GT=ground truth) Source:[3]

Figure 20: Ground truth(GT) generation procedure used by by Baek et al. in [3]. They generate ground truth labels from a
synthetic image that has character level annotations. Source:[3]

• long text: general object detection systems fail to detect
text, because, unlike general object, text is present in vari-
ous aspect ratios. Thus, several researches have been con-
ducted to solve the problem of long text detection (Jiang
et al. [140], Lyu et al. [67], Shi et al. [102]).

• multi-orientated text: skewed and rotated text is com-
mon in real world, but the text detection is rotation-sensitive
affecting the performance. Several methods tackled this
problem: [140] , [57], [58], [62], [118], [68], [149].

• text of irregular shapes: Curved text makes the clas-
sic rectangle bounding boxes inefficient due to the large
amount of background sent towards recognition. Some
of the researches that tackle this problem are: [143], [66],
[34].

• other purposes: speedup (Zhou et al. [149]), easy in-
stance segmentation (Deng et al. [18], He et al. [33], Pol-
zounov et al. [85] , Wu et al. [133]), retrieving designed
text (Rong et al. [94]), complex background (He et al.
[35]).

The last couple of months brought some advancements in the
field of natural scene text detection. Table 4 presents these with
their strengths and weaknesses, application domains, techniques
and reported performance.

• Baek et al. [3] proposed a framework which effectively de-
tects text area by exploring each character and affinity be-
tween characters. They train a deep neural network to pre-
dict character regions and the affinity between characters,
their architecture being presented in Figure 19 .
To overcome the lack of individual character level anno-
tations, their proposed framework exploits both the given
character-level annotations for synthetic images and the es-
timated character-level ground-truths (GT) for real images
acquired by the learned interim model. Figure 20 presents
the ground truth generation procedure that they used.

• Huang et al. [41] proposed a new Mask R-CNN [34] based
text detection approach which can robustly detect multi-
oriented and curved text from natural scene images in a

15

Algorithm Strength Weakness Application
domain

Technique used Performance

Baek et al. [3]
(2019)

high flexibility in de-
tecting complicated
scene text images,
such as arbitrarily-
oriented, curved, or
deformed texts

multi-language
issues

arbitrary
shape text
detection
in natural
scenes

They trained a deep neural network to pre-
dict character regions and the affinity be-
tween characters, their architecture being
presented in Figure 19.

see Figure 21

Huang et al.
[41] (2018)

can detect multi-
orientate and curved
text

slow and it struggles
with skewed nearby
long text-lines

multi-
oriented
and curved
text detection
in natural
scenes

They proposed a new Mask R-CNN based
text detection. To enhance the feature rep-
resentation ability of MaskR-CNN, they
propose to use the Pyramid Attention Net-
work (PAN) as a new backbone network
of Mask R-CNN.

see Figure 21

Wu et al.
[132] (2019)

can handle complex
backgrounds and can
detect text of arbi-
trary shapes

slow irregular text
detection
in natural
images

They proposed a pixel-wisemethod named
TextCohesion, which splits a text instance
into 5 key components:a Text Skeleton and
4 Directional Pixel Regions.

see Figure 21

Table 4: Comparison of the latest text detection researches.

unified manner. To enhance the feature representation abil-
ity of Mask R-CNN for the text detection tasks, they propose
to use the Pyramid Attention Network (PAN) as a new back-
bone network of Mask R-CNN. Their Mask R-CNN based
text detection network is composed of 4 modules: 1) A PAN
backbone network that is responsible for computing a multi-
scale convolutional feature pyramid over a full image; 2)
A region proposal network (RPN) that generates rectangu-
lar text proposals; 3) A Fast R-CNN detector that classifies
extracted proposals and outputs the corresponding quadri-
lateral bounding boxes; 4) A mask prediction network that
predicts text masks for input proposals.

• Wu et al. [132] proposed a pixel-wise method named TextCo-
hesion, which splits a text instance into 5 key components:
a Text Skeleton and 4 Directional Pixel Regions. Their goal
is to detect irregular text instances. First they predict Text
Skeleton(TS) and Directional Pixel Regions(DPRs) and then
the post-processing links TS and DPRs to reconstruct the
text. All TS are verified by a Confidence Scoring Mechanism.

B. Recognition
While the input for text detection is the whole image, the recog-

nition phase takes as input the output of the detection phase. This
is a cropped part of the original image which contains 1 character, 1
word or 1 line of text. Traditional text recognition methods split the
recognition task into 3 sub-tasks: image pre-processing, character
segmentation and character identification. Due to the challenges
posed by the character segmentation that constrains the perfor-
mance of the whole recognition process, the current methods avoid
the character segmentation. There are 2 major approaches:

(1) Connectionist TemporalClassification (CTC): is "a type
of neural network output and associated scoring function,
for training recurrent neural networks (RNNs) such as LSTM
networks to tackle sequence problems where the timing is

Figure 21: Performance comparison (%) of the latest text de-
tection researches on 5 different datasets

variable" [124]. Shi et al. [4] propose for scene text recogni-
tion an architecture that stacks CNN with RNN. First, the
convolutional layers extract a sequence of features from the
input image. Second, the recurrent layers predict for each
frame a label distribution. Third, the connectionist tempo-
ral layer or the transcription layer translates the per-frame
predictions into the final label sequence. Gao et al. [25] and
Yin et al. [138] adopt a similar approach but they don’t use
RNN, but just stacked CNNs. Gao et al. [25] use the CNN
layers to capture the contextual dependencies of the input
sequence, approach characterized by lower computational
complexity than RNN. Yin et al. [138] simultaneously detect
and recognize characters by sliding the text line image with
character models, which are learned end-to-end on text line
images labeled with text transcripts [99].

(2) Attention Mechanism: Lee et al. [53] propose a RNN with
attention modeling (R2AM) for lexicon-free scene text recog-
nition. The attention-based mechanism performs soft feature

16

selection for better image feature usage [99]. Cheng et al. [12]
proposed Focus Attention Networks (FAN) to attenuate the
attention drift problem in the existing attention based meth-
ods. Liu et al. in [63] propose an attention based encoder-
decoder which achieves state of art accuracy consuming less
computational resources than the previous methods. In an-
other research, Liu et al. [60] present a hierarchical attention
mechanism (HAM) which consists of a recurrent RoI-Warp
layer and a character-level attention layer. They adopt a local
transformation to model the distortion of individual char-
acters, resulting in an improved efficiency, and can handle
different types of distortion that are hard to be modeled by
a single global transformation [99].

(3) Other methods: Jaderberg et al. [44], [71] perform word
recognition on the whole image holistically. They train a
deep classification model just on data produced by a syn-
thetic text generation engine, and achieve state-of-the-art
performance on some benchmarks containing English words
only. But application of this method is quite limited as it can-
not be applied to recognize long text sequences as phone
numbers.

Figure 22 presents a performance comparison between the text
recognition methods presented in this section.

Figure 22: Scene text recognition accuracies (%) on general
benchmarks. “50” and “1k” are lexicon sizes, “Full” indicates
the combined lexicon of all images in the benchmark, and
“None” means lexicon-free.

C. End-to-end
Recently, instead of a text detection and a text recognition sepa-

rate systems, a text spotting system combines text detection and
recognition into a single system [99]. The early work first uses a
detection model to generate text proposals and then a recognition
model to recognize the text instances such as in the researches [30],
[45] and [57]. Liao et al. use in [57] an SDD based text detector
and CRNN for text spotting. Jaderberg et al. propose in [45] Edge

Box proposals and a trained aggregate feature detector to propose
candidate word bounding boxes. Further, the bounding boxes are
filtered and rectified , the result being sent to the recognition model
proposed in [71]. The main disadvantage of the 2 step method is
the error propagation between the detection and the recognition
models, that affects the overall performance. Recently, more end-to-
end trainable networks tackle this problem [5], [7], [36], [56], [61].
Bartz et al. propose in [5] a STN (Spatial Transformer Network)
[72] to circularly attend to each word in the image and them rec-
ognize them separately. There are no word bounding boxes used
in the training. Li et al. [56] use an encoder-decoder based recog-
nition model as substitution for the object classification module
in Faster-RCNN [100]. Liu et al. [61], Busta et al. [7] and He et al.
[36] proposed an unified detection and recognition system with
a very similar overall architecture which is made of a detection
branch and a recognition branch. Liu et al. [61] and Busta et al.
[7] adopt EAST [149] and YOLOv2 [90] as their detection branch
and have a similar text recognition branch in which text proposals
are mapped into fixed height tensor by bilinear sampling and then
transcribe in to strings by a CTC-based recognition module [99]. He
et al. [36] used also EAST for detection, but introduced character
spatial information as explicit supervision in the attention-based
recognition branch.

Table 5 presents these end-to-end text spotting methods with
their strengths and weaknesses, application domains, techniques
and reported performance. Figure 23 presents a performance com-
parison between those methods. There are two protocols used for
evaluation: end-to-end and word-spotting. End-to-end needs to
recognize all the words precisely, no matter whether the dictio-
nary contains these strings. On the other hand, word-spotting only
examine whether the words in the dictionary appear in images,
making it less strict than the end-to-end protocol for ignoring sym-
bols, numbers and words whose length is less than 3. Also, for both
evaluation protocols, there are 3 specific lists of words used as lexi-
cons for reference in the test phase, named: “Strong”, “Weak” and
“Generic”. “Strong” lexicon provides 100 words per-image including
all words that appear in the image. “Weak” lexicon includes all
words that appear in the entire test set. “Generic” lexicon is a 90k
word vocabulary.

4.2 Container Code Recognition
There are 3 attributes that differentiate the container code from
scene text in general: a container code is an alpha-numeric string,
the characters are always in upper-case and the corrugated surface
of the container body which distorts the container code. There
have been several researchers trying to solve the container code
recognition problem:

• Verma et al. [2] proposed an end-to-end pipeline that uses Re-
gion Proposals generated based on Connected Components
(CC) for text detection in conjunction with Spatial Trans-
former Networks (STN) for recognition. Their proposed ar-
chitecture consists of 4 major blocks as presented in Figure
24:
– Image Processing
– Extraction of region proposals using CC
– Classification using STNs

17

Algorithm Strength Weakness Application
domain

Technique used Performance

Bartz et al. [5]
(2017)

simple architecture can not detect text
in arbitrary locations
in the image, can de-
tect a fixed number
of maximum words

end-to-end
scene text
spotting

They used a single deep neural net-
work, that learns to detect and rec-
ognize text from natural images, in
a semi-supervised way. Their net-
work integrates and jointly learns a
spatial transformer network(STN)
[72], which can learn to detect text
regions in an image, and a text
recognition network that takes the
identified text regions and recog-
nizes their textual content.

78% recognition accu-
racy on French Street
Name Signs(FSNS)
dataset and 95,2% se-
quence recognition
accuracy on Street
View House Number
(SVHN) dataset

Li et al. [56]
(2017)

can handle text of dif-
ferent aspect ratios

can not handle multi-
orientated text

end-to-end
text spotting

They used an encoder-decoder
based recognition model as substi-
tution for the object classification
module in Faster-RCNN [100].

see Figure 23

Liu et al. [61]
(2018)

can handle text of
different orientations
and it is fast

requires a lexicon end-to-end
fast text
spotting

They used EAST [149] for detection
and for recognition text proposals
are mapped into fixed height ten-
sor by bilinear sampling and then
transcribed in to strings by a CTC-
based recognition module [99].

see Figure 23

Busta et al. [7]
(2017)

fast sensitive to blur and
can not handle small
text

end-to-end
text spotting

Similar architecture as Liu et al. in
[61], but they used YOLOv2 [90] for
detection instead of EAST.

see Figure 23

He et al. [36]
(2018)

can handle complex
backgrounds

requires a lexicon end-to-end
text spotting

Similar architecture as Liu et al. in
[61]. They also used EAST [149] for
detection, but introduced charac-
ter spatial information as explicit
supervision in the attention-based
recognition branch.

see Figure 23

Table 5: Comparison between existing end-to-end text spotting methods

Figure 23: Performance comparison of text spotting meth-
ods showing the F-measure in percentage

– Sequence generation
First the input image is pre-processed (scaling and binariza-
tion) making the separation of the characters easier, then

using CCs text region proposals are generated. Those pro-
posals go as input into the classification networks. They
used 2 classification networks, 1 for digits and 1 for letters.
Further, they compare the first 4 characters generated by
the STN Classification with all the codes from the ISO Code
Directory to find which character sequence is valid. After
having a valid sequence of the first 4 characters, they use
heuristics to find the other part of the code, trying to find
a code that fits the ISO pattern. Their experiments show
an 100% coverage for detection and 99,64% accuracy for the
recognition of the separate characters and 95% accuracy for
the recognition of the whole code. Their solution seems to
have an impressive performance, but they used just 19 im-
ages for testing that, from my point of view, it is not enough
to consider the results significant. Also, they weren’t able to
compare their solution with prior solutions because each of
them was conducted using different datasets.

• Mei et al. [52] proposed a different approach for the con-
tainer code identification task, detecting and recognizing
each character separately and them combining them to form

18

Figure 24: Container Code Recognition Pipeline proposed by Verma et al. Source:[2]

a code. First, the characters are isolated, then template match-
ing(TM) based on hand crafted features is used for detection
and 2 LeNet5 trained separately, one for digits and 1 for
letters are used for recognition. Then the characters recog-
nized are combined according with their credibility and the
verification rule of container codes. They use real container
images for training, in contrast with the previous work that
used synthetic images for training and real ones just for test-
ing. Moreover they use all 4 sides of each container and apply
the described algorithm for all 4 side images. Further they
combine the results using the 4 sides and using heuristics
and the check digit, they choose the best character sequence.
They report a 91,9 % accuracy after their experiments com-
bining results from all 4 sides of the container in the final
result.

• Yoon et al. [142] studies the effect of using multiple con-
tainer sides images on the recognition accuracy. They use
Connected Component Analysis (CCA) for character seg-
mentation and Support Vector Machine (SVM) for recogni-
tion. The SVM algorithm uses 44 classes , 10 for numbers, 24
for letters (O and I are considered as 0 and respectively 1) and
10 for numbers with surrounding rectangles (for the check
digits). Then they proposed a character-level integration and
decision-level integration of the results. The character-level
integration produces a new code fabricated from the rec-
ognized codes of the planes. The decision-level integration
finally selects one among six codes including the new code
from the character-level integration [142]. Figure 25 presents

the processing flow of the character-level integration and an
example for each step. They reported a 70% accuracy recog-
nition from a single view and 96% accuracy for integration
of 5 container views.

• Koo and Cha [51] proposed another method which uses verti-
cal edge information, a spatial structure window, and texture
clustering. The vertical edge information is extracted using
a top-hat transform. The candidate region and type of ISO-
Code is obtained using a Spatial Structure Window (SSW)
which wraps around the vertical edges. The ISO-Code is ex-
tracted using texture clustering by the K-Means algorithm
which is then recognized by a Back-propagation Neural Net-
work (BP) [51]. The results yielded a recognition rate of
98.39%.

• Rozinat et al. [147] proposed a container code extraction
algorithm. They used template matching, but preceded by a
series of filters in order to reduce noise. The flow diagram
that they propose is presented in Figure 26. Their method
can segment out container code characters properly with a
ratio above 96%.

• Kumano et al. [104] proposed a character recognition scheme
based on a dynamic design method for recognizing differing
character string layouts in container marks or numbers. Field
tests have been conducted and they obtained a recognition
rate of 92.8%.

• Chen et al. [38] use computer vision techniques to tackle the
container code identification task reporting 87.95 % recogni-
tion rate on a 83 images test set.

19

Figure 25: Character-level integration of the code recogni-
tion results: (a) processing flow and (b) example results of
each step. Source:[142]

Table 6 presents these methods with their strengths and weak-
nesses, techniques and reported performance.

As a small conclusion of the related work findings, each of the
related researches are based on some assumptions, achieve impres-
sive performances on certain challenges and fail to deal with other
challenges. After the container management system domain analy-
sis, it turns out that most of the time, the container code is damaged
and this is the biggest problem that even humans face when they
have to identify the containers. Thus, this research will study the
effect of the damage on the performance of the container code iden-
tification. Table 4 and Table 6 present the most relevant approaches
for this research.

5 DATASET AND METHODOLOGY
5.1 Methodology
Considering that most of the specific challenges posed by the con-
tainer code influence the detection of the code and that the character
recognition is a largely studied problem, the proposed pipeline is
split in 2 parts: detection of the container code and recognition
of the container code characters. A standard simple recognition
algorithm is chosen, while a new approach is used for container
code detection, approach based on a recent research by Baek et al.
[3].

Thus, the proposed pipeline is presented in Figure 30 and consists
of 2 main parts:

Figure 26: Flow diagram of the system proposed by Rozinat
et al. Source:[147]

Figure 27: Results reported by Verma et al. in [2]. Source:[2]

Figure 28: Results reported by Yoon et al. in [142].
Source:[142]

(1) Detection
(2) Recognition

5.1.1 Detection. The detection phase has 3 steps as illustrated
in Figure30:

(1) Pre-processing: affine transformation of the input image
(2) CNN processing

20

Algorithm Strength Weakness Technique used Performance
Verma et al.
[2] (2017)

can handle text spa-
tial transformations
such as translation,
scale and rotation

requires a lexicon for
the first 4 charac-
ters, relies on manu-
ally defined rules and
works only when the
code is perfectly visi-
ble

Their proposed architecture consists of 4
major blocks as presented in Figure 19:Im-
age Processing,Extraction of region pro-
posals using CC,Classification using STNs
and Sequence generation.

see Figure 27 and Figure 29

Mei et al. [52]
(2017)

can deal with miss-
ing characters using
multiple sides of the
containers

uses a predetermined
range of character
size and relies on
manually defined
rules

They proposed a framework based on con-
volutional neural network (CNN) and tem-
plate matching (TM)

see Figure 29

Yoon et al.
[142] (2016)

can deal with miss-
ing characters using
multiple sides of the
containers

works only when the
code is perfectly visi-
ble

They used Connected Component Analy-
sis (CCA) for character segmentation and
Support Vector Machine (SVM) for recog-
nition.

see Figure 28 and Figure 29

Koo and Cha
[51] (2013)

can handle light vari-
ations

works only when the
code is perfectly visi-
ble

They proposed a method which uses ver-
tical edge information, a spatial structure
window (SSW), texture clustering and a
Back-propagation Neural Network (BP).

see Figure 29

Rozinat et al.
[147] (2005)

can handle noisy im-
ages and light varia-
tions

can not handle dis-
torted characters

They used template matching, preceded by
a series of filters in order to reduce noise

see Figure 29

Kumano et al.
[104] (2004)

can handle light vari-
ations

works only when the
code is perfectly visi-
ble

They proposed a character recognition
scheme based on a dynamic designmethod
for recognizing differing character string
layouts in container marks or numbers.

see Figure 29

Table 6: Comparison between existing container code recognition methods

Figure 29: Performance comparison between the existing
container code recognition algorithms (%)

(3) Post-processing: threshold applied on the regional score map
Pre-processing: Before going as input to the CNN network, the

input image is transformed in order to reduce camera distortions.
An affine transformation is used to reduce the skewness of the
container code, this process being visually illustrated in Figure 30.

CNN processing: A fully convolutional neural network (CNN)
architecture based on the approach proposed by Baek et al. in [3] is
used for detection. The first part is based on VGG-16[108] network
and overall is similar to U-net[95]. The architecture is illustrated in

Figure 31. All layers use as activation function ReLu. The network
was trained using the Adam optimizer and binary crossentropy
as loss function. In order to prevent overfitting, dropout with a
rate of 0.5 is used after each Max Pooling layer and after each
concatenation operation.

The CNN was trained using the dataset described in Section
5.2.1.

The input of the CNN is a RGB container image with a size of
256x256x3.

The output of the CNN are 2 score maps of size 128x128x1: a
region score map and an affinity score map. The region score map
represents the probability that each pixel is a centre of an charac-
ter and the affinity score map represents the probability that each
pixel is the center of the space between 2 adjacent characters. The
probability scores are encoded using a Gaussian heatmap, rather
than binary pixel values. Heatmaps have been used before in other
applications such as pose estimation and are really recently proved
by Baek et al. [3] to work on text detection due to their scale in-
variance, flexibility when dealing with regions that are not rigidly
bounded and focusing on intra and inter character level rather than
on the whole text instance. Considering that the container code

21

Figure 30: The pipeline of the proposed solution

characters are distorted, the following process is followed in order
to generate the heatmaps [3]:

• create a 2 dimensional Gaussian isotropic map that will be
used further for all the characters

• for each character:
– use the character coordinates to create a character box
– compute a perspective transform between the prepared
Gaussian map and the character box

– using the perspective transform, warp the Gaussian map
to the box area

The process is illustrated in Figure 20. For the affinity heatmaps
the same process is applied, but instead of the character box, the
boxes are defined as presented in Figure 20, using 2 adjacent char-
acters.

The region score map is used further in the pipeline, the affinity
score map is only used in the training phase, in order to get more
insight about the text, namely about the space between characters.

Post-processing: The regional map represents score probabili-
ties for each pixel to be the center of a character and thus, it can
be used to locate the text in the image. Applying a threshold over
this map results in isolating the Regions of Interest (ROIs). Each
ROI will be a piece of the original image that contains text. Thus,
one or more text ROIs will be the output of the detection phase as
illustrated in Figure 30.

5.1.2 Recognition. The recognition phase has 4 steps:
(1) Character enhancement

(2) Character extraction
(3) Character recognition
(4) Code validation

The character enhancement consists of the following image
processing operations:

(a) convert into grayscale
(b) increase contrast using the CLAHE technique
(c) enhance the white colour
(d) apply a mask to find the white colour
(e) apply dilation with a 2x2 seed
(f) obtain the inverted image from the grayscale image from

step (a). Then repeat all the steps from (b) until (e) on the
inverted image.

The colour of the container code text is not known and using
both, the original image and the inverted image, together with a
mask for white colour, both dark and light text are enhanced.

Character extraction: Using the outputs of the step (e) for both,
the original image and the inverted image, all the objects in the
images are extracted and each of them will represent a region of
interest (ROI). Each ROI is a part of the image resulted after dilation,
not part of the original image.

Figure 32 illustrates the character enhancement and extraction
steps.

Character recognition: In the literature, a K-Nearest Neigh-
bours (kNN) algorithm is the most promising classifiers for this

22

Figure 31: The CNN architecture for detection

task, and thus, a kNN classifier is used for character recognition.
Each ROI from the previous step follows the next process:

(1) the ROI is resized at 128x128 pixels
(2) the ROI is flattened
(3) a kNN classifier is used and a text character is assigned to

the ROI

The kNN was trained using the dataset described in Section 5.2.3.
The parameters used are the following:

• k=1 neighbour
• Euclidian distance

Using only the closest neighbour (k=1) was chosen due to the
highly imbalanced dataset. Some classes have a really low amount
of samples (even 1 sample for 2 classes), while others have a high
number of samples (more than 50).

Code validation: The input of this step is represented by a list
of ordered characters. This character list is tested in order to verify
if it meets all the requirements of a container code:

• It fits the ISO code format: 4 letters and 7 digits.
• It verifies the check digit: applying the algorithm described in
Section 2 on the first 10 characters results the 11th character.

If the character list meets all the requirements, then a complete
container code is found and returned. If the character list does not
meet all the requirements, then the ROI is rotated till the container

code is found. Considering the position of the camera and the pos-
sible orientations of the container and container code, there are
3 rotation angles that will be used, in this order: 180 degrees, 270
degrees and 90 degrees. If, after checking all the 4 perspectives,
a complete container code is not found, then all the incomplete
container code candidates are evaluated. If there are more candi-
dates, then the one that fits the most of the ISO code is returned. A
schematic representation of the code validation step is presented
in Figure 33.

If the detection phase returns more than one ROI, then each
ROI, one by one, follows the same process. Assuming that each
image contains only one container code, if at any point a complete
container code is found, the process stops and any other ROIs left
are not evaluated anymore. If a complete code is not found in any
of the ROIs, then all the incomplete candidates are combined and
the best one from the total is returned. Figure 34 illustrates a case
when 2 ROIs are returned by the detection phase.

5.1.3 Evaluation. The evaluation can be split in 3 phases:

• Detection evaluation
• Recognition evaluation
• Overall evaluation

The overall evaluation will be done using a customized perfor-
mance metric called the performance vector, illustrated in Figure
35. The results of the overall pipeline fall in one of the 2 categories:

23

Figure 32: Character enhancement and extraction

Figure 33: Code validation

• category 1: A complete container code
• category 2: An incomplete container code

The performance vector follows the same approach being com-
posed by 7 indicators:

• complete and correct: the number of containers for which
the algorithm found a complete container code and the code
is the real one

• complete but wrong: the number of containers for which the
algorithm found a complete container code, but the code is
not the real one

• incomplete 10 ch: the number of containers for which the
algorithm found 10 correct characters matching the real code

• incomplete 9 ch: the number of containers for which the
algorithm found 9 correct characters matching the real code

• incomplete 8 ch: the number of containers for which the
algorithm found 8 correct characters matching the real code

• incomplete 7 ch: the number of containers for which the
algorithm found 7 correct characters matching the real code

• incomplete < 7 ch: the number of containers for which the
algorithm found less than 7 correct characters matching the
real code

The overall evaluation shows how many times the proposed
algorithm is right or wrong and it is influenced by the mistakes
made by both, the detection and the recognition phases.

The recognition is evaluated using the confusion matrix of the
kNN classifier. The accuracy will be reported as well, but consider-
ing that the classes are highly imbalanced, the confusion matrix is
the best indicator for the performance and also to see what kind of
mistakes the classifier makes.

The output of the detection will be visually inspected. The accu-
racy of the CNN was proved to be irrelevant, as presented further
in the Discussion section.

Besides the visual inspection, a bounding box based evaluation
called Intersection over Union (IoU) or Jaccard index is used. This
method measures the similarity between the real and the predicted
ROI using the overlapping and the union areas as illustrated in
Figure 36.

24

Figure 34: Schematic example when multiple text ROIs are returned by detection

Figure 35: The performance vector

Figure 36: Intersection over Union (IoU) formula. Source:
[96]

Another way to evaluate the quality or added value of the pro-
posed detection method, is using the proposed recognition method

and performance vector described before, but 3 different detection
methods:

(1) the proposed detection
(2) the state-of-art EAST text detector
(3) a manually ROI detection

The comparison between the performance vectors of 3 detec-
tion methods and the same recognition method will indicate if the
proposed detection method brings any added value for this task.

In order to see the impact of the damaged containers for the
automatic container identification, the evaluation will be done sep-
arately for containers in good shape and damaged containers.

The overall evaluation was done using the dataset described in
Section 5.2.2.

5.2 Datasets
In this section, different datasets used will be presented.

25

5.2.1 CNN container dataset. This consists of 112 images of
containers, each of them with a visible container code, some con-
tainers being in a good shape and others having different degrees
of damage. To gather these data, Cofano Software Solutions placed
a camera setup at one of their clients, a container terminal from
The Netherlands. The images are in the RGB colour space and each
image has a resolution of 4000 x 6000 pixels. The images are taken
from the top, thus each image displays the top part of a container
with a complete/partially visible container code. The images are
taken when trucks leave or enter the terminal with containers and
they have to stop on the weighing bridge placed near the entrance
gate. Figure 38 shows the weighing bridge near the entrance gate
and Figure 37 presents the image acquisition setup. The pole has
a box in top and the camera is placed in the box. This setup was
placed at the entrance gate, near the weighing bridge.

Figure 37: Image acquisition setup

All the container code characters were manually annotated with
4 points representing the 4 corners of each character. Considering
that the characters are distorted, the resulted bounding boxes are
not rectangular, but mostly diamond shaped. This resulted in 44
points (11 characters x 4 points per character) as annotation for
each image. These point coordinates are used to create the regional

Figure 38: Weighing bridge near the entrance gate

and affinity maps needed to train the CNN detection architecture
described in Section 5.1.1.

Because the available number of real container images was lim-
ited, an image augmentation process was chosen to increase the
amount of images for the CNN training. The following processing
steps were applied to each image in order to create 10 new images:

• rotation with a random angle between 15 and 345
• the scale remains constant
• colour alteration: one of the colour channels RGB or all 3
channels are randomly chosen and for each of the chosen
channels or channel a random value between 0 and 30 is
added/subtracted from that channel’s value

In this way, some diversity in terms of the container code position
in the image, but also colour variety is provided, obtaining a dataset
of 1120 images (112 real containers x 10).

Considering that the character annotation of the real images
and heatmap creation is done before augmentation, the same rota-
tion operations are also applied to the corresponding regional and
affinity heatmaps, but the colour alterations are applied only to the
container images since that does not influence the heatmaps.

5.2.2 Overall evaluation container dataset. Later in the pro-
cess, a new set of container images was acquired, in the exactly
same conditions as the container dataset used to train the CNN
model. This dataset was used to evaluate the performance of the
proposed solution. The containers were split in:

• containers in good shape
• damaged containers

The containers were assigned manually in one of the categories.
The dataset contains 52 containers in good shape and 26 damaged
containers. It is important to mention that most of the containers
present damage, but for the sake of this experiment, a container
is considered damaged when the container code printed on it is
damaged. Thus, if a container is damaged, but the container code
printed on it is not damaged, the container is considered in good
shape. Both categories, damaged and in good shape containers,
were handled in the samemanner, but used in different performance
evaluation tests.

In comparison to the dataset used for the CNN training, these
containers were not annotated at character level. Instead, they were

26

Figure 39: Detection result example for a container in good shape

manually and visually inspected and labeled with the container
code they contain, in order to be able to verify to what extent the
code returned by the proposed solution matches the real code.

In a normal situation, only one container dataset is needed, both
with character level annotations and container code label, split
further for different purposes. Considering that the data was re-
ceived in stages, the need for manually annotations and the time
constraints, only the required annotations were applied to each
dataset.

5.2.3 Character recognition dataset. This dataset containts
1393 images of digits and capital letters split in 28 classes:

• 10 digits: 0,1,2,3,4,5,6,7,8,9
• 17 capital letters: A, B, C, D, E, G, H, L, M, N, P, R, S, T, U, W,
Z (some letters are not present in the dataset because they
did not occur in any of the 112 containers analysed)

• junk: images with scratches, rust, wholes, poles, all other
object found on a container body that are not text

The same containers used to train the CNN model were also
used to extract the characters for this dataset. The character en-
hancement procedure described in Section 5.1.2 was applied to each
image and then the characters were manually extracted from the
dilated images and labeled with the corresponding character tag.

70% of this dataset was used for training and 30% for testing.

6 RESULTS
6.1 Detection results
Both, the output of the CNN network and the resulted ROIs were
visually inspected for the containers in good shape and damaged
containers as well. Figure 39 presents the step by step outputs for
a container in good shape and Figure 40 illustrates the detection
results for containers with different properties such as small or
big text, a different code layout, damaged text and different light
conditions. The visual inspection showed that for all the containers
in good shape the container code was correctly detected, resulting
in a 100% detection rate. Sometimes multiple ROIs were detected
as for the container presented in Figure 40 case (a), but one of
them was, in all cases, the container code region. Regarding the
damaged containers, in 80% of the cases, the container code region
was correctly identified.

The resulted average of the IoU index for the containers in good
shape is 95% and 80% for damaged containers.

6.2 Recognition results
Figure 41 presents the performance of the kNN character classifier
in terms of accuracy and confusion matrix. The accuracy is 95.42%.
For the confusion matrix, the rows are the real classes and the
columns are the predicted classes. For example, the first class, class
0, has 32 samples, 29 are predicted in the right class, 2 as class 6
and 1 as class 9.

6.3 Overall results
Further, the overall performance results are presented for the 3
different detection methods, all combined with the same recog-
nition method. The performance results are reported using the
performance vector described in Section 5.1.3.

6.3.1 Proposed detection. Figure 42 and 44 show the per-
formance for containers in good shape and Figure 43 and 45 for
damaged containers.

Figure 42 shows that in 100% of the cases when the proposed
pipeline found a complete container code, the resulted container
code was actually the real one. Thus, every time when the propose
pipeline outputs a complete container code, this is 100% the real
container code. Figure 44 illustrates that the proposed algorithm
found a complete code for 40,4 % of the 52 containers in the test set.

All the orange variations of colour in Figure 44 belong to the
incomplete code category. In 28.8% of the cases, 10 out of 11 correct
characters are found, in 7.7% of the cases 9 out of 11 characters are
found and so on. In 5.8% of the cases or namely 3 containers out
of a total of 52, the proposed algorithm found less than 7 correct
characters and these containers fell also in the incomplete code
category.

The distribution over the 2 big categories is the following:
• 40,4% for the complete container code category
• 59,6 % for the incomplete container code category

27

Figure 40: Detection results for containers with different code properties: (a) small text, (b) big text, (c) different layout, (d)
damaged text, (e) and (f) different light conditions 28

Figure 41: The performance of the kNN character classifier
(The rows of the confusion matrix are the real classes and
the columns are the predicted classes)

Figure 42: The performance vector for the contain-
ers in good shape using the proposed detection method
(C=complete code and I=incomplete code)

Figure 43: The performance vector for the damaged contain-
ers using the proposed detection method (C=complete code
and I=incomplete code)

Figure 44: Graphically representation of the performance
vector for containers in good shape using the proposed de-
tection

Figure 45: Graphically representation of the performance
vector for damaged containers using the proposed detection

Figure 46: The performance vector for the containers in
good shape using EAST as detection method (C=complete
code and I=incomplete code)

Figure 47: The performance vector for the damaged contain-
ers using EAST as detection method (C=complete code and
I=incomplete code)

Figure 48: The performance vector for the containers in
good shape using a manual detection (C=complete code and
I=incomplete code)

Figure 49: The performance vector for the damaged con-
tainers using a manual detection (C=complete code and
I=incomplete code)

29

For the damaged containers Figure 45 illustrates the distribution
of performance classes. The same applies here as well, when the
proposed solution finds a complete container code, that is in 100%
of the case the real container code. The distribution over the 2 big
categories for the damaged containers is the following:

• 12,0% for the complete container code category
• 88,0 % for the incomplete container code category

6.3.2 EAST detection . Figure 46 shows the performance for
containers in good shape and Figure 47 for damaged containers.

6.3.3 Manual detection . Figure 48 shows the performance
for containers in good shape and Figure 49 for damaged containers.

7 DISCUSSION
7.1 Detection
It is clear from Figure 40 that the detection method proposed can
successfully deal with the container code challenges described in
Section 3, being able to locate the container code in all images. At
a close look at Figure 40 it can be seen that the proposed method
can deal with variations in text size and font, different colours for
background and text, different container code layouts, damaged
text and different light conditions. Cases (e) and (f) show that the
detection is possible at all times during the day, from the morning
(e) till the evening (f). It is easy to remark the grass in image (e) and
how this grass is not visible in image (f), due to the reduced lighting
conditions during the evening. Experiments during the night were
not conducted because the container terminal where the dataset
was gathered does not operate during the night. Considering that
during the night an external source of light is needed in order to
be able to acquire images, the lightning variation is eliminated.
Controlling the light source will make the light constant in all the
images and the proposed detection method is expected to have a
better performance, but this has to be further analysed for a certain
conclusion.

Another information provided by the heatmap, besides the loca-
tion of the potential container code, is the intensity of the high-
lighted region. This tells how certain the algorithm is that there is a
container code. This is better illustrated when case (b) and case (c)
from Figure 40 are compared. In case (b), where the container code
is bigger and in perfect shape, the algorithm is more confident that
the container code is there than in case (c) where the text is smaller
and the container is partially damaged. The algorithm is able to
find the container code in both cases, but with different degrees of
certainty.

The threshold used to extract the text ROI from the image takes
the histogram of the regional heatmap into consideration. Apply-
ing always a high threshold will only result in finding the perfect
container code regions with high certainties such as case (b) from
Figure 40 and missing the other ones such as case (c). On the other
hand, always choosing a low threshold means, in some cases, that
a really big part of the image has to be passed into the recognition
step, fact that is not desired. This scenario will happen applying a
low threshold in case (e). Using an adaptive threshold based on the
histogram of the regional map assures that all the container code
regions are found, be they with higher or lower certainties.

The value of the IoU index of 95% for containers in good shape
shows, besides the visual inspection, that the proposed detection
method can successfully locate the container code. At a close anal-
ysis between the predicted and ground truth regions used to calcu-
late the IoU index, it was observed that the difference is made by a
small amount of pixels around the container code text. The man-
ual labelling does not take the same amount of pixels around the
text every time, while the algorithm does. Thus, the predicted and
ground truth bounding boxes are not 100% identical, but contain
the container code region 100% of times.

The value of the IoU index for the containers with different
degrees of damage of 80% shows that the proposed method can
deal with damaged containers as well. It can be seen in Figure
40 case (d) that if the damaged characters are somewhere in the
middle of the code, the whole container code region is correctly
extracted. On the other hand, there are containers where the first
or last characters are damaged. In these cases a partial container
code region is extracted, causing the IoU index to drop to 80%.

The accuracy of the CNN detection model is 0.3%. Consider-
ing that the accuracy is calculated based on pixel values, that the
real heatmaps are annotated on character level and the predicted
heatmaps highlight the container code as a whole, the accuracy is
not relevant as a performance metric in this case. While the CNN
model does not output a character delimitation, but a whole code
delimitation, this outcome is actually better than character delimi-
tation. The desired output of the detection phase at the beginning
of the research was character delimitation, but considering the lim-
ited amount of samples in the training set, the model did not have
enough data to learn from. The resulted output proved to be more
useful than the desired one, making the post-processing for the
recognition part easier. It is known that the container code has 11
characters and has to respect the ISO standard, namely 4 letters
followed by 7 digits. Having the text regions as a whole makes it
easier to discriminate which is a container code region and which
regions contain other text. Figure 50 shows an example of a con-
tainer image with the corresponding real and predicted regional
heatmap. The accuracy for this image is 0.5%, but it can be clearly
seen that the CNN model has successfully located the container
code. To be noted that in Figure 50 the container image and the
real heatmap correspond to the original image and the predicted
heatmap corresponds to the transformed container image. The com-
parison is made between all parts involved using the transformed
version, but for illustration purposes, the raw version of each of
them was chosen.

Making a comparison between the overall results using 3 differ-
ent detection methods and the same recognition method presented
in Figures 42, 45, 46, 47, 48 and 49, it results that the proposed
detection method performs exactly as good as a manual detection.
Considering that a manual detection is the best it can be achieved,
it is proven that the automatic detection method proposed is the
best that can be achieved to automate this task under the given
conditions. This applies for both, the containers in good shape and
the damaged containers. At a manually inspection, a difference
is observed between the manually detected regions and predicted
regions by the proposed detection method for damaged containers.
As it was explained before, if some characters are highly damaged
at the extremities of a container code, the proposed detection is

30

Figure 50: The real and predicted regional map for a container

not able to retrieve these in the ROI area. On the other hand, a
manual detection will include them as well. Considering the degree
of damage, the recognition phase will not be able to find the right
character, and the end results will be the same as not including that
character in the ROI in the first place. This is why the end results
are identical for the manual detection and the proposed detection.

Regarding the EAST text detector, it seems unsuitable for this
task. EAST is known as being state-of-art in scene text detection, but
the experiments conducted on this dataset bring the conclusion that
EAST can not deal with the challenges posed by the present dataset.
Figure 51 presents 2 containers and the text regions detected using
EAST. It can be observed that the detector cuts through the text
taking only parts of the characters in the ROI. It also highlights
false positives, as it can be seen in the second example in Figure 51.
A major difference between the proposed detector and the EAST
detector is the fact that EAST takes each chunk of the container
code as a different text ROI and the proposed method takes the text
region as a whole. On the containers where multiple text pieces
are present, using the proposed method makes it faster to check
if the text ROI is a container code or not. Considering that the
post-processing can be done to put together all the separate pieces
if EAST correctly detects all the container code pieces and for the
consistency of the comparison with the manual and the proposed
detection, a manual post-processing of putting together the chunks
was done to obtain the results of the experiments presented in
Figure 46 and Figure 47. Regarding the processing time, EAST is
incontestably faster than the proposed detection. The processing
time for EAST is on average 1 second and for the proposed detection
is on average 45 seconds.

7.2 Recognition and the overall pipeline
In terms of performance of the whole proposed pipeline, Figure
44 shows the distribution of the results for containers in good
shape and Figure 45 for damaged containers. As for the detection
results, the recognition results and the intermediate ones were also
manually inspected in order to identify the aspects that make the

proposed solution fail. Figure 52 shows 4 example of containers,
their corresponding detection results and overall results after recog-
nition. Cases (a) and (b) show containers in good shape and cases
(c) and (d) damaged containers. In cases (a) and (b) the characters
are very clear and still the recognition phase is not able to predict
the good characters. In this way, a perfect detection followed by a
bad recognition ends with a completely useless end result, such as
case (a) in Figure 52.

Manually inspecting all the containers resulted in identifying
two reasons for a failed recognition:

(1) The first reason, and the one that happens most of the time, is
that the kNN classifier does not predict correctly the charac-
ters. Considering the dataset used and the fact that not all the
possible characters are even present in the training dataset,
this problem can easily be solved, adding more samples. In
this way, the biggest limitation of the proposed recognition,
but also of the whole proposed pipeline is solved. The fo-
cus of this research is the detection of the container code
region, and thus, a limited amount of time was dedicated to
the recognition phase. Taking into consideration the high
amount of research in the field of character recognition and
also the easy, but time consuming way to improve the pro-
posed solution, further improvement of the kNN classifier
was considered not relevant.

(2) The second reason that happens in few of the cases is the
character enhancement and extraction. In this part, the pro-
posed algorithm highly relies on image processing tech-
niques and some characters are not correctly extracted. Some
future work may consider training the proposed CNN ar-
chitecture used for detection with a bigger training set, fact
that will lead to a character separation directly as output
of the detection phase. Then a clustering techniques can be
used to see which characters are close together and form the
container code and which form other text on the container
body. In such a situation, the post processing of the detec-
tion phase and the character enhancement and extraction of

31

Figure 51: Examples of the container code detection using EAST

the recognition phase, illustrated in Figure 30, will be elimi-
nated. This will lead to a simplified pipeline, with almost no
manually defined rules.

For the damaged containers, the damaged characters are most
of the time extracted but classified as junk.

The accuracy of the kNN classifier is 95.42%, but considering that
the classes are highly imbalanced, the confusion matrix is a better
indication of the performance. Some of the letters (F, I, J, K, O, Q,
Y, X, V) are not present in the training set because they were not
present in the 112 containers used to create the dataset. Also, part
of the letters (A, E, G, H, R, T, Z) are not present in the confusion
matrix because these classes had less than 5 samples each and they
were all used in the training set. Thus, the confusion matrix only
shows the performance for only 21 classes. It can be seen in the
confusion matrix in Figure 41 that most of the samples from the
test set are predicted in the right class, a 6 is predicted as 0 and two
0’s as 6, a 0 is predicted as 9 and two samples from the junk class
are predicted as M, two 9’s and one 6 are predicted as 8 and one U
is predicted as 0. In general class 0 has the most false positives and
class junk the most false negatives, meaning that some junk such
as scratches or rust is seen as useful characters.

Looking at Figure 45 and Figure 49 it can be seen that summing
up all the numbers from all the categories results 25 and the total is
26. This is because one of the containers does not fall in any of the
categories mentioned. This container has all the 11 characters cor-
rectly identified, but due the to highly degree of damage between
the characters, some damaged pieces of container background are
seen as characters. In this way, all the container code characters
are present in the end result, but between them, some extra fake

characters are inserted, making impossible to know which are actu-
ally real characters and which is just damaged background looking
like a character.

It can also happen that 11 characters are found, but only some
of them are correct, as in Figure 34. In this case, the ISO format
requirement is fulfilled, but the check digit requirement is not. This
means that the code will fall in the incomplete code category, even
if it has 11 characters in total. It is impossible to know which, out
of the 11 characters, are the real ones, but as long as not all the
requirements are fulfilled, it is known that the container is not
complete.

Considering the aspects presented earlier about the performance
of the detection and the reasons why the recognition is failing,
the overall performance of the proposed pipeline can be highly
increased.

7.3 Added value, limitations and future work
The added value, limitations and future work of this research con-
cern the following aspects:

• As most of the previous researches, either in natural scene
text understanding or container code identification, this re-
search was also focused on specific aspects. All previous
researches considered containers in perfect shape and did
not consider the case of damaged containers. The business
domain analysis showed that most of the containers in real
life present a certain degree of damaged. Even the containers
classified in this research as being in good shape present rust,
scratches or other types of damage, but in a low proportion,
being considered in good shape. The containers considered
as damaged in this research present damage on the container
code area and damaged text, from partial damaged characters

32

Figure 52: Examples of containers, the corresponding detection results and the overall results: (a) and (b) are containers in
good shape, (c) and (d) are damaged containers

33

to completely missing characters. Thus the present research
brought to attention the impact of the damage to the perfor-
mance of the automatic container code identification.

• Most of the previous researches in container code identifi-
cation require lexicons and the proposed solution does not
use such a lexicon. It would be useful in the cases when
the algorithm can find a big part of the code, to search in
a database containing all the possible container codes, to
find the complete code. In the situation of the current re-
search, such a database was not available, but it can be used
as future work to improve the results. Considering the per-
formance obtained without using a lexicon and the extra
time needed to find a match, not using a lexicon can be seen
as an advantage.

• The advantage of scale invariance, flexibility in dealing with
regions that are not rigidly bounded and the focus on intra
and inter character rather than on the whole text instance,
brought by the use of heatmaps instead of bounding boxes.
This method proved to be successful for the container code
detection task and none of the previous researches in con-
tainer code identification used heatmaps for detection.

• Most of the related researches in container code recognition
use 2 networks for character classification, one for digits
and one for letters. This leads to an extra need of manually
defined heuristics about the place of letters and digits on the
containers body and missing one of the characters from the
order in the ISO format brings extra complexity in the rules.
The proposed recognition uses a very simple kNN classifier
that has the potential to be sufficient for this task, if a bigger
training set containing all the characters is acquired.

• Considering that the focus of this research was from the
beginning the detection part and the comparison made with
the manual detection, it can be said that the proposed detec-
tion method is the best as it can be for the given task, under
the given conditions.

• The container code is printed on 5 sides of the container (door
end, 2 sides, top and front). The top side of the container was
used in this research and this choice has one main advantage
and one disadvantage. The advantage is that the top side
presents less to none other text instances than the container
code, but the disadvantage is that this side is more exposed
to damage than all other sides. Rain, snow and water stay
longer on the top part, leading to more rust on the top part
than on the other sides. Also, stacking the containers on
top of each other brings scratches and more damage to the
top part of the containers. Even if having more damage is
overall a disadvantage, in the context of studying the effect
of the damage on an automatic container code identification
method, the top part can be seen as the best choice to study
this effect. Future work can use the proposed method on
multiple views of the same container, fact that will lead to a
better performance. Characters that are damaged on one side
can be visible on other sides, leading together to a complete
container code.

• The pre-processing step from the detection phase applies an
affine transformation on the image. This transformation is
calculated using a reference image of the weighing bridge

when no container is present. The position of the camera
makes the weighting bridge distorted in the image, but it
is known that the weighing bridge is a rectangular with
parallel lines. This information is used to calculate the pa-
rameters of the affine transformation with the idea that after
the transformation the weighing bridge will have parallel
sides again. This parameters and the affine transformation
are then applied to all the images, canceling part of the dis-
tortion. In an ideal situation a truck carrying a container will
stop in the same position every time, not more to the left,
more to the right, more in the front or more in the back, how
it is actually happening in real life. This makes the affine
transformation to cancel the whole distortion as presented
in Figure 53 case (b), but only a small part of it as in Figure 53
case (a). Stopping the truck in various locations brings also
variance in the size of the text, not only different distortions,
stopping the truck really far away from the camera resulting
in a smaller text. A good example are cases (a) and (c) from
Figure 52. In case (a) the truck stops at the gate line and
in case (c) much further. Those variations and distortions
do not pose a problem for the detection part, but make the
recognition of the distorted characters more challenging,
when it can be avoided with an easy non-technical solution.
The terminal can mark with a line on the ground where the
truck driver has to stop, and in this way, all the drivers have
to stop in the same spot.

Figure 53: Examples of containers before and after transfor-
mation

• The results of this research are not comparable with results
of related researches due to the different datasets used. How-
ever, the methods used for evaluation give enough insights
regarding the performance of the proposed solution.

8 CONCLUSION
In conclusion, and to answer the main research question of this the-
sis: "To what extent is the automatic identification of the container
code possible using machine learning ?", the automatic container
code identification is possible, but it faces some challenges. The
automatic detection of the container code from container in good
shape has a successful rate of 100%, the proposed method being able

34

to find the code region and deal with all the described challenges
and variations. The overall identification of the container code for
containers in good shape faces some challenges due to the kNN
classifier used, challenges that can be solved increasing the recog-
nition dataset. Regarding the damaged containers, an automatic
detection proved to be successful as well, but having some issues
with heavily damaged characters at the extremities of a container
code. The overall automatic identification for damaged containers is
also affected in a negative way by the poor recognition and also by
the degree of text damage. Considering that the proposed detection
performs as good as a manual detection and the proposed recog-
nition can be easily improved or substituted with another method
from the wide available OCR researches, an automatic container
code identification system was proven to be successful. To be noted
that when the proposed solution outputs a complete container code,
that is in 100% of the times the real container code, with 0% false
positive rate.

REFERENCES
[1] Jon Almazan, Albert Gordo, Alicia Fornes, and Ernest Valveny. 2014. Word

spotting and recognition with embedded attributes. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2014). https://doi.org/10.1109/TPAMI.2014.
2339814

[2] Ramya Hebbalaguppe Ehtesham Hassan Lovekesh Vig Ankit Verma,
Monika Sharma. 2016. Automatic container code recognition via Spatial Trans-
former Networks and Connected Component Region Proposals. Proceedings -
2016 15th IEEE International Conference on Machine Learning and Applications,
ICMLA 2016 (2016), 728–733. https://doi.org/10.1109/ICMLA.2016.48

[3] Youngmin Baek, Bado Lee, DongyoonHan, Sangdoo Yun, and Hwalsuk Lee. 2019.
Character Region Awareness for Text Detection. (apr 2019). arXiv:1904.01941
http://arxiv.org/abs/1904.01941

[4] Cong Yao Baoguang Shi, Xiang Bai. 2017. An End-to-End Trainable Neural
Network for Image-Based Sequence Recognition and Its Application to Scene
Text Recognition. Ieee Transactions on Pattern Analysis and Machine Intelligence
(2017), 1455–1461. https://doi.org/10.1109/TPAMI.2016.2646371

[5] Christian Bartz, Haojin Yang, and Christoph Meinel. 2017. SEE: Towards Semi-
Supervised End-to-End Scene Text Recognition. 1 (2017). arXiv:1712.05404
http://arxiv.org/abs/1712.05404

[6] Jason Brownlee. 2018. A Gentle Introduction to the Bootstrap
Method. (May 2018). https://machinelearningmastery.com/
a-gentle-introduction-to-the-bootstrap-method/

[7] Michal Busta, Lukas Neumann, and Jiri Matas. 2017. Deep TextSpotter: An
End-to-End Trainable Scene Text Localization and Recognition Framework.
Proceedings of the IEEE International Conference on Computer Vision 2017-Octob
(2017), 2223–2231. https://doi.org/10.1109/ICCV.2017.242

[8] Michal Buta, Luka Neumann, and Jiri Matas. 2015. FASText: Efficient uncon-
strained scene text detector. In Proceedings of the IEEE International Conference
on Computer Vision. https://doi.org/10.1109/ICCV.2015.143

[9] Bernard Gosselin Celine Thillou. 2014. Natural Scene Text Understanding.
Vision Systems: Segmentation and Pattern Recognition (May 2014), 27. https:
//doi.org/10.5772/4966

[10] Xilin Chen, Jie Yang, Jing Zhang, andAlexWaibel. 2004. Automatic detection and
recognition of signs from natural scenes. IEEE Transactions on Image Processing
(2004). https://doi.org/10.1109/TIP.2003.819223

[11] Xiangrong Chen and Alan L Yuille. 2004. Detecting and Reading Text in Natural
Scenes. 00, C (2004).

[12] Zhanzhan Cheng, Fan Bai, Yunlu Xu, Gang Zheng, Shiliang Pu, and Shuigeng
Zhou. 2017. Focusing Attention: Towards Accurate Text Recognition in Natural
Images. In Proceedings of the IEEE International Conference on Computer Vision.
https://doi.org/10.1109/ICCV.2017.543

[13] Chucai Yi and YingLi Tian. 2011. Text String Detection From Natural Scenes by
Structure-Based Partition and Grouping. IEEE Transactions on Image Processing
(2011). https://doi.org/10.1109/tip.2011.2126586

[14] Adam Coates, Blake Carpenter, Carl Case, Sanjeev Satheesh, Bipin Suresh, Tao
Wang, David J. Wu, and Andrew Y. Ng. 2011. Text detection and character
recognition in scene images with unsupervised feature learning. Proceedings
of the International Conference on Document Analysis and Recognition, ICDAR
(2011), 440–445. https://doi.org/10.1109/ICDAR.2011.95

[15] ContainerContainer. [n. d.]. ISO6346 International Shipping Container Standard.
([n. d.]). https://www.containercontainer.com/ISO6346

[16] Yuchen Dai, Zheng Huang, Yuting Gao, Youxuan Xu, Kai Chen, Jie Guo, and
Weidong Qiu. 2018. Fused Text Segmentation Networks for Multi-oriented Scene
Text Detection. In Proceedings - International Conference on Pattern Recognition.
https://doi.org/10.1109/ICPR.2018.8546066

[17] Navneet Dalal and Bill Triggs. 2005. Histograms of oriented gradients for human
detection. In Proceedings - 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, CVPR 2005. https://doi.org/10.1109/CVPR.2005.
177

[18] Dan Deng, Haifeng Liu, Xuelong Li, and Deng Cai. 2018. PixelLink: Detecting
Scene Text via Instance Segmentation. (2018). arXiv:1801.01315 http://arxiv.
org/abs/1801.01315

[19] Bureau International des Containers et du Transport Intermodal. 2019. Marking
of containers. (2019). https://www.bic-code.org/marking-of-containers/

[20] DongQuin Zhang and Shih-Fu Chang. 2003. A Bayesian framework for fusing
multiple word knowledge models in videotext recognition. https://doi.org/10.
1109/cvpr.2003.1211512

[21] Boris Epshtein, Eyal Ofek, and Yonatan Wexler. 2010. Detecting text in natural
scenes with stroke width transform. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. https://doi.org/10.1109/
CVPR.2010.5540041

[22] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. 2005. Pictorial structures
for object recognition. International Journal of Computer Vision (2005). https:
//doi.org/10.1023/B:VISI.0000042934.15159.49

[23] Rohith Gandhi. 2018. R-CNN, Fast R-CNN, Faster R-CNN, YOLO —
Object Detection Algorithms. (2018). https://towardsdatascience.com/
r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e

[24] Rohith Gandhi. 2018. Support Vector Machine — Introduction to Ma-
chine Learning Algorithms. (2018). https://towardsdatascience.com/
support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47

[25] Yunze Gao, Yingying Chen, Jinqiao Wang, Ming Tang, and Hanqing Lu. 2019.
Reading scene text with fully convolutional sequencemodeling. Neurocomputing
(2019). https://doi.org/10.1016/j.neucom.2019.01.094

[26] Michael Garbade. 2018. Understanding K-means Clustering in
Machine Learning. (2018). https://towardsdatascience.com/
understanding-k-means-clustering-in-machine-learning-6a6e67336aa1

[27] Ross Girshick. 2015. Fast R-CNN. In Proceedings of the IEEE International Con-
ference on Computer Vision. https://doi.org/10.1109/ICCV.2015.169

[28] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. 2014. Rich
feature hierarchies for accurate object detection and semantic segmentation.
In Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. https://doi.org/10.1109/CVPR.2014.81

[29] Albert Gordo. 2015. Supervisedmid-level features for word image representation.
In Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. https://doi.org/10.1109/CVPR.2015.7298914

[30] Ankush Gupta, Andrea Vedaldi, and Andrew Zisserman. 2016. Synthetic Data
for Text Localisation in Natural Images. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition. https://doi.org/
10.1109/CVPR.2016.254

[31] Onel Harrison. 2018. Machine Learning Basics with the K-Nearest
Neighbors Algorithm. (2018). https://towardsdatascience.com/
machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761

[32] Dafang He, Xiao Yang, Wenyi Huang, Zihan Zhou, Daniel Kifer, and C. Lee Giles.
2017. Aggregating local context for accurate scene text detection. In Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-319-54193-8_18

[33] Dafang He, Xiao Yang, Chen Liang, Zihan Zhou, Alex G. Ororbia, Daniel Kifer,
and C. Lee Giles. 2017. Multi-scale FCN with cascaded instance aware seg-
mentation for arbitrary oriented word spotting in the wild. In Proceedings -
30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017.
https://doi.org/10.1109/CVPR.2017.58

[34] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. 2017. Mask
R-CNN. In Proceedings of the IEEE International Conference on Computer Vision.
https://doi.org/10.1109/ICCV.2017.322

[35] Pan He, Weilin Huang, Tong He, Qile Zhu, Yu Qiao, and Xiaolin Li. 2017. Single
Shot Text Detector with Regional Attention. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision. https://doi.org/10.1109/ICCV.2017.331

[36] Tong He, Zhi Tian, Weilin Huang, Chunhua Shen, Yu Qiao, and Changming
Sun. 2018. An End-to-End TextSpotter with Explicit Alignment and Attention.
In Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. https://doi.org/10.1109/CVPR.2018.00527

[37] Wenhao He, Xu Yao Zhang, Fei Yin, and Cheng Lin Liu. 2017. Deep Direct
Regression for Multi-oriented Scene Text Detection. In Proceedings of the IEEE
International Conference on Computer Vision. https://doi.org/10.1109/ICCV.2017.
87

[38] Fu-Yu Hsu Yu-San Lin Yu-Te Wu Yung-Nien Sun Hsin-Chen Chen, Chih-
Kai Chen. 2011. A computer vision system for automated container code recogni-
tion. Proceedings of the Internatioanal MultiConference of Engineers and Computer
Scientists 2011 (2011), 470–474. https://www.scopus.com/inward/record.uri?eid=

35

https://doi.org/10.1109/TPAMI.2014.2339814
https://doi.org/10.1109/TPAMI.2014.2339814
https://doi.org/10.1109/ICMLA.2016.48
http://arxiv.org/abs/1904.01941
http://arxiv.org/abs/1904.01941
https://doi.org/10.1109/TPAMI.2016.2646371
http://arxiv.org/abs/1712.05404
http://arxiv.org/abs/1712.05404
https://machinelearningmastery.com/a-gentle-introduction-to-the-bootstrap-method/
https://machinelearningmastery.com/a-gentle-introduction-to-the-bootstrap-method/
https://doi.org/10.1109/ICCV.2017.242
https://doi.org/10.1109/ICCV.2015.143
https://doi.org/10.5772/4966
https://doi.org/10.5772/4966
https://doi.org/10.1109/TIP.2003.819223
https://doi.org/10.1109/ICCV.2017.543
https://doi.org/10.1109/tip.2011.2126586
https://doi.org/10.1109/ICDAR.2011.95
https://www.containercontainer.com/ISO6346
https://doi.org/10.1109/ICPR.2018.8546066
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/CVPR.2005.177
http://arxiv.org/abs/1801.01315
http://arxiv.org/abs/1801.01315
http://arxiv.org/abs/1801.01315
https://www.bic-code.org/marking-of-containers/
https://doi.org/10.1109/cvpr.2003.1211512
https://doi.org/10.1109/cvpr.2003.1211512
https://doi.org/10.1109/CVPR.2010.5540041
https://doi.org/10.1109/CVPR.2010.5540041
https://doi.org/10.1023/B:VISI.0000042934.15159.49
https://doi.org/10.1023/B:VISI.0000042934.15159.49
https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e
https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://doi.org/10.1016/j.neucom.2019.01.094
https://towardsdatascience.com/understanding-k-means-clustering-in-machine-learning-6a6e67336aa1
https://towardsdatascience.com/understanding-k-means-clustering-in-machine-learning-6a6e67336aa1
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/CVPR.2015.7298914
https://doi.org/10.1109/CVPR.2016.254
https://doi.org/10.1109/CVPR.2016.254
https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761
https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761
https://doi.org/10.1007/978-3-319-54193-8_18
https://doi.org/10.1109/CVPR.2017.58
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1109/ICCV.2017.331
https://doi.org/10.1109/CVPR.2018.00527
https://doi.org/10.1109/ICCV.2017.87
https://doi.org/10.1109/ICCV.2017.87
https://www.scopus.com/inward/record.uri?eid=2-s2.0-79960601061&partnerID=40&md5=52ece29270f6ac841fc122067d3de6b0
https://www.scopus.com/inward/record.uri?eid=2-s2.0-79960601061&partnerID=40&md5=52ece29270f6ac841fc122067d3de6b0

2-s2.0-79960601061&partnerID=40&md5=52ece29270f6ac841fc122067d3de6b0
[39] Weilin Huang, Zhe Lin, Jianchao Yang, and Jue Wang. 2013. Text localization in

natural images using stroke feature transform and text covariance descriptors.
In Proceedings of the IEEE International Conference on Computer Vision. https:
//doi.org/10.1109/ICCV.2013.157

[40] Weilin Huang, Yu Qiao, and Xiaoou Tang. 2014. Robust scene text detection with
convolution neural network induced MSER trees. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). https://doi.org/10.1007/978-3-319-10593-2_33

[41] Zhida Huang, Zhuoyao Zhong, Lei Sun, and Qiang Huo. 2018. Mask R-
CNN with Pyramid Attention Network for Scene Text Detection. (nov 2018).
arXiv:1811.09058 http://arxiv.org/abs/1811.09058

[42] Adaptive Recognition Hungary. [n. d.]. General description of ACCR. ([n. d.]).
http://www.ocrtech.com/container_code_description.html

[43] ICDAR. [n. d.]. Robust Reading Competition. ([n. d.]). https://rrc.cvc.uab.es/
[44] Max Jaderberg, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. 2014.

Deep Structured Output Learning for Unconstrained Text Recognition. (2014),
1–10. arXiv:1412.5903 http://arxiv.org/abs/1412.5903

[45] Max Jaderberg, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. 2016.
Reading Text in the Wild with Convolutional Neural Networks. International
Journal of Computer Vision (2016). https://doi.org/10.1007/s11263-015-0823-z

[46] Anil K. Jain and Bin Yu. 1998. Automatic text location in images and video frames.
Pattern Recognition (1998). https://doi.org/10.1016/S0031-3203(98)00067-3

[47] Seong-Whan Lee Alan Yuille Christof Koch Jung-Jin Lee, Pyoung-Hean Lee. 2011.
AdaBoost for text detection in natural scene. Proceedings of the International
Conference on Document Analysis and Recognition, ICDAR (2011), 429–434. https:
//doi.org/10.1109/ICDAR.2011.93

[48] D. Karatzas and A. Antonacopoulos. 2004. Text extraction from web images
based on a split-and-merge segmentation method using colour perception. In
Proceedings - International Conference on Pattern Recognition. https://doi.org/10.
1109/ICPR.2004.1334328

[49] Anil K. Jain Keechul Jung, Kwang In Kim. 2003. Text information extraction in
images and video : a survey Pattern Recognition. (2003), 977–997.

[50] Kwang In Kim, Keechul Jung, and Jin Hyung Kim. 2003. Texture-Based Approach
for Text Detection in Images Using Support Vector Machines and Continuously
Adaptive Mean Shift Algorithm. IEEE Transactions on Pattern Analysis and
Machine Intelligence (2003). https://doi.org/10.1109/TPAMI.2003.1251157

[51] Eui-Young Cha Kyung-Mo Koo. 2012. A novel container ISO-code recognition
method using texture clustering with a spatial structure window. International
Journal of Advanced Science and Technology (2012), 83–92.

[52] Qing Liu Pingping Lu Langqi Mei, Jianming Guo. 2017. A Novel Framework for
Container Code-Character Recognition Based on Deep Learning and Template
Matching. Proceedings - 2016 International Conference on Industrial Informatics -
Computing Technology, Intelligent Technology, Industrial Information Integration,
ICIICII 2016 (2017), 78–82. https://doi.org/10.1109/ICIICII.2016.0030

[53] Chen Yu Lee and SimonOsindero. 2016. Recursive Recurrent Nets with Attention
Modeling for OCR in the Wild. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. https://doi.org/10.1109/
CVPR.2016.245

[54] Seonghun Lee and JinHyungKim. 2013. Integratingmultiple character proposals
for robust scene text extraction. Image and Vision Computing (2013). https:
//doi.org/10.1016/j.imavis.2013.08.007

[55] Huiping Li, David Doermann, and Omid Kia. 2000. Automatic text detection
and tracking in digital video. IEEE Transactions on Image Processing (2000).
https://doi.org/10.1109/83.817607

[56] Hui Li, Peng Wang, and Chunhua Shen. 2017. Towards End-to-End Text Spot-
ting with Convolutional Recurrent Neural Networks. Proceedings of the IEEE
International Conference on Computer Vision 2017-Octob (2017), 5248–5256.
https://doi.org/10.1109/ICCV.2017.560 arXiv:1707.03985

[57] Minghui Liao, Baoguang Shi, Xiang Bai, Xinggang Wang, and Wenyu Liu. 2016.
TextBoxes: A Fast Text Detector with a Single Deep Neural Network. (2016).
https://doi.org/10.1162/jocn arXiv:1611.06779

[58] Minghui Liao, Zhen Zhu, Baoguang Shi, Gui Song Xia, and Xiang Bai. 2018.
Rotation-Sensitive Regression for Oriented Scene Text Detection. In Proceed-
ings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. https://doi.org/10.1109/CVPR.2018.00619

[59] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng Yang Fu, and Alexander C. Berg. 2016. SSD: Single shot multibox
detector. In Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https:
//doi.org/10.1007/978-3-319-46448-0_2

[60] Wei Liu, Chaofeng Chen, and Kwan-Yee K Wong. 2018. Char-Net: A Character-
Aware Neural Network for Distorted Scene Text Recognition. In Aaai.

[61] Xuebo Liu, Ding Liang, Shi Yan, Dagui Chen, Yu Qiao, and Junjie Yan. 2018.
FOTS: Fast Oriented Text Spotting with a Unified Network. In Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
https://doi.org/10.1109/CVPR.2018.00595

[62] Yuliang Liu and Lianwen Jin. 2017. Deep matching prior network: Toward
tighter multi-oriented text detection. In Proceedings - 30th IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017. https://doi.org/10.1109/
CVPR.2017.368

[63] Zichuan Liu, Yixing Li, Fengbo Ren, Hao Yu, andWangling Goh. 2018. Squeezed-
Text: A Real-time Scene Text Recognition by Binary Convolutional Encoder-
decoder Network. Proceedings of the Association for the Advancement of Artificial
Intelligence, AAAI (2018).

[64] Canjie Luo, Lianwen Jin, and Zenghui Sun. 2019. MORAN: A Multi-Object Recti-
fied Attention Network for scene text recognition. Pattern Recognition 90 (2019),
109–118. https://doi.org/10.1016/j.patcog.2019.01.020 arXiv:arXiv:1901.03003v1

[65] Michael R. Lyu, Jiqiang Song, and Min Cai. 2005. A comprehensive method for
multilingual video text detection, localization, and extraction. IEEE Transactions
on Circuits and Systems for Video Technology (2005). https://doi.org/10.1109/
TCSVT.2004.841653

[66] Pengyuan Lyu, Minghui Liao, Cong Yao, Wenhao Wu, and Xiang Bai. 2018.
Mask textspotter: An end-to-end trainable neural network for spotting text with
arbitrary shapes. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 11218 LNCS
(2018), 71–88. https://doi.org/10.1007/978-3-030-01264-9_5 arXiv:1807.02242

[67] Pengyuan Lyu, Cong Yao, Wenhao Wu, Shuicheng Yan, and Xiang Bai. 2018.
Multi-Oriented Scene Text Detection via Corner Localization and Region
Segmentation. (2018), 7553–7563. https://doi.org/10.1109/CVPR.2018.00788
arXiv:1802.08948

[68] Jianqi Ma, Weiyuan Shao, Hao Ye, Li Wang, Hong Wang, Yingbin Zheng, and
Xiangyang Xue. 2018. Arbitrary-oriented scene text detection via rotation
proposals. IEEE Transactions on Multimedia (2018). https://doi.org/10.1109/
TMM.2018.2818020

[69] J Matas, O Chum, M Urban, and T Pajdla. 2001. Distinguished Regions for
Wide-baseline Stereo. Research Reports of CMP, Czech Technical University in
Prague 33 (2001).

[70] MathWorks. [n. d.]. Getting Started with R-CNN, Fast R-CNN, and
Faster R-CNN. ([n. d.]). https://nl.mathworks.com/help/vision/ug/
getting-started-with-r-cnn-fast-r-cnn-and-faster-r-cnn.html

[71] Max Jaderberg. 2003. Synthetic Data and Artificial Neural Networks for Natural
Scene Text Recognition. Diabetes Research and Clinical Practice 60, 3 (2003),
183–189. https://doi.org/10.1016/S0168-8227(03)00035-4 arXiv:1406.2227v4

[72] Andrew Zisserman Koray Kavukcuoglu Max Jaderberg, Karen Simonyan. 2015.
Spatial Transformer Networks. (2015), 1–15. https://doi.org/10.1038/nbt.3343

[73] Anand Mishra, Karteek Alahari, and Cv Jawahar. 2012. Scene Text Recognition
using Higher Order Language Priors. In Procedings of the British Machine Vision
Conference 2012. https://doi.org/10.5244/C.26.127

[74] Anand Mishra, Karteek Alahari, and C. V. Jawahar. 2011. An MRF model for
binarization of natural scene text. In Proceedings of the International Conference
on Document Analysis and Recognition, ICDAR. https://doi.org/10.1109/ICDAR.
2011.12

[75] Anand Mishra, Karteek Alahari, and C. V. Jawahar. 2012. Top-down and bottom-
up cues for scene text recognition. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. https://doi.org/10.1109/
CVPR.2012.6247990

[76] Lukas Neumann and Jiri Matas. 2011. A method for text localization and recog-
nition in real-world images. In Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics). https://doi.org/10.1007/978-3-642-19318-7_60

[77] Lukas Neumann and Jiri Matas. 2012. Real-time scene text localization and
recognition. In Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. https://doi.org/10.1109/CVPR.2012.6248097

[78] Luka Neumann and Jiri Matas. 2013. On combining multiple segmentations in
scene text recognition. In Proceedings of the International Conference on Document
Analysis and Recognition, ICDAR. https://doi.org/10.1109/ICDAR.2013.110

[79] Shigueo Nomura, Keiji Yamanaka, Osamu Katai, Hiroshi Kawakami, and
Takayuki Shiose. 2005. A novel adaptive morphological approach for de-
graded character image segmentation. Pattern Recognition (2005). https:
//doi.org/10.1016/j.patcog.2005.01.026

[80] Tatiana Novikova, Olga Barinova, Pushmeet Kohli, and Victor Lempitsky. 2012.
Large-lexicon attribute-consistent text recognition in natural images. In Lec-
ture Notes in Computer Science (including subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/
978-3-642-33783-3_54

[81] Christopher Olah. 2015. Understanding LSTM Networks. (2015). https://colah.
github.io/posts/2015-08-Understanding-LSTMs/

[82] World Customs Organization. 2017. Custom Convention on Containers 1972.
Manning Publications, 109–110.

[83] Savan Patel. 2017. Chapter 2 : SVM (Support Vector Machine)
— Theory. (May 2017). https://medium.com/machine-learning-101/
chapter-2-svm-support-vector-machine-theory-f0812effc72

[84] Trung Quy Phan, Palaiahnakote Shivakumara, Shangxuan Tian, and Chew Lim
Tan. 2013. Recognizing text with perspective distortion in natural scenes. In

36

https://www.scopus.com/inward/record.uri?eid=2-s2.0-79960601061&partnerID=40&md5=52ece29270f6ac841fc122067d3de6b0
https://www.scopus.com/inward/record.uri?eid=2-s2.0-79960601061&partnerID=40&md5=52ece29270f6ac841fc122067d3de6b0
https://doi.org/10.1109/ICCV.2013.157
https://doi.org/10.1109/ICCV.2013.157
https://doi.org/10.1007/978-3-319-10593-2_33
http://arxiv.org/abs/1811.09058
http://arxiv.org/abs/1811.09058
http://www.ocrtech.com/container_code_description.html
https://rrc.cvc.uab.es/
http://arxiv.org/abs/1412.5903
http://arxiv.org/abs/1412.5903
https://doi.org/10.1007/s11263-015-0823-z
https://doi.org/10.1016/S0031-3203(98)00067-3
https://doi.org/10.1109/ICDAR.2011.93
https://doi.org/10.1109/ICDAR.2011.93
https://doi.org/10.1109/ICPR.2004.1334328
https://doi.org/10.1109/ICPR.2004.1334328
https://doi.org/10.1109/TPAMI.2003.1251157
https://doi.org/10.1109/ICIICII.2016.0030
https://doi.org/10.1109/CVPR.2016.245
https://doi.org/10.1109/CVPR.2016.245
https://doi.org/10.1016/j.imavis.2013.08.007
https://doi.org/10.1016/j.imavis.2013.08.007
https://doi.org/10.1109/83.817607
https://doi.org/10.1109/ICCV.2017.560
http://arxiv.org/abs/1707.03985
https://doi.org/10.1162/jocn
http://arxiv.org/abs/1611.06779
https://doi.org/10.1109/CVPR.2018.00619
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1109/CVPR.2018.00595
https://doi.org/10.1109/CVPR.2017.368
https://doi.org/10.1109/CVPR.2017.368
https://doi.org/10.1016/j.patcog.2019.01.020
http://arxiv.org/abs/arXiv:1901.03003v1
https://doi.org/10.1109/TCSVT.2004.841653
https://doi.org/10.1109/TCSVT.2004.841653
https://doi.org/10.1007/978-3-030-01264-9_5
http://arxiv.org/abs/1807.02242
https://doi.org/10.1109/CVPR.2018.00788
http://arxiv.org/abs/1802.08948
https://doi.org/10.1109/TMM.2018.2818020
https://doi.org/10.1109/TMM.2018.2818020
https://nl.mathworks.com/help/vision/ug/getting-started-with-r-cnn-fast-r-cnn-and-faster-r-cnn.html
https://nl.mathworks.com/help/vision/ug/getting-started-with-r-cnn-fast-r-cnn-and-faster-r-cnn.html
https://doi.org/10.1016/S0168-8227(03)00035-4
http://arxiv.org/abs/1406.2227v4
https://doi.org/10.1038/nbt.3343
https://doi.org/10.5244/C.26.127
https://doi.org/10.1109/ICDAR.2011.12
https://doi.org/10.1109/ICDAR.2011.12
https://doi.org/10.1109/CVPR.2012.6247990
https://doi.org/10.1109/CVPR.2012.6247990
https://doi.org/10.1007/978-3-642-19318-7_60
https://doi.org/10.1109/CVPR.2012.6248097
https://doi.org/10.1109/ICDAR.2013.110
https://doi.org/10.1016/j.patcog.2005.01.026
https://doi.org/10.1016/j.patcog.2005.01.026
https://doi.org/10.1007/978-3-642-33783-3_54
https://doi.org/10.1007/978-3-642-33783-3_54
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://medium.com/machine-learning-101/chapter-2-svm-support-vector-machine-theory-f0812effc72
https://medium.com/machine-learning-101/chapter-2-svm-support-vector-machine-theory-f0812effc72

Proceedings of the IEEE International Conference on Computer Vision. https:
//doi.org/10.1109/ICCV.2013.76

[85] Andrei Polzounov, Artsiom Ablavatski, Sergio Escalera, Shijian Lu, and Jianfei
Cai. 2018. Wordfence: Text detection in natural images with border awareness.
In Proceedings - International Conference on Image Processing, ICIP. https://doi.
org/10.1109/ICIP.2017.8296476

[86] David Doermann Qixiang Ye. 2015. Text Detection and Recognition in Imagery:
A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence (2015),
1480–1500.

[87] Abilash R. 2018. Applying Random Forest (Classifica-
tion) -Machine Learning Algorithm from scratch with real
datasets. (2018). https://medium.com/@ar.ingenious/
applying-random-forest-classification-machine-learning-algorithm-from/
-scratch-with-real-24ff198a1c57

[88] Sunil Ray. 2017. Understanding Support Vector Machine algorithm
from examples. (2017). https://www.analyticsvidhya.com/blog/2017/09/
understaing-support-vector-machine-example-code/

[89] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. [n. d.].
You Only Look Once: Unified, Real-Time Object Detection. ([n. d.]).
arXiv:arXiv:1506.02640v5

[90] Joseph Redmon and Ali Farhadi. 2017. YOLO9000: Better, faster, stronger. Pro-
ceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2017 2017-Janua (2017), 6517–6525. https://doi.org/10.1109/CVPR.2017.690
arXiv:arXiv:1612.08242v1

[91] Muhammad Rizwan. 2018. LeNet-5 – A Classic CNN Architecture. (2018).
https://engmrk.com/lenet-5-a-classic-cnn-architecture/

[92] Jose Rodriguez and Florent Perronnin. 2014. Label embedding for text recogni-
tion. https://doi.org/10.5244/c.27.5

[93] Jose A. Rodriguez-Serrano, Albert Gordo, and Florent Perronnin. 2015. Label
Embedding: A Frugal Baseline for Text Recognition. International Journal of
Computer Vision (2015). https://doi.org/10.1007/s11263-014-0793-6

[94] Xuejian Rong, Chucai Yi, and Yingli Tian. 2017. Unambiguous text localization
and retrieval for cluttered scenes. In Proceedings - 30th IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017. https://doi.org/10.1109/
CVPR.2017.349

[95] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolu-
tional networks for biomedical image segmentation. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) 9351 (2015), 234–241. https://doi.org/10.1007/
978-3-319-24574-4_28 arXiv:1505.04597

[96] Adrian Rosebrock. 2017. Intersection over Union (IoU) for ob-
ject detection. (2017). https://www.pyimagesearch.com/2016/11/07/
intersection-over-union-iou-for-object-detection/

[97] Partha Pratim Roy, Umapada Pal, Josep Lladós, and Mathieu Delalandre. 2009.
Multi-oriented and multi-sized touching character segmentation using dynamic
programming. In Proceedings of the International Conference on Document Anal-
ysis and Recognition, ICDAR. https://doi.org/10.1109/ICDAR.2009.124

[98] Sumit Saha. 2018. A Comprehensive Guide to Convolutional
Neural Networks. (2018). https://towardsdatascience.com/
a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

[99] Cong Yao Shangbang Long, Xin He. 2018. Scene Text Detection and Recognition:
The Deep Learning Era. (2018), 1–20. http://arxiv.org/abs/1811.04256

[100] Ross Girshick Shaoqing Ren, Kaiming He and Jian Sun. 2017. Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence (May 2017), 1137–1149.
https://doi.org/10.1109/TPAMI.2016.2577031

[101] Karthik Sheshadri and Santosh Divvala. 2012. Exemplar Driven Character
Recognition in the Wild. https://doi.org/10.5244/c.26.13

[102] Baoguang Shi, Xiang Bai, and Serge Belongie. 2017. Detecting oriented text in
natural images by linking segments. In Proceedings - 30th IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017. https://doi.org/10.1109/
CVPR.2017.371

[103] Cunzhao Shi, Chunheng Wang, Baihua Xiao, Yang Zhang, Song Gao, and Zhong
Zhang. 2013. Scene text recognition using part-based tree-structured character
detection. In Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. https://doi.org/10.1109/CVPR.2013.381

[104] Mitsuaki Tamagawa Hiroaki Ikeda Koji Kan Shintaro Kumano, Kazu-
masa Miyamoto. 2004. Development of a container identification mark recog-
nition system. Electronics and Communications in Japan, Part II: Electronics
(English translation of Denshi Tsushin Gakkai Ronbunshi) (2004), 38–50.

[105] Palaiahnakote Shivakumara, Souvik Bhowmick, Bolan Su, Chew Lim Tan, and
Umapada Pal. 2011. A new gradient based character segmentation method for
video text recognition. In Proceedings of the International Conference on Document
Analysis and Recognition, ICDAR. https://doi.org/10.1109/ICDAR.2011.34

[106] Palaiahnakote Shivakumara, Trung Quy Phan, and Chew Lim Tan. 2011. A
Laplacian approach to multi-oriented text detection in video. IEEE Transactions
on Pattern Analysis and Machine Intelligence (2011). https://doi.org/10.1109/
TPAMI.2010.166

[107] Gidi Shperber. 2018. A gentle introduction to OCR. (2018). https://
towardsdatascience.com/a-gentle-introduction-to-ocr-ee1469a201aa

[108] Karen Simonyan and Andrew Zisserman. 2015. Very deep convolutional net-
works for large-scale image recognition. 3rd International Conference on Learn-
ing Representations, ICLR 2015 - Conference Track Proceedings (2015), 1–14.
arXiv:arXiv:1409.1556v6

[109] Manik Varma Teofilo E. de Campos, Bodla Rakesh Babu. 2016. Character recog-
nition in natural scene images. 2015 International Conference on Information
and Communication Technologies, ICICT 2015 (2016). https://doi.org/10.1109/
ICICT.2015.7469575

[110] Zhi Tian, Weilin Huang, Tong He, Pan He, and Yu Qiao. 2016. Detecting text
in natural image with connectionist text proposal network. In Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-319-46484-8_4

[111] GVCT-Grand View Container Trading. 2011. How is the check digit
of a container calculated? (2011). http://www.gvct.co.uk/2011/09/
how-is-the-check-digit-of-a-container-calculated/

[112] Sik-Ho Tsang. 2018. SSD — Single Shot Detector (Ob-
ject Detection). (2018). https://towardsdatascience.com/
review-ssd-single-shot-detector-object-detection-851a94607d11

[113] Seiichi Uchida. 2014. Text Localization and Recognition in Images and Video.
Handbook of Document Image Processing and Recognition (2014), 43. https:
//doi.org/10.1007/978-0-85729-859-1

[114] Rein van den Boomgaard. 2017. Histogram of Oriented Gradients.
(2017). https://staff.fnwi.uva.nl/r.vandenboomgaard/IPCV20172018/20172018/
LabExercises/HOG.html

[115] Steffen Wachenfeld, Hans Ulrich Klein, and Xiaoyi Jiang. 2006. Recognition
of screen-rendered text. In Proceedings - International Conference on Pattern
Recognition. https://doi.org/10.1109/ICPR.2006.974

[116] Toru Wakahara and Kohei Kita. 2011. Binarization of color character strings
in scene images using K-means clustering and support vector machines. In
Proceedings of the International Conference on Document Analysis and Recognition,
ICDAR. https://doi.org/10.1109/ICDAR.2011.63

[117] Cong Wang, Fei Yin, and Cheng Lin Liu. 2018. Scene Text Detection with
Novel Superpixel Based Character Candidate Extraction. In Proceedings of the
International Conference on Document Analysis and Recognition, ICDAR. https:
//doi.org/10.1109/ICDAR.2017.156

[118] Fangfang Wang, Liming Zhao, Xi Li, Xinchao Wang, and Dacheng Tao. 2018.
Geometry-Aware Scene Text Detection with Instance Transformation Network.
In Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. https://doi.org/10.1109/CVPR.2018.00150

[119] Kai Wang, Boris Babenko, and Serge Belongie. 2011. End-to-end scene text
recognition. In Proceedings of the IEEE International Conference on Computer
Vision. 1457–1464. https://doi.org/10.1109/ICCV.2011.6126402

[120] Kai Wang and Serge Belongie. 2010. Word spotting in the wild. In Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-642-15549-9_43

[121] Tao Wang, D. Wu, A. Coates, and A. Ng. 2012. End-to-end text recognition with
convolutional neural networks. Pattern Recognition (ICPR), 2012 21st Interna-
tional Conference on (2012), 3304–3308. http://www-cs.stanford.edu/people/
ang/papers/ICPR12-TextRecognitionConvNeuralNets.pdf

[122] Jerod J. Weinman, Erik Learned-Miller, and Allen Hanson. 2007. Fast lexicon-
based scene text recognition with sparse belief propagation. In Proceedings
of the International Conference on Document Analysis and Recognition, ICDAR.
https://doi.org/10.1109/ICDAR.2007.4377061

[123] Wikibooks. 2013. Delaunay triangulation. (2013). https://en.wikibooks.org/
wiki/Trigonometry/For_Enthusiasts/Delaunay_triangulation

[124] Wikipedia. 2017. Connectionist temporal classification. (2017). https://en.
wikipedia.org/wiki/Connectionist_temporal_classification

[125] Wikipedia. 2019. Adaptive histogram equalization. (2019). https://en.wikipedia.
org/wiki/Adaptive_histogram_equalization

[126] Wikipedia. 2019. Container terminal. (2019). https://nl.wikipedia.org/wiki/
Containerterminal

[127] Wikipedia. 2019. Histogram of oriented gradients. (2019). https://en.wikipedia.
org/wiki/Histogram_of_oriented_gradients

[128] Wikipedia. 2019. ISO 6346. (2019). https://en.wikipedia.org/wiki/ISO_6346
[129] Wikipedia. 2019. Recurrent neural network. (2019). https://en.wikipedia.org/

wiki/Recurrent_neural_network
[130] Wikipedia. 2019. Shipping container. (2019). https://en.wikipedia.org/wiki/

Shipping_container#Intermodal_freight_containers
[131] Dao Wu, Rui Wang, Pengwen Dai, Yueying Zhang, and Xiaochun Cao. 2018.

Deep Strip-Based Networkwith Cascade Learning for Scene Text Localization. In
Proceedings of the International Conference on Document Analysis and Recognition,
ICDAR. https://doi.org/10.1109/ICDAR.2017.140

[132] Weijia Wu, Jici Xing, and Hong Zhou. 2019. TextCohesion: Detecting Text for
Arbitrary Shapes. (apr 2019). arXiv:1904.12640 http://arxiv.org/abs/1904.12640

[133] Yue Wu and Prem Natarajan. 2017. Self-Organized Text Detection with Minimal
Post-processing via Border Learning. In Proceedings of the IEEE International

37

https://doi.org/10.1109/ICCV.2013.76
https://doi.org/10.1109/ICCV.2013.76
https://doi.org/10.1109/ICIP.2017.8296476
https://doi.org/10.1109/ICIP.2017.8296476
https://medium.com/@ar.ingenious/applying-random-forest-classification-machine-learning-algorithm-from/-scratch-with-real-24ff198a1c57
https://medium.com/@ar.ingenious/applying-random-forest-classification-machine-learning-algorithm-from/-scratch-with-real-24ff198a1c57
https://medium.com/@ar.ingenious/applying-random-forest-classification-machine-learning-algorithm-from/-scratch-with-real-24ff198a1c57
https://www.analyticsvidhya.com/blog/2017/09/understaing-support-vector-machine-example-code/
https://www.analyticsvidhya.com/blog/2017/09/understaing-support-vector-machine-example-code/
http://arxiv.org/abs/arXiv:1506.02640v5
https://doi.org/10.1109/CVPR.2017.690
http://arxiv.org/abs/arXiv:1612.08242v1
https://engmrk.com/lenet-5-a-classic-cnn-architecture/
https://doi.org/10.5244/c.27.5
https://doi.org/10.1007/s11263-014-0793-6
https://doi.org/10.1109/CVPR.2017.349
https://doi.org/10.1109/CVPR.2017.349
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
http://arxiv.org/abs/1505.04597
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://doi.org/10.1109/ICDAR.2009.124
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
http://arxiv.org/abs/1811.04256
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.5244/c.26.13
https://doi.org/10.1109/CVPR.2017.371
https://doi.org/10.1109/CVPR.2017.371
https://doi.org/10.1109/CVPR.2013.381
https://doi.org/10.1109/ICDAR.2011.34
https://doi.org/10.1109/TPAMI.2010.166
https://doi.org/10.1109/TPAMI.2010.166
https://towardsdatascience.com/a-gentle-introduction-to-ocr-ee1469a201aa
https://towardsdatascience.com/a-gentle-introduction-to-ocr-ee1469a201aa
http://arxiv.org/abs/arXiv:1409.1556v6
https://doi.org/10.1109/ICICT.2015.7469575
https://doi.org/10.1109/ICICT.2015.7469575
https://doi.org/10.1007/978-3-319-46484-8_4
http://www.gvct.co.uk/2011/09/how-is-the-check-digit-of-a-container-calculated/
http://www.gvct.co.uk/2011/09/how-is-the-check-digit-of-a-container-calculated/
https://towardsdatascience.com/review-ssd-single-shot-detector-object-detection-851a94607d11
https://towardsdatascience.com/review-ssd-single-shot-detector-object-detection-851a94607d11
https://doi.org/10.1007/978-0-85729-859-1
https://doi.org/10.1007/978-0-85729-859-1
https://staff.fnwi.uva.nl/r.vandenboomgaard/IPCV20172018/20172018/LabExercises/HOG.html
https://staff.fnwi.uva.nl/r.vandenboomgaard/IPCV20172018/20172018/LabExercises/HOG.html
https://doi.org/10.1109/ICPR.2006.974
https://doi.org/10.1109/ICDAR.2011.63
https://doi.org/10.1109/ICDAR.2017.156
https://doi.org/10.1109/ICDAR.2017.156
https://doi.org/10.1109/CVPR.2018.00150
https://doi.org/10.1109/ICCV.2011.6126402
https://doi.org/10.1007/978-3-642-15549-9_43
http://www-cs.stanford.edu/people/ang/papers/ICPR12-TextRecognitionConvNeuralNets.pdf
http://www-cs.stanford.edu/people/ang/papers/ICPR12-TextRecognitionConvNeuralNets.pdf
https://doi.org/10.1109/ICDAR.2007.4377061
https://en.wikibooks.org/wiki/Trigonometry/For_Enthusiasts/Delaunay_triangulation
https://en.wikibooks.org/wiki/Trigonometry/For_Enthusiasts/Delaunay_triangulation
https://en.wikipedia.org/wiki/Connectionist_temporal_classification
https://en.wikipedia.org/wiki/Connectionist_temporal_classification
https://en.wikipedia.org/wiki/Adaptive_histogram_equalization
https://en.wikipedia.org/wiki/Adaptive_histogram_equalization
https://nl.wikipedia.org/wiki/Containerterminal
https://nl.wikipedia.org/wiki/Containerterminal
https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
https://en.wikipedia.org/wiki/ISO_6346
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Shipping_container#Intermodal_freight_containers
https://en.wikipedia.org/wiki/Shipping_container#Intermodal_freight_containers
https://doi.org/10.1109/ICDAR.2017.140
http://arxiv.org/abs/1904.12640
http://arxiv.org/abs/1904.12640

Conference on Computer Vision. https://doi.org/10.1109/ICCV.2017.535
[134] Cong Yao, Xiang Bai, Wenyu Liu, Yi Ma, and Zhuowen Tu. 2012. Detecting

texts of arbitrary orientations in natural images. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition. https:
//doi.org/10.1109/CVPR.2012.6247787

[135] Cong Yao, Xiang Bai, Nong Sang, Xinyu Zhou, Shuchang Zhou, and Zhimin
Cao. 2016. Scene Text Detection via Holistic, Multi-Channel Prediction. (2016),
1–10. arXiv:1606.09002 http://arxiv.org/abs/1606.09002

[136] Cong Yao, Xiang Bai, Baoguang Shi, and Wenyu Liu. 2014. Strokelets: A learned
multi-scale representation for scene text recognition. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition. https:
//doi.org/10.1109/CVPR.2014.515

[137] Qixiang Ye, Wen Gao, Weiqiang Wang, and Wei Zeng. 2003. A robust text detec-
tion algorithm in images and video frames. In ICICS-PCM 2003 - Proceedings of
the 2003 Joint Conference of the 4th International Conference on Information, Com-
munications and Signal Processing and 4th Pacific-Rim Conference on Multimedia.
https://doi.org/10.1109/ICICS.2003.1292567

[138] Xu Cheng Yin, Wei Yi Pei, Jun Zhang, and Hong Wei Hao. 2015. Multi-
Orientation Scene Text Detection with Adaptive Clustering. IEEE Transactions
on Pattern Analysis and Machine Intelligence (2015). https://doi.org/10.1109/
TPAMI.2014.2388210

[139] Xu-Cheng Yin, Xuwang Yin, Kaizhu Huang, and Hong-Wei Hao. 2014. Robust
Text Detection in Natural Scene Images. {IEEE} Trans. Pattern Anal. Mach. Intell.
36, 5 (2014), 970–983. https://doi.org/10.1109/TPAMI.2013.182 arXiv:1301.2628

[140] XiaobingWang Shuli YangWei Li HuaWang Pei Fu Yingying Jiang, Xiangyu Zhu
and Zhenbo Luo. 2017. R2CNN: Rotational Region CNN for Orientation Robust
Scene Text Detection. (2017), 8.

[141] Xiang BAI Yingying ZHU, Cong YAO. 2016. Scene text detection and recognition:
recent advances and future trends. Frontiers of Computer Science (2016), 19–36.
https://doi.org/10.1007/s11704-015-4488-0

[142] Hosub Yoon Jaehong Kim Youngwoo Yoon, Kyu-Dae Ban. 2016. Automatic
container code recognition from multiple views. ETRI Journal (2016), 767–775.
https://doi.org/10.4218/etrij.16.0014.0069

[143] Liu Yuliang, Jin Lianwen, Zhang Shuaitao, and Zhang Sheng. 2017. Detecting
Curve Text in theWild: NewDataset and New Solution. (2017). arXiv:1712.02170
http://arxiv.org/abs/1712.02170

[144] Honggang Zhang, Kaili Zhao, Yi Zhe Song, and Jun Guo. 2013. Text extraction
from natural scene image: A survey. Neurocomputing (2013). https://doi.org/10.
1016/j.neucom.2013.05.037

[145] Sheng Zhang, Yuliang Liu, Lianwen Jin, and Canjie Luo. 2017. Feature En-
hancement Network: A Refined Scene Text Detector. (2017), 2612–2619.
arXiv:1711.04249 http://arxiv.org/abs/1711.04249

[146] Zheng Zhang, Chengquan Zhang, Wei Shen, Cong Yao, Wenyu Liu, and Xiang
Bai. 2016. Multi-oriented Text Detection with Fully Convolutional Networks.
In Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. https://doi.org/10.1109/CVPR.2016.451

[147] Hongqing Ma Zhiwei He, Jilin Liu and Peihong Li. 2005. A New Automatic
Extraction Method of Contaienr Identity Codes. IEEE TRANSACTIONS ON
INTELLIGENT TRANSPORTATION SYSTEMS (2005), 72–78.

[148] Yu Zhong, Kalle Karu, and Anil K. Jain. 1995. Locating text in complex color im-
ages. Proceedings of the International Conference on Document Analysis and Recog-
nition, ICDAR 1 (1995), 146–149. https://doi.org/10.1109/ICDAR.1995.598963

[149] Xinyu Zhou, Cong Yao, He Wen, Yuzhi Wang, Shuchang Zhou, Weiran He, and
Jiajun Liang. 2017. EAST: An efficient and accurate scene text detector. (2017),
5551–5560. arXiv:arXiv:1704.03155v2

[150] Zhiwei Zhou, Linlin Li, and Chew Lim Tan. 2010. Edge based binarization for
video text images. In Proceedings - International Conference on Pattern Recognition.
https://doi.org/10.1109/ICPR.2010.41

[151] Xiangyu Zhu, Yingying Jiang, Shuli Yang, Xiaobing Wang, Wei Li, Pei Fu, Hua
Wang, and Zhenbo Luo. 2018. Deep Residual Text Detection Network for Scene
Text. In Proceedings of the International Conference on Document Analysis and
Recognition, ICDAR. https://doi.org/10.1109/ICDAR.2017.137

38

https://doi.org/10.1109/ICCV.2017.535
https://doi.org/10.1109/CVPR.2012.6247787
https://doi.org/10.1109/CVPR.2012.6247787
http://arxiv.org/abs/1606.09002
http://arxiv.org/abs/1606.09002
https://doi.org/10.1109/CVPR.2014.515
https://doi.org/10.1109/CVPR.2014.515
https://doi.org/10.1109/ICICS.2003.1292567
https://doi.org/10.1109/TPAMI.2014.2388210
https://doi.org/10.1109/TPAMI.2014.2388210
https://doi.org/10.1109/TPAMI.2013.182
http://arxiv.org/abs/1301.2628
https://doi.org/10.1007/s11704-015-4488-0
https://doi.org/10.4218/etrij.16.0014.0069
http://arxiv.org/abs/1712.02170
http://arxiv.org/abs/1712.02170
https://doi.org/10.1016/j.neucom.2013.05.037
https://doi.org/10.1016/j.neucom.2013.05.037
http://arxiv.org/abs/1711.04249
http://arxiv.org/abs/1711.04249
https://doi.org/10.1109/CVPR.2016.451
https://doi.org/10.1109/ICDAR.1995.598963
http://arxiv.org/abs/arXiv:1704.03155v2
https://doi.org/10.1109/ICPR.2010.41
https://doi.org/10.1109/ICDAR.2017.137

