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Abstract 

Slow wave activity (0.5-4 Hz) has been linked consistently to memory consolidation during 

sleep. Interestingly, slow waves types can be delineated on the basis of distinct 

synchronization mechanisms: 1) arousal-dependent synchronization, yields large, Type 1 slow 

waves, and 2) a homeostatic, cortico-cortical mechanism, synchronizes smaller, Type 2 slow 

waves. Memory consolidation or learning-dependent adjustments of neural connections 

during sleep are mainly associated with such local, homeostatic events.  

Conventionally, sleep-dependent effects of slow wave activity on memory were 

examined with measures of power or power density. Considering anterior predominance of 

large, Type 1 slow waves, power-based measures may fail to capture learning-

dependent/homeostatic changes in incidence of smaller, Type 2 slow waves. The present 

study introduced cortical involvement of slow wave activity, by means of spatial, principal 

component analyses (PCA), as a novel approach to study memory consolidation during sleep. 

To this end, a high-density EEG dataset was utilized. Participants performed a 

subsequent memory paradigm, using real-life sceneries, then they took a nap upon which they 

performed a scene recognition task. Effects of cortical involvement of slow wave activity on 

scene recognition were assessed. In addition, conventional analyses of slow wave power were 

performed to validate the novel approach. Against the background of fronto-central power 

predominance, robust memory correlates of both parieto-central involvement and power of 

slow waves were found during nap sleep. Thus, spatial PCA may provide a novel tool to 

assess learning-dependent changes in cortical involvement of slow wave activity and relate 

these to memory consolidation processes. 

Keywords: sleep, memory, learning, EEG, sleep homeostasis, scene recognition 
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1. Introduction 

The enterprise to understand the mechanisms of human memory dates back more than a 

century to Müller and Pilzecker (1900). They were the first to propose that newly acquired 

memories undergo a physiological process, termed consolidation, that preserves memories 

over time and prevents their deterioration. However, acquisition and consolidation of memory 

appear to depict two opposing processes. Arousal and alertness benefit the former. But as 

myriads of sleep and sleep deprivation studies made undoubtedly clear, we also need to go 

“offline” in order to consolidate and store what we have learned (Dudai, Karni, & Born, 2015; 

Curcio, Ferrara, & De Gennaro, 2006; Drummond et al., 2000). Freed from processing of 

ongoing experience, sleep provides an optimal milieu for our brains to sample newly acquired 

information against the background of prior knowledge. Such comprehensive sampling of 

past experience should account for the various benefits of sleep for evolving knowledge. 

Consolidation of past experience encompasses a range of brain processes, driving integration 

of new information into established knowledge structures. Therein embedded lies the 

evolution of memories over time, which describes the extraction of superordinate conceptual 

or perceptual features from the informational richness of fresh memories. Such memory 

evolution is linked to sleep’s benefits for recognition, insight, problem solving, and (smart) 

forgetting (Tononi & Cirelli, 2014; Stickgold & Walker, 2013; Verleger et al., 2013).  

 

1.1. Mechanisms of Memory Acquisition and Consolidation  

How do we acquire and consolidate new information? Donald Hebb’s (1949) seminal work 

set the grounds for our modern definition of learning and memory. He proposed that learning 

activates ensembles of neurons that accommodate this new information by strengthening their 

shared synapses and so their ensemble-connectivity. Since then, long-term potentiation (LTP) 

was identified as the prime mechanism behind learning-dependent strengthening/enlargement 

of synapses. High neuromodulation during active wake facilitates this process by biasing 

plasticity towards potentiation (Genzel & Wixted, 2017; Lee & Dan, 2012; Seol et al., 2007).  

As shown consistently in sleep deprivation studies, LTP does not suffice to form 

lasting memories. A lack of sleep not only impairs consolidation of previously learned 

information but also acquisition of novel memories (Dudai, Karni, & Born, 2015; Curcio, 

Ferrara, & De Gennaro, 2006). In particular, memory consolidation seems to depend on non-

rapid eye movement or NREM sleep (stages N1-3), rich in synchronized neural oscillations: 
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cortical slow waves (0.5-4 Hz), thalamocortical sleep spindles (10-16 Hz), and hippocampal 

sharp wave ripples1. (140-200 Hz) (Langille, 2019; Miyamoto, Hirai, & Murayama, 2017).  

Memory for highly novel, unfamiliar information, such as new procedures, sequences, 

or episodes, appears to depend on the replay of learning-associated activity, via interareal 

coupling of spindles and ripples. Yet, slow waves seem to act as an universal mechanism to 

consolidate perceptually acquired, cortically stored memory (Boutin & Doyon, 2020; Holz et 

al., 2013; Schmidt et al., 2006; Huber et al., 2004).  

What is the universal link between slow waves and memory consolidation? While 

potentiation is crucial for learning, it becomes costly as it accumulates with time awake. 

Bigger synapses require more space, energy, cellular supplies, and saturate neural responses 

to novel input (Tononi and Cirelli, 2014). In other words, big, potentiated connections pose 

homeostatic pressure on involved neural ensembles and reduce learning capacities. As 

proposed in the well substantiated ‘Synaptic Homeostasis Hypothesis’ (SHY), one of sleep’s 

fundamental functions is to release this homeostatic pressure while sampling information 

from prior experience (Tononi and Cirelli, 2014). That is where slow waves come into play.  

The presumed mechanism by which slow waves benefit memory and restore 

homeostasis is proportional downscaling of neural connections during sleep (Tononi and 

Cirelli, 2014). As we fall asleep, neuromodulation quietens, decreasing neural firing and 

biasing plasticity towards depression or shrinkage of synapses (Seol et al., 2007; Marrosu et 

al., 1995). These neurobiological conditions alter Hebb’s (1949) plasticity rule during sleep: 

as they travel across the cortex, alternations between intense firing and neural silence, 

characteristic for slow waves, are shown to preserve only the strongest, most active 

connections, amidst global shrinkage (Langille, 2019; González-Rueda et al., 2018; Stern, 

2018; de Vivo et al., 2017; Nere et al., 2013). Doing so, slow waves mediate sleep’s manifold 

benefits: they restore learning capacities, wipe away old, unused memories, and protect 

strong, highly used connections, as in regions where learning occurred or established neural 

structures (Tononi & Cirelli, 2014). 

 

1.2. Theoretical Framework: Slow Wave Homeostasis and Memory  

Largely based on analyses of individual slow waves, Bernardi et al. (2018) and Siclari et al. 

(2014) proposed two distinct synchronization mechanisms for slow wave activity during 

sleep: 1) an arousal-dependent, thalamocortical mechanism, whereby low levels of 

 
1 Ripples describe bursts of high-frequency firing (140-200 Hz, ~ 100 ms) of extensive ensembles of 
hippocampal neurons that reflect replay of activation patterns from prior experience (Genzel, & Wixted, 2017) 
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neuromodulation permit thalamic relay neurons to induce large, Type 1 slow waves, 

predominating fronto-central cortical areas; and 2) a homeostatic or experience-dependent, 

cortico-cortical mechanism, yielding small, Type 2 slow waves throughout the cortex.  

In line with an arousal-dependent regulation, Type 1 slow waves occur early and 

remain stable throughout sleep, synchronizing extensive cortical populations via a global 

“reset” of brain activity. Importantly, such a global “reset” is pertinent to synchronize 

homeostatically regulated Type 2 slow waves. Bernardi et al. (2018) further associated the 

well-established link between sleep spindles and slow waves with the local occurrence of type 

2 slow waves, in corroboration of learning-dependent increases in homeostatic pressure. 

The synchronization mechanisms proposed by Bernardi et al. (2018) and Siclari et al. 

(2014) resonate well with conventional measures of slow wave activity during post-learning 

sleep. Huber et al. (2004) analysed slow wave power during NREM sleep, upon learning of 

visuospatial information. They localized power correlates of memory consolidation to parietal 

Brodmann areas 40, around the intraparietal sulcus. This finding is in line with increases in 

homeostatic slow wave generation in visual pathways upon learning-dependent potentiation 

and their link to memory consolidation. Importantly, these correlates were observed against 

the background of anterior predominance of slow wave power, reflecting a global “reset” of 

brain activity (Huber et al., 2004). Yet, spectral power can be mediated by either incidence or 

amplitude of slow waves, or a combination of both.  

In fact, Bernardi et al. (2018) found profound amplitude differences (M = 136.26 ± 

32.8 µV vs. M = 52.38 ± 12.46 µV) between Type 1 and Type 2 slow waves, during NREM 

sleep. Thus, and considering that slow waves occur as singular events, measures of slow wave 

power likely overrepresent large, Type 1 slow waves (Mensen, Riedner, & Tononi, 2016).  

2016). Such overrepresentation of high-amplitude waves could account for the fronto-central 

predominance of slow wave power observed by Huber et al. (2004). Likewise, observed 

memory correlates at parietal sites agree with homeostatic increases in incidence of smaller, 

Type 2 slow waves (Bernardi et al., 2018). 

Interestingly, Bernardi et al (2018) further performed spatial, principal component 

analyses (PCA) of slow wave activity (0.5-4 Hz) during NREM sleep periods. Whereas 

spectral powers can be easily skewed by very large and/or many waves, spatial PCA of a 

certain time interval informs about most consistent slow wave activity (Bernardi et al., 2018; 

Mensen et al., 2016). Their analyses yielded that, what is henceforth referred to as, “cortical 

involvement” of slow wave activity was reducible to few fronto-central, parieto-central, 

lateralized components. These components showed high consistency across their eleven 
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examined participants. Noteworthy, Bernardi et al. (2018) identified large, Type 1 slow waves 

primarily in the fronto-central component, explaining most of variance in the slow wave band 

(M = 69.46%, SD = 8.92%). Conversely, smaller, Type 2 slow waves were found across all 

main components.  

 

1.3. Does Cortical Involvement of Slow Wave Activity reflect Memory Consolidation? 

Bernardi et al. (2018) identified the component structure underlying cortical involvement of 

slow wave activity and the distribution of slow wave types therein during nocturnal NREM 

sleep. Importantly, they did so without administering any learning tasks prior to sleep onset. 

The consistency of their findings across all examined participants (N = 11) is interesting for at 

least three reasons. First, predominance of large, Type 1 slow waves in the greatest, 

frontocentral component agrees well with their anterior synchronization from a few, 

thalamocortical projections (Bernardi et al., 2018; Siclari et al., 2014). Second, ubiquitous 

occurrence of small, Type 2 slow waves across all major components exemplifies increases in 

homeostatic pressure throughout the cortex, accumulated during normal or typical wake 

experience (Bernardi et al., 2018; Tononi & Cirelli, 2014; Huber et al., 2013).  

Third, the work of Bernardi et al. (2018) left open the question whether learning prior 

to sleep alters the cortical involvement of slow wave activity during sleep. Indeed, it should 

increase homeostatic pressure in involved, cortical regions. Higher incidence of smaller, Type 

2 slow waves over cortical areas in which learning had occurred should manifest as greater 

covariance of slow wave activity (0.5-4 Hz) in respective regions. Such a relation between 

slow wave incidence and covariance is due to the traveling behaviour of slow waves from 

their synchronization site (Bernardi et a., 2018; Mensen et al., 2016; Massimini et al., 2004): 

the more often and farther slow waves travel over the same cortical region during a certain 

period of time, the more the activity in the slow wave band should covary in respective EEG 

channels. That in turn motivated the question whether individual differences in cortical 

involvement of slow wave activity during sleep predict subsequent memory performance and 

so reflect memory consolidation.  

 To address this question, a high-density EEG dataset, made publicly available at the 

Open Science Framework (OSF) by and in agreement with Mei, Grossberg, Ng, Navarro, and 

Ellmore (2018), was utilized. The dataset contains EEG recordings from 20 participants of a 

30-minute nap period after performing one of two versions (high/low load) of the subsequent 

memory paradigm, using real-life sceneries, and post-nap scene recognition scores. It was 

originally used to test machine learning algorithms for sleep spindle detection and participants 



7 

spend on average 85% of the nap in NREM sleep (stages N1-3) (Mei et al., 2018). The dataset 

was chosen because of its resemblance in polysomnographic features with the sleep episodes 

analysed by Bernardi et al. (2018), with the crucial distinction that scene learning took place 

prior to sleep. 

 Prior, comparable work linked visually acquired memory for spaces, scenes, face-

scene associations, or rotation adaptation, consistently to posterior cortical areas, spanning 

from the postcentral gyrus and precuneus across the parietal cortices (Silson et al., 2019; van 

Assche et al., 2016; Bergmann et al., 2012; Hirshhorn et al., 2012; Huber et al., 2004). As 

shown by Huber et al. (2004) and Bergmann et al. (2012), consolidation of such memories 

depends on more comprehensive synchronization during sleep, permissive of learning-

dependent/homeostatic events, such as Type 2 slow waves or spindles.  

 Adopted from Bernardi et al. (2018), spatial PCA of slow wave activity (0.5-4 Hz) 

was performed on whole nap recordings to examine the predictive value of individual 

differences in cortical involvement for scene recognition. Across individuals, emerging 

components of cortical involvement should be consistent and differ in explained variance to 

those obtained by Bernardi et al. (2018). Such sample differences should reflect learning-

dependent increases in incidence of slow waves or changes in slow wave homeostasis in 

visual pathways linked to memory for scenes, places, etc. (Silson et al., 2019; Hirshhorn et al., 

2012). Importantly, individual differences in variance explained especially by posterior 

components should reflect variation in slow wave homeostasis and thus consolidated scene 

memory across visual areas (Huber et al., 2004). 

Complementary analyses excluded epiphenomenological origins of observed 

differences in cortical involvement and their relationship with scene recognition. Correlational 

analyses of average slow wave power with scene recognition were performed on the whole 

nap recording and on individual sleep stages (N1-3), including pre-nap wake. Based on 

comparable learning paradigms (Bergmann et al., 2012; Huber et al., 2004), correlates of 

scene recognition should emerge in parieto-central regions and overlap topographically with 

posterior components of cortical involvement. However, they should emerge only during 

sleep (stages N1-3) and not during pre-nap wake. Consequently, two predictions were made: 

1.) Individual differences in cortical involvement of slow wave activity, specifically 

the variance explained by underlying, presumably parieto-central, components and 

their topographies should predict scene recognition.  

2.) Average slow wave power in parieto-central areas should predict scene recognition 

across the whole nap period and during nap sleep (stages N1-3) but not pre-nap wake.  
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2. Methods 

2.1. Participants 

The total EEG dataset provided by Mei et al. (2018) included data from 20 participants (7 

women), ranging between 18 and 42 years of age (M = 23.15, SD = 6.04). All data were 

acquired with written informed consent, in accordance with The Code of Ethics of the World 

Medical Association (Declaration of Helsinki), and approved by the Institutional Review 

Board of the City College of New York.  

 

2.2. Procedure 

The experimental sessions took place in a sound-attenuated booth (IAC acoustics) in order to 

prevent auditory and visual distractions (Mei et al., 2018). Each participant completed two 

sessions, each lasting about two hours, over the course of two days. Participants were 

instructed to go to sleep one and a half hours later than usual during the nights prior to the 

experiments to increase the probability of falling asleep during the nap periods. Each session 

began with either a high or low load version of the subsequent memory paradigm. Each trial 

comprised 1) an encoding period during which participants were presented with a continuous 

sequence of either 5 (high load) or 2 (low load) outdoor scenes, each presented for 2 seconds, 

2) a delay period in which participants had to maintain the encoded scenes in memory for 6 

seconds, 3) a probe period during which either a negative or positive probe was presented for 

2 seconds. Here, participants indicated if they saw the shown probe during the previous 

encoding period by pressing either the right (green) or the left (red) button on a RB-530 

response pad (Cedrus Inc) if the probe was recognized or not, respectively (Mei et al., 2018). 

Thereafter, a phase-scrambled scene was shown for 5 seconds marking the end of one trial. 

Negative/novel probes and positive/previously presented probes were equally distributed 

across trials. Participants performed 100 trials in the low and 40 trials in the high load 

condition respectively, yielding an equal number of stimuli in each condition (Mei et al., 

2018). Figure 1 illustrates two low load trials, a negative and positive probe, respectively.  
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Figure 1. Example of the subsequent memory paradigm in the low load condition. Participants encode a 

continuous sequence of two scenes (2 sec each), followed by a delay period (6 sec). After the delay participants 

are shown a probe (2 sec), followed by a 5 sec scramble. Figure adapted from “Early and late components of 

EEG delay activity correlate differently with scene working memory performance” by Ellmore, T.M., Ng, K., 

and Reichert, C.P., 2017,  PLOS ONE 12(10): doi:10.1371/journal.pone.0186072 

 

Immediately hereafter, a scene recognition task was performed, using one half of the scenes 

presented in the subsequent memory task (125 images), followed by a 30-minute nap on a bed 

in a darkened, sound-isolated recording chamber. After the nap, a second scene recognition 

task was performed with the remaining half of scenes. In both recognition tasks already-

presented scenes were blended with an equal number of new scenes. Again, scenes were 

presented for two seconds and after each scene participants indicated if they recognized the 

scene using either right or left button on the response pad (Mei et al., 2018). 

 

2.3. Materials 

A total of 250 scenes (24-bit colour images) was randomly selected from the SUN database 

(Xiao et al., 2010). To ascertain novelty of the presented stimuli and prevent any verbal 

rehearsal strategies based on scene details, scenes with clearly visible faces, people, or easily 

nameable objects were excluded. Using Superlab 5 (Cedrus Inc.) software, scenes were 

presented on a 27-inch LED monitor (resolution 1920x1080 pixels) with a refresh rate of 60 

Hz. Scenes were sized to 800x600 pixels on the screen. Participants sat at 83.5 cm distance 

from the screen and maintained a stable view using a combined forehead/chin rest (Ellmore, 

Ng, & Reichert, 2017). 
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2.4. Apparatus and EEG recording 

Scalp oscillatory activity during the napping period was recorded at a sampling rate of 1000 

Hz with an active electrode system (actiCHamp, Brain Products GmbH) using 64 active 

Ag/AgCI electrodes, including two electrooculography (EOG) electrodes (LOC, ROC). 

Electrolytic gel was applied between the scalp and the electrodes tips in order to keep 

impedances below 25 kΩ. Electrodes were arranged in accordance with the standard 10-20 

system, at positions: Fp1, F7, F3, F7, FT9, FC5, FC1, C3, T7, CP5, CP1, Pz, P3, P7, O1, Oz, 

O2, P4, P8, CP6, Cp2, Cz, C4, T8, FT10, FC6, FC2, F4, F8, Fp2, AF7, AF3, AFz, F1, F5, 

FT7, FC3, FCz, C1, C5, TP7, CP3, P1, P5, PO7, PO3, POz, PO4, PO8, P6, P2, CPz, CP4, 

TP8, C6, C2, FC4, FT8, F6, F2, LOC, ROC, with TP9 as reference and Fpz as ground 

electrodes (Jasper, 1958). Electrodes F7 and F8 were designated as horizontal EOG (HEOG) 

channels, electrodes LOC and ROC were placed above the right eye as vertical EOG (VEOG) 

channels (see Appendix A, Mei et al., 2018). 

 

2.5. Data Analysis 

2.5.1 Polysomnographic data 

For all but two recordings pre-nap wake and individual sleep stage were derived from manual 

sleep annotations provided by Mei et al. (2018) on OSF. For the two remaining recordings 

(participants 30 and 32), sleep stages were identified with the EDF browser, by visual 

inspection of activity in relevant channels and by use of time/frequency analyses in 

accordance with the AASM criteria, on minimally pre-processed data (re-referenced, filtered, 

reduced sampling rate)(Iber, Ancoli-Israel, Chesson, & Quan, 2007). These included the 

spatiotemporal (co)occurrence of slow wave activity (0.5-4 Hz), Alpha activity (8-12 Hz), 

sleep spindles (10-16 Hz), and eye movements at respective electrodes. 

 

2.5.2. Behavioural Data 

Post-nap scene recognition scores for selected participants (see paragraph “Partition of the 

napping period”) were also obtained from the publicly accessible dataset by Mei et al. (2018) 

on OSF. Individual scores were represented as percentages of correct responses. 

 

2.5.3. Preprocessing of EEG Data 

Raw EEG nap recordings, provided by Mei et al. (2018) on OSF, were analysed with 

BrainVision Analyzer software (Brain Products GmbH; v2.0.2). First, all channels were re-

referenced to the average of both mastoid electrodes (TP9, TP10). The sampling rate was 
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reduced to 200 Hz. Hereafter, data were bandpass filtered between 0.3-40 Hz using zero phase 

shift IIR Butterworth filters. A high-rank, high-pass filter at 0.3 Hz (roll-off rate: 

160dB/decade) was applied. Doing so, the risk for inclusion of lower-frequency artifacts 

caused by slow body or eye movement or sweating was reduced. Such artifacts are known to 

affect frequencies below 0.5 Hz and cause problems for artifact rejection in independent 

component analyses (ICA) (Bernardi et al., 2018; Winkler et al., 2015; Zakeri et al., 2014).  

Further, a rough, semiautomatic artifact rejection with a maximal allowed voltage 

increase of 50 µV per millisecond and maximal allowed voltage difference of 500 µV was 

performed. This was done to further improve the exclusion of low-frequency and high-

amplitude artifacts while retaining large slow waves with amplitudes up to 200 Hz and fast 

synchronization dynamics (Bernardi et al., 2018). Next, data were segmented into epochs of 4 

seconds and manually checked for bad channels or signal distortions. Lastly, semi-automatic 

ocular rejection ICA were performed on the whole recordings.  

 

2.5.4. Spatial PCA of Slow Wave Activity  

Dimension reduction analyses (spatial PCA) of slow wave activity (0.5-4 Hz) were performed 

with Analyzer software (Brain Products GmbH; v2.0.2). In preparation for spatial PCA, nap 

recordings were bandpass filtered again to contain only slow wave activity (high pass at 0.5 

Hz, low pass at 4 Hz, zero phase shift IIR Butterworth). Based on the findings of Bernardi et 

al. (2018), slow wave activity should be reducible to a few fronto-central, parieto-central, and 

lateralized components. Following that assumption, electrodes that are most likely affected by 

eye movements (LOC, ROC, Fp1, Fp2, AF7, AF3, F7, F8) were excluded to reduce potential 

noise in covariances of slow wave activity. As consequence, 54 channels were left for 

component estimations.  

Accordingly, spatial PCA on whole nap recordings were performed. These were based 

on covariance matrices of slow wave activity at 54 channels during the 30-minute nap interval 

and varimax rotation (max. 25 iterations). Components with loadings above 1 were extracted 

and the 2 largest components emergent in each participant were selected for further analyses. 

 

2.5.5. Spectral Analyses 

To obtain spectral powers, FFT (Fast Fourier Transformation, 50% overlap, Hanning) was 

applied to consecutive 4 sec segments, using BrainVision Analyzer software (Brain Products 

GmbH; v2.0.2). Using the parameters FFT yielded a frequency resolution of 0.195 Hz. Power 

in the slow wave band was defined by its limiting frequency bins 0.5 and 4 Hz. 
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2.5.6. Statistical Analyses  

Descriptive and correlational analyses were performed with the Statistical Package for the 

Social Sciences (SPSS; v25) and BrainVision Analyzer software (Brain Products GmbH; 

v2.0.2). Prior to further analyses, the effect of task difficulty on post-nap recognition 

performance was examined with paired-sample t-tests with task load (high/low) as a factor.  

Recognition scores and total SWA powers were examined for outliers, using the exclusion 

criteria xi ˃ Q3 + 1.5 * IQR or xi ˂ Q1 - 1.5 * IQR (IQR = ‘ interquartile range’; Q1 and Q3 

denote the first and third quartiles of rank-ordered values). Descriptive measures (average, 

standard deviation) of pre-nap wake and sleep stage (stages N1-3) durations were computed. 

Next, 8 electrodes, spanning across the anterior-posterior axis, were selected (F3, F4, 

C3, C4, P3, P4, O1, O2) in accordance with slow wave propagation across the anterior-

posterior axis of the brain (Bernardi et al., 2018, Siclari et al., 2014, Massimini et al., 2004).  

For each recording, slow wave powers at selected electrodes were averaged across each 

individual sleep stage (including pre-nap wake) as well as across the whole nap period. 

Prior to the correlational analyses, paired t-tests were used to examines power 

differences at selected electrodes for pre-nap wake vs. N1 sleep and N1 sleep vs. N2-3 sleep. 

Hereafter, spectral power values for all selected electrodes were log-10 transformed. Finally, 

log-10 power values for the whole recording as well as individual sleep stages were correlated 

(Pearson) with post-nap scene recognition scores. Also, variances explained by selected 

components underlying cortical involvement of slow wave activity during the nap were 

correlated (Pearson) with scene recognition. 

 

2.5.7. Permutation Test of Observed Memory Correlates 

The robustness of observed correlations was examined in permutations of the whole sample. 

In each permutation (N – 1, N = ‘size of sample used for correlational analyses’), correlation 

coefficients were computed under exclusion of one datapoint that could greatly affect the 

linearity of the data. These so-called influential datapoints were identified on the basis of their 

position on the scatterplots of either explained variance or power on selected electrodes 

plotted against scene recognition scores. A datapoint was considered influential in a 

scatterplot if it was father away from a linear fitting line that any other point. Each further 

influential datapoint was identified as the one farther away from a linear fitting line that any 

other point after exclusion of the previous one. 

 In such an iterative way 6 datapoints were selected from scatterplots of explained 

variance against scene recognition for analysed components of cortical involvement of slow 
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wave activity. In scatterplots of slow wave power against scene recognition, datapoints 

consistently identified as influential in all analysed electrodes (F3, F4, C3, C4, P3, P4, O1, 

O2) were selected. These selected datapoints were then individually excluded from the whole 

sample (N - 1) to yield sample permutations for variance and power correlates of scene 

recognition, respectively. The chosen number of 6 sample permutations per correlational 

model (variance or power) was based simply on the number identified influential points. 

 To determine significance of observed correlations Benjamini–Hochberg correction 

was applied to all sample permutations of a given correlate. In other words, variance 

correlates were significant if they survived Benjamini–Hochberg correction for all sample 

permutations. Likewise, single-electrode correlations reached significance only if they 

survived Benjamini–Hochberg correction in all sample permutations.  

 In each correlational model, correlation coefficients yielded by each sample 

permutation were arranged from smallest to largest, each value received the respective rank i 

(1 = smallest value, 6 = biggest value). As recommended by Lee and Lee (2018) for 

explorative work, the false positive rate (FPR) was set to .1, corresponding to a risk for one 

false positive per 10 cases. Such a methodology was meant to balance specificity (multiple 

sample permutations to test robustness of correlations) and sensitivity (less-conservative type 

I error correction). The Benjamini–Hochberg-corrected significance threshold for each sample 

permutation was calculated as p < (i / 6) ∙ FPR. In this way, the following significance 

thresholds were computed for lowest to highest ranked correlation coefficients: .017, .033, 

.05,  .063, .083, 0.1 (Lee & Lee, 2018). 

 

3. Results 

Based on visual inspection, ICA, and sleep scorings, the complete recordings of participant 26 

and 27 were excluded from analyses because the data were too noisy, or the participant did 

not fall asleep. Also, one outlier (day 1 of participant 21) based on recognition scores was 

removed from further analyses. Further, sleep stages N2 and N3 were summarized in the 

following analyses as not all participants reached N3 sleep during the napping period (see 

section 3.5). 

 

3.1 Behavioural Data 

No significant effects of task load on post-nap recognition score were found (t(18) = .84, p = 

.3). Based on non-significance of task load and the equal number of presented scenes in either 

load condition, task load was omitted in further analyses in favour of statistical power. Thus, 
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the final dataset used for further analyses comprised day 1 of participants 13, 17, 19, 20, 23, 

28, 29 and day 2 of participants 11, 12, 14, 15, 16, 18, 21, 22, 25, 30, 32 (N = 18). Participants 

recognized between 58% and 81% of positive probes shown after the nap (M = 72.2% , SD = 

6.73%). The distribution of recognition scores roughly resembled a normal distribution with 

most scores (n = 9) ranging between 70-74 percent (see figure 2).  

 

 
Figure 2. Distribution of recognition scores roughly resembles a normal distribution, with most scores 
cumulating around the mean (M = 72.2 %). 

 
3.2. Polysomnographic Features of the Nap Period  

On average participants fell asleep after ~ 5 minutes upon recording onset in the sleep lab and 

spend most of their time in sleep stages N2-3, upon entering N1 sleep for about 6 minutes (see 

table 1). As illustrated in figure 3, disruption of continuous activity in the alpha band (~10 

Hz) and increases in slow wave (<4 Hz) and spindle activity (~15 Hz) early in the recording 

marked sleep onset.  

 

Table 1. Polysomnographic parameters 

Sleep parameter  M (SD) % of total nap time 

pre-nap wake 292.61 sec (108.4 sec) 16.5 

Total sleep time 1480.67 sec (107.63) 83.5 

Sleep stage N1 387.22 sec (175.28 sec) 21.8 

Sleep stages N2-3 1093.44 sec (228.29 sec) 61.7 
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Figure 3. Time-frequency distribution of activity at electrode C3 across the nap period. 

 

3.3. Power Differences across the Nap Period 

Slow wave power, averaged across all selected electrodes, did not differ significantly between 

pre-nap wake and sleep stage N1, yet showing great differences between sleep stages N1 and 

N2-3 (M = 1.32 μVଶ, SD = .44 μVଶ vs. M = 2.94 μVଶ, SD = 1.2 μVଶ, t(17) = 6.2, p  < .001). 

Average slow wave power showed a clear peak over frontal electrodes (F3, F4) during pre-

nap. Although no single-electrode comparison between pre-nap wake and sleep stage N1 

reached significance, the data suggest a spread or dispersion from one clear focus during pre-

nap wake (dark areas in figure 4, left graph) along the anterior-posterior axis (light areas in 

figure 4, left graph). In contrast, single-electrode comparisons between sleep stage N1 and 

N2-3 were highly significant (p < .001). Noteworthy, the greatest increases in slow wave 

power were observed for electrodes P3 (t(17) = 6.76, p < .001), C4 (t(17) = 5.72, p = p < 

.001), C3 (t(17) = 5.62, p = p < .001), and O2 (t(17) = 6.29, p < .001). 
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Figure 4. Differences in slow wave power across the anterior-posterior axis (order of electrodes: F3, F4, C3, C4, 

P3, P4, O1, O2. Powers are indicated in μVଶ (left: 0-2.2 μVଶ; right 0-5 μVଶ). The left graph shows power 

differences between pre-nap wake and sleep stage one: dark areas (pre-nap wake > sleep stage N1), light areas 

(pre-nap wake < sleep stage N1). The right graph shows power differences between sleep stages N1 and N2-3: 

light areas (stage N2-3 > stage N1). Significant power differences are marked with a star (paired t-test). 

 

3.4. Effects of Cortical Involvement of Slow Wave Activity on Scene Recognition  

In all recordings but those of participants 13 and 30, cortical involvement of slow wave 

activity (0.5-4 Hz) was reducible to three or four main components, together explaining more 

than 92.72% (SD = 4.16%) of variance: a parieto-central component with largest cortical 

involvement that extends over central, parietal, temporal, and occipital areas, explaining 

64.68% variance on average (SD = 14.52%), another fronto-central component with great 

cortical involvement spreading towards frontal, central and to a lesser extent temporal areas, 

explaining 20.4% variance on average (SD = 7.04%), and a small, lateralized components, 

explaining 3.26% (SD = 1.64%) respectively (for a small summary of PCA components for 

the first 4 recordings see Appendix D). Figure 5 illustrates above reported component 

structure underlying the cortical involvement of slow wave activity, throughout the nap, with 

single participant data. The finding of most variance in slow wave activity being explained by 

a parieto-central component clearly contrasts the above observed frontal predominance of 

average slow wave power across the nap. (see figure 4). Overall, low variation in cumulative 

variance explained by the main components resonated with the highly uniform component 

structure found in all but two participants. Interestingly, variation in the largest, parieto-

central component was twice as high as in the second-largest, fronto-central component. 

 

 
Figure 5. Cortical involvement of slow wave activity (0.5-4 Hz) throughout the nap period can be reduced to 

three or four principal components cumulatively explaining more than 92.72% of variance: Two large parieto-

central and fronto-central components and less pronounced, lateralized components (illustrated with single-

participant data). 
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Recordings of participants 13 and 30 showed a markedly different cortical involvement of 

slow wave activity. Both recordings showed much less pronounced and unified parieto-central 

components, against the background of most variance being explained by fronto-central 

components. Such weak cortical involvement of slow wave activity in parieto-central regions 

coincided with low recognition scores for participants 13 and 30 (60% and 58%).  

Further, based on inspection of their potential to influence linearity in the data, the 

following participants were selected for permutation tests (see section 2.5.7.). Participants 12, 

13, 18, 25, and 32 were selected to test the robustness (Benjamini–Hochberg correction) 

variance correlates of scene recognition for parieto-central components of slow wave activity. 

Participants 12, 13, 18, 25, and 28, were selected to test the robustness (Benjamini–Hochberg 

correction) variance correlates of scene recognition for fronto-central components of slow 

wave activity (see Appendix C).  

 

3.4.1. Parieto-central Involvement of Slow Wave Activity and Scene Recognition 

Almost 2/3 of variance observed in slow wave activity (0.5-4 Hz) throughout the nap were 

explained by the largest, parieto-central component (M = 64.68%, SD = 14.52%). This prime 

focus was not only characterized by extensive cortical involvement over posterior regions but 

also great spread along the anterior-posterior axis and laterally. Importantly, the amount of 

variance explained by the parieto-central component showed highly stable correlations with 

scene recognition in all sample permutations and survived Benjamini–Hochberg correction 

(r(18) = .42, p  = .043; overall highest p = .059)(see figure 6).  

Individual topographies of parieto-central components further supported these robust 

variance correlates. Less pronounced involvement of parieto-central regions coincided with 

lower scene recognition scores and vice versa. In particular, weak posterior components and 

very low scene recognition scores for participants 13 and 30 further corroborated the observed 

memory correlates of parieto-central involvement of slow wave activity (see figure 7, data of 

participant 13 included). 
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Figure 6. Correlations of variance explained by the prime, postero-central component, with scene recognition. 
 

 
Figure 7. Topographical maps of postero-central involvement of slow wave activity (0-10 μVଶ) throughout the 

whole nap. Individual cases are presented in descending order of scene recognition scores (left-to-right): 81% 

recognized, 70% recognized, 60% recognized.  

 

3.4.2. Fronto-central Involvement of Slow Wave Activity and Scene Recognition 

The second-largest, fronto-central component showed a larger covariance/involvement peak 

than the prime, parieto-central component, corresponding to anterior predominance in slow 

wave power across the nap. Yet on average, it explained only a fifth of overall variance in 

slow wave activity (M = 20.4%, SD = 7.04%). The above-mentioned lack of strong parieto-

central involvement of slow wave activity in the recording of participant 30 yielded a fronto-

central, primary component, explaining most of the variance (60.17%). Such deviant 

component structure not only resonated with a low recognition score (58%) but also skewed 

the linear relation between variance explained by the fronto-central component and scene 
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recognition (see Appendix C). Correlates of sample permutations corroborated that exclusion 

of participant 30 yielded a good correlation (r(17) = .5, p = .021) with scene recognition. 

However, no model survived Benjamini–Hochberg correction, in fact inclusion of day 2 of 

participant 30 distorted any linear relationship to coefficients well above .1. Topographical 

maps of fronto-central components (excluding participant 30) corroborated a proportional 

relation between cortical involvement of slow wave activity in fronto-central areas and scene 

recognition: low fronto-central involvement of slow wave activity predicted low scene 

recognition scores and vice versa (see Figure 8). 

 

 
Figure 8. Topographical maps of fronto-central involvement of slow wave activity (0-10 μVଶ) averaged across 

the whole nap. Individual cases are presented in descending order of scene recognition scores (left-to-right): 81% 

recognized, 70% recognized, 60% recognized.  

 

3.5. Slow wave Power and Scene Recognition 

Based on inspection of their potential to greatly influence linearity in the data (see section 

2.5.7.), participants 11, 12, 14, 18, 25, and 30 were selected to test the robustness of observed 

slow wave power correlates of scene recognition (see Appendix C). 

 

3.5.1. Total nap and Scene Recognition Scores 

Power in the slow wave band (0.5-4 Hz), averaged across the whole nap period, correlated 

with post-nap scene recognition. Effects of slow wave power were strongest and survived 

permutations tests with Benjamini–Hochberg correction for electrodes C3 (r(18) = .514, p = 

.015), C4 (r(18) = .445, p = .032) P3 (r(18)  = .429, p = .039), and F3 (r(18)  = .406, p = 

.047)(see figure 9). Among these effects, only frontal and central foci were reflected in 

individual topographies of slow wave power across the nap. Although slow wave activity 

occurred widespread along the anterior-posterior axis in all participants, low scorers showed 

notably less magnitude and spread from fronto-central foci to posterior areas (see figure 10). 
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Figure 9. Correlations of central (C3) slow wave power averaged across the whole nap with scene recognition. 

 
Figure 10. Topographical maps of slow wave power (0-10 μVଶ) averaged across the whole nap period. Single 

cases are presented in descending order of scene recognition scores (left-to-right): 81% recognized, 70% 

recognized, 58% recognized.  

 

3.5.2. Pre-nap Wake and Scene Recognition Scores 

During pre-nap wake, correlations of slow wave power with scene recognition did not survive 

permutations tests with Benjamini–Hochberg correction at any selected electrode (see section 

2.5.7.). Neither did individual differences in topographies of behave proportionally to scene 

recognition scores. In fact, average powers and topographies across pre-nap wake differed 

markedly from their sleep counterparts within some participants. Noteworthy, average slow 

wave power during pre-nap wake showed a more frontal predominance when compared to the 

larger spread in posterior direction observed in the total average (see figure 11). 
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Figure 11. Topographical maps of slow wave power (0-5 μVଶ) averaged across individual pre-nap wake periods. 

Single cases are presented in descending order of scene recognition scores (left-to-right): 81% recognized, 70% 

recognized, 58% recognized.  

 

3.5.3. N1 Sleep and Scene Recognition Scores 

Across initial sleep (stage N1) , average slow wave power emerged as correlate of post-nap 

scene recognition. Permutations tests with Benjamini–Hochberg correction yielded significant 

correlations for electrodes P3 (r(18)  = .546, p = .01), C3 (r(18) = .54, p = .01), and O1 (r(18)  

= .43, p = .038) (see figure 12). Average power in the slow wave band did not increase 

significantly across initial sleep (stage N1) when compared to pre-nap wake. Yet, slow wave 

activity showed extended spread from frontocentral to parietal and occipital regions (see 

figure 4). Such progressive spread across the cortex corresponded well with the corrected 

memory correlates found at central, parietal, and occipital sites. Individuals scoring high on 

post-nap scene recognition showed greater slow wave spread and magnitude thereof from 

frontocentral foci to posterior regions, and vice versa for low scorers (see figure 13). 
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Figure 12. Correlations of parietal (P3) slow wave power averaged across N1 sleep with scene recognition. 

 
Figure 13. Topographical maps of slow wave power (0-5 μVଶ) averaged across individual N1 sleep periods. 

Single cases are presented in descending order of scene recognition scores (left-to-right): 78% recognized, 70% 

recognized, 58% recognized.  

 

3.5.4. N2-3 Sleep and Scene Recognition Scores 

As expected, slow wave power increased greatly and globally across participants upon entry 

into sleep stage(s) N2-3 (see figure 2). As sleep stages N2-3 together constituted the major 

part of the napping period, memory correlates of slow wave power strongly resembled the 

total average reported above: Permutations tests with Benjamini–Hochberg correction yielded 

significant correlations at electrodes C3 (r(18) = .494 p = .019), C4 (r(18) = .442 p = .033), 

and F3 (r(18) = .41 p = .045) (see figure 14). Also correlates at recording site P3 showed 

robust correlations across all permutations and survived Benjamini–Hochberg correlations for 

all but the first ranked correlation by a mere factor of .0001 and were thus classified as 
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significant. In line with power correlates at frontal, central, and parietal sites, individual slow 

wave power topographies showed proportional relations with scene recognition: high scorers 

showed considerably greater magnitude and more comprehensive spread of slow wave 

activity across the cortex when compared to low scorers (see Figure 15). 

 

 
Figure 14. Correlations of central (C3) slow wave power averaged across N2-3 sleep with scene recognition. 

 
Figure 15. Topographical maps of slow wave power (0-10 μVଶ) averaged across individual N2-3 sleep periods. 

Single cases are presented in descending order of scene recognition scores (left-to-right): 81% recognized, 70% 

recognized, 58% recognized.  

 

4. Discussion 

The present study examined whether individual differences in cortical involvement of slow 

wave activity during a nap predict subsequent recognition of real-life sceneries. In addition, 

the effects of slow wave power on scene recognition were examined for each sleep stage 
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(including pre-nap wake) as well as for the whole nap period. Cortical involvement of slow 

wave activity throughout the nap was reducible to a few main components, which emerged 

consistently in most participants. Of these, a prime, parieto-central component accounted for 

the majority of cortical involvement, followed by smaller fronto-central and lateralized 

components. The consistency of the observed component structure across participants agreed 

with small differences in variance explained in all but the largest, parieto-central component. 

Importantly, individual differences were not only considerably bigger for parieto-central 

involvement of slow wave activity, they also strongly predicted scene recognition.  

 These parieto-central variance correlates of scene recognition further overlapped 

topographically with power correlates found in the whole nap and specific sleep stages. 

Against the background of anterior power predominance, power correlates emerged at fronto-

parieto-central sites across the whole nap period. During single sleep stages, most robust 

correlates were found at parietal and central sites, whereas frontal correlates were found only 

during deeper NREM sleep (stages N2-3), as slow wave power increased on average. In 

contrast, no power correlates emerged during pre-nap wake, where individual topographies 

showed slow wave power rather restricted to frontal regions. Altogether, these observations 

led to acceptance of both predictions.  

 

4.1 Slow Wave Homeostasis and Consolidation of Scene Memory 

In resemblance to the findings of Bernardi et al. (2018), a few, fronto-central, parieto-central, 

and lateralized components accounted for virtually all variance in slow wave activity 

throughout the nap. Yet, the variances explained by respective components differed crucially 

to those reported by Bernardi et al. (2018), where no learning occurred prior to sleep: cortical 

involvement of slow wave activity was majorly accounted for by a parieto-central and not 

fronto-central component.  

The magnitude of these group-level differences resonates with homeostatically 

increased involvement of slow wave activity in visual areas linked to scene memory (Silson et 

al., 2019; Bernardi et al., 2018; Hirshhorn et al., 2012). More importantly, individual 

differences in parieto-central involvement of slow wave activity predicted scene recognition. 

That links consolidation of scene memory mainly to incidence and traveling of slow waves in 

parieto-central, visual pathways, considering lower slow wave power observed in posterior 

regions (Silson et al., 2019; van Assche et al., 2016).  

The topographical congruence of memory correlates found in both involvement and 

power of slow wave activity in parieto-central areas is also in good agreement with prior 
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literature. Slow wave power correlates of visuospatial memory, localized by Huber et al. 

(2004) to parietal areas around the intraparietal sulcus (IPS), resonate highly with robust 

correlations at parietal sites. Likewise, highly robust memory correlates at central derivations 

agree well with dependence of visually acquired spatial or scene memory upon activity in the 

postcentral gyrus and precuneus (Hirshhorn et al., 2012). 

Ultimately, memory correlates of parieto-central involvement of slow wave activity 

agree with the proportional downscaling model proposed by SHY (Tononi & Cirelli, 2014). 

Learning prior to the nap should have increased homeostatic pressure in visual areas linked to 

scene memory. The more and farther slow waves travel over these areas during the nap, the 

more homeostatic pressure is released, while salient connections, such as fresh scene 

memories, are preserved and integrated into established networks (Silson et al., 2019; 

González-Rueda et al., 2018; Stern, 2018; van Assche et al., 2016; Hirshhorn et al., 2012). In 

that way, only circumscribed parieto-central involvement of slow wave activity in participants 

13 and 30 explains their low recognition scores, as it reflects less extensive consolidation of 

scene memory during the nap (Tononi & Cirelli, 2014). 

   

4.2. A Link between Power and Cortical Involvement of Slow Wave Activity  

Derived from individual slow wave analyses, the dualistic slow wave synchronization model, 

by Bernardi et al. (2018) and Siclari et al. (2014), matches observations made here along 

broader measures of cortical involvement and power. Cortical involvement mainly reflects 

incidence and traveling behaviour of slow waves throughout a cortical region, in a given time 

period (see section 1.3.). In contrast, measures of slow wave power are rather driven by both 

amplitude and incidence of slow waves (see section 1.2.).  

Together, high power but lower involvement of slow wave activity in fronto-central 

regions suggest prevalence of large-amplitude but less numerous, slow waves. That agrees 

with the fronto-central prevalence of Type 1 slow waves observed by Bernardi et al. (2018). 

In turn, lower power but higher involvement of slow wave activity in parieto-central or 

posterior regions suggest prevalence of small but more abundant slow waves. That is in line 

with ubiquitous occurrence of Type 2 slow waves and their learning-dependent/homeostatic 

increases in visual areas. (Bernardi et al., 2018; Assche et al., 2016; Hirshhorn et al., 2012). 

 Such a delineation of slow wave types with respect to cortical involvement and power 

agrees well with the observations made here. Prior to sleep onset, frontal predominance of 

slow wave power and absent memory correlates agree with arousal-dependent fluctuations in 

synchronization, affected by default-mode-network activity (Siclari et al., 2014; Sämann et 
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al., 2011). During sleep, widespread, fronto-central predominance of slow wave power and 

correlations thereof with scene recognition during deeper sleep stages (N2-3) agree with low 

arousal tone and a more comprehensive “reset” in brain activity (Bernardi et al., 2018). 

Fronto-central power predominance clearly contrasted the majorly parieto-central 

involvement of slow wave activity. That implies that parieto-central memory correlates in 

both measures mainly reflected individual differences in incidence and traveling of small-

amplitude, Type 2 slow waves. Noteworthy, parieto-central memory correlates of slow wave 

power were present during nap sleep but not wake. That further agrees with homeostatic 

regulation of Type 2 slow waves and their dependence upon low arousal and a comprehensive 

“reset” of brain activity during NREM sleep (Bernardi et al, 2018). In corroboration, Mascetti 

et al. (2013) also found that slow wave incidence in posterior areas during nocturnal NREM 

sleep predicted overnight improvement in visual, perceptual learning. Altogether, measures of 

cortical involvement and power clearly outline a link between consolidation of scene memory 

and parieto-central or posterior incidence of smaller, Type 2 slow waves during NREM sleep.  

 

4.3. Consolidation or Evolution of Memory during Sleep? 

The observed importance of parieto-central parts of the cortex for scene recognition may be 

further considered with respect to evolution of new memories, as they become consolidated 

during sleep. Reviewing a considerable number of studies, Robin and Moscovitch (2017) 

highlighted the dynamic and flexible evolution of memories over time. Majorly based on 

fMRI, they identified a functional differentiation along the cortical anterior-posterior axis: 

anterior areas, such as the medial prefrontal cortex (mPFC) mediate retrieval of conceptual, 

higher-order information, while retrieval of perceptual details recruits posterior regions, such 

as the precuneus or IPS (Robin, & Moscovitch, 2017).  

Critically, Robin, and Moscovitch (2017) argue that these evolution trajectories 

depend on the scale of detail and nature of a given task. Robust memory correlates of slow 

wave activity in parietal and central regions linked to visual processing agree with the use of 

perceptually rich, real-life sceneries in the present study. In contrast, tasks that require the 

extraction of superordinate information from given stimuli should engage anterior cortical 

regions during sleep or specifically NREM sleep. Verleger et al. (2013) examined sleep-

dependent processing of information acquired during the number reduction task (NRT).  

Conceptionally, the NRT contrasts the subsequent memory paradigm employed here. 

It does not rely on retention of perceptual details to guide subsequent recognition but on 

insight into higher-order regularities in processed stimuli. In line with a comprehensive 
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synchronization permissive of homeostatic oscillatory events such Type 2 slow waves or 

spindles (Bernardi et al. 2018), insight in the NRT relied upon NREM, or specifically N3, 

sleep. Although no effects were found in the slow wave band, overnight insight was 

associated with increased power in the alpha or slow sleep spindle band (10-12 Hz) at central 

electrodes (Verleger et al., 2013).  

As demonstrated here, measures of slow wave power alone may be too broad to 

capture learning-dependent changes in slow wave homeostasis, especially if averaged over 

hours of sleep. Such insensitivity may be particularly high in fronto-central regions, where 

arousal-dependent, high-amplitude slow waves prevail. Yet, the observed link between slow 

spindle activity at central electrodes and overnight insight in the NRT is in line with task-

dependence of memory evolution (Robin, & Moscovitch, 2017). Indeed, observed slow 

spindle powers at central sites correspond roughly to their usually anterior predominance 

(Cox et al., 2017). Spindles mediate replay of learning-associated activity patterns during 

sleep. Thus, their presumably anterior occurrence agrees with sleep-dependent extraction of 

higher-order regularities from prior practice with the NRT (Robin, & Moscovitch, 2017) 

 

4.4. Limitations 

Somewhat ironically, a confounding factor in the present study might have been a disturbance 

in above discussed slow wave homeostasis. Each participant performed the experiments over 

two consecutive days. However, the slight sleep deprivation prior to each experiment due to 

instructed delay (2 hours) in sleep onset, might have conceivably affected homeostatic slow 

wave synchronization during the nap. Cumulative potentiation in motor and sensory areas 

from prolonged wakefulness, might have enhanced homeostatic slow wave occurrence in 

fronto-central but especially postero-central regions, involved in visual processing (Huber et 

al., 2013). In fact, most participants selected for sample permutations were recordings made 

on the second, consecutive day of the experiments. 

 Further, the explorative aim of the present study motivated a generous FPR set to .01. 

Six sample permutations and Benjamini–Hochberg-corrected significance thresholds of  ≤ .05 

for the three strongest correlates, were performed to test the robustness of correlations. Single 

deviations from major trends, such as participant 30, severely skewed observed effects, 

informing about the functional relevance of observed deviations (low scene recognition). 

 Lastly, it must be highlighted that small-sample correlational studies overall come 

with considerable risk for both type I and II errors, particularly for the latter (Knudson & 

Lindsey, 2014). Nonetheless, the statistical power yielded by most of the performed analyses 
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was well below 80%. Statistical power for Benjamini-Hochberg-corrected memory correlates 

of parieto-central involvement of slow wave activity amounted to 40%. Likewise, power 

correlates of scene recognition based on the whole nap period posed a high risk (41-61%) for 

type II errors: electrode C3 (1-β = .61), C4 (1-β = .41), P3 (1-β = .48). 

 

4.5. Conclusion and Future Recommendations 

Dimensional reduction of neural signals, using PCA, is anything but a novel technique. In 

fact, it is widely used: from decomposition of even-related potentials and characterization of 

cortical involvement to delineation of neural network activities and classification of neuron 

types (Gouwens et al., 2019; Bernardi et al., 2018; Martínez, Rahsepar, & White, 2017; 

Bernat, Williams, & Gehring, 2005). Yet, the present study provided novel evidence that such 

dimensional reduction can be used to study memory processing in the sleeping brain. 

On the group-level, the component structure of slow wave activity informed about 

global, learning-dependent changes in cortical involvement, as shown in comparisons with the 

work of Bernardi et al. (2018). More importantly, individual differences in this slow wave 

component structure seemed to reflect the extent of homeostatic slow wave generation and 

memory consolidation. Indeed, spatial PCA outdoes conventional measures, such as power or 

power density averages, as it rather informs about abundance than size of slow waves in a 

given time period. This is crucial, as mainly smaller Type 2 slow waves are shown to respond 

to learning-dependent changes in homeostatic pressure and proportional release thereof 

(Bernardi et al., 2018; Tononi & Cirelli, 2014; Mascetti et al., 2013). 

Still, many avenues need to be explored. A time-frequency decomposition of main 

slow wave components should reveal how cortical involvement of slow wave activity 

develops over a given period. Such an approach would compensate for the lack of temporal 

resolution in the PCA used here. Further, more rigorous analyses of individual slow waves 

should inform how exactly variance explained by PCA components relates to abundance of 

slow waves in a given region. Such an individual approach to slow wave detection and 

analysis, as adopted by Bernardi et al. (2018), was provided by Mensen, Riedner, and Tononi, 

(2016). Their Matlab-based toolbox (https://github.com/Mensen/swa-matlab) allows for 

characterization of individual waves, based on various morphological and topographical 

features. Nonetheless, spatial PCA may provide a novel tool to assess memory consolidation 

and learning-dependent changes in slow wave homeostasis, in recordings of sufficient length 

and electrode density. 
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6. Appendices 
Appendix A 

Electrode placement during EEG measurements with Fpz as ground and TP9 as reference 

electrodes. 
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Appendix B 

Scatterplots of log-10 slow wave power against scene recognition scores for eight, selected 

electrodes: F3, F4, C3, C4, P3, P4, O1, O2. Slow wave power (log-10(uV^2) 

 
Figure 1. Correlations of slow wave power at recordings site F3 averaged across the whole 

nap with scene recognition. 

 

 
Figure 2. Correlations of slow wave power at recordings site F4 averaged across the whole 

nap with scene recognition. 
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Figure 3. Correlations of slow wave power at recordings site C3 averaged across the whole 

nap with scene recognition. 

 

 
Figure 4. Correlations of slow wave power at recordings site C4 averaged across the whole 

nap with scene recognition. 
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Figure 5. Correlations of slow wave power at recordings site P3 averaged across the whole 

nap with scene recognition. 

 

 
Figure 6. Correlations of slow wave power at recordings site P4 averaged across the whole 

nap with scene recognition. 
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Figure 7. Correlations of slow wave power at recordings site O1 averaged across the whole 

nap with scene recognition. 

 

 

 
Figure 8. Correlations of slow wave power at recordings site O2 averaged across the whole 

nap with scene recognition. 
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Appendix C 

Scatterplots of the variance explained by the two, prime components of slow wave scalp 

involvement throughout the nap against scene recognition. 

 

 
Figure 1. Correlations of the variance explained by the biggest postero-central component 

with scene recognition. 

 
Figure 2. Correlations of the variance explained by the second biggest fronto-central 

component with scene recognition 
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Appendix D 

The dimensional structure of slow wave scalp involvement illustrated on the basis of the first 

four recordings. Noteworthy, a postero-central component explained most of the variance in 

slow wave activity, followed by fronto-central and lateralized component. 

 

 


