
Converting Modest Models to Efficient Code
Leo Heyns

University of Twente
P.O. Box 217, 7500AE Enschede

The Netherlands
l.heyns@student.utwente.nl

ABSTRACT
Model checking is an automated technique that, given
a finite-state model of a system and a formal property,
systematically checks whether this property holds for (a
given state in) that model [1]. The Modest Toolset can
be used to study the reliability and performance of sys-
tems through model checking. One of the features in the
Modest Toolset is converting the models to a code repre-
sentation, which allows easier writing of algorithms using
those models. This feature is currently used in a teach-
ing setting, the generated code facilitates interacting with
models such that the students can write their own model
checking algorithms. The current implementation gener-
ates slow code and is limited to only generating Python.
This paper shows methods to make the code generated
by the Modest Toolset faster, which allows more complex
models to be checked, and to allow it to generate mod-
els in more programming languages, which makes creating
model checking algorithms accessible to a wider public; it
will then compare the performance of model checking in
these different programming languages.

1. INTRODUCTION
Model checking is an automated technique that, given a
finite-state model of a system and a formal property, sys-
tematically checks whether this property holds for (a given
state in) that model [1].

In many systems it is critical that they function according
to their specification. Model checking is a way to guaran-
tee that a system satisfies the given conditions or to find
the cases where it fails.

Exhaustive model checking can give exact answers and
guarantees about the modeled systems by exploring the
entire state-space of the model. Such an approach to
model checking suffers from state-space explosion due to
the number of possible states growing rapidly as the model
increases in complexity. Statistical model checking miti-
gates the problem of state-space explosion by simulating
the system many times and through hypothesis testing
can give similar assurances about the model, albeit with-
out complete certainty of those assurances [8].

The Modest Toolset [4] is a toolset that can be used to per-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
33rd Twente Student Conference on IT July 3rd, 2020, Enschede, The
Netherlands.
Copyright 2020, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

form model checking. This toolset supports the model in-
put formats of JSON Automata Network Interface (JANI)
and the Modest Language. The Modest language is a mod-
eling language designed to be used to create models to
check with the Modest Toolset. JANI [3] is a interchange
format for models which is an accepted input language for
many other model checking tools.

One of the features in the Modest Toolset is converting
the models to a code representation, this code representa-
tion provides an interface which can be used to traverse
the state space of the model. This enables the writing
of algorithms on those models. The code generation is
currently used in a teaching setting, where the generated
code facilitates interacting with models such that the stu-
dents can write their own model checking algorithms. The
Modest Toolset currently generates code that is not as fast
as it could be. The performance of the generated model
affects the performance of algorithms using that model,
which limits the size of models that can be effectively
checked. Code generation is currently limited to Python
code; adding a facility to generate models in more lan-
guages could have performance benefits, as more efficient
programming languages than Python are available [9], as
well as accessibility benefits, as many students in the cur-
rent teaching setting using the Modest Toolset are not
experienced in Python.

Contribution
In this paper I investigate how JANI models can be con-
verted to an efficient code representation. I approach
this by presenting a method of generating more efficient
Python code from JANI models, showing a way of gener-
alizing this code-generation for generation of different lan-
guages, and showing the performance differences of gener-
ated models in Python and C.

1.1 Related work
The Modest Toolset is not the only tool to convert models
to code, the Spin model checker has an option to output
C code [7]. This C code runs a model checker on the input
model, it contains both the code to check the model and a
representation of the model itself. The implementation of
the code generation in both Spin and the Modest Toolset is
not a suitable base for multi-language code generation, as
their architecture hardcodes many assumptions for their
single target language instead of in a more generic way for
more languages.

As one of the goals is to generate models in multiple pro-
gramming languages, principles from source-to-source com-
pilers can be used in this project. In the context of con-
verting models there is the HyST tool, which converts
models other modeling languages [2]. HyST converts the
source model to an intermediate representation and from

1

that into another modeling language, the intermediate rep-
resentation is similar to the internal representation of a
model in the Modest Toolset, but takes no further step
towards code generation.

An example where code does compile to many other lan-
guages is the Haxe cross-compiler. While it seems like the
structure of the Haxe compiler could be used to generate
code in multiple languages from models, the Haxe com-
pilers’ architecture cannot be effectively used in our case.
This is due to the Haxe languages features being specif-
ically designed to be compiled to many other languages
and the compiler architecture being based around those
language features [11]. The JANI model that should be
converted to code is not specifically designed to be com-
piled to many programming languages and will thus not
be able to work in the same way as Haxe does.

With regard to the performance of the generated code
there have been studies that show that lower level pro-
gramming languages produce faster programs than higher
level languages [9] That research is on very general cases,
thus researching this for the very specific case of models
is not yet explored fully.

1.2 Methodology
Python code generation is already part of the Modest
Toolset, thus the first target was to make performance im-
provements to that implementation. The language I added
code generation for was C, since in the teaching environ-
ment where the Modest Toolset is used, students are often
more familiar with C than with Python; additionally, C is
a low level language compared to Python which is a high
level language.

In order to improve the performance of the generated Python
code I started by analysing which aspects of the generated
code have a large performance impact. Using the knowl-
edge gained from this process I implemented an improved
solution. While improving the Python code I was gener-
alizing the code generation to be applicable to other lan-
guages as well, after which I added C code support for
this now more general code generator. Generalizing the
code to work for other languages allowed me to better
analyze the performance difference between the generated
Python an C code, as the more general solution to generat-
ing the same model in different languages would create less
functional differences in the resulting generated code, pre-
venting performance differences produced by higher qual-
ity implementations of the converter for some languages
than for others.

To prevent the results of the benchmark experiments be-
ing dependent on the model used, the results are based on
multiple models from the Quantitative Verification Bench-
mark Set [6]. This benchmark set contains models, and for
each of those models one or more instances of that model in
the JANI format with different parameters. I performed
the experiments on all MPD and PTA model instances
from the benchmark set which could be converted to func-
tional code, as some model instances could not be compiled
to code with the current implementation and some model
instances would not run due to the limits of the Python
interpreter and the implemented C generation. From this
benchmark set 66 model instances could be converted to
Python code, 80 to C code, of which 60 could be con-
verted to both C and Python code. These model instances
instances ranged from smaller to larger models, the small-
est model instance having 7 states and the largest having
361 trillion states. The benchmarks were performed on a
laptop with an Intel Core i7-7700HQ CPU and 16 GB of

Transition 1State A

State B

State C

Branch 1: 80%

Branch 2: 20%

State D

Transition 2

Figure 1. A small example showing the flow from
state to state

RAM running running 64-bit Ubuntu Linux 20.04. The
C code was compiled using the GCC C compiler and the
Python Code was run using the Python 3.7.3 interpreter.

To evaluate the results of research question 1 I conducted
performance analysis on exhaustive and statistical model
checking algorithms using the existing and the new im-
plementation. I did a similar comparison between models
generated in Python and C, and compared the efficiency
of Python, C and the model checker mcsta in the Modest
Toolset.

At the foundation of exhaustive model checking is an ex-
ploration of the state-space of the model. This exploration
is the only interaction with the code representation of the
model and the part of model checking which is slow, thus
to evaluate the performance of the algorithm it is only nec-
essary to benchmark the time taken to do a Breadth First
Search (BFS) through the state-space of the model. As
statistical model checking relies on simulations, the eval-
uation of the performance of the generated code was done
by running Monte Carlo simulations on the models.

2. BACKGROUND
The models supported by the Modest Toolset are in essence
automata, these automata have non-deterministic tran-
sitions and probabilistic branches which together form
the edges between states, this is illustrated in the ex-
ample in Figure 1. The Modest Toolset also supports
models which consist of multiple smaller automata, these
automata are synchronised together to behave like a sin-
gle automata based on shared transitions between these
smaller automata.

The generated code contains 3 important elements for the
exploration of the state-space of the model:

• The automata classes, these represent the smaller
automata, they are an interface which can be used
to navigate the state-space of that specific automata
by providing functions which give the transitions,
branches, and next states.

• The State class, this class is used to store the states
of all the automata in the model in on data object,
it has a hash function, as some algorithms, such as
BFS, require hashing the states of the model.

2

Algorithm 1: Monte Carlo Simulation on a model
network
input: A model instance network, Number of trials

n, Depth to explore d
for n times do

state = network.get initial state()
transitions = network.get transitions(state)
depth = 0
while transitions is not empty AND depth < d
do

increment depth
transition = a random choice from
transitions

branches = network.get branches(state,
transition)

branch = a random choice from branches
weighted by each branches probability

state = network.jump(state, transition,
branch)

transitions = network.get transitions(state)
end

end

• The Network class, this class is the representation
of the entire model. It synchronises the smaller au-
tomata together and is interacted with in a similar
way as those smaller automata, by providing func-
tions which give the transitions, branches, and next
states.

3. IMPLEMENTED ALGORITHMS
The generated Python code does not do anything on its
own, to be able to test its performance algorithms must
be used which interact with the generated code. In this
research project BFS is used to approximate an exhaustive
model checking algorithm and Monte Carlo simulations
are used to approximate statistical model checking.

Executing these algorithms on models requires finding the
next state from any given state. States have a set of possi-
ble transitions which can be taken from those states, these
are fetched using the get transitions function, which gets a
list of possible transitions from a given state. These tran-
sitions may have multiple branches to next states, each
with a probability of taking that branch, the branches
are fetched using the get branches function. The function
jump gets the new state given an old state and a transition
and branch from that state.

Due to some of the models in the benchmark set taking a
very long time to evaluate I defined a maximum amount
of time that the benchmarks may run. I set this to 10
seconds per model instance and recorded for each of the
aforementioned functions the number of seconds spent ex-
ecuting that function per explored state.

3.1 Breadth First Search
As can be seen in the pseudocode for BFS in Algorithm
2 BFS requires keeping track of the states which have al-
ready been visited. To do this the states are placed in
a visited set. The set.contains operation and adding to a
set use the hash function of the state of the model; this
is needed because explored states should not be explored
again. get transitions and get branches are used to find
all outgoing edges from the current state and the jump
function is used to get the new states from those outgoing
edges.

Algorithm 2: Breadth First Search on a model net-
work
input: A model instance network
let Q be a queue
let discovered be a set of states
initial state = network.get initial state()
Q.enqueue(initial state)
add initial state to discovered
while Q is not empty do

state = Q.pop()
transitions = network.get transitions(state)
foreach transition in transitions do

branches = network.get branches(state,
transition)

foreach branch in branches do
new state = network.jump(state,
transition, branch)

if not discovered.contains(new state)
then

Q.enqueue(new state)
add new state to discovered

end

end

end

end

3.2 Monte Carlo Simulations
It is not necessary to use the hash function when run-
ning simulations, since having visited a state already is not
relevant in a simulation as is shown in the pseudocode for
Monte Carlo Simulation in Algorithm 1. Like in the BFS
implementation get transitions, get branches and jump are
used to navigate the state-space of the model. The proba-
bility attribute of the branches are used as the probability
of exploring that branch and transitions are explored with
equal probability.

There may be cases where the simulation does not halt.
To prevent the benchmark from looping forever there is a
maximum number of jumps that will be taken; during the
experiments this was set to 1000 jumps and 1000 simula-
tions were run per model.

4. EFFICIENT PYTHON CODE
4.1 profiling results on benchmarks
As can be seen in Table 1, and Figure 2 and 3 in both
the BFS benchmark and the Monte Carlo simulations the
get transitions function showed the largest time usage.
This is due to the synchronisation of multiple automata
transitions being required to get the possible transitions
of the entire model, and synchronization being a relatively
complex operation. The speed of all of these functions in
the generated code is dependent on the model from which
the code is generated. More complex models with more
complex synchronisation have slower get transitions func-
tions and models with complex states have slower hash
functions. More complex synchronisation has a very large
effect on the speed of the model checker, this can be seen in
the figures as the percentage of time used by get transitions
increases as the total speed decreases.

4.1.1 BFS
The most surprising value from the result of profiling the
BFS implementation is the amount of time spent in the

hash function. This is due to the large number of calls
that are made to this function. The current implemen-
tation in the Modest Toolset produces hashing functions

3

10 6 10 5 10 4 10 3 10 2 10 1 100

seconds per state

0

20

40

60

80

100
pe

rc
en

ta
ge

 o
f t

im
e

sp
en

t i
n

fu
nc

tio
n

transitions
branches
jump
hash

Figure 2. Performance analysis of the existing gen-
erated Python code by benchmarking seconds per
state explored using BFS for multiple model in-
stances

percentage of time spent
Function BFS Monte Carlo
get transitions 51.5% 77.9%
jump 16.8% 7.3%
get branches 11.6% 7.7%

hash 17.5% –

Table 1. Average Time spent in function

which are much slower than the tuple hash which is in
Python by default. Thus a significant performance in-
crease can be achieved by using that instead.

4.1.2 Monte Carlo Simulations
Compared to the BFS profiling, Monte Carlo Simulations
spend much more of the time in get transitions. This is
due to jump and get branches only being called once for
each call of get transitions as only one of the transitions
is picked to be explored, while BFS explores all transi-
tions and branches and will thus call get branches and
jump multiple times per call of get transitions. Due to
get transitions running such a large percentage of the time
it is the only function where major performance improve-
ments can be gained for statistical model checking.

4.2 implemented improvements
4.2.1 new hashing function

The functions generated by the old code generator to hash
the model state worked by iteratively applying an opera-
tion to combine the provisional result with a hash of a
variable of the state, as seen in the example in Listing 1.
This is not an incorrect way to hash, but the hash func-
tion is called very often and Python is a relatively slow
language.

1 de f ha sh (s e l f) :
2 r e s u l t = 75619
3 r e s u l t = (((101 ∗ r e s u l t) & 0xFFFFFFFF) +

hash (s e l f . counter)) & 0xFFFFFFFF
4 r e s u l t = (((101 ∗ r e s u l t) & 0xFFFFFFFF) +

hash (s e l f . pc1)) & 0xFFFFFFFF
5 r e s u l t = (((101 ∗ r e s u l t) & 0xFFFFFFFF) +

hash (s e l f . co in1)) & 0xFFFFFFFF
6 r e s u l t = (((101 ∗ r e s u l t) & 0xFFFFFFFF) +

10 6 10 5 10 4 10 3 10 2 10 1 100

seconds per state

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f t
im

e
sp

en
t i

n
fu

nc
tio

n

transitions
branches
jump

Figure 3. Performance analysis of old generated
Python code by benchmarking seconds per state
explored using Monte Carlo Simulations for mul-
tiple model instances

hash (s e l f . pc2)) & 0xFFFFFFFF
7 r e s u l t = (((101 ∗ r e s u l t) & 0xFFFFFFFF) +

hash (s e l f . co in2)) & 0xFFFFFFFF
8 r e turn r e s u l t

Listing 1. Hashing function produced by the
existing implementation

1 de f ha sh (s e l f) :
2 r e turn hash ((s e l f . counter , s e l f . pc1 , s e l f .

coin1 , s e l f . pc2 , s e l f . co in2))

Listing 2. Hashing function produced by the new
implementation

The hashing function produced by the new implementa-
tion utilises the standard Python tuple hash, as seen in the
example in Listing 2, which works using a similar iterative
operation as the hash produced by the old code generator.

4.2.2 memoization
Memoization is an optimisation strategy which is used to
avoid recalculating the same values when not necessary.
This is achieved by storing the return values of the called
function and checking whether or not a value is already
stored for the given inputs. This only works for idem-
potent functions as it cannot account for a different out-
put given the same input, fortunately the get transitions
function is idempotent. I implemented this in the Python
code generator by using dictionaries, as seen in the ex-
ample in Listing 3. It is important to note that utilising
this strategy increases the memory used when running the
Monte Carlo Simulations; one of the benefits of statistical
model checking is the reduced memory usage which is thus
undermined by using memoization. This did not pose a
problem in the tests ran, as these tests were limited in run
time, which did not allow the memory usage to become a
bottleneck; however this would pose a problem if a more
thorough exploration of the model was performed. To pre-
vent this becoming a problem in a proper exploration of
the model a pache peplacement policy could be used to
limit the size of the cache.

1 de f g e t t r a n s i t i o n s (s e l f , s t a t e : State) −>
L i s t [Trans i t i on] :

4

10 6 10 5 10 4

py-old (seconds in hash` per state explored)

10 6

10 5

10 4

ne
w-

ha
sh

 (s
ec

on
ds

 in
 h

as
h

pe
r s

ta
te

 e
xp

lo
re

d)

ide
nti

ty 1.5
x

2x 4x 8x 16
x 32

x

Figure 4. Performance comparison between the
hash functions produced by new-hash and py-old

using BFS as a benchmark.

2 i f s t a t e in s e l f . t r a n s i t i o n s t a b l e :
3 r e turn s e l f . t r a n s i t i o n s t a b l e [s t a t e]
4

5 #opera t i on s gene ra t ing the r e s u l t in the
t r a n s i t i o n s va r i ab l e

6

7 s e l f . t r a n s i t i o n s t a b l e [s t a t e] = t r a n s i t i o n s
8 r e turn t r a n s i t i o n s

Listing 3. An example of generated code using
memoization

4.3 Results
I will consider the following implementations:

• py-old: The old implementation for Python.

• new-hash: The old implementation for Python, but
with the new hashing function.

• memoized: The old implementation for Python, but
using memoization.

• both: An implementation for Python using both
memoization and the new hashing function.

4.3.1 new hashing function
As seen in Figure 4 the new generated hashing functions
are much faster than the old hashing functions. This leads
to a noticeable increase in performance in BFS, but only
for less complex models, as seen in Figure 5. The new
hash function has very little influence on the results of the
more complex models, as these spend the vast majority of
the time in get transitions, as seen in Figure 2.

4.3.2 memoization
As seen in Figure 6 the get transitions functions gener-
ated by memoized are substantially faster than the old
get transitions functions. This leads to a significant in-
crease in performance in Monte Carlo Simulations as seen
in Figure 7. This method does not offer any benefits for
BFS as in BFS every state is only visited once and thus
the get transitions function is never called with the same
parameters twice.

10 5 10 4 10 3 10 2

py-old (seconds per state)

10 5

10 4

10 3

10 2

ne
w-

ha
sh

 (s
ec

on
ds

 p
er

 st
at

e)

ide
nti

ty
1.5

x
2x

4x
8x

16
x 32

x

Figure 5. Performance comparison between py-old

and new-hash using BFS as a benchmark.

10 5 10 4 10 3 10 2 10 1

py-old (seconds spent in get_transitions per state)

10 5

10 4

10 3

10 2

10 1

m
em

oi
ze

d
(s

ec
on

ds
 sp

en
t i

n
ge

t_
tra

ns
iti

on
s p

er
 st

at
e)

ide
nti

ty
1.5

x

2x
4x

8x
16

x
32

x

Figure 6. Performance comparison between the
get transitions functions produced by memoized and
py-old using Monte Carlo Simulations as a bench-
mark.

4.3.3 new hash function and memoization program-
ming

Due to memoization programming making use of dictio-
naries in get transitions, and dictionaries using the state
hash function, both optimisations can be combined to
speed up the Monte Carlo Simulations further. Figure
8 shows that using the new hashing functions makes it
noticeably faster than only using memoization. This re-
sults in the total performance increase to be substantial
compared to the old generated code as shown in Figure 9.

5. GENERALISING CODE GENERATION
In order to make it easier to add more languages I planned
on expressing the model in abstract language structures.
Programming languages are often built up of similar state-
ments and expressions. Expressing the generation of mod-
els using code generation units which only generate one
particular language structure can help making adding more
languages easier as only the implementation of these units

5

10 5 10 4 10 3 10 2 10 1

py-old (seconds per state)

10 5

10 4

10 3

10 2

10 1
m

em
oi

ze
d

(s
ec

on
ds

 p
er

 st
at

e)

ide
nti

ty
1.5

x

2x
4x

8x
16

x 32
x

Figure 7. Performance comparison between py-old

and memoized using Monte Carlo Simulations as a
benchmark.

10 5 10 4 10 3 10 2

memoized (seconds per state)

10 5

10 4

10 3

10 2

bo
th

 (s
ec

on
ds

 p
er

 st
at

e)

ide
nti

ty
1.5

x

2x
4x

8x
16

x 32
x

Figure 8. Performance comparison between memo-

ized and both using Monte Carlo Simulations as a
benchmark.

must be changed to add a new language, and not the way
these units are structured in the code generation. This ap-
proach is similar to the use of an intermediate language.
If some of these language structures are available in one
language, but not in another, then more effort is needed
to produce a working code generator, but not more than
would have been needed if this strategy was not deployed.

5.1 Templating engines
To achieve these code generation units I initially planned
on using the StringTemplate library [10], this library has
great tools for creating subtemplates. These subtemplates
could then be used to express a single language structure
like the code generation units I described above, which
could use more subtemplates of more detailed language
structures. Unfortunately the StringTemplate library is
not maintained well enough for C# to use currently. The
T4 templating engine was considered, but it did not have
the same advantages StringTemplate offered and thus a
stringbuilder was used, like it was in the original imple-

10 5 10 4 10 3 10 2 10 1

py-old (seconds per state)

10 5

10 4

10 3

10 2

10 1

bo
th

 (s
ec

on
ds

 p
er

 st
at

e)

ide
nti

ty
1.5

x

2x
4x

8x
16

x 32
x

Figure 9. Performance comparison between py-

old and both using Monte Carlo Simulations as a
benchmark.

mentation.

5.2 Implemented generalisation
I generalised only a small number of these structures: switch
cases, for loops and scopes, as these features were used of-
ten and most easily generalised. While much of the code
generation was not generalised, the parts which were made
implementing these parts for C almost trivial.

1 c l a s s SwitchCase
2 {
3 pr i va t e IndentedTextStream s ;
4 pr i va t e St r ing switchVar ;
5 pr i va t e bool needEl = f a l s e ;
6 pub l i c SwitchCase (IndentedTextStream s ,

S t r ing switchVar) {
7 // the textstream to wr i t e the generated

code to
8 t h i s . s = s ;
9 // the va r i ab l e to be switched on

10 t h i s . switchVar = switchVar ;
11 }
12 pub l i c Disposer Open () {
13 r e turn new Disposer () ;
14 }
15

16 pub l i c Disposer AddCase (S t r ing opt ion) {
17 i f (needElse) {
18 s . Write (” e l ”) ;
19 } e l s e {
20 needElse = true ;
21 }
22 s . WriteLine (” i f ” + switchVar + ” == ”

+ opt ion + ” : ”) ;
23 r e turn s . Indent () ;
24 }
25 }

Listing 4. Switch case generator for Python

1 c l a s s SwitchCase{
2 pr i va t e IndentedTextStream s ;
3 pr i va t e St r ing switchVar ;
4 pub l i c SwitchCase (IndentedTextStream s ,

S t r ing switchVar) {
5 // the textstream to wr i t e the

generated code to
6 t h i s . s = s ;
7 // the va r i ab l e to be switched on
8 t h i s . switchVar = switchVar ;

6

9 }
10 pub l i c Disposer Open () {
11 s . WriteLine (”switch (” + switchVar + ”

) ”) ;
12 r e turn OpenScope (s) ;
13 }
14 pub l i c Disposer AddCase (S t r ing opt ion) {
15 s . WriteLine (”case ” + opt ion + ” : ”) ;
16 Disposer d = s . Indent () ;
17 r e turn new Disposer (() =>
18 {
19 d . Dispose () ;
20 s . WriteLine (”break ; ”) ;
21 }) ;
22 }
23 }

Listing 5. Switch case generator for C

As can be seen in Listing 4 and 5, C supports switch cases,
while Python does not, however the same behaviour as a
switch case can be attained by using repeated if-elif state-
ments. The implementations of these classes are different,
but they are interacted with in the same way: A switch-
case is opened, multiple cases are added, after which it is
closed1. and can thus be used in exactly the same way
during generation.

5.3 C implementation
The largest difference between C and Python is Python
having much much more abstract features, whereas C re-
quires writing these abstract features yourself. However
as Python and C are both imperative programming lan-
guages they share many of the same control structures.
Thus I made the C generator produce the same control
structures in as in Python. These control structures are
therefore also the best candidates to generalise for many
languages.

Python and C do typing in a fundamentally different way,
therefore this caused the most difficulty in generalising the
Python generation to C. In Python, new data types are
defined as classes, which encapsulate data and behaviour,
and in C data types are defined as structs, which only en-
capsulate data. Thus the behaviour that was originally in
the Python classes needs to be moved to functions out-
side of the structs with the same behaviour. Additionally
Python does its typechecking at run-time through duck
typing, whereas C does its typechecking at compile-time
and requires strict declarations of types. This leads to
the problem of the Python generation not needing infor-
mation on the types used, while C does require it, as a
consequence this was the area of code generation that was
most difficult to change in a generic way from Python to
C; in this case I added the types by interpreting myself
which types had to be used, for example needing to spec-
ify that a variable is in fact an integer, instead of just
assigning an integer value to an untyped variable and de-
ferring typechecks to the Python interpreter at runtime.
Python also supports datastructures which are not avail-
able in C by default, such as lists, sets and dictionaries,
which thus needed to be added to the generated C code.
As memoization requires dictionaries, this was not imple-
mented in C. These problems would not be as apparent
if the initial implementation would have generated C and
would have been changed to also generate Python; because
it is less difficult to convert the more verbose C code to the

1C# has a using statement, which calls a method, then
opens a block and when the block is closed calls the Dis-
pose() method on the returned disposer, which is used to
close both the switch-case and each case

10 5 10 4 10 3 10 2

new-hash (seconds spent per state explored)

10 5

10 4

10 3

10 2

C
(s

ec
on

ds
 sp

en
t p

er
 st

at
e

ex
pl

or
ed

)

ide
nti

ty
1.5

x

2x
4x

8x
16

x 32
x

Figure 10. newhash vs c using BFS

10 5 10 4 10 3 10 2

both (seconds per state)

10 5

10 4

10 3

10 2
C

(s
ec

on
ds

 p
er

 st
at

e)

ide
nti

ty
1.5

x

2x
4x

8x
16

x 32
x

Figure 11. both vs C using Monte Carlo

more concise Python code, as the C code needs to contain
more information than the Python code and it is easier to
remove information than to add it.

6. EFFICIENCY ACROSS LANGUAGES
I applied the BFS and Monte Carlo benchmarks to the
generated C code in the same way as on the generated
Python code, also producing results in seconds spent per
explored state. The benchmarks showed that the gener-
ated C code was much faster than new-hash, the fastest
Python implementation for BFS, when using BFS as a
benchmark as seen in Figure 10.

Figure 11 shows that the generated C code is also much
faster than both when using Monte Carlo simulations as
a benchmark.

The Python and C implementations can also be compared
to, the Modest Toolsets mcsta tool, which will compile the
model to a representation in .NET bytecode [5].

Table 2 shows the speed of BFS on several models in differ-
ent languages and tells us that in these few cases Python is
much slower than both C and the .Net bytecode. Whether
or not the C code is faster than the .Net bytecode depends

7

model instance new-hash C .NET bytecode
echoring 17.1k 79.6k 145k
rabin.5 73.7k 180k 170k
elevators.b-11-9 30.1k 127k 96.9k

Table 2. States explored per second using BFS for
various model instances in different languages.

on the model.

7. CONCLUSION
In this research project I set out to improve the perfor-
mance of the Python code generated by the Modest Toolset,
to simplify adding support for generating more program-
ming languages and to compare the performance of model
checking in different programming languages. The existing
generation of Python code was modestly improved for ex-
haustive model checking by improving the generated hash
function. Its performance for statistical model checking
was significantly increased by using memoization and the
new hash function together. However this was achieved
by caching all values, which would lead to problems in
memory usage, thus this should be improved by using a
cache replacement policy, which policy is best for the spe-
cific case of statistical model checking is not part of this
research, but could be explored further in future research.

In order to make adding support for more programming
languages less difficult I changed the code generation to
make use of more general language structures. This is
currently limited to a few control structures, but could be
expanded in the future, but to a limited extent as many
details of programming languages differ enough to make
generalising all concepts difficult.

I added support for C code generation, which was much
faster than both the existing and improved Python imple-
mentations C is much much faster and scales better.

As a possible extension Haskell code generation could be
implemented as well, as it is a language from a different
paradigm it could provide contrast to C and Python. As a
further work the benchmarks could be made more accurate
by not only using the exploration stage of model checking,
but by using a full model checker and memoization could
be applied to C to further increase its performance for
statistical model checking.

8. REFERENCES
[1] C. Baier and J. Katoen. Principles of model

checking. MIT Press, 2008.

[2] S. Bak, S. Bogomolov, and T. T. Johnson. HYST: A
source transformation and translation tool for
hybrid automaton models. In A. Girard and
S. Sankaranarayanan, editors, Proceedings of the
18th International Conference on Hybrid Systems:
Computation and Control, HSCC’15, Seattle, WA,
USA, April 14-16, 2015, pages 128–133. ACM, 2015.

[3] C. E. Budde, C. Dehnert, E. M. Hahn,
A. Hartmanns, S. Junges, and A. Turrini. JANI:
Quantitative model and tool interaction. In
A. Legay and T. Margaria, editors, Tools and
Algorithms for the Construction and Analysis of
Systems - 23rd International Conference, TACAS
2017, Held as Part of the European Joint
Conferences on Theory and Practice of Software,
ETAPS 2017, Uppsala, Sweden, April 22-29, 2017,
Proceedings, Part II, volume 10206 of Lecture Notes
in Computer Science, pages 151–168, 2017.

[4] A. Hartmanns and H. Hermanns. The modest
toolset: An integrated environment for quantitative
modelling and verification. In E. Ábrahám and
K. Havelund, editors, Tools and Algorithms for the
Construction and Analysis of Systems - 20th
International Conference, TACAS 2014, Held as
Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2014, Grenoble,
France, April 5-13, 2014. Proceedings, volume 8413
of Lecture Notes in Computer Science, pages
593–598. Springer, 2014.

[5] A. Hartmanns and H. Hermanns. A Modest Markov
Automata Tutorial, pages 250–276. Springer
International Publishing, Cham, 2019.

[6] A. Hartmanns, M. Klauck, D. Parker, T. Quatmann,
and E. Ruijters. The quantitative verification
benchmark set. In T. Vojnar and L. Zhang, editors,
Tools and Algorithms for the Construction and
Analysis of Systems - 25th International Conference,
TACAS 2019, Held as Part of the European Joint
Conferences on Theory and Practice of Software,
ETAPS 2019, Prague, Czech Republic, April 6-11,
2019, Proceedings, Part I, volume 11427 of Lecture
Notes in Computer Science, pages 344–350.
Springer, 2019.

[7] G. J. Holzmann. The model checker SPIN. IEEE
Transactions on Software Engineering,
23(5):279–295, 1997.

[8] A. Legay, B. Delahaye, and S. Bensalem. Statistical
model checking: An overview. In H. Barringer,
Y. Falcone, B. Finkbeiner, K. Havelund, I. Lee,
G. J. Pace, G. Rosu, O. Sokolsky, and N. Tillmann,
editors, Runtime Verification - First International
Conference, RV 2010, St. Julians, Malta, November
1-4, 2010. Proceedings, volume 6418 of Lecture Notes
in Computer Science, pages 122–135. Springer, 2010.

[9] S. Nanz and C. A. Furia. A comparative study of
programming languages in rosetta code. In
A. Bertolino, G. Canfora, and S. G. Elbaum,
editors, 37th IEEE/ACM International Conference
on Software Engineering, ICSE 2015, Florence,
Italy, May 16-24, 2015, Volume 1, pages 778–788.
IEEE Computer Society, 2015.

[10] T. Parr. StringTemplate.
https://www.stringtemplate.org/, June 2020.

[11] D. Štrekelj, H. Leventić, and I. Galić. Performance
Overhead of Haxe Programming Language for
Cross-Platform Game Development. International
journal of electrical and computer engineering
systems, 6(1):9–13, May 2015.

8

https://www.stringtemplate.org/

	Introduction
	Related work
	Methodology

	Background
	Implemented Algorithms
	Breadth First Search
	Monte Carlo Simulations

	Efficient Python Code
	profiling results on benchmarks
	bfs
	Monte Carlo Simulations

	implemented improvements
	new hashing function
	memoization

	Results
	new hashing function
	memoization
	new hash function and memoization programming

	Generalising Code Generation
	Templating engines
	Implemented generalisation
	C implementation

	Efficiency Across Languages
	conclusion
	References

