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Abstract

In this study, the magnetic behaviour of superparamagnetic nanoparticles in various

environments is modelled, which have their clinical significance in e.g. the sentinel node

biopsy. This was done using the Legendre expansion of two Fokker-Plank equations,

one for Brownian and one for Néel relaxation. The voltage as measured with SPaQ

can be approximated with the combined result of these. Based on verification with

experimental data, it can be said that this model accurately reflects the behavior of

the tested particles, with the exception of a flower-shaped particle.
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Chapter 1

Introduction

Figure 1.1: The Sentimag®

probe

Superparamagnetic iron-oxide nanoparticles are

currently used experimentally in biomedical ap-

plications as a tracer in novel magnetic detec-

tion & imaging techniques, e.g. drug deliv-

ery, magnetic particle spectroscopy (MPS), mag-

netic particle imaging (MPI), magnetic resonance

imaging (MRI), magnetic fluid hyperthermia, and

sentinel lymph node biopsy (SLNB). SLNB is

a surgical protocol to personalize cancer treat-

ment that establishes if the tumour has metasta-

sized trough finding, removing and then analysing

the sentinel nodes [1]. Traditionally, a radioac-

tive tracer used for SLNB has drawbacks such as a limited availability, a short

shelf life and infrastructural problems [2]. Magnetic nanoparticles do not have

these drawbacks, instead they are more beneficial for patient and physicians.
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Figure 1.2: Magnetic response,

based on [3], not to

scale.

A medical device for detection of nanoparticles in

clinical setting is currently available in the form of

the Sentimag® magnetic probe (Endomag, seen

in Figure 1.1). This probe is however, not only

sensitive to the nanoparticles, but also the human

body, since it uses linear detection, which can limit

its performance [4].

In magnetic SLNB, superparamagnetic particles

are injected in or near the tumour and drained

trough the lymphatic system to the near lymph

nodes (LN) where they will accumulate [5]. The

LN near to the primary tumour is (functionally)
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labeled the sentinel node, and can be detected by a magnetic probe due to accumula-

tion of the nanoparticles. Research has shown that the performance of these tracers

is comparable to the radioactive tracers [6] and that the magnetic SNLB procedure

can be performed easily and safely [7]. However, even though there is a vivid field

developing new nanoparticles, the clinical applications are limited by sheer number of

specialized nanoparticles available for clinical use. Further development would greatly

be supported by better understanding of the behaviour of nanoparticles in a biological

environment. Therefore, the aim of this undergraduate work is as follows:

Modelling the magnetic behaviour of superparamagnetic nanoparticles in various envi-

ronments

Various models are available for characterization of nanoparticles and their response to

applied magnetic field, e.g. effective relaxation time [8] and the Langevin [9]. However,

these models do not predict the nanoparticle behaviour accurately, especially in the

case were the two relaxation mechanisms (Brownian and Néel) both play a significant

role. A better approach of modelling the particles should result in an accurate vali-

dation and prediction of nanoparticle behaviour. Furthermore, this approach is also

useful for designing nanoparticles for a specific goal (e.g. imaging, cancer therapy, hy-

perthermia and targeted drug or gene delivery). The models developed as a part of this

work are validated with four nanoparticle (Resovist, Sienna, Magtrace, Synomag) in

multiple environments (viscosity and particle densities). The experimental data used

for the validation is acquired trough a LangevinSweep using the superparamagnetic

quantifier (SPaQ) [10].
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Chapter 2

Theory

Magnetic materials, regardless the applications, can categorized trough their magnetic

behaviour (M) in response to an applied magnetic field (AMF) (B). The magnetic

flux density (B, [T]) of the AMF can be expressed through the magnetic field vector

(H, [A/m]) and the magnetization vector (M , [A/m]) [11]:

B = µH = µ0(1 + χ)H = µ0(H +M) (2.1)

with µ the magnetic permeability of the material [N/A2], µ0 magnetic permeability of

a vacuum (4π ·10-7 N/A2), and χ the magnetic susceptibility [dimensionless]. The mag-

netic susceptibility measures the ratio of magnetized material in an AMF, an intrinsic

property of the material and is here to be assumed steady-state. The magnetization

vector indicates the magnetic dipole moment per volume and represents the interac-

tion of the applied field on the material [12]. This response is material dependent,

and as such categorizes magnetic materials on their response in certain categories:

ferro-, dia-, para- and superparamagnetic [13]. Figure 2.1 illustrates the magnetic be-

haviour van these materials. Only ferromagnetic materials have the property to hold

their magnetization (well) after removal of the applied field, which makes it possible

to create permanent magnets out of ferromagnets. It can also be observed that dia-

magnetic and paramagnetic materials respond linearly to changes in the applied field,

this means their magnetic susceptibility stays constant for any AMF. Additionally, the

susceptibility of ferromagnetic and superparamagnetic materials dependent strongly

on the applied field [13]. For superparamagnetic materials, the steepness at zero field

originates in its sufficiently small particle size, the magnetic energy is smaller than the

thermal fluctuations [14]. Since human tissue is slightly diamagnetic (and therefore ex-

hibits a linear response to an AMF), the materials with non-linear magnetic response

can easily be detected inside human tissue [15]. This is what is used in the SPaQ

(SuperParamagnetic Quantifier) magnetometer.

The susceptibility of materials in a time-varying magnetic field actually also dependents

on the frequency of this very field [16]. With the frequency at a certain level, particles
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will not have enough time to keep up and lag behind due to the finite nature of their

relaxation times. Consequently, the magnetization follows the exponentially decay in

frequency with relaxation time τeff [s] and the magnetic susceptibility follows Debye’s

relaxation law [17], [18]:

χ(ω) = χ0
1

1 + iωτeff

(2.2)

with ω the angular frequency of the AMF and χ0 the static susceptibility.

This relaxation time, τeff, is the result of two separate relaxation mechanisms: Brownian

en Néel [16]. The key difference between these two is that Brownian relaxation describes

the rotation of the particle itself and Néel relaxation describes the rotation of the

magnetic moment inside the particle [16], as can be seen in Figure 2.2.

The change in the magnetization for pure Brownian motion is due the rotation of the

particle while the internal magnetization remains fixed regarding the crystalline lattice.

Brownian relaxation is described by [12]:

τB =
3ηVh
kBT

(2.3)

Here it is shown that Brownian relaxation is dependent of multiple parameters including

the medium viscosity (η, [Pa s]), the hydrodynamic volume of the (monodisperse)

particle (Vh, [m3]) and the temperature (T , [K]). Here kB is Boltzmann’s constant

(1.38064852 · 10-23 J/K).

A pure Néel relaxation changes the magnetization due to rotation of the internal mag-

netization with respect to the crystalline lattice, while the particle itself does not ro-

tate [16]. In literature Néel relaxation is described with different equations, one often

used is the Néel-Arrhenius equation [12]:

τN = τ 0 exp(
KVc
kBT

) (2.4)
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Figure 2.1: Magnetic response of different types of magnetic materials (ferro-, dia-,

para- and superparamagnetic) to the AMF. Magnetization curve is not

to scale, based on [3]
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Figure 2.2: The two different relaxation mechanisms for superparamagnetic materi-

als, A: Néel and B: Brownian [19].

The parameters in this equation are: the attempt time or attempt period (τ0, typi-

cal values between 10-9 and 10-10s [20], the average time between two successive ran-

dom thermal excitations), anisotropy energy (K, [J/m3]) and the core volume of the

(monodisperse) particle (Vc, [m3]) [21].

A more descriptive one sounds as following [22]:

τN =

√
πβ(1 + α′2)Ms

4γα′(βK)3/2
eβK (2.5)

with β = Vc/(kBT ). This equation also has the following parameters: the saturation

magnetization (Ms, [A/m]) and damping constant (α′, [-]). γ is the electron gyromag-

netic ratio (1.76 · 1011 rad/s T).

While it is easy to assume that particles responds with pure Brownian or pure Néel

relaxation, this may often not be the case. The following equation accounts for both

relaxation mechanisms simultaneously [20], [23]:

τeff =
τBτN
τB + τN

(2.6)

The parameters of this equation are defined in equations 2.3 and 2.5, the equation is

graphically shown in Figure 2.3. Here it is assumed that both relaxation mechanisms

are not dependent on the magnetic field, and do not influence each other.

The effective relaxation time can be substituted to equation 2.2 to calculate the mag-

netic susceptibility of the material. However, this approach does not always hold due

to the underlying assumptions:

- Assumption that relaxation happens the same regardless of field strength. This

is incorrect, these mechanisms, in particular Néel relaxation, are dependent on

the field strength [23].
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- Assumption that the particles are monodisperse, which does not reflect the real

world accurately [25]

- Assumption that Brownian and Néel relaxation are decoupled and do not influ-

ence each other, which is however not what is expected [23].

- Assumption that a changing magnetic field has no effect. Even with magnetic field

taken into account when calculating relaxation times, a continuously changing

magnetic field introduces other behaviour changes [23]. An example is phase

delays, these behaviour changes need to be incorporated into the model, which

Equation 2.6 cannot do.

Therefore, another approach is necessary, one which reflects the behaviour of combined

Brownian and Néel relaxation more closely.

An better approach starts with considering an ensemble of spherical particles in a

ferrofluid. In this ensemble, each particle is described by a constant magnetic dipole

moment −→m0 with the magnitude of m0 = MsVc [23]. The distribution of these moments

in the ensemble is given as W (x, t) where the applied field defines
−→
B (t) = B(t)ẑ. More-

over, θ is the polar angle between −→m0 and ẑ, which concludes in x ≡ cos(θ). An addi-

tional assumption is that there are two relaxation mechanisms, namely the Brownian

and Néel relaxation. These mechanisms are both responsible for aligning the magnetic

dipole moment with the applied field, but due to thermal interactions with the sur-

rounding environment there will a randomization of the orientation and the alignment

will not be completed [23]. To simplify the calculations two equations are considered

where either Brownian or Néel relaxation is dominant.

Beginning with the equation for Brownian relaxation. Here the magnetic dipole mo-

ment is free to rotate trough rotation of the particle as a whole. This Fokker-Planck

partial differential equation describes the evolution of W (x, t) over time [17], [23], [22]:
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Figure 2.3: Relaxation times against core diameter, based on [24]. Here it can be seen

that there is a region where Néel and a region where Brownian relaxation

are dominant, but also a region where they both play a role.
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∂W

∂t
=

∂

∂x

[
(1− x2)

(
∂W

∂x
− α(t)W

)]
1

2τB0

(2.7)

Here τB0 ≡ 3ηVh
kBT

and α(t) ≡ m0

kBT
B(t).

The other equation is for Néel relaxation, where the magnetic dipole moment can freely

rotate relative to the crystalline lattice. Here it is assumed that the particles cannot

rotate, the magnetic interaction energy is axisymmetric (has rotational symmetry with

respect to the axis) and that for every particle the the easy axis (the dipole will align

with this axis when there is no applied field and the magnetic interaction energy is

minimal) is aligned along the z-axis. This results in the following Fokker-Planck partial

differential equation for the evolution of W (x, t) over time [17], [23], [22]:

∂W

∂t
=

∂

∂x

[
(1− x2)

(
∂W

∂x
− α(t)W − αKxW

)]
1

2τN0

(2.8)

Here τN0 ≡ β(1+α′2)Ms

2γα′
and αK = 2Kβ. However, sometimes Brownian relaxation is

prohibited, which happens in high-viscosity environments and when the particles are

fixed. This means that the easy axis will keep its random rotation since it will not

be able to rotate freely. For these cases it is useful to replace K with an effective

anisotropy energy according to Keff = 1
3
K.

From these equations one needs to findW (x, t) (which needs to be normalized according

to
∫ 1

−1
W (x, t)dx = 1) to get 〈x(t)〉, according to [23]:

〈x(t)〉 =

∫ 1

−1

xW (x, t)dx (2.9)

After this it is possible to calculate the magnetization of the ensemble:

−→
M(t) = nm0〈x(t)〉ẑ (2.10)

Here n is the nanoparticle number density [m3]. Since there are two Fokker-Planck

equations, the resulting magnetization equations need to combined in a latter stadium

However, the equations which need to be solved for this (2.7 and 2.8) have no known

analytical solution. This is why solutions are often approximated numerically through

Legendre polynomials, as was done in this thesis.

Instead of solving equation 2.7 numerically it is also possible to approach this adia-

batically, which involves more assumptions. Adiabatic conditions imply that there is

a continuous equilibrium; the applied field and the distribution of magnetic moments

stays constant in time. If one ignores the equilibrium condition and assume that the

particles find equilibrium immediately in the changing applied field, the solution will

be the Langevin equation [17]:

M(t) = MsL(α) where L(α) = coth(α)− α−1 (2.11)
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Here α is the same as in equation 2.7, namely α(t) ≡ m0

kBT
B(t). Due to the underlying

assumptions, this equation does not describe the magnetization curve of superparam-

agnetic particles in detail well. Surface coating [26], anisotropic effects [27] and strong

interactions [28] makes the Langevin equation even less precise. Since this equation

is, however, often used, it shall be used to compare against the approach mentioned

before.
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Chapter 3

Methods

3.1 Model

As mentioned before, the Fokker-Planck equations for Brownian and Néel relaxation

(2.7 and 2.8) have no known analytical solution, and needs a numerical approximation.

Legendre expansion provides a solution for this approximation [22] by expansion of

W (x, t) in terms of Legendre polynomials and substitution to 2.7 and 2.8.:

W (x, t) =
∞∑
n=0

an(t)Pn(x) (3.1)

When substituting equation 3.1 in 2.7 it leads, using standard recursion and orthog-

onality for Legendre polynomials, to the following ordinary differential equation [23]:

2τB0

n(n+ 1)

dan
dt

= −an + α(t)

[
an−1

2n− 1
− an+1

2n+ 3

]
(3.2)

There are two things to note about this function, namely that the normalization con-

dition determines that a0(t) = 0.5 and that 〈x(t)〉 = (2/3)a1(t).

This equation can also be rewritten in the form of a matrix equation, by truncating

after N terms:

τ0
dy

dt
= Ay + b (3.3)

Here A is a N by N matrix, y and b are both column vectors of N elements. y contains

the elements a1, a2, ..., aN . A matrix equation is often (not always) easier for computers

to calculate with, which is important for intensive numerical integration of ordinary

differential equations.

For Brownian relaxation one fills in: τ0 = τB0 and b1 = α/2, the rest of b is zero. A
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will become a tridiagonal matrix with [23]:

An,n = −n(n+ 1)

2
for n = 1, 2, ..., N

An,n+1 = − n(n+ 1)

2(2n+ 3)
α for n = 1, 2, ..., N − 1

An,n−1 =
n(n+ 1)

2(2n− 1)
α for n = 2, 3, ..., N (3.4)

The remaining components of A will be zero.

For Néel relaxation, one can follow the same path, by substituting equation 3.1 in 2.8.

This leads to the following ordinary differential equation [23]:

2τN0

n(n+ 1)

dan
dt

=− an + α(t)

[
an−1

2n− 1
− an+1

2n+ 3

]
+ αK

[
(n− 1)an−2

(2n− 3)(2n− 1)

+
nan

(2n− 1)(2n+ 1)
− (n+ 1)an

(2n+ 1)(2n+ 3)
− (n+ 2)an+2

(2n+ 3)(2n+ 5)

] (3.5)

Again, because of the normalization condition, a0(t) = 0.5 and also 〈x(t)〉 = (2/3)a1(t).

This equation can as well be rewritten in the form of a matrix equation, by truncating

after N terms according to 3.3. For Néel relaxation one fills in: τ0 = τN0 and b1 = α/2,

b2 = αK/2, the rest of b is zero. A will become a pentadiagonal matrix with [23]:

An,n =
n(n+ 1)

2

[
−1 +

nαK
(2n− 1)(2n+ 1)

− (n+ 1)αK
(2n+ 1)(2n+ 3)

]
for n = 1, 2, ..., N

An,n+1 = − n(n+ 1)

2(2n+ 3)
α for n = 1, 2, ..., N − 1

An,n−1 =
n(n+ 1)

2(2n− 1)
α for n = 2, 3, ..., N

An,n+2 = − n(n+ 1)(n+ 2)

2(2n+ 3)(2n+ 5)
αK for n = 1, 2, ..., N − 2

An,n−2 =
n(n+ 1)(n− 1)

2(2n− 3)(2n− 1)
αK for n = 3, 4, ..., N (3.6)

Again, the remaining components of A will be zero.

After evaluation of the Fokker-Planck equations for both relaxation mechanisms trough

Legendre expansion, one can extract 〈x(t)〉 and calculate the time derivative of the

magnetization:
d

dt
M(t) = nMsVc

d

dt
〈x(t)〉 (3.7)

This needs to be done for both Brownian and Néel, the resulting magnetization re-

sponses can be combined using:

d

dt
M(t) =

√(
d

dt
MBrownian(t)

)2

+

(
d

dt
MNéel(t)

)2

(3.8)
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To compare this against the Langevin function, here one finds the peak magnetic

response by: [
d

dt
M(t)

]
peak

= nMsVcf [L(α+)− L(α−)] (3.9)

Where α± is the field parameters given by VcMs

kBT
(BDC ±BAC), when the magnetic field

is given by equation 3.12.

Up until now, it was assumed there was a monodisperse mixture, all particles are the

same size. However, this is not true, practically an ensemble of nanoparticles is often

polydisperse [29]. The magnetic susceptibility of these different sizes can be considered

additive, but since each particle size will not be present with the same frequency, a

weight must be allocated. This weight D(dc) is calculated according to:

d

dt
M(t) = nMs lim

n→∞

n∑
i=1

D(
dc,i + dc,i−1

2
)∆dcVc

d

dt
〈xi(t)〉 (3.10)

Where dc,i = i ·∆dc and ∆dc = upperlim/n. 〈xi(t)〉 indicates the calculated expecta-

tion value for x(t) for the respective
dc,i+dc,i−1

2
. For these calculations, one also needs

to take into account that every core diameter corresponds to a different hydrodynamic

diameter and anisotropy constant. Since infinity is quite computational extensive, a

approximation can be made by taking the limit to a finite number. This means to solve

a series of the ordinary differential equations for a finite number of size bins and sum

the result, while taking into account the weight of each bin.

The characteristics of the nanoparticle can be captured trough the Particle Response

Function (PRF), which can be obtained by simulating the nanoparticles with:

B(t) = BAC sin(2πft) + Ḃ+ t (3.11)

Figure 3.1: A: Magnetiza-

tion curve and B:

PRF [30]

The PRF, seen in Figure 3.1 is the time deriva-

tive of the calculated magnetization curve ∂M/∂H

[31]. This means that, given the fact that M = 0

for µ0H = 0, integration of the PRF gives a mag-

netization curve as shown in figure 2.1. One might

argue that the received function could show the

non-linearity of the particle even better. This

function is similar to the Point Spread Function

in x-space for MPI, it has even other more names

in literature. However, it was decided to refer to

this function as PRF, since it is an elegant and

clear description; the function describes the mea-

sured response of the particles.
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3.2 Model verification

Figure 3.2: The SPaQ setup

from [32]

To verify this model, one can use a Langevin sweep of

the SuperParamagnetic Quantifier (SPaQ), the setup

can be seen in Figure 3.2. SPaQ exploits the non-

linear response of the superparamagnetic particles to

external magnetic fields, which differs from the linear

response of human tissue [33]. The technique uses a

combined alternating (AC) and constant (DC) mag-

netic field, according to:

B(t) = BAC sin(2πft) +BDC (3.12)

which looks quite the same as Equation 3.11. The

SPaQ approach makes it possible to detect particles

in the measurement due to their unique response to

the applied magnetic field. However, the measure-

ments show magnetization with an incoming coil volt-

age (Udet, [V]), it is therefore useful to connect the actual magnetization to this coil

voltage. For this, one can use the following equation [15]:

Udet(t)/Scoil = − d

dt
M(t) (3.13)

Here Scoil is the coil sensitivity, for the SPaQ magnetometer this value is 37.8 mT/A.

The model as whole was developed using MATLAB® ver. 2020a and validated with

four different particles, namely Resovist®, Sienna®, Magtrace® and Synomag®, in

certain environments. To review the behaviour of these particles the model takes in

the following parameters:

- Temperature [K]

- Viscosity [Pa s]

- Particle number density [m3]

- Alternating magnetic field strength

[T]

- Coil constant [T/A]

- Particle size distribution [nm]

- Hydrodynamic shell size [nm]

- Saturation magnetization [J m-3 T-1]

- Anisotropy constant distribution [J

m-3]

The output of the model consists of a magnetization curve and its corresponding PRF.

In addition to this, the PRF is quantified on its Full Width Half Maximum (FWHM)

and maximum value (dH/dMmax). To review its behaviour, a verification is nesisarry.

After establishing a baseline with Resovist® in water, the model will be verified with

12



Resovist® in glycerol. This fluid has a higher viscosity, which shows if the model can

handle a different for this parameter. In the next experiment there will be a difference

in particle, namely the model will be verified with Sienna®, Magtrace® and Synomag®

instead of Resovist®. It is interesting to note that Synomag® is very different from

the other particles because of its morphology. Namely, Synomag® consist of a cluster

of smaller particles in the form of a flower. Finally, the model will be verified with

Magtrace® in different densities; for 40 µg/µL, 80 µg/µL and 120 µg/µL in demiwater.

For every measurement there will be a gain of 1000, which will be removed after-

wards. Moreover, where possible, the measurements will be repeated and their results

averaged.
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Chapter 4

Results

4.1 Model

Before introducing experimental data, it is interesting to review the model to analyse

its behaviour. Resovist® was used as baseline, and when the model was run, one by

one most of the input parameters were first halved and then doubled. After this, the

result of those changes was plotted against the baseline, as can be seen in figure 4.1.

The quantification of each of those PRFs is noted in table 4.1.

For a lot of the parameters, a change in magnitude means that the PRF changes

with more or less the same factor (linearly correlated), which means that the figures

look quite the same. These parameters are: the coil constant, the particle number

density, the alternating magnetic field density and its frequency. This statements

holds the strongest for the former two, namely since the FWHM does not change with

a change in those parameters. Next, there are two sets each of two parameters which

behaviour is related. The first set, the viscosity and the hydrodynamic shell size, have

both minimal impact on the dH/dMmax, but a smaller magnitude does mean that the

FWHM rises slightly. The second set, the anisotropy distribution and the magnetic

saturation, behave as opposites. A larger saturation means a smaller FWHM and a

larger dH/dMmax, which is reversed for the anisotropy. In both graphs is it seen that

a change in magnitude changes the middle section of the PRF, while the sides (around

|BDC | > 0.01 mT) stays mostly the same. Finally, the last parameter: temperature.

This seems to have unexpected results, but they suggest that the optimum (a small

FWHM and a large dH/dMmax) seem to lie around 300 K.

14



FWHM dH/dMmax

Halved Normal Double Halved Normal Double

Temperature 7.09 7.03 16.10 1.00 2.25 1.00

Viscosity 7.29 7.03 6.85 2.31 2.25 2.22

Hydrodynamic shell size 7.44 7.03 6.77 2.34 2.25 2.20

Particle number density 7.03 7.03 7.03 1.12 2.25 4.50

Alternating magnetic

field density
6.78 7.03 7.96 1.15 2.25 4.10

Frequency of the

magnetic field
7.28 7.03 6.91 1.16 2.25 4.39

Anisotropy distribution 7.92 7.03 13.40 1.90 2.25 0.75

Magnetic saturation 13.54 7.03 3.98 0.58 2.25 8.15

Coil constant 7.03 7.03 7.03 1.12 2.25 4.50

Table 4.1: Predictions of the model, quantified on their PRF as seen in figure 4.1,

FWHM in mT and dH/dMmax in mV
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(a) Temperature: halved, nor-

mal and doubled
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(b) Viscosity: halved, normal

and doubled
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(c) Hydrodynamic shell size:

halved, normal and dou-

bled
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(d) Particle number density:

halved, normal and dou-

bled
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(e) Alternating magnetic field

density: halved, normal

and doubled
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(f) Frequency of the magnetic

field: halved, normal and

doubled
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(g) Anisotropy distribution:

halved, normal and

doubled
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(h) Magnetic saturation:

halved, normal and

doubled
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(i) Coil constant: halved, nor-

mal and doubled

Figure 4.1: Predictions of the model based on Resovist® in water; normal values:

T = 300 K, η = 1.0049 mPa s from [34], dc = [5, 21] nm, dhdiff = 45.2

nm, n = 1.5 · 1013 m-3, BAC = 0.0014 T, f = 2500 s-1, Ka = 33.3

J/m3nm, Kb = 1000 J/m3, Ms = 300 kJ/m3T, α′ = 0.1 from [23] and [35],

Scoil = 37.8 mT/A
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The model also has a magnetization curve as output. A magnetization curve of

Resovist® in water is seen in figure 4.2, it can be seen that the steepest part of all the

shown graphs is on the zero point. Moreover, they quickly flatten out, especially for

the Néel en Langevin curve. Finally, it can be seen that the Brownian and Néel parts

together form a combined curve, as described in equation 3.8.
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Figure 4.2: Magnetization curve; Resovist® in water

To introduce experimental data, the model was run with a certain parameterset, based

upon the available characteristics of Resovist® in water and the measurement condi-

tions of a dataset that was available. This result can be seen in figure 4.3. Here the

model had a FWHM of 7.99 mT, the Langevin equation one of 16.19 mT and the actual

data set had 8.16 mT. Moreover, the dH/dMmax of the model (2.95 mV) corresponds

not that well with that of the experimental data (2.31 mV) which can also clearly be

seen in the graph. This difference is however not that big as the difference between the

Langevin equation and the experimental data. To further enhance the model, it was

rewritten such that the model would accept a range of values for the core diameter,

as described in chapter 3. As a result, the hydrodynamic diameter and the anisotropy

constant differs with a changing core diameter. The core diameter of Resovist® was

modelled using two normal distributions added together, which can be seen in figure

4.4. The hydrodynamic diameter was defined as the core diameter plus a constant

(dhdiff) and the anisotropy constant trough a linear equation (K = Ka ·dc+Kb). These

changes resulted in the graphs shown in figure 4.5. It is interesting to note that a

smaller bin size (more bins) not always results in a better approximation, the optimum

for this case seems to lie with a bin size of 1 nm. As a result, this bin size was also

used for the further verification. This, and the fact that the model approaches the

experimental data better than the Langevin equation, can be seen in table 4.3.
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Figure 4.3: PRF of Resovist® in water

Parameter Quantity

T 300 K

η 1.004 mPa s from [34]

dc 19 nm

dhdiff 45.2 nm

n 1.5 · 1013 m-3

BAC 0.0014 T

f 2500 s-1

Ka 183.3 J/m3nm

Kb 5000 J/m3

Ms 300 kJ/m3T

α′ 0.1 from [23] and [35]

Scoil 37.8 mT/A

Table 4.2: Parameters used in Figure

4.3

Figure 4.4: Distribution of the Resovist® particle sizes

Model Langevin Data

FWHM dH/dMmax FWHM dH/dMmax FWHM dH/dMmax

1 bin 7.99 2.95 16.19 0.37

8.16 2.31
5 bins 6.26 2.79 13.03 0.34

17 bins 7.03 2.25 14.52 0.28

25 bins 7.12 2.18 14.70 0.27

Table 4.3: Quantification of the PRF as seen in figure 4.3 and 4.5
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(a) PRF, 5 bins
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(b) PRF, 17 bins

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

 Magnetic Field 
0
H [T]

0

0.5

1

1.5

2

2.5

U
 [

V
]

10-3

Brown

Néel

Combined

Langevin

Experimental

(c) PRF, 25 bins

(d) 5 bins of 3.2 nm (e) 17 bins of 1 nm (f) 25 bins of 0.64 nm

Figure 4.5: Resovist® in water, various bin sizes; T = 300 K, η = 1.0049 mPa s from

[34], dc = [5, 21] nm, dhdiff = 45.2 nm, n = 1.5 ·1013 m-3, BAC = 0.0014 T,

f = 2500 s-1, Ka = 33.3 J/m3nm, Kb = 1000 J/m3, Ms = 300 kJ/m3T,

α′ = 0.1 from [23] and [35], Scoil = 37.8 mT/A
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4.2 Model verification

4.2.1 Experiment I: Influence of viscosity on performance

To further verify the model, it was run with Resovist® in glycerol instead of water.

This fluid has a higher viscosity, which prohibits Brownian relaxation. Because of this

it is necessary to use the effective anisotropy constant (Keff) as defined in subsection

2. Apart from the viscosity and this effective anisotropy constant, all values remained

the same. The result can be seen in figure 4.6. Again, this PRF was compared to the

Langevin equation and to experimental data. The FWHM of the model is 8.41 mT,

that of the Langevin equation is 14.52 mT and that of the experimental data is 7.04

mT. Furthermore the dH/dMmax is 1.58 mV for the model, 0.28 mV for the Langevin

equation and 1.58 mV for the experimental data. This means that the FWHM of the

model has a slight difference with the experimental data, which is again better than

the Langevin equation.
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Figure 4.6: PRF of Resovist® in glyc-

erol, where ’Combined’ is the

result of the Fokker-Plank

expansion

Parameter Quantity

T 300 K

η 0.8 Pa s

dc [5, 21] nm

dhdiff 45.2 nm

n 1.5 · 1013 m-3

BAC 0.0014 T

f 2500 s-1

Ka 183.3 J/m3nm

Kb 5000 J/m3

Ms 300 kJ/m3T

α′ 0.1 from [23] and [35]

Scoil 37.8 mT/A

Table 4.4: Parameters used in Fig-

ure 4.6
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(a) Sienna®; T = 297 K,

dhdiff = 50 nm, n =

2.00 · 1013 m-3, Ka =

183.3 J/m3nm, Kb = 5000

J/m3, Ms = 300 kJ/m3T
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(b) Magtrace®; T = 296 K,

dhdiff = 56.52 nm, n =

1.44 · 1013 m-3, Ka =

183.3 J/m3nm, Kb = 5000

J/m3, Ms = 300 kJ/m3T
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(c) Synomag®; T = 296 K,

dhdiff = 56.52 nm, n =

2.21 · 1013 m-3, Ka =

75 J/m3nm, Kb = 3000

J/m3, Ms = 420 kJ/m3T

Figure 4.7: PRF of different particles; η = 1.0049 mPa s from [34], dc = [5, 21] nm,

BAC = 0.0013 T, f = 2500 s-1, α′ = 0.1 from [23] and [35], Scoil = 37.8

mT/A

4.2.2 Experiment II: Influence of iron content on performance

To test the models ability to capture the characteristics of particles other than Resovist®,

it was compared with experimental data of Sienna®, Magtrace® and Synomag®, which

are -like Resovist®- magnetic tracers. To model these particles like it was done with

Resovist® before, n, Ka and Kb were fitted manually since they were not known at

the time of writing. This resulted in three PRFs, as seen in figure 4.7. The first thing

that stands out is that while Sienna® and Magtrace® are approximated quite well,

Synomag® differs plenty. This can also be seen in table 4.5, the FWHM of the model

is half the size of that of the experimental data. However, for the two other particles

both the FWHM and dH/dMmax are certainly close to the data.

Sienna® Magtrace® Synomag®

FWHM dH/dMmax FWHM dH/dMmax FWHM dH/dMmax

Model 6.76 2.39 6.84 2.21 5.43 4.34

Langevin 14.28 0.30 14.32 0.28 10.29 0.64

Data 6.68 2.39 7.42 2.21 10.54 4.37

Table 4.5: Different particles quantified on their PRF as seen in figure 4.7, FWHM

in mT and dH/dMmax in mV
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(a) n = 1.44 · 1013 m-3
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(b) n = 2.89 · 1013 m-3
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(c) n = 4.33 · 1013 m-3

Figure 4.8: PRF of Magtrace®; T = 296 K, dhdiff = 56.52 nm, Ka = 183.3 J/m3nm,

Kb = 5000 J/m3, Ms = 300 kJ/m3T, η = 1.0049 mPa s from [34],

dc = [5, 21] nm, BAC = 0.0013 T, f = 2500 s-1, α′ = 0.1 from [23]

and [35], Scoil = 37.8 mT/A

n = 1.44 · 1013 m-3 n = 2.89 · 1013 m-3 n = 4.33 · 1013 m-3

FWHM dH/dMmax FWHM dH/dMmax FWHM dH/dMmax

Model 6.84 2.21 6.84 4.16 6.84 6.24

Langevin 14.32 0.28 14.33 0.52 14.32 0.78

Data 7.42 2.21 7.62 4.16 8.20 6.62

Table 4.6: Different densities of Magtrace® quantified on their PRF as seen in figure

4.8, FWHM in mT and dH/dMmax in mV

4.2.3 Experiment III: Influence of particle number densities on

magnetic performance

Just like in the previous section it is possible to test the model with different datasets to

verify it further. Namely, there were datasets available with different particle number

densities. The verification was done with Magtrace®. Again, since the number density

could not be calculated directly with the available information, the model was fitted

with an optimal dH/dMmax on the n = 1.44 · 1013 m-3. This number density was

extended linearly, for instance: if x mg/mL was fitted on y m-3, then 2x mg/mL will

be 2y m-3. The results can be seen in figure 4.8 and the quantification in table 4.6. It

is interesting to note that while the FWHM of the model stays constant (the density

is a scale factor, this shall be highlighted in the next section) it does slowly change for

the experimental data. Moreover, the dH/dMmax is optimal for the first two set, while

it has a difference of 0.4 mV for the last one, which is also quite small.
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Chapter 5

Conclusion

To conclude this attempt at modelling superparamagnetic nanoparticles, one can say

that the characteristics of the particles were caught fairly well. The purpose of this

research was to capture these particles on their magnetization curves and Particle Re-

sponse Function (PRF). According to the limited set of data that was used to verify the

model, only small differences in the dH/dMmax and in the FWHM are to be expected

for predictions made with the model for particles unlike the nanoflower Synomag®. It

can be concluded that a bin size of 1 nm gives the best results, while larger and smaller

sizes do not reflect the reality well. This could be due to the fact that these particles

have certain favorable sizes, possibly not all sizes are even possible. Further research

should give more insight.

Finally, while the dH/dMmax was predicted well (since the particle density was fitted)

for Synomag® nanoflowers, it was found that the model was not adequate enough in its

FWHM. This error might lie with the fact that there is a third relaxation mechanism,

which will be spoken about in the Discussion.
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Chapter 6

Discussion

To start with, the difference between the model and data for Synomag®. This is, as

briefly mentioned before, likely the result of the morphology of the particle. Synomag®

consists of flower-like clusters of particles. Due to this clustering, the magnetization

of the particles is stronger coupled. The disordered spins within these flowers are

suggested to be the reason for a very fast relaxation mechanism, a different mechanism

than the Brownian and Néel mechanisms [36]. As a result, the model as it currently

stands will not be able to accurately predict such flower-like particles. To solve this

issue, more research should be able to find the parameters on which this new mechanism

is dependent, and after that, formulate an equation. This will probably be in the form of

another Fokker-Planck equation, since both Brownian and Néel are described effectively

using such an equation. These equations lend itself well for Legendre expansions, which

makes it possible to calculate 〈xNew(t)〉 and d
dt
MNew(t). This means reformulating

equation 3.8:

d

dt
M(t) =

√(
d

dt
MBrownian(t)

)2

+

(
d

dt
MNéel(t)

)2

+

(
d

dt
MNew(t)

)2

(6.1)

In addition, certain values were not always known and were instead fitted on the small-

est difference in dH/dMmax between the model output and the data. Temperature,

viscosity and such were measured and used as input for the model, but the particle

number density (n) and the anisotropy constant distribution (K) were not known. The

particle number density can be calculated, if one knows the concentration (c, [g/m3])

and the molar mass (M , [g/mol]): n = cNA/M . Here NA is the Avogadro constant

(6.022 · 1023 mol-1). The anisotropy constant is more complicated. The anisotropy

constant increases with the size of the particle [37], which is taken into account in

this model using a linear equation. However, this can be enhanced by measuring this

constant for multiple bins, with a size of (for instance, as was used in this model) 1

nm. This means separating particles on their core size: (0,1], (1,2], (2,3] nm and so

on. This can be done with Asymmetric Flow Field-Flow Fractionation (AF4) [38].
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Next, for each bracket one needs to measure the anisotropy constant, by measuring the

PRF and fitting the model thereon, since the anisotropy constant is the only unknown

value. This constant is sometimes measured by preventing Brownian relaxation (by

fixing the particles) and calculating the constant using equation 2.4 [39], which is also

a possibility, it could serve as a check. For completeness, it is advised to measure the

hydrodynamic shell size for each bracket, as this was assumed to be constant for a

changing core size, which might be incorrect. This can be done with dynamic light

scattering (DLS) [40]. Knowing this and the anisotropy constant for every core size

bracket, one can replace the dhdiff constant and the linear anisotropy equation with the

more accurate measured progression.

Furthermore, probably even more important, only for Resovist® the particle size distri-

bution was known, as shown in figure 4.4. Even this distribution might not be accurate.

It would be wise to not only measure the hydrodynamic size and anisotropy constant

for each core size bracket in the experiment mentioned before, but also the probability.

With this in hand, it is possible to calculate the particle size distribution for every kind

of particle. This can be done with the AF4 mentioned before, coupled to multiangle

light scattering and DLS detectors (AF4-MALS-DLS) as long as the particles are of

moderate polydispersity [41].

All changes mentioned in this discussion may reduce the differences between the model

and the reality. However, the measurements on particles other than Resovist® were

only done once, which means that their precision is not known. But since the mea-

surements on Resovist® were quite precise, it is to be expected that the same will hold

for the other particles. Moreover, possibly the accuracy of the measurements could be

better, but this is hard to determine. However, it is always good (for precision and

accuracy) to repeat the experiments and validate the model further with experimental

data from other particles/environments.

The current model has a direct and a indirect clinical significance. The direct signifi-

cance is the fact that with some (relative) small changes, it could be used to convert a

measured voltage from the SPaQ probe into amounts of particles. This means a more

direct way of presenting if and in what quantity the particles are accumulated, which

could come in handy for finding sentinel nodes and comparing it with different parti-

cles/environments. A more indirect significance of this model is that one can use it to

create a hypothetical particle, since the model can predict the PRF (for non-flower-like

nanoparticles). This hypothetical particle can be tuned to ones preferences on various

parameters. Not only enhances this our understanding of these particles but can also

help with creating/choosing particles for detection and diagnostics.

Finally, a more technical note which might help future projects save time. The imple-

mentation of this model was done in MATLAB® ver. 2020a using ode15. In MATLAB

(and most high level programming languages) it is possible to declare global variables,

25



which lends itself perfectly for constants like kB and γ but (secretly) slows the program

down. Avoiding those (feeding every necessary variable to each function), using the

Parallel Computing Toolbox (running a parfor with the particle size bins) and other

optimizations (such as pre-allocation) means calculating a PRF in 5 minutes instead

of in 8 hours. These times were measured on Windows 10 (v2004) with a Intel i5 @

2.50 GHz.
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Samenvatting

In dit onderzoek werd het magnetische gedrag van superparamagnetische nanodeelt-

jes in verschillende omgevingen gemodelleerd, die hun klinisch nut hebben bij de

schlildwachtklierbiopsie. Dit is gedaan door gebruik te maken van de Legendre expansie

van twee Fokker-Plank vergelijkingen, een voor Brownian en een voor Néel relaxatie.

Met de gecombineerde uitkomst hiervan kan het voltage zoals gemeten wordt met SPaQ

benaderd worden. Op basis van verificatie met experimentele data kan gezegd worden

dat dit model het gedrag van de geteste deeltjes accuraat weergeeft, met uitzondering

van een bloem-vormig deeltje.
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