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Abstract

Asthma is the most frequently seen chronic disease among children [1]. Home
monitoring of the asthma status of the children instead of at the hospital will give
improved freedom. However, according to van der Kamp et al. (2017) [2], only
66% of spirometry attempts were performed technically correct at home compared
to 92% when performed in the hospital.

The study described in this report is part of a broader project called Spiroplay,
which goal is to improve the quality of home spirometry tests. This study focuses on
three areas of this project. Firstly, an error detection algorithm based on machine
learning techniques was designed and evaluated. To find the best model, different
combinations of featuresets, hyperparameters, balancing techniques and machine
learning techniques were evaluated. This process was repeated for three labelsets;
a binary labelset consisting of two classes, one containing all technically correct
attempts, and the other containing all attempts with errors, a combined labelset in
which errorclasses are combined which are not directly linked to a criteria for a
technically correct attempt stated by Miller et al. (2005) [3], and a third labelset in
which the attempts preserve the label assigned to it. The results show that only the
binary model, with a recall of 0.864 and a precision at 100% recall of 0.678, is useful
in a real life system for the home monitoring of asthma.

The second area of focus is assessing the inter- and intra-rater agreement be-
tween professionals detecting errors in spirometry attempts. Three professionals
labeled the same spirometry attempts. The inter- and intra-rater agreements were
represented by the Cohen’s Kappa score. The inter-rater agreement ranged from
-0.123 to 0.380, which can be interpreted as a negative to minimal agreement. The
intra-rater agreement was in the range of 0.648 to 0.860, which is a moderate to
strong agreement. These results show that professionals detect different errors in
spirometry data, showing that the rules on which the error detection is based are
not strict enough. Therefore, before a generic error detection algorithm can be de-
signed, the rules should be sharpened.

The third focus area of this research is the evaluation of the difference in quality
of spirometry attempts when coached by a professional versus by a metaphor. The
FV C, FEV1, PEF values, and the number of errors were compared. No signifi-
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cant differences were found between attempts coached by a metaphors and by a
professional, however due to a possible research bias, the absence of a significant
difference in the number of errors should be taken cautiously. These results imply
that metaphors can be used to coach the children during home monitoring without
significant quality loss based on PEF , FEV1, FV C, and presumably the number of
errors.

The conclusion of this research is that metaphors can be used as a coaching
manner during home spirometry. However, before a generic error detection can be
designed and used, the rules should be sharpened.
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Chapter 1

Introduction

Asthma is the most frequently seen chronic disease among children [1]. People
suffering from asthma, also called respiratory disease, have difficulty breathing as
their bronchial tubes narrow, swell, and produce more mucus than normally.

Different tests are available to diagnose or monitor asthma, such as spirome-
try, peak flow, methacholine challenge 1 , exhaled nitric oxide test, chest X-ray, CT
scan, allergy tests, and sputum eosinophils 2 [4]. In this project, spirometry is used
which provides physiological parameters of the flow and volume of air that is inhaled
and exhaled. These parameters reveal episodic airway narrowing, which is the key
feature of asthma. Besides, it is the most used objective monitoring tool of child-
hood asthma in hospitals at the moment [5]. Refer to section 2.2 for a more detailed
explanation of spirometry.

At the moment, technologies are available to perform spirometry unsupervised.
However, it was revealed by a home-monitoring study performed by van der Kamp et
al. (2017) [2], that 66% of the spirometry measurements were performed technically
correct at home compared to 92% when performed in the hospital. The goal of the
project SpiroPlay, where this study is part of, is to improve the quality, expressed in
technically correct attempts, of unsupervised spirometry, to support the professional
in monitoring asthma patients. When the quality is as good as spirometry in the
hospital, the spirometry tests can be performed at home which would give improved
freedom to young asthma patients as they would have to visit the hospital less fre-
quently to check the status of their asthma. Besides, it would reduce the cost of
healthcare professionals as they can focus on the analyzing part of the spirometry
tests instead of the complete monitoring process. The second goal of the project is

1During the methacholine challenge, the patient inhales increasing amounts of methacholine after
subsequent tests. If the lung function drops by 20% or more before the maximum dose is reached,
the patient is diagnosed with asthma.

2During sputum eosinophils, the saliva and mucus that comes out when the patient coughs is
examined to identify high levels of white blood cells. If this level is high, the patient is diagnosed with
asthma.

11



12 CHAPTER 1. INTRODUCTION

to acquire data about the patients more frequently, in order to monitor them more
accurately.

The SpiroPlay project focuses on two areas to reach these goals. The first one
is delivering feedback expressing if and which mistakes are made during a test by
detecting the errors in the spirometry data instantly using rule-based artificial intelli-
gence (explained in section 6.1.4), the second one is offering blowing metaphors to
steer the behaviour of the patient based on the errors frequently made by the patient
(explained in section 2.4).

The first focus area of the present study, which is part of the SpiroPlay project,
is the error detection. Despite the hypothesized addition of the rule-based algorithm
to the process, the present study goes one step further and targets on designing
and evaluating a more holistic approach based on machine learning. The question
’How well can an error detection approach using machine learning techniques detect
errors in spirometry data?’ is answered.

The second focus area of this study is to evaluate the agreement in detecting
errors in spirometry data by multiple professionals, answering the question ’What is
the agreement in detecting errors in spirometry data by professionals?’. A low agree-
ment points to a difference in detecting errors in spirometry attempts, complicating
the designing of a generic error detection algorithm.

Thirdly, this study focuses on evaluating if coaching the children by metaphors
instead of a professional during spirometry attempts result in a difference in qual-
ity. The question ’What is the difference in quality of the spirometry measurements
between blowing behaviour coached by a professional and coached by a metaphor
offered by the SpiroPlay system?’ is answered.

If the error detection algorithm performs well, feedback can be given to the chil-
dren based on the attempts during home spirometry, guiding the children to blow cor-
rect attempts. Besides, the quality of the measurements can be guaranteed by de-
tecting whether an attempt was not technically correct and should be repeated. Ad-
ditionally, if there is no quality loss in the spirometry tests when using the metaphors
as coaching method, the metaphors can be used during home monitoring, instead
of being dependent on the availability of a professional. Meeting one or both goals
brings the medical world one step closer to home monitoring of asthma, resulting in
lower healthcare costs and an improved freedom for the children.

The offering of metaphors in combination with an error detection approach come
together in a system called SpiroPlay. An app is used in combination with a spirome-
ter designed by NuvoAir (refer to section 2.3 for details). The app processes the data
from the spirometer after an attempt is performed and determines instantly using the
error detection algorithm if the attempt is an acceptable one, and if not, which errors
are made. The errors made during attempts are counted and used to provide an
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appropriate metaphor during a next attempt to support the person to overcome the
frequently made errors. Additionally, after every attempt, the error made is shown (if
an error is made) to help the child to focus on the part of the measurement the error
occurred. The app also determines when three acceptable and two reproducible
attempts are made and if the measurement is a successful one.

The remainder of this report starts with a chapter discussing background knowl-
edge (chapter 2), followed by a literature review about unsupervised spirometry and
related topics (chapter 3). Chapter 4 discusses related work about machine learn-
ing in monitoring and diagnosing asthma. The research questions of this study are
stated in chapter 5, followed by the approach to answer these research questions in
chapter 6. Chapter 7 shows the results when performing the approach, which are
discussed in chapter 8. Chapter 9 answers the research questions and concludes
the study.
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Chapter 2

Background

This chapter discusses the disease asthma, the spirometry test, the spirometer, and
the metaphors used in the SpiroPlay project.

2.1 Asthma

As mentioned, patients with asthma have difficulty breathing as their bronchial tubes
narrow, swell, and produce more mucus than normally. This swelling due to inflam-
mation results in extreme sensitivity to irritations. When irritated, the muscles around
the airways tighten which might restrict the airways and trigger an overproduction of
mucus [1].

The symptoms of people suffering from asthma differ per person. Symptoms are
shortness of breath, pain in the chest, difficulty with sleeping due to coughing, short-
ness of breath, wheezing, and a whistling sound during exhaling. These symptoms
can be triggered by e.g. allergens such as pollons or pet dander, strong odors, in-
fections of the lungs such as flu, air pollution, tobacco smoke, exercise, changes in
the weather, cold air, strong emotions, and medications. Also genetics play a role; if
one parent has asthma, there is a 25% chance the child will have asthma as well. If
both parents suffer from asthma, the chance is 50% [1,6].

Asthma is seen in different strengths from mild intermittent asthma to severe
persistent asthma. People suffering from mild intermittent asthma experience a few
asthma attacks, symptoms during the night less than twice a month, and symptoms
during the day less than twice a week while people suffering from severe persistent
asthma have ongoing symptoms during the day and night, which are so frequent
that it limits executing activities [7].

Next to a difference in severity, different types of asthma exist such as child-
hood asthma, adult-onset asthma, occupational asthma, exercise induced asthma,
and seasonal asthma. In this research the focus is on childhood asthma. The

15
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specific symptoms in childhood asthma include frequently less energy during play,
shallow or rapid breathing, chest tightness, whistling sound during exhaling, retrac-
tions, shortness or loss of breath, tightened chest and neck muscles, tiredness, or
weakness [8].

Asthma cannot be cured, however the symptoms can be controlled. As the symp-
toms vary over time, it is important to be monitored well [9].

2.2 Spirometry

Spirometry provides physiological parameters of the flow and volume of air that is
inhaled and exhaled to reveal if the patient is suffering from episodic airway narrow-
ing.

Several ways of performing a spirometry test exist, for example with or without an
inhalation after exhaling. During the spirometry test in this study, the patient inhales
deeply and exhales forceful and completely into a hose connected to a little device
designed by NuvoAir (refer to section 2.3 for details). This test is called a Forced Vital
Capacity (FV C) test. The device measures the flow in liters per millisecond during
the exhalation. One way of presenting the data is a flow-volume curve. Figure 2.1
shows a curve of a child with asthma and a healthy child.

From the spirometry data, several values can be calculated. An example is the
Forced Vital Capacity (FV C). Next to being the name of the test, it is the maximal
volume of air one can exhale with maximally forced effort and from a maximal inspi-
ration. Three values which are calculated from the FV C are the Forced Expiratory
Flow (FEF ) at 25% (FEF25%), at 50% (FEF50%), and at 75% (FEF75%) of the FV C.
This can also be calculated of the inspiration phase; these are the Forced Inspiration
Flow (FIF ) at 25% (FIF25%), at 50% (FIF50%), and at 75% (FIF75%) of the FV C.
Another value which can be calculated from the flow-volume curve is the Forced
Expiratory Volume in the first second (FEV1) which shows the maximum amount of
air one can exhale in the first second of forced expiration after full inspiration. This
value can also be calculated at other time points, such as the FEV0.5, which is the
Forced Expiratory Volume in the first half second, and the FEV3, which is the Forced
Expiratory Volume in the first three seconds. The ratio FEV1/FV C is also a used
value. Another value is the Peak Expiratory Flow (PEF or PEFR) which shows how
fast and hard a subject exhales [3].

The measurements from a person are compared to comparable measurements
from a healthy person with the same age, height, and ethnicity using the Global Lung
function Initiative (GLI) table [11]. The values in this table are the ”predicted values”.
By comparing the measured values collected during a spirometry test to the pre-
dicted values, one is able to calculate the ”percentage predicted values” which rep-
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Figure 2.1: Flow volume curve of a child with asthma. The dotted line shows a
curve of a healthy child. Source: Image 2 of Brand et al. (2003) [10]

resent how close the measurement is to a measurement from a comparable healthy
person.

2.2.1 Criteria

A spirometry attempt has to meet a number of criteria to be technically correct.
These criteria, based on Miller et al. (2005) [3], are described below and listed at
the end of this section.

The test starts with a maximal inhalation. When this is not done maximally, the
test is not acceptable as the lung capacity will not be measured correctly. To deter-
mine if the start of test is acceptable, the back extrapolation method is used. Using
this method, the steepest slope on a volume-time curve is traced back in manual
measurements (illustrated in figure 2.2), or using the largest slope averaged over an
80 ms period when using computerised measurements. The subject needs to have
an extrapolated volume of less than 0.150 liter, or less than 5% of the expected
FV C, depending on which one is greater.

When inhaled maximally, the patient has to exhale as forcefully as possible with
minimal hesitation as hesitation reduces the PEF and FEV1. After the burst of
exhalation, the patient has to exhale maximally until the end of test (EOT ). The end
of test criteria are used to identify a good FV C effort. There are three EOT criteria:
the first one is that the subject is not able to continue further exhalation. The second
criteria is the volume-time curve showing no change in volume anymore (< 0.025 L
for ≥ one second). Lastly, the person should have exhaled for at least three seconds
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Figure 2.2: Back extrapolation by tracing back the steepest slope on a volume-
time curve. The extrapolated volume is annotated in the image by EV .
Source: Image 2 of Miller et al. (2005) [3]

when the subject is aged below ten years, and six seconds when aged above ten
years. When these criteria are not met, the FV C value cannot be used. However,
the FEV1 can still be used in some situations as this is only about the first second
of the measurement [3].

Additionally, some overall criteria apply [3]. First, coughing will make a test unac-
ceptable, as well as glottis closure, an extra breath taken during the attempt, or hes-
itation during the attempt which causes a stop in airflow in a way that it influences
the measurements. Besides, the lips should be sealed around the mouthpiece to
prevent leak, and the tongue and teeth should not occlude the mouthpiece.

All criteria named above are within-manoeuvre criteria. Next to these criteria
are between-manoeuvre criteria; an adequate test should consist of a minimal of
three acceptable FV C manoeuvres and two reproducible ones. Two attempts are
reproducible when the difference between the FV C values met at two manoeuvres
is smaller than 0.150 liter. This should also hold for the FEV1 values. If the subject
has a measured FV C of lower than 1.0 liter, the difference in FV C and FEV1 values
should be lower than 0.100 liter. In case these criteria are not met in the first three
attempts, the subject can perform a maximum of five more attempts according to
Miller et al. (2005) [3].

In conclusion, the list with criteria for a technically correct attempt is as follows:

1. Maximal effort

2. Maximal inhalation
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3. Minimal hesitation at the start

4. Duration of attempt is > 3 s, no plateau in the VT curve, and the person should
not be able to continue exhaling

5. No cough during the attempt

6. No glottis closure

7. No extra breath taken during the attempt

8. No hesitation during the manoeuvre

9. No leak

10. No obstructed mouthpiece

11. Three of the attempts are acceptable.

12. Two of the attempts are reproducible

2.3 Spirometer

The Air Next spirometer (see figure 2.3) of the company NuvoAir is used in the
SpiroPlay system. NuvoAir is a digital health start-up focused on respiratory care.
The small and portable spirometer measures respiratory flow and can be connected
to smartphones/tablets via a Bluetooth connection. The respiratory flow is measured
by setting a rotor in motion by exhalation in the turbine connected to the spirometer.
Infrared interruption is used to determine the airflow rate and volume. The flow
range is between zero and fourteen liter per second. The flow and volume can be
determined with an accuracy of respectively approximately 5% and 3%. Spirometry
parameters, such as the FEV1, FV C, the FEV1/FV C ratio, and the PEF , are
calculated from this flow and volume data and presented in the corresponding app.

NuvoAir is ISO 13485:2016 certified and the Air Next spirometer is CE certified
as a class IIa medical device [12].
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Figure 2.3: The Air Next spirometer of NuvoAir [12]

2.4 Metaphors

As explained in chapter 1, the app will offer blowing metaphors to encourage the
patient during the attempt, and to steer his or her behaviour. The metaphors used
in the studies of this research are shown in figure 2.4. When using the metaphor of
the car, the car starts, the pointer of the tachometer moves from left to right, and the
vertical bar fills up in green during inhalation. During exhalation the car drives and
changes from a normal car into a sports car. If the predicted FV C is met, the car will
pass the finish. The second metaphor shows a springboard diver who jumps during
inhalation, and do tricks when going down during exhalation. The third metaphor
presents a bow and arrow. During inhalation, the arch is stretched and the vertical
bar fills up in green, during exhalation the arrow punctures the balloons. The better
the attempt, the more balloons will be punctured.

(a) The car (b) The springboard diver (c) The bow and arrow

Figure 2.4: The metaphors used during the studies of which the data is used in this
research.

When the system will be used in home monitoring, the patients will make use
of several metaphors during the spirometry tests. More metaphors will be provided
over time to keep the children engaged. The metaphors used will be tailored towards
the child based upon the error made frequently by this child. For example, if a child
has difficulty breathing out long enough, a metaphor which focuses on this part of
the spirometry test will be offered.



Chapter 3

Literature review

This chapter describes previous research in unsupervised spirometry and related
topics. The systematic approach used to find information about these topics is elab-
orated in section 3.1. The answers to the questions asked in this section can be
found in section 3.6.

3.1 Method literature review

The first step in the literature review was to find information about spirometry in
children. The questions to be answered were:

1. What are the differences between spirometry in adults and children?

2. What do the differences between spirometry in adults and children imply?

3. How are the consequences of the differences between spirometry in adults
and children dealt with?

The creator of the rule-based error detection approach (explained in section
6.1.4), V. De With, recommended the following papers in the area of spirometry in
children: Tomalak et al. (2008) [13], Loeb et al. (2008) [14], Miller et al. (2005) [3],
and Thompson et al. (2006) [15]. The papers by Tomalak et al. (2008) [13] and
Loeb et al. (2008) were used in section 3.2 to answer the questions above.

The second subject discussed is home spirometry:

1. What is the quality of the spirometry data derived during home spirometry?

2. What procedure related aspects influence the quality of home spirometry?

The search term used was ”spirometry at home” and the search engine ”Google
Scholar” was used. The results with ”asthma” and ”home spirometry” or alike (e.g.

21
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self-recorded, self-management, home monitoring, portable) in the title or abstract
were evaluated. Using these inclusion criteria, 5 papers were selected which were
read and summarized. Interesting sources used in these papers were evaluated
and, if useful, summarized as well. This process was repeated two times. As inter-
esting information was found about the quality of PEF , information was searched
about the quality of other values which can be calculated from spirometry data such
as FEV1, FV C, and FEF25%−75%. This resulted in a third question:

Which values derived from spirometry data are useful in monitoring or diagnosing
asthma?

The search terms used for this were:

1. correlation FEV1 FV C asthma

2. parameters in asthmatic children FEV1 FV C

3. objective parameters asthmatic children

4. FEV1 FV C ”more sensitive test”

5. ”clinical features” children with asthma

6. ”FEV1 FV C” clinical and physiologic parameters

The process of reading papers, and finding interesting sources used in these papers
was again repeated two times. After this, the questions were answered elaborately.

The third subject of this literature review was ”spirometry and games” as metaphors
are used in the product to help the children to overcome their errors. The question
to be answered is:

1. How do games used during a spirometry attempt influence the quality of the
spirometry data?

The papers found when looking for information about ”spirometry in children”
mentioned games as well. The sources about gaming found in these papers were
used to start the literature review of ”spirometry and games”. From these papers,
sources were used to find new papers. This process repeated itself two times after
which the question was answered.

The last subject of this literature review is ”Inter- and intra-rater agreement when
assessing spirometry data”. To be able to interpret the results of the to be designed
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error-detection algorithm, the agreement between two observers, and one observer
over time, have to be known. The questions to be answered were:

1. What is the agreement between two professionals when assessing (the errors
in) spirometry data?

2. What is the agreement of one professional over time when assessing (the
errors in) spriometry data?

The search terms used are shown in the enumeration below. The search terms
were also used when looking for papers about intra-rater agreement. ’Inter-rater’
was then replaced by ’intra-rater’.

1. Error detection spirometry inter-rater agreement

2. Error detection spirometry inter-rater reliability

3. Error detection spirometry inter-observer agreement

4. Error detection spirometry inter-observer reliability

5. Error detection spirometry inter-rater response agreement

Around fifty useful papers were found in total. These papers gave insights in
the area of unsupervised spirometry, also in combination with games. This revealed
challenges showing that the proposed approach of this project contribute to existing
research.

3.2 Spirometry in children

Most spirometry test use the European Respiratory Society/American Thoracic So-
ciety (ERS/ATS) criteria [16] for determining the acceptability of spirometric mea-
surements. However, the questions are if these criteria are different for children,
what these differences imply, and how the consequences are dealt with. The re-
searches discussed in this section answer these questions.

Tomalak et al. (2008) [13] studied if criteria for adults were met by children below
ten years. 233 children were tested of which 116 children (all but one under seven)
did not finish the experiment. Reasons were not understanding the procedure, a
lack of peak expiratory flow in the beginning of the test, variable or sub-maximal
respiratory efforts, and lack of interest. The tests were performed by experienced
personnel. It was found that the V be criteria (150 ml and 5% of the FV C at the start
of the attempt) was met bij 80.4% of the children. There was a weak, however signif-
icant relation between age and Vbe. The second acceptability criteria is ambiguous:
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the time to PEF should be ”short”. Seventy-two children (61.5%) had a time to
PEF of less than 100 ms which is stated to be acceptable. This did not correlate
with age. The FET values, which is acceptable when bigger than three seconds,
were in the range of 0.71 to 6.9 seconds. However, only 23.9% of the children had a
FET bigger than three seconds. In twelve children between 5.3 and 8.5 years, the
FET was even below one second. Besides, it was found to be significantly corre-
lated with age. The FEV1 reproducibility criteria (a difference in FV C and FEV1 of
less than 150 ml, or 100 ml if FV C and FEV1 are below 1000 ml, when comparing
the two best measurements) was met by 101 children and was negatively correlated
with age. The FV C criteria was met by 105 children and was not correlated with
age. Both reproducibility criteria were met by ninety-two children (78.6%). When all
four criteria (Vbe less than 150 ml and 5% of FV C, a ”short” time to PEF , FET
bigger than three seconds, and a difference between the two best values of FVC
and FEV1 of less than 150 ml, or 100 ml when the FVC or the FEV1 is below 1000
ml) are combined, 17.1% of the children met the criteria. If the criteria for FET was
left out, this percentage is 63.2%.

In the research by Loeb et al. (2008) [14], 393 children in the age of four to
seventeen years old are asked to perform spirometry for the first time. The tests
were performed under supervision of one or two respiratory therapists. A maxi-
mum of eight attempts to reach an acceptable test was allowed. The criteria used
were specific criteria for children of six years old or younger, based upon Miller et
al. (2005) [3], and Beydon et al. (2007) [17]. These revised criteria include that a
start of test is acceptable if the extrapolated volume is less than 80 ml, or 12.5% of
the FV C. If this is not met in preschool children, this is not directly an indication
to exclude the attempt. Besides, the plateau in the end of test criteria is not de-
fined for preschool children. However, the flow-volume curve needs to demonstrate
a fast rise to peak flow in combination with a smooth descending limb. When look-
ing at between-manoeuvre criteria, the preschool children only need to have two
acceptable tests, and the difference between the FV C and FEV1 needs to be within
100 ml, or 10% of the highest value. 292 children (74%) met the revised ERS/ATS
criteria for an reproducible and acceptable test. This increased with age and was
above 50% by the age of six and reached a plateau of approximately 85% at the
age of 10. The success rate was not influenced by the gender or race of the chil-
dren. In preschool children (four to six years old), the criteria which caused the most
unacceptable tests were glottis closure and non-maximal efforts (38% of mistakes
made each), and premature termination (19% of mistakes made). In school-aged
children (seven-seventeen years old), these criteria were failure to plateau (49%
of mistakes made), premature termination (17% of mistakes made), glottis closure,
or non-maximal effort (13% of mistakes made each). If the guidelines for school
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age children was used for six years old, the success rate would only be 42%. The
researchers conclude that it is possible for children to perform acceptable and re-
producible spirometry on their first effort when using the revised ERS/ATS criteria
for preschool children.

Conclusion

From these studies, we can conclude that it is necessary to use specific criteria for
assessing the spirometry attempts by children. Examples are changing the criteria
of an acceptable FEV1 to 80 ml, or 12.5% of the FV C, and accepting a difference of
100 ml, or 10% of the highest value between the FV C and the FEV1 when looking
at between-manoeuvre criteria. Also, a less strict criteria than requiring a FET of
three or more seconds should be used as this criteria was only met by 23.9% of the
children in the research of Tomalak et al. (2008) [13]. They suggest to revise the
criteria.

3.3 Spirometry at home

Above research is performed under supervision of experts. In this project, a portable
spirometer is used at home, which means no supervision, no quality check, and
no encouragement by a professional. Several challenges appear in this situation,
creating questions such as: what is the quality of home spirometry, what procedure
related factors influence this quality, and which values derived from spirometry data
are useful when monitoring or diagnosing asthma? Researches discussing these
topics are discussed in this section.

3.3.1 Quality of home spirometry

Performing a good spirometry test can be very hard; one has to inhale deeply and
exhale forcefully and long. As it is so hard, a lot of measurements contain errors.
This section focuses on the quality of home spirometry measurements, the errors
made, and the comparison between the quality of home spirometry and in-office
spirometry.

The quality of spirometric data has to conform international guidelines [16]. Red-
del et al. (1998) [18] assessed if self-recorded spirometric data met these guide-
lines. Thirty-three subjects between 18.6 and 67.4 years old were asked to perform
spirometry measurements twice daily, the morning one immediately after waking
up. The subjects were instructed how to use the spirometry device before the exper-
iment. The within-session reproducibility of FEV1, FV C, and PEF was calculated
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during the first and 9th week of budesonide1 treatment. An excellent reproducibil-
ity was found; 90% of the sessions met the reproducibility criteria when looking at
FEV1. However, they also found that it is difficult to control the quality and state
that an accompanying paper diary is still necessary. This paper diary should be
used to write down e.g. symptoms or factors (e.g. severe facial pain) that may have
influenced the measurements.

Gannon (1999) [20] compared supervised and unsupervised PEF recordings.
forty-four participants in the age range of fifteen to sixty-five years were trained after
which they were asked to record their PEF every two hours during waking hours for
two to three weeks between two clinic visits. During the clinic visits, they performed
two unsupervised measurements, one supervised, and one supervised measure-
ment during which they were encouraged to e.g. exhale maximally. When com-
paring the unsupervised measurements to the supervised measurements with en-
couragement, a decrement of twenty-one liter per minute was found when recording
unsupervised. When comparing the supervised measurement with encouragement
to the supervised measurement without encouragement, a decrement of another
nine liter per minute was found. Also, a deterioration was seen in 54% of the PEF
measurements. According to the authors, these detoriations could be due to a lack
of effort or technical reasons.

In research executed by Thompson et al. (2006) [15], self-administered spirome-
try is performed at home using the hand-held device ”ndd EasyOne Frontline Spirom-
eter”. This device saved all data, measured electronically the quality of the manoeu-
vre by detecting when the acceptability and reproducibility criteria were met, and
showed on-screen instructions based on the criteria not met during the last attempt.
The participants were trained how to perform spirometry manoeuvres in home for
five days, one hour on the first day, and fifteen minutes to half an hour on the last
four days. The ATS criteria were used with some amendments as it is found that the
criteria for adults cannot be applied directly to children [13,14,21,22]; the FET was
lowered from six to four seconds, and the end of test criteria used was the end-of-
test volume (EOTV). The end of the test was marked when the inspiration was more
than 150 ml or the volume change was less than 45 ml over two seconds if FET
was lower than four seconds, or 60 ml in case FET was more than four seconds.
Besides, the FEV1 and FV C repeatability was set to 10% instead of 5% and PEF
at 20% instead of 10%. Next to using criteria, the curves were evaluated visually.
The participants (sixty-seven children between nine and eighteen years old) were
asked to perform the measurements in the morning, afternoon, and evening, and
to complete a diary every two waking hours. A maximum of six attempts per mea-

1Budesonide is a medication of which the most important substance is corticosteroid. This medi-
cation prevents swelling in the lungs which decrease the severity of an asthma attack. [19]
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surement was allowed. Besides, two groups were compared of which one had daily
follow-ups for ten days, and the second group weekly for two months. The over-
all quality was always higher than 75% when evaluating the manoeuvres based on
the three flow-volume criteria. The most common mistakes in this age group were
abrupt ending (0.93% of the total manoeuvres) and invalid time to peak expiratory
flow (PEF ) (1.03% of total manoeuvres). The most common mistakes in the visually
rejected manoeuvres were variable effort (6% of the total manoeuvres when having
daily follow ups, and 3.93% when having weekly follow ups), often in combination
with glottis closure (0.7% of total manoeuvres when having daily follow ups, and
1.2% when having weekly follow ups) and cough (1.0% of total manoeuvres when
having daily follow ups, and 0.8% when having weekly follow ups). They found that
compliance was not significantly higher for the group with daily follow ups (more
than 90% vs. more than 84%) showing that doing spirometry at home is a good
option. They also found that the quality of the manoeuvres was significantly lower
for nine to twelve aged children compared to a group of thirteen to eighteen aged
children. Additionally, the paper indicates that quality assurance was increased by
showing correcting instructions for the next manoeuvre based on the errors made
during earlier attempts.

Mortimer (2003) [23] compared a portable spirometer and an office based spirom-
eter to evaluate if the portable spirometer gave reliable results. The two spirometers
were validated in an office after which a two-week home study was performed using
the portable spirometer. The ninety-two participants were between six and eleven
years old. The portable spirometer also included a program to help the children dur-
ing their measurements by showing in text why a measurement was not acceptable.
They found that the overall agreement between the software/portable spirometer
and the physician/office spirometer was 74%. The office based spirometer counted
that 43% of the sessions had at least three acceptable curves and at least two re-
producible curves. According to the software of the portable spirometer, 67% of the
sessions had three acceptable and two reproducible curves. FEV1 and PEF had
the best agreement; there was not any systematic difference found between the two
devices. The difference in agreement for FV C was due to small differences in the
implemented algorithms or to the difference in sensitivity of the devices at very low
flow rates. During the two week home study, 59% of the sessions produced three
acceptable curves and two reproducible ones. This was significantly higher (65%
instead of 47%) when the participants were eight years old or above. These results
are comparable to the results met in the office sessions. 25% of the curves which
were accepted by the portable device were rejected by the physician as the software
was not able to find problems in the mid-portion of the curve. It was concluded that
although the agreement was high between the two devices used in the office, the
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software should be programmed so that it is able to find problems in the mid-portion
of the curve.

Conclusion

In conclusion, spirometry at home is possible, however the mid-portion of the curve
should also be examined for quality [23] and a diary is still necessary [18]. The main
error found by Gannon (1999) [20], with a target group of patients between fifteen
and sixty-five years old, was a lack of effort. The main errors found by Thompson et
al. (2006) [15], having a target group of children between nine and eighteen years
old, were abrupt ending, invalid time to PEF , variable effort in combination with
cough and glottis closure.

Other conclusions are that encouragement improves the quality of the measure-
ment [20], and that showing correcting instructions after a non-acceptable attempt
increased the quality assurance of the next attempts [15].

3.3.2 Compliance

Asthmatic people can monitor their asthma at home in different ways. One is keep-
ing a diary in combination with performing a spirometry test. However, the date and
time of the measurements is not saved in several monitoring situations making it im-
possible to check whether the measurements are performed on time. Chowienczyk
et al. (1994) [24] shows via an experiment with thirty-three adults between nineteen
and seventy-eight years old that when people are not aware of the fact that the date
and time is stored, measurements are taken at wrong moments in time, invented, or
taken all at once, just to complete their diary. This research showed that if people
know that their data from the spirometers is electronically recorded, they will perform
the measurements on time more often.

Wensley et al. (2001) [25] assessed the compliance during unsupervised spirom-
etry, and the quality of spirometric data taken unsupervised at home. Ninety asth-
matic children in the age of seven to fourteen years old took part in this study. They
were asked to perform spirometry tests twice daily for a period of sixteen weeks.
They were taught how to perform a spirometry test on the first day of the test. Every
four weeks, the patients were visited to download the data from the spirometers and
to retrain the patients if needed. FV C, FEV1, PEF and FEF25% and FEF25%−75%

values were assessed. Only the expiratory manoeuvres were collected. The ATS
criteria were used for assessment of the measurements. What was found is that the
children became less compliant month by month; 81.4% completed the tests during
the first month, 78.4% during the second month, 71.4% during the third month, and
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70.3% during the fourth month. This decline in compliance resulted in a decrease
of valid data over time. The technical quality of the data stayed the same, however
there were big individual differences between the children. These results show that
the decline in valid data was due to compliance instead of loss of skill. They con-
clude that spirometry at home is possible, but not for a long period of time. According
to their results, a period of 4 weeks is optimal.

Other results are found in research done by Pelkonen et al. (2000) [26]. They
evaluated the reproducibility of spirometry measurements taken at home by a group
of children (110 participants between five to ten years old) who were newly diag-
nosed with asthma. The measurements were assessed based on the ATS criteria.
These criteria were not revised to criteria found to be more suitable for children.
The children performed spirometry tests twice daily for twenty-four days, logging the
FV C, FEV1, and PEF score combined with time and date of the measurement.
It is unclear if they were aware of the logging of the date and time. A compliance
of 94% was found. 77% of the measurements were reproducible. However, a big
individual variation was found in the range of 21 - 100%. When splitting the group
in smaller groups based on age, it was seen that the reproduciblity increased with
age; the five-six year age group had a mean spirometry reproducibility of 72.8%,
while the age group seven-eight years old had a mean score of 77.1% and nine-ten
years old had a mean score of 84.5%. They conclude that home spirometry is pos-
sible, however also 23% of the measurements were not acceptable or reproducible
which still is a concern. The compliance and reproducibility did not change over
time. The difference in results between Wensley et al. (2001) [25] and Pelkonen
et al. (2000) [26] can be due to novelty [25]. Besides, the research of Pelkonen et
al. (2000) [26] only lasted twenty-four days which makes it hard to compare the two
studies as the study by Wensley et al. (2001) [25] only measured compliance per
four weeks. Besides, it is unclear if the participants from the study by Pelkonen et
al. (2000) [26] knew the date and time of their measurements were saved.

Redline et al. (1996) [27] analyzed if children, age five to nine years, from inner
city areas in America were able to initiate and maintain peak flow recordings in a
paper diary for three weeks. They were given a recording meter of which one was a
covert meter of which the children and parents was not told that the data was saved
automatically. The missing values in the paper diary were compared to the missing
values obtained from the meter. It was found that the number of missing entries in
the diaries increased from 1.4% to 10.6% comparing the first and third week and
that the meter showed a significantly greater percentage of missing data than the
paper diaries which also increased over time. In the third week, 52.4% of the records
were missing from the meter, and 15.3% from the paper diaries. Also, some values
were not transcribed right. This shows that the children and caretakers from this
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subgroup of society have difficulty in maintaining these peak flow recordings and
that the manual records are not always reliable. This increases over time. The
authors suggest to shorten the period of home monitoring to two weeks as this
may help to increase compliance. Also, the children and caretakers technique in
recording PEFs should be monitored. Another reason given for the decrease in
compliance is that the participants did not have much opportunity to develop rapport
with the personnel of the study, and the fact that the study did not require a lot of
commitment. It could also be that the participants were too young. Another reason
given is that the children were told to be compensated financially regardless of how
well they completed their PEF diaries.

Another research which focuses on the comparison between electronic and pa-
per diaries was performed by Hyland et al. (1993) [28]. Both diaries were completed
twice daily at home for fourteen days. The electronic diary asks, next to measuring
PEF , to fill in questions about symptoms. The participants were not told that the
electronic data was stored. It was found that thirty-two retrospective entries were
made and that 15% of the written values were not the same as the measured PEF
values; 75% of the participants had at least one discrepant entry. PEF variations
was related significantly to the number of missing days and the number of discrep-
ancies. Around 20% of the written entries had errors. The conclusion the authors
made was that the reason for the poor diary completion could come from the unrea-
sonable expectations the doctors have of patients, and that incomplete instructions
were given. They mentioned that electronic diaries could result in better quality of
records in combination with instructions what to do when a day is missed, and a
feature which accommodates the forgetfulness of people.

Verschelden et al. (1996) [29] analyzed the compliance and accuracy of home
PEF measurements. Twenty adults were asked to measure PEF twice a day. The
used device stored the PEF data automatically. The participants were not aware
of this. The duration of the experiment was forty-four to 131 days. It was found
that 54% of the to be measured values were written down, and 44% were really
measured; 10% of the to be measured values were not according the written down
values. The best compliance was during the first two weeks after which it decreased
and the number of invented values increased. The compliance decreased to 40%
after one month, and reached a plateau of 35% shortly after that. The conclusion
of this research was that the compliance with PEF measurements is poor in stable
asthmatic subjects over a three month period, and that 22% of the values that are
written down is invented. Some solutions were given such as reinforcing the need
of PEF monitoring, give instruction on a treatment plan based on the measured
values, or ask the participants to measure PEF only when their symptoms increase.
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Conclusion

These researches show that home spirometry is possible, ideally for a period of
four [25] or two weeks [27]. Afterwards the compliance is likely to drop [25]. Ad-
ditionally, the researches reveal that paper diaries can be unreliable as there is no
check whether the patient took the measurements at the right time. Besides, data is
invented by the patients [24, 27, 29]. Also, Pelkonen et al. (2000) [26] showed that
compliance could be increased by a novelty effect.

3.3.3 Usefulness of measured values

Several values can be extracted from spirometry data, such as PEF , FEV1, and
FV C. However, do these values really say something about asthma severity, and
do they add knowledge next to monitoring symptoms? This section reviews research
in this field.

PEF

The Peak Experiratory Flow (PEF ) is used often when monitoring asthma. How-
ever, the usefulness of this value is questionable. This subsection discusses several
researches performed using PEF .

Brouwer et al. (2006) [30] examined if the peak flow and FEV1 score relates to
other estimates of asthma severity in children. An electronic home spirometer was
used which stored the data automatically. thirty-six children in the age group of six
to sixteen years completed this research. They all knew beforehand how to perform
spirometry. Before the twice daily spirometry measurements, they were asked to
record their asthma severity score on a scale. The FEV1 was expressed as a per-
centage of the predicted value, the asthma severity score and PEF as a percentage
of the personal best value. The variation in FEV1 and PEF was communicated in
terms of the size of the day’s range as a percentage of the day’s mean. The results
show that PEF and FEV1 measurements of this research did not correlate signifi-
cantly to the asthma severity score or the patient’s quality of life score. It was even
the case that increases in the severity score correlated with decreases in PEF and
FEV1 scores for some patients, but by increasing values in others. They also found
that the concordance between PEF and FEV1 is low; only 67% showed an accept-
able concordance. Therefore, they conclude that electronically recorded scores are
not clinically useful as they are too inconsistent with other asthma parameters. One
reason given for these poor correlations is the lack of quality control of the measure-
ments at home, however earlier in section 3.3.2, we found that home spirometry
recordings in children are most of the time acceptable [25].
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Sly and Flack (2001) [31] found frequent discrepancies between true lung func-
tion and PEF measurements; only six from fifteen clinically important deteriorations
in lung functions were found. The discrepancies went both ways; a fall in PEF did
not always mean a fall in lung function, and a fall in lung function was not always
shown as a fall in PEF . It is mentioned that FEV1 could be a better measure of lung
function when home monitoring. However, the statement is made that next to the
accuracy of the value measured, there are other problems such as compliance and
technical expertise in performing the measurements.

Brand et al. (1997) [32] performed research to find out if there are relations
between PEF and symptoms, airways hyperresponsiveness, level of lung function,
and atopy. 116 asthmatic children in the age range of seven to fourteen years old
were asked to record their symptoms and PEF twice a day for a period of two
weeks.They were all checked afterwards if they used the right technique, and 102
did so, and also completed the diary. From the results of these 102 children, it
was found that atopy and FEV1 were not significantly related to variation in PEF .
However, PD20, the dose of histamine needed to result in a fall in FEV1 of more than
20%, and symptoms were weakly, however significant, related to PEF variation.
This shows that none of the values on its own gives a complete overview of the lung
function of a patient.

Another study by Brand et al. (1999) [33] looked into the relation between PEF
variation of a patient over time and the percentage of days without symptoms, FEV1,
and PD20. The FEV1 and PD20 were measured bimonthly, PEF and the symptoms
scores twice daily during a long term treatment using inhaled corticosteroids in 102
children age range seven to fourteen years. It was found that PEF variation had a
poor concordance with the other parameters. It can be concluded that only moni-
toring PEF may be insufficient to measure asthma severity in children and clinically
relevant deteriorations in other parameters may be missed.

Another research done in this area is performed by Gern et al. (1994) [34]. The
PEF variation, symptoms, methacholine reactivity, and medication requirements
were compared in seventy-four children in the age range of five to twelve years old
to look for a relationship between phenomena. A significant correlation was found
between Mean Diurnal Variation2 (MDV ), which is a way to calculate PEF variation,
and symptoms, and between MDV and methacholine reactivity. They concluded that
the correlation between PEF variation and other variables is statistically significant,
however these relations are too weak to be useful in the treatment of the patients.
They also state that MDV could be a useful indicator of asthma severity.

Ferguson (1988) [35] compared symptom score and PEF readings to FEV1 and

2MDV is calculated by PM−AM
(PM+AM)/2 ∗ 100, where PM is the evening measurement and AM the

morning measurement
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FEF25%−75% values. The two latter values were measured every two weeks during
sixteen weeks in twenty children in the age group of six to fourteen years old, the
symptoms and PEF readings were written down twice a day. The symptoms score
was calculated by scoring the severity from zero (no symptoms) to four (wheeze,
cough, and dyspnea requiring hospitalization) and adding the frequency of episodes
of symptoms. This frequency was represented by a score between zero to eight
showing the durance of an episode (zero meant no attacks, eight meant episodes
longer than six hours). The results showed that the symptoms scores were signifi-
cantly associated with a decrease in low peak flow days and mean PEF , however
not with a decrease in FEV1 and FEF25%−75%. They found that PEF readings are
useful next to symptom diaries as symptoms are subjective while PEF readings are
objective measures. However, the values on itself are not adequate for assessing
the variable airway obstruction. They state that PEF readings may provide help-
ful information if recorded twice a day, however this asks for excellent cooperation
from the child which can be difficult at home. They state that, although it did not
significantly correlate with symptoms, FEF25%−75% was a more sensitive indicator
of airflow obstruction in comparison to PEF , FEV1, and symptoms. A decrease
in FEF25%−75% could be measured when there were no symptoms or a change in
peak flow rates. In combination with the fact that there is a high probability of per-
sisting airway obstruction even when there are no symptoms, and normal peak flow
rates, a change in FEF25%−75% gives valuable information. One of the reasons that it
changes when PEF does not is that FEF25%−75% score is almost independent of the
effort. Another reason which is given is that different from FEV1 and PEF , which
are measures of airflow in the central airway, FEF25%−75% is a measure of airflow in
the peripheral airways.

Self-management of PEF

Measuring PEF values (on a daily basis) is used in treatment procedures to monitor
the asthma severity of patients. However, it was demonstrated by several studies
that using measurements from peak flow meters did not improve asthma outcomes
compared to people who are taught to use their symptoms to self-manage their
asthma [36], or people who receive conventional treatment [37].

Wensley and Silverman (2004) [38] performed research to find out if knowledge
of PEF enhances self-management of asthma. Ninety children in the age range
of seven to fourteen years were divided into two groups; one group which received
symptom-based management, and one group which received management based
on symptoms and PEF . The latter group was asked to perform spirometry twice
a day for a period of twelve weeks and to keep a symptom diary once a day. No



34 CHAPTER 3. LITERATURE REVIEW

differences were found in symptom scores, QoL, lung function, or health service
between the children in the two groups. It was found that the children responded
to changes in their symptoms to change their medication, instead of to changes in
PEF .

Another research in this area is performed by Agertoft and Pedersen (2000) [39].
They found that when asthma is self-managed by adults, the health outcomes were
comparable when either PEF or symptom scores were used. The factors that im-
proved the health of the participants were education in self-management including
a written action plan, regular medical review, and self-monitoring using either PEF
or symptoms.

In another study focusing on children it was found that PEF monitoring did not
have additional benefit over the daily recording of symptoms, and the used of bron-
chodilators [40].

Other values

As touched upon earlier, other values such as FEV1, FV C, and FEF25%−75%, and
ratios thereof, can be useful to calculate from spirometry data next to PEF . The
usefulness of these values is reviewed more extensively in this section.

In research performed by Ramsey (2005) [41], the relationship between sev-
eral spirometric measures and asthma severity was examined. 438 children in the
age range of four to eight-teen years were included in the research. Their asthma
severity was based on a questionnaire which was in accordance with the National
Asthma Education and Prevention Program (NAEPP ) guidelines. The predicted
values of the ethnic-specific NHANES 3 [42] were used, except for the Puerto Ri-
can children. For these children the predicted values for Mexican Americans were
used as there were no values available for Puerto Ricans. They found that the
FEV1/FV C ratio decreased significantly in children with severe asthma versus chil-
dren with mild asthma. The FEV1 percentage predicted value was significantly lower
in children with severe asthma, and the FV C was significantly higher in patients with
severe asthma in comparison with patients with mild asthma. However, this differ-
ence vanished when FV C percentage predicted value was used instead of FV C.
Furthermore, after adjustments to amongst others individual allergens and race, it
was found that only the FEV1/FV C ratio is a useful indicator of the asthma severity
in children.

The association between FEV1 percentage predicted value and the risk of an
asthma attack in the year after a taken spirometry test is examined by Fuhlbrigge
et al. (2001) [43]. 13,842 children, fifteen years old at maximum, were tested ev-
ery year for a period of fifteen years. Until an age of fourteen, the parents filled in
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the questionnaires. When the children reached this age, they were allowed to fill
in the questionnaires themselves. A strong association was found between FEV1

percentage predicted value and asthma attacks in the year after the taken test; an
increase in FEV1 percent predicted led to a decrease in asthma attacks. From the
group where the parents filled in the questionnaire, 60.4% of the children with an
FEV1 percent predicted score below sixty reported an attack while just 25.4% of
the children having an FEV1 percent predicted score above 80% had an attack. A
similar relationship was seen when the children themselves filled in the question-
naire; 73.9% of the children reported an attack while having an FEV1 percentage
predicted value below sixty, and 29.4% when this score was above 80%.

In an essay written by Spahn et al. (2004) [44] the question is asked if FEV1 is
the best measure of asthma severity in childhood asthma. The answer is clearly no.
Children with normal FEV1 values can still have asthma. This is more a rule than
an exception. The reason is that asthma is a slowly progressive disease; it is found
in adults that a decline of ca. 1% of predicted FEV1 per year is seen. As children
are young and thus have asthma for a relative short period of time, their FEV1 can
still be normal during periods of stability. Asthma diagnosis and treatment should
not be solely based upon the FEV1 value as then children will falsely be diagnosed
with not having asthma, or will be undertreated.

Other studies focus on the value of the FEF25%−75% measurement. The goal of
Simon et al. (2010) [45] was to determine if the FEF25%−75% percentage predicted
values offers advantages over FEV1 percentage predicted values, or over the ra-
tio FEV1/FV C percentage predicted values in the evaluation of childhood asthma.
FEF25%−75% is less sensitive for effort and thus may give more stable results. Be-
sides, FEF25%−75% is a measure of the airflow in the peripheral airways instead of
the central airway as the FEV1 and PEF are. Data from the Pediatric Asthma
Controller Trial, and the Characterizing the Response to a Leukotriene Recepter
Antagonist and Inhaled Corticosteroid trials was used. Data from 437 children be-
tween six to seventeen years old were included in this research. They found that the
FEF25%−75% percentage predicted values and the FEV1/FV C percentage predicted
values were positively correlated with morning and evening PEF percentage pre-
dicted values, and negatively correlated with log10 fraction of exhaled nictric oxide
and bronchidilator responsiveness. The FEF25%−75% percentage predicted values
and the FEV1/FV C percentage predicted values were positively correlated with
log2 methacholine PC20. They also found that the FEF25%−75% percentage predicted
values correlated better with log2 methacholine PC20 and bronchodilator responsive-
ness than FEV1/FV C percentage predicted values or FEV1 percentage predicted
values. From the performed ROC curve analysis, it was found that the FEF25%−75%

at 65% of predicted value had a sensitivity of 90% and a specificity of 67% for the
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detection of a increase of 20% in FEV1 after inhalation of albuterol. They conclude
that FEF25%−75% percentage predicted values should be evaluated in clinical studies
of asthma in children, and that it might be useful in the prediction of the presence of
clinically relevant reversible airflow obstruction.

Bacharier et al. (2004) [46] researched if lung function measures are consis-
tent with asthma severity. Parents of 219 children in the age range of five to eigh-
teen years old were asked to fill in a questionnaire about asthma medication and
symptom frequency in the last one and four weeks. Next to that the children per-
formed spirometry. It was found that FEV1 percentage predicted value and FV C

percentage predicted value did not differ by level of self-perceived asthma severity
when this severity level is based upon symptom frequency or medication use, or a
combination of those, while the ratio FEV1/FV C and FEF25%−75% decreased signif-
icantly when asthma severity increased. From this they concluded that FEV1/FV C
decreases when asthma severity increases while FEV1 stays normal. However, dis-
criminant analysis showed that when these values were used to classify patients in
a severity category, the FEV1 percentage predicted value classified 33% correct,
the FEV1/FV C ratio 32%, and the FEF25%−75% 39%. There were four categories,
making the prediction not much higher than predictions based on chance (25% per
category). The variability of FEF25%−75% was twice as much as the variability of the
FEV1/FV C ratio.

The goal of research performed by Ratageri et al.(2001) [47] was to find out
which lung function measurements resulted in a better assessment of asthma sever-
ity. Sixty children in the age of five to fifteen years old without asthma, and with mild
or severe asthma, were studied. A portable spirometer was used to measure sev-
eral values. It was found that using FEV1 and FV C, children with mild asthma
could be differentiated from children without asthma in 63% and 58% of the cases.
FEF25% was able to identify 77% of the cases and FEF75% 90% of the cases. In
the group with children diagnosed with severe asthma FEV1, FV C, FEF25%, and
FEF75% were abnormal, compared to children without asthma, in respectively 90%,
80%, 97%, 94% of the cases. PEF was found to be abnormal in 77% of the mild
cases and 87% of the severe cases. When looking at the FEV1/FV C ratio no sig-
nificant difference was found between asthmatic and non-asthmatic children. From
these results it is concluded that the FEF25% and FEF75% are more useful measure-
ments for the assessment of asthma severity than FV C and FEV1. Additionally, the
FEV1/FV C is found to be not useful at all in this study.
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Conclusion

Several conclusions can be drawn from the literature. It was found by several studies
that PEF has a poor concordance with e.g. symptoms, FEV1, and lung function
[31, 33]. It was also found that PEF has no additional benefit over self-reported
symptoms [36,37,39,40]. People respond to symptoms instead of changes in PEF
when adjusting their medication [38].

Also, none of the values symptoms, atopy, PEF , FEV1, and PD20 should be
used on their own as it does not give a complete overview of the lung function [32].
Besides, it was found that FEV1 is a poor indicator of asthma severity [44], butMDV

was found to be a useful indicator of asthma severity [34].

FEV1 percentage predicted value was found to be an indicator of an asthma at-
tack in the year following the measurement [43]. Nonetheless, it was also found that
the FEV1 percentage predicted value did not differ by level of asthma severity when
this level is based upon symptom frequency or medication use, or a combination of
those [46].

Another conclusion that can be drawn is that the FEF25%−75% is a more sensitive
indicator of airflow obstruction compared to PEF , FEV1, FV C, FEV1/FV C ratio
and symptoms. A given reason is that it is independent of effort. Besides, it mea-
sures the airflow in the peripheral airways and there is a high probability of persisting
airway obstruction even when the patient has no symptoms and a normal PEF [35].
FEF25%−75% decreases significantly when asthma severity increases [46]. Simon et
al. (2010) [45] state that FEF25%−75% percentage predicted value is a good indicator.

Ratageri et al. (2001) [47] stated that FEV1/FV C ratio is not useful at all. This
is in conflict with Ramsey et al. (2005) [41] who mention that FEV1/FV C is a useful
ratio and Bacharier et al. (2004) [46] who state that this ratio decreases significantly
when asthma severity increases. A reason for these differences can be the different
manners in which the asthma severity was determined. In the research of Ratageri
et al. (2001) [47], the asthma severity was based on guidelines of the international
pediatric asthma consensus group [48]. The asthma severity in the research of
Bacharier et al. (2004) [46] was based on medication and symptoms. Ramsey et
al. (2005) [41] determined the asthma severity using a questionnaire which was in
concordance with the National Athma Education and Prevention Program (NAEPP)
guidelines. These differences in determining the asthma severity levels make the
comparison dubious.
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3.4 Spirometry and games

In order to improve spirometry measurements, the present project offers little games
to the patients, also called metaphors, based on the frequently made errors by
the patients, to support them during the following spirometry measurements. Re-
searches that evaluated how games influences spirometry measurements are pre-
sented in this section.

Vilozni et al. (2001) [49] compares a one target candle-blowing game with the
multi-target game SpiroGame which divides the spirometry test in three phases; full
inspiration before expiration, instant forced expiration, and long expiration to residual
volume. 102 children in the age range of three to six years were asked to perform
spirometry using the two games, in randomized order. 69.6% of the children were
able to produced acceptable spirometry using SpiroGame, against 47.1% of the
children using the candle-blowing game. The main reason for failure was the same
in both systems; poor effort due to lack of coordination or comprehension. 79% of
the children using SpiroGame versus 4% of the children using the candle-blowing
game were able to reach acceptable FEV1. A premature expiratory break was seen
in six children when using the SpiroGame, and forty-one using the candle-blowing
game. FV C results were similar, and PEF was higher when using the candle-
blowing game. The teaching time was comparable between the two games. It can be
concluded that dividing the game in multiple targets, to address the multiple phases
of the spirometry manoeuvre, increases the performance.

Vilozni et al. (2005) [50] also analyzed what the role of SpiroGame is in support-
ing spirometry. The participants were in the age range of two to 6.5 years old. 78% of
the children was able to perform three acceptable measurements using SpiroGame.
The reasons why measurements were not acceptable were mainly a lack of compre-
hension of the FEFV maneuver. Thirteen children refused to play the game. This
was similar to results from a study based on verbal coaching [51]. The difference
was that PEF values and flow-related volumes were higher when using the games.
This could be due to the splitting of the manoeuvre in different targets, clarifying
every step visually and audibly.

Research done by Gracchi et al. (2003) [52] focuses on the question if adding
computer animated programs to the spirometry procedure improve the results of
spirometry sessions. Eighty-eight children in the age group of four to eight years
were involved in this research who all performed two series in which at least three
acceptable curves were produced. One series was done with the computer ani-
mated program and one without, in a randomized order. The computer animated
programs used two games; one in which the participant is asked to blow out five
candles which is triggered by the peak flow and one in which they are asked to
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blow up balloons, also triggered by the peak flow, after which they have to keep the
balloons in the air as long as possible, which is triggered by the FV C value. They
found that when using the computer animated programs, less participants were able
to create an acceptable FV C and FEV1, but a better PEF was seen. This could be
due to the fact that the games focus on reaching a good PEF , and the children stop
putting in effort when this target is met. In the age group six to eight years old, the
performance of FV C decreased significantly.

Kozlowska et al. (2004) [53] present a critical note on this research. At first, they
believe the programs were not used to their full potential. Secondly, they believe the
reproducibility criteria are too strict. They agree with the finding that the use of these
incentive programs does not offer much advantage for the age group of six to eight
years old, however they believe that the younger children may gain advantage from
it as it is more difficult for them to understand, process and carry out multiple steps.
Another interesting point they note is that it may be the case that the target used
in this research can be underestimated as it is probably based on too little data.
Therefore, the children do not use their full potential during the measurements.

Gracchi et al. (2003) [52] reacted to this critical note and mentioned that they see
the advantage for younger children, however they were not able to prove that it was
helpful for improving reproducibility and maximal effort. They did some research to
the reference values used as targets, which were based on data from older children,
and concluded that this indeed may be a problem for the FEV1 value, but not for the
FV C. When looking at their results they state that this did not influence their results,
however the use of higher targets should be studied.

Conclusion

Vilozni et al. (2001) [49] show promising results using a multi-target game; 69.6% of
the children was able to produce an acceptable measurement, compared to 47.1%
when using the candle-blowing game. Gracchi et al. (2003) [52] showed a negative
result as the quality of FEV1 and FV C declined. However, the experiment was not
performed right, according to Kozlowska et al. (2004) [53]. A finding of Gracchi et
al. (2003) [52], which is agreed upon by Kozlowska et al. (2004) [53], is that the
incentive programs do not offer much advantage for the age group of six to eight
years old, however younger children may gain advantage from it as it is harder for
them to understand, process, and carry out multiple steps.

The age of the target group of the present project is six to eleven. As the children
participating in the aforementioned experiments were not all in this age group, it
makes it hard to apply these results directly. Instead, the present project will provide
additional insights.
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3.5 Inter- and intra-annotator agreement when assess-
ing (errors in) spirometry data

To interpret the results from the error detection algorithm, it is necessary to know
what the agreement is in error detection in spirometry data when assessed by mul-
tiple professionals.

In research performed by Velickovski et al. (2018) [54], three clinical experts
assessed 600 spirometry curves of adults, based on the flow-volume curve and the
volume-time curve, to determine if it has to be rejected or not. A mean kappa score
of 0.34 for the inter-rater agreement was found. The intra-rater agreement was not
calculated.

Tuomisto et al. (2008) [55] determined the intra- and inter-rater agreement be-
tween two clinical psychologists. The first had thirty years of experience, while the
second one had 20 years of experience. Both assessed curves of adults to evaluate
if the start was without delay, if the steep was upslope, if the PEF was sharp, if there
was no cough in the attempt, and if the exhalation was full. The intra-rater agree-
ment was calculated over twenty-five curves per clinical psychologists and was 98%
and 99%, respectively. Both assessed fifty curves over which the inter-rater agree-
ment was calculated, which was found to be in the range from 83% to 100% when
assessing the agreement for every criteria separately.

Inter-rater agreement is determined by Seyedmehdi et al. (2013) [56], based
on 100 curves of adults which were assessed using a checklist of errors derived
from the ATS/ERS criteria. This is done by two occupational medicine specialists.
The found kappa coefficient of the inter-rater agreement was 95%. The intra-rater
agreement is not calculated.

Conclusion

The inter-rater agreement ranges from 0.34 to 100%. The lowest inter-rater agree-
ment was found when evaluating if a spirometry attempt has to be rejected based
on the flow-volume and the volume-time curve. When assessing if specific criteria
are met, or if errors are present in the spirometry attempt, the agreement was much
higher, ranging from 83% to 100% [55,56].

3.6 Conclusion literature review

The literature review covered several topics such as spirometry in children, the qual-
ity and compliance of spirometry at home, and the involvement of games in spirom-
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etry, based on the questions stated in section 3.1.

The questions asked about spirometry in children were what the differences are,
what these imply and how the consequences are dealt with. From the literature
it could be concluded that it is necessary to use specific criteria for children when
they are performing asthma manoeuvres as the lungs of children are less developed
than lungs of adults. Examples are changing the criteria for an acceptable FEV1 to
80 ml, or 12.5% of the FV C. Also, the expected FET should be lowered to less
than three seconds. Another example is that the difference between the FV C and
the FEV1 needs to be within 100 ml, or 10% of the highest value, when looking at
between-manoeuvre criteria.

The questions asked about spirometry at home were what the quality of spiro-
metric data derived during home spirometry is, what procedure related factors in-
fluence this quality, and which values derived from spirometry data are useful in
monitoring or diagnosing asthma. From literature it was concluded that the quality
and compliance is satisfactory, however the compliance decreases after two to four
weeks, and keeping a diary is still necessary next to spirometry tests, to create a
complete view of the asthma condition. This diary should include symptoms and
factors (e.g. facial pain), that can have an influence on the measurements. Using
this diary to write down PEF results is found to be not reliable as entries are faked.
Therefore, the combination of saving PEF values automatically, and using a diary
to write down factors that probably have an influence on the measurement, is ideal.
Encouragement during a measurement, and showing correcting instructions after a
non-acceptable attempt, increased the quality assurance of the next attempts. The
main errors made during the spirometry test were abrupt ending, invalid time to
PEF , variable effort in combination with cough and glottis closure. The most useful
value to take into account when monitoring or diagnosing asthma is FEF25%−75%;
PEF and FEV1 are found to be not useful, the usefulness of the ratio FEV1/FV C

is unclear.

The question asked about spirometry and games is how games used during
spirometry attempts influences the spirometry quality. When looking at the effect
of games on spirometry measurements, good results were found; Vilozni et al.
(2001) [49] found that 69.6% of the children using the game SpiroGame were able to
produce an acceptable measurement compared to 47.1% using the candle-blowing
game. Only Gracchi et al. (2003) [52] showed a negative result; the quality of
FEV1 and FV C declined in his experiment. However, according to Kozlowska et
al. (2004) [53], the experiment was not performed right as amongst other things the
PEF target was probably too low.

The inter- and intra-rater agreement when assessing (errors in) spirometry data
was explored. It was found that the inter-rater agreement for assessing the errors
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in spirometry data of adults is high, ranging from 83% to 100% [55, 56]. However,
Velickovski et al. (2018 [54] found a poor inter-rater agreement of 0.34 when the clin-
ical experts were asked to state if a spirometry attempt should be rejected or not.
The intra-agreement when assessing errors in spirometry data found by Tuomisto et
al.(2008) [55] was high; 95%. These researches show that the difference in assess-
ing errors in spirometry data is small between professionals, and for one professional
over time, however high when assessing if an attempt has to be rejected or not.

To summarize, unsupervised spirometry at home is possible for a period of two
to four weeks, after which the compliance decreases, in combination with keeping
a diary to keep a complete overview of the condition of the patient. If the patients
performing spirometry are children, adapted criteria should be used and the most
useful value to take into account when monitoring asthma is FEF25%−75% while PEF
and FEV1 are found to be not useful. The addition of games to the spirometry
measurements result in higher quality spirometry data. Besides, the agreement
when assessing (the errors in) adult spirometry data between professionals, and for
one professional over time, is most of the time very high.



Chapter 4

Related work

One of the goals of the present study is designing an error detection approach us-
ing machine learning to detect errors in spirometry data. This chapter discusses
previous work in this area.

4.1 Method related work

A systematic approach is used to select relevant papers. Several search terms were
used:

1. spirometry error detection

2. spirometry error detection machine learning

3. spirometry machine learning

4. spirometry errors machine learning

The first search term did not give any useful results, using the second term re-
sulted in four papers which seemed useful as the title and/or abstract mentioned
”machine learning” and ”spirometry”. Not all papers mentioned ”errors” or something
alike. The reasoning was followed that although it was not directly about errors, if it
was about machine learning and spirometry, it could still be useful to read. When
search term three was used, two other papers were found which stated ”spirome-
try” and ”machine learning” in their title or abstract. Using the last term, three more
papers were found which stated ”spirometry” and ”machine learning” or a machine
learning technique in their title or abstract. Besides using the search terms, the ref-
erences of the selected papers were assessed to select papers describing related
work as well.

Unfortunately, not all papers which seemed promising when selected were use-
ful; a lot of papers did not use spirometry data in the end as input for the machine
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learning models, but e.g. results from CT scans. Besides, some papers were about
predicting FEV1 values instead of using these values to predict the asthma sever-
ity. The papers which used spirometry data as input and were about error detection
in spirometry data or about the diagnosis of asthma from spirometry data are de-
scribed in this section. Although this project focuses on the error detection and
not the diagnosis, knowing related work in this area is still useful as apparently the
combination of input and technique reflected the asthma severity of people.

Using this method, four useful papers were selected. Only one paper was found
about detecting errors in spirometry data using machine learning. This shows that
the present study is a potentially big contribution to known research.

The following sections discuss the selected papers.

4.2 Error detection

As said, not much research has been performed in the automatic detecting of errors
in a spirometry attempt. Luo et al. (2017) [57] did an attempt to detect four common
errors by creating a separate classifier for every error. The data consisted of curves
from patients in the age range of three to ninety-five of which 72.2% came from
patients between six to eight-teen years old. Curves derived from spirometry data
were manually labeled by six professionals. The curves were all labeled by one
professional and were not compared in an inter-annotator agreement analysis. The
classifiers were trained for each error using between 1314 and 5728 curves with
this error as positive cases, and an equally-sized random sampling dataset without
errors as negative cases. 90% of the data was used for training, the rest for testing.
sixty-eight features were selected based on feedback by doctors, spirometry training
materials, and based on related work. However, it is unclear which features are
used. The fact that not all curves are labeled by one person leads to a potential
for noisy labels. For this reason an ensemble method was used. An Ada-Boost
classifier with decision trees was used as the base estimator. The precision, recall,
and F-score were the evaluation metrics used. All the features derived from the
data were used as input, resulting in an F-score of 0.92 for early termination, 0.86
for detecting a cough, 0.86 for detecting variable flow, and 0.85 for detecting extra
breath. The most significant features for detecting early termination were the total
time which elapsed during an attempt, and the volume which was exhaled in the last
second of the attempt. For detecting a cough, the most significant features were
the maximum slope found in the FV curve after the peak flow, and a heuristic for
the total amount of time the slope in the V T curve is relatively flat. This heuristic is
found by looking at the period of volume exhaled where the slope of the FV curve is
less than 10% of the maximum slope. The significant features for detecting an extra
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breath taken were the minimum slope in the V T curve, and the maximum slope in
the FV curve after the peak flow. For detecting variable flow, the most significant
features were the maximum slope in the FV curve after a peak flow, and the sum of
the total first derivative whose values were positive after the area of the highest flow
in the FV curve.

From this we can conclude that the detection of early termination, cough, variable
flow, and if an extra breath is taken is possible using an AdaBoost classifier with
decision trees using the mentioned features. The authors believe that using RNNs,
as they are able to recognise pattern in time series data, would be an interesting
approach for future research as this would remove the need to construct features
manually.

4.3 Diagnosis of asthma

Research has also been done in the field of diagnosis of restrictive spirometric
patterns or airway obstruction by using machine learning techniques. Sahin et al.
(2010) [58] uses multi-class SVMs to predict the diagnosis of spirometric patterns in
the classes normal, restrictive, or obstructive. The decisions of the SVM were fused
by using error correcting output codes (ECOC). This multi-class SVM combined
with ECOC was trained on FEV1, FV C, and the FEV1/FV C ratio. 499 measure-
ments produced by male subjects between twenty-five and forty-five years old were
used as input. These measurements were according to the guidelines of ERS. The
trainingset included 162 normal measurements, twelve restrictive, and twenty-six
obstructive. The testset included 246 normal measurements, eight-teen restrictive,
and thirty-five obstructive. To choose the right kernel function for the SVM, sev-
eral functions were empirically studied and it was found that the radial basis function
(RBF ) with a σ value of 0.3 gave the best results. The C value was also found by try-
ing out different values and it was found that a value of eighty gave the best results.
However, for both values it is unclear what the empirical study entails exactly. Sev-
eral optimization techniques were used during training, such as decomposition and
caching. It is unclear which other optimization techniques are used. The specificity,
sensitivity, ROC curve, and accuracy were used as evaluation metrics. The found
total classification accuracy was 97.32%. The specificity was 97.97%, the sensitiv-
ity for the restrictive class was 94.44%, and 94.29% for the obstructive class. The
normal patterns and the obstructive patterns were most often confused with restric-
tive patterns. These results show the usefulness of using SVMs in the diagnoses of
spirometric patterns.

In research performed by Bright et al. (1998) [59], neural networks are used
to detect upper airway obstruction (UAO). Data from 155 adults of which forty-six
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probably have UAO, fifty-one without UAO, and fifty with airflow limitation, which
is caused by COPD, was used as input. The used data consisted of one curve
per person and was acceptable according to the recommendations of the British
Thoracic Society and the Association of Respiratory Technicians Physiologists [16].
The curves were examined twice by two professionals. The intraobserver kappa
score was 0.86 for observer one, and 0.63 for observer two. The interoberserver
kappa score was between 0.58 and 0.68 for each of the classification sessions.
The features used were PEF , FEV1, FV C, FEV1/FV C ratio, and the FEV1/PEF
ratio. Besides, the flatness of the curve is taken into account as the FV -curve is
relatively flat in the early part of the curve in subjects with UAO. Another feature
is the moment ratio1. The last feature is the FEF50/FIF50 ratio were FIF is the
Forced Inspiratory Flow. This feature is not calculated for the curves of the patients
with COPD as this data was not available. The network had two hidden layers; it
was found that approximately twice the number of input nodes for the first layer, and
half the number of input nodes for the second layer produced the best classification.
How this is determined is unclear. The dataset which was used to train the models
was randomly selected by the program which was one half to two thirds of all curves
from every group of subjects. The test set was a separate set of data. The model
is trained multiple times using different training sets. The evaluation metric used is
Cohen’s kappa statistic. An α of 0.5 was used to determine the significance. Four
different networks are trained. The first network has as input all features except
for the FEF50/FIF50 ratio, the second network included this ratio, the third network
used the five inputs with the highest relative contributing factors from the first neural
network together with the FEV1/PEF ratio, and the fourth network was the same
as the third but without the FEV1/PEF ratio. To calculate the contribution factor, the
weights of all neurons from a particular input to its output were summed. Next to the
neural networks, two logistic linear regression models were developed; one using
the same inputs as the third neural network, and one using the same input as the
fourth one. To avoid overfitting, the training was terminated when the error rate for
detecting UAO was at a minimum in both the training set and test set. It was found
that a combination of the flatness of the expiratory loop, the FEV1/PEF ratio, and
the moment ratio obtained the best results; this resulted in a sensitivity of 88%, a
specificity of 94%, and an accuracy of 92%. The flatness score resulting in the best
classification were the length of the chords taken at 95% and 75% of the PEF, and
at 1.5 and 2.0 L/s below PEF. This information was not sufficiently effective on its
own, however improved the classification compared to only using the FEV1/PEF

1The moment ratio is calculated using the mean of the transit times per milliliter (α1), and the
mean of the square of all transit times after standardizing these by the expired volume (α2). The
moment ratio used as a feature is calculated as follows: MR = (α2)

1
2 /α1.
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ratio as input.
Another research which uses neural networks to classify spirometer data is per-

formed by Manoharan et al. (2008) [60]. This research focuses on the use of two dif-
ferent Artificial Neural Networks (ANNs); one with a radial basis function (RBF), and
a back propagation neural network. Data from 150 participants, hundred for training,
and fifty for testing, was used in this research; twenty-five obstructive, twenty-five re-
strictive, fifty normal, and fifty for validation. This data consisted of one curve per
person and was acceptable according to the ATS criteria. The features obtained
from the data were FV C, FEV1, FEV1/FV C%, PEF , and FEF75%%. Also, the pre-
dicted and percentage predicted values of these features were feeded to the neural
networks. The rest of the preprocessing process is not described. The feed forward
neural network used has one hidden layer using a log sigmoid transfer function. It
is unclear how the decision is made for the amount of hidden layers and transfer
function. The radial basis function neural network is a multi-layer feed forward net-
work which consists of one hidden layer of non linear units which operate as kernel
nodes. The output layer has linear weights. The activation function for the hidden
nodes was a radially symmetric Gaussian radial basis function. The performance
was evaluated using the accuracy, sensitivity, specificity, false positive rate, positive
predictive value, negative predictive value, and adjusted accuracy 2. It was found
that the RBF neural network is more sensitive in comparison with the back propa-
gation neural network with an accuracy of 100% versus 96%, an equal sensitivity
of 100% , a specificity of 100% versus 92.59%, a false positive rate of 0% versus
7.41%, a positive predictive value of 100% versus 92%, an equal negative predic-
tive value of 100%, and an adjusted accuracy of 100% versus 96.30%. However,
it is mentioned that with a larger database and more features the back propagation
network could be enhanced.

4.4 Discussion

Several options for detecting errors in spirometry data or diagnosing lung diseases,
using spirometry data, are discussed. However, the descriptions of the performed
research are not complete in all addressed papers. Parts of the description of the
preprocessing process are missing. Examples are the balancing method used, and
the calculations of the features. The features itself are described in all papers, except

2Sensitivity = TP/(TP+FN), Specificity = TN/(TN+FP ), False positive rate = FP/(TN+FP ),
Positive predictive value = TP/(TP + FP ), Negative predictive value = TN/(TN + FN), Adjusted
accuracy = sensitivity + specificity)/2

Where: TP = True Positive values, TN = true Negative values, FP = False Positive values, FN = False
Negative values
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in the paper by Luo et al. (2017) [57]. Nonetheless, all papers do not motivate the
choices for the features chosen. This could for example be very helpful in the paper
by Sahin et al. (2010) [58] where only three features are used.

Next to the preprocessing phase, the model optimization phase is not explained
in detail in the papers. Bright et al. (1998) [59], Sahin et al. (2010) [58], and
Manoharan et al. (2008) [60] do not describe why a certain model is chosen. Addi-
tionally, Sahin et al. (2010) [58] mentions two optimization techniques, but not the
complete list of techniques used. Knowing these techniques would be very helpful
in designing our SVM. The paper describing the research performed by Bright et
al. (1998) [59] does not describe which activation functions are used and why. The
paper by Manoharan et al. (2008) [60] does not describe which activation function
is used and how many hidden layers are used together with the reasoning.

The performance metrics used are explained very well in the papers. However,
the paper by Manoharan et al. (2008) [60] misses an evaluation of the results.
The results are very high, with a sensitivity in both cases of 100%. This is almost
impossible using machine learning and so a critical evaluation of the results would
have been in place.

4.5 Conclusion

In conclusion, several options have given good results in previous work. An Ada-
Boost classifier with decision trees can be used to detect 4 errors: early termination
(F-score: 0.92), using the total time of an attempt and the volume exhaled in the last
second of the attempt, cough (F-score: 0.86), using the maximum slope after peak
flow and a heuristic for the total amount of time the slope in the V T curve is flat,
variable flow (F-score: 0.86), using the maximum slope in the FV curve after peak
flow and the sum of the total first derivative whose values were positive after the
area of the highest flow in the FV curve, and if an extra breath is taken during the
attempt (F-score: 0.85), using the minimum slope in the V T curve and the maximum
slope in the FV curve after peak flow. Additionally, the suggestion is made to use
RNNs to detect errors in a spirometry attempt.

Options given to diagnose asthma are multi-class SVMs trained using the FEV1,
FV C, FEV1/FV C ratio as features and a radial basis function as kernel function,
a Neural Network using the flatness of the expiratory loop, FEV1/PEF ratio, and
the moment ratio as features, and an ANN using a radial basis function and FV C,
FEV1, FEV1 %, PEF , FEF75% as features. Although this is about the diagnosis
of asthma, it shows that correlations are found between the aforementioned values
and asthma severity when these techniques are used.

In chapter 6 the approach of the present study based on these results is shown.
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Unfortunately, the researches were not described in detail, and only one paper
about error detection in spirometry data was found, making it hard to apply these
approaches directly. Therefore, the method is inspired by these approaches but
complemented with own knowledge and insights from professionals.
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Chapter 5

Research Questions

As explained in chapter 1, this research focuses on three parts of the project Spiro-
Play; designing and evaluating an error detection approach using machine learning,
evaluating the agreement in error detection between professionals, and the evalua-
tion of using metaphors as a coaching manner on the quality of spirometry data.

The first research question is about the to be designed error detection approach.
At the moment, professionals visually observe the person performing the measure-
ment and the resulting flow-volume curve, to determine if and which error(s) oc-
curred. However, this means that a professional needs to accompany the patient
while the measurement is conducted which should not be the case during home
monitoring. The error detection approach aims to support the professional by iden-
tifying the errors without intervention of a professional.

The machine learning approach will be compared to the rule-based error detec-
tion approach used in the SpiroPlay system nowadays, to evaluate which approach
is advised to use in the SpiroPlay system.

The following research question and subquestions are answered in this research:

RQ 1: How well can an error detection approach using machine learning tech-
niques detect errors in spirometry data?

SQ 1.A: Which procedure based on the most promising procedures found in lit-
erature is able to detect errors most accurate?

SQ 1.B: How does the machine learning approach perform compared to the rule-
based approach designed by V. De With?

To be able to interpret the answers to the first research question, the consis-
tency in detecting errors in spirometry data by multiple professionals need to be
determined. If professionals are not consistent in this, it shows that the detection
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of errors in spriometry data is ambiguous. An inter-annotation study, explained in
chapter 6, is set up to answer the following research question and subquestions:

RQ 2: What is the agreement in detecting errors in spirometry data by pro-
fessionals?

SQ 2.A: What is the agreement between two professionals in detecting errors in
spirometry data?

SQ 2.B: What is the agreement in detecting errors in spirometry data by one profes-
sional over time?

The third research question focuses on the influence of the metaphors on the
quality of the spirometry measurements. If the quality is comparable or increases
when using the metaphors compared to when the children are coached by a profes-
sional, it shows that the metaphors are a decent coaching manner to coach children
during home spirometry.

The following research question and subquestions are answered in this research:

RQ 3: What is the difference in quality of the spirometry measurements be-
tween blowing behaviour coached by a professional and coached by a metaphor
offered by the SpiroPlay system?

SQ 3.A: What is the difference in measured PEF between blowing behaviour coached
by a professional and coached by a metaphor offered by the SpiroPlay system?

SQ 3.B: What is the difference in measured FEV1 between blowing behaviour coached
by a professional and coached by a metaphor offered by the SpiroPlay system?

SQ 3.C: What is the difference in measured FV C between blowing behaviour coached
by a professional and coached by a metaphor offered by the SpiroPlay system?

SQ 3.D: What is the difference in the number of errors between blowing behaviour
coached by a professional and coached by a metaphor offered by the SpiroPlay sys-
tem?

The approach to answer these research questions is elaborated in chapter 6. The
answers to the research questions are presented in chapter 9.



Chapter 6

Method

This section elaborates the approaches used in this research to answer the ques-
tions stated in chapter 5. The first section describes the implementation and evalua-
tion of the error detection method, the second section describes the inter-annotation
study, and the third section the method of analysis of the effect of the metaphors on
the quality of spirometry tests.

6.1 Error detection

The first part of this research focuses on detecting the errors in spirometry data.
The process from data gathering to evaluation consists of different steps, which are
visualised in figure 6.1. The blue boxes indicate the data preparation steps, namely
the data gathering, preprocessing, and data segregation, whereas the orange box
indicates the training step, and the green box indicates the evaluation step.

Figure 6.1: The machine learning pipeline of this study

These steps are elaborated further in the remainder of this section.

6.1.1 Data gathering

Data gathering is performed using the spirometer (refer to section 2.3) and an app
which utilizes the rule-based evaluation approach, designed by V. De With (refer
to section 6.1.4 for details). Thirty children were asked to perform two test; one
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with a metaphor, and one without. One test consists of three or more attempts with
a maximum of eight. During the test, the attempts are labeled by a professional
indicating which errors occurred, using the form presented in Appendix D.1.This
professional has experience with assessing spirometry curves from asthma patients.
From her expertise she knows how errors look like by visually observing the curves
and the patient during the test. The list of errors ordered in order of importance, are
shown in table 6.1 together with their code. These errors are a subset of the criteria
set by Miller et al. (2005) [3], which are described in section 2.2.1.

Additionally, the data collected during the label quality experiment, explained in
section 6.2, is used to assess the effect of including more data in the dataset. How-
ever, as this is data from spirometry attempts performed by adults instead of chil-
dren, it is not on forehand obvious including this data will increase the performance.

The total amount of attempts collected during the hospital experiments is 309.
The data from the inter-annotation study consists of 191 attempts. Combining both
datasets will sum up to a total of 500 attempts. This is not much data, but as the
data is collected by experiments involving human beings, it is difficult to collect a
large amount of data.

Error Code
Extrapolated volume <5% of FVC or less than 0.15 L at the start of the expiration 1
Obstructed mouthpiece 2
An extra breath taken during the attempt 3
Flow leak 4
Duration of <3 s, a plateau in the VT curve,
or if the person can/should continue exhaling

5

No maximal effort 6
Cough 7
Wrong posture 8
Other, namely: 9
No error 0
Uncertain -1

Table 6.1: Complete table of error codes

6.1.2 Preprocessing

Before the data can be used in model training, it has to be preprocessed. This
includes cleaning and exploring the data, feature extraction, and normalization.
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Cleaning the data

The first step in the preprocessing phase is to clean the data. Samples with label
”uncertain” were deleted as these serve no purpose in training, testing, and valida-
tion.

Furthermore, the inhalation and exhalation time window was determined for each
attempt. The parts of the data before inhalation and after exhalation is noise and
therefore removed. The start of the inhalation is where the attempt is zero for the last
time before the exhalation curve. If this is never the case, the start of the inhalation is
the same as the start of the data. The end of the exhalation is where the exhalation
curve is above 0.1 for the last time. This threshold is determined by the professional
who also labeled the data, by empirical tests with the used spirometry device.

Figure 6.2 shows an example curve, with the inhalation and exhalation parts
annotated.

Figure 6.2: An example flow-time curve.The inhalation and exhalation parts are an-
notated. The rest of the data is noise.

Additionally, the curves were smoothed to reduce noise, using an Savitzky-Golay
filter (refer to appendix A.3 for an explanation).

Data exploration

In the data exploration phase, the data is visualised. First, a histogram of the de-
tected errors is created, in order to evaluate if the data is imbalanced, and if all errors
presented in table 6.1 are covered in the data.

Secondly, a correlation plot is created to appraise the extend to which the differ-
ent errorclasses are linearly related.
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Filtering

Outliers are removed to filter the data and to reduce noise. Outliers were found by
visually assessing the attempts. An attempt was seen as an outlier if it had bumps
in the inhalation, which passes the zero line. An example can be found in figure 6.3.

Figure 6.3: An example of an attempt seen as an outlier by visual inspection.

Next to assessing the attempts visually, the means of the FV C and FEV1 values
were compared on a per person basis. If a value was ≥ 2.5 standard deviations
away from the mean value, the measurement was removed from the dataset.

Feature extraction

The final step of the preprocessing phase is to extract features which are used as in-
put for the machine learning models. Four different featuresets were extracted from
the data. The featuresets and their combinations are clarified below.

Spirometry parameters
A lot of parameters can be extracted from spirometry data, such as the FV C, FET ,
and FEV1 (refer to section 2.2 for details). These parameters are found to be useful
in diagnosing asthma [58–60]. However, it is unclear if these features will be useful
in detecting errors in spirometry attempts as well. Therefore, several spirometry pa-
rameters are extracted from the data and used as input for the to be trained models.
The spirometry parameters extracted are presented in table 6.2.
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Feature Explanation
FV C Total volume
FEV0.5 Volume in the first half second
FEV1 Volume in the first second
PEF The flow on the highest peak
EV The extrapolated volume
FIV C The Forced Inspirational Vital Capacity
FEV1/FV C ratio Ratio of volume in the first second to the total volume
FET Total time
FEF25−75 Volume between 25% and 75% of FV C

Table 6.2: The spirometry parameter featureset.

Time-series features, unfiltered
Detecting errors in spirometry data is expected to be based on time-series features,
for example cough is characterized by having two peaks in the spirometry data in-
stead of one. This information is not represented by the spirometry parameters.
Therefore, seventy-two time series features, such as the location of the maximum,
and the number of peaks, were extracted from the time-series data. The complete
list of time-series features can be found in appendix B. These features are extracted
by using the tsfresh package for Python 1 as this method is recommended by Luo et
al. (2017) [57].

Time-series features, filtered
The downside of extracting seventy-two features is that a lot of irrelevant features
will probably be extracted as well which may influence the model negatively. To
overcome this, the list of features will be filtered using the Feature Extraction based
on Scalable Hypothesis tests (fresh) algorithm [61]. This algorithm filters the list of
features with respect to their significance, but also takes the expected percentage
by the machine learning models of selected but irrelevant features into account. The
expectation is that this will create a featureset with features that explains the differ-
ence between the different error classes best.

Age and sex of the subjects
The age and sex of the subjects are of importance, as a child of, for example, eleven
years old has a much larger lung volume than a child of six years old.

1https://tsfresh.readthedocs.io/en/latest/text/introduction.html
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Unfiltered
timeseries
features

Filtered
timeseries
features

Spirometry
parameters

Age
and
sex

Unfiltered time-series features X X
Unfiltered time-series features +
spirometry parameters

X X X

Filtered time-series features X X
Filtered time-series features +
spirometry parameters

X X X

Spirometry parameters X X

Table 6.3: The featuresets used as input for the machine learning models.

Next to using the featuresets seperately, the featuresets will be combined to use
as input for the models to be trained. All (combinations of) featuresets are shown in
table 6.3. As the age and sex are important to distinguish between, for example, a
low FEV1 as an error and just the child being young and thus having a small lung
volume, the age and sex are always used as features.

Normalization

The next step is to normalize the featuresets as most machine learning models
assume all features are centered around zero and have a variance in the same
order. If this is not the case, the features with a large variance might dominate the
training process incorrectly.

Normalization can be done in various different ways. The two most used tech-
niques in machine learning are min-max normalization and z-normalization. In min-
max normalization the data is scaled so that every feature value is between zero
and one. When using z-normalization, the data is transformed to have a mean of
zero and a standard deviation of one. Refer to appendix A.2 for the formulas.

Both approaches have advantages and disadvantages. Min-max normalization
is more robust to small standard deviations of features, and is not influenced by the
scale of the features. However, the scale of the features is deleted which could be
of importance.

Z-normalization is useful when working with different units or scales, and its out-
put is closer to the expected input of the machine learning models than the output
of min-max normalization, as the mean is zero and the variance is one.

Since the features used have different units, z-normalization will be used.
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Generation of labelsets

As the dataset is sparse, it can be the case that some errors are not represented
enough in the data to train a model on. Therefore, errorclasses are grouped to
increase the amount of datapoints per class. It is expected that this will result in a
better performance. The errorclasses are grouped in two ways. The errorclasses
are divided in two classes; all attempts labeled with an error are now labeled as ’1’,
all the attempt labeled as technically correct are now labeled as ’0’. Although the
model used for this classification is not able to detect which error is in the attempt, it
is already valuable to know if there is one. The second way of grouping is combining
all errorclasses which were labeled as ’other, namely: ’, as these are not stated as a
criteria by Miller et al. (2005) [3], and are therefore less important to be detected as
a single error. The classifier used for this classification is not able to detect all single
errors, but if it detects the attempt belongs to the class with the combined errors,
general feedback can be given.

The grouping of errorclasses result in three different labelsets, which are pre-
sented in table 7.2.

The performance of the models when adopting the different labelsets is evaluated
to appraise what is achievable in error detection in spirometry attempts.

6.1.3 Data segregation

’Leave-one-subject-out’ K-fold cross validation is used to test the performance of
the machine learning models on an independent dataset, to evaluate how well the
model predicts unseen data. For background information on the standard K-fold
cross validation approach one can refer to appendix A.4.

In the version of the K-fold cross validation approach used in this research, the
test set always exists of all the samples from one subject. This implies K being
equal to the number of subjects. Every participants performs two tests, which sums
up to a minimum of six and a maximum of sixteen attempts per subject, and thus
per testset.

Leave-one-subject-out cross validation is used to mimic the real life situation best
by not including data from a test subject in the training data, as in real life, the attempt
from a new patient is evaluated based on data from other patients without including
data from the new patient.

6.1.4 Evaluation

The training and test sets were created by leave-one-subject-out cross validation,as
explained in section 6.1.3. During hyperparameter tuning, Stratified K-fold cross-
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validation is used, as explained in section 6.1.5.
The models were evaluated by the precision, recall, F1-score, and the precision

at 100% recall. Refer to appendix A.9 for an explanation of these metrics.
Precision shows the classifiers exactness, recall the classifiers completeness,

and the F1-score is the weighted average of the two. The metrics are not influenced
by an imbalanced dataset while, for example, accuracy is.

The primary performance metric used is the recall, as it is most important that the
model classifies the data as complete as possible. It is better to label attempts too
many times as a certain error, than too little, as no useful feedback can be provided,
and the attempt will not be useful in monitoring the asthma status of the patient.

Additionally, the precision at 100% recall, obtained from the precision-recall curve,
is used as the secondary performance metric, as this metric represents the trade-off
between precision and recall, using the recall as leading performance metric.

The performance metrics are designed for binary classification. To use these
metrics in multiclass settings, the metric is calculated per class, and a weighted
average is taken to prevent little classes from having a large impact on the final
score. As in binary classification, the zero errorclass, representing attempts without
an error, is neglected in averaging, as the only consequence of misclassification is
to repeat the attempt. This does not result in quality loss, while it would be when
misclassifying an attempt with an error as not containing one.

Next to the named performance metrics, the confusion matrices (see appendix
A.9 for an explanation) are used to determine which error classes are confused
when classified.

Comparison to a rule-based approach

The best model found in model training will be compared to a rule-based approach
designed by V. De With. This error detection approach is based on evaluating the
curves in a rule-based fashion. An example of a rule is that the first peak should be
the only peak. If this is not the case, there has been, for example, a cough during
the attempt. The implemented rules are based on a subset of the criteria given by
Miller et al. (2005) [3], i.e. criteria one, three, four, five, six, and seven of the list with
criteria stated in section 2.2.1. The rule-based approach is not designed to detect
all errors, but focuses on the errors ’Unsatisfactory start’ (error code 1), ’An extra
breath taken during the attempt’ (error code 3), ’Terminated too early’ (error code
5), ’No maximal effort’ (error code 6), ’Cough’ (error code 7), and ’Glottis closure’.
When a rule is not met, several types of errors can have occurred. An overview of
the rules and which error codes are flagged when a rule is not met is presented in
table 6.4. The presented error codes are the same as the codes in table 6.1, except
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for glottis closure, which was not in the form used to file the errors.

Rule Explanation Error code

1
Examines if the extrapolated volume is smaller than
5% of the total volume, or 150 ml

1, 6

2
Examines if the first peak in the flow-time curve
is the highest peak

3, 6, 7

3 Examines if the volume chances with less than 0.25 ml 5
4 Examines of the FET is larger than three seconds 5, glottis closure

5
Examines if there is no downward concave at the end of the
flow-volume curve

5, glottis closure

6
Examines if the exhalation flow is constantly increasing
until PEF is reached

7

Table 6.4: This table presents the rules of the rule-based approach, together with
an explanation, and the error codes which occur when the rule is not met.

The rule based approach is used by the system during the hospital experiments
to provide feedback to the children during the test with the metaphors, and to assess
if three acceptable, and two reproducible curves were produced. When the child is
coached by the professional, the rule-based approach also assessed the curves in
the background, but the findings were not shared with the child during the test. The
output from the system during the hospital experiments stating which rules were
met, was used in the comparison.

The labels assigned to the attempts by the professional are used to compare
both algorithms. The outliers and attempts with label ’uncertain’ are excluded from
the comparison. The output from the rule-based approach could not be directly
compared to the labels of the professional, as not meeting a rule could imply different
errors. Therefore, if the label given by the professional is one of the labels the
rule-based approach could have assigned to the attempt, this label is used in the
comparison.

When the label given by the professional did not overlap with the errors given
by the rule-based approach, one error has to be assigned to the attempt to be able
to compare the labeling by the rule-based approach and the professional. In these
cases, the most important error, which is the error highest in table 6.1, is assigned
to the attempt, as this would be the error chosen in real life to provide feedback for.

The precision at 100% recall could not be calculated for the rule-based approach,
as only the labels are known and not the probabilities for every error per attempt.
Therefore, this metric is excluded from the comparison, and the recall, precision
and F1-score are used to compare the performance to the performance of the best
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machine learning approach.

6.1.5 Model training

Figure 6.4: The phases of the model training and evaluation process.

Three phases were executed during model training, after which the best perform-
ing models were selected. These phases are presented in figure 6.4. This process
was executed for every labelset. First, four different models with different hyper-
parameters, the different featuresets, and the different labelsets were trained. The
performance of the models in this first phase, in combination with the histogram of
the error distribution, were used to define the appropriate balancing technique for
the second phase. After phase one and two, the best models per labelset are de-
fined by the performance metrics explained in section 6.1.4. These best models are
used in phase three where the models are combined to create a stronger model.

Next to finding the model which is best for predicting errors in the spirometry
attempts for the three labelsets, a decision tree is proposed. This proposed decision
tree is explained in detail at the end of this section.

Phase 1: Hyperparameter tuning

Different machine learning models were optimized and evaluated using program-
ming language Python (version 3.7). A Long Short Term Memory model is trained
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on the smoothed data while a Support Vector Machine, Radial Basis Function Neu-
ral Network, and boosted decision trees are trained on the different featuresets. All
models were trained with the different labelsets. These models are explained in
detail in appendix A.

Figure 6.5: The pipeline of the hyperparameter tuning process.

Figure 6.5 presents the pipeline of this phase. The attempts from all subject
minus one are used as trainingset to find the best hyperparameters for this subject.
The trainingset is again divided by stratified cross validation into a trainingset and
a validation set, to lower the bias and variance of the model. The model with the
hyperparameters that resulted in the best recall is used to evaluate the performance
of the model when classifying the unseen attempts from the testset. This process
is repeated thirty times, once for every subject. This results in a complete list of
predicted labels for all attempts, which is compared to the labels assigned to the
attempts by the professional to determine the performance of the model.

The Long Short Term Memory (LSTM) model (see appendix A.5 for details),
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which is a Recurrent Neural Network (RNN), is trained with the smoothed data as
input, as this model takes into account the time-series component of the data. An
LSTM is used as the RNN as it is found that LSTMs outperform other RNNs when
long time lags are involved in the task [62]. Additionally, LSTMs have the advantage
that these do not suffer from the vanishing gradient problem; this happens when
the gradients shrinks very fast becoming extremely small which does not contribute
much to learning.

The LSTM model is optimized by evaluating one to ten hidden layers, with a step
size of five, and one to 101 hidden neurons per layer, with a step size of fifty. If
results show other values could improve the LSTM model, these values are used as
well.

The Support Vector Machine (SVM) (explained in appendix A.8), boosted deci-
sion trees (explained in appendix A.7), and a Radial Basis Function Neural Network
(RBFNN ) (explained in appendix A.6), are trained using the different featuresets
as input.

The SVM is evaluated with different kernel functions; a linear, Radial Basis Func-
tion (RBF), and a sigmoid kernel function.

The boosted decision trees is trained by applying two boosting algorithms; the
real boosting algorithm, which uses the predicted class probabilities to update the
weights, and the discrete boosting algorithm, which adapts the weights based on
the errors in the predicted labels.

An RBFNN , which is a form of an Artificially Neural Network (ANN), is chosen
to use as ANN in the present study as Manoharan et al. (2008) [60] found that an
RBFNN gives better results compared to a normal back propagation neural network.
The RBFNN is optimized by heuristically determining the K of the K-means cluster-
ing function (see appendix A) by using values between two and twenty, with a step
size of two.

Phase 2: Balancing the dataset

When the performance of the models in the first phase show that balancing the
dataset could improve the performance, the appropriate balancing technique is cho-
sen, and the hyperparameter tuning process is repeated with the balanced dataset.
The performance of the models when using the balanced dataset is compared to the
performance using the imbalanced dataset. To determine the right balancing tech-
nique, the distribution of the errorclasses in combination with the confusion matrices
from phase one are used. Examples of balancing methods are upsampling the mi-
nority class by randomly duplicating entries, or downsampling the majority class by
randomly removing entries.
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Phase 3: Stacking different models

Stacking is an ensemble method which combines the predictions of multiple single
models into a prediction by a final estimator, to improve the predictions. A graphical
visualization in which three single models are stacked, is shown in figure 6.6.

Figure 6.6: A graphical visualisation of model stacking with three single models.

The best performing models are stacked. The models are first divided in a valida-
tionset and trainingset by stratified cross-validation. This trainingset is used to train
the single models using the featureset and hyperparameters it performed best with.
For every attempt in the trainingset, the probability that the attempt is predicted as
a certain label are calculated for the validationset by all single models and fed into
a final estimator. This final estimator is evaluated using the testset to determine the
performance of the stacked model. This process is repeated for every subject, us-
ing the leave-one-subject-out cross validation approach explained in section 6.1.3.
The expectation is that combining the prediction by the different models, results in



66 CHAPTER 6. METHOD

a stronger model as information from multiple models is used. However, stacked
models are prone to overfitting, meaning that the model performs very well on seen
attempts, but badly on unseen attempts. Therefore, the performance of the stacked
model based on the trainingset is evaluated as well.

6.1.6 Proposed decision tree

A decision tree consisting of three stages is proposed, presented in figure 6.7.

Figure 6.7: The proposed decision tree

The first stage predicts whether an attempt contains an error. If not, the process
is finished, and this prediction is used as the outcome for this attempt. If the predic-
tion shows that the attempt contains an error, it is processed by the second stage.
This stage is a model trained on the dataset with the combined labelset, but without
the class representing the attempts with no errors. If the model predicts the attempt
to be in a class with a single error, the process is finished, and the prdicted label
is used. However, if the attempt is predicted to be in the class with the combined
errors, the attempt is processed by the third stage, which is a model based on the
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errors in the combined class of the combined labelset, to predict which error is in the
attempt.

To choose the best models for stage two and three, phase one to three of the
model training process are executed for these labelsets.

If the prediction in stage one is wrong, the attempt cannot be predicted in stage
two, as no trainingset is available. Therefore, in this case the prediction is a random
guess from a sample of errors which could be predicted in this stage, taking the label
distribution into account. This also holds for the third stage of the proposed decision
tree.

6.2 Inter-annotation study

To determine the agreement of the error detection by professionals, the inter-rater
agreement, which represents the agreement between professionals, and the intra-
rater agreement, which represents the agreement of one professional over time,
were calculated. The pipeline of this study is presented in figure 6.8. The different
stages are elaborated in the remainder of this section.

Figure 6.8: The pipeline of the inter-annotation study.

6.2.1 Data gathering

To gather the data for the inter-annotation study, thirteen adults between eight-teen
and thirty-three years old were asked to perform two spirometry tests, each three
to eight attempts; one with feedback from the researcher, and one with feedback
from the metaphors of the SpiroPlay system to mimic the hospital experiments ex-
plained in section 6.1.1. The participants were instructed beforehand how to perform
spirometry and their age and height were asked to set the GLI standards. The par-
ticipants were informed by an information letter (refer to appendix D.2) and were
asked to sign a consent form (refer to appendix D.3) when they agree to take part in
the study and to be recorded.

As the data is privacy sensitive, the professionals who assessed the data were
asked to sign a form as well in which they state that the data will be deleted by them
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as soon the assessment is done, and that the data will not be used for other goals
than the error detection for this study. The form can be found in appendix D.4.

The attempts are typically evaluated by looking at the person during the attempt,
and by evaluating the resulting flow-volume curve. As it is not possible for the pro-
fessionals to be present during the measurements, video-recorded attempts will be
provided along with the corresponding curves. The participants were recorded from
two angels; the whole body from the side, and the face from an oblique side view.
A test recording was performed and analyzed by two professionals to assess if the
camera positions were correct. On the basis of the feedback on this recording, the
camera recording the face was changed from a front view to an oblique side view.

The recordings of both cameras and the curve of the attempt were synchronized
to presented them in one video, all at the same time. This made it more accessible
for the professionals to label the data.

As the experiment took place during the COVID-19 crisis, the participants and the
researcher wore latex gloves, which were renewed after every participant, and the
spirometer, tablet and nose clip were desinfected between participants with alcohol.
A very simplified version of the setup is shown in figure 6.9 to represent the angles
of the cameras.

Figure 6.9: A simplified version of the study setup, showing the angles of the cam-
eras.

6.2.2 Label assignment

To be able to calculate the inter-rater agreement, three professionals independently
labeled attempts by assessing which error(s) they detect in the attempts. More than
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one label could be given, as more than one error can occur during an attempt. Refer
to table 6.1 for an overview of the different errors. To be able to calculate the intra-
rater agreement, the professionals were also asked to label the same data twice
with two weeks in between.

The labelsets used to find the best error detection algorithm were mimicked to be
able to compare the inter-rater agreement to the performance of the error detection
algorithm. This means that three labelsets were created; a binary labelset in which
the attempts were divided in two classes representing the attempts with and without
errors, a combined labelset in which the attempts labeled as an error from the error-
classes in the ’other: namely’ category were combined, and a labelset in which all
attempts preserved the label given by the professional.

6.2.3 Determination of the agreement

To calculate the inter- and intra-rater agreement, Cohen’s kappa score (refer to ap-
pendix A.1 for the calculation) is calculated, which is one of the leading approaches
in calculating inter- and intra-rater agreement. [63].

As explained in section 6.2.1, the professionals label the data twice with two
weeks in between. The inter-rater agreement is calculated for all combinations of
rounds between the professionals, to get a complete overview.

The intra-rater agreement is calculated for every professional, for every labelset.

The interpretation of the Cohen’s kappa score is presented in table 6.5.

Cohen’s kappa score Interpretation
0 - 0.20 None
0.21 - 0.39 Minimal
0.40 - 0.59 Weak
0.60 - 0.79 Moderate
0.80 - 0.90 Strong
>0.90 Almost perfect

Table 6.5: Interpretation of the Cohen’s kappa score [64].

Next to the kappa score, confusion matrices were created to assess which er-
rorclasses are confused between the professionals, and by one professional over
time.



70 CHAPTER 6. METHOD

6.3 Comparison of coaching by a metaphor versus
by a professional

The proposed system includes metaphors which are used to steer the blowing be-
haviour of the user. The goal of this part of this research is to determine if there
is a significant difference in blowing behaviour when the participant is coached by
the metaphors compared to when coached by the professional, to evaluate if the
metaphors are a good way of coaching asthma patients during (home) monitoring.

The process from the data gathering to the analysis consists of several steps
which are visualized in figure 6.10. The blue boxes denote a preparing step, and the
orange box represents the analysis part of the pipeline.

Figure 6.10: The pipeline of the comparison between coaching by the metaphors
and the professional.

6.3.1 Data gathering

During the hospital experiments, explained in section 6.1.1, thirty children were
asked to perform two tests, each three to eight attempts; one with a metaphor and
one without. During one test, they were coached by a trained professional, while
during the other test, they were coached by the metaphors. Half of the children was
first coached by a professional, followed by a test coached by a metaphor, while the
other half performed the tests in the reverse order. This data is used to compare the
coaching by the metaphors and by the professional.

6.3.2 Data preprocessing

To reduce noise, the data is cleaned to only maintain the attempts without an error
for the comparison of the FV C, FEV1, and PEF values. If subjects did not blow
attempts without errors, these subjects are not taken into account in the comparison.

For the comparison of the number of errors produced when coached by the two
approaches, all attempts, except for the outliers and attempts with label ’uncertain’,
are taken into account.



6.3. COMPARISON OF COACHING BY A METAPHOR VERSUS BY A PROFESSIONAL 71

6.3.3 Data analysis

The mean values of the PEF , FEV1, and FV C of the participants coached by
the metaphors and the mean values of these parameters when coached by the
professional were calculated to compare the two situations. Besides, the number of
errors produced per coaching situation and per subject were calculated.

The first step in the comparison of every parameter and the number of errors is
to determine if the dependent variable is normally distributed. This was examined
by a QQ-plot and by performing a Shapiro-Wilk test. The threshold for this test to
not reject the H0 hypothesis, which states that the dependent variable is normally
distributed, was set at an alpha value of 0.05, meaning that p-values above 0.05
show that the H0 hypothesis stands.

If the dependent variable was not normally distributed, a Wilcoxon test was per-
formed to assess if there is a statistically significant difference in the PEF , FV C,
and FEV1 values, and the number of errors between the two coaching strategies.
Otherwise, a paired sample T-test was performed. The threshold to not reject the
H0 hypothesis, this hypothesis states that there is no significant difference, was set
at an alpha value of 0.05.

The three tests and the QQ-plot are described in appendix A.10.
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Chapter 7

Results

7.1 Error detection

An error detection algorithm for detecting errors in spirometry attempts using ma-
chine learning techniques is designed and evaluated. The data from the hospital
experiments was used as input. Section 7.1.6 describes what the effect is on the
performance of the models when extending the dataset with the data from the inter-
annotation study.

7.1.1 Dataset

The data is gathered during hospital experiments, explained in section 6.1.1. During
this study, the children performed two spirometry tests, each existing of three to eight
attempts. One test is performed with feedback from a professional which supervised
the test, during the other test the child is coached by metaphors, described in section
2.4. The dataset used to train and evaluate the models on are the attempts from both
tests of all children.

A professional labeled the attempts during these tests by viewing the curves and
the children performing the tests. She used the form presented in appendix D.1 to
file the errors she detected.

The ’other, namely:’ case was used extensively, resulting in more errorclasses
than given in table 6.1. The complete list of errorclasses with their codes is pre-
sented in table 7.1.

7.1.2 Preprocessing

The data was prepocessed before used during model training. This included clean-
ing, exploring, and filtering the data. Also, different labelsets and featuresets were
generated.

73
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Error Code
Extrapolated volume <5% of FVC or less than 0.15 L at the start of the expiration 1
Obstructed mouthpiece 2
An extra breath taken during the attempt 3
Flow leak 4
Duration of <3 s, a plateau in the VT curve,
or if the person can/should continue exhaling

5

No maximal effort 6
Cough 7
Wrong posture 8
Other, namely: No maximal inhalation 9
Other, namely: Growl 10
Other, namely: Waiting too long between inhalation and exhalation 11
Other, namely: Started too early with exhalation 12
Other, namely: Exhalation, before inhalation, in apparatus 13
Other, namely: Variable effort 14
Other, namely: Making a sound during exhalation 15
Other, namely: No peak, but flat top in the flow-volume curve 16
Other, namely: No inhalation in the apparatus 17
Other, namely: Sawtooth curve (tech error) 18
Other, namely: Wrong order of inhalation and exhalation 19
Other, namely: First exhaling softly, and then with more power 20
Other, namely: The tube is not far enough in the mouth
and the lips are not tight enough around the tube

22

No error 0
Uncertain -1

Table 7.1: Complete table of error codes
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Figure 7.1: Histogram representing the distribution of the labeled errors, including
the attempts labeled as uncertain (-1) and the outliers (99).

Cleaning the data

As can be seen in the histogram (Figure 7.1), two attempts with label -1, which
represent the label ’uncertain’, were present in the data. As these serve no purpose
in training, testing, or validation, these were removed from the dataset. During some
attempts, the system used did not measure the attempt well. These curves resulted
in sawtooth curves, and were neglected by the practioner. As this is an error from
the system which is expected to be repaired before used in real life, these attempts
were removed from the dataset.

Several attempts were labeled with more than one errorlabel. As the data from
this attempt will bring noise into the dataset when this attempt is labeled as one
of the errors present in the attempt, the attempts with more than one error were
combined into one class to which label 66 was assigned.

As can be seen in the first figure of 7.2, there is a lot of noise in this data; a sec-
ond peak, which is a rough copy of the first one, and the curve is rugged. Therefore,
the data was filtered and smoothed to only keep the useful information. The parts of
the data before the inhalation and after the exhalation were automatically removed
by a self-written algorithm. Additionally, the curve was smoothed to reduce noise.
The process of filtering and smoothing is shown in figure 7.2.
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Figure 7.2: The process of filtering and smoothing.

Data exploration

As can be seen in figure 7.3, the data is very imbalanced with a ratio of approx-
imately 5:1 between the largest and second largest class. Besides, most error
classes have a small number of datapoints.

Figure 7.3: Histogram representing the distribution of the labeled errors, excluding
the attempts labeled as ’uncertain’ (-1) and the outliers (99).
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To show the extend to which the different errorclasses are linearly related, a
correlation plot, presented in figure 7.4, was created. One random sample from each
errorclass was taken and the correlations were calculated. To give a fair overview,
this process was repeated a hundred times, after which the correlations of these
processes were averaged. The plot shows that the attempts from the different error
classes are heavily related.

Figure 7.4: A correlation plot showing the extend to which the different errorclasses
are linearly related.
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Outlier removal

Fourteen datapoints were labeled as outliers as they were more than 2.5 standard
deviations from the mean value of the FV C or the FEV1 values from this person.
Besides, the curves were assessed visually to find outliers. On this basis, six data-
points were labeled as outliers. These attempts crossed the zero line before exhala-
tion started, and thus were not representable. Some outliers from both assessment
techniques overlapped, which resulted in a total amount of eight-teen outliers. The
outliers were attempts with labels two (obstructed mouthpiece), five (terminated too
early), seven (cough), ten (growl), eleven (waiting too long between inhalation and
exhalation), twelve (started too early with the exhalation), thirteen (exhalation be-
fore inhalation in the apparatus), fifteen (sound during exhalation), seventeen (no
inhalation in apparatus), and sixty-six (multiple errors).

Generating different labelsets

As explained in section 6.1.2, three labelsets were created. The first labelset con-
sists of two classes; one class consisting of all attempts containing an error, and
one class with all technically correct attempts. The second labelset consists of nine
classes. These are the single classes with labels zero to eight, as these are based
on the criteria to be met according to Miller et al. (2005) [3], and are important to
provide specific feedback about. The combined class contains all attempts labeled
as an attempts from one of the ’other, namely:’ classes. These are the errorclasses
ten to twenty. When an error from these categories is produced, it is important to
feed back that an error is made. However, as these errors are not as important as
the errors from classes one to seven according to Miller et al. (2005) [3], general
feedback is sufficient. The attempts containing multiple errors (labeled with sixty-six)
are also included in the combined class, as it is also not possible to provide specific
feedback based on these attempts. The combined class is assigned label eighty-
eight to distinguish this class easily from the single errorclasses. The third labelset
is a labelset in which every single class keeps its label, to evaluate if it is feasible to
distinguish all errorclasses.

For the remainder of this report, the labelsets will be referred to as ’binary’ ,
’combined’, and ’all’. The histograms of the binary, combined, and all labelset are
shown in figures 7.5b, 7.5a, and 7.3. The labels for each error class are presented
in table 7.2.
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Original
error label

All Combined Binary

0 0 0 0
1 1 1 1
2 2 2 1
3 3 3 1
4 4 4 1
5 5 5 1
6 6 6 1
7 7 7 1
10 10 88 1
11 11 88 1
13 13 88 1
14 14 88 1
15 15 88 1
16 16 88 1
20 20 88 1
66 66 88 1

Table 7.2: The error labels for the different classes in the three labelset.

(a) The combined labelset (b) The binary labelset

Figure 7.5: Histograms showing the labeled error distribution of the combined and
binary labelset. The classes with labels 10 to 20 are combined in the
combined class 88 in the combined labelset. The binary labelset con-
sists of two classes; one with all technically correct attempts, and one
with all attempts containing an error.
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7.1.3 Model training

After the data was preprocessed, models were trained in three phases to find the
best fit. These phases are hyperparameter tuning, balancing, and stacking. After
this section, the proposed decision tree is evaluated.

Phase 1: Hyperparameter tuning

As explained in section 6.1.5, during the first phase four different models were
trained with different hyperparameters. Also, three labelsets were used refered to
as ’ all’ , ’ combined’ , and ’ binary’ , as explained in section 7.1.2. Besides, five
different featuresets extracted from the dataset were used, as explained in section
6.1.2.

During hyperparameter tuning, it was found that the LSTM always resulted in the
best performance when adopting one node and one layer, when the hyperparame-
ters one to 101 nodes, with a stepsize of 50, and one to eleven layers, with a step
size of five, were evaluated. Therefore, the possible hyperparameters were changed
to one to five hidden layers and hidden nodes, with a step size of two, to evaluate
if models with layers and hidden nodes in this range performed better than a model
with one layer and one hidden node.

The performance represented by the precision, recall, F1-score, and the preci-
sion at 100% recall are shown in table C.1, C.2, and C.3 in the appendix. The recall
and precision at 100% recall are presented in table 7.3 for all labelsets, as these are
the primary and secondary performance metrics.

This table shows that the best performance based on the recall is met using the
SVM, using the filtered features as input for the binary labelset (0.737), and the
spirometry parameters for the labelsets ’combined’ (0.356) and ’all’ (0.305). When
using the precision at 100% recall as metric, the best models are the SVM using the
spirometry parameters for labelsets ’binary’ (0.605) and ’combined’ (0.125), and the
RBFNN using the spirometry parameters as input and labelset ’all’ (0.065).

When looking at the results of the binary labelset, one can see that the SVM
outperforms the other models, independently of the featureset. Additionally, the
boosted decision trees outperforms the RBFNN based on recall. The LSTM out-
performs the RBFNN using the unfiltered featureset, and the boosted decision trees
using the unfiltered featureset in combination with the spirometry parameters. When
looking at the precision at 100% recall, the difference is in the RBFNN outperform-
ing the boosted decision trees when using the spirometry parameters as input. The
LSTM outperforms or performs equal to all RBFNN, except for the RBFNN using the
spirometry paremeters as input.
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Featureset Model Binary Combined All

Recall
Precision
at 100%
recall

Recall
Precision
at 100%
recall

Recall
Precision
at 100%
recall

Spirometry
parameters

RBFNN 0.525 0.539 0.203 0.117 0.178 0.065

Boosted
decision
trees

0.653 0.532 0.229 0.113 0.119 0.063

SVM 0.720 0.605 0.356 0.125 0.305 0.063

Filtered features RBFNN 0.559 0.500 0.178 0.111 0.144 0.063
Boosted
decision
trees

0.610 0.541 0.136 0.111 0.059 0.063

SVM 0.737 0.573 0.263 0.111 0.195 0.063

Filtered features
+ spirometry
parameters

RBFNN 0.500 0.500 0.127 0.111 0.161 0.063

Boosted
decision
trees

0.559 0.504 0.169 0.111 0.144 0.063

SVM 0.720 0.557 0.229 0.115 0.195 0.063

Unfiltered features RBFNN 0.381 0.500 0.017 0.113 0.025 0.063
Boosted
decision
trees

0.475 0.509 0.017 0.111 0.025 0.063

SVM 0.508 0.518 0.051 0.111 0 0.063

Unfiltered features
+ spirometry
parameters

RBFNN 0.466 0.500 0.042 0.111 0.017 0.063

Boosted
decision
trees

0.449 0.504 0.059 0.111 0.025 0.063

SVM 0.500 0.511 0.059 0.111 0 0.063

Smoothed data LSTM 0.449 0.500 0.102 0.112 0.127 0.063

Table 7.3: The performance of the models after hyperparameter tuning using the
different labelsets, represented by the recall and precision at 100% recall.
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For the combined labelset, the SVM outperforms the boosted decision tree, and
the RBFNN, based on recall for all featuresets, except for the unfiltered featureset in
combination with the spirometry parameters, where the SVM performs equally to the
boosted decision tree. Secondly, the boosted decision trees outperforms the RBFNN
for all featuresets, except the filtered features, where the RBNN outperforms, and
the unfiltered features, where the performance is equal. The LSTM outperforms
all models using the two unfiltered featuresets as input. When using the precision
at 100% recall as performance metric, the SVM outperforms or performs equal the
the other models, except when using the unfiltered features as input as the RBFNN
outperforms the other models. The LSTM is outperformed by the models using the
spirometry parameters, the SVM using the filtered features in combination with the
spirometry parameters, and the RBFNN using the unfiltered features as input.

When looking at the recall for labelset ’all’, we see that the SVM outperforms
the other models using all featuresets, except the two unfiltered featuresets where
the recall of the SVM is zero. For these featuresets, the boosted decision trees
outperforms or performs equal to the RBFNN. For the other featuresets, the RBFNN
outperforms the boosted decision trees. The LSTM outperforms all models using the
two unfiltered featuresets, and the boosted decision trees when using the spirome-
try parameters or the filtered featureset as inputs. The precision at 100% recall is
equal for all models, except for the RBFNN using the spirometry parameters, which
precision at 100% recall is 0.002 higher.

When comparing the labelsets, we see that the performance decreases with the
increase in the number of errorclasses.

The confusion matrices of the best models based on the recall and precision at
100% recall per labelset are shown in figure 7.6.

(a) Binary: recall (b) Binary: precision at 100% recall
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(c) Combined (d) All: recall

(e) All: precision at 100% recall

Figure 7.6: The confusion matrices of the best models after hyperparameter tuning,
based on the recall and the precision at 100% recall.

These matrices show that a lot of datapoints are unfairly labeled as zero, which
label represents the technically correct attempts. From the histogram in figure 7.3,
we see that the data is skewed towards this errorclass. Therefore, the data was
balanced to evaluate if this improves the performance of the models.

Phase 2: Balancing the dataset

The data is balanced by upsampling the minority errorclasses to contain an equal
amount of datapoints as the majority class. Two ways of upsampling are evalu-
ated; Random OverSampling (ROS) and Synthetic Minority Oversampling Tech-
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nique (SMOTE). ROS simply duplicates random datapoints from the class to be
upsampled. SMOTE selects two datapoints at random from one class which are
near each other in the feature space. A line is drawn between those points and a
new sample is created along this line. The advantage of SMOTE over simple over-
sampling is that more information is created. However, the downside is that the other
classes are not taken into account, which can lead to datapoints overlapping with
other classes. This is not the case with random oversampling.

Tables C.4 to C.9 in the Appendix present the performance of all models. For the
binary labelset, the recall of fourteen models improved when using SMOTE, with a
mean improvement over all models of 0.058. When using ROS, the recall of fifteen
models improved, and one stayed the same. The mean improvement was 0.070.
The precision at 100% recall improved when using SMOTE for six models, stayed
the same for three models, and decreased for seven models, with a mean decrease
of 0.00056. When applying ROS, eleven models improved, one stayed the same,
and four decreased in performance. The mean increase in precision at 100% recall
was 0.015.

For the combined labelset, all models except two improved in performance based
on recall, with a mean improvement of 0.039 and 0.069 when applying SMOTE
and ROS respectively. When looking at the precision at 100% recall, nine models
improved when using SMOTE, with a mean improvement of 0.001. When using
ROS, twelve models improved, with a mean improvement of 0.002.

When interpreting the tables of labelset ’all’, we see that, based on recall, eleven
models improved when using SMOTE and ROS, and the performance of one model
stayed the same when using ROS. The mean improvements after applying SMOTE
and ROS respectively were 0.035 and 0.040. When looking at the precision at 100%
recall after applying SMOTE, two model improved, two models decreased in perfor-
mance, and twelve stayed the same, with a very small mean decrease of 3.757∗10−6.
After applying ROS, the performance of three models increased, of one decreased,
and of twelve stayed the same, with a very small mean improvement of 6.5 ∗ 10−5.

Overall, an improvement in recall did not necessarily mean an improvement in
precision at 100% recall. Also, the classifiers that improved in performance were not
the same for the different featuresets, labelsets, and balancing techniques. Thirdly,
the performance gain was bigger when looking at recall, than when comparing the
precision at 100% recall.

Table 7.4 shows the performance of the best models of every classifier with the
featureset and balancing technique they performed best with, as these models are
used in the stacking phase. The decision of best models was based on the recall,
as the only models outperforming these models based on precision at 100% re-
call were the RBFNN and LSTM for labelset ’binary’. The recall and precision at
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Labelset Model Featureset
Balancing
technique

Recall
Precision
at 100%
recall

Binary RBFNN
Filtered features +
spirometry parameters

ROS 0.644 0.518

Boosted
decision
trees

Spirometry parameters ROS 0.686 0.596

SVM Filtered features ROS 0.864 0.678
LSTM Smoothed data ROS 0.559 0.500

Combined RBFNN Spirometry parameters ROS 0.288 0.122
Boosted
decision
trees

Spirometry parameters ROS 0.305 0.120

SVM Spirometry parameters ROS 0.525 0.134
LSTM Smoothed data ROS 0.153 0.113

All RBFNN Spirometry parameters ROS 0.220 0.065
Boosted
decision
trees

Filtered features SMOTE 0.263 0.063

SVM Spirometry parameters ROS 0.322 0.063
LSTM Smoothed data None 0.127 0.063

Table 7.4: The best models of every classifier per labelset after hyperparameter tun-
ing and balancing. The table shows the featureset and balancing tech-
nique the models perform best with.
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100% recall of the RBFNN using the spirometry parameters, and balancing tech-
nique ROS, was 0.559 and 0.541. As the decrease in recall, compared to the best
performing RBFNN based on recall, was 3.570 as big as the increase in precision
at 100% recall, the decision was made to use the RBFNN with the best recall as
best performing RBFNN. The LSTM performed better when looking at precision at
100% recall after applying SMOTE instead of ROS, with a recall of 0.441, and a
precision at 100% recall of 0.509. The decrease in recall was 13.182 as big as the
improvement in precision at 100% recall, and thus the LSTM using ROS was used
as best performing LSTM.

The best performing models based on recall are the SVMs for all labelsets. How-
ever, when looking at precision at 100% recall, the RBFNN outperforms the SVM for
labelset ’all’. As the decrease in recall is 34.514 as big as the increase in precision
at 100% recall, the SVM is chosen as the best model for this labelset.

The increase in performance after balancing for the binary labelset, comparing
the best model based on recall for the increase in recall, and the best model based
on precision at 100% recall for the increase in performance based on this metric,
we see an improvement of respectively 0.127 and 0.073 for the recall and preci-
sion at 100% recall. The improvement in performance for the combined labelset is
0.169 and 0.009 for respectively the recall and the precision at 100% recall. The
improvement for labelset ’all’ is 0.017 and 0 for the recall and precision at 100% re-
call. However, as the decision was made to use the SVM as best performing model,
there is a decrease of 0.003 when comparing this model to the best model based
on precision at 100% recall before balancing.

The confusion matrices of the best models are shown in figure 7.7.

(a) Binary (b) Combined
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(c) All

Figure 7.7: The confusion matrices of the best performing models for all labelsets,
after hyperparameter tuning and balancing. The best models are the
SVMs, using the filtered features as input for labelset ’binary’, and the
spirometry parameters for labelsets ’combined’ and ’all’.

When interpreting the confusion matrices, we see that less attempts are con-
fused with the zero errorclass (technically correct attempts) compared to the confu-
sion matrices of the models before balancing. However, for the labelsets ’combined’
and ’all’, attempts from errorclasses one (unsatisfactory start) and two (obstructed
mouthpiece), are still mostly confused with the zero errorclass (technically correct
attempts).

For the combined labelset, five attempts from errorclass two (obstructed mouth-
piece), four attempts from errorclass five (terminated too early), and two attempts
from errorclass seven (cough) are now classified right, while none of the attempts
of these classes were classified right before balancing. Respectively one and eight
more attempts from errorclasses six (no maximal effort), and eighty-eight (the com-
bined class) were classified right. Errorclass six (no maximal effort) was confused
with the zero errorclass (technically correct attempts) before balancing, while not
anymore after balancing. Errorclass eighty-eight (combined errorclass) was more
confused with errorclass six (no maximal effort), zero (technically correct attempts),
and seven (cough) before balancing. The errorclass confused with the most different
classes are errorclasses two (obstructed mouthpiece) and eigthy-eight (combined
errorclass), which are both confused with four other classes. However, thirty-four
out of thirty-eight of errorclass eighty-eight (combined errorclass) are classified right,
while only five out of eightteen of errorclass two (obstructed mouthpiece were clas-
sified right. Also, the errorclass the other errorclasses are mostly confused with is
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also errorclass two (obstructed mouthpiece).
When looking at the confusion matrix of labelset ’all’, we see that three attempts

of errorclass two (obstructed mouthpiece), four attempts of errorclass five (termi-
nated too early), and two attempts of errorclass seven (cough) were classified right,
while none of the attempts of these classes were classified right by the best models
before balancing. Seven attempts less of errorclass six (no maximal effort) were
classified right after balancing, which is now more confused with errorclasses three
(an extra breath taken during the attempt), five (terminated too early) and seven
(cough). Errorclasses that are confused with the most classes are errorclasses two
(obstructed mouthpiece) and six (no maximal effort), which are both confused with
five other classes. These are also the classes the other classes are confused most
with.

Phase 3: Stacking

In this phase the probability predictions by the best models are combined and fed
into a final model. The graphical visualization of this process can be found in figure
6.6. Models of different classifiers are used, as these are trained differently and thus
create the most information for the final model when combined.

The models which were stacked are the models presented in table 7.4. How-
ever, as the LSTM performs much worse than the other models, this classifier was
excluded.

A decision tree is used as the final estimator, as this classifier performs well on
imbalanced data [65].

The correlation between the single classifiers, representing the information over-
lap, is shown in table 7.5, and is negligible to moderate [66].

RBFNN Boosted decision trees

Boosted decision trees
Binary: 0.568
Combined: 0.234
All: 0.239

SVM
Binary: 0.583
Combined: 0.416
All: 0.461

Binary: 0.563
Combined: 0.434
All: 0.305

Table 7.5: The Pearson correlation between the single models used in the stacking
for the different labelsets.

To evaluate if the stacked models overfitted, the performance of the models on
the trainingset are shown in table 7.6. This shows that this performance is extremely
high.
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Labelset Precision Recall F1-score
Precision at
100% recall

Binary 1.000 0.998 0.999 0.998
Combined 0.875 0.852 0.860 0.624
All 0.878 0.868 0.871 0.626

Table 7.6: The performance of the stacked models evaluated using the trainingset.

The performance of the stacked models when classifying unseen attempts can
be found in table 7.7, and shows that the performance of the stacked models is lower
than the performance of the single models.

Labelset Precision Recall F1-score
Precision at
100% recall

Binary 0.560 0.551 0.556 0.500
Combined 0.087 0.085 0.071 0.111
All 0.059 0.068 0.048 0.063

Table 7.7: The performance of the stacked models for the different labelsets

The confusion matrices, shown in figure 7.8, show that the errorclasses are more
confused with the zero errorclass (technically correct attempts) than the best per-
forming single models. Also, errorclasses six (no maximal effort), eighty-eight (com-
bined errorclass) in the combined labelset, and sixty-six (multiple errors) when us-
ing labelset ’all’ were classified well by the best single model, however poor by the
stacked models.

(a) Binary (b) Combined
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(c) All

Figure 7.8: The confusion matrices of the stacked models for the different labelsets

7.1.4 The proposed decision tree

The proposed decision tree consists of three stages to predict unseen attempts. The
first stage of the decision tree predicts if the attempt contains an error. If the attempt
contains an error, the second stage predicts if the error is in the combined class
of the combined labelset or not. If the attempt is predicted to be in the combined
class, the third stage predicts the label of the attempt. This tree is also graphically
visualized in figure 6.7.

To determine the models to use in the decision tree, hyperparameter tuning, bal-
ancing, and stacking was performed for the combined labelset, but without the zero
errorclass to determine the model for stage two, and for the attempts labeled with
labels ten to twenty, and sixty-six, which were combined in the combined labelset, to
determine the model for stage three of the proposed decision tree. Although error-
class nine (no maixmal inhalation) was filed in the ’other: namely’ field in the form,
this is a criteria by Miller et al. (2005 [3] and thus treated as a single class when
using the combined labelset. Refer to appendix C.3 for the results of the hyperpa-
rameter tuning, balancing and stacking.

Table 7.8 shows the models used in the three stages of the decision tree. The
performance of the proposed decision tree is shown in table 7.9. Due to the set up
of the decision tree, not all probabilities per predicted attempt could be calculated,
making it impossible to calculate the precision at 100% recall. Therefore, the F1-
score is used to compare the trade-off between precision and recall.
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Labelset Featureset Model
Balancing
technique

Precision Recall
F1-
score

Precision
at 100%
recall

Binary
(stage 1)

Filtered
features

SVM ROS 0.857 0.864 0.861 0.678

Combined,
without the
zero errorclass
(stage 2)

Filtered
features

Boosted
decision
trees

ROS 0.343 0.338 0.332 0.127

Attempts
with labels
between
10 and 20,
and 66
(stage 3)

Filtered
features

Boosted
decision
trees

ROS 0.350 0.300 0.305 0.125

Table 7.8: The models used in the three stages of the proposed decision tree

Precision Recall F1-score
Proposed decision tree 0.147 0.144 0.142

Table 7.9: The performance of the proposed decision tree

The proposed decision tree performed worse compared to the best single model
using labelset ’all’, with a difference in recall and F1-score of respectively 0.178 and
0.179.

The confusion matrix is presented in figure 7.9. The errorclasses are mostly
confused with errorclass six (no maximal effort). Also, this errorclass is confused
with the most errorclasses. When comparing to the confusion matrix of the best
model trained and evaluated on labelset all (figure c of 7.7), we see that only four
attempts of errorclass sixty-six (multiple errors) were classified right by the proposed
decision tree, compared to all being classified right when using the best model for
labelset ’all’. However, more attempts of the zero errorclass (technically correct
attempts) were classified right using the proposed decision tree. Also, errorclass six
(no maximal effort) was more confused with the other errorclasses, and the other
errorclasses with errorclass six, when using the proposed decision tree.
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Figure 7.9: Confusion matrix of the proposed decision tree.

7.1.5 The best fit

The models which classify unseen spirometry attempts best for the three labelsets
are presented in table 7.10.

Labelset Featureset Model
Balancing
technique

Precision Recall F1-score
Precision
at 100%
recall

Binary
Filtered
features

SVM ROS 0.857 0.864 0.861 0.678

Combined
Spirometry
parameters

SVM ROS 0.584 0.525 0.547 0.134

All
Spirometry
parameters

SVM ROS 0.340 0.322 0.321 0.063

Table 7.10: The best performing models for the different labelsets, together with the
featureset and balancing technique they perform best with.

The best results are achieved when using the SVM and balancing technique
ROS. The featureset they performed best with is the filtered featureset (refer to ap-
pendix B.2 for the features) for the binary labelset, and the spirometry parameters
for labelsets ’combined’ and ’all’.

The time needed to classify unseen attempts, on a laptop with an intel core i5,
and an 250 GB SSD, by the three models is negligible, excepting to form no problem
in the real life system.
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The confusion matrices of these best models are shown in figure 7.7 and dis-
cussed in section 7.1.3. It was seen that errorclass two (obstructed mouthpiece)
was confused the most with the other errorclasses.

Figure 7.10 visualises the attempts which are classified wrong by the three best
performing models.

(a) (b)

(c) (d)

(e) (f)
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(g) (h)

(i) (j)

(k) (l)

(m) (n)
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(o) (p)

(q)

Figure 7.10: The misclassified attempts for all labelsets. The x-axis represents the
time in 101 ms, while the y-axis represents the flow in liters per sec-
ond. The dashed line represents the y-axis being zero, the orange line
shows the y-axis being 0.1. The end of the exhalation is where the
curve crosses this line.

The attempts are technically correct attempts (label zero), attempts with an un-
satisfactory start (label one), attempts during which the mouthpiece was obstructed
(label two), and attempts during which an extra breath was taken (label three). When
looking at the attempts, one can see that all attempts have a dip in the inhalation
before the exhalation, although small in cases m and q.

7.1.6 Including the data of the inter-annotation study

To evaluate if including more data increases the performance of the best perform-
ing models, the data of the inter-annotation study was included in the trainingset.
The labels of the rater which training and experience level is closest to the profes-
sional labeling the data of the hospital experiments were used. The total number
of attempts in the combined dataset is 500. After removing the outliers, the dataset
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consists of 472 attempts. The label distribution of this combined dataset is shown in
figure 7.11.

Figure 7.11: The label distribution when combining the dataset of the hospital ex-
periments and the dataset of the inter-annotation study.

The participants of the inter-annotation study were students between eight-teen
and thirty-four years old who were not trained in performing spirometry attempts.
Also, they were coached by a non-professional in supervising spirometry attempts.
The students made a lot of mistakes, and many attempts contained multiple errrors
according to the rater.

The best performing models trained and evaluated on the data of the hospital
experiments (refer to section 7.1.5) were used to compare the performance when
including the data of the inter-annotation study, and when training and evaluating on
the data of the inter-annotation study only.

The performance of the models trained on the data of the inter-annotation study
only are presented in table 7.11 and show that the performance is in general lower
than the performance when trained and evaluated on the data of the hospital exper-
iments. However, the precision at 100% recall is higher for the labelsets ’combined’
and ’all’.
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Labelset Featureset Model
Balancing
technique

Precision Recall F1-score
Precision at
100% recall

Binary
Filtered
features

SVM ROS 0.718 0.642 0.678 0.5

Combined
Spirometry
parameters

SVM ROS 0.354 0.350 0.341 0.167

All
Spirometry
parameters

SVM ROS 0.311 0.276 0.279 0.111

Table 7.11: The performance of the models trained and evaluated on the data of the
inter-annotation study only. The models used are the best performing
models trained and evaluated on the data of the hospital experiments.

When we look at the performance of the models trained on the data of the hospi-
tal experiments and the data of the inter-annotation study (table 7.12), we see that
the performance of the models is lower than when trained on only the data of the
inter-annotation study for the labelsets ’combined’ and ’all’. However, for the binary
labelset, the recall and precision at 100% recall are higher when using the data of
both studies.

Labelset Featureset Model
Balancing
technique

Precision Recall F1-score
Precision at
100% recall

Binary
Filtered
features

SVM ROS 0.446 0.729 0.553 0.541

Combined
Spirometry
parameters

SVM ROS 0.062 0.195 0.093 0.113

All
Spirometry
parameters

SVM ROS 0.023 0.102 0.037 0.063

Table 7.12: The performance of the models when including the data of the inter-
annoation study in the trainingset.The models used are the best per-
forming models when only training on the dataset of the short term
study.

The confusion matrices of the models trained on the data of both studies are
shown in figure 7.12.
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(a) Binary (b) Combined

(c) All

Figure 7.12: The confusion matrices of the best performing models for the differ-
ent labelsets with the data of the inter-annotation study added to the
trainingset.

These matrices show that a lot of attempts from the errorclasses are confused
with the zero errorclass (technically correct attempts). Also, the attempts from the
combined errorclass (eighty-eight) when using the combined labelset, and the at-
tempts with multiple errors (label sixty-six) when using labelset ’all’, were confused
with the other classes, while this was less the case when the models were only
trained on the data of the hospital experiments. Additionally, errorclass six (no max-
imal effort) which was classified well when only training on the hospital experiments,
is now not classified right at all when using the labelsets ’combined’ and ’all’. These
differences are also seen in the confusion matrices when trained and evaluated on
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the data of the inter-annotation study only (figure C.1 in the appendix).
When comparing the attempts that were misclassified by the three models when

only trained on the data of the hospital experiments (figure 7.10) and when trained on
both the data of the hospital experiments and the inter-annotation study, it was found
that only five out of seventeen overlapped. These were the attempts shown in figures
a, b, c, d, and q of figure 7.10. No reason for only these five being misclassified could
be deduced from the curves.

7.1.7 Comparison to a rule-based approach

The best performing model trained and evaluated using labelset ’all’ is compared
to the rule based approach explained in section 6.1.4. The attempts with multiple
errors were excluded from the comparison, as otherwise all attempts not meeting
rules one, two, four, and five would have been classified by the rule-based approach
as containing multiple errors, resulting in an unfair comparison.

The results of both approaches are presented in table 7.13. The rule-based
approach outperforms the machine learning approach by a difference in precision,
recall, and F1-score of respectively 0.187, 0.06, and 0.014.

Approach Precision Recall F1-score
Rule-based approach 0.425 0.26 0.226
Machine learning approach 0.238 0.2 0.212

Table 7.13: The performance of the rule-based and machine learning approach.
The attempts with multiple errors are neglected in training and evalu-
ation.

The confusion matrices of both approaches are presented in figure 7.13. While
the machine learning approach classifies the zero errorclass (technically correct at-
tempts) well, the rule-based approach misclassifies all the attempts from this error-
class. Additionally, only twenty-six out of 271 attempts were classified right by the
rule-based algorithm, compared to 166 by the machine learning approach. As the
rule-based approach is only able to detect errors one (unsatisfactory start), three
(extra breath taken during the attempt), five (terminated too early), six (no maximal
effort), seven (cough), and eight (glottis closure), the attempts of the rest of the er-
rorclasses are misclassified. Most confusion was with errorclass five (terminated too
early). This is due to the set up of the comparison; when none of the labels given
by the rule-based approach overlapped with the real label, the most important error
detected by the rule-based approach was assigned to this attempt, which was 185
out of 245 times none of the labels overlapped.
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(a) The machine learning approach (b) The rule-based approach

Figure 7.13: The confusion matrices of the two approaches. The attempts with mul-
tiple errors were neglected in training and evaluation.

7.2 Inter-annotation study

To determine the agreement in labeling by multiple professionals, an inter-annotation
study was performed. Refer to section 6.2 for details.

7.2.1 Data gathering

Thirteen adults participated in this study, which took one week. Due to the COVID-
19 crisis, all professional locations were not accessible, which resulted in performing
the experiment in a student room. To make the location a public space as much as
possible, the curtains were open, and the door unlocked. Furthermore, the partic-
ipants were asked if they agreed with this setup. None of the thirteen participants
disagreed.

During one test, the cameras did not work. These attempts were neglected in
further processing. Besides, the camera recording the side view of another partic-
ipant did not work during two attempts. As the other camera recorded the attempt,
these attempts were included in the dataset. Besides these two problems, the study
went as planned.

Three professionals labeled the data of thirteen adults, which summed up to 191
attempts in total. Professional one is a medical student, trained during an internship
and courses, the other two professionals work at the MST hospital in Enschede
as technical physicians. They have some years of experience in supervising and
assessing spirometry tests.
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7.2.2 Determination of the agreement

The Cohen’s kappa score was calculated for the inter- and intra-agreement for all
combinations of rounds. This was done for the three labelsets used in designing the
error detection algorithm.

The outliers were removed. Additionally, one of the professionals told in hindsight
that he did not always assigned label five (terminated too early), as he would assign
this label to almost all of the attempts. As the other professionals did not know this
before the first round of labeling, this errorclass was neglected in the calculation of
the agreements.

Tables 7.14, 7.15, and 7.16 show the inter- and intra-rater agreements for the
three labelsets. The intra-rater agreements are in bold for distinctiveness.

The inter-rater agreements range from -0.123 to 0.380 for the binary labelset, -
0.035 to 0.301 for the combined labelset, and -0.035 to 0.304 for labelset ’all’. These
agreements are all negative, none or minimal agreements (refer to table 6.5 for the
interpretation). In general, the agreement decreases when the amount of classes
the agreement is based on increases. However, the agreements between raters two
and three are higher when using labelset ’all’ compared to using labelset ’combined’.

Rater 1
Round 1

Rater 1
Round 2

Rater 2
Round 1

Rater 2
Round 2

Rater 3
Round 1

Rater 1
Round 2

0.865

Rater 2
Round 1

0.066 0.080

Rater 2
Round 2

0.135 0.153 0.780

Rater 3
Round 1

-0.078 -0.054 0.380 0.311

Rater 3
Round 2

-0.123 -0.094 0.275 0.198 0.860

Table 7.14: The kappa score representing the inter- and intra-agreement, using the
binary labelset. The kappa scores of the intra-agreement are in bold for
distinctiveness.
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Rater 1
Round 1

Rater 1
Round 2

Rater 2
Round 1

Rater 2
Round 2

Rater 3
Round 1

Rater 1
Round 2

0.862

Rater 2
Round 1

0.001 0.017

Rater 2
Round 2

0.047 0.065 0.724

Rater 3
Round 1

-0.022 -0.015 0.301 0.217

Rater 3
Round 2

-0.035 -0.029 0.156 0.127 0.648

Table 7.15: The kappa score representing the inter- and intra-agreement, using the
combined labelset. The kappa scores of the intra-agreement are in bold
for distinctiveness.

Rater 1
Round 1

Rater 1
Round 2

Rater 2
Round 1

Rater 2
Round 2

Rater 3
Round 1

Rater 1
Round 2

0.862

Rater 2
Round 1

0.001 0.009

Rater 2
Round 2

0.047 0.057 0.725

Rater 3
Round 1

-0.022 -0.015 0.304 0.241

Rater 3
Round 2

-0.035 -0.028 0.165 0.153 0.660

Table 7.16: The kappa score representing the inter- and intra-agreement, using la-
belset ’all’. The kappa scores of the intra-agreement are in bold for
distinctiveness.

The inter-rater agreements between rater two and three are the highest, and the
agreements between rater one and three the lowest, independent of which labelset
was used. The inter-rater agreements between rater one and three are below zero,
meaning the agreement is less than it would be by chance.

The intra-rater agreements range from 0.780 to 0.865 for the binary labelset,
from 0.648 to 0.862 for the combined labelset, and from 0.660 to 0.862 for labelset
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’all’. These agreements can be interpreted as moderate to strong according to table
6.5. The intra-rater agreement of rater one is the highest, the lowest intra-rater
agreement is by rater two for the binary labelset, and by rater three for the other two
labelsets.

The confusion matrices comparing the first rounds of the raters are shown in
figure 7.14. All confusion matrices can be found in Appendix E.

(a) Rater 1 vs. Rater 2 (b) Rater 1 vs. Rater 3

(c) Rater 3 vs. Rater 2

Figure 7.14: The confusion matrices comparing the labels given by the three raters
during the first round, using labelset ’all’.

Confusion matrices a and b show that the confusion between the labels of rater
one and the labels of the other two raters is primarily with the zero errorclass (tech-
nically correct attempts). Additionally, rater one labeled none of the attempts as
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containing multiple errors (label sixty-six), while the other two raters did. Besides,
raters one and three rated respectively twenty-two and fourteen attempts as label
eight only (wrong position), while rater two labeled none of the attempts as contain-
ing this error. When comparing the first rounds of raters two and three (confusion
matrix c), we observe the most confusion between attempts labeled with label six
(no maximal effort) by rater three, which were labeled mainly as zero (technically
correct attempt), nine (no maximal inhalation), or sixty-six (multiple errors) by rater
two. Additionally, attempts during which the person did not have a right position (la-
bel eight) according to rater three, were mainly labeled by rater two as a technically
correct attempt (label zero). Also, attempts labeled as technically correct (label zero)
by rater two, were mainly labeled by rater three with labels six (no maximal effort),
label eight (wrong position), or were assigned multiple labels (label sixty-six). Finally,
the attempts labeled with multiple labels (label sixty-six) were mainly confused with
labels six (no maximal effort) and zero (technically correct attempt).

The confusion matrices comparing the labels given by the three raters over time
are shown in figure 7.15. The confusion between the two rounds of rater one (con-
fusion matrix a) is mostly in attempts that were labeled as technically correct (label
zero) in round two, but were labeled as containing an error in round one. The main
confusion between the two rounds of rater two were in attempts which were labeled
as technically correct (label zero) during round one, but labeled as containing an
error during round two, and attempts which were labeled as containing multiple er-
rors in round two, but were labeled with a single label in round one. For rater three,
the main confusion is between errorclasses one (unsatisfactory start), and six (no
maximal effort), and errorclass sixty-six (multiple errors), zero (technically correct
attempts), and six (no maximal effort).

(a) Round 1 vs. Round 2 of Rater 1 (b) Round 1 vs. Round 2 of Rater 2
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(c) Round 1 vs. Round 2 of Rater 3

Figure 7.15: The confusion matrices comparing the labels given by the two raters
during the first and second round, using labelset ’all’.

7.3 Comparison of coaching by a metaphor versus
by a professional

To assess if there is a significant difference in quality of the attempts coached by
a professional or by a metaphor, the FV C, FEV1, PEF values, and the number
of errors occured during the hospital experiments, explained in section 6.1.1, were
compared.

7.3.1 Preprocessing

Before the values were compared, the data was preprocessed. As for the com-
parison of the FV C, FEV1, and PEF values only the attempts without an error
are used, the attempts which were not technically correct were removed from the
dataset. If a subject did not blow technically correct attempts when either coached
by the professional or the metaphor, the attempts from this subject are excluded from
the comparison. This resulted in attempts from twenty-six subjects to compare.



106 CHAPTER 7. RESULTS

7.3.2 Data exploration

To visualize the data distributions, boxplots and histograms were created and pre-
sented in figures 7.17 and 7.16. These visualizations show that the distributions of
the two ways of coaching are alike each other. The mean values differ little, except
for the mean number of errors, where the mean value when coached by a metaphor
is lower. Furthermore, the variability in FV C and PEF is less when the children
were coached by a professional compared to by a metaphor, while the other vari-
abilities are approximately similar.

(a) FV C (b) FEV1

(c) PEF (d) Number of errors

Figure 7.16: Boxplots showing the distributions of the attempts coached by a pro-
fessional and by a metaphor.
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(a) FV C, when coached by a professional (b) FV C, when coached by a metaphor

(c) FEV1, when coached by a professional (d) FEV1, when coached by a metaphor

(e) PEF , when coached by a professional (f) PEF , when coached by a metaphor

(g) Number of errors, when coached by a professional (h) Number of errors, when coached by a metaphor

Figure 7.17: Histograms showing the distributions of the attempts coached by a
professional and by a metaphor.

7.3.3 Data analysis

First, a Shapiro-Wilk test was performed and QQ-plots were created to determine
if the data is normally distributed. The output from the Shapiro-Wilk test can be
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found in table 7.17, the QQ-plots in figure 7.18. The threshold for being normally
distributed was set at an alpha of 0.05.

Coaching manner Metaphor Professional
Statistics D(26) p D(26) p
FV C 0.980 0.877 0.973 0.705
FEV1 0.973 0.703 0.979 0.860
PEF 0.982 0.920 0.981 0.895

Statistics D(30) p D(30) p
Number of
errors

0.852 0.001 0.861 0.001

Table 7.17: The outcome of the Shapiro-Wilk tests, showing the spirometry param-
eters are normally distributed, while the number of errors is not.

(a) QQ-plots of the spirometry parameters (b) QQ-plot of the number of errors

Figure 7.18: QQ-plots showing that the spirometry parameters are normally dis-
tributed, while the number of errors is not.

The FV C, FEV1, and PEF values did not deviate significantly from normal ac-
cording to the Shapiro-Wilk test; respectively D(26)=0.980, p = 0.877, D(26)=0.973,
p = 0.703, D(26)=0.982, p = 0.920 for the metaphor values, and D(26)=0.973, p =
0.705, D(26)=0.979, p = 0.860, D(26)=0.981, p = 0.895 for the values blown when
coached by the professional. However, when evaluating the number of errors, we
see that number of errors when coached by a metaphor, D(30)=0.852, p=0.001, and
when coached by a professional, D(30), p=0.001, are both significantly not normal.
These results are strengthened by the QQ-plots, showing that the FV C, FEV1, and
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PEF values are normally distributed, as the red line representing the expected line
for a normal distribution is followed. The QQ-plot of the number of errors shows a
big deviation from this line, presenting that this distribution is not normal.

As the number of errors are not normally distributed, the Wilcoxon test was used
to compare the two coaching manners. For the comparison of the FV C, FEV1,and
PEF values, a paired sample t-test was conducted. The output of these tests can
be found in table 7.18.

Statistics (paired
sample t-test)

Mean Standard deviation 95% CI t(50) p

Coaching manner Met. Prof. Met. Prof.
FV C 2.188 2.224 0.537 0.536 [0.007, 0.919] 1.327 0.197
FEV 1 1.725 1.736 0.452 0.447 [0.097, 0.994] 0.518 0.609
PEF 3.270 3.336 0.970 0.963 [0.004, 0.953] 1.164 0.255

Statistics
(Wilcoxon test)

Mean Standard deviation 95% CI t(61) p

Coaching manner Met. Prof. Met. Prof.
Number of
Errors

2.067 2.5 2.175 1.391 [0.002, 0.947] 61.5 0.169

Table 7.18: The outcome of the paired sample t-test and Wilcoxon test. ’Met.’
stands for ’metaphor’, and ’Prof.’ stands for ’professional’.

On average, the FV C value was found to be higher when coached by a pro-
fessional (M = 2.224, SE=, 0.536) than when coached by a metaphor (M = 2.188,
SE = 0.537). This difference, 0.001, BCa 95% CI [0.007, 0.919], was not signifi-
cant t(50) = 1.327, p = 0.197. The FEV1 value was found to be higher, on average,
when coached by a professional (M = 1.736, SE=, 0.447) than when coached by
a metaphor (M = 1.725, SE = 0.452). This difference, 0.011, BCa 95% CI [0.097,
0.994], was not significant t(50) = 0.518, p = 0.609. When evaluating the PEF value,
it was found to be higher, on average, when coached by a professional (M = 3.336,
SE=, 0.963) than when coached by a metaphor (M = 3.270, SE = 0.970). This
difference, 0.066, BCa 95% CI [0.004, 0.953], was not significant t(50) = 1.164, p =
0.255. The means of the number of errors for the two coaching manners was eval-
uated using the Wilcoxon test, as the distribution was found to be not normal. On
average, the number of errors were found to be higher when coached by a profes-
sional (M = 2.5, SE= 1.391) than when coached by a metaphor (M = 2.067, SE =
2.175). This difference, 0.433, BCa 95% CI [0.002, 0.947], was not significant t(61)

= 61.5, p = 0.169.
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Chapter 8

Discussion and recommendations

8.1 Error detection algorithm

One of the goals of this research was to design and evaluate an error detection al-
gorithm for home spirometry measurements, which is able to automatically detect
errors in spirometry attempts. Normally, a professional supervising spirometry at-
tempts at the hospital would assess these attempts. However, no professional is
available at home. Therefore, the error detection algorithm should support the qual-
ity of the home spirometry attempts. When the errors can be detected well, the
quality of the home spirometry attempts increases, making it possible to monitor the
asthma patients at home. Besides, feedback can be provided to the patient, based
on the attempt, which makes it easier for the patient to blow acceptable attempts.

In this research different classifiers, featuresets, labelsets, and machine learning
techniques are used to determine the best algorithm to detect errors in spirometry
attempts. This section discusses the results.

8.1.1 Dataset

The dataset used to train and evaluate the different models consists of the data
gathered during the hospital experiments, explained in section 6.1.1. During this
study, thirty children performed two tests; one in which they were coached by a pro-
fessional, and one in which they were coached by metaphors, which are described
in section 2.4. Both tests were included due to the small dataset, although only us-
ing the attempts coached by a metaphor would mimick the real life situation better.
When more data is available, only these attempts should be included.

111
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8.1.2 Outlier removal

To reduce the noise in the dataset as complete as possible, outliers based on visual
inspection, and based on the FEV1 and FV C values, were removed. The outliers
were from ten different classes, and thus were not attempts containing a specific
error. Although these outliers are not used as trainingdata for the algorithm, a sys-
tem could be designed in which the outliers are detected by the heuristics used in
this research to detect the outliers before using the algorithm, making it possible to
provide feedback after these attempts. In this way, the noise in training the algorithm
is reduced, while still being able to give general feedback to all attempts.

Another option would be to see the outliers as an error. For example, a low FV C

value may point to the error that no maximal effort was shown. Not removing the
outliers which represents errors could improve the performance of the algorithm.
Therefore, a recommendation for future research is to decide in consultation with a
professional if an attempt is an outlier, or useful in training the algorithm.

8.1.3 Featuresets

Five different combinations of featuresets are used in this research as input for
the machine learning models. These featuresets consisted of timeseries features,
spirometry parameters, and the age and sex of the children.

The performance of the models was best when the spirometry parameters and
the age and sex of the children were used as input for labelsets ’combined’ and
’all’. This is remarkable, as the expectation was that the time-series features would
contain more information about what errors are in the attempts, as these features
include for example the number of peaks in the data; two peaks may reveal a cough
during the attempt. However, as only the flow-time curve was used to extract time-
series features from, it could be that not enough, or not the right, information was ex-
tracted. Therefore, it is recommended to also extract features from the flow-volume
curve and the volume-time curve, instead of only from the flow-time curve, as this will
add information. Additionally, smoothing the data reduced noise, however it could
have reduced information as well. Therefore, training on the unsmoothed data is
recommended to evaluate.

The best performing model for the binary labelset used the filtered features as
input, showing that the time-series features extracted contained valuable informa-
tion about if an attempt contains an error or not. The expectation is that extracting
features from the named curves will improve the performance of the model.

The age and sex was used to help the model distinguish between attempts which
for example have a low FV C due to an error, or due to the young age of the child.
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The age of the children was only known in years. More information would be pro-
vided by representing the age in for example days, as this is more accurate.

The height of the children was unknown, however this is of influence on the lung
capacity of the children. The predicted PEF and FV C of the children are known, as
these are needed to calibrate the metaphors. These values are based on the age,
height, and sex of the children and will add valuable information if these are used
as features instead of, or as addition to, the age and sex of the children. The values
and predicted values can also be combined into one feature by using the percent
predicted value instead.

8.1.4 Labelsets

Three labelsets are used in this research. A binary labelset with a non-errorclass
and an errorclass, a combined labelset in which the errors from all ’other, namely:’
classes are combined, and labelset ’all’ in which all errorclasses were seen as single
classes.

The best performing model using the combined labelset achieved a recall of
0.525 and a precision at 100% recall of 0.134. The expectation is that the per-
formance of the combined labelset could be improved by combining errorclasses
based on the part of the manoeuvre the error occured in, or by combining the errors
for which the same feedback shoud be given, as these errors are more alike. If this
grouping of classes performs well, the system will be able to provide more specific
feedback, compared to the grouping of errorclasses performed in this research.

8.1.5 Hyper-parameter tuning and balancing

The models were trained using different hyperparameters to find the best hyperpa-
rameterset, and two balancing technique to produce balanced datasets. The first
balancing technique was SMOTE, which adds information by creating a new sample
along the line between two existing points. The second balancing techinque was
ROS, which simply duplicates random datapoints.

Balancing the dataset improved the performance of the models slightly, with a
bigger mean improvement in recall compared to the mean improvement in the preci-
sion at 100% recall. It is remarkable that the performance did not improve substan-
tially as the data was very skewed before balancing the dataset. From the confusion
matrices of the best models before and after balancing, we deduced that before bal-
ancing, the most confusion was with errorclass zero (technically correct attempts),
errorclass six (no maximal effort), and errorclass eighty-eight (combined errorclass)
when using the combined labelset. These classes were the bigger classes. After
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balancing the dataset, the confusion was more spread over classes. However, as
there is still a lot of confusion, the performance did not improve to a large extent.

Balancing techinque ROS outperformed SMOTE. One reason could be that the
information added by SMOTE for one errorclass overlapped with the information
from other errorclasses, as this techinque does not take into account the other er-
rorclasses when creating new samples. To improve the performance of SMOTE,
this technique can be used in combinations with for example TomekLinks, which re-
moves datapoints which have the smallest distance to datapoints from other classes.

8.1.6 Stacking the models

The output of the best models selected after hyperparameter tuning and balancing
were combined and fed into a final estimator. The expectation was that this would
increase the performance compared to the performance of the single models, as
the information from the single models is combined. However, the performance de-
creased. This could be due to a high correlation between the models, as this would
mean little information is added by combining the models. However, the correla-
tion between the single models ranged from 0.563 to 0.583 for the binary labelset,
from 0.234 to 0.434 for the combined labelset, and from 0.239 to 0.461 for labelset
’all’, which is a negligible to moderate correlation [66]. Another reason could be
a high performance on the trainingset, showing that the stacked models overfitted.
The performance when evaluating the models on the trainingset (recall of 0.998,
0.852, 0.868 for respectively labelsets ’binary’, ’combined’, and ’all’, and a preci-
sion at 100% recall of respectively 0.998, 0.624, and 0.626) show that the stacked
models indeed overfitted. Due to the overfitting, the model was extremely good in
classifying the attempts from the trainingset, but therefore performed less well on
classifying unseen attempts. The overfitting on the trainingset should be reduced,
by for example using a cross-validation method with a higher number of folds. An-
other option would be to use another final model. In this research, a decision tree
is used. However, other classifiers may be better suitable for the data and result in
a better performance of the stacked model. A final recommendation is to evaluate
if other ensemble methods such as boosting, or bagging1, improve the performance
compared to the best performing single models in this study.

8.1.7 Proposed decision tree

The proposed decision tree consists of three stages. The first stage predicts if the
attempt is flawless or not. If not, the second stage predicts if the error in the attempt

1https://blog.statsbot.co/ensemble-learning-d1dcd548e936
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belongs to one of the single classes, or to the combined class, of the combined
labelset. If this stage predicts it belongs to the combined class, the third stage
predicts its final label.

To determine which model to use for the different stages, the models were opti-
mized by hyper-parameter tuning, balancing, and stacking.

The proposed decision tree performed worse than the best model for labelset
’all’, with a recall of 0.144 compared to 0.322. Although more of errroclass zero
(technically correct attempts) were classified right by the decision tree, more at-
tempts of the other classes were classified right by the single model, which are the
more important classes to classify right. A reason for the low performance is that
errors made in previous stages of the model can not be corrected by the following
stages. Therefore, the confusion by the single stages accumulate, resulting in a low
overall performance. The recommendation is to only use this model when the single
stages perform perfectly.

8.1.8 The best fit

The best results met in this research are classifiers which are able to classify un-
seen attempts with a recall of 0.864, 0.525, and 0.322, for the labelsets ’binary’,
’combined’, and ’all’, respectively. The performance represented by the precision
at 100% recall of the best performing models was respectively 0.678, 0.134, and
0.063 for the labelsets ’binary’, ’combined’, and ’all’. However, the best models are
selected based on the recall score. When we base this selection on the precision at
100% recall, the best performing model for labelset ’all’ is different. This would be
the RBFNN, trained on a imbalanced dataset of spirometry parameters (0.065).

According to a professional, the performance when using the binary labelset is
accurate enough the be applied in a real life system. However, the performance of
the moduls when using the labelsets ’combined’ and ’all’ is not good enough. An
option is to use the binary prediction to determine if an attempt should be repeated,
but base the feedback on the ’combined’ or ’all’ labelset.

One reason for the low performance when using the labelsets ’combined’ and
’all’ is that the correlation between attempts from different error classes is very high.
This makes it hard for the classifiers to distinguish attempts from different classes.
Besides, the dataset used was very small. The expectation is that extending the
dataset will improve the performance as more data is added to the model, making
it less severe for the model to distinguish between the errorclasses although the
correlation is high.

When we compare our results to the results from Luo et al. (2017) [57] who eval-
uated a classifier predicting four common errors (early termination, cough, variable
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flow, extra breath), we see that the algorithm proposed in the present study per-
formed worse; they met an F1-score of 0.87 on average, while the F1-score of the
best classifier to classify the errors using labelset ’all’ is 0.321. However, the dataset
in this research contains more errorclasses. Furthermore, the dataset used by Luo
et al. (2017) [57] consisted of 1314 to 5728 curves per error class, while our data
consisted of 309 attempts in total, and twelve out of the sixteen error classes were
represented by less than ten attempts. The expectation is that when more data is in-
cluded in the dataset, the performance of the algorithm proposed in this research will
increase. Including more data will handle the high correlation between the attempts
from different error classes in our dataset better and improve the performance.

The time needed to classify unseen data is a negligible amount of time, using a
moderate laptop with an Intel core i5, and an 250 GB SSD. Therefore, this will form
no problem in the real life system.

Misclassified attempts

The best performing models misclassified seventeen attempts, indepedently of which
labelset was used. Refer to figure 7.10 for the curves of these attempts. The at-
tempts were from errorclasses zero (technically correct attempts), one (unsatisfac-
tory start), two (obstructed mouthpiece), and three (an extra breath taken during the
attempt). This shows that the line between these errorclasses and the zero error-
class was thin in the data gathered during the hospital experiments. All attempts
had a dip in the inhalation part. This part was covered by the filtered featureset,
however only covered by the spirometry parameter Forced Inspirational Vital Ca-
pacity (FIV C) in the spirometry parameterset. The expectation is that including
more features focusing on the inhalation part will improve the classification of these
attempts.

It was expected that it would follow from the inter- and intra-rater agreements
as well that these classes were difficult to distinguish. Although these classes are
confused with other classes between professionals, (refer to figure 7.14), these are
not exceptionally confused compared to other classes. Besides, when looking at
the confusion matrices of the intra-rater agreement (refer to figure 7.15), errorclass
one (unsatisfactory start) was not confused between the two round of rater two,
but was confused by rater three, and not in the labelset of rater one. Errorclass
two (obstructed mouthpiece) was not confused by rater three, but was confused by
rater two, and again not in the labelset of rater one. No attempts were labeled as
containing error three (an extra breath taken during the attempt) by rater two and
three, and this class was not confused between the two rounds by rater one. These
results show that it is not more difficult to distinguish these classes compared to the
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other classes in the dataset by the professionals.
The expectation was that it would be difficult to classify attempts during which a

flow leak occured as well, as this only leads to a small deviation in the data. Only
three attempts with this error where available in the dataset. All attempts were in-
deed misclassified when using the labelsets ’combined’ and ’all’. However, these
were classified right when using the binary labelset. This shows that this errorclass
is distinguishable from the zero errorclass representing flawless attempts, when us-
ing two classes, but not from errorclasses two (obstructed mouthpiece), and seven
(cough), as these were the errorclasses these attempts were classified as.

When the data of the inter-annotation study was included in the dataset, only five
attempts misclassified when training on only the data from the hospital experiments,
were misclassified when including the data of the inter-annotation study. Together
with the results from the inter-annotation study showing that the confused classes
by the model are not exceptionally confused by the professional, it shows that the
line between attempts from different errorclasses is very thin, and it depends on the
dataset used in training which attempts are misclassified.

8.1.9 Including the data of the inter-annotation study

The data of the inter-annotation study was included in the trainingset to evaluate if
this improved the performance of the models. The participants of this study were
untrained adults, who were coached by an untrained professional. Their attempts
were labeled by the professional as if they were children, as otherwise many at-
tempts were labeled with label five, based on the fact that the duration was less than
three seconds.

The attempts of the adults were labeled more often with multiple errors than the
attempts from the children from the hospital experiments, with a difference of 35.8%.
Additionally, the errors made during the attempts of the inter-annotation study are
distributed over seven less errorclasses.

The addition of the data of the inter-annotation study decreased the performance
of the best models trained on the trainingset without this data. When the models
were trained and evaluated on only the data from the inter-annotation study, the
performance was also lower, however the difference was smaller.

The decrease in performance implicates that a model performing well on a cer-
tain dataset, does not perform well on another dataset. This could be due to the
creation of more noise in the dataset by using labels of two professionals when
training on data of both studies. However, it could also be due to the mix of children
and adults data. When training and evaluating on the adults dataset only, the per-
formance was also lower. This could be due to this data being noisier, or because
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of the data labeled by another professional results in another model being more ap-
propriate for this dataset, or because the dataset consisted of data from adults. To
exclude the option that the decrease in performance is due to mixing children and
adults data, data from children should be collected and labeled by another profes-
sional to evaluate if this still decreases the performance. This was not possible for
this study, due to the COVID-19 crisis.

8.1.10 Comparison with the rule-based approach

The best performing models based on machine learning are compared to the rule-
based approach, explained in section 6.1.4. This approach bases its error detection
on rules. The approach is designed to detect errors one (unsatisfactory start), three
(an extra breath taken during the attempt), five (attempts that were terminated too
early), six (no maximal effort), seven (cough), and glottis closure. Some rules rep-
resent multiple errors.

The rule-based approach outperformed the machine learning approach slightly
with a difference in recall of 0.06. However, the rule-based approach only classi-
fied twenty-six out of 271 attempts right, compared to 166 by the machine learning
approach. Besides, it misclassified all attempts from the zero errorclass (techni-
cally correct attempts). Thirdly, the rule-based approach is not distinctive as not
meeting a rule may point to different errors. Finally, only six different errors can be
detected. Thus, although the rule-based approach outperforms the machine learn-
ing approach based on the performance metrics, the machine learning approach is
recommended, as it is a more extensive and accurate approach which will be more
useful in providing feedback during home spirometry, as it is more distinctive, and is
able to detect errors from more classes.

8.2 Inter-annotation study

We have seen that the inter-rater agreement is very low. Independent of the labelset
used, the agreement, represented by the Cohen’s kappa score, was found to be in
a range of -0.123 to 0.380. This ranges from a negative agreement to a moder-
ate agreement (refer to table 6.5 for the interpretation).The highest agreement was
between rater two and three. These two raters are from the same hospital, and
have the same background in training and experience. This shows that background
makes a difference in how one looks at spirometry attempts.

The low inter-rater agreement score shows that it is not evident which errors are
in spirometry attempts. Where rater one labeled 136 of the attempts as not contain-
ing an error, rater two and three labeled only eighty-six and fourty-five attempts as
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such. Additionally, rater, one, two and three labeled respectively zero, fourty-eight,
and fifty-seven attempts as containing multiple errors. These deviations shows that
there is a big difference in the errors detected by professionals, and there is a thin
line between whether an attempts is labeled as containing an error or not.

The intra-rater agreement of rater one, two, and three were respectively in a
range of 0.862 to 0.865, which is seen as strong, 0.724 to 0.780, which is seen as
moderate, and 0.648 to 0.860, which is seen as moderate to strong, for the three
labelsets. The biggest deviations were in labeling an attempt as not containing an
error, while it was labeled as containing an error in the other round, and labeling
attempts as containing multiple errors, while these were labeled as containing only
one error during the other round. This adds to the argument that there is a thin line
between whether an attempt is labeled as containing an error or not.

The inter-rater agreement found in literature is much higher, with a lowest kappa
score for the inter-rater agreement of 0.34 [54]. However, these raters were only
asked to label if an attempt should be rejected or not. That is much more evident
than assessing and comparing if one or multiple of twenty-two errors, giving tons of
options, are in the attempts. An option to measure the inter-rater agreement is to
give the raters a list of the most important errors, and ask the raters to only assess
if these errors are in the attempts. This reduces the list of options and will probably
result in a higher inter-rater agreement. However, this does not give a complete view
of which errors are really in the attempts, as is done in this research.

The intra-rater agreements found in this research are lower than the intra-rater
agreements found in literature, which are 98% to 99% [55]. One of the raters who
assessed the attempts in this research stated in the communication with the re-
searcher that they thought the errror detection in the data to be assessed was not
straightforward, and that it was hard to determine if and which errors were in the
attempts. This shows again the thin line between attempts with and without an error.
To assess the intra-rater agreement more fairly, the same strategy as for the inter-
rater agreement should be used; ask the raters to only allocate the most important
errors, of which a list is provided by the researcher.

8.2.1 Implications for an error detection algorithm

The inter-rater agreements show that error detection in spirometry attempts is not
evident. The algorithm proposed in this research uses the labels assigned to the
attempts by a professional. However, if labels of another professional were used, the
performance could vary heavily, based on the results of the inter-annotation study.
This also means that a model trained on labels by one professional, can not be used
by another professional as an attempt seen by the model as not containing an error
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may not be seen this way by the new professional. This is one of the proposed
reasons why the addition of the data from the inter-annotation study decreased the
performance.

To be able to design an error detection algorithm, the first step is to sharpen the
rules of what an error looks like, and when an attempt contains this error.

8.3 Comparison of coaching by a metaphor versus
by a professional

The PEF , FEV1, FV C values, and the number of errors in the attempts performed
when the subject is coached by a professional amd by a metaphor were compared.

No significant differences were found. This shows that the quality of the attempts,
represented by the PEF , FEV1, FV C, and the number of errors, did not decrease
significantly when the metaphors were used to coach the subject instead of a pro-
fessional.

However, it is remarkable that the number of errors when coached by a profes-
sional are higher compared to when coached by the metaphor, as the coaching by
the professional is expected to be more advanced. It could be due to a research
bias, as the professional labeling the errors is part of the SpiroPlay project, and so
not independent. Therefore, the absence of a significant difference in errors should
be interpreted cautiously. The PEF , FEV1, FV C values were calculated without
the intervention of the professional, resulting in these values not being biased due
to this research bias.

Literature shows that PEF values increase when the children play a game over
being coached by a professional, while the FV C and FEV1 values do not differ
significantly [52]. This is different than the results found in this research. This could
be due to the fact that the metaphors from literature focus primarily on PEF , while
the metaphors in the present project also focus on reaching an acceptable FV C

and FEV1. Besides, it could be the case that the coaching by a professional in this
project is different than the coaching of the professional in the study of Gracchi et al.
(2003) [52].

The results in this research show that the metaphors used in the SpiroPlay sys-
tem can be used to coach the children during home spirometry attempts, without a
significant decrease in quality, based on FV C, FEV1, PEF values, and presumably
the number of errors.
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8.4 Applicability of the system in home spirometry

The goal of the SpiroPlay system is to improve home monitoring of asthma, and
to make it possible to monitor asthma patients more frequently, by delivering feed-
back to the child based on the errors that occured during the test, and by providing
metaphors to steer the blowing behaviour of the child.

The error detection approach proposed in this study was based on a dataset
with fifteen different errors, of which seven were based on the criteria which have to
be met for a technically correct attempt, according to Miller et al. (2005) [3]. The
dataset did not contain attempts with errors belonging to the criterias that maximal
inhalation is needed for a technically correct attempt, and that no glottis closure and
hesitation during the attempt is allowed. Therefore, the model could not be trained
and evaluated on these errors.

The best performing model for the binary labelset was able to determine with a
recall of 0.864, and a precision at 100% recall of 0.678 if an attempt is performed
technically correct, based on the errors present in the dataset. This is adequate
enough to be used in a real-life system. The performance of the best performing
models for the labelsets ’combined’ and ’all’ is too low to be used in a real life system.

Although the binary model is accurate enough to be used in a real life system,
the negative to minimal inter-rater agreements imply that a model trained on labels
assigned by one professional, will not be useful for another professional. Therefore,
before this algorithm can be used in a real life situation, the rules of what an error
looks like, and when an attempt contains this error, should be sharpened. Besides,
to be able to base the decision if an attempt is technically correct or not on the
whole criteria list by Miller et al. (2005) [3], attempts where the subject did not inhale
maximally, where glottis closure, and hesitation during the attempt occurred should
be included in the dataset.

The second goal of the system SpiroPlay is to offer metaphors to steer the
blowing behaviour of the child during home spirometry. In the hospital, the child
is coached by a professional. However, this professional is not available at home.
Therefore, another way of coaching should be designed. The present study has
shown that metaphors are a good approach to coach the children at home, as no
significant difference was found in quality defined by the FV C, FEV1, and PEF

values, and presumably the number of errors, when comparing spirometry attempts
coached by a professional and by a metaphor.

In summary, the metaphors can be used as a coaching manner in the system
SpiroPlay. However, the error detection approach cannot be designed and used in
this system before the rules of what an error looks like are sharpened.



122 CHAPTER 8. DISCUSSION AND RECOMMENDATIONS

8.5 Scientific contributions

This study focused on three goals; designing and evaluating an error detection ap-
proach based on machine learning, the evaluation of the agreement in detecting
errors in spirometry data by multiple professionals, and the evaluation of the effect
of the metaphors on the quality of spirometry measurements.

This study showed that the agreement in detecting errors by professionals is very
low, meaning that before a generic error detection algorithm can be designed which
will support all professionals in monitoring asthma, stricter guidelines are needed to
assess when an error occurred. Therefore, a first step is to generate stricter rules.

Although this study revealed that automatic error detection based on machine
learning is not yet feasible, it also established that using metaphors as coaching
method did not result in significant quality loss when compared to the coaching
method used by the professional. Therefore, using these metaphors during home
spirometry will help the children to blow good attempts.

The remained quality of the spirometry attempts using metaphors as coaching
method brings the medical world a step closer to home monitoring of asthma, which
will result in lower healthcare costs, and improved freedom for the children as they
do not have to visit the hospital as often. However, as an error detection approach
supporting all professionals is not achievable yet, the attempts still have to be as-
sessed manually by the professional to select the three best attempts, until stricter
rules to determine when an error occurred are introduced.

8.6 Strengths and limitations

This broad research focused on multiple topics; designing and evaluating an er-
ror detection approach based on machine learning, an inter-annotation study was
designed and performed to assess the inter- and intra-rater agreements between
multiple professionals detecting errors in spirometry data, and the question if the dif-
ference in quality of a spirometry attempt was significant when the child is coached
by a professional and when coached by a metaphor during a spirometry attempt
was answered. The processes to answer the questions belonging to these three
areas of focus where executed extensively and well-considered. An example of the
extensiveness is the use of different labelsets, different featuresets, different models
and hyperparameters, different balancing techniques, and different machine learn-
ing techniques to find the best possible models. An example of the level of consid-
eration is the execution of a test recording before the actual inter-annotation study,
to be certain that the right angels were used when recording the subjects.

However, this research also contains limitations. First, this research states that
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the rules to determine if an error occurred or not are not strict enough to design
a generic error detection algorithm. This statement is based on the low inter-rater
agreement, and on the decrease in performance of the models when trained on (a
mix of children and) adults data. We expect the decrease in performance to be
mainly due to the professionals labeling data differently. However, the effect of using
data from adults instead of children could not be excluded as the inter-annotation
study was performed with adults. Although performing this study with children was
not possible due to the COVID-19 crisis, this is a limitation of this research.

Secondly, the data the error detection algorithm was based on did not cover all
criteria which should be met, according to Miller et al. (2005) [3], for a technically
correct attempt, resulting in an incomplete decision if an attempt is technically cor-
rect or not when using the models based on this dataset. Data covering all criteria
was not available during this research, but should be collected for future research.

Thirdly, although literature states that compliance is an issue in home spirometry
attempts, this research did not investigate if this is also the case when using the
SpiroPlay system. This was out of the scope of this research, but should be looked
into during future research.

Finally, the criteria by Miller et al. (2005) [3] were updated during this study.
The main difference is in the more strict definition of the End of Test, now called
the ’End of Forced Expiration’, in which there is more focus on a full inhalation after
expiration. This part of the manoevre is not taken into account in this research.
Therefore, the new criteria described by Miller et al. (2019) [67] should be used
during future research.
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Chapter 9

Conclusion

This chapter concludes this research by answering the research questions, asked in
chapter 5.

9.1 Error detection

The first goal of this research was to design and evaluate an error detection ap-
proach using machine learning techniques to detect errors in spirometry data. Dif-
ferent classifiers, featuresets, labelsets, and balancing techniques were evaluated.
Also, stacking was used as an ensemble method, and a proposed decision tree was
evaluated.

The best performing models for all labelsets were the SVMs, using the spirometry
parameters as input for the labelsets ’combined’ and ’all’, and the filtered featureset
for the binary labelset. Performance increased after balancing, and ROS outper-
formed SMOTE as a balancing technique.

The recall and precision at 100% recall of the best model for the binary labelset
were 0.864 and 0.678. According to a professional, this is accurate enough to be
used in a real life system.

The recall and precision at 100% recall of the best models when using the com-
bined labelset were 0.525 and 0.134, and when using the labelset ’all’ 0.322 and
0.063. According to the professional, these performance are too poor to use in a
real life system.

Stacking and the proposed decision tree did not outperform the best single mod-
els.

When comparing the machine learning approach to the rule-based approach, we
conclude that the rule-based approach outperforms the machine learning approach
based on precision, recall, and the F1-score. However, the rule-based approach
classified only twenty-six out of 271 attempts right compared to 166 by the machine
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learning approach, is only designed to classify six different errors, instead of the fif-
teen the machine learning approach is trained on, and is not distinctive as not meet-
ing a rule can point to multiple errors. Therefore, the machine learning approach is
recommended over the rule-based approach.

9.2 Inter-annotation study

The second goal of this research was to assess the agreement in error detection by
professionals. To meet this goal, an inter-annotation study was performed. Thirteen
adults participated in this study, and the attempts were labeled by three profession-
als. The agreement was calculated for the three labelsets also used in the designing
of the error detection algorithm.

The Cohen’s kappa score representing the inter-rater agreement ranged from -
0.123 to 0.380, which can be interpreted as a negative to minimal agreement. The
intra-rater agreement of rater one for the three labelsets ranged from 0.862 to 0.865,
which is a strong agreement, of rater two from 0.724 to 0.780, which is a moderate
agreement, and for rater three from 0.648 to 0.860, which is a moderate to strong
agreement. Especially the low inter-rater agreements reveal that professionals as-
sess the spirometry attempts very differently. When connecting these results to the
designing of the error detection algorithm based on machine learning, we conclude
that a model based on labels of one professional does not support another profes-
sional when used in a system for home monitoring of asthma. Therefore, before a
generic error detection algorithm can be designed, the rules describing the different
errors should first be sharpened.

9.3 Comparison of coaching by a metaphor versus
by a professional

The third goal of this research was to evaluate if there is a difference in quality of
spirometry attempts coached by a professional and by a metaphor. This quality was
represented by the PEF , FEV1, FV C values, and the number of errors made during
the attempts, based on the labeling of the professional. The data from the hospital
experiments was used to evaluate this difference.

The results show that there is no significant difference in PEF , FEV1, FV C
values, and the number of errors. However, there could have been a research bias
when labeling the errors in the spirometry attempts. Therefore, the absence of a
significant difference in the number of errors should be taken cautiously.
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These results demonstrate that using the metaphors during home spirometry is a
good way to coach the children during home spirometry attempts, without significant
loss of quality based on PEF , FEV1, FV C, and presumably the number of errors.

9.4 Final remarks

The findings of this research implicate that it is possible to perform home spirometry,
coached by metaphors, without quality loss based on the measured PEF , FEV1,
FV C values, and presumably the number of errors.

The evaluation of the error detection algorithm show that it is possible to design
an algorithm which determines if an attempt is technically correct or not. However,
the negative to minimal inter-rater agreements show that professionals detect dif-
ferent errors in the same spirometry attempts. Therefore, before a generic error
detection algorithm can be designed and used in a real life system, stricter rules
should be introduced describing if and which error occurred during an attempt.
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Appendix A

Background information method

A.1 Kappa score

The Cohens kappa score is calculated using the following formula:

κ =
PR(a)− PR(e)

1− PR(e)
(A.1)

Pr(a) represents the actual observed agreement, Pr(e) represents the chance
agreement.

The strength of this method is that it takes into consideration the chance that the
professionals guess the label instead of knowing it.

A kappa score below 0.40 is seen as poor agreement, between 0.40 and 0.60 as
fair, 0.60 to 0.75 as good, and above 0.75 as excellent agreement [68] .

Below a calculation example is given.

The formulas we need are:

κ =
PR(a)− PR(e)

1− PR(e)
(A.2)

PR(a) =
Agreements

Agreements+Disagreements
(A.3)

PR(e) =
X1 ∗ Y1
N2

+
X2 ∗ Y2
N2

(A.4)

Example data:
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Observer 1
Yes No

O
bs

er
ve

r2

Yes 20 5

No 15 10

Table A.1: Example data for calculation Kappa score

Using the formulas A.2, A.3, and A.4 and the example data yields:

PR(a) =
30

50
= 0.6 (A.5)

PR(e) =
(20 + 5) ∗ (20 + 15)

502
+

(15 + 10) ∗ (5 + 10)

502
=

875

2500
+

375

2500
= 0.35+0.15 = 0.5

(A.6)

κ =
0.6− 0.5

1− 0.5
=

0.1

0.5
= 0.2 (A.7)

A.2 Normalization

Min-max normalization:

z =
x−min(x)

max(x)−min(x)
(A.8)

Z-normalization:

z =
xi − µ
σ

(A.9)

A.3 Smoothing

To smooth the data a Savitzky-Golay filter is used. This low-pass filter uses a poly-
nomial fit using 2n+ 1 neighbouring points, which include the point to be smoothed.
N is at least the order of the polynomial.

An example formula is presented in equation A.10, where a second order poly-
nomial and seven datapoints are used to smooth a datapoint.

yt = (−2xt−3 + 3xt−2 + 6xt−1 + 7xt + 6xt+1 + 3xt+2 − 2xt+3)/21 (A.10)
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A.4 K-fold cross validation

In K-fold cross validation, the dataset is divided in K subsamples, one used for test-
ing and the rest for training. This is shown in Figure A.1. The model is trained K
times. Every time another subsample is the test sample. The results are averaged
to get an overall result which can be used to analyze the quality of the model.

Figure A.1: K-fold cross validation

A.5 LSTM (Recurrent Neural Network)

Long-Short Term Memory networks (LSTMs) are trained using back-propagation. It
makes use of three gates as shown in Figure A.2; the forget gate, the input gate,
and the output gate. Using these gates, the model is able to learn which data is
important to keep passing the relevant information down the chain of sequences.
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Figure A.2: Overview of an LSTM cell. Source: adapted from figures 1 and 12 of
Nguyen (2019) [69]

The first gate is the forget state; this state determines which information should
be kept by passing the information from the previous hidden state (ht−1 in figure A.2)
and the current input (Xt in figure A.2) through a sigmoid function. This turns values
between zero and one; the values closer to one are the ones that should be kept.

The input gate starts with passing the previous hidden state (ht−1 in figure A.2)
and the current input (Xt in figure A.2) through a sigmoid function which transforms
the values to values between zero and one to decide which values will be updated;
zero means that the value is not important, one means it is important. The current
input and the hidden state are also passed through a tanh function to transform
the values to be between minus one and one as this is necessary for this network.
The two outputs are multiplied; the output from the sigmoid function decides which
information has to be kept from the output of the tanh function.

The output from the forget state and the previous cell state (ct−1 in figure A.2)
are multiplied to drop values in the previous cell state, when these get multiplied by
values from the forget gate which are near zero. This output is added pointwise with
the output from the input gate, which creates the new cell state.

The output gate determines the new hidden state. First, the previous hidden state
together with the current input is passed through a sigmoid function. Secondly, the
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new cell state is passed through a tanh function. These two outputs are multiplied
to decide what information should retain in the new hidden state. This new hidden
state, together with the new cell state, form the output of a cell of the LSTM.

All cells following each other using the hidden state and cell state from the pre-
vious cell form a sequence which is able to keep the most important information
throughout the whole network which makes the short term memory long again. [69]

A.6 RBFNN (Artificial Neural Network)

A neural network consists of three types of layers; the input layer, the hidden layers,
and the output layer. The layers are connected and the input which travels through
the network is transformed by neurons in the hidden layers to create an output.
Every connection has a weight and a bias which is used to calculate the output of
a hidden layer from the input of that hidden layer. An example network is shown in
figure A.3. This network has one hidden layer with two neurons.

Figure A.3: An example of an ANN. Source: Figure 1 of Yiu (2019) [70]

The formula used for transforming the input is as follows:

Sigmoid(B1 ∗X +B0) = PredictedProbability (A.11)

Where B1 is the weight, X is the input, and B0 is the bias. In this example neuron
of the hidden layer, a sigmoid function is used as activation function. There are other
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activation functions possible, such as the tanh activation function. In every hidden
layer, the input is transformed using formula A.11, however the activation function
differs. All the transformations of an input by neurons in the hidden layers lead to an
output. This process is called forward propagation.

The goal is to find a set of weights and biases which minimize our cost function.
The cost function is a measurement of the differences between the predictions of
the model and the target outcomes. There are different cost functions possible. One
example is the Mean Squared Error (MSE) .

MSE =
∑

[(Prediction− Actual)2] ∗ (1/numobservations) (A.12)

This cost function punishes predictions with a bigger difference to the target out-
come more severely.

To minimize the cost function, the derivative of the error is calculated from the
output backwards to the input to be able to adjust the weights and biases. This is
called backward propagation.

The forward propagation and backward propagation steps are repeated until the
cost function is as minimal as possible. [70]

Figure A.4: The RBFNN layout. Source: figure 8 of McCormick (2013) [71]

A Radial Basis Function Neural Network (RBFNN) (see A.4) is a special form of
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an ANN. It has one input layer, one hidden layer, and one output layer. The hidden
layer consists of RBF neurons. These neurons store so called ”prototypes” to which
the inputs are compared. The greater the Eucledian distance between the two, the
lower the chance the input belongs to the same class as the prototype.

These prototypes have to be chosen in such a way that it represents a cluster
of values from the same class. Therefore, K-means clustering is used to select the
prototypes. The centers of these clusters will become the prototypes which is the
average of all point in the cluster. The higher K, the more precise the model will be
as smaller clusters are represented. However, with an increasing K, the efficiency
decreases. Therefore, several values have to be tested to find the best trade-off.

The activation function of the RBF neurons (formula A.13) is based on the Gaus-
sian.

φ(x) = eβ‖x−µ‖
2

(A.13)

The β variable controls the width of the Gaussian curve. This variable is chosen
by formula A.14.

β =
1

2σ2
(A.14)

Here, the σ should be equal to the average distance between the cluster center
and all points in the cluster (see formula A.15). [71]

σ =
1

m

m∑
i=1

‖xi − µ‖ (A.15)

A.7 Boosted decision trees

Boosted decision trees is an ensemble model. Individual decision trees are trained
sequentially and each tree learns from the mistakes made by the previous tree.

At the start of the training process, every sample has identical weights; one
divided by the total number of samples. A decision tree with a depth of one is
build for every feature. These decision trees are used to classify the data. The tree
and feature with the highest accuracy is chosen to be the next tree in the forest. The
significance of this tree is calculated using the following formula:

significance =
1

2
log(

1− total error
total error

) (A.16)

The total error is the sum of the weights of the samples which were classified
incorrectly. This significance and total error is used to update the sample weight of
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the samples by increasing the weights of the misclassified samples and decreasing
the weights of the correctly classified samples by the following formulas:

new sample weight = sample weight ∗ esignificance (A.17)

new sample weight = sample weight ∗ e−significance (A.18)

After that, the weights are normalized.
The new weights are used to choose a new trainingset to repeat the process of

building decision trees and updating the weights. As the weights of the misclassified
items is higher, the probability these will be in the new dataset multiple times is high,
thus putting more emphasis on these samples.

When feeding the trees unseen data, the model classifies a new sample by each
tree in the forest. The trees are divided into groups based on their output and the
total significance of a group is calculated by taking the sum of the significances in this
group. The output of the forest is the group with the highest total significance. [72]

A.8 Support Vector Machine

The goal of an SVM is to find a hyperplane that distinctively classifies data points.
This is done in an N-dimensional space, where N is the number of features.

The to be found hyperplane should have the maximum margin. This is the distance
between data points of the classes. The larger this margin is, the more confident
new datapoints can be classified.

The points closest to the hyperplane are called the ”support vectors” and influ-
ence the orientation and position of the hyperplane. These support vectors are used
to maximize the margin.

To decide which values are on which side of the hyperplane, the output of a linear
function is examined; if this output is greater than one, it is identified with one class
if it is below minus one, it is identified with the other class.

The hinge loss function together with an regularization parameter (see formula
A.19) is used as the loss function for the SVM. This loss function helps in maximizing
the margin. The regularization parameter balances the maximization of the margin
and the loss.

minwλ||w||2 +
n∑
i=1

(1− yi < xi, w >)+ (A.19)

To find the gradients, partial derivatives with respect to the weights are taken.
These gradients are used to update the weights (see formula A.20).
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δ

δwk
λ||w||2 = 2λwk

δ

δwk
(1− yi < xi, w >)+ =

{
0, ifyi < xi, w >≥ 1

−yixik, else

(A.20)

This process leads to the maximization of the margin, finding the best hyperplane
to separate the classes. [73]

A.9 Evaluation metrics

This section explains and shows example calculations of the precision, recall, F1-
score, AUC-score. First, it explains the confusion matrix.

A.9.1 Confusion matrix

The example confusion matrix used for this explanation and the example calcula-
tions in this section is shown in table A.2. The confusion matrix shows how many
samples in the dataset are predicted as having the label assigned to the samples,
and how many samples are predicted with the wrong label. In the example confusion
matrix, eighty-five samples are classified right; forty of the ’True’ class, and forty-five
of the ’False’ class. Eight samples which have the actual label ’True’ are predicted
as beloning to the ’False’ class. For seven attempts, it is the other way around; these
have the actual label ’False’, but are assigned label ’True’ during prediction.

The confusion matrix is used to show the confusion between the different classes
in the dataset. It shows how many attempts from one class are misclassified as
another class. This is especially helpful when using a dataset with more than two
classes, as it shows which of the classes are confused.

Actual
True False

P
re

di
ct

ed

True 40 7

False 8 45

Table A.2: Example confusion matrix
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A.9.2 Precision

The formula for calculating the precision is given in equation A.21.

Precision =
tp

tp+ fp
(A.21)

Using the data from the example confusion matrix (A.2), the precision is calcu-
lated as follows:

Precision =
40

40 + 7
=

40

47
= 0.85 (A.22)

A.9.3 Recall

To calculate the recall, formula A.23 is used.

Recall =
tp

tp+ fn
(A.23)

When the data from the example confusion matrix (A.2) is filled in, the recall is
calculated as follows:

Recall =
40

40 + 8
=

40

48
= 0.83 (A.24)

A.9.4 F1-score

The F1-score is a combination of the precision and recall, and is calculated using
the following formula:

F1Score =
2tp

2tp+ fp+ fn
(A.25)

Using the data of the example confusion matrix (A.2), the F1-score is calculated
as follows:

F1Score =
2 ∗ 40

2 ∗ 40 + 7 + 8
=

80

95
= 0.84 (A.26)

A.9.5 Precision-recall curve

The precision-recall curve shows the trade-off between recall and precision. The
recall and precision are calculated at different thresholds. An example of such a
curve is shown in figure A.5. Precision at 100% recall is the precision score when
the recall is 1.0.
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Figure A.5: An example of a precision-recall curve. Source: adapted from image 1
of Scikit Learn (2019) [74]

A.10 Statistical tests

Below are explanations and example calculations of the three statistical tests used
in this research: the Shapiro-Wilk test, the independent sample T-test, and the
Wilcoxon test. Also, the Q-Q plot is explained.

A.10.1 Q-Q plot

A Q-Q plot is used to compare the real quantiles of a dataset to the theoretical
quantiles to visually determine if the dataset is normally distributed. This is done by
dividing a curve of a normal distribution in n+ 1 segments, where n is the number of
datapoints in the dataset, and finding the z-values in the z-table for the cut-off points
of the segments. These z-scores are plotted against the datapoints. If this line is a
straight line, the data is normally distributed. An example of a Q-Q plot where the
data is approximately normally distributed is shown in figure A.6.
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Figure A.6: An example of a Q-Q plot. Source: figure 4 of Stephanie (2019) [75]

A.10.2 Shapiro-Wilk test

To evaluate if the dependent variable is normally distributed, the Shapiro-Wilk test is
performed. The formula for the Shapiro-Wilk test is as given in formula A.27.

W =

(∑n
i=1 aix(i)

)2∑n
i=1(xi − x̄)2

(A.27)

The values (x) has to be ordered in increasing order, ai are values to be looked
up in the Shapiro-Wilk table, x̄ is the mean of the sample. The sample is normally
distributed as W is smaller or equal to c which depends on the number of entries in
the sample and can also be found in the Shapiro-Wilk table.

The data in table A.3 is used as example data.

4.635 4.771 4.820 4.852 4.890 4.898 4.898 4.913 4.977 5.011
5.081 5.165 5.165 5.176 5.313 5.323 5.323 5.389 5.429 5.460
5.497 5.541 5.595 5.609 5.649 5.656 5.778 5.889 5.892 6.269

Table A.3: Example data Shapiro-Wilk test.

The calculated mean and variance are x̄ = 5.295 and s2 = 0.1560. The chosen α
is 0.05

H0: F (x) = φ(x−µ
σ

), meaning X is normally distributed.
H1: F (x) 6= φ(x−µ

σ
), meaning X is not normally distributed.

The formula used is shown in A.28, where ai is from the table of Shapiro-Wilk.

W =

(∑n
i=1 aix(i)

)2∑n
i=1(xi − x̄)2

(A.28)

Using the example data and the formula, W = 4.3771
4.525

= 0.967.
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When W ≤ c, the H0 hypothesis is not true. When looking up the value for c in
the Shapiro-Wilk table when n = 30, and α = 0.05, c = 0.927, meaning W ≥ c, so
the H0 hypothesis is true.

A.10.3 Paired sample T-test

The formula used when performing an paired sample T-test is given in formula A.29.

T =
(
∑
D)/N√∑

D2−( (
∑

D)2

N
)

(N−1)(N)

(A.29)

Where
∑
D is the sum of the differences, and N is the number of samples in

both datasets.
The H0 hypothesis is that there are no significant differences, while the H1 hy-

pothesis is that the differences are significant. A standard threshold of p-value 0.05
is used to determine the significance. When the difference is significant, this means
there is a less than a 5% chance the difference is per accident and thus we can
assume there is a real difference.

H0: the difference between the mean of the datasets is not significant. H1: the
difference between the mean of the datasets is significant.

As example data we use a dataset of twenty samples with a summed difference
of -73, and 11 samples in both datasets.

Filling in the formula gives us T = −2.47.
To find the p-value, we first need to calculate the degrees of freedom, which is

N − 1 = 10. From the t-table we find that with an alpha level of 0.05, the t-value is
2.228. As this value is greater than our t-value at the alpha level, the p-value is less
than the alpha value of 0.05. Therefore, the null hypothesis can be rejected.

A.10.4 Wilcoxon test

The Wilcoxon test is used to calculate if a difference between two groups is signifi-
cant or not when the data is not normally distributed.

When performing the Wilcoxon test, the values from both samples are ordered in
increasing order and the rank numbers of one sample are summed (W =

∑
iR(Xi)).

If W is bigger than the critical value chosen, there is a significant difference between
the two samples.

The example data used in this example calculation is shown in table A.4.
The first step in performing the Wilcoxon test is to rank the observations. This is

done in table A.10.4.
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1 2 3 4 5 6 7 8
Group 1 500 528 560 444 397 411 519 511
Group 2 410 457 501 450 407 457 385 540

Table A.4: Example data Wilcoxon test

Obser-
vation

385 397 407 410 411 444 450 451 457 500 501 511 519 528 540 560

Rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Belong
to
group 1

x x x x x x x x

Table A.5: The example data ranked
The formula of the Wilcoxon test is given in formula A.30.

W =
∑

iR(Xi) (A.30)

H0: fX(x) = fY (x)

H1: fX(x) = fY (x− a), such that a > 0, and α0 = 0.10.
Using the ranked example data (table A.10.4), W is calculated as follows:

W =
8∑
i=1

R(Xi) = 2 + 5 + 6 + 10 + 12 + 13 + 14 + 16 = 78 (A.31)

As the number of observations in each group is bigger than five, we are allowed
to say that W is approximately normally distributed where:

µ = E(W ) = 1
2
n1(N + 1) = 1

2
∗ 8 ∗ (16 + 1) = 68, and

σ2 = 1
12
n1n2(N + 1) = 1

12
∗ 8 ∗ 8 ∗ (16 + 1) ≈ 90.67

H0 is not true if P (W ≥ 78|H0) ≤ α0:
P (W ≥ 78|H0) = P (W ≥ 77.5|H0) ≈ P (Z ≥ 77.5−68√

90.67
) ≈ 1− φ(1.00) = 15.87%

15.87% > 10% = α0, so the difference between the two groups is not significant.
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Performance of the models

C.1 Hyperparameter tuning
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Featureset Model Precision Recall F1-score
Precision
at 100%
recall

Spirometry parameters RBFNN 0.639 0.525 0.577 0.539
Boosted
decision
trees

0.726 0.653 0.688 0.532

SVM 0.914 0.720 0.806 0.605

Filtered features RBFNN 0.629 0.559 0.592 0.500
Boosted
decision
trees

0.699 0.610 0.652 0.541

SVM 0.763 0.737 0.750 0.573

Filtered features +
spirometry parameters

RBFNN 0.602 0.500 0.546 0.500

Boosted
decision
trees

0.623 0.559 0.589 0.504

SVM 0.733 0.720 0.726 0.557

Unfiltered features RBFNN 0.592 0.381 0.464 0.500
Boosted
decision
trees

0.566 0.475 0.516 0.509

SVM 0.632 0.508 0.563 0.518

Unfiltered features +
spirometry parameters

RBFNN 0.618 0.466 0.531 0.500

Boosted
decision
trees

0.525 0.449 0.484 0.504

SVM 0.634 0.500 0.559 0.511

Smoothed data LSTM 0.384 0.449 0.414 0.500

Table C.1: The performance of the models after hyperparameter tuning, using la-
belset ’binary’.
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Featureset Model Precision Recall F1-score
Precision
at 100%
recall

Spirometry parameters RBFNN 0.380 0.203 0.258 0.117
Boosted
decision
trees

0.410 0.229 0.293 0.113

SVM 0.393 0.356 0.373 0.125

Filtered features RBFNN 0.198 0.178 0.177 0.111
Boosted
decision
trees

0.301 0.136 0.179 0.111

SVM 0.362 0.263 0.304 0.111

Filtered features +
spirometry parameters

RBFNN 0.173 0.127 0.146 0.111

Boosted
decision
trees

0.242 0.169 0.199 0.111

SVM 0.372 0.229 0.282 0.115

Unfiltered features RBFNN 0.044 0.017 0.025 0.113
Boosted
decision
trees

0.034 0.017 0.023 0.111

SVM 0.165 0.051 0.077 0.111

Unfiltered features +
spirometry parameters

RBFNN 0.141 0.042 0.065 0.111

Boosted
decision
trees

0.119 0.059 0.077 0.111

SVM 0.131 0.059 0.081 0.111

Smoothed data LSTM 0.097 0.102 0.097 0.112

Table C.2: The performance of the models after hyperparameter tuning, using la-
belset ’combined’.
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Featureset Model Precision Recall F1-score
Precision
at 100%
recall

Spirometry parameters RBFNN 0.277 0.178 0.193 0.065
Boosted
decision
trees

0.191 0.119 0.146 0.063

SVM 0.270 0.305 0.286 0.063

Filtered features RBFNN 0.184 0.144 0.150 0.063
Boosted
decision
trees

0.120 0.059 0.078 0.063

SVM 0.233 0.195 0.212 0.063

Filtered features +
spirometry parameters

RBFNN 0.160 0.161 0.148 0.063

Boosted
decision
trees

0.163 0.144 0.150 0.063

SVM 0.211 0.195 0.202 0.063

Unfiltered features RBFNN 0.086 0.025 0.039 0.063
Boosted
decision
trees

0.048 0.025 0.033 0.063

SVM 0.000 0.000 0.000 0.063

Unfiltered features +
spirometry parameters

RBFNN 0.064 0.017 0.027 0.063

Boosted
decision
trees

0.034 0.025 0.028 0.063

SVM 0.000 0.000 0.000 0.063

Smoothed data LSTM 0.045 0.127 0.066 0.063

Table C.3: The performance of the models after hyperparameter tuning, using la-
belset ’all’.
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C.2 Balancing

Featureset Model Precision Recall F1-score
Precision
at 100%
recall

Spirometry parameters RBFNN 0.744 0.568 0.644 0.524
Boosted
decision
trees

0.776 0.644 0.704 0.524

SVM 0.874 0.763 0.814 0.567

Filtered features RBFNN 0.682 0.636 0.658 0.534
Boosted
decision
trees

0.675 0.653 0.664 0.534

SVM 0.760 0.780 0.770 0.573

Filtered features +
spirometry parameters

RBFNN 0.615 0.610 0.613 0.518

Boosted
decision
trees

0.620 0.636 0.628 0.513

SVM 0.738 0.763 0.750 0.562

Unfiltered features RBFNN 0.608 0.525 0.564 0.500
Boosted
decision
trees

0.549 0.568 0.558 0.500

SVM 0.585 0.525 0.554 0.524

Unfiltered features +
spirometry parameters

RBFNN 0.570 0.551 0.560 0.500

Boosted
decision
trees

0.551 0.551 0.551 0.500

SVM 0.630 0.534 0.578 0.500

Smoothed data LSTM 0.371 0.441 0.403 0.509

Table C.4: The performance of the models, after applying balancing technique
SMOTE, using labelset ’binary’.
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Featureset Model Precision Recall F1-score
Precision
at 100%
recall

Spirometry parameters RBFNN 0.702 0.559 0.623 0.541
Boosted
decision
trees

0.771 0.686 0.726 0.596

SVM 0.849 0.763 0.804 0.615

Filtered features RBFNN 0.596 0.576 0.586 0.529
Boosted
decision
trees

0.652 0.619 0.635 0.504

SVM 0.857 0.864 0.861 0.678

Filtered features +
spirometry parameters

RBFNN 0.661 0.644 0.652 0.518

Boosted
decision
trees

0.649 0.610 0.629 0.502

SVM 0.741 0.729 0.735 0.599

Unfiltered features RBFNN 0.566 0.542 0.554 0.502
Boosted
decision
trees

0.525 0.542 0.533 0.502

SVM 0.583 0.508 0.543 0.522

Unfiltered features +
spirometry parameters

RBFNN 0.625 0.593 0.609 0.502

Boosted
decision
trees

0.565 0.517 0.540 0.500

SVM 0.562 0.619 0.589 0.527

Smoothed data LSTM 0.440 0.559 0.493 0.500

Table C.5: The performance of the models, after applying balancing technique ROS,
using labelset ’binary’.
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Featureset Model Precision Recall F1-score
Precision
at 100%
recall

Spirometry parameters RBFNN 0.342 0.246 0.272 0.120
Boosted
decision
trees

0.363 0.263 0.267 0.111

SVM 0.380 0.246 0.287 0.122

Filtered features RBFNN 0.205 0.195 0.194 0.111
Boosted
decision
trees

0.275 0.203 0.220 0.113

SVM 0.326 0.271 0.285 0.121

Filtered features +
spirometry parameters

RBFNN 0.234 0.153 0.179 0.111

Boosted
decision
trees

0.185 0.186 0.175 0.118

SVM 0.251 0.203 0.222 0.115

Unfiltered features RBFNN 0.090 0.068 0.073 0.112
Boosted
decision
trees

0.070 0.119 0.088 0.114

SVM 0.163 0.186 0.173 0.112

Unfiltered features +
spirometry parameters

RBFNN 0.096 0.076 0.074 0.111

Boosted
decision
trees

0.106 0.186 0.135 0.111

SVM 0.131 0.127 0.128 0.112

Smoothed data LSTM 0.085 0.127 0.096 0.111

Table C.6: The performance of the models, after applying balancing technique
SMOTE, using labelset ’combined’.
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Featureset Model Precision Recall F1-score
Precision
at 100%
recall

Spirometry parameters RBFNN 0.385 0.288 0.304 0.122
Boosted
decision
trees

0.292 0.305 0.284 0.120

SVM 0.584 0.525 0.547 0.134

Filtered features RBFNN 0.267 0.246 0.252 0.111
Boosted
decision
trees

0.275 0.237 0.246 0.113

SVM 0.172 0.144 0.153 0.113

Filtered features +
spirometry parameters

RBFNN 0.195 0.161 0.166 0.111

Boosted
decision
trees

0.234 0.305 0.256 0.115

SVM 0.214 0.153 0.164 0.113

Unfiltered features RBFNN 0.108 0.076 0.081 0.112
Boosted
decision
trees

0.116 0.169 0.135 0.113

SVM 0.163 0.153 0.157 0.112

Unfiltered features +
spirometry parameters

RBFNN 0.144 0.119 0.105 0.114

Boosted
decision
trees

0.102 0.153 0.120 0.112

SVM 0.129 0.127 0.124 0.112

Smoothed data LSTM 0.120 0.153 0.128 0.113

Table C.7: The performance of the models, after applying balancing technique ROS,
using labelset ’combined’.
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Featureset Model Precision Recall F1-score
Precision
at 100%
recall

Spirometry parameters RBFNN 0.226 0.220 0.199 0.064
Boosted
decision
trees

0.200 0.237 0.209 0.063

SVM 0.324 0.297 0.305 0.063

Filtered features RBFNN 0.122 0.161 0.132 0.063
Boosted
decision
trees

0.196 0.263 0.208 0.063

SVM 0.225 0.237 0.229 0.063

Filtered features +
spirometry parameters

RBFNN 0.106 0.127 0.111 0.063

Boosted
decision
trees

0.179 0.220 0.188 0.063

SVM 0.188 0.178 0.180 0.063

Unfiltered features RBFNN 0.005 0.008 0.006 0.064
Boosted
decision
trees

0.045 0.085 0.058 0.063

SVM 0.052 0.051 0.052 0.063

Unfiltered features +
spirometry parameters

RBFNN 0.021 0.042 0.026 0.063

Boosted
decision
trees

0.029 0.051 0.035 0.063

SVM 0.049 0.042 0.043 0.063

Smoothed data LSTM 0.027 0.059 0.033 0.063

Table C.8: The performance of the models, after applying balancing technique
SMOTE, using labelset ’all’.
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Featureset Model Precision Recall F1-score
Precision
at 100%
recall

Spirometry parameters RBFNN 0.209 0.220 0.196 0.065
Boosted
decision
trees

0.190 0.212 0.195 0.063

SVM 0.340 0.322 0.321 0.063

Filtered features RBFNN 0.137 0.144 0.123 0.063
Boosted
decision
trees

0.141 0.178 0.152 0.063

SVM 0.249 0.254 0.249 0.063

Filtered features +
spirometry parameters

RBFNN 0.125 0.093 0.090 0.063

Boosted
decision
trees

0.209 0.246 0.208 0.063

SVM 0.189 0.186 0.183 0.063

Unfiltered features RBFNN 0.015 0.017 0.016 0.064
Boosted
decision
trees

0.069 0.127 0.087 0.063

SVM 0.033 0.042 0.037 0.063

Unfiltered features +
spirometry parameters

RBFNN 0.159 0.034 0.033 0.063

Boosted
decision
trees

0.131 0.169 0.143 0.063

SVM 0.023 0.025 0.024 0.063

Smoothed data LSTM 0.076 0.085 0.074 0.063

Table C.9: The performance of the models, after applying balancing technique ROS,
using labelset ’all’.
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C.3 Proposed decision tree

C.3.1 Labelset: combined without the 0 errorclass

Featureset Model Precision Recall F1-score
Precision at
100% recall

Spirometry parameters RBFNN 0.105 0.088 0.095 0.128
Boosted
decision
trees

0.197 0.138 0.158 0.131

SVM 0.159 0.075 0.102 0.125

Filtered features RBFNN 0.312 0.213 0.213 0.130
Boosted
decision
trees

0.171 0.163 0.164 0.126

SVM 0.255 0.150 0.189 0.126

Filtered features +
spirometry parameters

RBFNN 0.131 0.150 0.140 0.127

Boosted
decision
trees

0.197 0.138 0.158 0.131

SVM 0.159 0.075 0.102 0.125

Unfiltered features RBFNN 0.156 0.163 0.140 0.128
Boosted
decision
trees

0.156 0.163 0.151 0.128

SVM 0.188 0.188 0.177 0.125

Unfiltered features +
spirometry parameters

RBFNN 0.119 0.200 0.149 0.127

Boosted
decision
trees

0.173 0.150 0.150 0.125

SVM 0.131 0.150 0.138 0.125

Smoothed data LSTM 0.089 0.063 0.073 0.126

Table C.10: The performance of the models, using the imbalanced dataset and the
combined labelset without the zero errorclass.
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Featureset Model Precision Recall F1-score
Precision at
100% recall

Spirometry parameters RBFNN 0.209 0.175 0.159 0.130
Boosted
decision
trees

0.123 0.100 0.080 0.126

SVM 0.177 0.113 0.127 0.125

Filtered features RBFNN 0.342 0.100 0.112 0.127
Boosted
decision
trees

0.092 0.113 0.078 0.125

SVM 0.274 0.188 0.216 0.125

Filtered features +
spirometry parameters

RBFNN 0.194 0.113 0.131 0.127

Boosted
decision
trees

0.117 0.100 0.086 0.127

SVM 0.195 0.150 0.156 0.126

Unfiltered features RBFNN 0.148 0.088 0.099 0.125
Boosted
decision
trees

0.168 0.188 0.176 0.128

SVM 0.116 0.138 0.126 0.126

Unfiltered features +
spirometry parameters

RBFNN 0.168 0.150 0.158 0.125

Boosted
decision
trees

0.142 0.163 0.151 0.129

SVM 0.118 0.113 0.115 0.126

Smoothed data LSTM 0.141 0.063 0.118 0.126

Table C.11: The performance of the models, after applying SMOTE, using the com-
bined labelset without the zero errorclass.
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Featureset Model Precision Recall F1-score
Precision at
100% recall

Spirometry parameters RBFNN 0.131 0.088 0.076 0.130
Boosted
decision
trees

0.168 0.138 0.148 0.135

SVM 0.192 0.150 0.156 0.127

Filtered features RBFNN 0.176 0.225 0.198 0.131
Boosted
decision
trees

0.343 0.338 0.332 0.127

SVM 0.309 0.163 0.185 0.125

Filtered features +
spirometry parameters

RBFNN 0.189 0.200 0.171 0.127

Boosted
decision
trees

0.132 0.138 0.135 0.127

SVM 0.195 0.188 0.177 0.128

Unfiltered features RBFNN 0.237 0.138 0.144 0.125
Boosted
decision
trees

0.177 0.225 0.198 0.125

SVM 0.170 0.150 0.159 0.127

Unfiltered features +
spirometry parameters

RBFNN 0.189 0.175 0.172 0.126

Boosted
decision
trees

0.230 0.163 0.190 0.126

SVM 0.182 0.175 0.178 0.126

Smoothed data LSTM 0.138 0.075 0.059 0.126

Table C.12: The performance of the models, after applying ROS, using the com-
bined labelset without the zero errorclass.
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C.3.2 Labelset: 10 to 20, and 66

Featureset Model Precision Recall F1-score
Precision at
100% recall

Spirometry parameters RBFNN 0.033 0.050 0.040 0.146
Boosted
decision
trees

0.020 0.050 0.029 0.125

SVM 0 0 0 0.125

Filtered features RBFNN 0.100 0.050 0.067 0.132
Boosted
decision
trees

0 0 0 0.125

SVM 0 0 0 0.125

Filtered features +
spirometry parameters

RBFNN 0.050 0.050 0.050 0.130

Boosted
decision
trees

0.020 0.050 0.029 0.125

SVM 0 0 0 0.125

Unfiltered features RBFNN 0.050 0.050 0.050 0.127
Boosted
decision
trees

0 0 0 0.125

SVM 0 0 0 0.125

Unfiltered features +
spirometry parameters

RBFNN 0.038 0.050 0.043 0.131

Boosted
decision
trees

0 0 0 0.125

SVM 0 0 0 0.125

Smoothed data LSTM 0.150 0.050 0.075 0.125

Table C.13: The performance of the models trained and evaluated on the dataset
consisting of the attempts with labels between 10 and 20, and 66.
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Featureset Model Precision Recall F1-score
Precision at
100% recall

Spirometry parameters RBFNN 0.233 0.100 0.120 0.127
Boosted
decision
trees

0.110 0.250 0.152 0.125

SVM 0.022 0.050 0.031 0.125

Filtered features RBFNN 0.142 0.100 0.117 0.136
Boosted
decision
trees

0 0 0 0.125

SVM 0.120 0.150 0.133 0.125

Filtered features +
spirometry parameters

RBFNN 0.021 0.050 0.030 0.126

Boosted
decision
trees

0.040 0.100 0.057 0.125

SVM 0.080 0.100 0.089 0.125

Unfiltered features RBFNN 0 0 0 0.127
Boosted
decision
trees

0.076 0.250 0.106 0.125

SVM 0.200 0.050 0.080 0.125

Unfiltered features +
spirometry parameters

RBFNN 0.038 0.050 0.043 0.135

Boosted
decision
trees

0.048 0.100 0.064 0.125

SVM 0.129 0.100 0.103 0.125

Smoothed data LSTM 0.029 0.050 0.036 0.125

Table C.14: The performance of the models trained and evaluated on the dataset
consisting of the attempts with labels between 10 and 20, and 66, after
applying balancing technique SMOTE.
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Featureset Model Precision Recall F1-score
Precision at
100% recall

Spirometry parameters RBFNN 0.168 0.200 0.182 0.142
Boosted
decision
trees

0.082 0.250 0.122 0.125

SVM 0 0 0 0.125

Filtered features RBFNN 0.050 0.050 0.050 0.133
Boosted
decision
trees

0.350 0.300 0.305 0.125

SVM 0.100 0.050 0.067 0.125

Filtered features +
spirometry parameters

RBFNN 0.357 0.200 0.219 0.127

Boosted
decision
trees

0.015 0.050 0.024 0.125

SVM 0.100 0.100 0.100 0.125

Unfiltered features RBFNN 0.055 0.100 0.071 0.129
Boosted
decision
trees

0.065 0.100 0.073 0.125

SVM 0.100 0.100 0.097 0.125

Unfiltered features +
spirometry parameters

RBFNN 0 0 0 0.127

Boosted
decision
trees

0.207 0.300 0.205 0.125

SVM 0.095 0.100 0.094 0.125

Smoothed data LSTM 0.082 0.150 0.106 0.125

Table C.15: The performance of the models trained and evaluated on the dataset
consisting of the attempts with labels between 10 and 20, and 66, after
applying balancing techinque ROS.
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C.3.3 Stacking

The models in bold in tables C.10 to C.15 were stacked. Although the precision at
100% recall was higher for another model of the boosted decision trees using the
combined labelset without the zero errorclass, and the RBFNN using the labelset
including the labels eight to twenty, and sixty-six, the difference in recall was always
bigger and thus these models were used in stacking. Additionally, the boosted de-
cision trees using the labelset including the labels eight to twenty, and sixty-six, and
the filtered featureset performed equally compared to the model using the unfiltered
featureset in combination with the spirometry parameters, based on recall and pre-
cision at 100% recall. In this case, the precision score was used to determine which
model to use.

Tables C.16 to C.19 show the performance of the models on the train and testset,
and the correlation between the single models of the stacked models. The perfor-
mance on the testset is lower than the performance of the single models. The per-
formance on the trainingset is very high for both models. Table C.17 shows that the
correlation between the single models of the stacked model for the second stage of
the proposed decision tree is low. The correlation between the single models of the
stacked model for the third stage (table C.18) are higher, except for the correlation
between the LSTM and the other models.

Labelset Precision Recall F1-score
Precision at
100% recall

Combined, without the zero errorclass (stage 2) 1 1 1 1
Attempts with labels 8 to 20, and 66 (stage 3) 0.908 0.918 0.909 0.788

Table C.16: The performance of the stacked models for stage two and three of the
proposed decision tree, evaluated on the trainingset.

RBFNN
Boosted
decision
trees

Boosted
decision
trees

0.200

SVM 0.358 0.305

Table C.17: The correlation between the different single models used in stacking for
the second stage of the proposed decision tree.



C.4. INCLUDING THE DATA OF THE INTER-ANNOTATION STUDY 189

RBFNN
Boosted
decision
trees

SVM

Boosted
decision
trees

0.503

SVM 0.746 0.585
LSTM 0.046 0.142 0.038

Table C.18: The correlation between the different models used in stacking for the
third stage of the proposed decision tree.

Precision Recall F1-score
Precision at
100% recall

Combined, without the zero errorclass (stage 2) 0.252 0.200 0.221 0.125
Attempts with labels 8 to 20, and 66 (stage 3) 0.101 0.150 0.119 0.125

Table C.19: The performance of the stacked models for stage two and three of the
proposed decision tree.

C.4 Including the data of the inter-annotation study
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(a) Binary (b) Combined

(c) All

Figure C.1: The confusion matrices of the best performing models for the differ-
ent labelsets trained and evaluated on the data of the inter-annotation
study.



Appendix D

Relevant documents

D.1 Spirometry attempts assessing form

This form is used by the professionals to file the errors found during the spirometry
attempts of the tests performed during the short-term study, described in section
6.1.1, and the inter-annotation study, explained in section 6.2.1.
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 Manoeuvre 
1 

Manoeuvre 
2 

Manoeuvre 
3 

Manoeuvre 
4 

Manoeuvre 
5 

Manoeuvre 
6 

Manoeuvre 
7 

Manoeuvre 
8 

Wrong 
posture 

        

Unsatisfactory 
start 

        

Flow leak         

Obstructive 
mouthpiece 

        

No maximal 
effort 

        

Cough         

Unsatisfactory 
end 

        

Extra breath         

Other, 
namely: 

        

 

General remarks:  

 

192



D.2. LETTER FOR THE PARTICIPANTS OF THE INTER-ANNOTATION STUDY 193

D.2 Letter for the participants of the inter-annotation
study

This letter was read by the participants of the inter-annotation study before the
spirometry tests were executed. The email addresses and phone numbers are cov-
ered for privacy reasons.



Beste,  

Mijn naam is Iris Heerlien en voor de Universiteit Twente ben ik bezig met een afstudeeronderzoek 

naar het thuis monitoren van kinderen met astma. Dit onderzoek is onderdeel van het project 

SPIROmetry-based PLAYful Asthma (SpiroPlay). Het thuismonitoren van astma houdt in dat de 

kinderen thuis een spirometrie test kunnen doen, zonder dat hier een arts of vakkundige bij nodig is. 

Een spirometrie test is een blaastest waarbij zo hard mogelijk, en zo lang mogelijk uit geblazen moet 

worden, zodat hun long capaciteit gemeten kan worden. Als de kinderen thuis gemonitord kunnen 

worden, in plaats van vaak naar het ziekenhuis te moeten, geeft dit de kinderen een enorme vrijheid!  

Een onderdeel van dit onderzoek is zorgen dat de fouten, die gemaakt kunnen worden tijdens een 

blaastest, automatisch worden gedetecteerd. Voorbeelden van fouten zijn: hoesten tijdens de 

meting, niet hard genoeg uitademen, of niet lang genoeg uitademen. Om deze fouten te detecteren, 

maak ik een computer programma. Om te weten hoe goed mijn computer programma deze fouten 

kan herkennen, moet ik een aantal blaastesten afnemen om deze door vakkundigen te laten 

beoordelen. Dit moet ik doen om te kijken hoe goed de vakkundigen de fouten erin kunnen 

herkennen. Als ik dit weet, kan ik beoordelen hoe goed mijn computer programma dit kan in 

vergelijking met de vakkundigen. 

De vakkundigen bepalen welke fouten er in een blaastest zit aan de hand van de grafiek die 

gegenereerd wordt uit de data van de blaastest, en door te kijken naar de persoon die de blaastest 

doet.  

Deze blaastest zou ik graag bij u willen afnemen in een openbare ruimte. Dit houdt in dat, als u 

akkoord gaan met de deelname aan dit onderzoek, u wordt gevraagd om de blaastest 2 keer uit te 

voeren, één keer met een app met metaforen die u sturing geeft tijdens uw test, en één keer met 

sturing gegeven door de onderzoeker. Elke test is 3 tot 8 metingen, afhankelijk van of de metingen 

wel of geen fouten bevatten. Het apparaatje wat hiervoor gebruikt wordt ziet er zo uit: 

 

 

Een voorbeeld van een metafoor in de app is dat u tijdens de meting een auto moet laten rijden. Dit 

ziet er zo uit: 
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Als u inademt, dan gaat de toerenteller oplopen. Als u uitademt, gaat de auto rijden en veranderd in 

een sportauto.  

Deze blaastesten duren in totaal, met uitleg, 10 tot 15 minuten. We voorzien hier geen risico’s bij. Er 

is geen financiële compensatie, maar we verwachten wel dat het leuk is om deel te nemen. Van te 

voren wordt u verteld hoe u moet blazen. Tijdens de blaastest zou ik u ook graag willen filmen. De 

vakkundige hoeft dan zelf niet aanwezig te zijn tijdens de meting , maar hij heeft deze informatie 

nodig om te kijken of, en welke, fout(en) er in de blaastest zit(ten). Volgens de standaard van 

onderzoek doen in Nederland (VSNU) worden deze video’s 10 jaar bewaard. De video’s blijven alleen 

toegankelijk voor de mensen die direct bij het onderzoek betrokken zijn. Ook zullen de video’s 

nergens gepubliceerd worden  

Tijdens het onderzoek wordt u op geen enkele manier gediagnostiseerd met het wel of niet hebben 

van astma. Hiervoor zijn de opzet en resultaten niet geschikt. 

Via deze brief vraag ik uw toestemming om deel te nemen aan dit onderzoek. Het meedoen is geheel 

vrijwillig en niet meedoen zal geen verdere gevolgen hebben. U mag op ieder moment tijdens het 

experiment aangegeven dat u wilt stoppen, zonder een reden te hoeven geven. Aan meedoen zijn 

geen kosten verbonden. 

Als u ermee akkoord gaat dat u meedoet aan deze blaastesten, dan wil ik u vragen om het 

bijgevoegde toestemmingsformulier positief in te vullen. Voor meer informatie kunt u contact 

opnemen met de betrokken onderzoekers, Iris Heerlien en Robby van Delden, via de contact 

informatie onder aan deze brief. Mocht u onafhankelijk advies willen, dan kunt u contact opnemen 

met de onafhankelijke ethische commissie van de universiteit Twente (ethics-comm-

ewi@utwente.nl).  

 

Bij voorbaat dank, 

 

Met vriendelijke groet, 

Iris Heerlien 

Afstudeer student masters ‘Data Science’ en ‘Human Media Interaction’ aan de Universiteit Twente 

Contact informatie:  

E-mail: i.r.heerlien@student.utwente.nl 

Telefoon nummer: 06-42855214 

 

Robby van Delden 

Universitair Docent Human Media Interaction, aan de Universiteit Twente 

Contact informatie: 

E-mail: r.w.vandelden@utwente.nl 

Telefoon nummer: 06-14028248 
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D.3 Consent form for the participants of the inter-
annotation study

This consent form was signed by the participants of the inter-annotation study. The
email addresses and phone numbers are covered for privacy reasons.



V3.0 – March 2020 

Toestemmingsformulier Inter-annotatie studie SpiroPlay 
Betreft: Toestemming voor deelname aan blaastesten voor onderzoek naar thuis monitoren van 
astma van de Universiteit Twente. 

 
Als u akkoord gaat dat u meedoet kunt u hieronder aankruisen dat u toestemming geeft, de verdere 
gegevens invullen en het formulier ondertekenen.  

Ik ben over dit onderzoek volledig geïnformeerd en geef toestemming dat ik hieraan 
deelneem. Ik ben me ervan bewust dat deelname geheel vrijwillig is. Ik heb de 
mogelijkheid gehad om vragen te stellen aan de betrokken onderzoekers 
(i.r.heerlien@student.utwente.nl, r.w.vandelden@utwente.nl) of aan de onafhankelijk 
ethische commissie (ethics-comm-ewi@utwente.nl) en eventuele vragen zijn beantwoord. 
Ik geef toestemming voor het verzamelen van data en onderzoeksmaterialen zoals 
beschreven in de bijbehorende brief. Ik geef ook toestemming voor het maken van video-
opnames. De video’s worden enkel door betrokken onderzoekers bekeken en zullen nooit 
publiek worden gemaakt of vertoond aan derden voor demonstratie of rapportage.  

Ik ben mij ervan bewust dat deze activiteit niet gebruikt wordt voor diagnostische 
doeleinden, aangezien de huidige opzet en resultaten hier niet geschikt voor zijn. Ik ben 
mij ervan bewust dat er door de aard van de studie geen uitspraak kan worden gedaan 
over het al dan niet hebben van astma.  

 

Naam……………………………………………………………………………………… 

Datum……………………………………………………………………………………. 

Handtekening participant:  …………………………………………………….                              

Als onderdeel van de Universiteit Twente zijn we verplicht de Verordering Algemene 
Gegevensbescherming (AVG) en Uitvoeringswet na te leven. We hanteren hiervoor maatregelen met 
betrekking tot verwerking en inzage van persoonlijk identificeerbare data, zoals namen, video, foto’s, 
en geluidsopnames. 

Contact informatie Mocht u vragen hebben over dit onderzoek dan kunt u contact opnemen met Iris 
Heerlien (i.r.heerlien@student.utwente.nl), Robby van Delden (r.w.vandelden@utwente.nl), en voor 
een onafhankelijk advies (ethics-comm-ewi@utwente.nl). 
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D.4 Processing form for the raters of the inter-annotation
study

This form was signed by the raters of the inter-annotation study. The email ad-
dresses and phone numbers are covered for privacy reasons.



Verwerkingsformulier Inter-annotatie studie SpiroPlay 
Betreft: Het akkoord verwerken van gegevens verworven tijdens het experiment voor de inter-
annotatiestudie voor het project SpiroPlay. 

 
Als u akkoord gaat met de verwerkingseisen kunt u hieronder aankruisen dat u zich eraan zult 
houden, de verdere gegevens invullen en het formulier ondertekenen.  

Ik begrijp dat de data die ik ontvang persoonlijke data is en zal het niet verstrekken aan 
andere partijen.  

Ik zal de data verwijderen zodra ik klaar ben met de verwerking ervan.  

Ik zal de data niet gebruiken voor persoonlijke doeleinden 

 

Naam……………………………………………………………………………………… 

Datum……………………………………………………………………………………. 

Handtekening :  ……………………………………………………….…………….                              

 

Contact informatie Mocht u vragen hebben over dit onderzoek en/of de verwerkingseisen dan kunt 
u contact opnemen met Iris Heerlien (i.r.heerlien@student.utwente.nl), Robby van Delden 
(r.w.vandelden@utwente.nl), en voor een onafhankelijk advies (ethics-comm-ewi@utwente.nl). 
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Appendix E

Results inter-annotation study

E.1 Labelset: Binary

E.1.1 Inter-rater agreement

(a) Round 1 of Rater 1 vs. Round 1 of Rater 2 (b) Round 1 of Rater 1 vs. Round 2 of Rater 2

(c) Round 2 of Rater 1 vs. Round 1 of Rater 2 (d) Round 2 of Rater 1 vs Round 2 of Rater 2

Figure E.1: The confusion matrices comparing the labels given by the raters 1 and
2 during the two rounds, using labelset ’binary’.
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(a) Round 1 of Rater 3 vs. Round 1 of Rater 2 (b) Round 1 of Rater 3 vs. Round 2 of Rater 2

(c) Round 2 of Rater 3 vs Round 1 of Rater 2 (d) Round 2 of Rater 3 vs Round 2 of Rater 2

Figure E.2: The confusion matrices comparing the labels given by the raters 2 and
3 during the two rounds, using labelset ’binary’.
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(a) Round 1 of Rater 1 vs. Round 1 of Rater 3 (b) Round 2 of Rater 1 vs. Round 1 of Rater 3

(c) Round 1 of Rater 1 vs Round 2 of Rater 3 (d) Round 2 of Rater 1 vs Round 2 of Rater 3

Figure E.3: The confusion matrices comparing the labels given by the raters 1 and
3 during the two rounds, using labelset ’binary’.
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E.1.2 Intra-rater agreement

(a) Round 1 vs. Round 2 of Rater 1 (b) Round 1 vs. Round 2 of Rater 2

(c) Round 1 vs. Round 2 of Rater 3

Figure E.4: The confusion matrices comparing the labels given by the two raters
during the first and second round, using labelset ’binary’.
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E.2 Labelset: Combined

E.2.1 Inter-rater agreement

(a) Round 1 of Rater 1 vs. Round 1 of Rater 2 (b) Round 1 of Rater 1 vs. Round 2 of Rater 2

(c) Round 2 of Rater 1 vs. Round 1 of Rater 2 (d) Round 2 of Rater 1 vs Round 2 of Rater 2

Figure E.5: The confusion matrices comparing the labels given by the raters 1 and
2 during the two rounds, using labelset ’combined’.
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(a) Round 1 of Rater 3 vs. Round 1 of Rater 2 (b) Round 1 of Rater 3 vs. Round 2 of Rater 2

(c) Round 2 of Rater 3 vs. Round 1 of Rater 2 (d) Round 2 of Rater 3 vs. Round 2 of Rater 2

Figure E.6: The confusion matrices comparing the labels given by the raters 2 and
3 during the two rounds, using labelset ’combined’.
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(a) Round 1 of Rater 1 vs. Round 1 of Rater 3 (b) Round 2 of Rater 1 vs. Round 1 of Rater 3

(c) Round 1 of Rater 1 vs. Round 2 of Rater 3 (d) Round 2 of Rater 1 vs. Round 2 of Rater 3

Figure E.7: The confusion matrices comparing the labels given by the raters 1 and
3 during the two rounds, using labelset ’combined’.
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E.2.2 Intra-rater agreement

(a) Round 1 vs. Round 2 of Rater 1 (b) Round 1 vs. Round 2 of Rater 2

(c) Round 1 vs. Round 2 of Rater 3

Figure E.8: The confusion matrices comparing the labels given by the two raters
during the first and second round, using labelset ’combined’.
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E.3 Labelset: All

E.3.1 Inter-rater agreement

(a) Round 1 of Rater 1 vs. Round 1 of Rater 2 (b) Round 1 of Rater 1 vs. Round 2 of Rater 2

(c) Round 2 of Rater 1 vs. Round 1 of Rater 2 (d) Round 2 of Rater 1 vs Round 2 of Rater 2

Figure E.9: The confusion matrices comparing the labels given by the raters 1 and
2 during the two rounds, using labelset ’all’.
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(a) Round 1 of Rater 3 vs. Round 1 of Rater 2 (b) Round 1 of Rater 3 vs. Round 2 of Rater 2

(c) Round 2 of Rater 3 vs. Round 1 of Rater 2 (d) Round 2 of Rater 3 vs. Round 2 of Rater 2

Figure E.10: The confusion matrices comparing the labels given by the raters 2 and
3 during the two rounds, using labelset ’all’.
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(a) Round 1 of Rater 1 vs. Round 1 of Rater 3 (b) Round 2 of Rater 1 vs. Round 1 of Rater 3

(c) Round 1 of Rater 1 vs. Round 2 of Rater 3 (d) Round 2 of Rater 1 vs. Round 2 of Rater 3

Figure E.11: The confusion matrices comparing the labels given by the raters 1 and
3 during the two rounds, using labelset ’all’.
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E.3.2 Intra-rater agreement

(a) Round 1 vs. Round 2 of Rater 1 (b) Round 1 vs. Round 2 of Rater 2

(c) Round 1 vs. Round 2 of Rater 3

Figure E.12: The confusion matrices comparing the labels given by the two raters
during the first and second round, using labelset ’all’.


