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Summary

The spatial distribution of a variable, such as the energy consumption per company, is usually plotted
by colouring regions of the study area according to an underlying table which is already protected
from disclosing sensitive information. The result is often heavily influenced by the shape and size of
the regions. In this report, we are interested in producing a continuous plot of the variable directly
from microdata. We will investigate methods to recalculate the original data from the plot and see
that it is needed to protect the plot from disclosing sensitive information. We give three methods to
do so by adding random noise. We consider a simple attacker scenario and develop an appropriate
sensitivity rule that can be used to determine the amount of noise needed to protect the plot from
disclosing private information for each of the methods.
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1 � Introduction

Statistical disclosure control is an important element when producing official statistics of economic,
social and demographic data. In many countries, laws ensure that no information on individual
subjects like persons and companies can be deduced from the published data. The law applies to
tables, but also to the new visualisation techniques that we will consider in this report. The goal
of this research and an outline of the report are given in Section 1.3. First, we introduce Statistics
Netherlands for which this research was carried out in Section 1.1 and present the traditional way of
visualizing data on maps in Section 1.2.

1.1 � Statistics Netherlands
Statistics Netherlands (Dutch: Centraal Bureau voor de Statistiek, CBS) is the Dutch national
statistical institute. It was founded in 1899, because of the need to have independent and reliable data
to understand social issues. Its history is described in great detail by Van Maarseveen and Schreijnders
(1999). As of today, Statistics Netherlands has around 2000 employees, divided amongst their offices
in The Hague and Heerlen, as well as a small office on Bonaire. This research was specifically carried
out for the methodology department in The Hague. That department performs research on the
methods with which statistics are created. Examples include developing methods to estimate data
that are not yet available or methods to guarantee quality, reliability and unbiasedness of statistics
coming from new data sources.

Still today, the primary task of Statistics Netherlands is to gather and publish statistics of the
national social and economic data. While they are mainly intended to support policy makers, all
of its statistical publications are publicly available. By law, these publications should fulfil the
requirement that it is impossible to deduce information from them on a too detailed level, such as
on individual persons, households and companies. This means that the statistical institutes face a
utility versus disclosure risk trade-off when publishing data.

1.2 � Visualisations
Traditionally, statistical institutes mainly publish tabulated data, for which many disclosure control
methods exist. Nowadays, more publications make use of other visualisation techniques, such as
plots of a spatial distribution on a map. A straightforward way to visualise the spatial structure of
the tabular data on a map is to colour the different regions of the study area according to their value
in a table that was already protected for disclosure control.

In Figure 1.1, one can see an instance of this procedure. For the north-western part of the city
of Enschede, the average gas consumption per household is shown for different grid cell sizes. A
red color indicates a high gas usage, while a blue color indicates a low consumption. To make
these visualisations, existing tabular data was used, where each table cell corresponds to a spatial
grid cell. However, before publishing the table, it was protected for disclosure control, which in
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CHAPTER 1. INTRODUCTION

this particular case means that data is suppressed for grid cells that contain fewer households than
a certain threshold value. The plot with a 100m grid might show clearer hot spots of high gas
consumption, while also a larger area of the map remains uncoloured due to the disclosure control
process.

(a) 500m grid

(b) 100m grid

Figure 1.1: Gas consumption per household in Enschede, averaged over grid cells (https://www.
cbsinuwbuurt.nl)

Instead of colouring grid cells on the map, it is of course also possible to colour the map on munici-
pality level or neighbourhood level, if the data are available. Drawbacks of giving a single colour to
the chosen regions are that the shapes of regions influences the plot quite a lot and that the regions
might not constitute a natural partition of the study area. This makes it difficult for a user to extract
the information from the plot. A smooth plot is often visually more appealing and easier to work
with.
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CHAPTER 1. INTRODUCTION

1.3 � Goal and Outline
For reasons mentioned above, the goal of this project is to make a continuous visualisation on a
geographical map, based on measurements that were taken at finitely many points. The visualisation
should show spatial patterns of the measurements within the study area, but is not allowed to disclose
detailed information about single measurements, since those are regarded as confidential information.
In particular, it is interesting to see whether the smooth visualisation process can account for a tailor
made form of disclosure control.

First, in Chapter 2, we give an overview of disclosure control methods for tabular data, introduce
some preliminaries on creating continuous visualisations on maps and discuss recent research on
the topic. Then, Chapter 3 discusses multiple scenarios in which it is clear that the application of
disclosure control is needed. For one particular scenario, we explain three closely related methods
to do so in Chapter 4. A sensitivity rule is formulated there as well and we prove conditions for our
visualisation to be sufficiently protected according to the sensitivity rule. Our approach is illustrated
by means of simulations and a case study in Chapter 5 and we make some final remarks in Chapter 6.
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2 � Preliminaries and Recent Research

Traditionally, statistical institutes mainly publish tabular data, in both quantitative tables and fre-
quency tables. We will focus on the former ones, in which the cell value is a sum of individual
contributions on a continuous scale. In Section 2.1, we give a broad overview of these methods.
Special attention should be paid to the p% rule, on which we will base our own sensitivity rule in
Chapter 4. We discuss recent research on the subject in Section 2.2 and introduce the concept of
kernel smoothing in Section 2.3.

2.1 � Tabular Statistical Disclosure Control
For publishing tabular data, different rules exist to determine whether a table cell might disclose
sensitive individual information or not. We will discuss the ones most used, introduce additional
theory and describe possible procedures to modify the table so as to make it safe for publication,
whenever any cells are unsafe to publish.

Throughout this section, we write X for a single table cell, to which N(X) individuals contributed.
We let gi be the contribution of individual i, i = 1, . . . , N(X) and we assume that the contributions
are non-negative and ordered decreasingly, i.e. g1 ≥ g2 ≥ . . . ≥ gN(X) ≥ 0. This ordering is called
the contribution sequence of the table cell. The corresponding cell value that we are willing to publish
is denoted by G =

∑N(X)
i=1 gi.

2.1.1 � Sensitivity Rules

Before a table is adapted to make it safe for publication, the cells that might disclose information on
a too detailed level have to be indicated. The minimum frequency rule, (n, k) dominance rule, p%
rule and (p, q) rule check whether or not a table cell is safe to publish (Hundepool et al., 2012).

Minimum frequency rule

A very naive approach would be to classify a cell as unsafe whenever its value consists of less than
f contributions, for some number f , which means that we just require N(X) ≥ f . Whenever this
rule is implemented, it is often used in combination with another rule.

(n, k) dominance rule

The (n, k) dominance rule, sometimes called n respondents, k percent rule, states that the sum of
any combination of n contributions should not exceed k percent of the total cell value. It is easily
checked that this is equivalent to stating that the sum of the n largest contributions should not
exceed k percent of the cell value. In other words, the cell is safe if

n∑
i=1

gi ≤
k

100G. (2.1)
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CHAPTER 2. PRELIMINARIES AND RECENT RESEARCH

p% rule

The p% rule is based upon the scenario in which an attacker who contributes to a certain table cell
tries to get information about another contributor to the cell. He can compute an upper bound for
any other contribution, by subtracting his own value from the cell total. Mathematically, the p% rule
states that an upper bound computed in this way, is not allowed to exceed the actual contribution
with less than p ≥ 0 percent for any combination of attacker and target. That is, the relative error
of the estimate should be larger than p%:

G− gi ≥
(

1 + p

100

)
gj for i 6= j.

Obviously, a necessary condition for this equation to hold for any i 6= j, is that it holds for i = 2,
j = 1, i.e. the second largest contributor cannot estimate the value of the largest contributor within
p percent of the true value. We will now show that this condition is also a sufficient condition. In
case we assume j 6= i 6= 1, we have

G− gi ≥ G− g2 ≥
(

1 + p

100

)
g1 ≥

(
1 + p

100

)
gj ,

while in case j 6= i = 1, we obtain

G− gi = g2 +G− g2 − g1 ≥ g2 +
(

1 + p

100

)
g1 − g1 = g2 + p

100g1 ≥
(

1 + p

100

)
gj

as well, so that we can formulate an equivalent p% rule that is easier to check:

G− g2 ≥
(

1 + p

100

)
g1. (2.2)

Most sources only give (2.2) as the p% rule, without mentioning or showing the derivation above.
If (2.2) is not satisfied, the cell is considered unsafe. If N(X) = 1 or N(X) = 2, where we define
g2 = 0 in the former case, we have G− g2 = g1, so the p% rule is violated for any value of p > 0,
which means that this rule implies a minimum frequency rule with f = 3.

We also note that an attacker that does not contribute to the table cell can only use G as an estimate
for any contribution. Since G ≥ G − gi for i = 1, . . . , N(X), this situation is captured by the p%
rule as well.

(p, q) rule

The (p, q) or prior-posterior rule is an extension of the p% rule. It is again based upon the scenario
in which a contributor wants to estimate an upper bound for a single other contribution, but now he
already knows lower bounds for the other N(X)−2 contributions, guaranteed to have relative errors
of at most q > 0 percent each. The strategy of the attacker is to subtract his own contribution
and the lower bounds from the total cell value. The (p, q) rule then states that this estimate is not
allowed to be within p < q, p ≥ 0 percent of the real value, i.e. we require

G− gi −
∑
k 6=i,j

(
1− q

100

)
gk ≥

(
1 + p

100

)
gj for i 6= j,
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CHAPTER 2. PRELIMINARIES AND RECENT RESEARCH

which is equivalent to each of

G− gi − gj −
∑
k 6=i,j

(
1− q

100

)
gk ≥

p

100gj ,∑
k 6=i,j

q

100gk ≥
p

100gj ,∑
k 6=i,j

gk ≥
p

q
gj ,

and G− gi ≥
(

1 + p

q

)
gj ,

from which we can follow a similar derivation as at the p% rule to arrive at the equivalent (p, q) rule

G− g2 ≥
(

1 + p

q

)
g1. (2.3)

We notice that only the fraction p/q defines this rule and that a (p, 100) rule is equivalent to the
p% rule.

2.1.2 � Upper Linear Sensitivity Measures

Sensitivity rules are formalised by Cox (1981), who introduced the concept of upper linear sensitivity
measures. An upper linear sensitivity measure S(X) of a cell X is a linear combination of the cell
contributions. Let us first define gi = 0 whenever i > N(X) for notational convenience and again
order the individual contributions to a table cell X as g1 ≥ g2 ≥ . . . ≥ gN(X) ≥ 0. Then an upper
linear sensitivity measure S(X) is defined as S(X) =

∑∞
i=1wigi, where the sequence of constants

{wi}∞i=1 is called the sequence of weights of S(X). A cell X is called sensitive whenever S(X) > 0.

Important upper linear sensitivity measures

The minimum frequency rule defined before is no upper linear sensitivity measure, but the other rules
that were introduced are, as can be seen when we write them in the appropriate forms:

(n, k) dominance rule: S(X) =
n∑
i=1

(
1− k

100

)
gi +

∞∑
i=n+1

− k

100gi

p% rule: S(X) = p

100g1 +
∞∑
i=3
−gi

(p, q) rule: S(X) = p

q
g1 +

∞∑
i=3
−gi

Cell unions

A respondent that contributes to two cells X1 and X2 remains a single respondent in the cell union
X1 ∪X2 , with contribution equal to the sum of its contributions to X1 and X2. We will give two
examples to illustrate the concept of cell unions.

For companies in a single region A, let the value G1 of cell X1 be the total electricity consumption
and the value G2 of cell be X2 equal to the gas consumption. Here, the value G1 + G2 of the
cell union X1 ∪ X2 is the total energy consumption of the companies in region A. The cell has
N(X1) = N(X2) contributors. Each company makes a contribution to X1 ∪X2 equal to the sum
of its contributions to X1 and X2.
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CHAPTER 2. PRELIMINARIES AND RECENT RESEARCH

As a second example, let the values of cells X1 and X2 equal the total energy consumption of
companies in region A1 and A2, respectively, with A1 ∩ A2 be empty. Then the value X1 + X2 of
the cell union X1 ∪X2 is the total energy consumption of companies in region A1 ∪A2 and it has a
total of N(X1) +N(X2) contributions, since we assume that a company can only be present at one
spot, so there is no overlap in companies of A1 and A2. Each company makes the same contribution
to X1 ∪ X2 as it did to X1 or X2. In this case, we could actually say that the companies in Ai
have a contribution of 0 to cell Xj for i 6= j, so that again each company makes a contribution to
X1 ∪X2 equal to the sum of its contributions to X1 and X2.

Subadditivity

A natural thing to do, is relating the sensitivity of a cell union to the sensitivity of the original cells.
An upper linear sensitivity measure is called subadditive whenever S(X1 ∪ X2) ≤ S(X1) + S(X2)
for all possible cells X1 and X2 that show the same variable, but possibly for other groups of
contributors. If a measure is subadditive, we are sure that the union of two non-sensitive cells is also
non-sensitive. Cox (1981) proved that a measure is subadditive if and only if its sequence of weights
is non-increasing. This means that all of the three upper linear sensitivity measures that we defined
are subadditive.

2.1.3 � Table Protection

Once we know which table cells are unsafe for publication, based on a particular sensitivity rule, we
should modify the table. According to Hundepool and De Wolf (2012), Statistics Netherlands uses
three different methods for this, which we will briefly discuss here. Each of them has its own way in
which information loss occurs.

Table restructuring

In general, cells with very few contributors or cells with one or two large contributions are sensitive.
A straightforward solution would be to merge rows or columns in which the sensitive cells appear, in
such a way that there are no sensitive cells left. Of course, it is also possible to restructure the table
and additionally use one of the other methods.

Cell suppression

Another frequently used method is to suppress certain cells of the table, which means that the value
is simply replaced by a cross. Since the row and column totals are usually provided in the tables,
it is not sufficient to suppress only the sensitive cells, but we should also not publish some other
cells. Whenever a lower bound for the contributions is known, it will always be possible to find an
interval for the suppressed cell values using the marginals. This means that it is needed to specify
the acceptable size of these intervals and to carefully decide which secondary cells to suppress.

Additive rounding

Rounding cell values in a table makes sure that the values are only known within a certain interval. In
additive rounding, the table is rounded such that its marginals remain the sum of the corresponding
cells and the total absolute deviation of the cell values with respect to the original table is minimised.
This might mean that the cell values are not always rounded to the nearest multiple of the chosen
rounding base.
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2.2 � Recent Research
Now that the basic theory of tabular disclosure control is covered, we can move on to recent research
that combines disclosure control with publishing data on maps. The connection between disclosure
control in tables and visualisation techniques on maps is investigated in O’Keefe (2012); Suñé et al.
(2017), for example. While in this current report we will focus on recalculating collected measurement
values, like the energy consumption of companies, we also include literature on recovering point
locations in a density map.

2.2.1 � Recovering Point Locations

Research involving the confidentiality of locations when publishing smoothed density maps was ex-
ecuted recently by Wang et al. (2019), for example. Using the theory of Fourier transforms, the
authors demonstrated that a kernel density map can be transformed to the original map containing
discrete crime locations, but concluded that it is not possible to do so whenever the used parameters
are unknown. They state that the error between the recovered map and original map did not indi-
cate a significant pattern when changing the parameters and thus conclude that the process of kernel
smoothing can very well protect locational privacy whenever the used bandwidth is not published.

Instead of looking at Fourier transforms, Lee et al. (2019) tried to recover point locations from a
kernel smoothed map of disease cases by locating points on the centre lines of contour polygons that
were generated from the kernel smoothed surface. For a fine resolution and small bandwidth, their
method recovered individual disease cases with a mean error distance that is smaller than a usual
parcel size, indicating that patient locations can be recovered with reasonable accuracy.

2.2.2 � Binary Variables

De Jonge and De Wolf (2016) constructed a cartographic map that showed a continuous spatial
density of the relative frequency of a binary variable, such as unemployment per capita. For most
binary variables, only one of the two values is sensitive. For example, it is probably considered unde-
sirable to disclose that a particular person is unemployed, while knowing that a person is employed
is no sensitive information.

First, a density of the unemployed population and a density of the total population were made, both
using Gaussian kernels. The estimated relative frequency is given by the quotient of the two densities.
This estimate is discretised in five levels that correspond to different colours on the map, as part
of the disclosure control. Furthermore, this allows for two procedures in case the map might still
disclose sensitive information:

� Locations with too few nearby neighbours are sensitive because they might disclose an identi-
fiable group of individuals. These locations are assigned to the bottom colour level.

� Locations where the estimated frequency is larger than a certain maximal allowed frequency,
are assigned to the top level. Note that this is only a disclosure protection if the top level also
contains locations for which the maximal allowed frequency is not exceeded, since otherwise
we would highlight the sensitive locations, which is the opposite of what we want.

At the end of the exploratory paper, the authors mentioned several issues for further research, amongst
which:

� Automatic bandwidth selection for spatial data might be an interesting path to investigate. For
the moment, choosing the right bandwidth that properly reveals a pattern remains a human
task.

� One can also think about an automatic bandwidth that is adaptive to the exact location and
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takes, for example the sensitivity of neighbouring locations or local population density into
account.

� Additional research is needed to find a more general approach to assess the disclosure risk for
spatial plots.

� Spatial estimation smears out points to neighbouring locations, which may introduce density at
locations which in reality have no density, like rivers and woods. Is it possible to use boundary
kernels to tackle this?

� A special case of the previous remark is that a location that is not sensitive for a small bandwidth
might become sensitive for a large bandwidth, because it has many sensitive neighbours.

De Wolf and De Jonge (2017) continued on the same ideas, but provided a stronger mathematical
foundation of the disclosure risk that they used before. Also, some utility loss measures were defined,
to be able to quantify the decrease of utility of the map after application of statistical disclosure
control methods. The different measures are based upon the change in size, location and shape of
the hot spots and cold spots that were present in a reference map that used a postulated optimal
bandwidth.

2.2.3 � Continuous Variables

The starting point for the current research is De Wolf and De Jonge (2018), in which plotting a
sensitive continuous variable on a cartographic map using smoothed versions of cell counts and totals
is discussed.

The authors considered a continuous variable that is considered sensitive regardless of its value.
Unlike in their previous articles, they defined a disclosure risk for areas. They constructed a p% rule
that used the smoothed cell total and smoothed versions of the largest two contributions per cell.

For the disclosure risk measure, the p% rule (2.2) was used, where the total value G was replaced
by the integral of the estimated density over the area, since a continuous estimate was constructed
using kernel smoothing. Also, smoothed versions of the largest two contributions per cell were used.
Unfortunately, some problems arise with this measure:

� The integrated density is probably not equal to the total of the contributions in the area and
it might even be smaller than the largest contribution.

� To overcome this, one might want to use estimates of the individual energy contributions,
instead of the actual largest and second largest contributions. However, this makes that in
some situations the amount of unsafe grid cells increases with increasing bandwidth, which
feels counter-intuitive.

2.3 � Kernel Smoothing and Notation
In this section, the concept of kernel smoothing is introduced, which plays an important role in data
visualisation.

2.3.1 � Notation

First, let us introduce some notation. Let D ⊂ R2 be an open and bounded set that represents
the study region on which we want to make the visualisation. Let the total population be denoted
by U = {r1, . . . , rN} ⊂ D, for N ∈ N, in which ri = (xi, yi) is the representation of population
element i by its Cartesian coordinates (xi, yi). We write r = (x, y) for a general point in D and
||r|| =

√
x2 + y2 for the distance of that point to the origin. Associated with each population

element is a measurement value. By gi ≥ 0, we will denote the value corresponding to population
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element i. As an example, U could be a set of company locations, where company i has location ri
and measurement value gi, indicating its energy consumption, as in our case study of Chapter 5.

2.3.2 � Kernel Smoothing

Kernel smoothing is a common way to obtain a smooth visualisation of measurements taken at
discrete points (Wand and Jones, 1994). The approach is similar to kernel density estimation (Sil-
verman, 1986). Kernel smoothing overcomes the disadvantages of the straightforward visualisation
technique mentioned in Section 1.2, which is why more and more publications make use of it to vi-
sualise data originating from many different sources, including road networks (Borruso, 2003), crime
numbers (Chainey et al., 2002), seismic damage figures (Danese et al., 2008) and disease cases
(Davies and Hazelton, 2010). Other examples and techniques are given in Bowman and Azzalini
(1997), for instance.

Essentially, in kernel density estimation, single locations are smeared out to create density bumps
around each data point. The density bumps are added and normalised to obtain a total density.
In the process of kernel smoothing, no normalisation is applied. In our case, the kernel smoothed
population density is given by

fh(r) = 1
h2

N∑
i=1

k

(
r − ri
h

)
, r ∈ D, (2.4)

in which k : R2 → R is a so-called kernel function, that is, a non-negative function for which k(−r) =
k(r) and that integrates over R2 to 1. The bandwidth h controls the range of influence of each
data point. The Gaussian kernel k(r) = (1/2π) exp(−||r||2/2), the Epanechnikov kernel k(r) =
(2/π)(1− ||r||2)1(||r|| ≤ 1) and the uniform kernel k(r) = (1/π)1(||r|| ≤ 1) are common choices,
but obviously many others kernel functions exist. Some guidelines are given in Section 4.5 of Wand
and Jones (1994).

In this report, we will frequently use two matrices that are defined in terms of the kernel function,
namely

Kh =
(
k

(
ri − rj
h

))N
i,j=1

(2.5)

and

Ch =
(

k ((ri − rj)/h)∑N
m=1 k ((ri − rm)/h)

)N
i,j=1

. (2.6)

For the measurement values g1, . . . , gN , a density can be constructed by multiplying the kernel
corresponding to location i with the value gi:

gh(r) = 1
h2

N∑
i=1

gik

(
r − ri
h

)
, r ∈ D

Kernel average smoothers are a regression technique, that tend to find a relation between two
variables. As an example, these could be the location and the energy consumption of companies, as
in our case study in Chapter 5. A continuous visualisation of the measurement values can be given
by the Nadaraya-Watson kernel weighted average (Watson, 1964)

mh(r) = gh(r)
fh(r) =

∑N
i=1 gik ((r − ri)/h)∑N
i=1 k ((r − ri)/h)

, r ∈ D, (2.7)

which is obtained by dividing the two densities fh and gh and which can be seen as the fraction of
an estimate of, in our case, electricity consumption per area and the number of companies per area.
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CHAPTER 2. PRELIMINARIES AND RECENT RESEARCH

Whenever fh(r) = 0, it follows that gh(r) = 0 as well and we define mh(r) = 0. This weighted
average is an excellent tool for data visualisation and analysis (Chacón and Duong, 2018). The ratio
mh(r), r ∈ D, will be the function of which we will investigate disclosure properties and discuss a
possible protection method. By writing the Nadaraya-Watson kernel weighted average as

mh(r) =
N∑
i=1

gi
k ((r − ri) /h)∑N
j=1 k ((r − rj) /h)

, (2.8)

it is indeed clearly a weighted average of the measurement values.

Some remarks are in order. Firstly, the bandwidth h influences the smoothness of mh. In the limit
case of a very large bandwidth, mh will be constant, while for small h, the plot will contain many local
extrema. In the limit case of a very small bandwidth, mh will be the nearest neighbour interpolation,
at least when using a Gaussian kernel. We will prove this in Section 2.3.3.

Secondly, note that mass can leak away, since D is bounded but the kernel is defined on R2. Con-
sequently, fh and gh underestimate the (weighted) population density at r close to the boundary
of D. Various techniques to correct such edge effects exist, see Diggle (1985), Berman and Diggle
(1989) and Van Lieshout (2012) for examples. In this report, we will not make further use of these
techniques.

2.3.3 � Asymptotic Behaviour

It would be interesting to show the asymptotic behaviour of the kernel weighted average, since this
gives us insights in the disclosure properties. Here, we use a Gaussian kernel k(r) = 1

2π exp(−1
2 ||r||

2),
so that the Nadaraya-Watson estimate will be

mh(r) =
∑N
i=1 gi exp(−||r − ri||2/(2h2))∑N
i=1 exp(−||r − ri||2/(2h2))

(2.9)

In case the bandwidth h tends to ∞, it can be easily seen that all exponents in (2.9) converge to
0, which means that mh(r) will converge to (1/N)

∑N
i=1 gi for all r ∈ D. When the measurement

values fulfill a tabular sensitivity rule, publishing a plot that shows the average value is safe, but of
course it does not give any more information than the average value itself.

Next we will show that the Nadaraya-Watson kernel weighted average will converge to the nearest
neighbour approximation whenever the Gaussian kernel bandwidth h tends to 0. First, let N ≥ 1
and assume that r ∈ D has a unique nearest neighbour in U . Define i∗r = arg mini∈U{||r− ri||} to
be that neighbour. The single nearest neighbour interpolation at location r is gi∗r . Then,

lim
h→0

mh(r) = lim
h→0

∑N
i=1 gi exp(−||r − ri||2/(2h2))∑N
i=1 exp(−||r − ri||2/(2h2))

= lim
h→0

∑N
i=1 gi exp

((
||r − ri∗r ||

2 − ||r − ri||2
)
/(2h2)

)∑N
i=1 exp

((
||r − ri∗r ||2 − ||r − ri||2

)
/(2h2)

) mult. by exp
||r − ri∗r ||

2

2h2

= lim
h→0

gi∗r +
∑
i 6=i∗r gi exp

((
||r − ri∗r ||

2 − ||r − ri||2
)
/(2h2)

)
1 +

∑
i 6=i∗r exp

((
r − ri∗r ||2 − ||r − ri||2

)
/(2h2)

) separate i∗r’th term

= gi∗r . exponents div. to −∞

This result indicates that it is unsafe to publish a plot with a very small bandwidth, since an attacker
can obtain a particular measurement value by reading off the plot at any location close to the
corresponding population element location. More examples methods that generate unsafe plots are
given in Chapter 3.

15



CHAPTER 2. PRELIMINARIES AND RECENT RESEARCH

In Figure 2.1, that was based on a simulation, it can be seen that a small bandwidth indeed leads to
a nearest neighbour interpolation. For the simulation, 50 independent measurement locations were
generated uniformly on the unit square and a standard uniformly distributed measurement value was
given to each of those locations. The plots indicated with ‘total measurement value kernel’ show
the numerator of (2.7), the ‘total location value kernel’ plots show the denominator of (2.7) and the
‘smoothed average’ plots show (2.7) in its completeness. In Chapter 3, the exact same realisation
of ri and gi, i = 1, . . . , N are used for the plots of the smoothed average, so that the reader can
visually compare the differences and similarities of the plots.
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(a) Total measurement value kernel, h = 0.1 (b) Total measurement value kernel, h = 0.01

(c) Total location kernel, h = 0.1 (d) Total location kernel, h = 0.01

(e) = (a)/(c), Smoothed average, h = 0.1 (f) = (b)/(d), Smoothed average, h = 0.01

Figure 2.1: Gaussian kernel, 50 points
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3 � Motivation

In this chapter, we show that the plot of (2.7) is often unsafe to publish, since measurement values
can be recalculated, when an attacker is aware of all measurement locations ri, i = 1, . . . , N . First,
we discuss the use of uniform kernels (Section 3.1) and other kernels with finite support (Section
3.2). Our method in Chapter 4 to protect the plots will be based on the theory in Section 3.3, since
we show there that for certain kernels, including the Gaussian kernel, the attacker can always recover
the exact measurement values under certain assumptions. Afterwards, in Section 3.4 and 3.5, we say
a few words about situations in which we relax some assumptions made in Section 3.3. We conclude
with defining the attacker scenario for the remainder of this report in Section 3.6.

3.1 � Uniform Kernels
The disk kernel is defined as a uniform density on a disk: k(r) = 1

π1(||r|| < 1). In case the disk
kernel is used, the Nadaraya-Watson kernel weighted average would be

mh(r) =
∑N
i=1 gi1(||r − ri|| < h)∑N
i=1 1(||r − ri|| < h)

, r ∈ D. (3.1)

From a plot showing this quantity for each point in space, the value of a single measurement, say gj
is very easily computed, by looking at the plot value mh(r+

j ) at a point r+
j that lies at a distance

slightly less than h from rj , so that measurement gj is included in the computation of the plot value,
and looking at the plot value mh(r−j ) at a point r−j that lies in the same direction at a distance
slightly more than h from rj , so that the measurement gj is not included in the computation of
the plot value. It is important that only the measurement value on location j accounts for the
difference between mh(r−j ) and mh(r+

j ), i.e. we require ||rj − r+
j || ≥ h, ||rj − r−j || < h and

1(||ri − r+
j || < h) = 1(||ri − r−j || < h) for all i 6= j. Provided that the circle around r is small

enough to have a part with strict positive length contained into D, it is always possible to find two
such points by looking close enough to the boundary, since the company locations and thus all disks
are unique and there are only finitely many of them. Note that the two points are not uniquely
defined, but their relationship is important.

The attacker should also be able to find the amount of measurements that contribute to the two
values, since he can just count the amount of company locations that are within a range of h from
the points. Note that the value of h can be easily retrieved by the attacker, since the disk kernels will
be very well visible in the plot and it will be easy to measure the distance from the center of a disk
to the boundary. Let n(r) =

∑N
i=1 1(||r − ri|| < h) be the amount of measurements contributing

to the plot at location r. Since this is the denominator in 3.1, the attacker can compute gj in the
following way:
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gj =
N∑
i=1

gi1(||r+
j − ri|| < h)−

N∑
i=1

gi1(||r−j − ri|| < h)

=
N∑
i=1

1(||r+
j − ri|| < h)

∑N
i=1 gi1(||r+

j − ri|| < h)∑N
i=1 1(||r+

j − ri|| < h)
−

N∑
i=1

1(||r−j − ri|| < h)
∑N
i=1 gi1(||r−j − ri|| < h)∑N
i=1 1(||r−j − ri|| < h)

= n(r+
j )mh(r+

j )− n(r−j )mh(r−j ).

Using the same principles, this method will work for uniform kernels of any shape, since the only
information needed is the amount of measurements contributing to the plot close to the kernel
boundary.

In Figure 3.1, it is shown that the locations ri and the bandwidth h are easily retrieved whenever a
disk kernel is used. When plotting the length of the numerical gradient of the smoothed average,
we see the circular structures even clearer. In the next section, we see that this is also the case for
other kernels.
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(a) Total measurement value kernel (b) Total location kernel

(c) = (a)/(b), Smoothed average (d) Length of numerical gradient of (c)

Figure 3.1: Disk kernel, h = 0.2, 50 points

3.2 � Kernels with Discontinuous Derivatives
Whenever kernels with a finite support are used, it might be the case that the kernels are not endlessly
differentiable on the boundary. We illustrate this here for one-dimensional kernels, but the pricipal
ideas remain valid in two dimensions, since most kernels used there are radially symmetric.

For instance, the Epanechnikov kernel k(r) = (3/4)(1− r2)1(r < 1) has first derivative d/dr k(r) =
(−3r/2)1(r < 1), which is discontinuous at r = 1 and the quartic kernel k(r) = (15/16)(1 −
r2)21(r < 1) has second derivative d2/dr2 k(r) = (15/4)(3r2 − −1)1(r < 1), which is also dis-
continuous at the boundary r = 1. This will cause discontinuities in the gradient of the plot of the
smoothed average, or in a higher-order directional derivative, from which the attacker can deduct
the radius of the kernel that was used. In Figure 3.2, the bandwidth is well visible after computing
the gradient of the smoothed average of a plot that used the two-dimensional Epanechnikoc kernel,
while it is not so apparent in the smoothed average itself. Besides only showing the used bandwidth,
it might be possible to recalculate measurement values in a similar manner as in Section 3.1, but
using a gradient plot of the smoothed average instead of the smoothed average itself. However, we
did not look into this in more detail.
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(a) Total measurement value kernel (b) Total location kernel

(c) = (a)/(b), Smoothed average (d) Length of numerical gradient of (c)

Figure 3.2: Epanechnikov kernel, h = 0.2, 50 points
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3.3 � System of Linear Equalities
In this section, we show that also when the used kernel is continuous and has continuous derivatives,
publishing the kernel weighted average reveals exact information on the underlying measurement
values under certain assumptions. This implies that it is necessary to apply disclosure control before
publishing the plot. Our method to do so will be elaborated on in Chapter 4.

Here, we restrict our attention to the scenario in which an attacker is able to exactly read off the plot
of the kernel weighted average (2.7) at the distinct population element locations ri, i = 1, . . . , N
and is aware of the kernel and bandwidth that were used.

Using the plot values, the attacker can set up a system of linear equations to obtain estimates
of the measurement values, since the kernel weighted average (2.7) is a linear combination of the
measurement values. When the attacker reads off the plot (2.7) at the exact locations ri, i =
1, . . . , N , he obtains the system

mh(ri) =
∑N
j=1 gjk ((ri − rj)/h)∑N
j=1 k ((ri − rj)/h)

, i = 1, . . . , N, (3.2)

or, in matrix notation,
mh = Ch g, (3.3)

with the known plot values mh = (mh(ri))Ni=1, unknown measurement value vector g = (gi)
N
i=1

and known coefficient matrix Ch. Recall the definition of Ch in (2.6) and Kh in (2.5). We know
the following about solvability of the system.

Theorem 3.3.1. Whenever Kh is invertible, system (3.3) can be solved uniquely and the attacker
can retrieve all measurement values exactly.

Proof. Assume that Kh is invertible. Then Ch is invertible as well, as it is created from Kh by
scaling each row to sum to 1. Hence, the linear system (3.3) is uniquely solvable and an attacker
can retrieve the vector g of measurement values by left-multiplying mh with C−1

h .

In particular, Theorem 3.3.1 shows that there is at least one configuration of points at which the
attacker can read off the plot of (2.7) to retrieve the measurement values gi, i = 1, . . . , N exactly.
In Section 3.5, we will briefly comment on situations in which the attacker reads of the plot at other
points.

Sketches of systems for small N indicate that the system of linear equations is always solvable if a
Gaussian kernel is used. Indeed, the Gaussian kernel gives rise to invertible Kh, as stated in the
following theorem.

Theorem 3.3.2. For the Gaussian kernel, Kh is positive definite and thus invertible for any h > 0,
N ∈ N and configuration of distinct points ri, i = 1, . . . , N .

Proof. Denote by f : R2 → R the spectral density of the Gaussian kernel, that is, f is the function
such that

k

(
r

h

)
= 1

2π e−
||r||2

2h2 =
∫

R2
eiw·rf(w) dw.

According to Van Lieshout (2019), page 19, we have

f(w) = h2

4π2 e−
||w||2h2

2 .
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We will show that Kh is positive definite, so that invertibility follows from there. Consider

aTKa =
N∑
j=1

N∑
m=1

ajk

(
rj − rm

h

)
am

=
∫

R2

N∑
j=1

N∑
m=1

ajameiw·(rj−rm)f(w) dw

=
∫

R2

 N∑
j=1

ajeiw·rj

( N∑
m=1

ame−iw·rm

)
f(w) dw

=
∫

R2

∣∣∣∣∣∣
N∑
j=1

ajeiw·rj

∣∣∣∣∣∣
2

f(w) dw.

For this integral to be zero, the integrand needs to be zero almost everywhere. Since f(w) is strictly
positive for all w, it follows that the factor

∣∣∣∑N
i=1 ai exp iw · ri

∣∣∣ needs to be zero for almost all w.
By the fact that all points ri are distinct, this happens only when ai = 0 for all i. To conclude, we
have aTKha > 0 for non-zero a, which means that Kh is positive definite, so Kh is invertible and
thus (3.3) is uniquely solvable for the Gaussian kernel.

3.4 � Unknown Bandwidth
Whenever the bandwidth is unknown, the system of equations is not linear anymore. The attacker
can overcome this by guessing different bandwidths ĥ for his calculations and eventually choosing
the bandwidth that seems to work best. Two specific error measures seem natural in this situation:
one based on the difference between the actual measurements and the recalculated ones, and one
based on the difference between the actual plot and a recalculated plot.

Let [ĝ1 · · · ĝN ]T = C ĥmh be the solution of (3.3) that the attacker obtains when using the possibly
incorrect bandwidth ĥ. The attacker can make a new plot

m̂ĥ(r) =
∑N
i=1 ĝik

(
(r − ri/ ĥ

)
∑N
i=1 k

(
(r − ri) /ĥ

)
and compare it to the plot that was originally published. In this way, the attacker will be able to
say something about the correctness of his estimates, since this error measure depends only on the
actual measurement values through the published plot values.

Figure 3.3 contains multiple error plots as a function of ĥ. Errors in measurement values refer to the
differences between gi and ĝi, for i = 1, . . . , N , whereas errors in plot values refer to the differences
between mh(r) and m̂ĥ(r), for all locations r on a rectangular grid on which the computations are
carried out.

The monotonicity of the Figures 3.3c and 3.3d indicate that an attacker will be well able to retrieve
the bandwidth that was used to make the plot, after which he will know the measurement values as
well.

Secondly, we notice that whenever the bandwidth guess ĥ is only slightly away from h, the errors in
the retrieved measurement values are quite large.
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(a) Mean absolute error in measurement values (b) Mean squared error in measurement values

(c) Mean absolute error in plot values (d) Mean squared error in plot values

Figure 3.3: Errors as function of bandwidth guess ĥ, Gaussian kernel, h = 0.1, n = N = 100 points

Another possible approach would be the usage of a solver for non-linear system of equations. With
the command fsolve of Matlab, it was seen that this system is well solvable for N = 100, when a
Gaussian kernel with h = 0.1 was used. Note that the number of unknown variables is 101 in this
case. To set up the system of equations, we chose to read off the plot at 105 locations, which means
that there is a slight oversampling: The attacker uses more equations than there are variables. This
improves the quality of the solution, probably by reducing numerical errors. In the simulation, the
first 100 recalculation points were taken to be the company locations and the last 5 points were
chosen uniformly at random.

In the same situation, but with a bandwidth h = 0.2, the results worsened. There were approximately
10 measurement values that were recalculated with errors greater than 2 percent. These were all
cases in which three or more company locations lied very close to each other. We think that this is
due to the fact that numerical errors play a greater role whenever observed plot values are close to
each other, which happens due to the large bandwidth.
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3.5 � A More General System
In Section 3.3, we saw that for some kernel types, including the Gaussian kernel, the attacker can
read off the plot of (2.7) at the population element locations to exactly retrieve the measurement
values. Of course, more configurations exist for points on which the attacker can read off the plot.
We will briefly discuss a more general system of linear equations.

If the attacker uses the plot value at n points s1, . . . , sn ∈ R2, he obtains the system of linear
equations 

k((s1−r1)/h)∑N

i=1 k((s1−ri)/h)
· · · k((s1−rN )/h)∑N

i=1 k((s1−ri)/h)
... . . . ...

k((sn−r1)/h)∑N

i=1 k((sn−ri)/h)
· · · k((sn−rN )/h)∑N

i=1 k((sn−ri)/h)


 g1

...
gN

 =

mh(s1)
...

mh(sn)

 . (3.4)

Whenever the attacker knows the bandwidth exactly, we are sure that this system of linear equations
has a solution, by the construction of the plot values mh. However, we do not know whether the
solution is unique.

For the case n = N = 2 we will mention geometric interpretations in the case that a disk kernel
or Gaussian kernel is used. To investigate the uniqueness of the solution, let us take a look at the
square coefficient matrix in (3.4) that can be obtained whenever the attacker looks up the plot value
at two locations to try to obtain both measurement values.

Looking at two plot values for a plot based on two measurement locations, the coefficient matrix
will be invertible whenever

k

(
s1 − r1

h

)
k

(
s2 − r2
h

)
6= k

(
s1 − r2
h

)
k

(
s2 − r1

h

)
. (3.5)

We see that this explicitly depends on the kernel function that is used. We will discuss the implications
for the disk kernel and the Gaussian kernel.

Disk kernel
If we consider a uniform kernel on a disk, the kernel value can be either 0 or 1/π, which we can
combine with (3.5) to see that the coefficient matrix is only invertible if one of s1 and s2 lies within a
distance h from r1, the other lies within a distance h from r2 and at most one lies within a distance
h from both r1 and r2. Such a configuration is easily made in case the bandwidth is reasonably
small compared to the domain.

Gaussian kernel
For the Gaussian kernel, the requirement (3.5) becomes

e−(||s1−r1||2+||s2−r2||2)/(2h2) 6= e−(||s1−r2||2+||s2−r1||2)/(2h2),

or, equivalently,

||s1 − r1||2 + ||s2 − r2||2 6= ||s1 − r2||2 + ||s2 − r1||2.
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Since we have

||s1 − r1||2 + ||s2 − r2||2 − ||s1 − r2||2 − ||s2 − r1||2

= ||s1||2 + ||r1||2 − 2(s1 · r1) + ||s2||2 + ||r2||2 − 2(s2 · r2) −
||s1||2 − ||r2||2 + 2(s1 · r2)− ||s2||2 − ||r1||2 + 2(s2 · r1)

= − 2(s1 · r1 + s2 · r2 − s1 · r2 − s2 · r1)
= − 2(s1 − s2) · (r1 − r2),

we obtain

||s1 − r1||2 + ||s2 − r2||2 6= ||s1 − r2||2 + ||s2 − r1||2 if and only if (s1 − s2) · (r1 − r2) 6= 0.

This means that the system of linear equations has a unique solution whenever the attacker chooses
his observations in such a way that the line through his observation points is not perpendicular to
the line through the measurement locations.

Tests and simulation involving larger instances for the Gaussian kernel caused us to suspect that
for all distinct choices of s1, . . . , sN , except maybe on a null set in RN , the system is uniquely
solvable. The details are not pursued in this project. We stress once more that we know that at least
one configuration guarantees to lead to a uniquely solvable system for the Gaussian kernel, namely
choosing si = ri for i = 1, . . . , N .

3.6 � Attacker Scenario
In the remainder of this report, we will assume an attacker scenario in which the attacker obtains a vec-
tor containing the exact plot values at the distinct population element locations ri, i = 1, . . . , N and
left-multiplies that vector by C−1

h to obtain estimates of the measurement values gi, i = 1, . . . , N .
This scenario is based upon the results in Section 3.3. Of course, we have to assume that Kh is
invertible in order for C−1

h to exist.
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4 � Method

Until now, we have looked into a plot in which the true value of mh(r) was shown. The attacker
could recompute the gi’s exactly. In this section, we look at the situation where random noise is
added to the plot.

Our method to prevent the disclosure of sensitive information consists of disturbing the plot of (2.7)
by adding random noise. We make this clear in Section 4.1. In Section 4.2 we discuss our new
sensitivity rule. Then, in Sections 4.3, 4.4 and 4.5, we discuss different methods to add random
noise and derive results on the magnitude that is needed to be safe according to our sensitivity rule.

4.1 � Noise Propagation
We prevent the disclosure of sensitive information by disturbing the plot of (2.7) with random noise,
so that we publish the plot of

mh(r) + ε(r) =
∑N
j=1 gjk ((ri − rj)/h)∑N
j=1 k ((ri − rj)/h)

+ ε(r), r ∈ D, (4.1)

for noise ε : R2 → R. In particular, this means that according to our attacker scenario, the attacker
observes the values

mh(ri) + ε̃i =
∑N
j=1 gjk ((ri − rj)/h)∑N
j=1 k ((ri − rj)/h)

+ ε̃i, i = 1, . . . , N, (4.2)

instead of (3.2), for random noise ε̃i = ε(ri), i = 1, . . . , N . In matrix notation,

mh + ε̃ = Ch g + ε̃,

instead of (3.3), with ε̃ = (ε̃i)Ni=1.

According to our attacker scenario of Section 3.6, the attacker will left-multiply the vector of observed
values by C−1

h . However, he will now make an error, since he observes m + ε̃ instead of m. The
recalculated values are

ĝ = C−1
h (m+ ε̃) = g +C−1

h ε̃,

with its i’th element equal to

ĝi = gi +
N∑
j=1

(
C−1
h

)
ij
ε̃j , (4.3)

instead of g = C−1
h m, which means that the attacker makes an error in the recalculation process.

In the next sections, we will formulate our sensitivity rule and discover under what conditions this
error is large enough to be safe according to that rule, for different choices of the random noise.
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4.2 � The (p%, α) Rule
Adding random noise to the plot implies that the attacker’s estimates will be stochastic as well.
This fact should be captured in a rule that describes whether it is safe to publish the noised kernel
weighted average. It brings us to the following sensitivity rule, that states that a plot is considered
unsafe to publish when any measurement value estimate that the attacker makes, lies with probability
greater than α within p percent of the true value. Such a sensitivity rule can be seen as a stochastic
counterpart of the well known p% rule for tabular data, which was elaborated on in Section 2.1.1.

Definition 4.2.1. For 0 < p ≤ 100 and 0 ≤ α < 1, a plot is said to be unsafe according to
the (p%, α) rule for an attacker scenario whenever the estimates ĝi of gi, i = 1, . . . , N , computed
according to the scenario, satisfy

max
i=1,...,N

P

{∣∣∣∣ ĝi − gigi

∣∣∣∣ < p

100

}
> α, (4.4)

where we take |(ĝi − gi)/gi| = 0 if gi = 0. A plot that is not unsafe will be called safe.

When applying the (p%, α) rule, we normally choose p and α to be small, so that a plot is safe when
small relative errors in the recalculation happen with small probability. Theorem 3.3.1 implies that
the plot of (2.7) cannot be safe for any (p%, α) rule. Furthermore, we note that high values of p
and low values of α correspond to a stricter rule: If a plot is safe according the (p%, α) rule, then
for any p̃ ≤ p and α̃ ≥ α, the plot is also safe according to the (p̃%, α̃) rule.

In the remaining sections of this chapter, we will investigate the needed magnitude of the added noise
to protect the plot sufficiently. The next lemma, in which we write Φ−1 for the standard normal
inverse cumulative distribution function, will ease this process.

Lemma 4.2.1. Whenever ĝi follows a normal distribution with mean gi, (4.4) is equivalent with

p

100 Φ−1 ((1 + α)/2) max
i=1,...,N

{
gi√

Var(ĝi)

}
> 1.

Proof. Assume ĝi follows a normal distribution with mean gi. Then, we have

P

{∣∣∣∣ ĝi − gigi

∣∣∣∣ < p

100

}
= 1− 2P

{
ĝi − gi < −

p gi
100

}
= 1− 2P

{
g̃i − gi√
Var(ĝi)

< − p gi

100
√

Var(ĝi)

}

= 1− 2P
{
X < − p gi

100
√

Var(ĝi)

}
,

where X is a standard normal random variable. Note that this derivation is also valid if gi = 0, since
we defined |(ĝi − gi)/gi| = 0 in that case.

For this whole expression to be larger than α, we require

P

{
X ≤ − p gi

100
√

Var(ĝi)

}
<

1− α
2 .

When we write Φ for the cumulative distribution function of a standard normal random variable, the
expression above is equivalent to

− p gi

100
√

Var(ĝi)
< Φ−1

(1− α
2

)
28



CHAPTER 4. METHOD

and
p gi

100 Φ−1 ((1 + α)/2)
√

Var(ĝi)
> 1,

where it should be noted that when we divide by Φ−1 ((1− α)/2) = −Φ−1 ((1 + α)/2), which is
negative for positive α, the inequality sign flips.

Finally, we take the maximum over i of this expression and obtain

p

100 Φ−1 ((1 + α)/2) max
i=1,...,N

{
gi√

Var(ĝi)

}
> 1.

4.3 � Independent Noise on Total Plot
In this section, we will take the noise ε̃i, i = 1, . . . , N in (4.2) as independent and identically
distributed Gaussian random variables with mean 0 and variance σ2. In practise, this means that we
will add this noise for all pixels of the plot. Because of our attacker scenario, however, only the noise
ε̃i, i = 1, . . . , N at locations ri, i = 1, . . . , N plays a role in the derivations in this section. It brings
us to the following theorem on safe values for the standard deviation σ.

Theorem 4.3.1. Suppose that Kh is invertible, gi ≥ 0, i = 1, . . . , N and ε̃i, i = 1, . . . , N are
independent and identically distributed Gaussian random variables with mean 0 and variance σ2.
Then the plot of (4.2) is safe according to the (p%, α) rule for our attacker scenario in Section 3.6 if

σ ≥ p

100 Φ−1 ((1 + α)/2) max
i=1,...,N


gi√∑N

j=1

(
C−1
h

)2

ij

 . (4.5)

Proof. Take ε̃i, i = 1, . . . , N as independent and identically distributed Gaussian random variables
with mean 0 and variance σ2. Continuing from (4.3), this implies that the i-th recalculated value ĝi,
as a linear combination of independent Gaussian random variables, will follow a normal distribution
with mean gi and variance

Var(ĝi) = σ2
N∑
j=1

(
C−1
h

)2

ij
.

Combining this with Lemma 4.2.1 gives us

p

100σΦ−1 ((1 + α)/2) max
i=1,...,N


gi√∑N

j=1

(
C−1
h

)2

ij

 > 1,

as a condition to be unsafe according to the (p%, α) rule, from which it is only a small step to
conclude that the plot is safe according to the (p%, α) if

σ ≥ p

100 Φ−1 ((1 + α)/2) max
i=1,...,N


gi√∑N

j=1

(
C−1
h

)2

ij

 .
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4.4 � Continuous Noise on Total Plot
In the previous section, we presented a way to protect the values that the attacker obtains at the
company locations, by adding independent and identically distributed noise. When publishing a
smoothed average plot, one would then add the noise for all locations, i.e. for all pixels on which
the plot value is calculated. However, the resulting image would look grainy by the independence of
the noise on neighbouring pixels. This does not fulfill our requirement for a continuous visualisation.
For that reason, we will consider a form of continuous noise in this section.

One way in which continuous noise can be created, is by means of a Gaussian random field. A
sequence of random variables is a Gaussian random field whenever any subsequence follows a multi-
variate normal distribution. According to Van Lieshout (2019), a Gaussian random field is completely
defined by its mean and covariance functions. Abrahamsen (1997) tells us that a function must be
positive definite in order to be a valid covariance function. For the Gaussian kernel, positive definite-
ness was proven in Theorem 3.3.2.

For our application, we will choose the mean of the Gaussian random field to be zero everywhere,
since we do not intend to predefine a positive or negative bias at any location. We take the covariance
function of the noise ε : R→ R2 in (4.1) as

Cov (ε(r), ε(s)) = σ2k

(
r − s
h

)
, r, s ∈ D,

where σ influences the magnitude of the added noise. In this way, (4.2) will be continuous, just as
(2.7), whenever a continuous kernel function is used and fh vanishes nowhere. In particular, this
means for the realisations ε̃i = ε(ri), i = 1, . . . , N of the random noise that the attacker sees at the
measurement locations according to (4.2), that they follow a multivariate normal distribution with
mean zero and covariance

Cov (ε̃i, ε̃j) = σ2 (Kh)ij , i, j = 1, . . . , N,

The following theorem gives a safe bound for the standard deviation of the noise.

Theorem 4.4.1. Suppose that Kh is positive definite, gi ≥ 0, i = 1, . . . , N and ε̃i, i = 1, . . . , N
follows a multivariate normal distribution with mean 0 and covariance matrix σ2Kh. Then the plot
of (4.2) is safe according to the (p%, α) rule for our attacker scenario in Section 3.6 if

σ ≥ p

100 Φ−1 ((1 + α)/2) max
i=1,...,N


gi√∑N

j=1
∑N
k=1

(
C−1
h

)
ij

(
C−1
h

)
ik

(Kh)jk

 (4.6)

Proof. Take Kh positive definite and ε̃i, i = 1, . . . , N as multivariate normal random variables with
mean 0 and covariance matrix σ2Kh. Continuing from (4.3), this implies that the i-th recalculated
value ĝi, as a linear combination of independent Gaussian random variables, will follow a normal
distribution with mean gi and variance

Var(ĝi) = Var

 N∑
j=1

(
C−1
h

)
ij
ε̃j


=

N∑
j=1

N∑
k=1

(
C−1
h

)
ij

(
C−1
h

)
ik

Cov (ε̃j , ε̃k)

= σ2
N∑
j=1

N∑
k=1

(
C−1
h

)
ij

(
C−1
h

)
ik

(Kh)jk .
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Combining this with Lemma 4.2.1 gives us

p

100σΦ−1 ((1 + α)/2) max
i=1,...,N


gi√∑N

j=1
∑N
k=1

(
C−1
h

)
ij

(
C−1
h

)
ik

(Kh)jk

 > 1,

as a condition to be unsafe according to the (p%, α) rule, from which it is only a small step to
conclude that the plot is safe according to the (p%, α) if

σ ≥ p

100 Φ−1 ((1 + α)/2) max
i=1,...,N


gi√∑N

j=1
∑N
k=1

(
C−1
h

)
ij

(
C−1
h

)
ik

(Kh)jk

 .

4.5 � Continuous Noise on Numerator
Our last method to consider for the addition of random noise to the plot of (2.7), is adding it to the
numerator of (2.7), so that an attacker observes

mh(ri) + ε̃i =
∑N
j=1 gjk ((ri − rj)/h) + εi∑N

j=1 k ((ri − rj)/h)
, i = 1, . . . , N, (4.7)

which means that we take ε̃i in (4.2) equal to

ε̃i = εi∑N
j=1 k ((ri − rj)/h)

, i = 1, . . . , N. (4.8)

Again, we choose to take the continuous noise on the numerator te be a Gaussian field. For the
values that the attacker observes at the measurement locations, this means that εi, i = 1, . . . , N
follows a multivariate normal distribution with mean 0 and covariance

Cov (εi, εj) = σ2k

(
ri − rj
h

)
, i, j = 1, . . . , N.

The left-hand side of 4.8 allows for an other interpretation: Instead of saying that random noise is
added to the numerator density of the kernel smoother, one might also say that the distortion at a
point is inversely proportional to the population density at that point.

Again, the resulting plot of (4.2) will be continuous, just as (2.7), whenever a continuous kernel
function is used and fh vanishes nowhere. The following theorem gives a safe bound for the standard
deviation of the noise.

Before stating the safe lower bound for σ, we will prove a result on the inverses of Kh and Ch.

Lemma 4.5.1. Suppose that Kh is invertible. Then

K−1
h =


(
C−1
h

)
ij∑N

m=1 (Kh)jm


N

i,j=1

Proof. Recall that Ch is invertible whenever Kh is. We will work out the two required matrix
multiplications to show that the matrix on the right hand side is indeed the inverse ofKh. To begin,

N∑
k=1

(
C−1
h

)
ik∑N

m=1 (Kh)km
(Kh)kj =

N∑
k=1

(
C−1
h

)
ik

(Ch)kj = 1(i = j).
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Secondly,

N∑
k=1

(Kh)ik

(
C−1
h

)
kj∑N

m=1 (Kh)jm
=
∑N
m=1 (Kh)im∑N
m=1 (Kh)jm

N∑
k=1

(Ch)ik
(
C−1
h

)
kj

=
∑N
m=1 (Kh)im∑N
m=1 (Kh)jm

1(i = j)

= 1(i = j).

Using this result, we can prove the following theorem.

Theorem 4.5.1. Suppose that Kh is positive definite, gi ≥ 0, i = 1, . . . , N and εi, i = 1, . . . , N
follow a multivariate normal distribution with mean 0 and covariance matrix σ2Kh. Then the plot
of (4.7) is safe according to the (p%, α) rule for our attacker scenario in Section 3.6 if

σ ≥ p

100 Φ−1 ((1 + α)/2) max
i=1,...,N


gi√(
K−1

h

)
ii

 (4.9)

Proof. Take Kh positive definite and ε̃i, i = 1, . . . , N as multivariate normal random variables with
mean 0 and covariance matrix σ2Kh. Continuing from (4.3), this implies that the i-th recalculated
value ĝi, as a linear combination of independent Gaussian random variables, will follow a normal
distribution with mean gi and variance

Var(ĝi) = Var

 N∑
j=1

(
C−1
h

)
ij
ε̃j


=

N∑
j=1

N∑
k=1

(
C−1
h

)
ij

(
C−1
h

)
ik

Cov (ε̃j , ε̃k)

=
N∑
j=1

N∑
k=1

(
C−1
h

)
ij

(
C−1
h

)
ik∑N

m=1 (Kh)jm
∑N
m=1 (Kh)km

Cov (εj , εk)

= σ2
N∑
j=1

N∑
k=1

(
C−1
h

)
ij

(
C−1
h

)
ik∑N

m=1 (Kh)jm
(Ch)kj .

In the third equality above, we wrote ε̃j and ε̃k in terms of εj and εk, respectively, and took the factors
outside the covariance. In the last step, we substituted σ2 (Kh)jk = σ2 (Ch)kj

∑N
m=1 (Kh)km for

Cov(εj , εk). We continue by rearranging factors and working out the matrix multiplication:

Var(ĝi) = σ2
N∑
j=1

(
C−1
h

)
ij∑N

m=1 (Kh)jm

N∑
k=1

(
C−1
h

)
ik

(Ch)kj

= σ2
N∑
j=1

(
C−1
h

)
ij∑N

m=1 (Kh)jm
1(i = j)

= σ2

(
C−1
h

)
ii∑N

m=1 (Kh)im
.
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We use Lemma 4.5.1 to obtain
Var(ĝi) = σ2

(
K−1

h

)
ii
, (4.10)

which we can combine with Lemma 4.2.1 to get

p

100σΦ−1 ((1 + α)/2) max
i=1,...,N


gi√(
K−1

h

)
ii

 > 1,

as a condition to be unsafe according to the (p%, α) rule. From here it is only a small step to
conclude that the plot is safe according to the (p%, α) if

σ ≥ p

100 Φ−1 ((1 + α)/2) max
i=1,...,N


gi√(
K−1

h

)
ii

 .

For the limit case of a very small bandwidth h, the diagonal of Kh will be close to 1 and the off-
diagonal entries will be close to 0, which means that also K−1

h will be a diagonal matrix. In that
case, we use (4.10) to conclude that the variance in the recalculated values equals the variance of
the εi’s that were introduced. This makes sense, since the for a small bandwidth, m(ri) ≈ gi, as
was seen in Section 2.3.3, and thus the variance of εi will be the variance of g̃i.
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5 � Simulations and Case Study

For the three methods that were elaborated on in Chapter 4, we want to be able to compare
unprotected plots with protected plots. This means so we cannot use original confidential data, since
it would disclose sensitive information. For that reason, we show plots of uniform random data in
Section 5.1 and of a more realistic data set in Section 5.2.

5.1 � Simulations
First, in Figure 5.1, independent noise per pixel is added to the smoothed average for different
bandwidths, where the standard deviation σ is chosen equal to the lower bound in Theorem 4.3.1.
The population element locations and measurement values were taken to be identical to the ones of
the plots in Chapters 2 and 3. We clearly see that for the larger bandwidth, the required magnitude
of the noise is smaller and the noise is visually less apparent. Adding noise independently per pixel
makes that the plots look grainy. Also, changing the amount of pixels will visually change the plot
to a large extent.

Then, for the simulations in Figures 5.2-5.4, 100 population elements were used. Their locations were
chosen uniformly at random on the unit square and their measurement values uniformly at random on
[0, 1]. For all figures, a Gaussian kernel was used and the smoothed average was protected according
to a (10%, 0.1) rule for the attacker scenario of Section 3.6. In Figures 5.2-5.4, continuous noise is
added to the smoothed average, where the standard deviation σ is chosen equal to the lower bound
in Theorem 4.4.1 for noise on the total plot and the lower bound in Theorem 4.5.1 for noise on the
numerator of the smoothed average. Per figure, the two different methods used the same realisation
of the Gaussian field, apart from the standard deviation, so that the disturbances can be compared
well. Again, we see that a larger bandwidth requires a smaller magnitude of the noise. In Figure 5.2,
the noise is well visible for both protection methods, where in Figure 5.3 the differences are more hard
to find, especially between the original smoothed average and the plot with noise on the numerator.
In Figure 5.4, the plots are similar to a very large extend. If we consider the net disturbances of the
two methods, we see that for all bandwidths, the method with noise on the total plot disturbs the
plot more severely than the method with noise on the numerator.
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(a) h = 0.01 (compare to figure 2.1f) (b) h = 0.1 (compare to 2.1e)

(c) h = 0.12 (d) h = 0.15

Figure 5.1: Noised smoothed average, Gaussian kernel, 50 points, 2502 pixels, (10%, 0.1) rule

35



CHAPTER 5. SIMULATIONS AND CASE STUDY

(a) Used locations and measurement values (b) Smoothed average

(c) With continuous noise on total plot (d) With continuous noise on numerator

(e) = (c)−(b) Net disturbance, noise on total (f) = (d)−(b) Net disturbance, noise on numerator

Figure 5.2: Plots using 100 uniformly chosen locations on the unit square, with measurement values
uniformly chosen on [0, 1]. A Gaussian kernel was used with h = 0.09. The noised images
are protected according to a (10%, 0.1) rule.
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(a) Used locations and measurement values (b) Smoothed average

(c) With continuous noise on total plot (d) With continuous noise on numerator

(e) = (c)−(b) Net disturbance, noise on total (f) = (d)−(b) Net disturbance, noise on numerator

Figure 5.3: Plots using 100 uniformly chosen locations on the unit square, with measurement values
uniformly chosen on [0, 1]. A Gaussian kernel was used with h = 0.11. The noised images
are protected according to a (10%, 0.1) rule.
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(a) Used locations and measurement values (b) Smoothed average

(c) With continuous noise on total plot (d) With continuous noise on numerator

(e) = (c)−(b) Net disturbance, noise on total (f) = (d)−(b) Net disturbance, noise on numerator

Figure 5.4: Plots using 100 uniformly chosen locations on the unit square, with measurement values
uniformly chosen on [0, 1]. A Gaussian kernel was used with h = 0.13. The noised images
are protected according to a (10%, 0.1) rule.
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Figure 5.5: Unprotected (left panel) and protected (right panel) kernel weighted average of our entire
synthetic dataset, according to a (10%, 0.1) rule for a Gaussian kernel with bandwidth
h = 250m

5.2 � Case Study
Instead of using uniform random data, we will use a synthetic dataset here, based on real data of
energy consumption by enterprises. It is included in the sdcSpatial R-package that can be found
on CRAN (De Jonge and De Wolf, 2019). This synthetic dataset of 8348 locations is based upon
original data of enterprises in the region Westland of The Netherlands. This region is known for its
commercial greenhouses as well as enterprises from the Rotterdam industrial area. The locations of
the enterprises were perturbed and random values were assigned for the energy consumption drawn
from a log-normal distribution with parameters estimated from the original data. Spatial dependency
in the energy consumption was introduced to mimic the compact industrial area and the densely
packed greenhouses.

Figure 5.5 shows the unprotected kernel weighted average (2.7) and the protected kernel weighted
average with noise on the numerator that satisfies the (10%, 0.1) rule. A Gaussian kernel with a
bandwidth of 250m was used. We computed a safe lower bound for the standard deviation σ of
the random noise by (4.5). The plot of (4.2) resulting from that computation looks almost exactly
identical to the plot of (2.7). Only at parts of the boundary where the population density is very
small, the added disturbance is perceptible by the eye.

When the bandwidth would be taken smaller, the standard deviation of the noise would become large
enough for the disturbance to be visually apparent. However, working on this scale, it would be hard
to see the details in that situation. Thus, we plotted a subset of the data, restricting ourselves to a
square of 2 km × 2 km and all 918 enterprises contained in that square. The results of our method
on the data subset are visible in Figure 5.6 for h = 100m and in Figure 5.7 for h = 80m, while
Figure 5.8 displays the spatial structure of the locations in our entire synthetic dataset and the subset
thereof.

We see that that the necessary disturbance to the plot is smaller in Figure 5.7 than in Figure 5.6. In
order to be able to compare the results for different bandwidths, Figure 5.9 contains two graphs that
show the influence of the bandwidth on σ for our synthetic data set. Note that the total disturbance
of the plot is also influenced by the denominator of (4.2), that increases with increasing bandwidth
if the used kernel is decreasing in ||r||. The graph of the entire dataset shows a steep decrease of
σ around h = 5. This is caused by the quick increase of the diagonal elements of K−1

h due to Kh

becoming less similar to a diagonal matrix. For h ≤ 5 a single company with a very large energy
consumption dominates the value of σ. Since this company is not present in the subset that we work
with, a smaller σ may be used for the subset, also for h ≤ 5.
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Figure 5.6: Unprotected (left panel) and protected (right panel) kernel weighted average of a part of
our synthetic dataset, according to a (10%, 0.1) rule for a Gaussian kernel with bandwidth
h = 100m
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Figure 5.7: Unprotected (left panel) and protected (right panel) kernel weighted average of a part of
our synthetic dataset, according to a (10%, 0.1) rule for a Gaussian kernel with bandwidth
h = 80m
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Figure 5.8: Map of enterprise locations in our entire dataset (left panel) and in the data subset (right
panel)
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Figure 5.9: Standard deviation σ of added noise for different bandwidths
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6 � Discussion and Recommendations

In this report we looked into the disclosure properties of kernel smoothed average plots. We found
that when an attacker is aware of both the kernel and the bandwidth used to produce the map,
the original measurement values can be retrieved for some kernel types, by means of reading off the
plotted values at the distinct population element locations and estimating the measurement values
by solving a system of linear equations. For that reason, we introduced a new sensitivity rule that is
applicable in this scenario. To protect the plot, we proposed to disturb the data by adding random
noise. For three specific noise types, we derived a rule on how large the disturbance to the plot
should be before publishing it.

The first of the three methods involved adding noise independently per pixel (Section 4.3. However,
this type does not fulfill our continuity requirement and also we want to mention that it remains
unclear if this method protects the plot well enough. It might be that in practice an attacker will
take an average of the pixels close to a measurement location to obtain a better estimate of the plot
value at that location.

Simulations that we considered for two continuous methods to add noise, indicated that in general
the protected plot using noise on the numerator of the kernel weighted average (Section 4.5) suffers
from a smaller net distortion than the plot using noise added to the total kernel weighted average
(Section 4.4), which makes that the former plot is visually more attractive. Also, the noise on the
numerator can be chosen to a computationally more elegant formula. Concluding, we propose to use
the noise on the numerator and consider that our main result.

To investigate the efficacy of this type of noise a case study was carried out. It indicated that for
a bandwidth that is large relative to the population density, the disturbance needed was very small.
When zooming in, however, the disturbance to the plot was visually apparent. This is in line with
the limit cases we considered in Section 2.3.3. The proposed method agrees with the intuition that
densely populated areas need less protection, since the standard deviation of the noise is inversely
proportional to the kernel smoothed population density. This could be seen very clearly in the case
study.

We close with some final remarks and perspectives. First of all, note that the addition of noise in our
method might lead to negative or extremely large values of (4.2) at locations where the population
density is very small. In our case study, these locations were given the minimal or maximal colour scale
values, to result in a realistic map for the user. In practical implementations, where the bandwidth
might automatically become smaller when a user zooms in, one could choose to use a ‘zoom stop’
whenever the net disturbance of the plot becomes to large.

Secondly, our method requires that all ri, i = 1, . . . , N are distinct. We think that one of the most
interesting future extensions is to look into a scenario in which population elements can have the
same location, since these might partly protect each other for disclosure. If one would introduce grid
cells and use a single location for elements in the same cell, a similar analysis could lead to explicitly
taking the resolution of the plot into account.
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Another extension of the method might lie in taking boundary corrections into account and choosing
the bandwidths per measurement location instead of having a single bandwidth for the whole plot.
In that way, less densely populated areas might use a greater bandwidth, which protects them from
disclosure control, without influencing densely populated regions on the other side of the plot.

Furthermore, it would be interesting to look at the utility of our plot for different bandwidth choices.
Figure 5.9 is a first step in this direction but more research is needed.

Finally, we restricted ourselves to a single simple attacker scenario. It would be interesting to
investigate alternative scenarios in which the attacker is particularly interested in a single value, uses
other locations to read off the plot or tries to eliminate the added noise.
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