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Abstract

Classical optimisation problems such as the minimum-distance perfect matching
and travelling salesman problem can be impractical to solve to optimality for large
instances. Simple heuristics have shown to perform strikingly well, producing near-
optimal solutions with only a fraction of the time-complexity. Worst-case analysis of
these heuristics suggests a far poorer performance than what we see in practice and
so efforts to explain this behaviour have shifted to a probabilistic framework.

Withing a probabilistic framework, the instances of the two aforementioned optimi-
sation problems can be considered as a discrete metric space drawn from a particular
distribution. Much analysis has already been done for heuristics on instances drawn
from Euclidean space. While these instances have useful mathematical properties,
they are not always representative of realistic networks. Recent efforts to shift the
analysis to a more realistic distribution has seen results produced for random shortest
path metrics generated from dense graphs and a small subset of sparse graphs.

This thesis extends these finding to a wider class of sparse graphs by generalising
the results from Klootwijk and Manthey [9]. We consider the optimisation problems
on random shortest path metrics generated from sparse graphs with a fast growing
cut size. The performance of three simple heuristics is analysed: the greedy heuristic
for the minimum-distance perfect matching problem and the nearest neighbour and
insertion heuristic for the travelling salesman problem. Applied within a probabilistic
framework, it can be shown that all three heuristics achieve a constant expected
approximation ratio. This is indicative of the empirical performance of these heuristics.

Keywords: Random shortest paths, Random metrics, Approximation algorithms,
Combinatorial optimisation, Greedy heuristics.
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1 Introduction

Combinatorial optimisation problems have a wide range of industrial applications. The
minimum-distance perfect matching problem and travelling salesman problem (TSP), or
variations of these problems, are useful for many problems from scheduling to logistics.
For large scale instances these problems can often not be solved to optimality within a
reasonable amount of time and resources. Instead, approximation algorithms are used
which can compute near-optimal (or approximate) solutions with a significantly lower
time complexity. Heuristic algorithms are one such class of approximation algorithms
which, despite having a very poor worst-case performance, often perform extremely well
in practice.

Heuristic algorithms for the TSP and minimum-distance perfect matching problem have
well established results for their worst case performance. However, these results do not
match the performance that we observe in practice. In order to obtain a theoretical un-
derstanding of these empirical observations, recent analysis has been done within a prob-
abilistic framework. One of the main challenges with this approach has been choosing a
probability distribution on the set of possible instances on which to model and analyse
the problem. Earlier research started by using simple ‘well-behaved’ distributions as these
were more tractable, but they are often not very representative of real instances. For
example, instances embedded in Euclidean space have been extensively analysed. They
offer a convenient mathematical structure which can be exploited to analyse the problem.
However, many practical instances, like travelling times between cities, are metric but not
Euclidean. Therefore, it is interesting to broaden the scope of the underlying models used
to analyse heuristic algorithms.

The performance of an approximation algorithm can be quantified by its approximation
ratio: the ratio of the value of the approximate solution produced by the algorithm to
the value of the optimal solution. As mentioned before, finding a lower bound for the
approximation ratio is not very indicative of an algorithm’s performance in practice. In-
stead, we analyse the algorithm in a probabilistic framework to determine the expected
approximation ratio. For generality, we consider the algorithm applied to a distribution of
graphs of any arbitrary size. Thus, rather than finding a specific value, we determine the
order (time complexity) of the expected approximation ratio. This gives us an indication
of how well the approximation algorithm scales.

Related Work. In the last few years, there have been several papers using random
shortest path metrics as the underlying model for analysing heuristic algorithms. A random
shortest path metric is constructed as follows: given an undirected graph with edge weights
drawn independently at random, we generate a new graph where the distance between any
two vertices is defined as the total weight of the shortest path between those two vertices
with respect to the original graph. This metric, originally proposed by Karp and Steele [8],
has been utilised by Bringmann et al. [5] and Klootwijk et al. [10] to obtain results for
several underlying graph classes. Klootwijk and Manthey [9] extended these results to
random shortest path metrics generated from sparse graphs, specifically, square grid graphs.
While the approach of using sparse graphs provides a more realistic underlying model, it
can be made more applicable by generalising the ideas beyond the rather restrictive scope
of square grid graphs.
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Main Result. By employing the same methods as Klootwijk and Manthey [9], we extend
their results for three greedy-like heuristics. These heuristics are the greedy heuristic for
the minimum-distance perfect matching problem and the nearest neighbour and insertion
heuristics for the travelling salesman problem. We show that all three achieve a constant
expected approximation ratio on instances drawn from a random shortest path metric
generated from sparse graphs with a fast growing cut size (see Definition 1). Thus our
results apply to a much broader subset of sparse graphs as the underlying model.

2 Notation and Model

We start by outlining the notation that we use throughout this thesis. We write [n] as a
shorthand notation for {1, 2, ..., n}. We write exp(·) to denote the exponential function and
Exp(λ) to denote the exponential distribution with parameter λ. For a random variable
X distributed according to a probability distribution P we use X ∼ P . We write X ∼∑n

i=1 Exp(λi) if X is the sum of n independent exponentially distributed random variables
having parameters λ1, . . . , λn, for this distribution we have that E[X] =

∑n
i=1

1
λi
. We

indicate that a random variable X1 is stochastically dominated by a random variable X2

by writing X1 - X2, (this means that F1(x) ≥ F2(x) for all x, where Fi is the cumulative
distribution function of Xi). Finally, we remind the reader that f(x) = O (g(x)) means
that there exists positive constants x0 and c such that |f(x)| ≤ cg(x) for all x ≥ x0. Note
that while O(·) is really a set we adopt the convention of using ‘=’ to denote set inclusion
when used in this context.

To construct our random shortest path metric we consider simple connected undirected
graphs G = (V,E). Edge weights w(·) are drawn independently at random from the
exponential distribution with parameter 1. The size of the graph is denoted by n = |V |.
The shortest path distance function d : V × V → R≥0 maps each pair of vertices u, v ∈ V
to the total weight of the edges in the lightest u, v-path in G (w.r.t. to the random weights
w(·)). It follows immediately that d(v, v) = 0 for all v ∈ V , d(u, v) = d(v, u) for all
u, v ∈ V , and d(u, v) ≤ d(u, s) + d(s, v) for all u, s, v ∈ V i.e. d(·) is a metric. We consider
the distance function d(·) as the random shortest path metric generated from G.

Furthermore, we define ∆max := maxu,v d(u, v) as the diameter of the random metric. We
define the ∆-ball around a vertex v as B∆(v) := {u ∈ V | d(u, v) ≤ ∆}, i.e. the set
of vertices within distance ∆ of v. We denote the distance from a vertex v to the kth
closest vertex from it (including v itself) as τk(v) := min{∆ | |B∆(v)| ≥ k}. It follows that
Bτk(v)(v) denotes the set of the k closest vertices to v including v itself. Observe that by
these definitions we have that τ1(v) = 0 and |B0(v)| = 1. For our analysis we are interested
in the cut size of a subset of vertices. We denote the cut size of the ball containing the k
closest vertices of v by χk(v) := |δ(Bτk(v)(v))| where δ(U) := {{u, v} ∈ E | u ∈ U, v 6∈ U}
denotes the cut induced by a U ⊂ V .

Our analysis if performed for sparse graphs with a fast growing cut size. A family of graphs
is sparse if |E| = Θ(|V |) = Θ(n), that is, as n grows the average degree of its vertices is
bounded by some constant. We define what we mean by a fast growing cut size as follows:

3



Definition 1. A family of sparse graphs is said to have a fast growing cut size if there
exists constants α > 0, ε ∈ (0, 1) and γ ∈ (0, 1/2] such that for any size n and U ⊂ V

|δ(U)| ≥ α|U |ε if |U | ≤ γn.

We also assume that n > 1/γ and often use β := 1 − ε ∈ (0, 1) instead of writing out
1− ε. Naturally, this definition constrains the type of sparse graphs that we can analyse.
However, choosing this constraint allows us to utilise the techniques used by Klootwijk and
Manthey [9] for our analysis in order to obtain useful results. With some consideration
it can be seen that this property holds for a wide range of classes of sparse graphs. In
particular several types of sparse graphs that may be found in real world situations should
satisfy the property (at least with high probability). To illustrate this, the following lemma
shows that d-dimensional grid graphs satisfy the property given in Definition 1.

Lemma 2. The family of d-dimensional grid graphs has a fast growing cut size for any
integer d > 1.

Proof. The grid graph is the graph on [k]d in which x = (xi)
d
1 is joined to y = (yi)

d
1 if for

some i we have |xi − yi| = 1 and xj = yj for all j 6= i. Observe that this graph has n = kd

vertices. Bollabás and Leader [3, Thm. 3] proved that for any U ⊂ [k]d with |U | ≤ n/2 we
have

|δ(U)| ≥ min
{
rn

1
r
− 1
d |U |1−

1
r : r = 1, . . . , d

}
.

We may bound this result by exploiting that |U | ≤ n/2:

|δ(U)| ≥ min
r∈[d]

{
rn

1
r
− 1
d |U |1−

1
r

}
≥ min

r∈[d]

{
r(2|U |)

1
r
− 1
d |U |1−

1
r

}
= min

r∈[d]

{
r2

1
r
− 1
d

}
|U |1−

1
d = 21− 1

d · |U |1−
1
d

From the last line we get that a d-dimensional grid graph must have a fast growing cut
size as given by Definition 1 with α = 2(1−1/d), ε = 1− 1/d and γ = 1/2.

Lattice graphs and sparse random geometric graphs, amongst many others, also have a
fast growing cut size (at least with high probability). Throughout this thesis we apply our
analysis to graphs that satisfy Definition 1 as underlying graphs for the distance metric.

3 Structural Properties

Our probabilistic analysis of the three greedy-like heuristics is based on the structural
properties that we provide in this section. The first three lemmas are known results.
These are used for the technical analysis as well as to bound the values of the optimal
solution: this is necessary to be able to say something about the expected approximation
ratio. The latter results are derived specifically for sparse graphs with a fast growing cut
size as given by Definition 1.

4



Technical Lemma. The following tail bound for the sum of exponential variables is
used frequently.

Lemma 3 ( [7, Thm. 5.1(i,iii)]). Let X ∼
∑m

i=1 Exp(ai). Let µ = E[X] =
∑m

i=1 1/ai and
a∗ = mini ai. Then

P (X ≥ λµ) ≤
{
λ−1 exp (−a∗µ (λ− 1− ln(λ))) for any λ ≥ 1,
exp (−a∗µ (λ− 1− ln(λ))) for any λ ≤ 1.

Bounding the Optimal Solution for Sparse Graphs. In order to obtain an ap-
proximation ratio we need to establish a bound on the optimal solution for the minimum
distance perfect matching problem and the travelling salesman problem. The following
results hold for any arbitrary sparse graph G.

Lemma 4 ( [9, Lem. 6]). Let Sm denote the sum of the m lightest edge weights in G. Then

P (Sm ≤ cn) ≤ exp

(
m

(
2 + ln

(
c|E|n
m2

)))
.

Lemma 5 ( [9, Lem. 7]). Let Sm denote the sum of the m lightest edge weights in G. Then
we have TSP ≥ MM ≥ Sn/2, where TSP and MM are the total distance of a shortest TSP
tour and a minimum-distance perfect matching, respectively.

To make this thesis more self-contained we provide the proofs of Lemma 4 and 5 by
Klootwijk and Manthey [9] as an Appendix.

Generalised Random Growth Process. We work with the random shortest path
metric generated from a graph G on n vertices with a fast growing cut size. To prove our
results for sparse random shortest path metrics it is important to analyse the distribution
of τk(v). This distribution depends heavily on the exact position of v within G. Given the
generality of G we do not have sufficient information to find an exact distribution of τk(v).
Instead we use a stochastic upper bound to analyse the distribution which we derive from
Definition 1. The following corollary establishes this result.

Lemma 6. For any fixed v ∈ V and any k ≤ γn we have

τk(v) -
k−1∑
m=1

Exp(αmε).

Proof. The values of τk(v) are generated by the following a birth process (which has already
been analysed by several others [5, 6, 9, 10]). By definition for k = 1 we have τk(v) =
0 and also

∑k−1
m=1 Exp(αmε) = 0. For k ≥ 2, we can determine τk(v) inductively by

considering the outgoing edges from the ball Bτk−1(v)(v). These are all the edges (u, x)
with u ∈ Bτk−1(v)(v) and x 6∈ Bτk−1(v)(v), and they are conditioned to have a weight
w(u, x) greater than τk−1(v)− d(v, u) (otherwise we have that w(u, x) + d(v, u) 6> τk−1(v)
which implies x ∈ Bτk−1(v)(v)). By definition we have χk−1(v) such edges. It follows from
the memorylessness property of the exponential distribution that τk(v) − τk−1(v) is the
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minimum of χk−1(v) exponential random variables (with parameter 1). This implies that
τk(v)− τk−1(v) ∼ Exp(χk−1(v)). By induction it follows that

τk(v) ∼
k−1∑
m=1

Exp(χm(v)).

It is rather complicated to work directly with χk−1(v) since it is a stochastic variable and
depends on the choice of v. For this reason we only consider sparse graphs with a fast
growing cut size, as given by Definition 1, as this allows us to bound χm(v) ≥ αmε for all
m ≤ γn. The result follows by stochastic dominance.

This stochastic upper bound is necessary to determine a bound on the cumulative distri-
bution functions of τk(v) and |B∆(v)|. These bounds are derived in the following lemma
and corollary and are the foundation for the clustering result of the next section. All the
methods used in this section closely follow the techniques used by Klootwijk and Man-
they [9].

Lemma 7. For any ∆ > 0, v ∈ V , and k ∈ [n] such that k ≤ min{γn, (αβ∆)1/β + 1}, we
have

P(τk(v) ≤ ∆) ≥ 1− (k − 1)β

αβ∆
exp

(
−k

β − 1

β

(
αβ∆

(k − 1)β
− 1− ln

(
αβ∆

(k − 1)β

)))
.

Proof. From Lemma 6 we can see that

P (τk(v) ≤ ∆) ≥ P

(
k−1∑
m=1

Exp(αmε) ≤ ∆

)
= 1− P

(
k−1∑
m=1

Exp(αmε) ≥ ∆

)
.

Next, we want to apply the result of Lemma 3 for λ ≥ 1. For this purpose, set

µ := E

[
k−1∑
m=1

Exp(αmε)

]
=

k−1∑
m=1

1

αmε
and λ :=

∆

µ
,

We can bound µ from above by considering it as a Riemann sum:

k−1∑
m=1

1

αmε
≤
∫ k−1

0

1

α
x−εdx =

1

α(1− ε)
x1−ε

∣∣∣∣k−1

0

=
(k − 1)(1−ε)

α(1− ε)
.

Taking that β := 1− ε and shifting the bounds of the integral to also bound µ from below,
we get that

kβ − 1

αβ
≤ µ ≤ (k − 1)β

αβ
and λ =

∆

µ
≥ αβ∆

(k − 1)β
. (1)

Observe that for k ≤ (αβ∆)1/β + 1 we have λ ≥ 1. Lemma 3 now yields

1− P

(
k−1∑
m=1

Exp(αmε) ≥ ∆

)
≥ 1− λ−1 exp (−αµ(λ− 1− ln(λ))) .

It can now be seen that this final expression is increasing in both µ and λ. Therefore, we
can apply the appropriate inequalities from Equation (1) to obtain the desired result.
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Corollary 8. Let n be sufficiently large. There exists a constant c1 such that for any
∆ > 0 and v ∈ V we have

P
(
|B∆(v)| < min

{
γ(αβ∆)1/β, γn

})
≤ c1

∆1/β
.

Proof. First we observe that |B∆(v)| ≥ k if and only if τk(v) ≤ ∆. Let s∆ := min
{
γ(αβ∆)1/β, γn

}
and consider n to be large: nβ ≥ γ−β−β

1−γβ is sufficient (this also implies that nβ > γ−β).
Using Lemma 7 with k = s∆ we obtain

P (|B∆(v)| < s∆) ≤ (s∆ − 1)β

αβ∆
exp

(
−
sβ∆ − 1

β

(
αβ∆

(s∆ − 1)β
− 1− ln

(
αβ∆

(s∆ − 1)β

)))
.

We need to show that there exists a constant c1 such that for any ∆ > 0 we have

∆1/β(s∆ − 1)β

αβ∆
exp

(
−
sβ∆ − 1

β

(
αβ∆

(s∆ − 1)β
− 1− ln

(
αβ∆

(s∆ − 1)β

)))
≤ c1.

To do this we first consider the case nβ ≥ αβ∆. In this case we have s∆ = γ(αβ∆)1/β .
Recall from the proof of Lemma 7 that the left hand side in the expression above can be
written in terms of λ and µ as

f(∆) := λ−1∆1/β exp (−αµ(λ− 1− ln(λ))) ,

which is decreasing in λ and in µ for λ > 1. This allows us to use the inequality,

λ =
αβ∆

(s∆ − 1)β
>
αβ∆

sβ∆
=

1

γβ
> 1,

to bound f(∆) as follows

f(∆) ≤ γβ∆1/β exp

(
−γ

βαβ∆− 1

β

(
1

γβ
− 1− ln

(
1

γβ

)))
≤ c1.

Since γ−β > 1 the term (γ−β − 1 − ln(γ−β)) is just some positive constant, so we can
rewrite this inequality as f(∆) ≤ p∆1/βe−q∆ for some positive nonzero constants p and q.
It can easily be verified that this function has a global maximum for ∆ > 0. Let c1 denote
this maximum value. Note that c1 depends on α, β and γ but not on n, ∆ or v. The proof
for the second case nβ < αβ∆ is slightly more involved. In this case we have s∆ = γn. To
simplify some of the computations in this proof let

an :=
λ

∆
=

αβ

(γn− 1)β
and bn := αµ =

(γn)β − 1

β
.

Observe that these are constants with respect to ∆ (but may vary with n) and that both
are positive. In terms of this new notation our task is to show that

g(∆, n) := a−1
n ∆1/β−1 exp(−bn (an∆− 1− ln(an∆))) ≤ c1.

We can do this by showing that g(∆, n) ≤ g(n
β

αβ , n) ≤ c1 for all ∆ > nβ

αβ . In order to do so
we compute the partial derivative of g with respect to ∆ and show that it is nonpositive
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for all ∆ > nβ

αβ . The partial derivative is given by

∂g(∆, n)

∂∆
=

∂

∂∆

(
a−1
n ∆1/β−1e−bn(an∆−1−ln(an∆)

)
= a−1

n (1/β − 1)∆1/β−2e−bn(an∆−1−ln(an∆)

+ a−1
n ∆1/β−1 (−bn (an − 1/∆)) e−bn(an∆−1−ln(an∆)

= a−1
n ∆1/β−2 (1/β − 1− bn(an∆− 1)) e−bn(an∆−1−ln(an∆))

Notice that the terms a−1
n ∆1/β−2 and ex are both positive (for any x), so it remains to

show that the term 1/β − 1 − bn(an∆ − 1) is nonpositive for ∆ > nβ

αβ . To do this we use

the conditions ∆ > nβ

αβ and nβ ≥ γ−β−β
1−γβ .

1/β − 1− bn(an∆− 1) =
1− β
β
− (γn)β − 1

β

(
αβ

(γn− 1)β
∆− 1

)
=

1− β
β

+
(γn)β − 1

β
−
α
(
(γn)β − 1

)
(γn− 1)β

∆

=
(γn)β − β

β
− (γn)β − 1

βγβ
· αβγβ

(γn− 1)β
∆

≤ (γn)β − β
β

− (γn)β − 1

βγβ

=
(γn)β − β

β
− nβ − γ−β

β

=
(γβ − 1)nβ + γ−β − β

β

≤ (β − γ−β) + γ−β − β
β

= 0.

The first inequality sign in the equation above follow from considering that

∆ >
nβ

αβ
>

(γn− 1)β

αβγβ
=⇒ − αβγβ

(γn− 1)β
∆ ≤ −1.

Similarly, the second inequality sign follows from

nβ ≥ γ−β − β
1− γβ

⇐⇒ (γβ − 1)nβ ≤ (β − γ−β).

This completes the argument that the partial derivative of g(∆, n) with respect to ∆ is
nonpositive. We can deduce from this that

g
(
∆, n

)
≤ g
( nβ
αβ

, n
)

= f
( nβ
αβ

)
for all ∆ >

nβ

αβ
.

Now, it can be easily established that the bounding function has a global maximum. This
follows immediately from the first part of the proof by noticing that we can write it in
terms of f . To see why this is true, recall that we defined f and g in the same way but
with different values for s∆. However, since we set ∆ = nβ

αβ (in the bounding function)
we get that s∆ = γ(αβ∆)1/β in the first case is the same as s∆ = γn in the second case.
Therefore, the same function is produced which is bounded by the constant c1.
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Clustering. We can partition the vertices of a sparse random shortest path metric into
clusters of any size and use the previous lemmas to determine a probabilistic bound for
the number of these clusters as a function of their diameter. The following theorem based
on the ideas of Bringmann et al. [5] establishes this result.

Theorem 9. Let G be a finite sparse graph on n vertices, consider a sparse random shortest
path metric generated using this graph, and let ∆ > 0. There exists a partition of vertices
into clusters, each of diameter at most 4∆, such that the expected number of clusters needed
is bounded from above by O(1 + n/∆1/β).

Proof. Let n be sufficiently large and let s∆ := min
{
γ(αβ∆)1/β, γn

}
, as in Corollary

8. We call vertex v ∆-dense if |B∆(v)| ≥ s∆ and ∆-sparse otherwise. Let the random
variable Xv = 1 if v is ∆-sparse and be zero otherwise. Using Corollary 8 we can bound
the expected number of ∆-sparse vertices by

E
[∑
v∈V

Xv

]
=
∑
v∈V

P (|B∆(v)| < s∆) ≤
∑
v∈V

c1

∆1/β
=

c1n

∆1/β
= O(n/∆1/β).

We put each ∆-sparse vertex in its own cluster (of size 1 and diameter 0 ≤ 4∆).

In order to group the ∆-dense vertices into clusters we consider an auxiliary graph H
consisting of only the ∆-dense vertices. Two vertices u and v are connected in H by an
edge if and only if B∆(u) ∩ B∆(v) 6= ∅ in G. We construct our clusters by starting with
an arbitrary maximal independent set S in H. By construction each vertex w ∈ S is not
connected to any other vertex t ∈ S\{w} in H so we have B∆(w) ∩ B∆(t) = ∅. For each
vertex w in S there are at least s∆ vertices that belong to B∆(w) so we can deduce that
|S| ≤ n/s∆. For each s ∈ S we can construct initial non-intersecting clusters equal to
B∆(s) of diameter at most 2∆.

For any ∆-dense vertex v not yet belonging to any cluster there must be a w ∈ S such that
A := B∆(w) ∩ B∆(v) 6= ∅ by the maximality of S (otherwise v would be in S). We now
add v to the initial cluster corresponding to w. Observe that for any x ∈ A we have that
d(v, w) ≤ d(v, x) + d(x,w) ≤ ∆ + ∆ = 2∆. Therefore, after repeating this procedure for
all vertices not belonging to any initial cluster the diameter of each cluster is extended to
at most 4∆. This follows from considering any two vertices u, v in a cluster that initially
corresponded to w ∈ S, then we have d(u, v) ≤ d(u,w) + d(w, v) ≤ 2∆ + 2∆ = 4∆.

This procedure yields in expectation at most O(n/∆1/β) clusters containing one (∆-sparse)
vertex each, and at most n/s∆ clusters containing at least s∆ (∆-dense) vertices each, all
with diameter at most 4∆. We can write that

n

s∆
=

{
γ−1(αβ)−1/β · n/∆1/β if αβ∆β ≤ n,
γ−1 if αβ∆β ≥ n

≤ max
{
γ−1(αβ)−1/β, γ−1

}(
1 + n/∆1/β

)
= O

(
1 + n/∆1/β

)
.

Thus, the expected number of clusters needed is bounded from above by O(n/∆1/β) +
O(1 + n/∆1/β). The result follows immediately.
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Bound for the Diameter. Theorem 9 provides us with a useful bound on the number
of cluster with diameter at most 4∆, however for large ∆ the tightest bound this yields is
1 since there is always at least one cluster. For the proofs of the next section we require
a tighter bound for ∆ > O(n). We address this by considering that the distance between
any two vertices is at most the diameter of the metric: ∆max. The following Lemma shows
that ∆max ≤ O(n) with high probability.

Lemma 10. Let x ≥ 6n. Then we have P(∆max ≥ x) ≤ ne−x/2.

Proof. We first show that P(τn(v) ≥ x) ≤ e−x/2. In the proof of Lemma 6 we established
that for a fixed arbitrary v ∈ V we have

τk(v) ∼
k−1∑
m=1

Exp(χm(v)).

By connectedness of the underlying sparse graph we have that χk(v) ≥ 1 for all k. It
follows that

τn(v) -
n−1∑
m=1

Exp(1), and thus P (τn(v) ≥ x) ≤ P

(
n−1∑
m=1

Exp(1) ≥ x

)
.

We again use Lemma 3 to bound this probability. First we set

µ := E

[
n−1∑
m=1

Exp(1)

]
= n− 1 ≤ n and thus λ =

x

µ
≥ x

n
≥ 6.

Lemma 3 now yields

P (τn(v) ≥ x) ≤ λ−1e−µ(λ−1−ln(λ)) ≤ e−µ(λ/2) = e−x/2,

where we use that λ − 1 − ln(λ) ≥ λ/2 (which is true for all λ ≥ 5.36) for the second
inequality. The final result follows by using Boole’s inequality:

P (∆max ≥ x) = P
(

max
v∈V
{τn(v)} ≥ x

)
= P

(⋃
v∈V

τn(v) ≥ x

)
≤
∑
v∈V

P(τn(v) ≥ x) ≤
∑
v∈V

e−x/2 = ne−x/2

Notice that this proof works for any connected graph not just graphs with a fast growing
cut size. It is possible to obtain a slightly stronger version of this result by using the
property given by Definition 1 which is stronger than connectedness (for |U | ≤ γn).

4 Analysis of Heuristics

In this section we determine a bound for the expected approximation ratio of the greedy
heuristic for the minimum-distance perfect matching problem as well as the nearest neigh-
bour heuristic and insertion heuristic for the TSP.
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Greedy Heuristic for Minimum-Distance Perfect Matching. The minimum-distance
perfect matching problem tends to be slightly easier to analyse than other problems, like
the TSP, and is usually considered first. This optimisation problem is not too ‘difficult’
as it can be solved to optimality in polynomial time: O(n3). However, it remains useful
to analyse heuristic algorithms as they provide an attractive alternative for very large in-
stances of the problem. It also forms a stepping stone for analysing heuristic algorithms
for other problems, such as for the TSP.

Arguably the simplest heuristic which performs remarkably well in practice is the greedy
heuristic. It starts with a set of unmatched vertices and adds the pair of vertices in the
metric which have the minimal distance. This pair is then removed from the set and the
next closest pair of vertices is considered. The process is repeated until all vertices have
been matched. Notice that this requires n to be even, so we quietly assume that this is
the case whenever we consider the minimum-distance perfect matching problem.

Let GR denote the total distance of the matching produced by the greedy heuristic, and
let MM denote the total distance of an optimal matching. To compare the performance
of the algorithm with the optimal solution we consider the approximation ratio GR

MM ≥
1. The worst-case approximation ratio for this heuristic on metric instances is known
to be O(nlog2(3/2)) [11]. For a variety of metrics it has been shown that the expected
approximation ratio is O(1). These include random Euclidean instances [1], and random
shortest path metrics generated from complete graphs, Erdős–Rényi random graphs [5,10]
and (sparse) square grid graphs [9]. We generalise the last of these findings to show that
a similar result holds for random shortest path metrics generated from sparse graphs with
a fast growing cut size.

Theorem 11. E[GR] = O(n).

Proof. We partition the run of the greedy heuristic into phases, starting from phase 0.
During phase i pairs of vertices {u, v} are added to the matching which satisfy d(u, v) ∈
(4i, 4(i+ 1)]. Let Xi denote the number of vertex pairs that are added during phase i. It
will also become useful to consider the number of unmatched vertex pairs at the start of
phase i which is given by Yi :=

∑∞
j=iXj . This is the number of vertex pairs {u, v} in the

final greedy matching which satisfy d(u, v) > 4i. Observe that we always consider pairs
of vertices, so Y0 = n/2. By Theorem 9, we can cluster the vertices during phase i into
an expected number of O(1 + n/i1/β) clusters each of diameter at most 4i. Just before
the greedy heuristic adds the first vertex pair in phase i it must the case that each of
these clusters contains at most one unmatched vertex. Otherwise there exists a vertex pair
{u, v} within a cluster, but this pair would have been chosen by the greedy heuristic in the
previous phase since d(u, v) ≤ 4i. Therefore, the expected number of unmatched vertices
at the start of phase i is bounded from above: E[Yi] ≤ O(1 + n/i1/β) for i > 0. For any
phase where 4i ≥ 6n, it follows from Lemma 10 that E[Yi] ≤ (n/2)·P(∆max ≥ 4i) ≤ n2e−2i.
We are now ready to sum over all phases. Since the distance between any vertex pair that
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is added in phase i is at most 4(i+ 1) we can bound E[GR] as follows:

E[GR] ≤
∞∑
i=0

4(i+ 1) · E[Xi]

=

∞∑
i=1

4i · E[Xi−1] =

∞∑
j=1

∞∑
i=j

4 · E[Xi−1] =

∞∑
i=1

4 · E[Yi−1]

= 4 · E[Y0] +

3n/2∑
i=1

4 · E[Yi] +
∞∑

3n/2+1

4 · E[Yi]

≤ 2n+

3n/2∑
i=1

O
(

1 +
n

i1/β

)
+

∞∑
3n/2+1

4n2e−2(i−1).

Here, the second equality sign follows from Fubini’s theorem. Notice that the last sum-
mation term quickly converges by the ratio test and approaches 0 as n → ∞, hence it
becomes o(1). It remains to explicitly show that

3n/2∑
i=1

O
(

1 +
n

i1/β

)
= O(n).

By definition of the O-operator there exists constants c, n0 and i0 such that whenever
n ≥ n0 and i ≥ i0 we have

3n/2∑
i=1

O
(

1 +
n

i1/β

)
≤

3n/2∑
i=1

c
(

1 +
n

i1/β

)
We may assume without loss of generality that n0 = i0 = 1. The last term reduces to O(n)
as follows:

3n/2∑
i=1

c
(

1 +
n

i1/β

)
=

3

2
cn+ cn

3n/2∑
i=1

1

i1/β
=

5

2
cn+ cn

3n/2∑
i=2

1

i1/β

≤ 5

2
cn+

β

1− β

(
1−

(
3

2
n

)1−1/β
)
cn

≤ 5

2
cn+

β

1− β
cn =

(
5− 3β

2(1− β)
c

)
n = O(n)

Here, the first inequality sign follows by considering the summation as a Riemann sum
which is bounded by the integral∫ 3n/2

1

1

x1/β
dx =

βx−1/β+1

β − 1

∣∣∣∣3n/2
1

=
β

1− β

(
1−

(
3

2
n

)1−1/β
)
.

Notice that we use the condition that β ∈ (0, 1). Combining everything we get that
E[GR] = O(n) +O(n) + o(1) from which the result immediately follows.
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Theorem 12. For random shortest path metrics generated from a finite sparse graph with
a fast growing cut size we have E

[
GR
MM

]
= O(1).

Proof. Let c > 0 be a sufficiently small constant. By conditioning the expectation on
whether MM ≥ cn or MM < cn we can use the result from Theorem 11 together with
the worst-case approximation ratio of the greedy heuristic on metric instances to get the
desired result. The expected approximation ratio for sparse graphs with a fast growing cut
size is given by

E
[
GR

MM

]
= P(MM < cn) · E

[
GR

MM

∣∣∣MM < cn

]
+ P(MM ≥ cn) · E

[
GR

MM

∣∣∣MM ≥ cn
]

≤ P(MM < cn) · E
[
GR

MM

∣∣∣MM < cn

]
+ P(MM ≥ cn) · E

[
GR

cn

∣∣∣MM ≥ cn
]

≤ P(MM < cn) · E
[
GR

MM

∣∣∣MM < cn

]
+ E

[
GR

cn

]
. (2)

Similarly to the first step, the last inequality also follows from conditioning:

E
[
GR

cn

]
= P(MM ≥ cn) · E

[
GR

cn

∣∣∣MM ≥ cn
]

+ P(MM ≤ cn) · E
[
GR

cn

∣∣∣MM ≤ cn
]
.

By combining Lemmas 4 and 5 we get that the first term in Equation (2) satisfies

P(MM ≤ cn) ≤ P
(
Sn/2 ≤ cn

)
≤ exp

(
n

2

(
2 + ln

(
4c|E|
n

)))
.

Since the worst-case approximation ratio of the greedy heuristic on metric instances is
O(nlog2(3/2)) [11], we can bound the second term in Equation (2):

E
[
GR

MM

∣∣∣MM < cn

]
≤ O(nlog2(3/2))

Finally from Theorem 11 it follows that the third term in Equation (2) is simply O(1).
Together this yields

E
[
GR

MM

]
≤ exp

(
n

(
1 +

1

2
ln

(
4c|E|
n

)))
·O
(
nlog2(3/2)

)
+O(1).

We can choose c sufficiently small to ensure 1 + (1/2) ln(4c|E|/n) < 0 (in particular c ∈
(0, n/(4e2|E|)), which is a finite nonempty interval since |E| = Θ(n)). Since we have that,
for growing n, e−pn → 0 much faster than nq →∞ for any positive constants p and q, the
product of the first two terms reduces to o(1). This completes the proof.

Nearest Neighbour Heuristic for TSP. The nearest neighbour heuristic for the TSP
is a greedy-like heuristics that can be analysed in a very similar way to the greedy heuristic
for the minimum-distance perfect matching problem. It works by starting with an arbitrary
vertex which it adds to the TSP tour. Form there it iteratively adds the closest unvisited
vertex until all vertices have been added to the tour, at which point the tour is closed by
going back to the starting vertex. For each successive pair of vertices {u, v} visited by
the tour the distance d(u, v) is added to the tour length. We use NN to denote the total
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tour length computed by the nearest neighbour heuristic and let TSP be the length of the
optimal tour.

For this heuristic it is known that the worst-case approximation ratio on metric instances is
O(ln(n)) [12]. For a variety of metrics it has been shown that the expected approximation
ratio is O(1). These include random Euclidean instances [2], and random shortest path
metrics generated from complete graphs, Erdős–Rényi random graphs [5,10] and (sparse)
square grid graphs [9]. We generalise the last of these findings to show that a similar result
holds for random shortest path metrics generated from sparse graphs with a fast growing
cut size.

Theorem 13. E[NN] = O(n).

Proof. We group vertex pairs {u, v} that are being added to the TSP tour by the nearest
neighbour heuristic according to their distance d(u, v). (Note that we avoid calling these
edges as they are not edges in the original sparse graph but ‘edges’ in the random metric).
Let group i contain the set of vertex pairs {u, v} that satisfy d(u, v) ∈ (4i, 4(i + 1)] and
let Xi denote the number of vertex pairs that are added to group i. We also consider the
number of vertex pairs {u, v} in the final tour which satisfy d(u, v) > 4i which is given by
Yi :=

∑∞
j=iXj . Observe that Y0 = n.

Consider that the run of the nearest neighbour heuristic is currently at some vertex u
and it adds a vertex v to the tour with d(u, v) ∈ (4i, 4(i + 1)]. By Theorem 9, we can
partition all vertices into clusters of diameter at most 4i. It must be the case that u ∈ Cj
and v ∈ Ck for some arbitrary clusters Cj 6= Ck of diameter 4i and that all the vertices
in Cj have already been visited by the tour (otherwise the tour would have added an
unvisited vertex from Cj instead). It follows that a vertex pair with distance exceeding 4i
will be added to the tour as many times as there are clusters of diameter at most 4i. By
Theorem 9, there are an expected number of O(1 + n/i1/β) such clusters. This yields that
E[Yi] ≤ O(1 + n/i1/β) for i > 0. For edges with distance 4i ≥ 6n, it follows from Lemma
10 that E[Yi] ≤ n · P(∆max ≥ 4i) ≤ n2e−2i. Notice that we have derived exactly the same
bounds as in the proof of Theorem 11. Therefore, we can use the same calculations to
arrive at E[NN] = O(n).

Theorem 14. For random shortest path metrics generated from a finite sparse graphs with
a fast growing cut size we have E

[
NN
TSP

]
= O(1).

Proof. The proof of this theorem is nearly identical to the proof of Theorem 12. The only
difference being that the worst-case approximation ratio of the nearest neighbour heuristic
on metric instances is O(ln(n)) [12]. Let c > 0 be a sufficiently small constant. Then the
approximation ratio of the nearest neighbour heuristic on random shortest path metrics
generated from a sparse graph with a fast growing cut size is

E
[
NN

TSP

]
≤ P (TSP < cn) ·O (ln(n)) + E

[
NN

cn

]
,

since the worst-case approximation ratio of the nearest neighbour heuristic on metric in-
stances is O(ln(n)). Combining Lemmas 4 and 5, the first term can be bounded from above
by exp(n(1 + 1

2 ln(c ·Θ(1)))) ·O(ln(n)) = o(1) since c is sufficiently small. By Theorem 13
the second term is O(1).
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Insertion Heuristics for TSP. The insertion heuristics for the TSP is another greedy-
like heuristics that can be analysed in a similar manner to the other two heuristics. The
heuristic works by starting with some optimal tour on a small subset of the vertices and
iteratively inserts a vertex which is not yet in the tour. The starting tour can be chosen
arbitrarily or according to some predefined rule. The inserted vertex is chosen according
to some rule which we denote R. To illustrate one such rule consider nearest insertion
which inserts the vertex whose minimal distance to a vertex already in the tour is minimal.
Random insertion, Farthest insertion and Cheapest insertion are other such rules. We use
INR to denote the total tour length computed by the insertion heuristic using rule R. Let
TSP be the length of the optimal tour.

For this heuristic it is known that the worst-case approximation ratio on metric instances is
O(ln(n)) [12]. For a variety of metrics it has been shown that the expected approximation
ratio is O(1). These include random shortest path metrics generated from complete graphs,
Erdős–Rényi random graphs [5,10] and (sparse) square grid graphs [9]. We generalise the
last of these findings to show that a similar result holds for random shortest path metrics
generated from sparse graphs with a fast growing cut size.

Theorem 15. E[INR] = O(n).

Proof. We group all the steps of the insertion heuristic according to the distance which
they add to the tour. Let group i contain the set of vertices whose addition to the tour
is in the range

(
8i, 8(i + 1)

]
and let Xi denote the number of vertices that are added to

group i. We also define Yi :=
∑∞

j=iXj . Observe that Y0 = n.

Consider that the insertion heuristic adds some vertex v to the tour whose contribution to
the tour length is in the range

(
8i, 8(i+1)

]
. By Theorem 9, we can partition all vertices into

clusters of diameter at most 4i. It must be the case that v is part of some arbitrary cluster
which contains no vertex that is already part of the tour, otherwise the contribution made
to the tour by adding v would be less than 8i. It follows that a vertex whose contribution
to the tour is in the range

(
8i, 8(i+1)

]
will be added as many times as there are clusters of

diameter at most 4i. By Theorem 9, there are an expected number of O(1 + n/i1/β) such
clusters. This yields that E[Yi] ≤ O(1 + n/i1/β) for i > 0. For vertices whose contribution
to the tour is 8i ≥ 6n, it follows from Lemma 10 that E[Yi] ≤ n · P(∆max ≥ 8i) ≤ n2e−4i.
We are now ready to sum over all groups. Since the additional contribution of any vertex
corresponding to group i is at most 8(i + 1) we can bound E[GR] as follows, where the
contribution of the initial tour is denoted as E[Tinit]:

E[INR] ≤ E[Tinit] +

∞∑
i=0

8(i+ 1) · E[Xi] = E[Tinit] +

∞∑
i=1

8 · E[Yi−1]

= E[Tinit] + 8 · E[Y0] +

3n/4∑
i=1

8 · E[Yi] +

∞∑
3n/4+1

8 · E[Yi]

≤ O(n) + 8n+

3n/4∑
i=1

O
(

1 +
n

i1/β

)
+

∞∑
3n/4+1

8n2e−4(i−1)

= O(n) +O(n) +O(n) + o(1) = O(n).

Here, we used Theorem 13 to bound the expected contribution of the initial tour by
E[Tinit] ≤ E[TSP] ≤ E[NN] = O(n). Notice that the order in which we add closer or
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farther vertices does not matter, consequently the proof is independent of the choice of
rule R. Some of the details of the proof are omitted as they closely resemble those of
Theorem 11.

Theorem 16. For random shortest path metrics generated from a finite sparse graph with
a fast growing cut size we have E

[
INR
TSP

]
= O(1).

Proof. We omit a detailed proof of this theorem. Since the worst-case approximation ratio
of the insertion heuristic on metric instances is also O(ln(n)) [12], the proof is mathemat-
ically identical to that of Theorem 14. The only difference would be that we replace NN
by INR and utilise Theorem 15 instead of Theorem 13.

5 Conclusion

As proposed by Klootwijk and Manthey [9] it is indeed possible to generalise the analyses
of greedy-like heuristics for minimum-distance perfect matching and the TSP on random
shortest path metrics. Utilising the same techniques we were able to generalise their result
for square grid graphs to the broader class of sparse graphs with a fast growing cut size. We
showed that three heuristics achieve a constant expected approximation ratio on metrics
generated from these graphs.

While the class of sparse graphs with a fast growing cut size is quite encompassing, there
are still classes of sparse graphs that do not satisfy this property. For example the family
of ‘line’ graphs: any d-dimensional grid graph that grows only along a single dimension as
n grows and therefore has ε = 0 by Definition 1. We believe that a similar result to the
one we have given should hold for all sparse graphs. Evidently, some of the techniques we
have used would fail if for example, we set ε = 0, so a new approach may be necessary
to show this. It remains an open question whether it is possible to extend our findings to
arbitrary sparse graphs.

All in all, the analysis done in this thesis contributes non-trivial results about the expected
performance of three heuristic algorithms. It takes us one step closer to consolidating em-
pirical observations of these heuristics with a rigorous mathematical understanding thereof.
Nevertheless, more research is valuable and necessary to obtain more profound theoretical
insights into the behaviour of heuristic algorithms.
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A Proof of Lemmas 4 and 5

The proofs of Lemma 4 and Lemma 5 by Klootwijk and Manthey [9] utilise four prior
results which we have also included in this section. The first corollary follows directly from
Lemma 3.

Corollary A.1. Let X ∼
∑m

i=1 Exp(ai). Let µ = E[X] =
∑m

i=1 1/ai and a∗ = mini ai.
For any x,

P (X ≤ x) ≤ exp (a∗µ (1 + ln(x/µ))) .

Proof. Let λ := x/µ. If λ ≤ 1, the result is a weaker version of Lemma 3. If λ > 1, then
1 + ln(x/µ) > 0 and hence P(X ≤ x) ≤ 1 < exp(a∗µ(1 + ln(x/µ))).

Lemma A.2 ( [4, Thm. 2(ii)]). Let X ∼
∑m

i=1 Exp(λi) and Y ∼
∑m

i=1 Exp(η). Then

X % Y if and only if
m∏
i=1

λi ≤ ηm.

Lemma A.3 ( [9, Lem. 4]). Let Sm denote the sum of the m lightest edge weights in G.
Then

m−1∑
i=0

Exp
(
e|E|
m

)
- Sm -

m−1∑
i=0

Exp
(
|E|
m

)
.

Proof. Let σk denote the kth lightest edge weight in G. Since all edge weights are indepen-
dent and standard exponentially distributed, we have σ1 = S1 ∼ Exp(|E|). Using the mem-
orylessness property of the exponential distribution, it follows that σ2 ∼ σ1 +Exp(|E|−1),
i.e., the second lightest edge weight is equal to the lightest edge weight plus the mini-
mum of |E| − 1 standard exponential distributed random variables. In general, we get
σk+1 ∼ σk + Exp(|E| − k). The definition Sm =

∑m
k=1 σk yields

Sm ∼
m−1∑
i=0

(m− i) · Exp (|E| − i) ∼
m−1∑
i=0

Exp
(
|E| − i
m− i

)
.

Now, the first stochastic dominance relation follows from Lemma A.2 by observing that

m−1∏
i=0

|E| − i
m− i

=
|E|!

m!(|E| −m)!
=

(
|E|
m

)
≤
(
e|E|
m

)m
,

where the inequality follows from applying the well-known inequality
(
n
k

)
≤ (en/k)k.

The second stochastic dominance relation follows by observing that |E| ≥ m, which implies
that (|E| − i)/(m− i) ≥ |E|/m for all i = 0, . . . ,m− 1.

Corollary A.4 ( [9, Cor. 5]). Let Sm denote the sum of the m lightest edge weights in G.
Then E[Sm] = Θ(m2/n).
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Proof. From Lemma A.3 we can immediately see that

E

[
m−1∑
i=0

Exp
(
e|E|
m

)]
≤ E [Sm] ≤ E

[
m−1∑
i=0

Exp
(
|E|
m

)]
.

The result follows by observing that

E

[
m−1∑
i=0

Exp
(
e|E|
m

)]
=

m2

e|E|
and E

[
m−1∑
i=0

Exp
(
|E|
m

)]
=
m2

|E|
,

and recalling that |E| = Θ(n) by our restrictions imposed on G.

We are now ready to give the proofs of Lemma 4 and Lemma 5 respectively.

Lemma 4 ( [9, Lem. 6]). Let Sm denote the sum of the m lightest edge weights in G. Then
we have

P (Sm ≤ cn) ≤ exp

(
m

(
2 + ln

(
c|E|n
m2

)))
.

Proof. First of all, Lemma A.3 yields

Sm %
m−1∑
i=0

Exp
(
e|E|
m

)
.

Now, we apply Corollary A.1 with µ = m2/e|E|, a∗ = e|E|/m, and x = cn to obtain

P (Sm ≤ cn) ≤ P

(
m−1∑
i=0

Exp
(
e|E|
m

)
≤ cn

)
≤ exp

(
m

(
1 + ln

(
ce|E|n
m2

)))
.

The result follows immediately.

Lemma 5 ( [9, Lem. 7]). Let Sm denote the sum of the m lightest edge weights in G. Then
we have TSP ≥ MM ≥ Sn/2, where TSP and MM are the total distance of a shortest TSP
tour and a minimum-distance perfect matching, respectively.

Proof. The first inequality is trivial. For the second one, consider a minimum-distance
perfect matching in G, and take the union of the shortest paths between each pair of
matched vertices. This union H must contain at least n/2 different edges of G, since
H is a forest with n vertices, all of which are non-isolated in H. These n/2 different
edges together have a weight of at least Sn/2 and at most MM. So, the second inequality
follows.
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