
Piecewise linear landmark mapping for pose normalization
Leander Post

June 27, 2020

Abstract
This paper presents two pose normalization tech-

niques based on landmarks and linear mappings be-
tween these landmarks. A column based and a poly-
gon based transformation will be discussed and tested
with a PCA and an LDA classifier. The results show
that the combination of the polygon transformation
paired with the LDA classifier gives the best equal
error rates. When using PCA, the column and poly-
gon transformations are very close in performance.
Overall, both transformations give better scores than
leaving the images untouched.

1 Introduction
In the field of facial recognition, pose variation is
a common problem most recognizers will have to
deal with. Pose normalization algorithms make a
synthetic image that looks as if it is taken from a
different angle. This way, pose-mismatched images
are more comparable. This paper presents two sim-
ple piecewise linear mappings to handle the normal-
ization. Both methods involve mapping landmarks
from one face onto the other. The first method con-
sist of purely horizontal normalization and the sec-
ond uses normalization of the features using poly-
gons. The main question will be if these methods
can make significant improvements in recognition ac-
curacy over using no normalization. To answer this,
faces at different angles will be tested and the scores
will be compared.

2 Related work
For frontal view reconstruction-based normalization,
according to Chai et al [1] there are two interesting
directions researchers take. The first direction is
3D pose estimation, where the 2D image is mapped
onto a 3D model. This model can then be viewed
from any angle in R3, and can be projected back
onto a 2D image. The homography based normalizer

made by Ding et al [2] is an example of this. This
direction deals particularly well with noses, filling
in the non-visible area behind it by extrapolating
the area around it.
The second direction is learned transformations,
like Asthana et al [3] and Haghighat et al [4] use.
These methods learn a good transformation, based
on a training set, by trying transformations based
on the shape of the face. By looking at how close
the transformation is to the actual frontal image,
the transformation can be improved, until a reliable
transformation is learned that covers pose variation
by simply knowing from previous transformations
what works.
Both approaches have been proven to work well
for quite large angles. However, when the pose
variation is small, the used methods may be more
complex than is needed. This paper presents an
alternative: a linear piecewise mapping, based on
landmarks, that normalizes faces not based on bulky
learned data, but just maps features, and with it
the face, from the source (domain) image to a target
image. There is no prior knowledge needed to do
this, which makes it attractive when little training
data is available.

3 Method

Preprocessing Normalization Registration

Target image

Domain image

Figure 1: Block diagram of the algorithm

This section describes the preprocessing, the
transformations, and the registration, which are per-
formed consecutively, see figure 1. Throughout this

1



to grayscale resize, remove roll landmark extraction

Target image

to grayscale resize, remove roll landmark extraction
Domain image

Preprocessing

Figure 2: Block diagram of preprocessing

paper, the domain image is the image to be trans-
formed, and the target image is the image that is
being mapped upon, using the landmarks obtained
from the preprocessing.

3.1 Preprocessing
The preprocessing consists of grayscale-conversion,
size and tilt normalization, and landmark extraction,
in that order, see Figure 2. The first step in the
preprocessing is to convert the image to grayscale.
This is done to reduce the complexity of the al-
gorithm, and to reduce calculation time. CV2’s
COLOR_RGB2GRAY[5] method is used to do this,
which according to the CV2 documentation uses the
following calculation to convert an image from RGB
to grayscale:

i = 0.299 ·R+ 0.587 ·G+ 0.114 ·B (1)

Here i is the grayscale intensity, and R,G,B are the
red, green and blue intensities, respectively.
After the conversion to grayscale, the image is
resized to have a fixed height. This is done to deal
with large image sizes, where landmark extraction
and transformation get more resource intensive.
For the transformations to work, landmarks on the
face are needed. These will be acquired with the
Dlib library [6]. It provides 68 landmarks, marking
the chin, eyes, eyebrows, nose and mouth. Both
transformations, which will be described in the
following sections, rely on the landmarks of an
average face, called the target from now on. A
synthesized image by Dr. Gründl [7] is used for this.
The line of best fit is drawn through the eye land-
marks. With the tangent of the line, the roll of the
face is calculated, and is corrected for by tilting the
image the other direction. The angle correction is
done with imutils’ rotate_bound method[8], which
rotates the image while preserving the original
image’s aspect ratio, without cropping it.

map onto target
column, using
interpolation

column selector stretch to width
target column

Normalization

make image black

Figure 3: Block diagram of column transformation

3.2 Column Transformation
The column transformation assumes that the person
to be verified is only at a horizontal rotation from
the camera. If the face is modeled as a cylinder-like
shape, it may be normalized by only horizontal nor-
malization. This means that the face can be sliced
up in columns, that are then stretched to fit to the
target face’s landmarks. In essence, the landmarks
are mapped onto each other horizontally, and the im-
age in the column between the landmarks is mapped
with it. As Figure 3 shows, the transformation starts
by making the target image black, after which a col-
umn is selected. This column is transformed to the
same width as the target column, and mapped onto
the target image. For one of the pixels in the column,
the x-coordinate is mapped with:

f(x) = (x− x1) ·
x′
2 − x′

1

x2 − x1
+ x′

1 (2)

Here [x1, x2) is the interval defining the domain col-
umn and [x′

1, x
′
2) is the interval defining the target

column.
If this function is used to map the domain onto the
range, the output pixels won’t have integer coordi-
nates. To avoid this, the range is mapped with the
inverse of equation 2, which is obtained by simply
switching the positions of x1 and x2 with x′

1 and
x′
2. The coordinates are mapped to the domain im-

age, where most values will also be non-integer. The
right intensity to fill into the range-coordinates, is
obtained by first order interpolation on the domain
image. By doing this for every column, the full hor-
izontal normalization transformation is performed.
The landmarks used to define the columns are de-
fined as a subset of the full set of landmarks, which
are ran through an algorithm that ensures that the
column coordinates on both the domain and the
range are strictly increasing (x1 < x2 and x′

1 < x′
2).

This is important to avoid the image getting ‘folded’,

2



Figure 4: Columns are taken from the domain, get
stretched and mapped onto the target

where the same part in the domain gets mapped
more than once, causing overlap. Put differently,
columns of the domain image, which are cut based
on landmarks, are stretched to same width as the
corresponding column in the domain. If done from
left to right, the new columns can be concatenated
to the right, giving the full, transformed image. Fig-
ure 4 illustrates this principle.
This transformation will likely work best with small
pose variation. In these cases, the cylinder approx-
imation works quite well. The cylinder model is as
good as the distance between the facial features and
the cylinder. When correcting a larger rotation, the
approximation works worse. Also a face that looks
less cylindrical will score worse.

3.3 Polygon Transformation

map onto target
image shape, using

interpolation

area selector linear transform to
unit triangle cut irrelevant parts

Normalization

make image black

Figure 5: Polygon transformation

The polygon transformation, in contrast to the
column transformation, does not assume the head
to be cylindrical. Instead it approximates the ge-
ometry of the face with a cover of non-overlapping
triangular surfaces. By mapping these triangles and
their contents onto the triangles of the target image,
a non-frontal view can be turned into a frontal one,
Figure 6 illustrates this. This transformation maps
the triangles one by one onto the target image. The

cover of polygons is taken in such a way that most of
the landmarks are used, and is inspired by the AAM
covers of Asthana [3] and Haghighat[4]. Before map-
ping the polygons, the mouth of the target image is
’closed’, to avoid black pixels. When the domain im-
age has a perfectly closed mouth, there is no infor-
mation there to be mapped, resulting in black lines.
The solution is to take the mouth landmarks to be
the average of the top and bottom part of the lips,
resulting in a set of landmarks with closed lips. Let’s
start of with the transformation of the unit right tri-
angle with vertices (0,0),(1,0),(0,1) onto any trian-
gle with vertices (x1, y1), (x2, y2), (x3, y3). Mapping
onto (0, 0),(x2−x1, y2−y1), (x3−x1, y3−y1) is just
multiplying the vector with the matrix:

T1 =

[
x2 − x1 y2 − y1
x3 − x1 y3 − y1

]
To get the points mapped onto the desired triangle,
we need to add (x1, y1) to all the points. This way,
the transform for any point (x,y) is:[

x′

y′

]
= f(x, y)pol = T1

[
x
y

]
+

[
x1

y1

]
(3)

This can be inverted to map onto (0,0),(1,0),(0,1):

[
x
y

]
= f−1(x′, y′)pol = T−1

1

([
x′

y′

]
−
[

x1

y1

])
(4)

This inverse transform maps the pixels in a rectan-
gle surrounding the triangle to a stretched version of
it around the origin. We’re only interested in points
that were inside the triangle to begin with, and those
points are located inside or on the unit right triangle
after the inverse transform. The points that satisfy
this are in the set:

A′ = {a ∈ A|b = f−1(a), bx + by ∈ [0, 1]∧ bx, by ≥ 0}

Here A is the set including all points in the rectangle
and bx, by are the x and y-coordinates of f−1(a).
After discarding the points outside the unit right
triangle, the triangle can be mapped onto the
domain image, to get the pixel coordinates. These
coordinates will include non-integers. Interpolation
is used to get the intensity value on the domain
image at the non-integer coordinates. This value
is then filled into the target image. Doing this for
a set of triangles covering the entire face without
overlap, gives the full transformation.

3



Figure 6: Polygons are taken from the domain, and
are mapped onto the target

3.4 Registration
Three steps are taken in the registration. First,
alignment is performed, then for the column trans-
formation, a mask is applied, and then the images
have their histogram equalized. Figure 7 shows these
steps.
To normalize the faces into comparable images, they
should all get the same width and height (w and
h, respectively). The eyes should be in the same
spot for all images. Additionally, to make up for
the stretching of the face by the column transforma-
tion, the chin’s y-coordinate will be fixed. With the
chin and eyes being locked in place, the shape of the
face is fixed as well. For both the polygon and col-
umn transformation, the information from the land-
marks is needed. For the polygon transformation,
both x and y-coordinates of the landmarks are those
of the target image. For the column transformation,
the x-coordinates are those of the target, and the y-
coordinates are those from the domain.
The idea is to cut a rectangle, with the relative po-
sitions of the eyes and chin constant within those.
After the image is cut, the image is stretched and
resized into the set dimensions.
To find the values where the image will be cut, the
left and right cuts are defined entirely by the eyes.
The x position of the left eye is used to fix this loca-
tion. Because the roll was already corrected in the
preprocessing, one can assume that the y-coordinate
of both eyes is the same. To define the x-coordinate
of the eye, the average of x-coordinates of the left
and right eye is used, which will be denoted by xl

and xr, respectively. If the x-coordinate of the left
eye in the registered image is x, the left and right
cutting points are xminand xmax, defined as:

xmin = xl − x · r = xl − x
xr − xl

w − 2x

xmax = xr + x · r = xr + x
xr − xl

w − 2x

(5)

The fraction, r, denotes the ratio between the dis-

cut image

resize mask

histogram
equalization

Registration

Figure 7: Registration block diagram

tance between the eyes in the uncut image, and the
registered image.
For the y-direction, the method is similar. We want
to determine ymin, ymax, the places where the image
is going to be cut. For this, we need the y-coordinate
of the eyes in the registered image is y, there is also
a ychin, the y-coordinate of the registered chin. For
y′, the y-coordinate of the eyes, the mean of the y-
coordinate of the eye-landmarks is used. The coor-
dinate of the chin in the uncut image, y′chin, is the
y-coordinate of landmark number 8, which is posi-
tioned on the tip of the chin.

ymin = y′ − ry = y′ − y
y′chin − y′

ychin − y

ymin = y′ + r(h− y) = y′ − (h− y)
y′chin − y′

ychin − y

(6)

With all values now acquired, the image can be
snipped. After this is done, CV2’s resize method is
used to resize to (w,h). The image is now set to
a standard size, but for the column transformation,
the background is visible. As the classifier shouldn’t
be taking the background into account, a mask is ap-
plied. To make the mask comparable to the polygon
transformation mask, the mask is based on the area
that the polygon transformation covers. It is created
by polygon mapping a flat image with constant value
1 onto the target image. After resizing, the mask can
be applied by simple element-wise multiplication.
To increase contrast, and remove the effect of the
illumination on the classifier, the images are also
histogram-equalized. This is a well documented
function, but in short: a function is defined for
the brightness levels of the image that makes the
illumination-histogram more spread out, the cumu-
lative distribution is made approximately linear. Af-
ter the registration, the polygon and column trans-

4



Figure 8: 11 different poses and the transformations
on these poses

form have the same mask applied, and are both high
in contrast. Figure 8 shows the original image (top
row), the column transformed image (middle row),
and the polygon transformed image (bottom row).

4 Experiments and results
All experiments in this report are done on the PUT
database. This is a very well controlled database
consisting of 100 persons, where all factors except the
pose are kept as constant as possible. This gives the
classifiers an easy job, but more importantly it makes
sure that the performance under pose-variation is
tested, and nothing else. The images with horizon-
tal rotation are interesting as a dataset. There are
11 of these images per person.
It should be kept in mind that the goal of the re-
search described in this paper is not about abso-
lute performance. In that respect, there are a lot of
improvements that would yield better results. The
tests in this section are done to study the charac-
teristics of the different transformations, and should
be seen as ways to get a score relative to the other
transformations.
To compare the transformations to no transforma-
tion at all, the original pictures are also ran through
the preprocessing and registration. That means that
the original pictures are also stretched to the same
head-shape.
For scoring the images, a PCA and an LDA classi-
fier are used on pairs of images, to test the similarity.
This way, false match and true match rates can be
determined, from which the EER can be determined.
Looking at how well the algorithm performs on dif-
ferent angles is interesting, and to quantify this, the
EER will be calculated for the different angles avail-
able in the data-set. To test the dependence on the
choice of training set, the EER will be measured for
randomized training/testing splits.

4.1 Classifier
To test the different transformation algorithms,
a verification process will be used, that classifies

two images as being the same, or being different,
based on a distance in some n-dimensional feature
space. To this end, two different dimensionality
reductions are used. First is principal component
analysis (PCA), and second is linear discriminant
analysis (LDA). PCA looks at which features of the
set of images have the most variation, and in that
sense, give the best way to see differences between
images. LDA however, looks at what defines classes
of images (persons, denoted by having the same
label). It looks at the shape of the average class
(assuming Gaussian distributed ellipsoid-clouds that
indicate the variance), and takes the dimensions
with the least variance, that is the features that
are the most stable within a class. Both methods
have their advantages, PCA is unsupervised, and
is better when all classes don’t necessarily have a
similar shape. LDA yields better scores when the
classes are similar, and when labels are available.
Both methods will be implemented. As the prin-
cipals of LDA and PCA are well documented, the
description in this paper will be brief.

4.1.1 PCA

The PCA classifier uses the eigenvectors of the co-
variance matrix of the set of image vectors to find the
principal components (feature vectors). The eigen-
values of the covariance matrix make it possible to
select the most important features. All images are
projected onto these features, causing a reduction of
dimensionality. In this principal component space,
the distances between different images can be mea-
sured. Using a simple Euclidean measure, the simi-
larity in images can be found. This method is simi-
lar to the classic ‘eigenfaces’ approach, which is de-
scribed by Turk [9].

4.1.2 LDA

The LDA classifier starts with dimensionality reduc-
tion using PCA, which removes noise mostly. It then
gathers the classes (linear combinations of features
with the same label, thus being the same person),
and subtracts the mean of the class from all vectors
in the class. The set of normalized features now has
the shape of the average class. LDA works by finding
the orthogonal vectors with the least variance from
this set. By projecting onto these vectors, the classes
are separated as good as possible.

5



4.2 ROC curve
By varying the threshold for the Euclidean distance,
pairs of images will be classified differently. Ideally,
there would be one threshold, where all distances
greater than it would be different persons, and all
distances smaller would be from the same person.
As can be seen from Figure 9, this is not the case for

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Distance 1e8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1e 8
same label
different label

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Distance 1e10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5 1e 10
same label
different label

Figure 9: Distance distribution of PCA (right) and
LDA (left), both tested on the polygon transforma-
tion

both the LDA and PCA classifier. That means there
are multiple options for choosing the threshold. To
make results more comparable, one can look at the
ROC curve (Figure 10). This curve plots the True
Match Rate (TMR) against the False Match Rate
(FMR), for different thresholds. On the ROC curve,
where the false match rate is equal to the false reject
rate (1-true match rate), the point called the equal
error rate (EER) is positioned. This is a metric that
will be used from now on in this section.

4.3 Number of components
The amount of LDA components has a big impact on
the score. To choose an optimal setting, the classifier
will be tested at different amounts of samples. The
results of this can be seen in Figure 11. It appears
that beyond 100 components, no significant improve-
ment is made, there is no clear best setting. To keep

0.0 0.2 0.4 0.6 0.8 1.0
False Match Rate

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 M
at

ch
 R

at
e

Method:
Column, masked
Original, masked
Polygon, masked

0.0 0.2 0.4 0.6 0.8 1.0
False Match Rate

0.90

0.92

0.94

0.96

0.98

1.00

Tr
ue

 M
at

ch
 R

at
e

Method:
Column, masked
Original, masked
Polygon, masked

Figure 10: left, right: ROC curve using PCA classi-
fier, using LDA classifier

the number of components relatively low, a default
of 100 components was chosen for the remainder of
the experiments.

0 50 100 150 200 250
Number of components

16

18

20

22

24

26

28

30

Eq
ua

l E
rro

r R
at

e 
(%

)

method
Column, masked PCA
Original, masked PCA
Polygon, masked PCA

0 50 100 150 200 250
Number of components

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Eq
ua

l E
rro

r R
at

e 
(%

)

method
Column, masked LDA
Original, masked LDA
Polygon, masked LDA

Figure 11: Score of PCA (right) and LDA (left) clas-
sifier with varying amount of components

4.4 Training set
Depending on the training set, the results and scores
of the algorithms can differ. To quantify this, 100
runs were done for each transformations, at 100 LDA
components and 500 PCA components. The means
and standard deviations were calculated and are pre-
sented in Table 1.

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Equal Error Rate

0

10

20

30

40

50

Distributions of LDA method

method
Column, masked
Original, masked
Polygon, masked

Figure 12: Density plots of the EER of different
methods, using LDA on randomized training sets for
each run

Figure 12 shows that the split between training
and testing set makes a big difference in the outcome.
The best score of the polygon transform is around 5
times better than it’s worst score.

6



Method µ(EER) σ(EER)
Column, masked 3.65 % 0.91 %
Original, masked 4.58 % 0.9 %
Polygon, masked 1.98 % 0.75 %

Table 1: EER with different training sets (50 per-
sons), at 100 LDA and 500 PCA components

20 10 0 10 20
Angle (degrees)

5

10

15

20

25

Eq
ua

l E
rro

r R
at

e 
(%

)

method
Column, masked
Original, masked
Polygon, masked

20 10 0 10 20
Angle (degrees)

2.0

2.5

3.0

3.5

4.0

4.5

Eq
ua

l E
rro

r R
at

e 
(%

)

method
Column, masked
Original, masked
Polygon, masked

Figure 13: Performance of PCA (right) and LDA
(left) under different angles

4.5 Different angles
To test the performance of the transformations under
different angles, the algorithm was tested by group-
ing different angles together, and comparing them to
the frontal image.
A 50/50 split on the data set is used, which leaves
only 50 possible true matches per angle, making
the results jumpy, and very training set dependent.
To get a better feel for the performance under an-
gles, the average scores over 100 randomized train-
ing/testing splits was taken.
It should be noted that the PUT database has no
labels. The two most extreme angles were estimated
to be ±25 degrees, see Figure 8, and the angles in
between are taken to linearly varying from -25 to 25.
The polygon transformation score is quite constant
among angles. The column transformation and the
original pictures worsen the bigger the angle gets,
the column transform does so at a slower rate. The
column transformation works considerably better at
the higher angles than the non-transformed images.

5 Discussion
This section discusses the results of the previous sec-
tion, and gives some direction for future work.

5.1 Analysis of the results
The analysis of the results does not follow the struc-
ture of the results, as some observations are com-
bined from multiple results.

5.1.1 Loss of shape

Overall, the results show that the polygon transfor-
mation outperforms the column transformation in all
experiments. This is not a big surprise, as by choos-
ing to map landmarks on top of each other, one de-
cides to use the texture of the face only. When that
decision is made, the polygon transformation simply
maps the features onto each other a lot better. This
can be seen by inspecting the averages of the trans-
formed images. Figure 14 shows that without trans-
forming the images, the features are quite blurry.
With the column transformation, the features get
better defined, however there is still a lot of blur-
riness. The polygon transformation, as expected,
shows quite a clear image. Especially the mouth and
nose clear up a lot. While this gives a nice image,
the shape of the nose, chin etc are lost, reducing the
differentiability of the classes in that aspect. In the
PUT dataset, the structure on most faces is quite
comparable. However, when using different cam-
era’s, different lighting, people wearing makeup etc,
the texture of the skin is greatly changed, making
the proposed method in this paper a lot less reliable.

Figure 14: Average faces after no transformation
(left), column transformation (middle) and polygon
transformation (right)

5.1.2 PCA vs LDA

First of all, it’s very clear that the PCA classifier
scores a lot worse than the LDA classifier, in every
respect. This is probably because of the distance
metric on the PCA. Figure 11 shows that the PCA
performance stops increasing quickly after reaching
around 10 components. This indicates that the
first few eigenvectors largely outweigh the other
components. This would definitely be something to
improve on in the future.
Interesting is the fact that when using the PCA

7



classifier, the polygon and column transformation
are a lot closer to each other than the original
pictures, as can be seen in Figure 11 and 13.

5.1.3 Distortion

When looking at the ROC curves, it is noteworthy
that both transformations suffer from some images
that are very far away from each other in the feature
space, while being in the same class, Figure 12 also
shows this. This may indicate that there are some
artefacts in some transformed images that make it
very hard to recognize the imgage properly. It is
likely that the big standard deviation on the EER
(Table 1) is due to this. When the hard-to-recognize
images are included in the training set, they simply
can’t be classified wrongly anymore, thus increasing
the overall score of the algorithm. This causes
the score of the classifier to vary greatly between
training sets.
The column transformation hasn’t performed very
well. The cylindrical model of the head doesn’t work
well for a lot of faces. The more cone-like structure
that some heads tend to have, has caused especially
the edges of the face to behave in an undesired
manner. This is visible in Figure 8, where the back-
ground is visible next to the bottom part of the chin.

5.1.4 Performance under angle

The tests ran under different angles show that the
column and polygon transformation outperform the
original images. While the column transformation
might not be very convincing, it does show that it
might be worth investigating further in this direc-
tion. The polygon transformation seems to perform
quite consistently at different angles. It would be in-
teresting to see the transformations performance at
larger pose-variation. Interestingly, both the orig-
inal and column transformation show worse results
for +5 degrees compared to -5 degrees. The reason
for this could be that the photographed persons tend
to look right at the camera for -5 degrees (see Figure
8), and look away at a point

5.2 Future works
In future research, it would be wise to see which
images are hard to recognize, and possibly change
the transformations in an effort to make them more
robust.
Testing the algorithms on other data-sets might
point out some issues that need to be improved.

It would be interesting to use non-linear trans-
formations such as splines, to make the mappings
smooth, which would follow the cylindrical model
better, possibly increasing the quality of the trans-
formations.
At the start of this research, some trapezoid map-
pings were studied that used the same idea as the
current polygon transformation. These could be an
interesting new transformation.To get the most out
of the transformations, it would be interesting to
research the effect of different amounts of compo-
nents on the score of the classifiers.

6 Conclusion

The goal of this paper was to answer the question
whether or not linear piecewise mapping of land-
marks (and with it the face) of the sample image
onto a target image is an effective way to improve
facial recognition under pose variation.
Two methods were chosen to answer this question.
One involves mapping columns from the sample im-
age onto the target. The other, slightly more sophis-
ticated approach, maps triangles between landmarks
onto the corresponding triangles on the target.
To test the transformations and see the differences
in behaviour between the two, classifiers were made
to quantify the performance. Overall, the PCA clas-
sifier scored worse than the LDA classifier, but both
show better results with the column transformation
then when nothing is done at all. The polygon trans-
formation scores the best in all of the conducted
tests. Using LDA, the polygon transformation got
an average equal error rate of 2.0%, the column
transformation got an EER at 3.6%, and the non-
transformed images showed an EER of 4.6%. All
of the methods seem to be quite dependent on the
choice of training set, showing standard deviations
of at least 0.7%.
One concern with both transformations is the loss of
the facial shape. By mapping this way, all faces are
morphed into the same (approximate) shape. This
can be seen especially in Figure 14. This causes a loss
of the facial shape (position of nose, mouth, eyebrows
etc), making the algorithm completely reliant on the
texture of the face. It is imaginable that this is not
enough in some settings, however in controlled set-
tings like the PUT database, the classifiers seem to
function quite well. All in all both column and poly-
gon transformation made significant improvements
over no transformation.

8



References
[1] X. Chai, S. Shan, X. Chen, and W. Gao, “Locally

linear regression for pose-invariant face recogni-
tion”, IEEE Transactions on Image Processing,
vol. 16, pp. 1716–1725, Jul 2007.

[2] C. Ding and D. Tao, “Pose-invariant face recog-
nition with homography-based normalization”,
Pattern Recognition, vol. 66, pp. 144–152, Jun
2017.

[3] A. Asthana, M. J. Jones, T. K. Marks, K. H.
Tieu, and R. Goecke, “Pose normalization via
learned 2D warping for fully automatic face
recognition”, in BMVC 2011 - Proceedings of the
British Machine Vision Conference 2011, British
Machine Vision Association, BMVA, 2011.

[4] M. Haghighat, M. Abdel-Mottaleb, and W. Al-
halabi, “Fully automatic face normalization and
single sample face recognition in unconstrained
environments”, Expert Systems with Applica-
tions, vol. 47, pp. 23–34, Apr 2016.

[5] “OpenCV: color conversions”, https:
//docs.opencv.org/master/de/d25/imgproc_
color_conversions.html.

[6] “Dlib C++ library”, http://dlib.net/.

[7] P. Fakult, M. Gr, and M. Gründl, “Determi-
nanten physischer Attraktivität – der Einfluss
von Durchschnittlichkeit , Symmetrie und sex-
uellem Dimorphismus auf die Attraktivität von
Gesichtern”, p. 402, 2011.

[8] “Added ‘rotate_bound’ method”, https:
//github.com/jrosebr1/imutils/commit/
7cc2522754dbefd8356e0419d1a26de674d4dcde.

[9] M. Turk and A. Pentland, “Eigenfaces for Recog-
nition”, 1991.

9

https://docs.opencv.org/master/de/d25/imgproc_color_conversions.html
https://docs.opencv.org/master/de/d25/imgproc_color_conversions.html
https://docs.opencv.org/master/de/d25/imgproc_color_conversions.html
http://dlib.net/
https://github.com/jrosebr1/imutils/commit/7cc2522754dbefd8356e0419d1a26de674d4dcde
https://github.com/jrosebr1/imutils/commit/7cc2522754dbefd8356e0419d1a26de674d4dcde
https://github.com/jrosebr1/imutils/commit/7cc2522754dbefd8356e0419d1a26de674d4dcde

	Introduction
	Related work
	Method
	Preprocessing
	Column Transformation
	Polygon Transformation
	Registration

	Experiments and results
	Classifier
	PCA
	LDA

	ROC curve
	Number of components
	Training set
	Different angles

	Discussion
	Analysis of the results
	Loss of shape
	PCA vs LDA
	Distortion
	Performance under angle

	Future works

	Conclusion

