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Samenvatting1

In deze studie zijn verschillende algoritmen vergeleken die gebruikt kunnen worden voor het schatten van
gewrichtskinematica van de onderste extremiteit. Deze schattingen zijn gemaakt door middel van elektromyo-
grafie (EMG) voor verschillende activiteiten. Het ultieme doel van deze methode is om mensen met een boven-
beenamputatie intüıtieve controle te geven over een actieve prothese in een niet-gewichtsdragende situatie.
Doelen binnen deze studie waren het analyseren van de machine learning aanpak in (niet-)gewichtsdragende
activiteiten, alsmede het bepalen van de performance wanneer de aanpak toegepast werd op mensen met een
bovenbeenamputatie. Daarnaast is de invloed van het toevoegen van (historische) informatie van inertial mea-
surement units (IMUs) onderzocht. Drie datasets zijn geanalyseerd om de verschillende onderzoeksdoelen te
behalen. De geanalyseerde activiteiten waren niet-gewichtsdragende activiteiten, zitten-staan transities, lopen
op een vlakke ondergrond (voor gezonde proefpersonen en proefpersonen met een bovenbeenamputatie), trap
oplopen en trap aflopen. Acht verschillende machine learning algoritmen zijn gebruikt om te testen hoe geschikt
ze zijn voor het schatten van gewrichtskinematica van het been. Per activiteit is er voor ieder algoritme een
optimale combinatie van hyperparameters gevonden, gebruikmakende van een Bayesiaanse optimalisatie strate-
gie. De performance van de verschillende algoritmen werd bepaald door middel van een 5-fold cross-validatie
op een proefpersoon-specifiek niveau. Een convolutional neural network gaf de beste performance bij de meeste
activiteiten ten aanzien van de R2 en RMSE maatstaven, wanneer enkel EMG gebruikt werd. Het toevoegen
van historische IMU data zorgde voor een significante stijging van de performance (p < 0.05) bij de meeste
activiteiten. Het gebruik van enkel de historische informatie van IMUs resulteerde in een significante afname
van de performance in verschillende activiteiten. De ontwikkelde machine learning aanpak is toepasbaar op
mensen met een bovenbeenamputatie, omdat er een vergelijkbare performance gevonden is voor gezonde proef-
personen en mensen met een bovenbeenamputatie bij lopen op een vlakke ondergrond. Resultaten voor de
niet-gewichtsdragende activiteiten bij gezonde proefpersonen zijn veelbelovend (R2 van 0.956 ± 0.13 voor de
kniehoek). Daarom kunnen vervolgstudies zich richten op het bepalen van de toepasbaarheid van de methode
op niet-gewichtsdragende activiteiten in mensen met een bovenbeenamputatie. Verdere vervolgstudies kunnen
gericht worden op het gebruiken van verschillende methoden om features uit de EMG en IMU signalen te
verkrijgen, om zo de performance van de algoritmen te verbeteren.

1English summary is provided as an abstract on page 5
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Estimation of lower limb joint kinematics using
electromyography and machine learning

J. Herijgers

Abstract

This study compared different algorithms that estimate lower limb joint kinematics from electromyography
(EMG) in different activities. The ultimate goal is to give transfemoral amputees intuitive control over a
powered prosthesis in a non-weight-bearing situation. Objectives of this study included an analysis of the
machine learning approach in (non-) weight-bearing tasks and determining performance of the approach when
applied to transfemoral amputees. Additionally, the influence of inclusion of (historic) information from inertial
measurement units (IMUs) was studied. Three datasets were analysed to complete the different research
objectives. The analysed activities included non-weight-bearing tasks, sit-to-stand transitions, level ground
walking (for able-bodied subjects and transfemoral amputees), stair ascent and stair descent. Eight different
algorithms were tested on their ability to estimate lower limb joint angles. An optimal set of hyperparameters
for each algorithm was found using a Bayesian optimisation routine, on an activity-generic level. Performance
of the different algorithms was analysed using a 5-fold cross-validation routine on a subject-specific level. A
convolutional neural network gave the best performance in terms of R2 and RMSE using only EMG data in
most tested activities. Including historic information from IMUs significantly increased performance (p < 0.05)
for most of the studied activities. Exclusively using the same historic data from IMUs resulted in a significant
decrease in performance for several of the studied activities. The developed approach showed to be feasible
to apply to transfemoral amputees, as comparable performance is seen for amputees and able-bodied subjects
in level ground walking. Results for non-weight-bearing tasks in able-bodied subjects were promising (R2 of
0.956 ± 0.013 for the knee angle). Therefore, further research could focus on studying the applicability of
non-weight-bearing tasks in transfemoral amputees. Additional future research could focus on using different
methods to extract features from both the EMG and IMU signals to increase performance of the algorithms.

1 Introduction

In the Netherlands, 7.7 in 100,000 persons undergo a
major amputation of the lower limb due to dysvascu-
larity, which is the main cause for amputations [1]. An
amputation of the lower limb drastically changes an
individual’s life and functional abilities, resulting in a
lower quality of life [2]. To improve physical function-
ing, amputees can be fitted a prosthesis that makes it
possible to regain mobility and independence during
daily life [3]. Prostheses can be passive, semi-passive
or active (also known as powered) devices [4], which
are controlled differently. Passive prostheses are of-
ten used for both rehabilitation purposes and daily
life settings. However, passive prostheses require the
amputee to have adequate hip extensor strength and
positional awareness of their knee flexion angle [5].
Furthermore, tasks like standing up or climbing stairs
require generation of additional energy at the joints,
which can not be provided by passive prostheses [4].
As a result, amputees show higher oxygen consump-
tion compared to non-amputees, which can reduce the
mobility of an amputee. To overcome the limitations
of passive prosthetic devices, recent years have shown
an increasing research interest into powered prosthet-
ics for the lower limb [4].

The EU Horizon 2020 Research and Innovation
Project MyLeg [6] aims to develop a new generation of
powered transfemoral prosthetic legs. One of the main
objectives of the MyLeg project is to use implantable
myoelectric sensors on Targeted Reinnervated Mus-

cles [6]. Targeted Muscle Reinnervation (TMR) is a
surgical technique that relocates nerves, that originally
innervated the amputated limb, onto muscle sites that
no longer have a biomechanical function due to the
amputation [7]. Hence, this surgical procedure makes
it possible to measure the intended motor commands
of muscles that were lost due to the amputation. In
the case of transfemoral amputations, measuring mus-
cle activity of for instance the m. gastrocnemius could
still be possible with TMR.

This thesis relates to the MyLeg objective to de-
velop a high-level, intuitive, control scheme for the
prosthesis user. The aim of the high-level control is to
detect user intention to perform different activities. A
state-machine (mid-level controller) can then be used
to select appropriate low-level control of the prosthesis
in different activities of daily living (ADLs). Previous
work in the MyLeg project includes the development
of classifiers that use electromyography (EMG) and
Inertial Measurement Units (IMUs) to predict activi-
ties that are performed by the user. Previous research
has shown that classification errors are reduced when
a combination of EMG and IMU data is used as in-
put [8].

Prediction of discrete activities can give an intu-
itive control scheme by transitioning between states
of the state machine, but it limits the possibility to
apply voluntary proportional control to the prosthesis
[9]. Especially in the sitting state, it can be beneficial
for an amputee to apply direct voluntary control to
intuitively reposition the prosthesis instead of relying
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solely on the mid-level control of the sitting state. Vol-
untary control of the prosthesis can be realised by pre-
senting information on required joint kinematics corre-
sponding to intended movements. If joint kinematics
are to be used as a control signal, an estimation of the
required kinematics has to be done prior to execution
of the movement. This requires detection of movement
onset, which is possible by measuring muscle activity
using EMG, up to 138 ms in advance when the pros-
thesis leads [10]. As the MyLeg project aims to employ
myoelectric sensors in the prosthesis, EMG signals of
the lower limb musculature can be used as a predictor
for the lower limb joint kinematics.

There are several data-driven approaches that es-
timate joint angles in the lower extremity from EMG.
Earlier work on this topic used Neural Networks (NNs)
[11, 12, 13] and Support Vector Regression (SVR) [13]
to estimate joint angles in the lower extremity. How-
ever, literature on the topic of joint kinematics esti-
mation from EMG is mainly focussed on the upper
extremity, where elbow, wrist and finger kinematics
are estimated [14, 15, 16]. Although upper extrem-
ity kinematics are estimated in these studies, the tech-
niques employed could also be feasible for estimation of
knee and ankle kinematics. As with the lower extrem-
ity, most studies have used neural networks or SVR
to estimate the desired angles [14, 15, 17]. However,
different approaches are also seen in the upper extrem-
ity: Gaussian Process regressors (GPs) [16, 18], Kernel
Ridge Regression (KRR) [19], Linear Regression (LR)
[19], Convolutional NNs (CNNs) [20], or Long Short
Term Memory (LSTM) layers in conjunction with a
CNN (CNN-LSTM) [21].

The different algorithms have shown their appli-
cability to estimate joint angles from EMG signals.
Direct comparison, on the same data, of all methods
can demonstrate which algorithm is best suited for ap-
plication within the MyLeg project. Therefore, the
main research question of this study is: What is the
best method for estimation of lower limb joint kine-
matics based on electromyography for online control of
a transfemoral prosthesis?

The first objective of this thesis is to find the best
algorithm for the non-weight-bearing tasks and the
sit-to-stand transitions (and stand-to-sit transitions).
The intended use of the algorithms is to give an am-
putee the ability to voluntary control his/her prosthe-
sis in the sitting state as selected by the mid-level con-
troller. As such, a primary interest is taken in per-
formance for non-weight-bearing situations. Further-
more, it is helpful for the amputee if assistance is pro-
vided by the prosthesis in standing up from a sitting
position. Earlier studies have focussed on assessing
knee flexion and extension tasks under different move-
ment speeds and loads [11, 13]. This thesis assesses
whether different types of non-weight-bearing move-
ments can be estimated accurately by a single model.
No previous work has been found that estimates joint
angles from EMG during sit-to-stand transitions.

A second objective is to assess how accurate es-
timations of the required kinematics are for different

weight-bearing ADLs. The studied ADLs are level
ground walking, stair ascent and stair descent. The
ADLs are studied, as amputees could prefer voluntary
control of their prosthesis over the selected low level
control of the state machine, if the estimation errors
are not too large. Of the studied ADLs, estimation
of joint angles has previously only been done for level
ground walking [12].

The third objective is to assess the influence of his-
toric information from IMUs on the predictions, so
that information of the prosthesis’ movement is avail-
able. Hu et al. [8] showed that a combination of EMG
and IMUs reduce the activity classification error. Pos-
sibly, a combination of EMG and historic IMU data
can reduce the joint angles’ estimation error. This re-
duction is expected due to having more information
available on the prosthesis’ movements in, for exam-
ple, a sit-to-stand transition. However, no previous
work has studied the combination of using both types
of sensing modalities for the prediction of lower limb
joint kinematics.

The fourth and final objective is to determine the
performance of the algorithms on transfemoral am-
putees. Assessment of performance in transfemoral
amputees is an important analysis to do since this anal-
ysis gives an indication of the performance of the algo-
rithms when applied to the expected users. Currently,
it remains unanswered whether the prediction of joint
angles is feasible based on EMG acquired from muscles
in the stump of a transfemoral amputee.

This thesis is structured as follows. In section 2,
the experimental procedure and data analysis are pre-
sented. Section 3 presents the results obtained from
the conducted experiments. Section 4 discusses these
results and provides an interpretation on the relevance
of the results. Recommendations for further research
are also discussed in this section. Section 5 concludes
this paper.

2 Methods

The methods section is divided in six parts: data
collection, data pre-processing, machine learning ap-
proach, performance metrics, analysis strategy and
statistical analysis.

2.1 Data collection

Three different datasets were used to complete the re-
search objectives: The MyLeg Kinetics (MLK) dataset
that was collected as part of this study, the online
available ENcyclopedia of Able-bodied Bilateral Lower
Limb Locomotor Signals (ENABL3S) dataset [22] and
the The Ideal Prosthesis Selection (TIPS) dataset,
which was collected (but remained unpublished) ear-
lier at Roessingh Research and Development (RRD).
This section presents the different datasets, along with
a brief description of what analyses were done with the
respective datasets.
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2.1.1 MLK dataset

Performance for non-weight-bearing tasks and sit-to-
stand (and stand-to-sit) transitions was assessed with
the MLK dataset. Three able-bodied subjects (sex:
one male, two female, age: 21.3 ± 1.5 years, length:
174.7 ± 10.0 cm, weight: 69.6 ± 8.6 kg) were recruited
who performed several activities. Prior to the measure-
ments all subjects gave their informed consent. The
activities were split into four categories: Non-weight-
bearing tasks, sit-to-stand transitions, level ground
walking and stair ascent/descent. The non-weight-
bearing tasks consisted of knee flexion and extension
separately, or in combination with ankle plantar- and
dorsiflexion. This gave three combinations: 1. Knee
flexion and extension, 2. Extended knee with ankle
plantar- and dorsiflexion, 3. Flexed knee with ankle
plantar- and dorsiflexion. In sit-to-stand tasks, sub-
jects were asked to stand up from a stool, stay in posi-
tion, and sit down again. In the stairs task, a subject
had to ascent two steps of 15 cm in height. This task
also included the subject descending these same steps.
All above-mentioned tasks were repeated thirty times.
Level ground walking was performed fifty times, where
a subject walked approximately four metres in one rep-
etition.

Bipolar EMG was recorded from eight different
muscles on the right leg: rectus femoris (RF), vastus
lateralis (VL), biceps femoris (BF), gluteus maximus
(Gmax), gastrocnemius medialis (GM), tibialis ante-
rior (TA), semitendinosus (ST) and adductor magnus
(AM). All EMG electrodes were placed according to
SENIAM guidelines [23]. The signals were acquired
using the Sessantaquattro (OT Bioelettronica, Turin,
Italy) at a sample frequency of 2000 Hz.

Joint angles of the knee and ankle were determined
using eight IMUs (Xsens Link, Enschede, The Nether-
lands), which were placed on the sternum, the pelvis
and bilaterally on the thigh, shank and foot of the
subject. The IMUs had a sample frequency of 240 Hz.
Joint angles were reconstructed from Xsens MVN soft-
ware. Only joint angles in the sagittal plane were used
in this study. The IMUs output 3D accelerations and
3D angular velocities.

2.1.2 ENABL3S dataset

Performance for ADLs and the influence of IMUs
were assessed using the publicly-available ENABL3S
dataset [22]. The ENABL3S dataset contained si-
multaneously collected kinematics and EMG data of
the lower limb, for ten able-bodied subjects (sex:
seven male, three female, age: 25.5 ± 2 years, length
174 ± 12 cm, weight: 70 ± 14 kg) [22]. EMG of
seven muscles were recorded (TA, GM, RF, VL, BF,
ST and soleus (SOL)). Knee and ankle kinematics
were recorded using goniometers (sagittal plane only).
IMUs were placed bilaterally on the thigh and shank.
The ENABL3S database contained sit-to-stand transi-
tions (±50 repetitions per subject), level ground walk-
ing (±100 repetitions per subject), stair ascent (±25

repetitions per subject) and stair descent (±25 repe-
titions per subject), which correspond to the chosen
ADLs of research objective 2. Details of the data col-
lection procedure for the ENABL3S dataset can be
found in the publication [22].

2.1.3 TIPS dataset

Performance in transfemoral amputees was assessed
using the TIPS dataset, which was collected at RRD.
The TIPS dataset contained level ground walking of six
transfemoral amputees (age: 49.2 ± 3.8 years, length:
183.5 ± 8.3 cm, weight: 80.7 ± 10.6 kg, time since am-
putation: 9.8±13.2 years), who were fitted five passive
prosthetic knees. The prosthetic knees varied in com-
plexity and are listed along increasing complexity: Ot-
tobock 3R20, Ottobock 3R106, Ottobock 3R60, Össur
Mauch SNS and a micro-processor-controlled Adaptive
Knee (either Össur Rheo Knee or Ottobock’s C-Leg).
The simplest knee had no varying resistance and the
most complex knee had varying resistance and adap-
tive control in both the stance and swing phase. The
subjects completed ±30 trials of level ground walking
using each prosthetic knee (approximately four meters
per trial). Bipolar EMG was collected using the Glon-
ner BioTel EMG system at a sample frequency of 1000
Hz. Five muscles were measured on the amputated
side: RF, VL, Gmax, ST and Tensor Fascia Latae
(TFL). Kinematics were obtained using a six-camera
motion capture system (Vicon Nexus, Oxford, Great-
Britain) with sixteen reflective markers, using Vicon
Nexus’ Plug-in-Gait model.

No dataset was available for transfemoral amputees
in a non-weight-bearing situation. Therefore, this
dataset (containing level ground walking only) was
chosen to give an indication of the performance of the
developed approach for prosthesis users.

2.2 Data pre-processing

The ENABL3S dataset and TIPS dataset were time-
synchronised and had been resampled to a sample fre-
quency of 1000 Hz. The EMG system and IMU system
used in the MLK dataset had to be synchronised. Syn-
chronisation was done using the method developed by
Schulte et al. [24], using an additional accelerometer
connected to the EMG system. All signals were resam-
pled to a sample frequency of 1000 Hz.

The smoothed rectified envelope (SRE) of the EMG
was used as the only input feature to reduce model
complexity. The SRE was obtained from the raw EMG
by combining three pre-processing steps [11, 12, 16].
First the EMG was high-pass filtered with a second or-
der zero-lag Butterworth filter with a cut-off frequency
of 20 Hz. Secondly, the signal was rectified. Finally,
the signal was low-pass filtered with a second order
zero-lag Butterworth filter with a cut-off frequency of
6 Hz. Both the SREs and the joint angles were win-
dowed to prepare the input data for the algorithms.
Data windows of 128 ms with 50% overlap were cre-
ated. This window size was chosen to accommodate

7



for the detection of the movement onset using EMG
[10], in combination with having a computationally-
efficient size of the data windows. The SRE values in
the window were retained to generate an image as in-
put for the CNN- and LSTM-based neural networks
(see section 2.3.1). Hence, one input image had size
(128,num EMG), with num EMG 8, 7 and 5 for the
MLK dataset, ENABL3S dataset and TIPS dataset
respectively. In all other algorithms the input was
the mean value of each muscle’s SRE in the given
window (size (num EMG,1)), to compare the model
performances with respect to the presented data pre-
processing strategy. The target data were the mean
joint angles in the analysis window.

A final pre-processing step was scaling the data.
Machine learning models tend to perform better on
scaled data, as each input feature has equal weight
when all features are scaled to fall within a specified
range [25]. The data was scaled to the maximal abso-
lute value in the data (per channel), so that all data
points fell within the range (-1,1). Data was standard-
ized for the GPs (see section 2.3.1) as a zero mean of
the data was assumed for this type of model [26].

Historic information from the IMUs was used in
models where IMU data was included. Accelerations
and angular velocities measured one non-overlapping
data window back in time (128 ms) were used. Norm
vectors were computed and used as input for both the
accelerations and angular velocities. The norm vectors
were chosen, because general movement of a body seg-
ment (such as the thigh) was the parameter of interest.
Furthermore, the use of the norm vectors ensured that
the input still primarily consisted of EMG signals. The
use of the norm vector as IMU feature, reduced the
model complexity as less model parameters needed to
be learned. The norm vector of an acceleration signal
was computed as in equation 1.

anorm =
√
a2x + a2y + a2z (1)

In figure 1, the different pre-processing steps can
be seen, next to the other processing steps.

2.3 Machine learning approach

This section describes the different utilised algorithms,
as well as the procedure to find the optimal hyperpa-
rameter settings. All algorithms were implemented in
the open-source software Python v3.7 [27]. The se-
lected algorithms were chosen based on their earlier
application for joint angle estimation problems, as de-
scribed in the introduction.

2.3.1 Algorithms

Three classes of algorithms were used in this study:
neural networks, kernel-based algorithms and a linear
method. The neural networks estimated all joint an-
gles simultaneously, for the kernel-based methods sepa-
rate models were created for each joint. This approach

was taken based on the results of a preliminary anal-
ysis on a different dataset, which was comparable to
the ENABL3S dataset.

Neural Networks

The first class consisted of several types of neural net-
works. Neural networks are models that consist of mul-
tiple layers which contain neurons. The first type was
the fully-connected neural network (FC-NN). The FC-
NN is the simplest form of a neural network. In a FC-
NN, the weights are learned that connect all neurons in
one layer with all neurons in the next layer. Each neu-
ron has its own activation function, which is applied
to the sum of all incoming neurons, multiplied by their
weights, including a bias term. The weights and biases
are found by minimising an error function, which can
be done using several optimisation techniques (opti-
misers) such as Stochastic Gradient Descent. Due to
the model structure, a neural network is able to ap-
proximate any given function [26].

The second type of neural networks were CNNs.
Compared with regular neural networks, CNNs try to
learn features from input data, which makes the net-
work more robust to distortions in the input. It does so
by making use of local receptive fields and weight shar-
ing. From the convolutional layer(s), a feature map is
obtained. To further reduce the model complexity, a
sub-sampling layer can be used that combines the in-
formation of several, pre-defined, samples in the fea-
ture map [26].

A third type of neural networks included LSTM
layers. An LSTM layer is a type of recurrent neural
network, that tries to learn from the temporal sequence
in which data is processed. The model can learn from
sequential data by recursively looping over the previ-
ous states. Recursively looping over previous states is
done by using several gates: the input gate, the forget
gate and the output gate. These gates control what
information is retained and which information can be
dropped from the model [21].

The activation function for all fully-connected (FC)
layers was the Rectified Linear Unit (ReLU) activation
function, except for the output layer, which used a lin-
ear activation function. Furthermore, a dropout layer
was used which decreases the probability of overfit-
ting, by randomly detaching a fraction of the connec-
tions during model training [28]. The dropout layer
was used for the FC layers.

1D convolutional layers were used in this study and
a MaxPooling layer was chosen as sub-sampling layer.
The size of the local receptive field followed from the
chosen kernel size. ReLU activation functions were
used in all convolutional layers. Several FC layers
were connected to the output of the final convolutional
layer, so that the feature map was essentially used as
input to an FC-NN to estimate the joint angles.

The LSTM layer was implemented in two settings:
firstly as input layer, with FC layers connected to
the LSTM layer (referred to as LSTM) and secondly
as an intermediate layer between convolutional layers
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and FC layers (CNN-LSTM). The recurrent activation
function in the LSTM layer was the sigmoid function.
The activation function was the LeakyReLU function,
which is a ReLU function with a small slope (0.1 is
the chosen slope) for negative inputs. The LeakyReLU
function helps in preventing finding a zero gradient for
negative inputs [29]. A preliminary analysis showed
this type of activation function was necessary for the
LSTM models.

All neural networks were implemented using
Python’s software package Keras (v2.3.1), with a Ten-
sorFlow backend (v2.0.0) [30]. Several settings for
compilation were chosen: the type of optimiser, the
batch size and the number of epochs. Other compila-
tion settings used their respective default values. The
optimiser is an algorithm that helps finding the model
parameters (weights and biases) in the neural network
[26]. The batch size controls the number of training
samples that are passed before the model parameters
are updated. The number of epochs sets the repe-
titions that the training data is passed through the
network, so that the weights can be learned.

Kernel-based algorithms

The kernel-based algorithms comprised of Support
Vector Regression (SVR), Kernel Ridge Regression
(KRR) and Gaussian Processes (GPs). In SVR, data
points are transformed to a high-dimensional space
using (non-linear) kernels. To optimise the use of
SVR, an ε-insensitive error function is employed, where
ε > 0. All errors smaller than ε are treated as zero er-
ror. This gives a range of values which are treated as
zero error by the model, which is known as the tube.
In the model, all training data points that lie outside
(or on) the tube are treated as support vectors. Using
support vectors, estimations can be made of the data
points in the test set [26].

Another technique that is somewhat similar to SVR
is KRR [19]. This technique is similar in the sense that
the data is mapped into a higher dimensional space us-
ing a kernel, so that a linear solution can be found in
the transformed feature space. Compared with SVR,
a different cost function is used, which is applied in the
learning phase of the model [31]. Another difference
is that KRR gives a non-sparse model, whilst SVR
creates a sparse model. Due to this characteristic, a
KRR model is slower in making predictions than an
SVR model.

A final kernel-based approach was GPs for regres-
sion [16, 18]. In GP regression, the target value (joint
angles) is found by finding the probability distribu-
tion of functions that maps the stochastic process (the
target values) in a consistent manner [26]. The prob-
ability distribution consists of a mean function and a
covariance function. As the data used for the GPs was
standardised, it was ensured that the data has a zero
mean. Therefore, only the covariance function needed
to be constructed, which can be found directly by em-
ploying different kernels. A GP regressor can become
infeasible for large datasets as too many datapoints

have to be used to learn the optimal covariance func-
tion, as it is a non-sparse model [26].

All kernel-based algorithms were implemented us-
ing Python’s scikit-learn library (v0.21.3) [32].

Linear regression

Performance of a linear method was also studied in
this model comparison, using a Linear Regression
(LR) model [19]. In LR models, a mapping is learned
from the input data to the output data based on
a weight vector that minimizes the sum of squared
errors between the observed and predicted outputs.
No hyperparameters were optimised for this model.
Implementation was done using Python’s scikit-learn
library [32].

2.3.2 Hyperparameter optimisation

It is a necessary step to optimise the hyperparameters
in a machine learning model in order to get the best
performance out of each algorithm. The optimal hy-
perparameters differ per dataset, as different relations
between input and output can be learned from differ-
ent datasets. The way a model learns these relations
depends on the chosen model settings (i.e. hyperpa-
rameters). In this study, hyperparameter optimisation
was done by using a Bayesian optimisation strategy
[33]. In a Bayesian optimisation strategy, a probability
distribution is learned over the set of hyperparame-
ters along with the performance on the validation set.
Therefore, more time could be spent searching hy-
perparameter spaces that had a higher probability of
returning good model performance. This decreased
the computational cost of running the optimisation
routines and increased the probability of finding a
good set of hyperparameters for the given model. Per
model, ranges of the possible hyperparameters were
used as input to the search algorithm.

In this study, the optimal hyperparameters for each
model were found per activity (in a given dataset),
based on 5-fold cross-validation (5-cv) on all available
data for that activity. All subject data of an activity
was stacked for neural networks to create the most-
generalisable hyperparameter settings. It was ensured
that the splits for the 5-cv were made so that both the
training set and test set contained data from each sub-
ject in the dataset. 75 evaluations were performed on
the hyperparameter space per optimisation. Activity-
generic hyperparameter settings were found for each
individual algorithm described in section 2.3.1. The
kernel-based approaches required too much memory
when all data was stacked together. Therefore, a
slightly different approach was taken as a 5-cv was per-
formed for each subject separately. The results for all
subjects were then averaged in the loss function. The
minimised loss function by the optimisation routine
was 1 − R2, with R2 one of the performance metrics
described in section 2.4.
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The type of optimiser used for the neural networks
was considered a hyperparameter that required opti-
misation. All optimisers were used with their default
settings. The number of epochs and batch size were
not optimised. Three epochs were chosen for the hy-
perparameter optimisation procedure to limit compu-
tation time of the optimisations. Testing neural net-
work model performance was done with fifteen epochs,
so that the neural networks were allowed to minimise
the error function further. The maximum number of
epochs was chosen to prevent overfitting to the train-
ing data. The chosen error function to be minimised
during training was the mean squared error function.
The chosen batch size was 64.

Optimised hyperparameters of the FC-NN were the
number of layers, number of neurons in a layer and
the dropout ratio. Optimised hyperparameters of the
CNN were the kernel size, number of neurons in a con-
volutional layer, number of convolutional layers and
pool size in the MaxPooling layer. Furthermore, the
fully-connected layers in the CNN had the same hy-
perparameters that required optimisation as in the
FC-NN. Optimised hyperparameters of the neural net-
works including an LSTM layer were similar to the
FC-NN and CNN, with one additional hyperparame-
ter which was the number of neurons in the LSTM
layer.

Hyperparameters of the kernel-based methods fol-
lowed from the arguments that could be given to each
model’s function in Python’s scikit-learn library.

A list of optimised hyperparameters per algorithm
is presented in table 1. The optimisation routine
was implemented by using Python’s software package
hyperopt (v0.2.2) [34], in combination with hyperas
(v0.4.1). A complete list of optimised hyperparame-
ters per dataset is presented in Appendix A.

2.4 Performance metrics

To compare the performance of the algorithms, two
different, frequently-used, performance metrics were
chosen [11, 12, 13, 14, 19]. The chosen performance
metrics were the coefficient of determination (R2) and
the Root Mean Square Error (RMSE). The R2 gives
an indication on the goodness-of-fit of the prediction,
whilst the RMSE gives an indication on the predic-
tion error. Equations 2 and 3 present the mathemati-
cal notation for both performance metrics. x̂ denotes
the predicted data point. x̄ is the mean value for all
data points.

R2 = 1 −
∑N

t=0(x̂t − xt)
2∑N

t=0(xt − x̄t)2
(2)

RMSE =

√√√√ 1

N

N∑
t=0

(x̂t − xt)2 (3)

Table 1: Optimised hyperparameters per algorithm.

Algorithm Optimised hyperparameters

FC-NN Number of hidden layers
Number of neurons in hidden layer
Dropout ratio
Optimiser

CNN Number of convolutional layers
Number of neurons in convolutional
layer
Kernel size of the convolutional
layer
Pool size of the MaxPooling layer
Number of hidden FC layers
Number of neurons in FC layer
Dropout ratio
Optimiser

LSTM Number of neurons in LSTM layer
Number of hidden FC layers
Number of neurons in FC layer
Dropout ratio
Optimiser

CNN-LSTM Number of convolutional layers
Number of neurons in convolutional
layer
Kernel size of the convolutional
layer
Pool size of the MaxPooling layer
Number of neurons in LSTM layer
Number of hidden FC layers
Number of neurons in FC layer
Dropout ratio
Optimiser

SVR Kernel type
Regularisation parameter (’C’)
ε value for the ε-tube
Independent term kernel function
(’coef0’)
Degree of the polynomial kernel

KRR Kernel type
Conditioning parameter (α)
Independent term kernel function
(’coef0’)
Degree of the polynomial kernel

GP Kernel type
LR -

2.5 Analysis strategy

A graphic overview of the processing pipeline (for a
single type of algorithm and activity) is presented in
figure 1. Subject-specific models were created per ac-
tivity, because implementation for amputees will be
amputee-specific. The model’s hyperparameter set-
tings were found from the activity-generic hyperpa-
rameter optimisation results. A 5-cv was done to de-
termine performance for each subject-specific model
per activity. 5-cv was chosen as the number of repe-
titions for all activities in the different datasets were
limited. Due to the training of five different models
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Find optimal
hyperparame-
ters based on
all subjects
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Subject-specific

Figure 1: Graphical overview of the processing pipeline for one type of algorithm and one kind of activity. Dashed
lines are optional steps in the pre-processing, depending on what data is included in the models.

(on different training sets), a measure on the gener-
alisability per subject could be found. k-fold cross-
validation is an approach commonly seen for reporting
subject-specific performance, with k set to four or five
[13, 15, 16, 17, 19]. Models were created per activ-
ity, as different states per activity could be selected by
the mid-level controller. Per subject, the performance
was determined using the mean and standard devi-
ation of the performance metrics over the five folds.
General algorithm performance was determined using
the mean and standard deviation of the performance
metrics over all subjects for each activity.

The three described datasets (in section 2.1) were
used to study the different objectives. The MLK
dataset was used to study the first objective, which
was to determine performance in non-weight-bearing
tasks and sit-to-stand transitions. Sit-to-stand transi-
tions were also studied using the ENABL3S dataset.

Performance in different ADLs, which was the sec-
ond objective, was determined using the ENABL3S
dataset. The third objective, studying the influence
of historic IMU data, was also studied with the EN-
ABL3S dataset as the ENABL3S dataset was more
extensive than the MLK dataset. The fourth objec-
tive was to study performance of the algorithms when
used on transfemoral amputees, which could be studied
with the TIPS dataset. A final analysis was conducted
on the ENABL3S dataset to determine robustness of
the different algorithms. A general overview of the
different analyses is summarised in figure 2.

Determine
performance
of EMG-only

input to
the models

Selection based
on significant
performance
differences

Determine
performance
of EMG +

IMU input of
selected models

Determine
performance
of IMU-only

input of
selected models

Determine
robustness

of EMG-only
models to

additional noise

Figure 2: Graphical overview of the data analysis pipeline for the ENABL3S dataset. Analysis of the MLK dataset
and TIPS dataset was done exclusively for EMG-only input.
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2.5.1 EMG-only analysis

All algorithms described in section 2.3.1 were tested to
assess the performance on the different datasets. The
ENABL3S dataset made it possible to analyse four ac-
tivities: sit-to-stand transitions, level ground walking,
stair ascent and stair descent. The two analysed ac-
tivities in the MLK dataset were the combined non-
weight-bearing activities (as described in section 2.1.1)
and sit-to-stand transitions (sitting-specific models).
Furthermore, models were created that were trained
on data from both non-weight-bearing tasks and sit-
to-stand transitions (sitting-generic models). This ap-
proach was taken, as a preliminary analysis revealed
that training a model on one of both activities, and
testing on the other activity, gave poor performance
(negative R2, relatively large RMSE) for both joints.
The analysis of combined activities was done to de-
termine whether a generic model could be trained for
providing intuitive control in the sitting state. The
TIPS dataset was used to study level ground walking
of transfemoral amputees. As different prostheses were
used in the trials, different knee angles were obtained
per prosthesis. Therefore, for each subject all algo-
rithms were trained for each type of prosthetic knee.
Joint angles in the sagittal plane were estimated. An-
kle and knee joint angles were estimated for the EN-
ABL3S dataset and MLK dataset. Knee joint angles
were estimated for the TIPS dataset.

2.5.2 (EMG and) IMU analysis

A selection was made for the algorithms to be used
for the IMU analysis. The selection was made to re-
duce the computational load, by dropping the worst-
performing models on the EMG-only input for the
analysis on different types of input. The selection pro-
cedure is described in section 2.6. The selected algo-
rithms were tested using historic IMU information in
conjunction with the EMG data. Additionally, models
containing merely historic IMU data were tested, to be
able to objectively study the influence of historic IMU
data.

2.5.3 Robustness analysis

The ENABL3S dataset was used to assess the robust-
ness of the various algorithms to noise. The robust-
ness analysis was done to asssess whether performance
of the different models changed when testing the mod-
els on different circumstances than that were used for
training the models. The sit-to-stand activity was se-
lected for the robustness analysis, as this activity be-
longed to the main application for the MyLeg project.
Testing robustness of EMG-based controllers to var-
ious sources of noise was previously done in several
arm prosthetics’ control tasks [35, 36, 37]. The rea-
soning for addition of noise was that the EMG signal
could differ due to small placement differences of the
prosthesis after donning and doffing, a change in skin
condition or the time of testing (on for instance a dif-
ferent day) [36]. As testing on different days was not

possible, the change in signal was simulated by con-
taminating all raw EMG signals with white Gaussian
noise. This condition simulated an unstable reference
electrode [37]. To perform a sit-to-stand transition,
the studied muscles require muscle activity that was
21.77% to 37.41% of the Maximum Voluntary Con-
traction (MVC) [38]. Four different noise levels were
tested, namely 2%, 4%, 6% and 8% of the Root Mean
Square (RMS) value of the MVC per muscle. These
noise levels were chosen to ensure that the noise cor-
responds to at most 10%, 20%, 30% and 40% of the
MVC percentage required for the sit-to-stand transi-
tion. The 10%, 20%, 30% and 40% levels were studied
in a prosthetics’ control task [37]. The models were
trained on uncorrupted data and tested on the four
noise levels, using a 5-cv. Pre-processing was done in
the same manner as for the original data. Models are
considered robust to an additional noise level when no
significant performance difference is found.

2.6 Statistical analysis

The selection procedure for the ENABL3S dataset was
based on a statistical analysis of the model goodness-
of-fit performance and was carried out for each indi-
vidual activity. The R2 was chosen as selection crite-
rion as this metric was used to find the optimal hy-
perparameters. All algorithms are compared with the
best-performing algorithm (per joint), which was de-
termined by taking the overall average R2 value over
all subjects.

The selection procedure determined which algo-
rithms did not significantly differ (p > 0.05) from the
best-performing algorithm. The ENABL3S dataset
contained data from ten subjects, so ten R2 values
were used for the algorithm comparison. The ten R2

values were the averaged results over the different folds
in the 5-cv per subject. Eight different algorithms
were tested, thus seven statistical tests were done. A
Wilcoxon signed-rank test was used to compare the
best-performing algorithm with every other algorithm.
As seven statistical tests were done, a post-hoc analy-
sis was applied. The Holm-Bonferroni correction was
used for the post-hoc analysis [39]. All algorithms that
had no significant performance difference, compared
to the best-performing model, were selected for (EMG
and) IMU analysis. If only a single joint showed a not
significant performance difference, the algorithm was
selected for further analysis for both joints.

Statistical comparison of the best-performing
EMG-only model (per activity and metric) with the
best-performing EMG and IMU input and the IMU-
only input models was also done using the Wilcoxon
signed-rank test. Performances were deemed signif-
icantly different at the level p < 0.05. Statisti-
cal analysis of the robustness analysis compared the
performance at a given noise level with the base-
line conditions (0% MVC). As four statistical tests
were done, a post-hoc analysis was applied using the
Holm-Bonferroni correction to assess which conditions
showed significant different performance. The MLK
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dataset had insufficient subjects (three) to perform a
statistical analysis. Statistical analysis of the TIPS
dataset was done using the Wilcoxon signed-rank test
combined with the Holm-Bonferroni correction, to
compare the different model performances.

Statistical analysis was performed using Python’s
software package SciPy (v1.4.1) [40].

3 Results

In this section, the results are presented. Each dataset
has its own subsection.

3.1 ENABL3S dataset

Results for the different analyses (figure 2) of the EN-
ABL3S dataset are presented in individual subsections.

3.1.1 EMG-only input

Figures 3a, 3b, 3c, 3d show the results of the R2 for
the different models in the EMG-only situation. The

FC-NN has the highest R2 for sit-to-stand transitions
for both the ankle and knee. In terms of R2, the CNN
performs best for level ground walking, stair ascent
and stair descent, for both the ankle and knee joint.
The R2 values found with the best model per activity
are listed. For sit-to-stand (and stand-to-sit) transi-
tions, the R2 values are 0.456±0.390 and 0.765±0.115
for the ankle and knee joint respectively. For level
ground walking, the R2 values are 0.555 ± 0.264 and
0.830± 0.106 for the ankle and knee joint respectively.
For stair ascent, the R2 values are 0.749 ± 0.213 and
0.902± 0.070 for the ankle and knee joint respectively.
For stair descent, the R2 values are 0.863 ± 0.091 and
0.884± 0.066 for the ankle and knee joint respectively.

The lowest RMSE values in sit-to-stand transi-
tions are obtained with the FC-NN model. The lowest
RMSE values are obtained using the CNN model for
level ground walking, stair ascent and stair descent.
The joint angle ranges differ for the ankle and knee
joint, which influences the magnitude of the RMSE.
The differences are an important consideration in the
comparison of the RMSE values. The ankle angle

(a) Sit-to-stand transitions in the ENABL3S dataset. (b) Level ground walking in the ENABL3S dataset.

(c) Stair ascent in the ENABL3S dataset. (d) Stair descent in the ENABL3S dataset.

Figure 3: R2 values (mean and standard deviation) of the activities in the ENABL3S dataset for the EMG-only models.
The best-performing model is marked bold. Statistically significant different performance between the best-performing
model and the other models is shown by an asterisk, for both the ankle (light) and knee (dark).
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(a) Sit-to-stand transitions in the ENABL3S dataset. (b) Level ground walking in the ENABL3S dataset.

(c) Stair ascent in the ENABL3S dataset. (d) Stair descent in the ENABL3S dataset.

Figure 4: RMSE values (mean and standard deviation) of the activities in the ENABL3S dataset for the EMG-
only models. The best-performing model is marked bold. Statistically significant different performance between the
best-performing model and the other models is shown by an asterisk, for both the ankle (light) and knee (dark).

ranges approximately from −5◦ to 25◦ for the sit-to-
stand transitions. In the other activities, the ankle
angle ranges from approximately −15◦ to 25◦. More
differences are observed in the knee angle ranges, with
level ground walking having a range of approximately
0◦ to 65◦. Sit-to-stand transitions have a knee joint
angle ranging from approximately 0◦ to 90◦. In stair
ascent and stair descent, the knee joint angle ranges
from approximately 0◦ to 80◦.

Figures 4a, 4b, 4c, 4d show the results of the
RMSE for the different models in the EMG-only sit-
uation. For sit-to-stand (and stand-to-sit) transitions,
the RMSE values are 3.29 ± 0.94◦ and 15.99 ± 4.15◦

for the ankle and knee joint respectively. For level
ground walking, the RMSE values are 3.35±0.86◦ and
7.60 ± 2.54◦ for the ankle and knee joint respectively.
For stair ascent, the RMSE values are 2.88±0.97◦ and
7.80 ± 2.32◦ for the ankle and knee joint respectively.
For stair descent, the RMSE values are 3.88 ± 1.12◦

and 8.42 ± 2.36◦ for the ankle and knee joint respec-
tively.

The selection based on the statistical analysis com-
pares the FC-NN with all other models for sit-to-stand
transitions. The CNN is compared with all other mod-
els for level ground walking, stair ascent and stair
descent. For sit-to-stand transitions, no significant
performance difference (after applying the post-hoc
analysis) is found for the SVR (pankle = 0.093), the
GP (pankle = 0.047 & pknee = 0.028) and the CNN
(pknee = 0.059) models for at least one of the studied
joints. For level ground walking and stair ascent, the
performance of all models significantly differs from the
best-performing model. For stair descent, no signifi-
cant performance differences (after applying the post-
hoc analysis) are found for the GP (pknee = 0.721),
SVR (pknee = 0.333) and FC-NN (pknee = 0.037),
compared with the CNN for the knee joint. There-
fore, the models tested with IMU input are the CNN
model for all activities and the FC-NN, SVR and GP
models for stair descent and sit-to-stand transitions.

Although not used for the selection procedure,
the statistical analysis is also done for the RMSE
performance. For sit-to-stand transitions, the CNN
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(pknee = 0.074) and GP (pknee = 0.028) models have
no significant different performance for the knee joint
(after applying the post-hoc analysis), compared to
the FC-NN. For level ground walking and stair ascent,
all models significantly differ from the best-performing
model. For stair descent, no significant performance
differences are found for the GP (pknee = 0.721), SVR
(pknee = 0.169) and FC-NN (pknee = 0.028), com-
pared with the CNN for the knee joint after applying
the post-hoc analysis.

3.1.2 EMG and IMU input

Table 2 shows the performance for the models contain-
ing EMG and IMU input. Different models perform
best using a combination of EMG and historic IMU
data. The CNN performs best on both metrics for the
knee joint in sit-to-stand transitions. For the ankle
joint in sit-to-stand transitions, the best performance
in terms of R2 is found with the GP, whilst the best
performance in terms of RMSE is found using the
CNN. The CNN performs best (on both metrics) for
level ground walking and stair ascent for both joints.
Finally, for stair descent the best performance on both
metrics is found using the SVR model for the ankle
joint and the GP model for the knee joint.

Performance in terms of R2 for sit-to-stand tran-
sitions significantly increased for both the ankle and

knee (pankle = 0.047 & pknee = 0.005). For level
ground walking, a significant increase of the R2 is
seen for the ankle and knee joints (pankle = 0.005
& pknee = 0.005). For stair ascent, a significant in-
crease in R2 is observed for the ankle (pankle = 0.013
& pknee = 0.074). Finally, for stair descent, a signifi-
cant performance increase in terms of R2 is seen for the
ankle and knee joint (pankle = 0.013 & pknee = 0.005).

For sit-to-stand transitions, a significant perfor-
mance increase (lower RMSE) is seen for both the
ankle and knee joint (pankle = 0.022 & pknee = 0.005).
For level ground walking, a significantly lower RMSE
is seen for the ankle and knee joint (pankle = 0.005 &
pknee = 0.005). For stair ascent, a significantly lower
RMSE is only seen for the ankle joint (pankle = 0.017
& pknee = 0.059). Finally, for stair descent the RMSE
is significantly lower for both the ankle and knee joint
(pankle = 0.007 & pknee = 0.005).

3.1.3 IMU input

Table 2 shows the performance for the models contain-
ing IMU-only input. The CNN model performs best
on both performance metrics when only historic IMU
data is used for all activities. This is seen for both the
ankle and knee joint.

Table 2: Results of the selected models for IMU-testing. Both the EMG and IMU and IMU-only results are presented
for the ankle and knee joint. R2 and RMSE (in ◦) are reported using mean (standard deviation). Activities are
sit-to-stand transitions (sts), level ground walking (lgw), stair ascent (sa) and stair descent (sd). EMG-only results for
the different models are included for the activities that are studied with the IMU analysis.

Ankle

sts lgw sa sd

R2 RMSE R2 RMSE R2 RMSE R2 RMSE
CNN
EMG 0.396 (0.360) 3.51 (1.03) 0.555 (0.264) 3.35 (0.86) 0.749 (0.213) 2.88 (0.97) 0.863 (0.091) 3.88 (1.12)
EMG+IMU 0.519 (0.464) 3.01 (1.00) 0.651 (0.245) 2.85 (0.85) 0.786 (0.187) 2.62 (0.95) 0.881 (0.135) 3.34 (1.27)
IMU 0.233 (0.460) 4.07 (1.28) 0.588 (0.248) 3.12 (0.78) 0.672 (0.247) 3.32 (1.04) 0.813 (0.117) 4.38 (1.19)
FC-NN
EMG 0.456 (0.390) 3.29 (0.94) - - - - 0.826 (0.084) 4.49 (1.22)
EMG+IMU 0.487 (0.447) 3.11 (0.91) - - - - 0.882 (0.112) 3.34 (1.21)
IMU 0.136 (0.389) 4.43 (1.49) - - - - 0.730 (0.180) 5.19 (1.43)
GP
EMG 0.444 (0.369) 3.35 (0.94) - - - - 0.836 (0.087) 4.33 (1.18)
EMG+IMU 0.522 (0.408) 3.05 (0.94) - - - - 0.890 (0.093) 3.29 (1.05)
IMU 0.191 (0.402) 4.24 (1.38) - - - - 0.774 (0.167) 4.63 (1.49)
SVR
EMG 0.433 (0.364) 3.40 (0.95) - - - - 0.840 (0.086) 4.27 (1.20)
EMG+IMU 0.512 (0.403) 3.11 (0.94) - - - - 0.893 (0.092) 3.24 (1.07)
IMU 0.153 (0.387) 4.36 (1.42) - - - - 0.768 (0.165) 4.71 (1.42)

Knee

sts lgw sa sd

R2 RMSE R2 RMSE R2 RMSE R2 RMSE
CNN
EMG 0.724 (0.159) 17.24 (5.33) 0.830 (0.106) 7.60 (2.54) 0.902 (0.070) 7.80 (2.32) 0.884 (0.066) 8.42 (2.36)
EMG+IMU 0.878 (0.056) 11.36 (2.50) 0.888 (0.125) 5.95 (3.09) 0.913 (0.226) 6.57 (5.14) 0.913 (0.092) 6.97 (2.79)
IMU 0.559 (0.163) 21.93 (4.43) 0.829 (0.156) 7.38 (3.56) 0.854 (0.204) 9.35 (4.78) 0.751 (0.144) 12.22 (3.48)
FC-NN
EMG 0.765 (0.115) 15.99 (4.15) - - - - 0.862 (0.068) 9.23 (2.25)
EMG+IMU 0.842 (0.106) 12.75 (3.67) - - - - 0.909 (0.091) 7.18 (2.74)
IMU 0.426 (0.172) 25.16 (4.30) - - - - 0.525 (0.232) 16.90 (4.36)
GP
EMG 0.751 (0.111) 16.56 (4.06) - - - - 0.882 (0.070) 8.52 (2.29)
EMG+IMU 0.842 (0.063) 13.06 (2.69) - - - - 0.935 (0.055) 6.11 (2.22)
IMU 0.493 (0.130) 23.75 (3.80) - - - - 0.702 (0.203) 13.06 (4.36)
SVR
EMG 0.730 (0.125) 17.26 (4.34) - - - - 0.876 (0.071) 8.73 (2.36)
EMG+IMU 0.828 (0.071) 13.62 (3.02) - - - - 0.933 (0.056) 6.20 (2.20)
IMU 0.444 (0.137) 24.89 (4.02) - - - - 0.683 (0.222) 13.46 (4.46)
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For sit-to-stand transitions, a significant decrease
of the R2 values is found for both the ankle and knee
joint (pankle = 0.007 & pknee = 0.013). For level
ground walking, no significant difference in R2 values is
seen for both the ankle and knee joint (pankle = 0.241
& pknee = 0.799). For stair ascent, the R2 values sig-
nificantly decrease for the ankle joint (pankle = 0.005
& pknee = 0.074). Finally, for stair descent a signif-
icant decrease is seen for the R2 values of both the
ankle and knee joint (pankle = 0.007 & pknee = 0.007).

Sit-to-stand transitions have a significant increase
of the RMSE for both the ankle and knee joint
(pankle = 0.005 & pknee = 0.013). For level ground
walking, the RMSE metric does not significantly dif-
fer for the ankle and knee joint (pankle = 0.074 &
pknee = 0.575). For stair ascent, a significant increase
of the RMSE is seen for both the ankle and knee joint
(pankle = 0.005 & pknee = 0.028). Finally, for stair
descent a significant increase of the RMSE is found
for both the ankle and knee joint (pankle = 0.017 &
pknee = 0.007).

3.1.4 Robustness analysis

Figures 5a and 5b show the R2 values in the selected
noise levels for the ankle and knee joint respectively.
Performance decreases with higher noise levels for all
types of models. At the 2% and 4% MVC noise lev-
els, the post-hoc analysis shows the decrease in per-
formance is not significant (p > 0.05) for all models
for the ankle joint. At the 6% and 8% MVC levels,
the CNN, FC-NN, CNN-LSTM, GP and SVR models
have a significant performance decrease. The post-hoc
analysis shows that the LSTM, LR and KRR models
have no significant decrease in performance in terms
of R2 for the ankle joint. A significant decrease in per-
formance in terms of R2 is found with all models in all
tested noise conditions for the knee joint.

The RMSE values for the ankle and knee joint
in the tested noise conditions are shown in figures 5c
and 5d. Performance differences on the RMSE met-
ric for the various noise levels differ slightly with the
R2 metric. The CNN has a significant difference in
performance at the 2% MVC level for the ankle joint.

(a) R2 for the ankle joint at different noise levels. (b) R2 for the knee joint at different noise levels.

(c) RMSE for the ankle joint at different noise levels. (d) RMSE for the knee joint at different noise levels.

Figure 5: R2 (a,b) and RMSE (c,d) values (mean and standard deviation) of the different noise levels in the sit-to-
stand transitions of the ENABL3S dataset. Statistically significant different performance between the 0% MVC level
and the other tested noise levels is shown by an asterisk.
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All models except for the LSTM, LR and KRR mod-
els have a significantly different RMSE starting at the
4% MVC level. The post-hoc analysis shows that the
LSTM, LR and KRR models have no significant per-
formance difference in terms of RMSE for the ankle
joint. A significant decrease in performance in terms
of RMSE is found with all models in all tested noise
conditions for the knee joint.

3.2 MLK dataset

Figures 6a and 6b show the averaged stand-sit-stand
repetition based on all repetitions for a single sub-
ject, using the activity-specific model. Both the true
and estimated stand-sit-stand repetitions are averaged.
Comparison of figures 6a and 6b shows that the an-
kle angle has relatively more variation than the knee
angle. The degree of variation can be seen from the
standard deviations associated with the averaged true
joint angles.

Figures 7a and 7b show the performance in terms
of R2 values for the different models, for both the
sitting-specific and sitting-generic models. Highest
R2 values in non-weight-bearing tasks are obtained
using the CNN model. Highest R2 values in sit-to-
stand transitions are obtained using the SVR model
and CNN model for the ankle and knee joint respec-
tively. For the non-weight-bearing tasks, the R2 values
are 0.839 ± 0.038 and 0.956 ± 0.013 for the ankle and
knee joint respectively. For sit-to-stand transitions,
the highestR2 values are 0.476±0.356 and 0.952±0.025
for the ankle and knee joint respectively.

For the sitting-generic models, the CNN model
gives the highest R2 values for the ankle joint in
non-weight-bearing activities and both joints in sit-to-
stand transitions; the FC-NN model gives the highest
R2 value for the knee joint in the non-weight-bearing
tasks. The sitting-generic models yield R2 values of
0.842± 0.040 and 0.955± 0.010 for the ankle and knee

joint in the non-weight-bearing tasks. The sitting-
generic models have highest R2 values of 0.040±0.296
and 0.942 ± 0.017 for the ankle and knee joint in the
sit-to-stand transitions.

Figures 7c and 7d show the RMSE values for the
two activities in the MLK dataset. The ankle angle
ranges from approximately −60◦ to 15◦ for the non-
weight bearing tasks and approximately 5◦ to 25◦ for
the sit-to-stand transitions. The knee angle ranges
from approximately 0◦ to 90◦ for the non-weight bear-
ing tasks and approximately 0◦ to 80◦ for the sit-to-
stand transitions.

The lowest RMSE values in the non-weight-
bearing activities are obtained using the CNN model.
The lowest RMSE values in sit-to-stand transitions
are obtained using the SVR model and CNN model
for the ankle and knee joint respectively. For the non-
weight-bearing tasks, the lowest RMSE values are
8.62 ± 1.48◦ and 7.21 ± 1.18◦ for the ankle and knee
joint respectively. For the sit-to-stand transitions, the
lowest RMSE values are 2.44±0.80◦ and 5.97±1.24◦

for the ankle and knee joint respectively.

For the sitting-generic models, the CNN model
gives the lowest RMSE values for the ankle joint in
non-weight-bearing activities and both joints in sit-to-
stand transitions; the FC-NN model gives the lowest
RMSE value for the knee joint in the non-weight-
bearing tasks. The lowest RMSE values for the
sitting-generic models are 8.56±1.60◦ and 7.34±0.93◦

for the ankle and knee joint respectively in the non-
weight-bearing tasks. The lowest RMSE values for
sitting-generic models are 3.52± 1.19◦ and 6.84± 1.45
for the ankle and knee joint in the sit-to-stand transi-
tions.

(a) Averaged ankle angle in a stand-sit-stand transition in
the MLK dataset.

(b) Averaged knee angle in a stand-sit-stand transition in
the MLK dataset.

Figure 6: Average of all repetitions for the ankle (a) and knee (b) angles during a stand-sit-stand task for a subject in
the MLK dataset.
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(a) R2 for non-weight-bearing tasks in the MLK dataset. (b) R2 for sit-to-stand transitions in the MLK dataset.

(c) RMSE for non-weight-bearing tasks in the MLK
dataset.

(d) RMSE for sit-to-stand transitions in the MLK dataset.

Figure 7: R2 (a,b) and RMSE (c,d) values (mean and standard deviation) of the activities in the MLK dataset.
Results are shown both for sitting-specific models (left bars of each model) and the sitting-generic models (right bars of
each model).

3.3 TIPS dataset

Figures 8a and 8b show the performance of the cho-
sen models on the TIPS dataset. From both figures,
it becomes clear that the CNN outperforms all other
models, for every tested prosthesis. Except for the Ot-
tobock 3R20 prosthesis, significant performance differ-
ences are found between the CNN and all other models.
Significant performance differences with the CNN for
the 3R20 prosthesis are only found with the KRR and
LR models. This is seen for both the R2 metric and
the RMSE metric.

The R2 value found for the best-performing model
is 0.853 ± 0.068 for the Adaptive prosthesis. For the
Mauch SNS prosthesis, the R2 value is 0.818 ± 0.122.
For the Ottobock 3R60, the R2 is 0.871 ± 0.082. The
R2 value found for the Ottobock 3R106 is 0.868±0.058.
Finally, the R2 value found for the Ottobock 3R20 is
0.844 ± 0.105.

Large standard deviations can be observed for the
RMSE values shown in figure 8b as a result of vari-
ability in knee joint angle ranges made by the differ-
ent subjects in the TIPS dataset. The lowest RMSE
values for the different prostheses are found using the
CNN. For the Adaptive prosthesis, the RMSE value
is 7.76 ± 2.77◦. For the Mauch SNS prosthesis, the
RMSE value is 8.77 ± 3.40◦. For the Ottobock 3R60,
the RMSE is 6.31 ± 2.37◦. For the Ottobock 3R106,
the RMSE is 8.06± 2.31◦. Finally, the RMSE of the
Ottobock 3R20 is 9.46 ± 3.87◦.
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(a) R2 values for the knee joint estimations in the
TIPS dataset.

(b) RMSE values for the knee joint estimations in the
TIPS dataset.

Figure 8: R2 (a) and RMSE (b) values (mean and standard deviation) of the different prostheses tested in the TIPS
dataset. The best-performing model for each prosthesis is marked bold. Statistically significant different performance
between the best-performing model and the other models is shown by an asterisk, for each of the tested prostheses.

4 Discussion

Eight different algorithms were tested on their abil-
ity to estimate lower limb joint kinematics from elec-
tromyography. Four objectives were set up to deter-
mine which algorithm(s) performed best. The objec-
tives of this study were: 1) Determine performance
of the algorithms in non-weight-bearing situations and
sit-to-stand transitions. 2) Determine performance of
the algorithms for different weight-bearing ADLs. 3)
Assess the influence additional historic IMU data had
on the performance. 4) Determine the performance for
transfemoral amputees.

The different studied activities and situations
showed that different algorithms can obtain similar
performance. Generally, the CNN, FC-NN, GP and
SVR showed the best performance for learning the
non-linear relationship between EMG and joint angles.
The linear method showed lower performance com-
pared to the aforementioned algorithms, which showed
that learning a linear relationship was not sufficient to
accurately learn the relation between EMG and joint
angles. Learning a linear relationship after transfor-
mation to a higher dimensional space, which is done
by the KRR algorithm, was also outperformed by the
aforementioned algorithms. This showed that the ap-
plied transformation did not result in a completely lin-
earised solution space. Neural networks that included
LSTM layers showed lower performance than the other
types of neural networks, which showed that this type
of layer did not have additional benefits in the pre-
sented analysis. Possibly, due to the increased com-
plexity of the LSTM-based models, the relation be-
tween EMG and kinematics could not be learned as
accurately with the available data. Comparison of the
different activities showed that for most of the activi-
ties, the best performance was obtained using a CNN.
The results suggested that the CNNs were able to ex-

tract most information from the EMG signals to learn
the relationship between joint kinematics and EMG.

The remainder of this section is divided into six
subsections. First, a reflection is presented for each
individual objective. Next, other findings, not directly
related to the objectives, are presented. Finally, rec-
ommendations for future research are outlined.

4.1 Non-weight-bearing tasks & sit-to-
stand transitions

The first objective of this thesis was to find the best
approach for the estimation of joint kinematics in non-
weight-bearing situations and sit-to-stand transitions.
This analysis was done for both sitting-specific models
and sitting-generic models. First the sitting-specific
models are discussed per activity, secondly the sitting-
generic results are discussed.

4.1.1 Non-weight-bearing tasks

From the R2 values for the non-weight-bearing tasks,
it could be concluded that the knee joint angles were
predicted accurately. Good performance was also ob-
tained for the ankle joint estimations, although the
mean performance is lower than for the knee joint. Us-
ing a CNN, R2 values of 0.839±0.038 and 0.956±0.013
were found for the ankle and knee respectively. Espe-
cially for the knee joint, these results were promising
to be applied for direct voluntary control of the pros-
thesis in the sitting state. Caution has to be taken in
the generalisability of the results, as only three able-
bodied subjects could be measured.

An additional benefit to the reported performance
was that the non-weight-bearing tasks consisted of
three different ankle/knee movement tasks (knee flex-
ion/extension and ankle plantar-/dorsiflexion in differ-
ent knee positions). Thus, a single model was able
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to accurately predict the angles required for differ-
ent tasks. Therefore, no further transitions between
control states are required to control the prosthesis
for the execution of a desired movement in the sit-
ting state. Creation of such a model for estimation
of non-weight-bearing tasks, requires training data on
all activities. Therefore, an extensive calibration rou-
tine has to be conducted when the algorithm is used
on the target population, to ensure that desired ankle
and knee movements can be made.

Comparison of the non-weight-bearing results with
literature is difficult, as different data collection pro-
cedures were set up. Studies that estimate joint an-
gles in a non-weight-bearing situation focussed on es-
timating one type of leg movement (extension-flexion
of the knee), where different movement speed and loads
were studied [11, 13]. The lowest RMSE values found
for the non-weight-bearing tasks (ankle: 8.62 ± 1.48◦,
knee: 7.21 ± 1.18◦) were comparable with the RMSE
values presented in the work by Zhang et al. for leg
extension with small load [11]. Zhang et al. reported
RMSE values of 7.32 ± 1.82◦ and 11.32 ± 2.15◦ for
the ankle and knee joint respectively. Zhang et al.
[11] used the SRE of the EMG as input to the studied
models. The work by Yang et al. [13] showed that the
RMSE decreased when using multiple EMG features
to predict knee joint angles. The used EMG features
were the Root Mean Square, Wavelet Coefficients and
Permutation Entropy of the EMG signals. At compa-
rable leg movement speeds (without load) to our study,
the authors reported RMSE values of 2.79 ± 0.37◦.
In the presented study it was chosen to use a single
feature (SRE of the EMG) per measured EMG chan-
nel for comparison of the different models. The focus
of the study was the comparison of various machine
learning algorithms instead of comparison of various
EMG features, while retaining as much similarity in
input data as possible. Possibly, extracting different
EMG features could result in lower RMSE values for
the non-weight-bearing tasks in the MLK dataset. As
performance could not only improve for non-weight-
bearing tasks, further discussion is provided in section
4.5 (General findings).

4.1.2 Sit-to-stand transitions

Two datasets were used to determine the performance
for sit-to-stand transitions. Similar performance of the
ankle angle estimations was observed for both datasets.
In both datasets, performance for the ankle joint was
poor, as mean R2 performance was below 0.5. A large
degree of variation in ankle joint angles was observed
in the repetitions of a sit-to-stand transition in both
datasets. An example of this large degree of variation
was shown in figure 6a, as a large standard deviation
was observed for the true ankle angles. The used algo-
rithms learned a more generalised pattern for the ankle
angle during sit-to-stand transitions, as reflected by
the lower standard deviation for the estimated angles
in figure 6a. Hence, as the different algorithms were
not able to learn the degree of variation between the

ankle angles, poor overall performance was obtained
for the ankle joint. Therefore, it could be concluded
that the estimation of ankle angles based on EMG was
not feasible to apply in sit-to-stand transitions.

A simulation study by Yoshioka et al. [41] showed
that muscle forces generated by knee and hip exten-
sors were required to perform a sit-to-stand transition.
Muscle force generation of the ankle plantar- and dor-
siflexors was not necessarily required to complete the
transitions. An earlier study by Yoshioka et al. [42]
showed that a successful sit-to-stand transition does
not require a joint moment at the ankle joint. Hence,
active assistance in sit-to-stand transitions by the pros-
thesis could be possible in the absence of an accurate
estimate of the desired ankle kinematics when the knee
can be supported sufficiently.

Performance over the two datasets differed for the
knee joint. In the MLK dataset, an R2 value of
0.952 ± 0.025 was found (using a CNN), compared
with 0.765 ± 0.115 in the ENABL3S dataset (using
a FC-NN). Furthermore, large performance differences
were seen in terms of RMSE for both datasets (MLK:
5.97 ± 1.24◦, ENABL3S: 15.99 ± 4.15◦). Comparing
both datasets, less variation in repetitions in a sit-
to-stand transition was observed in the MLK dataset.
In the MLK dataset, the sit-to-stand transitions were
collected by performing thirty consecutive repetitions.
In the ENABL3S dataset, the sit-to-stand transitions
were the starting point and end point of a circuit. In
this circuit, subjects were allowed to transition volun-
tarily between locomotion tasks [22]. Due to this dif-
ference in data collection procedure, more variation in
the true knee joint angles was seen for the sit-to-stand
transitions data in the ENABL3S dataset compared
with the MLK dataset.

Another difference between the two datasets were
the measured muscles. The ENABL3S dataset con-
tained EMG of the soleus muscle, which assists in plan-
tarflexion of the ankle. Although an additional muscle
that directly acts on the ankle joint was present in
the ENABL3S dataset, no considerable differences in
performance were observed for the ankle joint. In the
MLK dataset, two other muscles were measured com-
pared to the ENABL3S dataset: the adductor magnus
and gluteus maximus. Possibly, their relation to sta-
bilising the hip joint and extending the knee and hip
joint respectively, resulted in better estimation of the
knee joint. Changing the included EMG channels, so
that datasets had the same EMG channels, was not
further investigated in this study. The reason for this
was that additional hyperparameter optimisation (for
reduced input data) is necessary to make a fair com-
parison.

As the number of subjects included in the MLK
dataset was lower compared to the ENABL3S dataset,
generalisability for the former dataset was limited.
Hence, the overall applicability for estimating knee
joint angles during sit-to-stand transitions is doubtful.
Extension of the data collection for the MLK dataset
could show whether the obtained average performances
generalise to a larger population than three subjects.
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If the extension of the dataset shows that the results
on the MLK dataset are generalisable, training models
on fully standardised stand-sit-stand repetitions could
be a feasible approach to predict knee joint angles.
Further extension of the applicability of this approach
could be realised by training models for varying types
(and heights) of seats. Using the predicted knee joint
angles, control signals can be presented to the prosthe-
sis so that additional energy can be generated by the
prosthesis to assist in the sit-to-stand transition. Pro-
viding active assistance by the prosthesis during sit-
to-stand transitions can help in improving the quality
of life and mobility of a transfemoral amputee [43].

4.1.3 Sitting-generic models

A preliminary analysis revealed that the sitting-
specific models were not able to generalise towards a
different activity. Using a model that was trained on a
sitting-generic level showed promise for the application
to create complete voluntary control in a sitting situa-
tion. In all conditions, except the ankle angle in sit-to-
stand transitions, comparable performance to sitting-
specific models was obtained when a sitting-generic
model was used to predict joint angles. Only re-
sults for the ankle angle in the sit-to-stand transitions
showed considerably lower performance. Performance
for the ankle angle in the sitting-specific situation al-
ready showed low performance, due to the large de-
gree of variation of the true ankle angle. Furthermore,
the observed ankle angle ranges differ in both types
of activities. In the non-weight-bearing tasks, the an-
kle joint moved mainly towards a plantarflexed posi-
tion (angle range from approximately −60◦ to 15◦),
whereas in the sit-to-stand transitions the ankle joint
was in dorsiflexed position (angle range from approxi-
mately 5◦ to 25◦). Hence, the generalisability to both
situations became poor for the sit-to-stand transitions,
as a large degree of variation was present in the train-
ing set. The variation was observed less for the knee
joint, as for both the non-weight-bearing tasks and sit-
to-stand transitions, flexion and extension of the knee
were performed with comparable angle ranges (non-
weight-bearing tasks: 0◦ to 90◦, sit-to-stand transi-
tions 0◦ to 80◦).

4.2 ADLs

The second objective of this thesis was to determine
the performance of estimating joint kinematics in dif-
ferent weight-bearing ADLs, to assess if a voluntary
control approach could be feasible for amputees in
these activities.

Realisation of safe voluntary control in a weight-
bearing situation requires that prediction errors re-
main small, as errors can result in an imbalance or
even falls for the prosthesis user [44]. Estimation
of knee joint angles showed promising results for the
three studied ADLs. Mean R2 values were 0.830,
0.902 and 0.884 for level ground walking, stair ascent
and stair descent respectively. Whether these perfor-

mances were sufficient for providing safe enough con-
trol over the prosthetic knee, could not be concluded
from the results. Only for stair descent estimation of
ankle joint angles showed comparable performance in
terms of R2 (0.863). Hence, only for this activity ap-
plication of voluntary control of the ankle joint could
be feasible. It is expected that the prediction errors
of the ankle angle result in an unsafe situation for the
other tested ADLs.

Comparison of the ankle and knee angles in the dif-
ferent ADLs showed that the ankle had more sudden
changes (dorsiflexion to plantarflexion and vice versa)
in the joint angles for the studied activities. The knee
joint angles had more gradual changes from flexion to
extension (and extension to flexion). Therefore, for the
estimation of the knee joint angles, relatively less vari-
ation needed to be learned by the models compared
with the ankle joint. This difference resulted in better
performance in the estimation of knee joint angles com-
pared to ankle joint angles. Furthermore, more mus-
cles that acted directly on the knee joint were available
compared with muscles that acted on the ankle joint.

Joint angle estimation based on EMG for level
ground walking was studied earlier, but comparable
studies were not done for the other studied ADLs.
Chen et al. [12] used a simple neural network com-
bined with deep belief neural networks to estimate
lower limb joint angles during level ground walking.
Chen et al. found an RMSE of 2.45±0.57◦ for the an-
kle joint, which was better than the results reported in
this study. Furthermore, they presented an RMSE of
3.96±0.69◦ for the knee joint, which was considerably
lower than the RMSE reported in this study (ankle:
3.35 ± 0.86◦, knee: 7.60 ± 2.54◦). Usage of deep belief
networks to select different lower-dimensional features
from the SRE of the EMG signals could be the rea-
son for the better performance reported by Chen et
al. [12]. However, the authors presented no results on
what performance was obtained with the original SRE
features.

Task-specific models were created, as the high-level
controller of the MyLeg prosthesis recognises differ-
ent locomotion tasks. The state-machine can select
the appropriate low-level control of the prosthesis af-
ter recognition of the locomotion task. To assess if
voluntary control in the locomotion states could be
preferred over the set low-level control by the states,
an assessment was done on what performance could be
achieved for each individual activity. Incorrect selec-
tion of the locomotion state can result in safety issues,
both when relying on pre-defined low-level control or
voluntary control of the prosthesis for the recognised
activity. Compared to a task-specific model, a generic
weight-bearing voluntary control algorithm could re-
duce the safety issues associated with selection of the
wrong state. However, as it is unsure whether the de-
veloped models for specific activities are safe enough
to use, it is expected that a generalisation to a generic
weight-bearing algorithm suffers from the safety issues
related to erroneous predictions.

21



4.3 Influence IMUs

The third objective was to assess the influence of the
addition of historic information from IMUs on the
model performances. Addition of historic information
from IMUs, on the shank and thigh, to the EMG data
significantly improved performance in almost all of the
studied activities. This result implied that additional
information on movement of the leg has a positive in-
fluence on the model’s predictive abilities. These find-
ings corresponded with work presented by Stival et
al. [45], who estimated joint angles for two activities
in the upper extremity. Although no significance was
reported in their study, a performance increase was re-
ported when combining EMG and accelerometer data.

The use of the historic IMU feature without EMG
signals significantly decreased the performance in most
of the studied activities. Especially for the sit-to-stand
transitions a relatively large performance decrease was
observed, as the R2 decreased approximately 0.2 for
both the ankle and knee joint. Compared to the other
studied activities, the sit-to-stand transition was a rel-
atively static movement, where the subject did not
need to perform large movements of the thigh and
shank. During level ground walking more thigh and
shank movement was observed, which resulted in a not
significant difference in the performance.

Reconstructing joint angles based on gyroscope and
accelerometer data is commonly done using IMUs. In
such reconstruction schemes, an accurate estimate of
the joint angles could be obtained from combining sen-
sor readings from the IMUs, a subject-specific scaled
biomechanical model and a Kalman filter [46]. A sys-
tematic review by Poitras et al. [47] showed that valid-
ity of estimating ankle and knee joint angles based on
IMUs was high for the sagittal plane. The reconstruc-
tion procedure differed from the applied machine learn-
ing approach to predict joint angles, as estimations of
the machine learning approach were based solely on
the learned relationship between input features and
the target output.

Machine learning, and specifically the use of neu-
ral networks, was previously used to estimate knee
joint angles based on a minimal IMU set-up. Using
relative orientations (in quaternions, with respect to
the pelvis) of IMUs on both shanks and the pelvis,
knee joint angles could be estimated accurately in run-
ning [48]. Hence, using different information from the
IMUs could give an improvement to the IMU-based
estimates. Although estimation of joint angles based
solely on IMUs was not the goal of this study, the re-
sults showed that the selected IMU feature could be
improved upon, to further increase the estimation per-
formance when using EMG in combination with his-
toric IMU data. Using the estimation procedure of
Wouda et al. [48] in a historic context, to predict de-
sired joint angles ahead in time, should be studied to
determine if performance can be improved. The EN-
ABL3S dataset did not easily facilitate this approach,
as no orientation data from the IMUs was presented
in the published data [22].

4.4 Transfemoral amputees

The final objective of this study was to determine the
performance of the algorithms when applied to trans-
femoral amputees. This analysis gave a first indica-
tion of the feasibility of the proposed approach for the
intended users. The results on the TIPS dataset in-
dicated that the CNN performed best in learning the
relationship between the EMG of the stump muscles
with the knee angles obtained using the different pros-
theses. The CNN significantly outperformed all other
models on both performance metrics for all tested pros-
theses except for the 3R20 prosthesis.

Comparison of knee joint angle estimation during
level ground walking for able-bodied subjects and am-
putees could be done by comparing the results of the
ENABL3S and TIPS datasets. Three important notes
had to be made with this comparison. Firstly, the knee
angle for able-bodied subjects had more variation dur-
ing the stance phase. Secondly, the ENABL3S dataset
contained more repetitions for each subject. Hence,
in the ENABL3S dataset more variability needed to
be accounted for by the models. On the other hand,
more data was available to learn the more complex
joint angles. Thirdly, EMG from the TA and GM
were available for the able-bodied subjects. Although
these considerations had to be taken into account for
the comparison of both results, the estimation per-
formance for the amputees was slightly better than
the performance for able-bodied individuals (highest
R2 of 0.871 ± 0.082 and 0.830 ± 0.106 for the TIPS
dataset and ENABL3S dataset respectively). These
results suggested that using EMG of the residual mus-
cles in the stump of an amputee, in combination with
a CNN, was a feasible approach to estimate knee joint
angles during level ground walking for an amputee.

Comparison of the various prostheses showed small
differences in performance. Comparison of all tested
models, the more complex prostheses (Adaptive and
Mauch SNS) showed slightly lower performance than
the less complex prostheses. The difference in perfor-
mance can be explained by the behaviour of the less
complex prostheses in the stance phase. The 3R20,
3R106 and 3R60 prostheses showed almost no vari-
ability in joint angles during the stance phase of level
ground walking. Therefore, the joint angles required
for level ground walking were less complex to learn
for the models. Even though only limited data points
were available to train the models, the complexity of
the joint angles throughout the activity made it pos-
sible for the models to learn the relationship based on
the EMG of the muscles in the stump. No compa-
rable work was found that estimated prosthetic knee
joint angles based on EMG signals of the stump of a
transfemoral amputee.

A different approach was presented by Farmer et al.
[49] for estimation of ankle joint angles in transtibial
amputees. Their study used a nonlinear autoregressive
neural network with exogenous input (NARX) to es-
timate the ankle angle in level ground walking. EMG
signals were used as exogenous input of the model.
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The NARX approach resulted in average RMSE val-
ues ranging from (1.2◦ to 5.4◦). Due to the cyclic na-
ture of the ankle angle during gait, the model relied
mainly on the autoregressive feedback of the predicted
joint angles. However, their work also showed that
including EMG as exogenous input, reduced the re-
ported estimation errors. As the main objective of
this study is to realise direct voluntary control in the
sitting state, where cyclicity of movements is not nec-
essarily present, it is doubtful whether a NARX can be
successfully applied to non-weight-bearing situations.

4.5 General findings

Next to the objectives, several other findings require
additional discussion.

Testing of robustness to additional noise showed
that the performance declined similarly for most of
the studied models. At low noise levels (2% and 4%
MVC), the models showed some robustness to noise
for the ankle joint, as no significant differences were
found for the R2 performance. At higher noise lev-
els, all models, except for the KRR, LR and LSTM
models showed no robustness in performance for the
ankle joint. All noise conditions showed a significant
decrease in performance of the knee joint for all mod-
els. The best-performing models (CNN, FC-NN, GP
and SVR), considering all activities, showed very simi-
lar behaviour over the different noise conditions. Only
the CNN showed slightly lower robustness for the ankle
joint, as a significant different RMSE value is found
starting at the 2% MVC level (p = 0.047). These
differences were not found for the R2 metric, which
showed that the additional noise had a comparable
effect on the best-performing models. Evaluation of
absolute performance degradation showed that most
of the studied models had a relatively large difference
between the baseline level and the 8% MVC level, ex-
cept for the LR and, to a lesser extent, the KRR model.
However, comparison with the different studied activ-
ities showed that the baseline performance for the LR
and KRR models (0% MVC) was not sufficient to ben-
efit from the robustness to noise of these models.

In offline testing of upper limb prosthesis control,
the robustness of the LR model to additional noise
on the EMG signal was not observed [35]. On the
other hand, robustness was observed when training the
model on a first day and testing the model on the sec-
ond day [36]. It should be noted that the outcome
studied in [35, 36], had a different nature. In both
studies [35, 36], the performance was determined by
assessing if subjects retained the ability to complete
prosthesis control tasks under different conditions than
what the algorithms were trained on. The work pre-
sented in this thesis studied whether performance of
correct estimation of joint angles could be retained in
conditions unseen during training.

At higher noise levels, the RMSE metric showed
large errors compared to the lower noise levels (e.g.
for the FC-NN: at baseline a mean RMSE of 15.99◦

compared to the 8% MVC level with a mean RMSE

of 33.29◦). The large increase could be explained by
the effect the noise contamination has on the EMG sig-
nals. At higher noise levels, the amplitude of the SRE
increased. If there was little muscle activity (when
sitting for instance), the effect of the additional noise
was relatively large. The predictions showed that the
joint angles estimated in a sitting position were close to
the joint angles observed while the subject was stand-
ing, because of the greater muscle activity in the noisy
test data. Evidently, large estimation errors were seen
which was shown by the RMSE values of these mod-
els.

This study used a Bayesian method to find opti-
mal hyperparameters for each studied activity, which
was not described in found literature for joint angle
estimation studies. Earlier work either used a grid
search to find optimal hyperparameters [16, 19] or only
reported what hyperparameter values were chosen to
use [12, 13]. The Bayesian optimisation technique in-
creased the possibility to search through larger regions
of the hyperparameter space, whilst limiting the ad-
ditional computational cost associated with searching
through a more extensive hyperparameter space. Es-
pecially for the computationally complex models (the
neural networks) this strategy gave an efficient method
to find a model’s optimal structure and settings.

The optimal hyperparameters were found on a
subject- and activity-generic level, whilst testing was
performed on a subject-specific model. This strat-
egy was chosen to prevent overfitting, without requir-
ing many hyperparameter optimisation rounds. As
a limited amount of data was available for the vari-
ous activities, the model performance in terms of gen-
eralisability is tested by developing five different in-
stances of the same model per subject (5-cv). Find-
ing subject-specific optimal hyperparameters would re-
quire a nested cross-fold validation, where the five in-
stances of the 5-cv all required an optimisation rou-
tine on the training set to prevent overfitting on the
test set. Optimal hyperparameters for this study were
found using a different performance outcome than the
tested performance outcome (subject-generic perfor-
mance versus subject-specific performance), however
the use of all data in the subject-generic optimisation
routine may have introduced some form of overfitting
as well. Contrarily, finding subject-generic hyperpa-
rameters could have also resulted in finding model pa-
rameters that did not perform well on subject-specific
models, as less data was present for the subject-specific
models compared with the subject-generic models.

Comparison of the non-weight-bearing tasks and
the different ADLs showed that estimation of lower
limb joint angles was best applicable to non-weight-
bearing tasks, especially for the ankle joint. In non-
weight-bearing tasks, unconstrained movements of the
leg could be made that require activation of specific
muscles. In weight-bearing activities, such as stand-
ing, muscle activations are, aside from changing joint
orientations, required to prevent falling [50]. Hence,
different forces need to be generated in both types of
activities. As EMG gives a measure for the gener-
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ated force, there is a more direct relationship between
change in joint position and EMG in a non-weight-
bearing task compared with a weight-bearing task.

Furthermore, in weight-bearing activities changes
to both hip and knee joint angles occurred. The
changes in both joint angles were made possible par-
tially due to the contraction of the RF and BF, which
are biarticular muscles (muscles that span two joints)
[51]. Hence, EMG measured for these muscles were
not necessarily directly related to a change in the knee
joint angle, as muscle activity could also be required to
act on the hip joint. Movement of the hip joint in the
non-weight-bearing tasks was not necessary. There-
fore, the measured muscle activity of the biarticular
muscles had a more direct relation to changes in the
knee joint angle in the non-weight-bearing tasks.

Comparison with state-of-the-art of the studied ac-
tivites learned that different EMG features could be
used. In this study, a single feature was used for
the kernel-based models, the FC-NN and the linear
method, so that similarity of the input data was ob-
tained. The limited information provided by this fea-
ture possibly resulted in poorer model performance for
the presented methods, as lower RMSE values were
reported in the studies by Chen et al. [12] and Yang et
al. [13]. Many different EMG features were developed,
in time-domain, frequency-domain and time-frequency
domain [52]. Different combinations of features were
reported for estimation of joint angles [13, 14, 17], al-
though four time-domain features proposed by Hud-
gins et al. [53] were used most frequently. Further-
more, features can be selected with techniques such
as deep belief networks as shown by Chen et al. [12].
Finding an optimal feature set is not trivial, as many
different combinations of features have to be evaluated.
Therefore, a large research interest is seen in selecting
the right set of EMG features [54]. This study showed
that an algorithm capable of learning features from in-
put data (CNN), outperformed the other studied mod-
els in most tested scenarios.

4.6 Recommendations

Based on the results of this study, several recommen-
dations for future work can be outlined.

Comparison of this study with earlier work showed
that in earlier work, lower RMSE values are reported,
which could be due to the constructed EMG features.
As many different EMG features exist, numerous com-
binations can be chosen. Future work can focus on
extracting an optimal feature set to further explore
and compare performance for the SVR, GP, KRR, LR
and FC-NN models.

All studied datasets tested the different conditions
per subject on a single day. As the EMG of a subject
differs over time [36], robustness of a model over time
could only be tested by adding artificial noise. Testing
subjects on multiple days could give a better indica-
tion of the generalisability of a trained model. Such
an analysis could give an indication in whether recali-
bration of a model is a requirement to maintain good

performance over time. Furthermore, such an analy-
sis could further clarify whether different algorithms
show different degrees of robustness in performance.
Based on the presented results, no clear conclusion
could be drawn on which of the good-performing algo-
rithms shows best robustness to more noisy conditions.

In the current study, joint angles were estimated
solely in the sagittal plane. In a non-weight-bearing
situation, it can be interesting to assess the feasibility
of estimation of ankle joint angles in other planes, so
that for instance inversion/eversion of the feet can also
be controlled.

Controlling the joint configuration of a prosthesis in
a non-weight-bearing situation based on EMG signals
was the goal of the presented approach. The ability to
predict desired joint angles for an amputee in this situ-
ation could not be tested. Analysis of the performance
in a non-weight-bearing situation showed promising re-
sults for able-bodied subjects. Furthermore, the anal-
ysis of level ground walking for amputees also showed
promising performance when joint angles were esti-
mated based on EMG of muscles in the stump. There-
fore, it is rational to do a further analysis that tests
the presented approach on amputees who are asked
to perform non-weight-bearing activities. To collect
data for this analysis, an amputee can be asked to per-
form several knee flexion/extension exercises with the
unaffected leg and try to mimic the movements with
the stump simultaneously (bilateral movements). In
this data collection procedure, the assumption is made
that the change in knee angle of the intact leg is simi-
lar to the knee angle change that would be made due
to the activity in the stump. An alternative strategy
to bilateral movements is the use of a visual stimulus
as ground truth where the assumption is made that
the subject mimics the visual stimulus. Visual stimuli
were also applied in upper extremity prosthetic con-
trol tasks, for example in the publicly available Non
Invasive Adaptive Prosthetics (Ninapro) database [55].
Data collection for the analysis of non-weight-bearing
tasks in amputees should focus on the knee joint first.
If this analysis shows promising results, testing could
be extended towards amputees who have had TMR
surgery. After TMR surgery, EMG from the (relo-
cated) TA and GM muscles can be recorded. Addi-
tional research can be done to assess whether estima-
tion of ankle joint angles shows promise, so that the
amputee can regain complete control over the lower
limb joints in a non-weight-bearing situation.

Joint angles on itself are not sufficient for the online
control of a prosthesis. Estimated joint angles could be
used as a target signal to generate a control command
at the prosthesis level. Hargrove et al. [56] used a pat-
tern recognition approach to classify knee flexion and
extension, as well as ankle plantar- and dorsiflexion.
From the recognised activity, a target angle was out-
putted by the pattern recognition system that was pre-
sented to an impedance controller which mapped the
desired angle to a joint torque. Using the joint torque,
the prosthesis could go to the required position. Com-
parison of the direct estimation of joint angles with a
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pattern recognition based methodology should be car-
ried out. In doing so, it could be assessed if amputees
demonstrate a preference for either of the techniques.

Musculoskeletal modelling is another approach
that shows great promise in providing control signals
(joint moments) that could be presented to a prosthesis
based on EMG, for both the upper and lower extrem-
ity [57, 58]. In the upper extremity it was possible to
control a prosthesis by using EMG signals from the am-
putee’s residual limb in combination with joint angles
of the prosthesis [57]. The combination of these inputs
was mapped onto joint moments, using a physiolog-
ically correct musculoskeletal model. The prosthesis
was then able to convert the joint moments into control
commands, that subsequently changed the joint config-
uration of the prosthesis. As the joint moments solu-
tion space was physiologically constrained by the mus-
culoskeletal model, good system robustness to unseen
joint configurations or muscle activations was obtained
[57]. Future work can focus on systematically com-
paring the different approaches on controlling a lower
extremity prosthesis and identify which technique is
most preferable for an amputee.

5 Conclusion

The main research question of this study has been to
find the best method to estimate lower limb joint kine-
matics based on EMG for online control of a trans-
femoral prosthesis. To answer this research question,
eight previously used machine learning methods (ei-
ther in the upper and lower extremity) have been com-
pared on their ability to predict lower limb joint angles
from EMG for an individual subject. Hyperparame-
ters for all models have been optimised on an activity-
generic level so that optimal models could be com-
pared. Across the three different datasets, the CNN
model performs best most often for the different stud-
ied activities. However, the CNN model shows slightly
worse robustness in performance in more noisy condi-
tions. Predicting joint angles based on EMG is more
accurate for non-weight-bearing activities compared to
weight-bearing activities (level ground walking, stairs
climbing). This is true for both the ankle and knee
joint, although performance differences for the ankle
joint are larger than for the knee joint. The addition
of historic information from IMUs to the EMG shows
an improvement in performance, even though simple
features from the IMU sensors have been used. Future
work can focus on using more extensive information
from both the EMG and IMU signals to improve per-
formance. Level ground walking for transfemoral am-
putees showed slightly better performance than level
ground walking for able-bodied subjects, which war-
rants for further research into joint angle estimation
based on EMG for transfemoral amputees in a non-
weight-bearing situation.
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Appendix A Hyperparameter search

This appendix presents an overview for the different hyperparameter searches per dataset. Section A.1 presents
the hyperparameter search results for the EMG-only models in the ENABL3S dataset, section A.2 presents
the hyperparameter search results for the (EMG+)IMU models in the ENABL3S dataset, section A.3 presents
the hyperparameter search results for the MLK dataset and section A.4 presents the hyperparameter search
results for the TIPS dataset.

A.1 ENABL3S EMG-only

This section shows the hyperparameter search results for the ENABL3S dataset. Four different optimisations
were done for the four different activities: level ground walking (lgw), stair ascent (sa), stair descent (sd) and
sit-to-stand transitions (sts).

SVR

Tables 3 and 4 show the optimised hyperparameters for the SVR model, including the search space and the
used parameter per activity. Hyperparameters are settings in scikit-learn’s SVR model.

Table 3: Hyperparameter search for the SVR model for the ankle joint

Hyperparameter Search space lgw sa sd sts

’kernel’ ’rbf’, ’polynomial’, ’sigmoid’, ’linear’ ’rbf’ ’rbf’ ’rbf’ ’rbf’
’C’ logarithmic space from 10−1 to 101 in 50 steps 2.223 1.842 1.048 0.409
’ε’ uniform space from 0.01 to 0.5 in steps of 0.01 0.08 0.10 0.03 0.02
’coef0’ uniform space from -5 to 5 in steps of 0.1 1.5 -2.5 1.7 1.3
’degree’ 2, 3, 4 3 3 2 4

Table 4: Hyperparameter search for the SVR model for the knee joint

Hyperparameter Search space lgw sa sd sts

’kernel’ ’rbf’, ’polynomial’, ’sigmoid’, ’linear’ ’rbf’ ’rbf’ ’rbf’ ’rbf’
’C’ logarithmic space from 10−1 to 101 in 50 steps 9.103 2.223 0.869 10
’ε’ uniform space from 0.01 to 0.5 in steps of 0.01 0.07 0.04 0.05 0.06
’coef0’ uniform space from -5 to 5 in steps of 0.1 4.7 0.9 -3.3 -5.0
’degree’ 2, 3, 4 2 3 3 4

FC-NN

Table 5 shows the optimised hyperparameters for the FC-NN model, including the search space and the used
parameter per activity.

Table 5: Hyperparameter search for the FC-NN model

Hyperparameter Search space lgw sa sd sts

Number of hidden layers 1, 2, 3, 4, 5, 6 3 3 5 5

Neurons in hidden layer
uniform space from 10 to
500 in steps of 1

314
272
300

429
427
357

263
397
180
183
336

263
397
180
186
336

Dropout ratio uniform space from 0.05 to 0.5 0.064 0.052 0.159 0.076
Optimiser ’RMSprop’, ’ADAM’, ’SGD’ ’ADAM’ ’ADAM’ ’ADAM’ ’ADAM’

CNN

Table 6 shows the optimised hyperparameters for the CNN model, including the search space and the used
parameter per activity.

GP

Tables 7 and 8 show the optimised hyperparameters for the GP models (for ankle and knee joint respectively),
including the search space and the used parameter per activity. Hyperparameters are settings in scikit-learn’s
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Table 6: Hyperparameter search for the CNN model

Hyperparameter Search space lgw sa sd sts

Number of convolutional layers 1, 2, 3, 4, 5 1 2 3 5

Neurons in convolutional layer 16, 32, 64, 128 32
128
64

128
128
64

64
64
128
32
128

Kernel size 3, 5, 7 5 3 3 3
Pool size 2, 3, 4 2 3 4 3
Number of hidden FC-layers 0, 1, 2, 3, 4 2 3 0 4

Neurons in FC-layer
uniform space from 10 to
500 in steps of 1

246
351

479
47
221

-

479
47
221
50

Dropout ratio uniform space from 0.05 to 0.5 0.070 0.108 0.347 0.161
Optimiser ’RMSprop’, ’ADAM’, ’SGD’ ’ADAM’ ’ADAM’ ’ADAM’ ’RMSprop’

GaussianProcessRegressor model. The kernels are imported from scikit-learn’s gaussian process library. Vari-
ous kernels can be chosen and combined. The parameters in the kernel are learned by the model, so only the
choice for the kernel needs to be optimised.

Table 7: Hyperparameter search for the GP model for the ankle joint

Hyperparameter Search space lgw sa sd sts

’kernel’ 1) Matern() 3) 4) 4) 4)
2) ConstantKernel() * RBF()
3) ConstantKernel() * RBF() + WhiteKernel()
4) RBF() + WhiteKernel()
5) RBF()

Table 8: Hyperparameter search for the GP model for the knee joint

Hyperparameter Search space lgw sa sd sts

’kernel’ 1) Matern() 4) 4) 4) 4)
2) ConstantKernel() * RBF()
3) ConstantKernel() * RBF() + WhiteKernel()
4) RBF() + WhiteKernel()
5) RBF()

LSTM

Table 9 shows the optimised hyperparameters for the LSTM model, including the search space and the used
parameter per activity.

Table 9: Hyperparameter search for the LSTM model

Hyperparameter Search space lgw sa sd sts

Number of LSTM-neurons
uniform space from 20 to
60 in steps of 1

38 55 37 50

Number of hidden FC-layers 0, 1, 2, 3, 4 4 2 3 3

Neurons in FC-layer
uniform space from 10 to
500 in steps of 1

444
183
393
187

127
165

355
421
332

198
231
60

Dropout ratio uniform space from 0.05 to 0.5 0.071 0.126 0.098 0.334
Optimiser ’RMSprop’, ’ADAM’, ’SGD’ ’ADAM’ ’RMSprop’ ’ADAM’ ’ADAM’

CNN-LSTM

Table 10 shows the optimised hyperparameters for the CNN-LSTM model, including the search space and the
used parameter per activity.
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Table 10: Hyperparameter search for the CNN-LSTM model

Hyperparameter Search space lgw sa sd sts

Number of convolutional layers 1, 2, 3, 4, 5 3 1 2 2

Neurons in convolutional layer 16, 32, 64, 128
128
128
128

128
128
32

128
16

Kernel size 3, 5, 7 5 7 3 7
Pool size 2, 3, 4 3 4 4 4

Number of LSTM-neurons
uniform space from 20 to
60 in steps of 1

40 47 59 53

Number of hidden FC-layers 0, 1, 2, 3 1 3 2 3

Neurons in FC-layer
uniform space from 10 to
500 in steps of 1

448
350
330
417

72
352

74
319
320

Dropout ratio uniform space from 0.05 to 0.5 0.305 0.123 0.067 0.099
Optimiser ’RMSprop’, ’ADAM’, ’SGD’ ’ADAM’ ’ADAM’ ’ADAM’ ’ADAM’

KRR

Tables 11 and 12 show the optimised hyperparameters for the KRR model (for the ankle and knee joint
respectively), including the search space and the used parameter per activity. Hyperparameters are settings in
scikit-learn’s KernelRidge model.

Table 11: Hyperparameter search for the KRR model for the ankle joint

Hyperparameter Search space lgw sa sd sts

’kernel’ ’rbf’, ’poly’, ’linear’, ’sigmoid’ ’poly’ ’poly’ ’poly’ ’rbf’
’alpha’ uniform space from 0.02 to 5 in steps of 0.01 3.91 0.48 0.19 0.05
’coef0’ uniform space from -5 to 5 in steps of 0.1 2.4 -4.7 -3.1 3.0
’degree’ 2, 3, 4 4 4 4 3

Table 12: Hyperparameter search for the KRR model for the knee joint

Hyperparameter Search space lgw sa sd sts

’kernel’ ’rbf’, ’poly’, ’linear’, ’sigmoid’ ’poly’ ’poly’ ’poly’ ’poly’
’alpha’ uniform space from 0.02 to 5 in steps of 0.01 3.91 0.37 0.24 0.97
’coef0’ uniform space from -5 to 5 in steps of 0.1 4.6 4.2 -1.6 3.5
’degree’ 2, 3, 4 4 4 4 4

A.2 ENABL3S IMU

The statistical analysis of the EMG-only results showed that the CNN is also tested with IMU and EMG+IMU
input. These models were also optimised, which are shown in the tables below. For sd and sts, the FC-NN,
GP and SVR were also tested. All optimisation results are shown in this section.

SVR

Tables 13 and 14 show the optimised hyperparameters for the SVR in the EMG+IMU situation. Tables 15
and 16 show the optimised hyperparameters for the SVR in the IMU-only situation. The search space and the
used parameter per activity are listed.

Table 13: Hyperparameter search for the SVR model for the ankle joint in the EMG+IMU situation

Hyperparameter Search space lgw sa sd sts

’kernel’ ’rbf’, ’polynomial’, ’sigmoid’, ’linear’ - - ’rbf’ ’rbf’
’C’ logarithmic space from 10−1 to 101 in 50 steps - - 1.048 0.720
’ε’ uniform space from 0.01 to 0.5 in steps of 0.01 - - 0.03 0.03
’coef0’ uniform space from -5 to 5 in steps of 0.1 - - -1.4 -0.7
’degree’ 2, 3, 4 - - 3 2

FC-NN

Tables 17 and 18 show the optimised hyperparameters for the FC-NN models (for the EMG+IMU and IMU-only
situation respectively), including the search space and the used parameter per activity.
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Table 14: Hyperparameter search for the SVR model for the knee joint in the EMG+IMU situation

Hyperparameter Search space lgw sa sd sts

’kernel’ ’rbf’, ’polynomial’, ’sigmoid’, ’linear’ - - ’rbf’ ’rbf’
’C’ logarithmic space from 10−1 to 101 in 50 steps - - 2.024 7.543
’ε’ uniform space from 0.01 to 0.5 in steps of 0.01 - - 0.01 0.03
’coef0’ uniform space from -5 to 5 in steps of 0.1 - - 3.1 -3.0
’degree’ 2, 3, 4 - - 2 3

Table 15: Hyperparameter search for the SVR model for the ankle joint in the IMU-only situation

Hyperparameter Search space lgw sa sd sts

’kernel’ ’rbf’, ’polynomial’, ’sigmoid’, ’linear’ - - ’rbf’ ’rbf’
’C’ logarithmic space from 10−1 to 101 in 50 steps - - 1.048 6.866
’ε’ uniform space from 0.01 to 0.5 in steps of 0.01 - - 0.03 0.16
’coef0’ uniform space from -5 to 5 in steps of 0.1 - - 2.6 -3.6
’degree’ 2, 3, 4 - - 4 3

Table 16: Hyperparameter search for the SVR model for the knee joint in the IMU-only situation

Hyperparameter Search space lgw sa sd sts

’kernel’ ’rbf’, ’polynomial’, ’sigmoid’, ’linear’ - - ’rbf’ ’rbf’
’C’ logarithmic space from 10−1 to 101 in 50 steps - - 4.715 7.543
’ε’ uniform space from 0.01 to 0.5 in steps of 0.01 - - 0.04 0.21
’coef0’ uniform space from -5 to 5 in steps of 0.1 - - 1.9 2.8
’degree’ 2, 3, 4 - - 4 3

Table 17: Hyperparameter search for the FC-NN model, for the EMG+IMU situation

Hyperparameter Search space lgw sa sd sts

Number of hidden layers 1, 2, 3, 4, 5, 6 - - 6 4

Neurons in hidden layer
uniform space from 10 to
500 in steps of 1

- -

246
363
490
215
150
80

468
460
495
117

Dropout ratio uniform space from 0.05 to 0.5 - - 0.050 0.090
Optimiser ’RMSprop’, ’ADAM’, ’SGD’ - - ’ADAM’ ’RMSprop’

Table 18: Hyperparameter search for the FC-NN model, for the IMU-only situation

Hyperparameter Search space lgw sa sd sts

Number of hidden layers 1, 2, 3, 4, 5, 6 - - 4 4

Neurons in hidden layer
uniform space from 10 to
500 in steps of 1

- -

156
233
348
81

463
372
38
157

Dropout ratio uniform space from 0.05 to 0.5 - - 0.175 0.325
Optimiser ’RMSprop’, ’ADAM’, ’SGD’ - - ’ADAM’ ’RMSprop’

CNN

Tables 19 and 20 show the optimised hyperparameters for the CNN models (for the EMG+IMU and IMU-only
situation respectively), including the search space and the used parameter per activity.

GP

Tables 21 and 22 show the optimised hyperparameters for the GP in the EMG+IMU situation. Tables 23 and
24 show the optimised hyperparameters for the GP in the IMU-only situation. Hyperparameters are settings in
scikit-learn’s GaussianProcessRegressor model. The kernels are imported from scikit-learn’s gaussian process
library. Various kernels can be chosen and combined. The parameters in the kernel are learned by the model,
so only the choice for the kernel needs to be optimised. .
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Table 19: Hyperparameter search for the CNN model, for the EMG+IMU situation

Hyperparameter Search space lgw sa sd sts

Number of convolutional layers 1, 2, 3, 4, 5 3 3 3 1

Neurons in convolutional layer 16, 32, 64, 128
128
128
16

128
128
64

128
128
16

32

Kernel size 3, 5, 7 3 3 3 5
Pool size 2, 3, 4 4 4 4 2
Number of hidden FC-layers 0, 1, 2, 3, 4 0 0 2 2

Neurons in FC-layer
uniform space from 10 to
500 in steps of 1

- -
293
293

127
264

Dropout ratio uniform space from 0.05 to 0.5 0.121 0.398 0.101 0.155
Optimiser ’RMSprop’, ’ADAM’, ’SGD’ ’ADAM’ ’ADAM’ ’ADAM’ ’RMSprop’

Table 20: Hyperparameter search for the CNN model, for the IMU-only situation

Hyperparameter Search space lgw sa sd sts

Number of convolutional layers 1, 2, 3, 4, 5 1 2 1 1

Neurons in convolutional layer 16, 32, 64, 128 128
16
32

32 128

Kernel size 3, 5, 7 3 3 7 7
Pool size 2, 3, 4 3 4 4 2
Number of hidden FC-layers 0, 1, 2, 3, 4 3 2 4 4

Neurons in FC-layer
uniform space from 10 to
500 in steps of 1

487
351
152

246
263

469
183
179
308

487
364
261
386

Dropout ratio uniform space from 0.05 to 0.5 0.057 0.135 0.218 0.112
Optimiser ’RMSprop’, ’ADAM’, ’SGD’ ’ADAM’ ’ADAM’ ’ADAM’ ’RMSprop’

Table 21: Hyperparameter search for the GP model for the ankle joint in the EMG+IMU situation

Hyperparameter Search space lgw sa sd sts

’kernel’ 1) Matern() - - 3) 4)
2) ConstantKernel() * RBF()
3) ConstantKernel() * RBF() + WhiteKernel()
4) RBF() + WhiteKernel()
5) RBF()

Table 22: Hyperparameter search for the GP model for the knee joint in the EMG+IMU situation

Hyperparameter Search space lgw sa sd sts

’kernel’ 1) Matern() - - 1) 1)
2) ConstantKernel() * RBF()
3) ConstantKernel() * RBF() + WhiteKernel()
4) RBF() + WhiteKernel()
5) RBF()

Table 23: Hyperparameter search for the GP model for the ankle joint in the IMU-only situation

Hyperparameter Search space lgw sa sd sts

’kernel’ 1) Matern() - - 3) 3)
2) ConstantKernel() * RBF()
3) ConstantKernel() * RBF() + WhiteKernel()
4) RBF() + WhiteKernel()
5) RBF()

Table 24: Hyperparameter search for the GP model for the knee joint in the IMU-only situation

Hyperparameter Search space lgw sa sd sts

’kernel’ 1) Matern() - - 3) 3)
2) ConstantKernel() * RBF()
3) ConstantKernel() * RBF() + WhiteKernel()
4) RBF() + WhiteKernel()
5) RBF()

A.3 MLK

This section shows the hyperparameter search results for the MLK dataset. Three different optimisations were
done for the following activities: sit-to-stand transitions (sts), combined non-weight-bearing activities (nwb)
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and a combination of the two activities (nwb+sts).

SVR

Tables 25 and 26 show the optimised hyperparameters for the SVR model, including the search space and the
used parameter per activity. Hyperparameters are settings in scikit-learn’s SVR model.

Table 25: Hyperparameter search for the SVR model for the ankle joint in the MLK dataset

Hyperparameter Search space sts nwb nwb+sts

’kernel’ ’rbf’, ’polynomial’, ’sigmoid’, ’linear’ ’rbf’ ’rbf’ ’rbf’
’C’ logarithmic space from 10−1 to 101 in 50 steps 0.160 7.543 7.543
’ε’ uniform space from 0.01 to 0.5 in steps of 0.01 0.01 0.10 0.10
’coef0’ uniform space from -5 to 5 in steps of 0.1 -2.6 -0.5 -4.9
’degree’ 2, 3, 4 3 3 4

Table 26: Hyperparameter search for the SVR model for the knee joint in the MLK dataset

Hyperparameter Search space sts nwb nwb+sts

’kernel’ ’rbf’, ’polynomial’, ’sigmoid’, ’linear’ ’rbf’ ’rbf’ ’rbf’
’C’ logarithmic space from 10−1 to 101 in 50 steps 6.251 1.842 7.543
’ε’ uniform space from 0.01 to 0.5 in steps of 0.01 0.03 0.01 0.07
’coef0’ uniform space from -5 to 5 in steps of 0.1 2.4 -3.3 1.9
’degree’ 2, 3, 4 3 2 2

FC-NN

Table 27 shows the optimised hyperparameters for the FC-NN model, including the search space and the used
parameter per activity.

Table 27: Hyperparameter search for the FC-NN model in the MLK dataset

Hyperparameter Search space sts nwb nwb+sts

Number of hidden layers 1, 2, 3, 4, 5, 6 5 4 4

Neurons in hidden layer
uniform space from 10 to
500 in steps of 1

239
239
127
264
179

314
272
300
302

342
359
383
468

Dropout ratio uniform space from 0.05 to 0.5 0.108 0.053 0.0148
Optimiser ’RMSprop’, ’ADAM’, ’SGD’ ’ADAM’ ’ADAM’ ’ADAM’

CNN

Table 28 shows the optimised hyperparameters for the CNN model, including the search space and the used
parameter per activity.

Table 28: Hyperparameter search for the CNN model in the MLK dataset

Hyperparameter Search space sts nwb nwb+sts

Number of convolutional layers 1, 2, 3, 4, 5 3 3 2

Neurons in convolutional layer 16, 32, 64, 128
64
64
128

128
64
128

128
16

Kernel size 3, 5, 7 5 3 7
Pool size 2, 3, 4 2 4 4
Number of hidden FC-layers 0, 1, 2, 3, 4 2 2 3

Neurons in FC-layer
uniform space from 10 to
500 in steps of 1

156
476

499
491

246
351
152

Dropout ratio uniform space from 0.05 to 0.5 0.117 0.391 0.120
Optimiser ’RMSprop’, ’ADAM’, ’SGD’ ’ADAM’ ’ADAM’ ’ADAM’
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GP

Tables 29 and 30 show the optimised hyperparameters for the GP model, including the search space and the used
parameter per activity. Hyperparameters are settings in scikit-learn’s GaussianProcessRegressor model. The
kernels are imported from scikit-learn’s gaussian process library. Various kernels can be chosen and combined.
The parameters in the kernel are learned by the model, so only the choice for the kernel needs to be optimised.

Table 29: Hyperparameter search for the GP model for the ankle joint in the MLK dataset

Hyperparameter Search space sts nwb nwb+sts

’kernel’ 1) Matern() 3) 4) 4)
2) ConstantKernel() * RBF()
3) ConstantKernel() * RBF() + WhiteKernel()
4) RBF() + WhiteKernel()
5) RBF()

Table 30: Hyperparameter search for the GP model for the knee joint in the MLK dataset

Hyperparameter Search space sts nwb nwb+sts

’kernel’ 1) Matern() 4) 4) 4)
2) ConstantKernel() * RBF()
3) ConstantKernel() * RBF() + WhiteKernel()
4) RBF() + WhiteKernel()
5) RBF()

LSTM

Table 31 shows the optimised hyperparameters for the LSTM model, including the search space and the used
parameter per activity.

Table 31: Hyperparameter search for the LSTM model in the MLK dataset

Hyperparameter Search space sts nwb nwb+sts

Number of LSTM-neurons
uniform space from 20 to
60 in steps of 1

29 42 59

Number of hidden FC-layers 0, 1, 2, 3, 4 4 0 2

Neurons in FC-layer
uniform space from 10 to
500 in steps of 1

426
421
473
377

-
454
215

Dropout ratio uniform space from 0.05 to 0.5 0.109 0.191 0.075
Optimiser ’RMSprop’, ’ADAM’, ’SGD’ ’ADAM’ ’ADAM’ ’ADAM’

CNN-LSTM

Table 32 shows the optimised hyperparameters for the CNN-LSTM model, including the search space and the
used parameter per activity.

Table 32: Hyperparameter search for the CNN-LSTM model in the MLK dataset

Hyperparameter Search space sts nwb nwb+sts

Number of convolutional layers 1, 2, 3, 4, 5 3 3 3

Neurons in convolutional layer 16, 32, 64, 128
128
64
128

32
64
16

64
128
16

Kernel size 3, 5, 7 3 5 7
Pool size 2, 3, 4 3 4 4

Number of LSTM-neurons
uniform space from 20 to
60 in steps of 1

31 24 40

Number of hidden FC-layers 0, 1, 2, 3 0 1 0

Neurons in FC-layer
uniform space from 10 to
500 in steps of 1

- 381 -

Dropout ratio uniform space from 0.05 to 0.5 0.172 0.051 0.317
Optimiser ’RMSprop’, ’ADAM’, ’SGD’ ’ADAM’ ’RMSprop’ ’ADAM’
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KRR

Tables 33 and 34 show the optimised hyperparameters for the KRR model, including the search space and the
used parameter per activity. Hyperparameters are settings in scikit-learn’s KernelRidge model.

Table 33: Hyperparameter search for the KRR model for the ankle joint in the MLK dataset

Hyperparameter Search space sts nwb nwb+sts

’kernel’ ’rbf’, ’poly’, ’linear’, ’sigmoid’ ’poly’ ’rbf’ ’poly’
’alpha’ uniform space from 0.02 to 5 in steps of 0.01 0.42 0.02 0.26
’coef0’ uniform space from -5 to 5 in steps of 0.1 3.8 -1.0 4.6
’degree’ 2, 3, 4 4 2 4

Table 34: Hyperparameter search for the KRR model for the knee joint in the MLK dataset

Hyperparameter Search space sts nwb nwb+sts

’kernel’ ’rbf’, ’poly’, ’linear’, ’sigmoid’ ’poly’ ’poly’ ’poly’
’alpha’ uniform space from 0.02 to 5 in steps of 0.01 0.04 0.12 0.64
’coef0’ uniform space from -5 to 5 in steps of 0.1 1.6 3.4 4.6
’degree’ 2, 3, 4 3 4 4

A.4 TIPS

This section shows the hyperparameter search results for the TIPS dataset. Five different optimisations were
done for all different prosthetic knees. The 3R20 corresponds to P1, the 3R106 corresponds to P2, the 3R60
corresponds to P3, the Mauch SNS corresponds to P4 and the Adaptive Knee corresponds to P5.

SVR

Table 35 a shows the optimised hyperparameters for the SVR model, including the search space and the used
parameter per activity. Hyperparameters are settings in scikit-learn’s SVR model.

Table 35: Hyperparameter search for the SVR model in the TIPS dataset

Hyperparameter Search space P1 P2 P3 P4 P5

’kernel’ ’rbf’, ’polynomial’, ’sigmoid’, ’linear’ ’rbf’ ’rbf’ ’rbf’ ’rbf’ ’rbf’
’C’ logarithmic space from 10−1 to 101 in 50 steps 7.543 7.543 2.683 3.237 2.223
’ε’ uniform space from 0.01 to 0.5 in steps of 0.01 0.02 0.03 0.07 0.07 0.04
’coef0’ uniform space from -5 to 5 in steps of 0.1 3.4 -3.2 0.3 -2.1 0.3
’degree’ 2, 3, 4 4 4 4 4 3

FC-NN

Table 36 shows the optimised hyperparameters for the FC-NN model, including the search space and the used
parameter per activity.

Table 36: Hyperparameter search for the FC-NN model in the TIPS dataset

Hyperparameter Search space P1 P2 P3 P4 P5

Number of hidden layers 1, 2, 3, 4, 5, 6 4 6 4 3 5

Neurons in hidden layer
uniform space from 10 to
500 in steps of 1

427
84
72
412

473
64
360
121
457
109

268
386
79
327

429
427
357

135
444
237
402
343

Dropout ratio uniform space from 0.05 to 0.5 0.152 0.055 0.084 0.058 0.059
Optimiser ’RMSprop’, ’ADAM’, ’SGD’ ’ADAM’ ’ADAM’ ’ADAM’ ’ADAM’ ’ADAM’

CNN

Table 37 shows the optimised hyperparameters for the CNN model, including the search space and the used
parameter per activity.
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Table 37: Hyperparameter search for the CNN model in the TIPS dataset

Hyperparameter Search space P1 P2 P3 P4 P5

Number of convolutional layers 1, 2, 3, 4, 5 3 3 2 3 2

Neurons in convolutional layer 16, 32, 64, 128
64
64
128

128
32
32

128
32

32
32
32

64
64

Kernel size 3, 5, 7 5 3 7 3 3
Pool size 2, 3, 4 2 2 4 4 2
Number of hidden FC-layers 0, 1, 2, 3, 4 1 2 3 2 4

Neurons in FC-layer
uniform space from 10 to
500 in steps of 1

152
395
186

355
186
446

452
364

74
352
310
454

Dropout ratio uniform space from 0.05 to 0.5 0.203 0.172 0.105 0.355 0.075
Optimiser ’RMSprop’, ’ADAM’, ’SGD’ ’RMSprop’ ’ADAM’ ’ADAM’ ’ADAM’ ’ADAM’

GP

Table 38 shows the optimised hyperparameters for the GP model, including the search space and the used
parameter per activity. Hyperparameters are settings in scikit-learn’s GaussianProcessRegressor model. The
kernels are imported from scikit-learn’s gaussian process library. Various kernels can be chosen and combined.
The parameters in the kernel are learned by the model, so only the choice for the kernel needs to be optimised.

Table 38: Hyperparameter search for the GP model in the TIPS dataset

Hyperparameter Search space P1 P2 P3 P4 P5

’kernel’ 1) Matern() 4) 4) 4) 4) 4)
2) ConstantKernel() * RBF()
3) ConstantKernel() * RBF() + WhiteKernel()
4) RBF() + WhiteKernel()
5) RBF()

LSTM

Table 39 shows the optimised hyperparameters for the LSTM model, including the search space and the used
parameter per activity.

Table 39: Hyperparameter search for the LSTM model in the TIPS dataset

Hyperparameter Search space P1 P2 P3 P4 P5

Number of LSTM-neurons
uniform space from 20 to
60 in steps of 1

52 59 34 58 43

Number of hidden FC-layers 0, 1, 2, 3, 4 3 4 3 2 4

Neurons in FC-layer
uniform space from 10 to
500 in steps of 1

161
103
473

249
231
60
180

340
77
196

482
264

351
112
190
206

Dropout ratio uniform space from 0.05 to 0.5 0.227 0.055 0.155 0.178 0.051
Optimiser ’RMSprop’, ’ADAM’, ’SGD’ ’RMSprop’ ’ADAM’ ’RMSprop’ ’ADAM’ ’ADAM’

CNN-LSTM

Table 40 shows the optimised hyperparameters for the CNN-LSTM model, including the search space and the
used parameter per activity.

KRR

Table 41 shows the optimised hyperparameters for the KRR model, including the search space and the used
parameter per activity. Hyperparameters are settings in scikit-learn’s KernelRidge model.
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Table 40: Hyperparameter search for the CNN-LSTM model in the TIPS dataset

Hyperparameter Search space P1 P2 P3 P4 P5

Number of convolutional layers 1, 2, 3, 4, 5 2 3 3 3 3

Neurons in convolutional layer 16, 32, 64, 128
16
64

64
64
64

64
32
64

64
128
64

64
64
64

Kernel size 3, 5, 7 3 3 3 7 3
Pool size 2, 3, 4 3 4 4 3 4

Number of LSTM-neurons
uniform space from 20 to
60 in steps of 1

50 54 54 27 54

Number of hidden FC-layers 0, 1, 2, 3 1 0 2 1 0

Neurons in FC-layer
uniform space from 10 to
500 in steps of 1

131 -
452
122

482 -

Dropout ratio uniform space from 0.05 to 0.5 0.349 0.137 0.079 0.438 0.265
Optimiser ’RMSprop’, ’ADAM’, ’SGD’ ’RMSprop’ ’ADAM’ ’ADAM’ ’ADAM’ ’ADAM’

Table 41: Hyperparameter search for the KRR model in the TIPS dataset

Hyperparameter Search space P1 P2 P3 P4 P5

’kernel’ ’rbf’, ’poly’, ’linear’, ’sigmoid’ ’poly’ ’poly’ ’poly’ ’poly’ ’poly’
’alpha’ uniform space from 0.02 to 5 in steps of 0.01 0.50 0.02 0.28 0.03 0.54
’coef0’ uniform space from -5 to 5 in steps of 0.1 4.4 2.3 3.2 2.2 3.3
’degree’ 2, 3, 4 4 4 4 3 4
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