
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

Experimental Review of the
IKK Query Recovery Attack:

Assumptions, Recovery Rate and
Improvements

Ruben Groot Roessink
M.Sc. Thesis

July 2020

Supervisors:
Dr. A. Peter

Dr. Ing. F.W. Hahn
Dr. Ir. M. Jonker

Services and Cyber-Security
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

Abstract—In light of more data than ever being stored us-
ing cloud services and the request by the public for secure,
privacy-enhanced, and easy-to-use systems, Searchable Encryp-
tion schemes were introduced. These schemes enable privacy-
enhanced search among encrypted documents yet disclose (en-
crypted) queries and responses. The first query recovery attack,
the IKK attack, uses the disclosed information to (partly) recover
what plaintext words the client searched for. This can also leak
information on the plaintext contents of the encrypted documents.
Under specific assumptions, the IKK attack has been shown
to potentially cause serious harm to the security of Searchable
Encryption schemes.

We empirically review the IKK query recovery attack to
improve the understanding of its feasibility and potential se-
curity damage. In order to do so, we vary the assumed query
distribution, which is shown to have a severe (negative) impact
on the accuracy of the attack, and the input parameters of the
IKK attack to find a correlation between these parameters and
the accuracy of the IKK attack.

Furthermore, we show that the recovery rate of the attack
can be increased up to 10 percentage points, while decreasing
the variance of the recovery rate up to 78 percentage points by
combining the results of multiple attack runs. We also show that
the including deterministic components in the probabilistic IKK
attack can increase the recovery rate up to 21 percentage points
and decrease its variance up to 57 percentage points.

Index Terms—Searchable Encryption, IKK, query recovery

I. INTRODUCTION

The use of currently available encryption schemes allows
users to securely upload and retrieve documents anywhere
in the world using cloud services. A user encrypts a set of
documents and sends these encrypted documents to a server
for storage. The server can return documents upon request by
the user, which the user can decrypt to obtain the original
documents, while the server is not capable of reading the
contents of the documents.

A downside of using encryption schemes is that they, in
general, limit the functionalities of the cloud service. One such
functionality is the possibility to search for word occurrences
among documents. To overcome this loss in functionality,
while also taking into regard data confidentiality, Song et al.
[1] introduced the notion of Searchable Encryption (SE).

In general, SE schemes provide a client with a way to search
for the occurrence of a certain (plaintext) word, a keyword,
among a set of encrypted documents, while neither the client
nor the server has to decrypt all documents which the client
wants to search among. A client generates a search token, a
query, which it sends to a server hosting a set of (encrypted)
documents. The server uses the query to find a subset of the
encrypted documents corresponding with the search token and
returns this subset to the client.

Nearly all of these SE schemes leak at least some infor-
mation, usually in the form of data access patterns [1]–[3],
meaning that an adversary can observe the issued queries
from the client and the document identifiers of documents
corresponding to said queries in the response by the server and
is thus capable of making a connection between the queries
and the corresponding documents.

Some schemes were proposed [3], [4] that hide these access
patterns. However, these schemes are quite inefficient as they
require an extensive number of computations after each query.
Other schemes propose to obfuscate the access patterns which
can both lead to inconsistencies in the search results (false
positives or false negatives) and an increase in communication
and storage overhead [5].

Islam et al. [6] elaborate on the implications of the leakage
of access patterns by proposing the first query recovery attack,
dubbed IKK attack in subsequent research after the first initials
of the authors of the paper. Their attack is a statistical attack
which tries to map queries to their corresponding real-world
keywords. This mapping process is dubbed query recovery.
A correctly ‘recovered’ query tells an adversary what the
client searched for and possibly even tells something about
the contents of (encrypted) documents stored on the server.

In their attack Islam et al. use the relative co-occurrence
counts of queries, which denotes the number of documents
a certain number of queries occur in together, relative to the
total number of documents. These counts can be calculated
from leaked access patterns. The IKK attack also assumes
the adversary has access to (a close approximation of) the
co-occurrence counts of the plaintext (key)words in these
documents, dubbed background knowledge.

Islam et al. show that a large percentage of queries is
recoverable, expressed as the (query) recovery rate, if the
adversary has perfect background knowledge, meaning that
the co-occurrence counts of keywords exactly match the co-
occurrence counts of their corresponding queries. They also
briefly show that the recovery rate drops significantly in
simulations with non-perfect background knowledge.

We revisit the IKK attack and empirically evaluate as-
sumptions Islam et al. make in their proposal of the IKK
attack. Additionally, we research correlations between certain
parameters and the accuracy/recovery rate of the IKK attack
and propose improvements to the attack that increase the
recovery rate of the attack.

Our contributions

• We show that assumptions on the (Zipfian) distribution
of queries/natural search behavior Islam et al. made
positively influences the accuracy of the IKK attack.

• We show that there is a correlation between input param-
eters of the IKK attack and the accuracy of attack runs,
independent of the (email) dataset used in the targeted
Searchable Encryption scheme, potentially allowing an
adversary to reuse the same values of parameters across
different datasets.

• We show the correlations between different methods to
simulate background knowledge and the accuracy of the
IKK attack, potentially allowing an adversary to quantify
the accuracy of the attack run.

• We show that the accuracy of the IKK attack can be
increased significantly when combining multiple runs
using a majority voting scheme as the median recovery
rate is increased up to 10 percentage points, whereas

2

the variance of the recovery rate is decreased up to 78
percentage points.

• We show that a more deterministic approach to select
new states in the IKK attack, inspired by the Count
attack [7], increases the accuracy of the attack, while
decreasing the average number of states visited. The
median recovery rate is increased up to 21 percentage
points and the variance of recovery rates is decreased up
to 57 percentage points, while the average visited number
of states is decreased by 28 percent.

II. THE IKK QUERY RECOVERY ATTACK

A. Searchable Encryption (SE)

The first SE scheme was proposed by Song et al. [1] to
provide a client with a way to search for the occurrence of a
plaintext word among a set of encrypted documents stored on
a server without an adversary being able to learn the (plaintext)
contents of these documents.

The server stores a set of encrypted documents, for example
email files. The client wants to retrieve emails that contain
information on an upcoming merger and thus requests all
emails that contain the (plaintext) word merger. It does so by
generating a so-called query using a keyed trapdoor function,
Trapdoorkt (merger), for example, a keyed hash function.
Only users with key kt can generate valid queries. We assume,
just like Islam et al. [6], that queries are deterministic.

In order to retrieve the corresponding documents, the client
sends the query to the server, which on its turn, performs
a matching algorithm. Most proposed SE schemes either
encrypt every single word in a document (In-place SE [7])
to encrypt a document or encrypt every document using a
traditional encryption scheme, such as AES, while also gener-
ating an encrypted inverted index of documents and trapdoors
(Encrypted-index SE [7]) to allow the server to perform the
search query. No matter the SE scheme, the server returns
all the documents that match the search query, which can be
decrypted by the client.

B. Access pattern disclosure

Just like Cash et al. [7], we deem the server the most
likely adversary as it has access to the most information.
Nonetheless, any adversary with access to the communication
channels is able to connect a query to the identifiers of
the documents that were returned and thus is able to see
which documents were accessed upon the query of the client.
This has been dubbed (data) access pattern disclosure in the
literature [6]. Almost all SE schemes, except schemes that
re-encrypt the documents or the encrypted index stored on
the server after each query [3], [4], disclose access patterns
of particular queries, and thus each query gives an adversary
more information on which queries are connected to which
documents.

Some schemes propose to obfuscate access patterns which
can lead to inconsistencies in the search results (false positives
or false negatives) or an increase in communication and

storage overhead [5]. In our research, we assume no such
inconsistencies were added to the search results.

Although we note that different SE schemes leak different
levels of information, we only research the disclosure of
access patterns and assume that the adversary is able to get
〈query , response〉 pairs, where response is a list of documents
that matched the issued query.

The leaked 〈query , response〉 pairs allow the adversary to
construct an inverted index from queries/trapdoors and docu-
ments. Each cell in the matrix contains a 1 if the document
matched the query, i.e. the plaintext keyword occurs at least
once in said document, or a 0 if not. An example of an
(observed) query inverted index is shown in Table I.

TABLE I
EXAMPLE OF A QUERY INVERTED INDEX

Documents
Query Doc1 Doc2 Doc3

q1 = Trapdoorkt (merger) 1 1 0
q2 = Trapdoorkt (corporate) 1 1 0
q3 = Trapdoorkt (report) 0 1 1

C. Statistical processing

The IKK attack is grounded on the assumption that some
words are more likely to occur together in any piece of natural
language than others. Islam et al. [6] give the example of the
words New, York and Yankees, where the words New and York
are more likely to occur together than New and Yankees or
York and Yankees because they are also used to refer to the
city and the state and not only the baseball team.

Islam et al. propose a model where the co-occurrence
counts of 2 queries are used to recover which plaintext words
correspond to which queries. The authors use a so-called co-
occurrence matrix to express all co-occurrence counts of the
queries in an attack run, as an co-occurrence matrix lists the
(relative) co-occurrence count for each of the queries with all
other queries and with itself. The probability that two words
appear together in a given document is expressed using the
following formula by Islam et al.:

β =
RQs

·RQt

n
(1)

In this formula, Qt and Qs are two queries, and RQx

denotes a vector with ones and zeros indicating whether the
word corresponding to the query occurs at least once in the
document corresponding with the place in the vector (1) or not
(0). The co-occurrence count is calculated by taking the dot
product of RQs

and RQt
. To get the relative co-occurrence

count this value is simply divided by n, which denotes the
total number of documents in the dataset.

A query co-occurrence matrix simply lists all the co-
occurrences of queries, is symmetric by nature and is easily
generated using an inverted index as every row in the index,
corresponding to query Qx, is already represented as vector
RQx .

3

The relative co-occurrence count of a query with itself is
the total number of documents said query occurs in divided
by n. The example inverted index in Table I gives us the co-
occurrence matrix in Table II.

TABLE II
EXAMPLE OF A QUERY CO-OCCURRENCE MATRIX

Queries q1 q2 q3
q1 0.67 0.67 0.33
q2 0.67 0.67 0.33
q3 0.33 0.33 0.67

D. Background knowledge assumptions

In most of their simulations Islam et al. [6] assume
the adversary has perfect background knowledge of the co-
occurrence counts of plaintext words in the documents stored
encrypted on the server. They mention that it is difficult,
if not impossible, to obtain perfect background knowledge
and briefly experiment on the accuracy of their attack in
simulations with non-perfect background knowledge by adding
various degrees of Gaussian noise to a co-occurrence matrix
corresponding to perfect background knowledge.

Cash et al. [7] further research the effect of non-perfect
background knowledge, but instead of adding various degrees
of Gaussian noise to a perfect representation of the background
knowledge (of the adversary) the authors assume the adversary
(server) has access to a fraction of the plaintext documents
and thus the adversary is capable of calculating both inverted
indices and co-occurrence matrices from the documents it
knows. The authors report that the IKK attack performs quite
poorly if the background knowledge is made up of less than
99% of the documents.

An example of a background knowledge co-occurrence
matrix is shown in Table III.

TABLE III
EXAMPLE OF A (PERFECT) BACKGROUND KNOWLEDGE CO-OCCURRENCE

MATRIX

Keywords corporate merger report
corporate 0.67 0.67 0.33

merger 0.67 0.67 0.33
report 0.33 0.33 0.67

E. Simulated Annealing

Islam et al. [6] use two algorithms to recover queries from
a query co-occurrence matrix and a background knowledge
co-occurrence matrix:

Their Optimizer algorithm (Algorithm 1) assigns a random
1-to-1 mapping for each query to a random keyword in the
background co-occurrence matrix as the initial state variable.
The mapping corresponds to a mapping between the query co-
occurrence matrix and a subset of the background knowledge
co-occurrence matrix which is equal in its dimensions to
the query co-occurrence matrix. Each cell in the query co-
occurrence matrix is therefore mapped to a single cell in the

background knowledge co-occurrence matrix. The initial state
is given as input to the ANNEAL algorithm.

Their ANNEAL (Algorithm 2) is a Simulated Annealing
algorithm [8], which first copies the initial state to a current
state variable and enters a while loop. Each iteration the
algorithm randomly selects both a mapping (of a single query
to a single keyword, i.e. q1 7→ k1) and a keyword (k2) from the
list of potential keywords. If the selected keyword is already
mapped to another query, i.e. q2 7→ k2 is in current state, the
mappings are simply interchanged, i.e. q1 7→ k2 and q2 7→ k1,
otherwise the selected mapping is changed to q1 7→ k2 to
obtain the next state.

The algorithm determines whether it should accept or reject
next state in favor of or against current state respectively. The
algorithm calculates the sum of the squared Euclidean distance
of the co-occurrence counts of each of the mappings with other
mappings for both current state and next state. Depending
on the calculated squared Euclidean distance either next state
is accepted (and becomes current state in the iteration of
the while loop) or is rejected. If the Euclidean distance of
next state is lower than that of current state next state is
accepted. A next state with a higher Euclidean distance is
not necessarily rejected, but might be accepted with a small
probability, depending how close the Euclidean distance is to
0. This is included to decrease the possibility of the algorithm
finishing its run in a local optimum state as opposed to finding
the global optimum state.

The ANNEAL algorithm takes three input parameters, next
to the co-occurrence matrices. These input parameters initial
temperature, cool down rate and rejection rate are used to
ensure the algorithm has a finite run time.

The initial temperature initializes the internal current tem-
perature variable of the algorithm. Each iteration in the
while loop current temperature is decreased by multiplying
it with cool down rate (a value between 0 and 1, close to
1). The algorithm returns current state as the final mapping
if the system freezes, i.e. current temperature becomes 0.
initial temperature and current temperature therefore together
determine the maximum number of loops the algorithm goes
through. The algorithm can also finish before it freezes if no
next state has been accepted for a certain (consecutive) number
of iterations, which is determined by the value of rejection
rate. The current temperature variable is also used also in
deciding whether to accept a worse next state with a small
probability.

F. Simulations

1) Datasets Used: Both Islam et al. [6] and Cash et al.
[7] use the sent mail data folder of the ENRON dataset [9]
(containing 30109 emails) as the dataset to run simulations
on. Additionally, Cash et al. use the Apache Lucene project’s
java-user mailing list [10] (containing 50116 emails) in their
simulations.

2) Tokenization/Stemming algorithm: Both papers tokenize
all emails in the dataset to specific words before they are
able to stem individual words, but neither elaborate on the

4

tokenization algorithm used in their simulations. Stemming is
done using Porter’s stemming algorithm [11] to get the stem
of each word, meaning that words like ‘has’ and ‘have’, which
in principle have the same meaning, are stemmed to the same
word.

3) Keyword Generation: The stemmed keywords are sorted
in decreasing order of overall occurrence. The 200 most
occurring (stemmed) words in a dataset, that are likely to occur
in every file (for example ‘a’ and ‘the’), are removed as they
are not deemed useful in a Searchable Encryption scheme. The
next x words are regarded as the keyword set.

4) Query Generation: Both Islam et al. and Cash et al.
simulate a certain number of queries by using the Zipfian
distribution on the keyword set. Due to the nature of the
Zipfian distribution words with a higher occurrence count are
more likely to be simulated as a query.

5) Reported results: Islam et al. report recovery rates rang-
ing from 60%-100% depending on the number of keywords,
number of queries and the % of queries ‘known’ before the
attack run. With different levels of Gaussian noise added
to the background knowledge, the accuracy of the attack
ranges between 40% and 85%. Cash et al. report recovery
rates of the IKK attack ranging between 0% and 100% and
show an exponentially decreasing correlation between the
size of the input matrices (query and background knowledge
co-occurrence matrices) and the recovery rate. Cash et al.
also report recovery rates ranging between 0% and 60% for
different percentages of documents ‘known’ to the adversary.

III. REVISITING THE IKK ATTACK

Islam et al. [6] introduced the study on query recovery
attacks by proposing the IKK query recovery attack. The
authors report high query recovery rates that would allow
an adversary to determine what a user searched for. More
importantly, as Cash et al. [7] note in their paper, correctly
recovered queries are inherently a part of the plaintext of
encrypted documents and thus disclose part of the plaintext of
the document stored on the server. We therefore stress that it is
important to get a more broad understanding of query recovery
attacks. In this research we revisit the following facets of the
IKK attack:
• We evaluate the assumption on query distribution follow-

ing the Zipfian distribution made by Islam et al. while
simulating runs of the IKK attack (Section IV).

• We look at the correlation between the initial tempera-
ture, cool down rate and the rejection rate input param-
eters and the accuracy of the IKK attack (Section V).

• We look at the correlation between the similarity between
input (co-occurrence) matrices and the accuracy of the
IKK attack (Section V).

Furthermore, we propose and research the following im-
provements to the IKK attack:
• We propose to use a majority voting scheme to increase

the accuracy of the IKK attack by combining the results
of multiple runs (Section VI).

• We propose to (more) deterministically choose the next
state of the ANNEAL algorithm to increase the accuracy
of and decrease the number of visited states by the
IKK attack. This method incorporates the (relative) word
occurrence method, as proposed by Cash et al. in their
Count attack (Section VI).

In order to run simulations of the IKK attack to address the
points above we implemented the IKK attack as proposed by
Islam et al. in Python3 and published it on Github [12]. The
implementation allows the user to select:

• the distribution used to simulate queries (Zipfian, reverse
Zipfian, Uniform)

• values for the parameters of the ANNEAL algorithm
(initial temperature, cool down rate, rejection rate)

• sizes of the query and background knowledge co-
occurrence matrices (resp. number of queries, number of
keywords)

• datasets/email folders to use in the simulation
(ENRON/ sent mail, ENRON/inbox, ApacheLucene-
java-user (Apache))

• different methods to simulate non-perfect background
knowledge (Gaussian noise addition, using a fraction of
the keywords, using a fraction of the documents)

• the number of consecutive runs with exactly the same
input parameters

• whether to more deterministically select new states using
word occurrences as also proposed in the Count attack
by Cash et al.

To give the reader an idea of the input parameters used
in our simulations we mention the standard values for the
different parameters of the IKK attack in Table IV.

TABLE IV
STANDARD PARAMETER VALUES IN THE IKK ATTACK SIMULATIONS

Variable Value Variable Value
initial temperature 1.0 nr of keywords 1500

cool down rate 0.999 nr of queries 150
rejection rate 50000

dataset / ENRON /
keyword percentage 1.0 email folder sent mail

document percentage 1.0
distribution Zipfian

Gaussian
0.0noise scaling factor nr of runs 1

We briefly capture our generalized method below. Sim-
ulation specific methodologies are elaborated upon in their
correlated sections (Sections IV, V and VI).

1) Tokenize and stem the words in all documents in a
specific dataset. Tokenization is done by splitting the
document on whitespaces. Stemming is done using
Porter’s stemming algorithm [11].

2) Sort all unique (stemmed) words in decreasing order
of occurrence (count) (the total number of times a
word occurs in the dataset, not the number of matching
documents).

5

3) Disregard the first 200 most occurring words, just like
Islam et al., and take the subsequent x words as keyword
set. x is equal to the number of keywords input variable
in our simulations.

4) Simulate y queries from the x selected keywords using a
specified query distribution as the query set. y is equal to
the number of queries input variable in our simulations.

5) Generate the query and background knowledge inverted
indices from the selected queries and keywords, and the
list of documents.

6) Generate the query and background knowledge co-
occurrence matrices from the inverted indices.

7) Input the co-occurrences matrices and the input param-
eters initial temperature, cool down rate and rejection
rate in the ANNEAL algorithm (Algorithm 2).

8) Calculate the (query) recovery rate by dividing
the number of correctly mapped queries, where
query = keyword , by the total number of queries.

Islam et al. also use a known queries variable in their
experiments, a method also adopted by Cash et al. This
variable denotes 〈query , keyword〉 pairs that the adversary
knows to be mapped correctly before the attack run. We argue
that the actual value of this variable is likely to be (close to) 0
and we therefore excluded this variable from our experiments.

IV. ASSUMPTIONS EVALUATION

In their simulations, Islam et al. [6] make an assumption
on distribution of queries in a real-world SE scheme in
order to estimate real-world search behavior of users. They
assume natural search behavior can be estimated by simulating
queries using the Zipfian distribution as they argue that search
behavior might follow a Zipfian distribution as the simulations
are run on a natural language corpus. In their paper, the
authors state that ‘according to Zipf’s law, in a corpus of
natural language utterances, the frequency of appearance of
an individual word is inversely proportional to its rank’ [13].
The Zipfian distribution is also used by Cash et al. [7] to
simulate queries for their simulations.

In order to simulate queries, from the simulated keyword
set (of size x), Islam et al. first sort the words in the keyword
set in decreasing order of overall occurrence. For the word
in the jth position in this list (rank j) the following formulas
are used to determine the probability the word is selected as
a query:

Prj =

1
j

Nx
=

1

j ×Nx
(2)

Nx =

x∑
i=1

1

i
(3)

A word with a higher total occurrence count is therefore
more likely to be simulated as a query. Islam et al. also note
that duplicate queries are removed.

We argue that the assumption that search behavior follows a
Zipfian distribution is counter-intuitive in the sense that users

are more likely to search for a specific email in their mail
archive and thus issue a (single word) query that is likely
to return the sought after document while also not returning
too much other emails (false positives). We therefore argue
that search behavior might instead follow a reverse Zipfian
distribution and thus a word that has a lower occurrence count
has a higher chance of being selected as a query. The reverse
Zipfian distribution can be calculated using the same formulas
as the Zipfian distribution, but the list of word occurrences
is sorted in ascending order of occurrence as opposed to
descending order.

To compare the effect of the distribution used to simulate
the queries we conducted three different simulations for the
Zipfian distribution, reverse Zipfian Distribution and Uniform
distribution respectively. The Uniform distribution denotes the
setting where queries are simulated from the keyword set
uniformly at random. The results of our simulations are shown
in Figure 1, where each box plot is the aggregation of 20
simulations.

Zipfian R-Zipfian Uniform

0.0

0.2

0.4

0.6

0.8

1.0

Query distribution

R
ec

ov
er

y
ra

te

Fig. 1. Correlation of different Query distribution and Recovery rate

It can be seen that the distribution chosen to simulate
queries influences the results of the IKK attack quite a lot
and that simulations where the queries were simulated using
the Zipfian distribution in general have a much higher recovery
rate than simulations where a different distribution was used.
Unfortunately, we simply do not know what distribution real-
world search behavior follows in a Searchable Encryption
scheme as, to the best of our knowledge, there exists no
dataset which contains query search behavior of real-world
users in an SE setting. We can only conclude that the actual
distribution determines the accuracy of the IKK attack and
therefore whether using a Searchable Encryption scheme poses
a risk for search privacy and potentially data confidentially.

V. RECOVERY RATE QUANTIFICATION

A. Input Parameter Correlation

Islam et al. [6] show that their IKK attack allows an
adversary to recover (most of the) queries in a simulated

6

setting. Their ANNEAL algorithm (Algorithm 2), which is part
of their attack algorithm, takes three input parameters initial
temperature, cool down rate and rejection rate to ensure the
algorithm has a finite run time.

The initial temperature initializes the internal current tem-
perature variable of the algorithm. Each iteration in the
while loop current temperature is decreased by multiplying
it with cool down rate (a value between 0 and 1, close to
1). The algorithm returns current state as the final mapping
if the system freezes, i.e. current temperature becomes 0.
initial temperature and current temperature therefore together
determine the maximum number of loops the algorithm goes
through. The algorithm can also finish before it freezes if no
next state has been accepted for a certain (consecutive) number
of iterations, which is determined by the value of rejection
rate.

The values of these parameters have a significant influence
on the number of visited states of the IKK attack as the
initial temperature and cool down rate together determine
the maximum number of states the algorithms visits, whereas
the value of rejection rate determines whether the algorithm
finishes before the current temperature reaches 0 or not.
We argue that the accuracy of the IKK attack is therefore
dependent on the values of these input parameters. This means
that a proven correlation between these three input parameters,
independent of the underlying dataset, and the recovery rate
might allow an adversary to use simulations on another dataset
to find the optimal input parameters for the IKK attack.

To answer the question whether there is a correlation
between the three input parameters and the recovery rate,
independent of the dataset, we used the same datasets as
used by Islam et al. and Cash et al. The first dataset is the
ENRON dataset [9], specifically its sent mail data folder
which contains 30109 emails. Cash et al. also experiment
on the java-user mailing list of the Apache Lucene project
(henceforth Apache) [10] (reportedly containing about 38.000
emails). However, the exact dataset they used was unavailable
and thus we crawled the archive site of the java-user mailing
list and retrieved 50116 emails. The crawled Apache dataset
is included in our Python3 implementation of the IKK attack
on Github [12].

In order to test our hypothesis we conducted three different
experiments. In all of the experiments we kept one of the input
parameters (initial temperature, cool down rate, rejection rate)
constant while varying the other two. The experiments were
repeated for both the Apache and ENRON dataset, with both
the query and background knowledge co-occurrence matrix
from the same dataset and with perfect background knowledge.
Each point in Figures 2, 3, 4 is the average of 5 simulations
of the IKK attack.

Figure 2 shows the aggregation of simulation results with a
constant initial temperature. The results of simulations on the
ENRON dataset and the Apache dataset are roughly the same.
The only exceptions are the simulations with a rejection rate
of 50000 and a cool down rate of 0.9999 respectively 0.99999,
which we attribute to the relatively low number of simulations

0.9 0.99 0.999 0.9999 0.99999

0.0

0.2

0.4

0.6

0.8

1.0

cool down rate

R
ec

ov
er

y
ra

te

ENRON Apache
rejection rate: 500000
rejection rate: 50000
rejection rate: 5000
rejection rate: 500
rejection rate: 50

Fig. 2. Correlation between cool down rate and Recovery rate, with different
values of rejection rate

(5) aggregated in data point. With more simulations these
results might become more similar. Furthermore, the recovery
rate increases with both the cool down rate and the rejection
rate. This makes sense as the maximum number of loops is
increased with a cool down rate closer to 1 and a higher
rejection rate increases the likelihood of finding the best
mapping as the algorithm does not halt prematurely.

Figure 3 shows the aggregation of simulations with a
constant rejection rate. We see that the value of recovery
rate is only dependent on the value of cool down rate as the
correlation between initial temperature and recovery rate is
relatively constant. The recovery rate is also not dependent on
the underlying dataset used as the results for both the ENRON
and Apache dataset are roughly the same.

Figure 4 shows the aggregation of simulations with a
constant cool down rate. We see that the value of recovery
rate is dependent on the value of rejection rate and not on
the value of initial temperature as we again see a constant
correlation between initial temperature and recovery rate. We
can also see that the value of recovery rate is not dependent
on the underlying dataset used as the results are quite similar
for both the ENRON and Apache datasets.

We conclude that the values of rejection rate and cool down
rate significantly influence the recovery rate of the IKK attack.
Furthermore, we conclude that it is possible for an adversary
to find the optimal values for cool down rate and recovery rate
using simulations on a different dataset as the recovery rate is
independent of the underlying dataset used. This means that it

7

0.01 0.1 1.0 10 100

0.0

0.2

0.4

0.6

0.8

1.0

initial temperature

R
ec

ov
er

y
ra

te

ENRON Apache
cool down rate: 0.99999
cool down rate: 0.9999
cool down rate: 0.999
cool down rate: 0.99
cool down rate: 0.9

Fig. 3. Correlation between initial temperature and Recovery rate, with
different values of cool down rate

0.01 0.1 1.0 10 100

0.0

0.2

0.4

0.6

0.8

initial temperature

R
ec

ov
er

y
ra

te

ENRON Apache
rejection rate: 500000
rejection rate: 50000
rejection rate: 5000
rejection rate: 500
rejection rate: 50

Fig. 4. Correlation between initial temperature and Recovery rate, with
different values of rejection rate

is possible to use simulations on the ENRON dataset to select

the optimal input parameter values for runs on the Apache
dataset and vice versa. We argue that email datasets are quite
similar due to the nature of the files they contain as emails
are structured in a certain way, are limited in length and are
used for specific purposes and thus might contain similar data.
More research should be conducted to find out whether our
findings hold true for completely different datasets as well.

B. Co-occurrence Matrix Correlation (Partial background
knowledge)

Both Islam et al. [6] and Cash et al. [7] both briefly elaborate
on the recovery rate of the IKK attack in the case where the
adversary only has partial background knowledge.

Islam et al. add various degrees of Gaussian noise to
individual cells in the co-occurrence matrix representing per-
fect background knowledge to simulate this setting, whereas
Cash et al. simulate non-perfect background knowledge co-
occurrence matrix by taking a fraction of all documents in the
dataset. Both papers show that the accuracy of the attack is
greatly dependent on the level of background knowledge the
adversary has. We therefore argue that it is important to get
a better understanding of the correlation between the level of
background knowledge the adversary has and the recovery rate
of the IKK attack. We also argue that the level of background
knowledge can be expressed as a similarity between the query
and background knowledge co-occurrence matrices, i.e. the
co-occurrence matrix similarity.

In order to express co-occurrence matrix similarity we
propose a metric that returns a similarity score between 0
(no similarity) and 1 (equivalent matrices) between two co-
occurrence matrices of the same dimensions. For two matrices
M1 and M2 and arbitrary words a, b (corresponding to a row
and column) the following formulas are used:

∆2
a,b =

{
(M1[a, b]−M2[a, b])2, if a, b ∈M1 and a, b ∈M2

0, otherwise
(4)

∆2
total =

∑
∀a,b∈M1

∆2
a,b (5)

εa,b =

{
1, if a, b ∈M1 and a, b ∈M2

0, otherwise
(6)

εtotal =
∑

a,b∈M1

εa,b (7)

Co − ocsim. =

(
1− ∆2

total

εtotal

)
∗
(
Koverlap

Ktotal

)
(8)

Equations 4 and 5 are used to calculate the total squared
Euclidean distance of cells that occur both in M1 and M2.

Equations 6 and 7 are used to calculate the number of cells
that occur in both M1 and M2.

In Equation 8 we calculate the average squared Euclidean
distance of cells that occur in both matrices and multiply this

8

TABLE V
EXAMPLE CO-OCCURRENCE MATRICES

M1 a b c
a 1 1 1
b 1 1 1
c 1 1 1

M3 a b c
a 0 0 0
b 0 0 0
c 0 0 0

M2 a b c
a 1 1 1
b 1 1 1
c 1 1 1

M4 a b d
a 1 1 1
b 1 1 1
d 1 1 1

by the ratio of row identifiers that occur in both matrices
(Koverlap) to the total number of rows in both matrices (Ktotal).

In Table V matrices M1 and M2 are exactly the same.
∆2

total is 0 as the squared Euclidean distance between each
of the cells is (1 − 1)2 = 0. The average is therefore also
0. As all keywords in both matrices also occur in the other
matrix, Koverlap

Ktotal
= 3/3 = 1. The similarity between the matrices

is calculated as co − ocsim. = (1 − 0) ∗ 1 = 1 meaning
that the matrices are exactly the same. The calculation for
the similarities between matrices M1 and M3, and M1 and
M4 gives the values 0 and 2/3 respectively.

In our simulations we calculate the co-occurrence ma-
trix similarity using the perfect background knowledge co-
occurrence matrix MF (which corresponds with an unquerified
query co-occurrence matrix) and a non-perfect background
knowledge co-occurrence matrix MP . Both matrices have the
same dimensions. In order to simulate partial background co-
occurrence matrix MP we use the following methods:

Gaussian noise addition - We use the method by Islam et
al. to add Gaussian noise in various degrees to the cells in
MF to obtain MP .

Document percentage - In this setting we use 10% to 100%
of the user folders in a dataset to generate MP . This method
differs a bit from the method by Cash et al. as we argue
that the adversary is more likely to obtain a percentage of
the mail boxes of users (and all documents that are in these
folders) than a percentage of all documents, selected uniformly
at random, in a dataset. We believe that this choice might
influence the results as different users are likely to use specific
language in (all of) their emails.

Keyword percentage - In this setting we, uniformly at
random, select 10% to 100% of the keywords in MF to obtain
MP . To keep the dimensions of MP consistent throughout all
our simulations we supplement the selected keywords with
words with a lower occurrence count in the dataset used, i.e.
that were not in the keyword set.

Different input folder - In this setting we use a different,
but similar dataset to generate MP . In our simulations we use
the inbox folder (containing 44859 emails) of the ENRON
dataset.

The results of the different methods are shown in Figures 5,
6 and 7. In these figures we group the values into certain
buckets to group similarity scores. If a co-occurrence similarity
score is between 0 and 0.1 it is put in the 10% similarity

bucket, a value between 0.1 and 0.2 is put in the 20% bucket
and so on.

10% 20% 30% 40% 50% 60% 70% 80% 90%100%

0.0

0.2

0.4

0.6

0.8

1.0

Co-occurrence matrix similarity

R
ec

ov
er

y
ra

te

Fig. 5. Correlation between co-occurrence matrix similarity and recovery rate,
simulating non-perfect background knowledge by regarding a percentage of
keywords

Figure 5 shows the correlation between the co-occurrence
similarity and the recovery rate in the setting where we use
a certain percentage of the keywords in the keyword set to
simulate partial background knowledge. Each bucket repre-
sents 20 simulations. Due to the nature of our similarity score
using 90% of keywords from the keyword set will result in a
similarity score of exactly 90%. The figure shows a clear linear
correlation between the co-occurrence similarity score and the
recovery rate. This makes sense as in this setting entire rows
(and thus also columns) that are present in MF are changed
while simulating MP . The highest possible percentage of
recoverable queries therefore is linearly dependent on the
percentage of keywords regarded. As the individual cell values
are not changed while simulating MP (as opposed to the
other methods) the algorithm is likely to recover (most of the)
queries of which the corresponding keywords were selected in
MP as these have the optimal Euclidean distance of 0.

Figure 6 shows the correlation between the co-occurrence
matrix similarity and the recovery rate in simulations where
non-perfect background knowledge is simulated by taking a
percentage of user folders in a dataset to generate MP . We
ran 20 simulations for each percentage ranging from 10%,
20% to 100% each. The first thing that we notice is that the
buckets do not contain the same number of simulations per
bucket, which is shown in the figure as the number between
brackets. This is due to the fact that we uniformly at random
select a percentage of all user folders in a dataset and these
user folders do not contain the same number of documents.
Different writing styles can also be of influence to the overall
co-occurrence similarity.

The results in Figure 6 show a different correlation than the
results in Figure 5. This makes sense as in these simulations

9

40%
(1)

50%
(1)

60%
(2)

70%
(10)

80%
(31)

90%
(66)

100%
(89)

0.0

0.2

0.4

0.6

0.8

1.0

Co-occurrence matrix similarity

R
ec

ov
er

y
ra

te

Fig. 6. Correlation between co-occurrence matrix similarity and recovery rate,
simulating non-perfect background knowledge by regarding a percentage of
user folders in the dataset

both row/column identifiers as well as individual cell values
are changed. The algorithm is less likely to correctly map
queries to keywords that do occur in MP as the changed
individual cell values, in Figure 6, make it less likely to find
the optimal mapping. We note that the results in the 40%-60%
bucket do not give much information, as each bucket consists
of a single simulation. We conclude from the rest of the results
that the co-occurrence matrix similarity and the recovery rate
show an exponential correlation in Figure 6.

inbox
(70%)
(20)

Gaussian noise
(100%)
(120)

0.0

0.2

0.4

0.6

0.8

1.0

Co-occurrence matrix similarity

R
ec

ov
er

y
ra

te

Fig. 7. Correlation between co-occurrence matrix similarity and recovery rate,
simulating non-perfect background knowledge by using the ENRON/inbox
data or by adding Gaussian noise

The results in Figure 7 show the correlation between the
co-occurrence matrix similarity and the recovery rate of simu-
lations where MP was generated using a similar, but different

dataset (ENRON/inbox) and when we add Gaussian noise to
various degrees.

First of all, if we generate MP using the ENRON/inbox data
folder we obtain a similarity score of approximately 70% to
the ENRON/ sent mail dataset. The recovery rate of almost 0
is consistent with our results in Figure 6.

With the addition of various degrees of Gaussian noise
(with C values 0.0, 0.2, ..., 1.0) the similarity of the co-
occurrences matrices is always between 0.999 and 1.0. This
can be explained as this method does not change the row/-
column identifiers, but only changes the individual cell values
(co-occurrence counts). As only a little noise is added most
of these cell values stay relatively the same. The recovery
rate distribution among 120 simulations is relatively high as
opposed to other methods to generate non-perfect background
knowledge.

We conclude that it is not possible to use our matrix
similarity metric to find a single correlation between the
similarity of co-occurrence matrices and the recovery rate. The
different methods change non-perfect background knowledge
MP in different manners and this influences the results of the
IKK attack a lot. The IKK attack correctly recovers queries if
the co-occurrence counts in MP exactly match (or are close
to) those in MF , which is shown in Figures 5 and 7 (Gaussian
noise addition). If the co-occurrence counts in MP are further
away from those in MF , which is the case in Figures 6 and
7 (Inbox folder) the accuracy of the IKK attack decreases
drastically.

We argue that the scenario where the background knowl-
edge, represented as MP , is generated by taking a percentage
of the user folders in a dataset is the most realistic one in
a real-world scenario. It is not unlikely that an adversary,
somehow, gets access to a certain set of the plaintext contents
of the email boxes of specific users. The IKK attack proves to
be a powerful attack which can break the privacy of queries as
well as data confidentially of documents stored encrypted of
the server, yet it is only exploitable by a powerful adversary,
which has access to a dataset which results in background
knowledge that is at least 90% similar the actual dataset
encrypted on the server, as can be seen in Figure 6.

The interested reader can find correlations between the
values of the different methods (document percentage, key-
word percentage, added Gaussian noise) and the co-occurrence
similarity/recovery rate in Appendices B and C.

VI. IMPROVEMENTS

A. Combining multiple runs

The IKK attack returns a 1-to-1 mapping between queries
and keywords. An adversary cannot, from the mapping alone,
determine which queries were recovered correctly and which
were not, as even with perfect background knowledge the
IKK attack shows a lot of variance. For example, Figure 8
shows that the recovery rates of 20 simulations of the IKK
attack with equal input parameters and perfect background
knowledge return recovery rates ranging between 0.1 and 0.98,
which almost spans the entire range of possible recovery rates.

10

The IKK attack is a probabilistic algorithm in the sense
that the algorithm uniformly at random selects a new mapping
to change in the current state to determine the next state to
explore. We argue that the IKK attack shows a large variance
in the recovery rate as the algorithm merely approximates
the optimal state yet does not necessarily always return it.
A deterministic algorithm that simply visits every possible
mapping is less likely to show a large variance, but the single
attack runs will have to evaluate far more different states
in order to be successful, making such an algorithm quite
inefficient as the total number of potential states is given using
the following equation:

nr. of states =
(nr. of keywords)!

(nr. of keywords− nr. of queries)!
. (9)

For 50 observed queries and 500 keywords in the back-
ground knowledge this would mean that there are already
7.039 ∗ 10133 potential states to explore.

As every single run of the IKK attack still approximates
the optimal mapping, we argue that it is possible to combine
the results of different attack runs using a simple majority
voting scheme to better approximate the optimal solution.
We conducted 20 simulations each consisting of 20 attack
runs on the same query co-occurrence matrix and background
knowledge co-occurrence matrix (representing perfect knowl-
edge) per simulation. In each of the simulations, we combined
a certain number of runs by selecting the most prevalent
keyword mapped to each of the queries. If no prevalent
keyword could be found (two or more keywords are most
prevalent) the majority voting scheme did not assign a most
prevalent keyword to a query and instead assigned the None
value.

#1 #5 #10 #20

0.2

0.4

0.6

0.8

1

Number of aggregated simulations

R
ec

ov
er

y
ra

te

Fig. 8. Aggregation of a number of different runs of the same simulation
using a majority voting scheme

Figure 8 shows the results of combining multiple runs on the
same query and background co-occurrence matrices. It can be
seen that the accuracy of the attack significantly decreases the
variance that is observed with single runs of the IKK attack.

When combining 5 runs per simulation (#5) the results are
already very promising, which is even more the case when the
aggregation contains either 10 or 20 runs per simulation. Our
proposed aggregation method also has the advantage that the
single attack runs can executed in parallel and then aggregated,
ensuring the execution time overhead is limited. The median
recovery rate between 1 run per simulation (#1) and 20 runs
per simulation (#20) is increased with more than 10 percentage
points, whereas the variance is decreased with 78 percentage
points.

B. Deterministic IKK attack

As the IKK attack is a probabilistic algorithm, it does
not necessarily return the optimal query-to-keyword mapping.
We argue a more deterministic approach to finding the right
mapping might increase the recovery rates of the IKK attack.

The Count attack, as proposed by Cash et al. [7], takes
a more deterministic approach to map queries to keywords,
by eliminating candidate mapping keywords using the relative
document occurrence count of keywords. Cash et al. assume
the adversary has access to not only the co-occurrence counts
of queries and keywords, but is also in possession of the (rela-
tive) document occurrence counts from queries and keywords,
i.e. the number of documents a query or keyword occurs in
(relative to the total number of documents in the dataset). The
theory behind this is that, while assigning a keyword to a
query, a lot of potential keywords can already be eliminated
as their relative document occurrence count is not within a
certain range of the relative document occurrence count of
the query. These keywords therefore are not likely to be the
right keyword corresponding to the query and thus can be
disregarded.

The Count attack incorporates eliminating candidate key-
words using their document occurrence count ‘and brute-
forces all possible mappings for a small number of queries
and returns the mapping which maximizes the number of dis-
ambiguated queries’. Cash et al. report much higher recovery
rates from their deterministic Count attack as opposed to the
probabilistic IKK attack.

We propose to incorporate the candidate keyword elimina-
tion method of the Count attack while selecting new mappings
in the IKK attack to both decrease the number of potential
states to visit as well as increase its accuracy. We also argue
that the accuracy of the attack will increase as the algorithm
is likely to visit better states on average as the worst potential
states are eliminated.

In order to eliminate candidate keywords Cash et al. con-
struct a confidence interval for the document occurrence count
of each of the keywords using Hoeffding’s inequality [14]. The
lowerbound (LB) and upperbound (UB) of the confidence
interval per keyword k are calculated using the following
formula(s):

LBk, UKk =
csk
ppk
∓
√

0.5 n log 40 (10)

11

In this formula ck computes the document occurrence
count of keyword k in the background knowledge dataset
and ppk denotes the size relativity between the query and
background knowledge dataset. ck

ppk
therefore denotes the

expected document occurrence count of k in the query dataset.
ε =

√
0.5 n log 40 is used by Cash et al. to ensure the

confidence interval has a confidence level of 95%. n denotes
the number of documents in the query dataset.

After calculating a confidence interval for each of the
keywords the candidate keywords for a query can be calculated
as Sq = {k′ ∈ K|LBk′ ≤ cq ≤ UBk′}. Sq denotes the
candidate keyword set, K the keyword set and cq denotes the
document occurrence count of query q.

The Original IKK attack maps queries to keywords in two
places in the algorithm, namely when selecting the initial state
(Algorithm 1) and while selecting a next state (Algorithms 2
and 3). We therefore incorporated the method of Cash et al.
in two places in our Deterministic IKK attack (Algorithms 2
and 4):

While selecting the initial state we first assign a None
value to queries of which Sq is an empty set, meaning that
no keywords are in range. These queries are left unchanged
throughout the entire algorithm run and thus are assigned None
in the final mapping as well. This also allows an adversary to
determine which queries were not mapped to a keyword.

Then all queries with a non-empty candidate set Sq are
ordered in ascending order of the size of Sq and each of the
queries, starting at the query with the lowest size of Sq , is
assigned a random keyword in Sq that was not yet assigned
to another query. As we enforce the 1-to-1 mapping property
of the IKK attack this potentially creates the edge case where
all keywords in Sq of a query are already assigned to other
queries. The algorithm tries, with a depth of one, whether it
is possible to re-assign one of the other queries to ‘free up’ a
keyword in Sq . If it succeeds the ‘freed’ keyword is assigned
to the query, otherwise the query is assigned None and is thus
disregarded during the rest of the algorithm run.

While selecting a new state we choose a random query,
keyword mapping, e.g. q1 7→ k1, from the queries in the
current state that were not assigned None and we select a
random keyword k2 from Sq1 as opposed to the full keyword
set, while ensuring k1 6= k2. Then, just like in the Original
IKK attack there are two possibilities:

If k2 was mapped to a query q2 we try whether keyword
k1 is in range of query q2 and interchange the mapping if
so. If not, we keep (uniformly at random) selecting a new
keyword k2 and checking whether the new k2 adheres to the
right properties. If we cannot find a satisfactory candidate k2
for a certain number of loops (2 times the size of the keyword
set in our simulations) the algorithm returns the current state
as the next state, which is rejected as the Euclidean distance
is not better than the old current state (as they are the same).

If k2 was not mapped to any query in the current state we
change the next state so that q1 7→ k2.

In order to compare our deterministic version of the IKK
attack to the Original IKK attack we ran the same simulations

as we did in Section V-B, where we researched the correlation
between the similarity between the co-occurrence matrices and
the recovery rate as we argue that it is important to research
the effect of our improvements on simulations with different
levels of background knowledge to get a broad understanding
of the effects of our improvements.

TABLE VI
NR. OF STATES VISITED BY THE IKK AND DETERMINISTIC IKK ATTACK

Parameters IKK version Min. Max. Avg.

Total loops Original 531733 737741 733213
Deterministic 196790 737741 526038

Accepted loops Original 7783 9535 8533
Deterministic 7287 101145 14252

Accepted loops
Total loops

Original 0.0105 0.0159 0.0117
Deterministic 0.0099 0.1371 0.0263

Table VI, the aggregation of 500 simulations of both al-
gorithms, shows that the Deterministic IKK algorithm visits
much less total states on average than the Original IKK attack.
Additionally, the average number of iterations where the next
state is accepted is much higher and the ratio between the
number of accepted loops and total loops is more than twice
as high for the Deterministic IKK attack. It is useful to note
that both attacks at most visit 737.741 different states and then
return their current state as the final mapping. This is due to
the chosen values of the input parameters of the ANNEAL
algorithm and explains the values in the Max. column of the
Total loops row.

In Figure 9 we compare recovery rate of the Original and
Deterministic IKK attack when only a fraction of the actual
keywords simulates background knowledge. The recovery
rates of the Original IKK attack and methods to generate non-
perfect background knowledge are the same as expressed in
Figure 5 and each bucket in the figure is the aggregation of
20 simulations. We see the same linear correlation for the
Deterministic IKK attack as we saw before for the Original
IKK attack, however, recovery rates of the Deterministic IKK
attack show much less variance as well as a higher median
value.

Figure 10 shows the comparison of the Original and Deter-
ministic IKK attack when non-perfect background knowledge
is simulated using other methods than using a percentage
of all keywords. Figure 10 therefore also contains the same
information as Figures 6 and 7. The (non-percentage) numbers
between brackets denote the number of simulations aggregated
in that box plot.

In simulations where we took a different, but similar dataset
as background knowledge (ENRON/inbox) we see that both
attacks have recovery rates close to 0.

In simulations where we added Gaussian noise to the
background knowledge we see that the Deterministic IKK
attack again shows less variance and higher recovery rates.

In simulations where a percentage of user folders in a
dataset was used to simulate background knowledge we see the
same exponential correlation between co-occurrence similarity

12

10%
Orig./Det.

20%
Orig./Det.

30%
Orig./Det.

40%
Orig./Det.

50%
Orig./Det.

60%
Orig./Det.

70%
Orig./Det.

80%
Orig./Det.

90%
Orig./Det.

100%
Orig./Det.

0

0.2

0.4

0.6

0.8

1

Co-occurrence matrix similarity

R
ec

ov
er

y
ra

te
Original IKK

Deterministic IKK

Fig. 9. Original/Deterministic IKK recovery rates and recovery rate, simulating non-perfect background knowledge by regarding a percentage of keywords

and the recovery rate as we see for simulations using the Orig-
inal IKK attack. Additionally, we see that the Deterministic
IKK attack achieves higher recovery rates on average, but we
do not see the drop in variance that we saw in simulations
using the other methods to simulate non-perfect background
knowledge.

All in all, we conclude that using components of the Count
attack by Cash et al. [7], that make the IKK attack more
deterministic, is a promising method to both decrease the
number of states visited in a single attack run (28% decrease)
and increase the recovery rate, as the median recovery rate is
increased up to 21 percentage points (Figure 10, 100% box
plot) and the variance is decreased up to 57 percentage points
(Figure 9, 100% box plot).

VII. RELATED WORK

The first Searchable Encryption scheme was introduced by
Song et al. [1] to allow for (plaintext) search among a set
of encrypted documents. Their paper introduces the first In-
place SE scheme which uses a stream cipher to scan for
the occurrence of a plaintext word as well as introduces
the notion of the potentially more efficient Encrypted-Index
SE schemes. Song et al. already note that these schemes
leak access patterns and that statistical attacks might disclose
information of encrypted documents, but do not research this
further.

The notion of Oblivious RAM (ORAM) [4], introduced
before the first SE scheme, is frequently mentioned as a
method to not disclose access patterns. Oblivous RAM, how-
ever, in a Searchable Encryption scheme is computationally
quite expensive. A less expensive version specifically targeted
for encrypted search, proposed by Curtmola et al. [3], still is
computationally inefficient.

Other papers propose to obfuscate access patterns by in-
troducing inconsistencies in the search results by modifying
the internal encrypted index of the SE scheme [5] or by
using Bloom filters [2], [15]. These schemes are reportedly
computationally expensive as well.

The first statistical attack, the IKK attack, on Searchable
Encryption schemes that leak access patterns was proposed
by Islam et al. [6]. This attack uses co-occurrence counts of
observed queries to determine what plaintext word(s) the client
searched for.

Cash et al. [7] recognize that a recovered query inherently
discloses part of the plaintext of encrypted documents and
propose their Count attack as a response to the IKK attack. The
Count attack uses the (relative) document occurrence counts
next to the co-occurrence counts of queries to deliver better
results faster as opposed to the IKK attack. Cash et al. also
define different levels of leakage of SE schemes and coin the
term leakage-abuse attacks to more broadly describe attacks
that are intended to disclose information on the contents of
encrypted documents in SE schemes as opposed to attacks
that only disclose what the client searched for. Leakage-abuse
attacks were further researched by Blackstone et al. [16].

Both the IKK attack and the Count attack are passive
attacks, meaning that the adversary acts according to the
protocol of the SE scheme, but tries to additionally obtain as
much information and potentially runs calculations in parallel.
Zhang et al. [17] show that an adversary capable of injecting
files into a Searchable Encryption scheme that leaks access
patterns ‘is devastating for query privacy’.

VIII. CONCLUSION

In this paper, we revisited the IKK query recovery attack
on Searchable Encryption schemes as proposed by Islam et al.
[6].

13

inbox
(70%)

Orig./Det.
(20/20)

Gaussian noise
(100%)
Orig./Det.

(120/120)

40%
Orig./Det.

(1/1)

50%
Orig./Det.

(1/0)

60%
Orig./Det.

(2/0)

70%
Orig./Det.
(10/11)

80%
Orig./Det.
(31/31)

90%
Orig./Det.
(66/71)

100%
Orig./Det.
(89/86)

0

0.2

0.4

0.6

0.8

1

Co-occurrence matrix similarity

R
ec

ov
er

y
ra

te
Original IKK

Deterministic IKK

Fig. 10. Original/Deterministic IKK recovery rates and recovery rate, simulating non-perfect background knowledge using other methods

We show that the assumption that queries in a Searchable
Encryption scheme follow a Zipfian (query) distribution, as Is-
lam et al. made while simulating queries, positively influences
the recovery rate of the IKK attack.

Furthermore, we show a correlation between input pa-
rameters of the IKK attack, of which the values were left
unexplained by Islam et al., and the recovery rate of the IKK
attack, independent of the underlying dataset used in the SE
scheme. This potentially allows the adversary to optimize the
parameter values using a different dataset before executing the
actual attack.

We also propose improvements to the IKK attack by show-
ing that the accuracy of the attack can be improved signif-
icantly by combining multiple attack runs, as we show that
median recovery rates can be increased up to 10 percentage
points, whereas the variance of recovery rates of simulation
can be decreased up to 78 percentage points.

In addition to that, we show that the accuracy of the IKK
attack can be increased, while the number of states visited
can be decreased by incorporating deterministic components,
based on notions made by Cash et al. [7] in their Count attack,
to the IKK attack. The average number of states visited is
decreased by 28%, the median recovery rate is shown to be
increased up to 21 percentage points in different simulations,
whereas its variance is decreased up to 57 percentage points.

REFERENCES

[1] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in Proceeding 2000 IEEE Symposium on Security
and Privacy. S&P 2000. IEEE, 2000, pp. 44–55.

[2] E.-J. Goh et al., “Secure indexes.” IACR Cryptology ePrint Archive, vol.
2003, p. 216, 2003.

[3] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: improved definitions and efficient constructions,”
Journal of Computer Security, vol. 19, no. 5, pp. 895–934, 2011.

[4] O. Goldreich and R. Ostrovsky, “Software protection and simulation
on oblivious rams,” Journal of the ACM (JACM), vol. 43, no. 3, pp.
431–473, 1996.

[5] G. Chen, T.-H. Lai, M. K. Reiter, and Y. Zhang, “Differentially private
access patterns for searchable symmetric encryption,” in IEEE INFO-
COM 2018-IEEE Conference on Computer Communications. IEEE,
2018, pp. 810–818.

[6] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclosure
on searchable encryption: ramification, attack and mitigation.” in NDSS,
vol. 20. Citeseer, 2012, p. 12.

[7] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse attacks
against searchable encryption,” in Proceedings of the 22nd ACM SIGSAC
conference on computer and communications security. ACM, 2015, pp.
668–679.

[8] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” science, vol. 220, no. 4598, pp. 671–680, 1983.

[9] “ENRON email dataset, version May 7th, 2015,”
https://www.cs.cmu.edu/ ./enron/, [Online; accessed 19-May-2020].

[10] “Apache Lucene java-user email dataset, September 2001-July 2011,”
http://mail-archives.apache.org/mod mbox/lucene-java-user/, [Online;
accessed 19-May-2020].

[11] M. F. Porter, “Snowball: A language for stemming algorithms,” 2001.
[12] “IKK query recovery attack implementation (Python),”

https://github.com/rubengrootroessink/IKK-query-recovery-attack,
[Online; accessed 27-June-2020].

[13] G. K. Zipf, “Selected studies of the principle of relative frequency in
language,” 1932.

[14] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” in The Collected Works of Wassily Hoeffding. Springer,
1994, pp. 409–426.

[15] D. Boneh, E. Kushilevitz, R. Ostrovsky, and W. E. Skeith, “Public key
encryption that allows pir queries,” in Annual International Cryptology
Conference. Springer, 2007, pp. 50–67.

[16] L. Blackstone, S. Kamara, and T. Moataz, “Revisiting leakage abuse
attacks.” IACR Cryptol. ePrint Arch., vol. 2019, p. 1175, 2019.

[17] Y. Zhang, J. Katz, and C. Papamanthou, “All your queries are belong to
us: The power of file-injection attacks on searchable encryption,” in 25th
USENIX Security Symposium (USENIX Security 16), 2016, pp. 707–720.

14

APPENDIX

A. IKK algorithms

In this section, we cite the Simulated Annealing (SA)
algorithms as proposed by Islam et al. [6] as well as formalize
our proposed algorithms for the Deterministic version of the
IKK attacks. In short:
• Algorithm 1: Optimizer is used to select the initial state

of the ANNEAL algorithm.
• Algorithm 2: ANNEAL is the heart of the IKK attack

and is the actual algorithm that maps queries to keywords
(apart from setting the initial state).

• Algorithm 3: findNextState is a sub algorithm of the
ANNEAL algorithm which is included to easier show
the differences to our findNextStateDet algorithm. This
algorithm selects a new state for the ANNEAL algorithm
to visit.

• Algorithm 4: findNextStateDet is our proposed sub al-
gorithm of the ANNEAL algorithm which selects a new
state of the algorithm more deterministically.

• Algorithm 5: reduced ANNEAL is an improved version
of the ANNEAL algorithm in terms of computational
complexity.

In order to easily annotate differences between the Original
IKK attack (as proposed by Islam et al.) and our proposed
Deterministic IKK attack we use the following colors:
• Black annotates lines that are present in both the Original

and Deterministic IKK attack.
• Red annotates lines that are present in the Original IKK

attack, but not in the Deterministic IKK attack. Red lines
are replaced by blue lines.

• Blue annotates lines that are not present in the Original
IKK attack, but are in the Deterministic IKK attack. Blue
lines replace red lines.

The Original IKK attack and the Deterministic IKK attack
are elaborated upon in Sections II-F and VI respectively.

We note that the pseudo code in the algorithms as shown
below does not fully match with our implementation of the
Original/Deterministic IKK attack [12]. First of all, we used
Python specific methods to easily implement both attacks and,
in order to reduce the number of lines we re-used as much of
the code of the Original IKK attack as possible to implement
our Deterministic IKK attack. We also note that the Original
IKK attack can be improved by reducing the computational
complexity of the while loop (Algorithm 2, lines 4-24) from
O(q2) to O(q), where q denotes the number of queries, which
we implemented in our implementation.

In order to calculate the total squared Euclidean distance
of a mapping, Islam et al., retrieve three co-occurrence counts
from their corresponding co-occurrence matrices (Algorithm 2,
line 14-15) and perform subtraction and squaring operations.
This is done for every single cell in the query co-occurrence
matrix Mc, meaning that the cost calculation has a complexity
of O(q2) per loop. As matrices Mc and Mp are symmetric we
can improve this by re-using squared Euclidean distances of

counts that we calculated before, meaning that our complexity
would be reduced to O(n2/2).

We note that the IKK algorithm changes only 1 or 2
mappings from a query to a keyword in the current state to
get the next state per iteration in the while loop (Algorithm
2 lines 4-24 and Algorithm 5 lines 7-40). As a mapping
between a query and keyword corresponds to a single row
(and column due to the similarity of the matrices) in the query
and the background knowledge co-occurrence matrices we can
reduce the computational complexity by keeping the current
cost variable outside of the while loop and only looping over
the changed rows once as opposed to looping over all cells,
instead of all cells. Instead of calculating the total squared
Euclidean distance of both the current state and the next
state we only calculate the total squared Euclidean distance
of the changes, i.e. the distance from the current state to
the total squared Euclidean distance of current state without
the changed mappings and the distance from current state
without the changed mappings to the next state. We can then
easily calculate both current cost and next cost and E and
continue the IKK algorithm as proposed by Islam et al. Our
calculation reduction method reduces the complexity of the
cost calculation algorithm from O(q2) to O(q) and is shown
in Algorithm 5.

We can loop over all queries once and calculate the cost
changes (of the changed methods) as both co-occurrence
matrices are symmetrical. Looping over a row is therefore the
same as looping over a column. We consider the case where
only one mapping was changed between current state and next
state (i.e. q1 7→ k1 was changed to q1 7→ k2). To calculate
the squared Euclidean distance of the mapping q1 7→ k1 in
the current state we simply take the co-occurrence counts of
q1 with all queries in the query co-occurrence matrix and
calculate the squared Euclidean distance to the corresponding
co-occurrence counts of k1 with the corresponding keywords
in the background knowledge co-occurrence matrix and add
these to get the total squared Euclidean distance of the row.
As a query corresponds to both a row and a column in the
query co-occurrence matrix we have to multiply our total
squared Euclidean distance of the row by two and subtract the
squared Euclidean distance of the query (and its corresponding
keyword) with itself (as this value is added twice when we
multiply with two). We can do the same calculation to obtain
the squared Euclidean distance of the mapping (q1 7→ k2) in
next state. A similar calculation is needed to calculate the cost
change of two changed mappings, by adding the cost change
of the individual mappings together. However, we also need to
twice remove the squared Euclidean distance of the changed
mappings with each other (i.e. (Mc[q1, q2]−Mp[k1, k2])2) as
this value was added to the cost change 4 times due to our *2
operation.

15

Algorithm 1: Optimizer

input
V : variable list // List of all (non-mapped) queries
D : domain list // List of all (non-mapped) keywords
K : known assignments // Known query-keyword mappings
Mc // Query co-occurrence matrix
Mp // Background knowledge co-oc matrix
Q = {q: Sq} // Queries and their candidate keywords

1 initState ← {} // Initial state
2 valList ← copy D // Copies values in D to variable valList
3 foreach var ∈ V do
4 val ← random.choice(valList) // Randomly selects a keyword from valList
5 add [var 7→ val] to initState // Adds mapping to initState
6 remove val from valList // As query to keyword mappings are 1-to-1

end

7 nonAssignableQueries ← {} // Var. containing None-assigned queries
8 sortedQ ← sort(Q, key=len(Sq), ascending=True) // Sorts Q on number of candidate keywords
9 foreach var, Svar ∈ sortedQ do
10 candKeywords ← Svar // Gets candidate keywords for query v
11 if len(candKeywords) == 0 then
12 add v to nonAssignableQueries // Query v added to nonAssignable Queries

else
13 assignedKWs = [] // Every candidate keyword per query is
14 nonAssignedKWs = [] // already assigned to another query or not
15 foreach cand ∈ candKeywords do
16 if cand ∈ valList then
17 add cand to nonAssignedKWs // cand not assigned to another query

else
18 add cand to assignedKWs // cand assigned to another query

end
end

19 if len(nonAssignedKWs) 6= 0 then
20 val ← random.choice(nonAssignedKWs) // Selects keyword from nonAssignedKWs
21 add {var 7→ val} to initState // Adds mapping to initState
22 remove val from valList // Query/keyword mappings are 1-to-1

else
23 foreach k ∈ assignedKWs do
24 q ← initState.getByValue(k) // Get query q, mapped to keyword k
25 if k ∈ Sq then
26 remove { q 7→ k } from initState // Removes old mapping from initState
27 add { q 7→ val } to initState // Adds new mapping to initState
28 add { var 7→ k } to initState // Adds new mapping to initState

break
end

end
29 if initState.get(var) == None then

add var to nonAssignableQueries // If no suitable mapping could be found
end

end
end

end

30 add K to initState // Adds known mappings to initState
31 return ANNEAL(initState, D, Mp, Mc) // Returns result of function ANNEAL()
32 return ANNEAL(initState, D, Mp, Mc, nonAssignableQueries, Q)

16

Algorithm 2: ANNEAL

input // Simulated Annealing parameters
initState
D
Mc
Mp
initTemperature // initial temperature variable
coolingRate // cool down rate variable
rejectThreshold // rejection rate variable
nonAssignableQueries // List of None assigned queries
Q = {q: Sq} // Queries and their candidate keywords

1 currentState ← initState // Search continues until temp. reaches 0
2 succReject ← 0 // or the system is frozen (no new state
3 currT ← initTemperature // is accepted for large number of times)
4 while (currT 6= 0 and succReject < rejectThreshold) do
5 currentCost ← 0
6 nextCost ← 0
7 nextState ← findNextState(currentState, D) // Selects a nextState
8 nextState ← findNextStateDet(currentState, D, Q) // Selects a nextState deterministically
9 foreach cells i,j in Mc do

10 (i,k) ← currentState.get(i) // Queries i,j correspond to cells in query
11 (i,k’) ← nextState.get(i) // co-occurrence matrix. Keywords k & l
12 (j,l) ← currenState.get(j) // and k’ & l’ are mapped to i & j in
13 (j,l’) ← nextState.get(j) // currentState and nextState resp.
14 currentCost += (Mc[i,j]-Mp[k,l])2 // Diff. in squared Euclidean distance
15 nextCost += (Mc[i,j]-Mp[k’,l’])2 // between co-occurrence counts calculated

end
16 E = nextCost - currentCost // If nextState is better than currentState,
17 if E < 0 then
18 accept new state // nextState is accepted, if not

else
19 accept new state with prob. exp(-E/currT) // nextState accepted with low probability

end
20 if new state is accepted then
21 succReject ← 0
22 currentState ← nextState

else
23 succReject++

end
24 currT = coolingRate*currT // temperature is decremented each loop

end
25 foreach query ∈ nonAssignableQueries do
26 add {query 7→ None} to currentState // Maps non-assignable queries to None

end
27 return currentState

17

Algorithm 3: findNextState

input
currentState // 1-to-1 mapping of all queries to keywords
D // A list of all possible keywords

1 nextState ← copy currentState
2 {x 7→ y} ← random.choice(nextState)
3 y’ ← random.choice(D), y 6= y’
4 remove {x 7→ y} from nextState
5 add {x 7→ y’} to nextState
6 if {z 7→ y’} ∈ currentState then
7 remove {z 7→ y’} from nextState // If y’ is already mapped to query z
8 add {z 7→ y} to nextState // Map query z to y instead of y’

end
9 return nextState

Algorithm 4: findNextStateDet

input
currentState // 1-to-1 mapping of all queries to keywords
Q = {q: Sq} // Queries and their candidate keywords
D

1 nextState ← copy currentState
2 {x 7→ y} ← random.choice(nextState)

3 Sx ← Q.get(x) // Gets candidate keywords for query x
4 cands ← Sx.remove(y) // Keyword y cannot be selected again
5 y’ ← None // Initializes y’
6 if len(cands) 6= 0 then

y’ = random.choice(cands) // Selects random keyword from candidates
else

return currentState // No new mapping could be found
end

7 count ← 0 // Initializes count variable
8 while {z 7→ y’} ∈ currentState and y /∈ Sz do
9 y’ = random.choice(cands) // Selects a new candidate keyword y’

if len(count) ≤ 2 ∗ len(D) then
return currentState // No new mapping could be found

end
10 count += 1

end
11 remove {x 7→ y} from nextState
12 add {x 7→ y’} to nextState
13 if {z 7→ y’} ∈ currentState then
14 remove {z 7→ y’} from nextState // If y’ is already mapped to query z
15 add {z 7→ y} to nextState // Map query z to y instead of y’

end
16 return nextState

18

Algorithm 5: Cost calculation reduced ANNEAL

input
initState
Mc
Mp

1 currState ← initState // Initializes currState
2 currCost ← 0 // ’cost’ variable of currState
3 foreach cells i,j in Mc do
4 (i,k) ← currState.get(i) // We calculate the total squared Euclidean
5 (j,l) ← currState.get(j) // distance of the currState/initState
6 currCost += (Mc[i,j]-Mp[k,l])2 // mapping once

end
7 while do
8 nextState ← findNextState(X) // Finds the nextState of the algorithm
9 q1, q2 ← findDiff(currState, nextState) // Remapped queries, q2 can be None

10 nextCost ← 0 // ’cost’ of nextState is initialized at 0
11 currCostChange ← 0 // Variables containing the cost of q1 and
12 nextCostChange ← 0 // q2 (if not None) in current/next states
13 queries ← currState.getKeys() // Returns all the queries in the system
14 foreach j ∈ queries do
15 (q1, k1) ← currState.get(q1) // Gets mapping of q1 in currState
16 (q1, k′1) ← nextState.get(q1) // Gets mapping of q1 in nextState

if q2 6= None then
17 (q2, k2) ← currState.get(q1) // Gets mapping of q2 in currState
18 (q2, k′2) ← nextState.get(q1) // Gets mapping of q2 in nextState

end
19 (j,l) ← currState.get(j) // Gets mapping of j in currentState
20 (j,l’) ← nextState.get(j) // Gets mapping of j in nextState
21 currCostChange += (Mc[q1,j]-Mp[k1,l])2 // Diff. in squared Euclidean distance q1
22 nextCostChange += (Mc[q1,j]-Mp[k′1,l])2 // between co-occurrence counts calculated

if q2 6= None then
23 currCostChange += (Mc[q2,j]-Mp[k2,l])2 // Diff. in squared Euclidean distance q1
24 nextCostChange += (Mc[q2,j]-Mp[k′2,l])2 // between co-occurrence counts calculated

end
end

25 currCostChange ← currCostChange * 2 // (*2) due to matrix symmetry and therefore
26 nextCostChange ← nextCostChange * 2 // rows/columns being the same
27 currCostChange -= (Mc[q1,q1]-Mp[k1,k1])2 // Removes co-oc count of q1 with itself
28 nextCostChange -= (Mc[q1,q1]-Mp[k′1,k′1])2 // added twice due to (*2)

if q2 6= None then
29 currCostChange -= (Mc[q2,q2]-Mp[k2,k2])2 // Removes co-oc count of q2 with itself
30 nextCostChange -= (Mc[q2,q2]-Mp[k′2,k′2])2 // added twice due to (*2)

31 currCostChange -= 2*(Mc[q1,q2]-Mp[k1,k2])2 // Removes co-oc count of q1 with q2
32 nextCostChange -= 2*(Mc[q1,q2]-Mp[k′1,k′2])2 // added 4 times instead of 2 (due to *2)

end
33 nextCost = currCost - currCostChange + nextCostChange
34 E = nextCost - currCost
35 if E < 0 then
36 accept new state // nextState is accepted, if not

else
37 accept new state with prob. exp(-E/currT) // nextState accepted with low probability

end
38 if new state is accepted then
39 currState ← nextState
40 currCost ← nextCost

end
end 19

B. Co-occurrence similarity

In this section we briefly show the correlation between
the different methods to generate non-perfect background
knowledge for our simulations and our proposed co-occurrence
matrix similarity metric for the interested reader. We recap
these methods as follows:
• Keyword percentage
• Document percentage
• Different, but similar dataset
• Adding Gaussian noise
The first method, keyword percentage, uses only a certain

percentage of the keywords from the keyword set while
generating inverted indices and co-occurrence matrices. The
disregarded keywords are replaced by keywords that have a
lower occurrence count. The keyword percentage method to
generate non-perfect background knowledge changes entire
rows (and columns) corresponding to a keyword and thus
also the corresponding co-occurrence counts in the cells of
these rows (and columns). Our co-occurrence matrix similarity
metric does not look at the co-occurrence counts of words
that are not represented in the (non-querified) query and the
background knowledge co-occurrence matrices and simply
multiplies the similarity of co-occurrence counts by the relative
number of words that are represented in both matrices. The
correlation between the keyword percentage method and our
proposed co-occurrence matrix similarity metric is therefore
y = x, meaning that if we take 90% as the keyword percentage
the co-occurrence similarity will be 90% as well.

inbox 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0

0.2

0.4

0.6

0.8

1

Document percentage

C
o-

oc
cu

rr
en

ce
m

at
ri

x
si

m
ila

ri
ty

Fig. 11. Correlation between percentage of documents (user folders) and
co-occurrence matrix similarity

The second and third methods, document percentage and
using a different, but similar dataset to simulate non-perfect
background knowledge are expressed in Figure 11. The docu-
ment percentage method takes only a certain percentage of the
user folders in a dataset, as the ENRON dataset [9] is split up
into the email folders of different users, while generating the
(non-perfect) background knowledge co-occurrence matrix in-

stead of all the user folders. The ‘different, but similar dataset’
method generates the background knowledge co-occurrence
matrix in the same way, but instead of taking a percentage of
the user folders in the original dataset (ENRON/ sent mail)
it takes 100% of the user folders in a different, but similar
dataset (ENRON/inbox). Figure 11 shows the aggregation of
20 different simulations per box plot. First of all the inbox
column shows the ‘different, but similar dataset’ method at a
consistent co-occurrence matrix similarity of 70%. The actual
similarity between two dataset is, of course, dependent on the
actual datasets used. The document percentage method shows
a somewhat (sub-)linear correlation with higher variances in
the similarity score when a lower percentage of user folders
is considered. This makes sense as the number of files in the
user folders differs per user and different users use different
writing styles.

0.0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

1

Gaussian noise addition (C value)

C
o-

oc
cu

rr
en

ce
m

at
ri

x
si

m
ila

ri
ty

Fig. 12. Correlation between Gaussian noise added and co-occurrence matrix
similarity

The last method, adding Gaussian noise to the background
knowledge co-occurrence matrix, was first used by Islam et
al. [6] to simulate non-perfect background knowledge. We see
that the value of C (the noise scaling factor) does not influence
the co-occurrence matrix similarity at all. All similarity scores
(are close to) 1 as the keywords on the axis of the background
knowledge co-occurrence matrix are not changed and the co-
occurrence counts in the cells of the matrix are only changed
slightly. The different box plots in Figures 11 and 12 are the
aggregation of 20 different simulations.

C. Recovery rate

In this Appendix we briefly elaborate on the correlation
between the different methods to generate non-perfect back-
ground knowledge (as explained in Appendix B) and the
recovery rate.

First of all we see the correlation between the keyword
percentage and the recovery rate in Figure 13. This graph
shows a somewhat linear correlation between the different box
plots (each aggregated of 20 simulations), although we still see

20

a lot of variance. It makes sense that the correlation is quite
linear as the IKK attack is still quite capable of mapping the
right queries and keywords as the co-occurrence counts of
different queries/keywords are not changed, only a number
of keywords is replaced by another set of keywords. The
keywords that were not replaced are therefore quite likely to
be mapped correctly to their corresponding keyword.

10% 20% 30% 40% 50% 60% 70% 80% 90%100%

0

0.2

0.4

0.6

0.8

1

Percentage of keywords

R
ec

ov
er

y
ra

te

Fig. 13. Correlation between percentage of keywords and recovery rate

Figure 14 shows the correlation between the document per-
centage (percentage of user folders) method and the recovery
rate, as well as the correlation between the ‘different, but
similar dataset’ method and the recovery rate (inbox). We see
that using the different dataset, or using a low percentage of
user folders returns a low recovery rate, whereas only 100%
of the documents returns a recovery rate close to 1. All box
plots in between show a high variance. This makes sense as
the document percentage method ensures that the keywords
in the matrices do not overlap as well as influence the co-
occurrence counts in the individual cells of the background
knowledge co-occurrence matrix. As the user folders each
contain different numbers of documents and different users
have different writing styles we argue that which user folders
are regarded in the background knowledge influences the
recovery rate of the IKK attack a lot, even with the same
percentage of user folders regarded. The box plots in Figure
14 all denote the aggregation of 20 simulations.

Figure 15 shows the correlation between the last method to
generate non-perfect background knowledge, adding Gaussian
noise to the co-occurrence counts in the background knowl-
edge co-occurrence matrix, and the recovery rate. Gaussian
noise is added symmetrically, i.e. the same Gaussian noise is
added to the co-occurrence counts in the row as is added to
the counts in the column corresponding to the same query.
The Gaussian noise is generated using the same method that
Islam et al. describe in [6], where a normal distribution is used
together with a C parameter. This C parameter, the ‘noise
scaling factor’, determines the maximum level of Gaussian

Other 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0

0.2

0.4

0.6

0.8

1

Percentage of documents (user folders)

R
ec

ov
er

y
ra

te

Fig. 14. Correlation between percentage of documents (user folders) and
recovery rate

noise added to a single co-occurrence count. A higher C value
allows for the addition of more Gaussian noise. We do not see
a clear correlation between the value of C and the recovery
rate. Each box plot in Figures 13, 14 and 15 is the aggregation
of 20 simulations.

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1

Gaussian noise addition (C value)

R
ec

ov
er

y
ra

te

Fig. 15. Correlation between Gaussian noise added and recovery rate

21

