
BSc Thesis Applied Mathematics

Finding lower bounds for the
competitive ratio of the cow
path problem with a
non-optimal seeker

M.C. Vos

Supervisor: W. Kern

June 23, 2020

Department of Applied Mathematics
Faculty of Electrical Engineering,
Mathematics and Computer Science

Finding lower bounds for the competitive ratio of the cow
path problem with a non-optimal seeker

M.C. Vos∗

June 23, 2020

Abstract

A tight lower bound for the competitive ratio of deterministic algorithms for the
cow path is well-known. In this thesis, we generalize the cow path problem by assuming
that the seeker finds the hider after some known number of visits. We seek to find
lower bounds for the competitive ratio of deterministic algorithms for this problem.
The thesis describes the general form of optimal algorithms and succeeds in finding a
tight lower bound for the competitive ratio when the required number of visits is odd.

Keywords: cow path, competitive, lower bound, online, algorithm

1 Introduction

Search problems are a well studied and widely applied topic in mathematics and computer
science. The cow path problem, also known as the linear search problem, is a well-known
example of such a problem. It was first formulated by Richard Bellman in 1963 [3], and
was independently considered by Anatole Beck [1]. The problem can be regarded as fol-
lows. A cow is looking for a daisy growing somewhere on a straight line. It will find the
daisy when it stands exactly on top of it. Mathematically, this line is the real number line
with the cow starting at the origin. The daisy can be found at some real number, at least
m0 > 0 distance away from the origin. The cow can move up and down the real number
line with a velocity of one. The goal of the problem is to find a path (algorithm) that visits
each x ∈ R after travelling a distance of at most ρ|x|. Such an algorithm is said to be
ρ-competitive. Algorithms for the cow path problem are said to be online, meaning they
rely on imperfect information. For the offline version of the same problem, the location of
the daisy is known beforehand. The competitive ratio of an online algorithm is defined as
the worst case ratio for the distance travelled before finding the daisy between the online
algorithm and an optimal offline algorithm. An optimal online algorithm is one that min-
imizes this competitive ratio. By viewing the problem from a game-theory perspective,
Beck and Newman[2] were the first to show that a 9-competitive deterministic algorithm
exists and is optimal among deterministic algorithms. Since then, many different proofs
have been found that give this same result.
In the paper describing the problem, Bellman also posed the question of what would hap-
pen if the cow has a probability 0 < p ≤ 1 of finding the daisy each time it reached its
location. Little research has been done for this problem. Heukers [5] and Maduro [6] have
found some algorithms that function better than the optimal algorithm for the "normal"
cow path problem. However, nothing is known about the form of an optimal algorithm
∗Email: m.c.vos@student.utwente.nl

1

for this problem. No nontrivial lower bound is even known for the competitive ratio. This
thesis concerns itself with finding such lower bounds.

The generalization to an arbitrary probability can be leads two different problems: the
E-times cow path problem and the expected value cow path problem. For the E-times
cow path problem, it is assumed that the daisy is always found at the Eth visit where E is
a known strictly positive integer, and never at an earlier visit. This can be interpreted as
the average-case discussed by both Maduro and Heukers. In this case, E = d1pe. It can also
be assumed that the daisy is found when the probability of it having been found passes a
certain threshold. In this case, E can be obtained using the geometric distribution. For the
purposes of this thesis, it is irrelevant how the E-times cow path problem is interpreted.
For the expected value cow path problem, the expected distance traveled before finding
the daisy is considered. Thus, d(x), the distance traveled before finding the daisy if it were
to be at location x, is given by:

d(x) =

∞∑
i=1

p(1− p)i−1v(i, x)

where p is the probability of finding the daisy when visiting its location, and v(i, x) is the
distance travelled before the ith visit to x.
This thesis concerns the former of these two: the E-times cow path problem. The main
result of this thesis is theorem 3, which gives a tight lower bound for the competitive ratio
of deterministic algorithms for the case E odd. In this thesis, we first find the general
form of an optimal deterministic algorithm, proceed by finding a more specific candidate
algorithm and finish by showing that the competitive ratio of this candidate is a lower
bound. We also find (non-tight) lower bounds for the case E even and the discrete version
of the E-times cow path problem.

2 Structure of optimal algorithms

2.1 Definitions and notation

The generalization from the normal cow path problem to the E-times version requires some
additional definitions. It is not immediately clear what happens when the cow turns. The
turning point is visited once to make sure that turning does not increase the total amount
of points visited during some time-interval. It is convenient to define a minimum distance
between turns, εs. This εs > 0 can be taken arbitrarily close to 0. Since it is undesirable
to use εs in proofs directly, the notion of changing velocity is introduced. The algorithm
can change its velocity on an interval [a, b] to 1

n(n ∈ N odd). Every visit counts as n visits
and moving a distance d along the real number line with some velocity v counts as having
moving a (time-)distance of d

v . The algorithm pays n visits to every point in (a, b), but
only pays n−1

2 and n+1
2 visits to a and b respectively. To see that this notion of velocity is

only for ease of notation and does not influence which algorithms can be created, consider
the following. Partition the interval [a, b] into sub-intervals [xi, yi] (for i = 1, . . . , k) of
length εs

|a−b| and let the algorithm go n times along each sub-interval before moving on to
the next sub-interval (see figure ??). For εs ↓ 0, every visit occurs at the same moment as
it would when moving with a velocity of 1

n .

2

Figure 1: Moving from a to a−3εs with velocity 1
3 (vertical movement irrelevant)

Now that we have determined exactly what is meant with an algorithm, a formal
definition can be given.

Definition 2.1. Algorithm: A ρ-competitive algorithm A is a path that visits each
x ∈ R at least E times after traveling at most ρ|x| time. The algorithm moves up and
down the real number line. The velocity of this movement is v(t) = 1

2n+1 n ∈ N on time-
intervals (a, b]. Each point attained on the interval is visited 1

v(t) times. A defined by the
R+ → R-function A(t) and its velocity function v(t).

It is useful to define some other functions associated with an algorithm A. Denote by
VA(x, t) the number of visits to location x in time-interval [0, t]. A point x is said to be
saturated at t if and only if VA(x, t) ≥ E. The saturation time of x, mA(x), is the time
of the Eth visit to x. It is often useful to consider the situation when the A crosses the
origin. Let zn be the sequence of all such times t, with zk+1 > zk for all k. So for all k,
∃ε > 0 s.t. A(zk − δ)A(zk + δ) > 0 ∀δ s.t. 0 < δ < ε.

To perform operations on algorithms, the notion of parts is required.

Definition 2.2. Part: A part Ω of A on some time interval (ts, te) is the (ts, te) → R
function with Ω(t) = A(t)∀ t ∈ (ts, te).

We can perform two operations on algorithms using these parts: deletion and insertion.
Let Ω be the part of A on (ts, te). Then the algorithm A′, obtained from A by deleting Ω
is defined as follows:

A′(t) =

{
A(t) for t ≤ ts
A(t+ (te − ts)) for t > ts

Let Ω be the part of some algorithm on (ts, te). Then the algorithm A′, obtained from A
inserting Ω into at the point t0 is defined as follows:

A′(t) =


A(t) for t ≤ t0
Ω(t) for t ∈ (t0, t0 + (te − ts))
A(t− (te − ts)) for t ≥ t0 + (te − ts)

Clearly, removal and insertion can only be done if lim
a→t+s ,b→t−e

Ω(a) = Ω(b).

The velocity of A′(t) for both deletion and insertion is the same as the velocity in the
right-hand side of the equations.

3

Definition 2.3. Restrictive points: The individual ratio of a point x ∈ R for some
algorithm A is defined as mA(x)

|x| . A point is said to be restrictive for A if its individual
ratio equals the competitive ratio of A.

For ease of notation, the constant K is introduced:

K :=

{
E E is odd
E + 1 E is even

2.2 Properties of optimal algorithms

We start our search for the structure of optimal algorithms by defining some properties of
these algorithms.

Definition 2.4. Completing algorithm: Let β(t) be the set of the left- and rightmost
visited points at time t. An algorithm A is said to be completing if for all k ≥ 1, no visited
point is unsaturated at zk, with the exception of the the left- and rightmost visited points.
That is, ∀k ∈ N, x ∈ R \β(zk)), either VA(x, zk) = 0 or VA(x, zk) ≥ E holds. A is said to
be completing until M if the above condition holds for all k s.t. zk ≤M .

Our first result shows that there exist optimal algorithms that are completing up to an
arbitrary point. For all practical purposes, this means that they are completing.

Lemma 1. Let A be an algorithm and let M ∈ R+. There exists an algorithm A′ s.t.
ρ(A′) ≤ ρ(A) where A′ is completing until M .

Proof. If A is completing until M , choose A′ = A and we are done. Assume A is not
completing. Let zk be the largest element of zn s.t. A is completing until and including zk.
W.l.o.g. assume that A is moving to the right at zk. Since A is not completing until zk+1,
∃x > 0 that is visited but not saturated in time-interval [zk, zk+1]. Clearly, the positive
axis is saturated up until and including some point y at time zk+1. Now consider the
sub-intervals (pi, qi) of [zk, zk+1] with A(pi) = A(qi) = y on which only points to the right
of y are visited.

Let A′ be obtained from A by removing all intervals (pi, qi) and then inserting those same
intervals at the first time that A(t) visits y after zk+1. Clearly, A′ is completing until zk+1.
To see that ρ(A′) ≤ ρ(A), first notice that all points that get saturated outside (zk, zk+2)
in A have the same saturation time for both A and A′. The values attained on [zk+1, zk+2]
by A and A′ are identical, but the entirety of this interval occurs earlier for A′ than for A.
Thus, for all points x′ < 0 that get saturated by A on the interval [zk+1, zk+2], we have
mA′(x

′) < mA(x′). Let c be a point to the right of y s.t. every point in the interval (y, c]
is visited but not saturated in the time-interval [zk, zk+1] (such a point is guaranteed to
exist). For all points x∗ > c that get saturated by A on the interval [zk, zk+1], we have:

mA′(x
∗)

|x∗|
<
mA′(c)

|c|
=
mA(c)

|c|
≤ ρ(A).

There is thus no point in A′ with an individual ratio larger than ρ(A). This gives ρ(A′) ≤
ρ(A). Repeating the above step multiple times yields an algorithm that is completing up
to an arbitrary point.

Our next result seems incredibly specific at first look, but turns out to be crucial. It
defines exactly how an optimal algorithm moves along an unsaturated interval.

4

Lemma 2. Let Ω be the part of an algorithm A on (ts, te) with A(ts) = a and A(te) = b
with the following properties:

• |a| < |b| and ab > 0

• A does not visit any point in (a, b] until ts, and has visited a exactly E+1
2 times before

ts

• Ω visits every point in (a, b) at least K times, visits the point a at least E−1
2 times,

does not visit any point outside [a, b] and visits b exactly E−1
2 times.

Then there exists an algorithm A′ with ρ(A′) ≤ ρ(A) obtained from A by deleting Ω and
inserting Ω′, where Ω′ moves from a to b with velocity 1

K without turning.

Proof. Let l(Ω) := te − ts. Since l(Ω) ≥ K|b− a| = l(Ω′), we have

mA′(c) ≤ mA(c) ∀c /∈ [a, b). (1)

When determining the competitive ratio of some algorithm, one only has to consider re-
strictive points. A point x can only be restrictive if all points with a smaller absolute
value than x are saturated before x. We define C in such a way to include all such
points in the interval (a, b]. Let C be the set of all points in (a, b] that are saturated
after all points in (a, b) with a smaller absolute value have been saturated. That is, C :={
x ∈ (a, b]

∣∣∣ mA(x) ≥ mA(y) ∀y ∈ (a, x]
}
. This gives:

mA(c) ≥ ts +K|c− a| = mA′(c) ∀c ∈ C (2)

where the first inequality follows from the facts that at the saturation time of c, every
point in (a, c] is visited at least E times (otherwise c /∈ C), and every point (see remark 1)
is visited an odd number of times (the algorithm moved from a to c). It follows from (1)
and (2) that ρ(A) ≥ ρ(A′).

Remark 1. A finite amount of turning points might be visited an even number of times.
The number of turning points is finite since otherwise the length of the time-interval con-
taining these turns would be infinite for every εs > 0, which would make ρ(A) infinite.
These points do not influence equation (2) as a finite number of visits has no effect on the
overall distance travelled. Furthermore, adding turning points only increases the length of
the interval.

Lemma 3. Let A be an optimal algorithm. Let lk the point with the largest absolute value
attained by A(t) on the interval (zk−1, zk) for k ≥ 1 with l−1 = l0 = 0. Then there exists
an an algorithm A′ with ρ(A) ≥ ρ(A′) where |lk+2| > |lk| ∀k ≥ −1 for A′.

Proof. Since |l1| and |l2| are at least m0 > 0, the lemma holds for k = −1 and k = 0.
Now assume that ∃k ≥ 1 such that |lk| > |lk+2|. Since A is completing, VA(x, zk) ≥ E
∀x ∈ [0, lk). Deleting the part of A on (zk+1, zk+2) decreases the saturation time for
every point not saturated at zk+1, and does not change it for all other points. Let A′

be the algorithm obtained by deleting every such part from A. Then for A′ we have
|lk| ≤ |lk+2| ∀k > 1.
Now we show how to guarantee lk 6= lk+2. Assume that |lk| < |lk+2| for k < n and that
ln = ln+2 holds for some n ≥ 1. First notice that |ln+2| ≥ m0. The part of A on (zk+1, zk+2)
is only useful if ln+2 is saturated on this time-interval, so we assume that this happens.

5

W.l.o.g. assume lk+2 > 0. After saturating lk+2, A moves past the origin before saturating
any points to the right of lk+2, which implies mA(x) > mA(lk+2) + 2lk+2 for all x > lk+2.
Let A′ be the algorithm obtained from A by deleting the part of A on (zk+1, zk+2). Then
for εs <

2lk+2

ρ(A) we find:

(lk+2 + εs)ρ(A) ≥ mA(lk+2 + εs) > mA′(lk+2) + 2lk+2(
lk+2 +

2lk+2

ρ(A)

)
ρ(A) > mA′(lk+2) + 2lk+2

lk+2ρ(A) > mA′(lk+2)

ρ(A) >
mA′(lk+2)

lk+2
(3)

Assume ρ(A) < ρ(A′). Since mA(x) ≥ mA′(x) for x 6= lk+2, the increase in competitive
ratio for A′ compared to A must be caused by lk+2. However, equation (3) shows that lk+2

cannot be restrictive on A′ if ρ(A′) > ρ(A), a contradiction. Thus, ρ(A′) ≤ ρ(A). For A′,
lk < lk+2 holds for k ≤ n. By repeating these steps multiple times, an algorithm can be
obtained with lk < lk+2 for all k up to an arbitrarily large value.

2.3 The optimal algorithm for E odd

Theorem 1. For E odd, there exists a sequence of real numbers (ln)k≥−1 with lklk+1 ≤ 0,
l−1 = l0 = 0 and |lk+2| > |lk|, such that the algorithm A of the following form is optimal:
Let k = −1 and iterate trough the following steps:

• Move from lk to lk+2 with velocity 1
E

• Move from lk+2 to lk+1 with velocity 1

• Set k = k + 1

Proof. Let A be an optimal algorithm. By lemma 1, it can be assumed that A is complet-
ing. Let lk point with the largest absolute value that is visited by A on (zk−1, zk). Clearly,
lklk+1 < 0 ∀k > 0. By lemma 3, we can assume that |lk+2| > |lk| ∀k ≥ −1.

Consider the values A(t) attains on the interval (zk−1, zk) for k ≥ 1. Since VA(x, zk−1) ≥ E
∀x ∈ [0, lk−2), it is irrelevant how often points in that interval are visited. It should be clear
that removing any turning points and setting the velocity to 1 in this interval will not in-
crease the saturation time for any point, and lower it for many. This gives A(zk−1 + |lk−2|)
= A(zk − |lk−2|) = lk−2. Since A is completing, it is furthermore known that A visits each
x in J := (lk−2, lk) at least E times on the time-interval I := (zk−1 + |lk−2|, zk − |lk−2|)
and A(t) is contained to [lk−2, lk] on I.

We now prove that A(t) is optimal if it attains each value on J exactly E times on the
time-interval (zk−1 + |lk−2|, zk − |lk|) with A(zk − |lk|) = lk, and then moves with velocity
1 from lk to lk−2 without turning. Every point in J is visited at least E times and every
point (with the exception of a finite number of points) is visited exactly an even amount of
times. Thus, (E+1)|J | is the minimal length for I, meaning that this technique minimizes
the saturation time for all x saturated after zk, with a possible exception for lk.
Consider the amount of visits to lk. Currently, k is visited E+1

2 times in (zk−1, zk). It is
necessary to prove that visiting lk more often does not result in a lower competitive ratio.
W.l.o.g. assume lk > 0. The quickest way to visit lk more often without visiting any point

6

to the right of lk is to move back and forth on the interval (lk−εs, lk) after the E+1
2 -th visit

to lk. Since all of the points in this interval are already saturated, the algorithm might as
well move back and forth along the interval (lk, lk + εs) instead. But that algorithm is not
completing, and can be made completing again without increasing the competitive ratio by
deleting the part that was just inserted and inserting it at the first visit to lk after t = zk.
Thus the version of the algorithm where lk is visited more often can be transformed into
an equivalent or better algorithm that visits lk only E−1

2 times on (zk−1, zk).
Now consider all points saturated in (zk−1, zk). By lemma 2, A has the structure specified
in the theorem. By induction, it can be assumed that lk−2 has been visited E+1

2 times at
zk−1. Thus, this technique minimizes the saturation time of lk−2, as it pays the remaining
E−1
2 visits as soon as possible.

Like before, it is only necessary to consider restrictive points. Consider C :=
{
x ∈

J
∣∣∣ mA(x) ≥ mA(y) ∀y ∈ (lk−2, x)

}
. Since visiting every point in some interval of length

l exactly D times takes Dl time, we have:

mA(x) ≥ zk−2 + |lk−2|+ E(|x− lk−2|) ∀ x ∈ C. (4)

If A is in the form of the theorem, (4) holds with equality ∀x ∈ C. Thus, the form specified
in the theorem is optimal.

One can see that the form of the optimal algorithm for E odd is very similar to the form
of the optimal algorithm for the normal cow path problem, which suggests that we might
be able to modify existing proofs for the lower bound of the normal cow path problem to
find a lower bound for the competitive ratio of the E-times cow path problem.

2.4 The optimal algorithm for E even

For E odd, there was no way around having to pay E + 1 visits to each point that is
saturated on (zk−1, zk). For the case E even, this is not the case. It is possible to move
from lk to lk+2 with velocity 1

E−1 and then back with velocity one, thus only paying E visits
to each point. This is advantageous in the long term as points that are saturated after
zk can only benefit from reducing the length of (zk−1, zk). It is, however, disadvantageous
in the short term, as the points in (lk, lk+2) are saturated in reverse order, causing points
close to lk have a large saturation time. Minimizing the competitive ratio of an algorithm
requires balancing these short and long term advantages. This can be done by including a
balance point bk+2 in the interval (lk, lk+2), resulting in the following structure:

Theorem 2. For E even, there exist real sequences (ln)k≥−1 and (bn)k≥1 with lklk+1 ≤
0, bklk ≥ 0, l−1 = l0 = 0, |lk+2| > |lk| and |lk+2| ≥ |bk+2| ≥ |lk|, s.t. the algorithm A of the
following form is optimal:
Let k = −1 and iterate trough the following steps:

• Move from lk to bk+2 with velocity 1
K

• Move from bk+2 to lk+2 with velocity 1
E−1

• Move from lk+2 to lk+1 with velocity 1

• set k = k + 1

7

Figure 2: Possible values for bn and ln

Proof. Let A be an optimal algorithm. By Lemma 1, it can be assumed that A is complet-
ing. Let lk point with the largest absolute value that is visited by A on (zk−1, zk). Clearly,
lklk+1 < 0 ∀k > 0. By lemma 3, we can assume that |lk+2| > |lk| ∀k ≥ 0.

Now consider the values A(t) attains on the interval [zk−1, zk]. Again, it is irrelevant
how often points in [0, lk−2) are visited. So it can be assumed that:

A(zk−1 + |lk−2|) = A(zk − |lk−2|) = lk−2.

Since A is completing, it visits each x in J := (lk−2, lk) at least E times. Consider the
time-interval I := (zk−1 + |lk−2|, zk − |lk−2|). Denote with l(I) the length of I. We first
find an upper and lower bound for l(I):

E|lk − lk−2| ≤ l(I) ≤ (E + 2)|lk − lk−2|. (5)

To see that the second inequality holds, consider an algorithm A in the form of the theorem
with bn = lk. This algorithm moves from lk−2 to lk with a velocity of 1

K and moves back
with velocity one. In this case, the second inequality holds with equality. Now consider
an algorithm A′ which is identical to A outside I, but l(I) is larger for A′ than for A. For
any point x outside J , we have mA(x) ≤ mA′(x). Furthermore, increasing the number of
visits to lk is useless for the same reason as for E odd.
The form of the theorem on I minimizes the saturation time for lk−2 (same argument as for
E odd). For points in J , it is only necessary to consider restrictive points. Again, consider
the set C :=

{
x ∈ J

∣∣∣ mA(x) ≥ mA(y) ∀y ∈ (lk−2, x)
}
. At the time of saturation of x,

every point (with the exception of a finite number of points) in (lk−2, x] has been visited
an odd number of times (since the algorithm moved from lk−2 to x), and every point has
been visited at least E times since x ∈ C. Thus, every point in this interval was visited
at least K times at time mA′(x). This gives:

mA′(x) ≥ zk−2 + |lk−2|+K|x− lk−2| = mA(x).

Thus, ρ(A) ≤ ρ(A′), which proves (5).

To see that the form of the theorem is optimal for every value of l(I) that satisfies (5), let
l(I) = L for L ∈

[
E|lk − lk−2|, (E + 2)|lk − lk−2|

]
.

Let A be an algorithm that behaves according to the theorem on I, with bk such that
l(I) = L. Let A′ be an algorithm with A(t) = A′(t) ∀t /∈ I that saturates all points in
(lk−2, lk) on I. Since l(I) = (E + 2)|lk − ll−2| − 2|lk − bk| is the same for both algorithms,
we have mA(x) = mA′(x) ∀x /∈ J + {lk−2}.
Now consider x ∈ C. We first prove by contradiction that |x| ≤ |bk|. Assume ∃x ∈ C s.t.
|x| > |bk|. At t = mA′(x) every point in (lk−2, x) has been visited exactly an odd number
of times and at least E times. Since A′(zk−|lk−2|) = lk−2, every point in (lk−2, x) is visited
at least (E + 2) times on I. This gives a contradiction:

L ≥ (E + 2)|lk − lk−2| − 2|lk − x| > (E + 2)|lk − lk−2| − 2|lk − bk| = L.

8

Thus x ≤ bk, which gives:

mA′(x) ≥ (E + 1)|x− lk−2| = mA(x). (6)

Equation (6) holds for all x ∈ C, so ρ(A) ≤ ρ(A′). There exists an optimal algorithm in
the form of the theorem.

3 Finding lower bounds

3.1 Tight lower bound for E odd

The proof for the lower bound for E odd is a generalization of the proof for the lower bound
of the normal cow path problem (the case E = 1) by Bernhard Fuchs et al [4]. Their paper
considers the discrete version of this problem while we consider the continuous case. This
explains why evaluating the equations in this thesis at E = 1 does not give the equations
from their paper. Many of the proofs and lemmas of this chapter will follow the same
general arguments as theirs.

Since we have proven that there exists an optimal algorithm in the form of theorem 1
for E odd, we only consider algorithms of that form. Only very specific points have to be
considered to evaluate the competitive ratio of such an algorithm. The point x which has
the largest ratio individual ratio of all points saturated in the time-interval (zk, zk+1) is
m0 for k = 1 and lk−1 for k ≥ 2 (it is always the first point saturated after zk). Let A be
an algorithm in the form of theorem 1. Denote with Mk the minimum possible saturation
time of the first point saturated after zk (the saturation time of this point for an optimal
offline algorithm) and denote with Lk the saturation time of this point for A. ρ(A) can
then be found by solving max

k≥1
Lk
Mk

. This gives:

M1 = m0

Mk+1 = |lk| ∀k ≥ 1

Lemma 4. At the first saturation after zk the online algorithm has travelled
L1 = M1 + (E + 1)M2 if k = 1 and

2
k−1∑
2

Mi + (E + 2)Mk + (E + 1)Mk+1 if k ≥ 2

Proof. L1 = (E + 1)|l1|+m0 which equals the expression above. For k ≥ 2 we get

Lk =2
k∑
i=1

|li|+ (E − 1)(|lk|+ |lk−1|) +Mk

=2

k+1∑
i=2

Mi + (E − 1)(Mk+1 +Mk) +Mk

=2
k−1∑
i=2

Mi + (E + 2)Mk + (E + 1)Mk+1.

9

These equations can be used to determine the competitive ratio of specific algorithms.
We first determine a candidate value for the competitive ratio of an optimal algorithm
using the following lemma:

Lemma 5. Let A be an algorithm for the E-times cow path problem with E odd in the form
of theorem 1. Furthermore assume that there is a constant ratio r > 1 between consecutive
values of Mk (thus Mk+1 = rMk ∀k ≥ 1). Then for m0 sufficiently large, A is optimal
among all such algorithms with fixed r if and only if:

ρ(A) = 3 + 2E + 2
√

2(E + 1)

Proof. For m0 sufficiently large, L1
M1

< ρ(A), so we can ignore k = 1. Expressing the sum
in the equation for k ≥ 2 from lemma 4 in terms of M1 yields:

Lk = 2
k−1∑
2

ri−1M1 + (E + 2)Mk + (E + 1)Mk+1

= 2M1

k∑
1

ri−1 − 2(M1 +Mk) + (E + 2 + (E + 1)r)Mk

This summation is a partial sum of an infinite geometric series. Rewriting gives:

Lk = 2M1
1− rk

1− r
− 2M1 + (E + (E + 1)r)Mk

=
2M1 − 2rMk

1− r
− 2M1 + (E + (E + 1)r)Mk

=
2rMk

r − 1
− (2 +

2

r − 1
)M1 + (E + (E + 1)r)Mk

=
(2r

r − 1
+ E + (E + 1)r

)
Mk − (2 +

2

r − 1
)M1

Thus, Lk
Mk

is increasing on k for k > 1 and converges to ρ = 2r
r−1 + E + (E + 1)r. This

function attains its minimum at r = 1 +
√

2
E+1 for fixed E. Substituting this value for r

into the equation for ρ(A) yields the desired equation.

Let g(E) := 3 + 2E + 2
√

2(E + 1), the candidate-ρ found in the previous lemma. It
turns out that g(E) is the the lowest possible competitive ratio for the E-times cow path
problem for E odd, not just for algorithms with a fixed ratio between consecutive Mk. To
prove this, assume that a (g(E) − ε)-competitive algorithm exists for some ε > 0. It can
be assumed that this algorithm is optimal, and thus that it has the structure specified in
theorem 1. The algorithm is thus characterized by Mk and Lk.
Let σk and αk be such that:

Lk = (g(E)− σk)Mk and Mk+1 = (1 + αk)Mk. (7)

We introduce the potential function

Φk := σk + (E + 1)αk. (8)

10

It can be shown that this potential approaches −∞ for algorithms with a competitive ratio
smaller than g(E), which will lead to a contradiction. Observe that:

Φ1 = g(E)− (E + 1) +
(E + 1)M2 −M1 − (E + 1)M2

M1

= g(E)− (E + 2) = 1 + E + 2
√

2(E + 1).

The recursion for Φk follows:

Lemma 6.

Φk+1 = Φk −∆k with ∆k =
αkσk + (1 + E)α2

k + 2− 2
√

2(E + 1)αk
1 + αk

. (9)

Proof. Use lemma 4 to obtain:

(g(E)− σk+1)Mk+1 − (g(E)− σk)Mk = Lk+1 − Lk = (E + 1)Mk+2 +Mk+1 − EMk

Write Mk+1 and Mk+2 in terms of Mk and divide by Mk to obtain:

(g(E)− σk+1)(1 + αk)− (g(E)− σk) =(E + 1)(1 + αk)(1 + αk+1) + (1 + αk)− E
(g(E)− 1− σk+1)(1 + αk)− (g(E)− E − σk) =(E + 1)(1 + αk)(1 + αk+1)

−(σk+1 + (E + 1)αk+1)(1 + αk) =2− σk − (g(E)− 2− E)αk

The left-hand side of the equation equals −(1 +αk)Φk+1. Multiply by −1 and rewrite the
right-hand side such that it includes (1 + αk)Φk to obtain:

Φk+1(1 + αk) = (σk + (E + 1)αk)(1 + αk)−
(
αkσk + (E + 1)α2

k − 2
√

2(E + 1)αk

)
Φk+1(1 + αk) = Φk(1 + αk)−

(
αkσk + (E + 1)α2

k − 2
√

2(E + 1)αk

)
.

Dividing by (1 + αk) yields the desired equation.

Clearly, αk > −1 ∀k ≥ 1. Furthermore, if a (g(E) − ε)-competitive algorithm were to
exist, then it would maintain σk ≥ ε > 0. This leads to a contradiction if we can show
that ∆k is bounded below by some positive constant. A constant that gives a somewhat
neat expression is 1

1+2E .

Lemma 7. If σk ≥ 0, we have ∆k ≥ 1
1+2Eσk. If furthermore, σk ≥ ε > 0 for all k then

∆k ≥ 1
1+2E ε > 0 for all k.

Proof.

∆k −
σk

1 + 2E
=
αkσk + (1 + E)α2

k + 2− 2
√

2(E + 1)αk
1 + αk

− σk
1 + 2E

=
2Eσkαk
1+2E −

σk
1+2E + (1 + E)α2

k + 2− 2
√

2(E + 1)αk

1 + αk
. (10)

Since 1 + αk > 0, it is sufficient to prove that the numerator of this fraction is positive for
σk > 0. The numerator attains its minimum value at αk = 2√

2E+2
− Eσk

(E+1)(2E+1) for fixed
E, σk. For this value of αk, the numerator of (10) is positive (see appendix 6.2).

11

Applying lemma 7 to equation (9) shows that lim
k→∞

Φk = −∞. But lim
k→∞

Φk = lim
k→∞

σk +

(E + 1)αk ≥ ε+ (E + 1)(−1), a contradiction. Thus, no (g(E)− ε)-competitive algorithm
exists for the E-times discrete cow path problem for E odd. This yields the main result of
this thesis:

Theorem 3. For any online algorithm for the E-times cow path problem with E odd,
ρ ≥ 3 + 2E + 2

√
2(E + 1).

This lower bound is clearly tight, as we obtained this value for the first time by analyzing
competitive ratios of algorithms. An example of such an optimal algorithm is given in the
following corollary:

Corollary 1. The algorithm in the form of theorem 1 with |l1| = m0 and |lk| =
(

1 +√
2

E+1

)
|lk−1| is optimal.

3.2 Lower bound for E even

To find the optimal ratio between lk and bk+2 for algorithms in the form of theorem 2, one
likely has to perform some quite involved function analysis, which is beyond the scope of
this thesis. This ratio becomes an additional unknown which greatly influences the values
of Lk. Furthermore, for arbitrary values of bk, the saturation times for both bk and lk
might effect the competitive ratio, instead of just lk. Thus, it is impossible to use the
above techniques to find a tight lower bound for E even, as long as this ratio is unknown.
To find a lower bound, we design a theoretical algorithm which is guaranteed to behave
better than any possible algorithm. The following is known about the part of an algorithm
in the form of theorem 2 on (zk, zk+1):

zk+1 − zk ≥ 2|lk+2|+ (E − 2)|lk+2 − lk| (11)
mA(x) ≥ zk + |lk|+ E|x− lk| ∀x ∈ (lk, lk+2). (12)

It is clear that a theoretical algorithm for which both equations hold with equality for all
positive k would be better than any real algorithm. We assume that such an algorithm
exists and call it A. This assumption costs us the tightness of the lower bound. Such an
algorithm leads to the following version of lemma 4:

L1 = M1 + E|l1| = M1 + EM2 (13)

and for k ≥ 2

Lk = 2
k∑
i=1

|li|+ (E − 2)(|lk|+ |lk−1|) +Mk

= 2
k+1∑
i=2

Mi + (E − 2)(Mk +Mk+1) +Mk

= 2
k−1∑
i=2

Mi + (E + 1)Mk + EMk+1.

These are the exact equations for the optimal algorithm for the E′-times cow path problem
for E′ = E − 1. Since E′ is odd, theorem 3 gives us the lower bound for the competitive
ratio of this problem. Substituting E = E′ + 1 into the equation of this theorem gives
yields a lower bound for the E-times cow path problem for E even:

12

Theorem 4. For any algorithm for the E-times cow path problem with E even, ρ ≥
1 + 2E + 2

√
2E.

This lower bound for the case E even provides additional structure to the form of an
optimal algorithm for this problem:

Corollary 2. For an optimal algorithm of the form in theorem 2, the following inequalities
hold for all k:

|bk+2| < |lk|+ |lk+2 − lk|
(

2 +
2
√

2E

E

)−1
< |lk|+

1

2
|lk−2 − lk|. (14)

Proof. Let A be an algorithm in the form of theorem 2. Increasing |bk| has a neutral or
negative effect on the saturation time for all points outside the interval (bk, lk). Increasing
bk should therefore only be done if there exists a pint in (bk, lk) that is restrictive on A.
Denote with x+ ∈ R a point with an infinitesimally larger absolute value than x with the
same sign as x. Since the point b+k is the last point saturated in (bk, lk), and also has
the smallest absolute value of all these points, it is the only point in (bk, lk) that can be

restrictive. Similarly, lk−2 is the only such point in the interval [lk−2, bk]. Thus, if
mA(b+k)

|b+k |
<

mA(lk−2)
|lk−2| ≤ r, then |bk| is too large. It is therefore guaranteed that mA(b+k)−mA(lk−2)

|b+k −lk−2|
≥ r ≥

1+2E+2
√

2E. Denote with d the distance |lk− lk−2| and with d1 the distance |b+k − lk−2|,
then:

mA(b+k)−mA(lk−2)

|b+k − lk−2|
≥1 + 2E + 2

√
2E

Ed+ d1
d1

≥1 + 2E + 2
√

2E

d1 ≤
d

2 + 2
√
2E
E

replacing d and d1 by their expressions in terms of lk and b+k and making the inequality
strict by replacing b+k with bk yields the desired equation.

4 Discretization

In some applications it is more useful to consider the discrete version of the E-times cow
path problem. In this version of the problem, the daisy is guaranteed to be found at an
integer point. Turning around is also only allowed at these points. It turns out that we
can quite easily find a lower bound for the competitive ratio of this problem with the tools
developed for the continuous version.

It is desirable to define the discretization in such a way that it is easy to see that a
discretized version of theorem 1 or 2 holds. Since we essentially have εs = 1, the concept
of velocity becomes slightly more involved. To easily define this velocity, we require that
every interval on which an algorithm moves with a velocity unequal to one has an even
length. If this is not the case for some algorithm, the entire algorithm can be upscaled by
doubling the value of m0 and every turning point to make all these distances even length.
This upscaling is allowed for the purposes of this thesis, as we are only looking for a lower
bound. In this thesis, it is implicitly assumed that all such intervals have even length.

13

Since εs = 1, moving with a velocity v > 0, v ∈ N means going back and forth between
a pair of points until both are visited 1

v times and then moving on to the next pair. As
an example, assume that an algorithm moves with a velocity of 1

n on (a, b]. Then for
x ∈ (a, b] the kth (k ≤ n) visit to x occurs after (|x − a| − 1)n + 2k − 1 if |x − a| is odd
and after (|x− a| − 2)n+ 2k if |x− a| is even. Note that unlike in the continuous version,
a is not visited at all, and b is visited n times on the interval. An observant reader might
have noticed that with this definition of velocity, there is no reason why 1

v should be odd.
Indeed, in the discrete version an algorithm may move with a velocity of 1

n , n ∈ N. This
has the advantage that there is no difference between optimal algorithms for E even and
odd for E > 1. Like with E even for the continuous problem, the ability to move with a
velocity of 1

E−1 for E > 1 requires balancing using balance points bk. This results in the
following form for an optimal algorithm:

Corollary 3. For the discrete E-times cow path problem with E > 1, there exist integer
sequences (ln)n≥−1, (bn)n≥1 with lklk+1 ≤ 0, l−1 = l0 = 0, |lk+2| > |lk| and |lk| ≤ |bk+2| ≤
|lk+2| s.t. the algorithm A of the following form is optimal:
Let k = −1 and iterate trough the following steps:

• Move from lk to bk+2 with velocity 1
E

• Move from bk+2 to lk+2 with velocity 1
E−1

• Move from lk+2 to lk+1 with velocity 1

• set k = k + 1

The proof for this corollary is omitted, as it is easy to check that all the proofs in this
thesis for the continuous even case are also applicable to the discrete case, provided some
small modifications are made concerning the saturation of the elements of ln and bn.

In order to find a lower bound on the competitive ratio, we make the same concessions
as for the continuous even case. We assume that there exist an algorithm A that follows
the general form of theorem 3 and visits every point on the interval (lk, lk+1] exactly E
times on (zk−1, zk) while saturating every point in this interval in order of absolute value
from smallest to largest ∀k ≥ 1. Again, such an algorithm cannot exist and has a smaller
competitive ratio than any existing algorithm.

Remark 2. This assumption is closer to reality than in the continuous even case. For
an algorithm in the form of corollary 3, every point in lk to bk+2 is visited E + 1 times
on (zk+1, zk+2), while an algorithm in the form of theorem 2 pays E + 2 visits to each
point in that interval. The fact that we find the same lower bound for these two problems
does therefore not suggest that the competitive ratios of optimal algorithms for these two
problems would be the same.

In such an interval, the point x with the worst individual ratio is lk±1 (the point away
from the origin from lk). Like before, denote with Mk the minimum possible saturation
time for x and denote with Lk the saturation time of x in A. This gives:

M1 = m0 + 2E − 2

Mk+1 = |lk|+ 2E − 1 ∀k ≥ 1

and Lk is given by

L1 = E|l1|+M1 = M1 + EM2 − E(2E − 1) (15)

14

for k = 1 and

Lk =2

k∑
i=1

|li|+ (E − 2)(|lk|+ |lk−1|) +Mk

=2
k+1∑
i=2

(
Mi − (2E − 1)

)
+ (E − 2)(Mk+1 +Mk − 4E + 2) +Mk

=2
k−1∑
i=2

Mi + (E + 1)Mk + EMk+1 − (4E − 2)(E − 2)− k(4E − 2).

for k ≥ 2. We need to create a result analogous to that of lemma 5. Let f(E) = (4E −
2)(E − 2)− k(4E − 2) to find:

Lk = 2

k−1∑
2

ri−1M1 + (E + 1)Mk + EMk+1 − f(E)

= 2M1

k∑
1

ri−1 − 2(M1 +Mk) + (E + 1 + Er)Mk − f(E)

= 2M1
1− rk

1− r
− 2M1 + (E − 1 + Er)Mk − f(E)

=
2rMk

r − 1
− (2 +

2

r − 1
)M1 + (E − 1 + Er)Mk − f(E)

=
(2r

r − 1
+ E − 1 + Er

)
Mk − (2 +

2

r − 1
)M1 − f(E).

Thus, Lk
Mk

is increasing on k for k > 1 and converges to ρ = 2r
r−1 +E−1+Er. Substituting

E′ = E− 1 yields the exact equation found in lemma 5 for the continuous odd case. Using
the same r results in a competitive ratio of 1 + 2E + 2

√
2E. It can be proven that this

competitive ratio is a lower bound by following the same steps as before. Since this proof is
so similar to the continuous case, it is omitted in this thesis, but can be found in appendix
6.1.
In this chapter, we ignored the case E = 1, as an optimal algorithm for this case does not
have the form specified in theorem 3. It is, however. known that 3 + 2

√
2 is a lower bound

on the competitive ratio for the normal discrete cow path problem [4]. We can formalize
these results in the following theorem.

Theorem 5. For any algorithm for the discrete E-times cow path problem, ρ ≥ 1 + 2E +
2
√

2E.

5 Suggestions for further research

Although this thesis completely solves the case E odd, the general problem of a non-optimal
seeker is still far from solved. Nothing is yet known about the expected value cow path
problem mentioned in the introduction of this thesis. A nontrivial lower bound on the
competitive ratio for this problem is likely the most widely applicable result still absent.
The lower bound for E even found in corollary 2 is likely good enough for most applications
(especially for large values of E). It would be nice, however, to be able to consider the
E-times cow path problem completely solved, which requires finding a tight lower bound
for E even as well. One way to find a larger lower bound for the continuous even case, is to

15

look more into the discrete version, as it can be shown that any ρ-competitive algorithm for
the E-times continuous problem corresponds to a ρ-competitive algorithm for the E-times
discrete problem.

References

[1] A. Beck. On the linear search problem. Israel Journal of Mathematics, 2(4):221–228,
dec 1964.

[2] A. Beck and D. J. Newman. Yet more on the linear search problem. Israel Journal of
Mathematics, 8(4):419–429, 1970.

[3] R. Bellman. Problem 63-9, An Optimal Search. SIAM Review, 5(3):274, 1963.

[4] B. Fuchs, W. Hochstättler, and W. Kern. Online matching on a line. Theoretical
Computer Science, 332(1-3):251–264, feb 2005.

[5] F. Heukers. Searching with Imperfect Information, Technical report, University of
Twente, jun 2017.

[6] G. Maduro. Comparing algorithms for the cow-path problem with a non-optimal seeker,
Technical report, University of Twente. 2018.

16

6 Appendices

6.1 Appendix 1: Proof for discrete lower bound

Let g(E) := 1 + E + 2
√

2E with αk and σk as before. Then

Φk := σk + Eαk. (16)

It can be shown that this potential approaches −∞ for algorithms with a competitive ratio
smaller than g(E), which is a contradiction. Observe that:

Φ1 = g(E)− E +
EM2 + E(2E − 1)−M1 − EM2

M1

= g(E)− (E + 1) +
E(2E − 1)

m0 + 2E − 1
≈ E + 2

√
2E

assuming m0 to be sufficiently large. The recursion for Φk follows:

Lemma 8.

Φk+1 = Φk −∆k +
4E − 2

Mk+1
with ∆k =

αkσk + Eα2
k + 2− 2

√
2Eαk

1 + αk
. (17)

Proof. Use lemma of σk and αk to obtain:

(g(E)− σk+1)Mk+1 − (g(E)− σk)Mk = Lk+1 − Lk
= EMk+2 +Mk+1 + (1− E)Mk − 4E + 2

Write all Mk+1 and Mk+2 in terms of Mk and divide by Mk to obtain:

(g(E)− 1− σk+1)(1 + αk)− (g(E) + (1− E)− σk) =E(1 + αk)(1 + αk+1)−
4E − 2

Mk

−(σk+1 + Eαk+1)(1 + αk) =2− σk − (g(E)− 1− E)αk −
4E − 2

Mk

Φk+1(1 + αk)− Φk(1 + αk)−
4E − 2

Mk
=−

(
αkσk + 2 + Eα2

k − 2
√

2Eαk

)
dividing by (1 + αk) gives the desired equation.

Notice that Mk+1 can be made arbitrarily large (by the choice of m0), so Φk+1 ≈
Φk − ∆k. If a (g(E) − ε)-competitive algorithm were to exist, then it would maintain
σk ≥ ε > 0. Replacing E by E + 1 in the expression for ∆k in equation (17) yields the
expression for ∆k in equation (9). This gives the following alternative of lemma 7:

Lemma 9. If σk ≥ 0, E ≥ 2, we have ∆k ≥ 1
2E−1σk. If furthermore, σk ≥ ε > 0 for all k

then ∆k ≥ 1
2E−1ε > 0 for all k.

6.2 Appendix 2: additional proof for lemma 7

We want to show that

2Eαkσk
2E + 1

− σk
2E + 1

+(1+E)α2
k+2−2αk

√
2(E + 1) with αk =

√
2√

E + 1
− Eσk

(E + 1)(2E + 1)
.

17

(18)

is strictly positive for σk > 0, E ≥ 1. It is sufficient to show that it is positive for σk very
small, as this would show that a competitive ratio of g(E) − σk is impossible. Thus, we
can view this equation as a polynomial in terms of σk and look at the coefficients of the
lowest power first. Setting σk = 0 gives

(1 + E) ∗
(√

2√
E + 1

)2
+ 2− 2

√
2(E + 1) ∗

√
2√

E + 1
= 2 + 2− 4 = 0 (19)

so the coefficient of the constant is 0. Now consider the linear coefficient:

2E

2E + 1
∗
√

2√
E + 1

− 1

2E + 1
+ (1 + E) ∗ 2

−
√

2E√
E + 1(E + 1)(2E + 1)

− 2
√

2(E + 1) ∗ −E
(E + 1)(2E + 1)

=
1

2E + 1

(2E
√

2√
E + 1

− 1− 2E
√

2√
E + 1

+ 2
√

2(E + 1)
E

E + 1

)
=

1

2E + 1

(
− 1 + 2

√
2(E + 1)

E

E + 1

)
=

1

2E + 1

((2
√

2(E + 1)− 1)E − 1

E + 1

)
≥ 1

2E + 1

(3E − 1

E + 1

)
> 0

Thus, the numerator of the fraction is always positive for small values of σk > 0.

18

	Introduction
	Structure of optimal algorithms
	Definitions and notation
	Properties of optimal algorithms
	The optimal algorithm for E odd
	The optimal algorithm for E even

	Finding lower bounds
	Tight lower bound for E odd
	Lower bound for E even

	Discretization
	Suggestions for further research
	Appendices
	Appendix 1: Proof for discrete lower bound
	Appendix 2: additional proof for lemma 7

