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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Cryptography serves as a tool which enables encryption and decryption on an information,

for secure communication in the universal public network such as the Internet. A cryptosys-

tem is built with an unique structure combining encryption, decryption as algorithms and

generate a pair of keys that is mathematically linked. The Information is transformed into

ciphertext and to plaintext with the encryption key(public key) and decryption(private key)

respectively for a secure transmission between two parties over the frameworks like Inter-

net Key exchange(IKE), Internet Security(IPSec),Transport layer Security(TLS) etc.This

sort of cryptosystem is called "Public-key cryptography"[DS07] which includes a security

prerequisite that the computation of private key from public key must be computationally

infeasible. The degree of infeasibility is based on the size of the key(bit-level), to open the

trapdoor called "hard" problem within the cryptosystem. The hard problem is intractable

as there’s no satisfactory way to solve it ,other than to brute-force. But brute-forcing with

an existing classical computer takes a long time because the cryptosystem is bounded by

the bit-level security wrapped around the hard problem i.e., as the size of the key incre-

ments, more computational assets are required for an adversary to discover the size of an

input to break the trapdoor.

Most of the data transmission over Internet happens through Hypertext transfer proto-

col secure(HTTPS) and Transport layer Security(TLS), which consoles that the client infor-

mation is transmitted to their intended website securely. The TLS contains a cipher suite,

a combination of public-key cryptography schemes such as Rivest–Shamir–Adleman(RSA),

Diffie-Hellman key exchange, Elliptic Curve Digital Signature Algorithm (ECDSA), Digital

Signature Algorithm(DSA) that are strengthened by "hard" problems like integer factor-

ization or discrete log. The cipher suite is mainly used for the key establishment, signa-

ture generation, message encryption, and authentication over HTTPS are also immune

to classical computers attacks.The proficient degree for any computer to break the hard
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CHAPTER 1. INTRODUCTION

problem in a desired polynomial-time is used to quantify the measure of data protected

in the framework. So far, we believe that our cryptosystem with key size of 80 bit-level

of security are an highly proficient degree. But, The National Institute of Standards and

Technology(NIST) Report[Bar20] claims that a cryptosystem should now hold 112 to 128

bit-level of security for data protection from classical computers and the upcoming quan-

tum computers. With the transition in the bits of security paradigm, the challenge down

the lane in cryptography is the development of quantum innovation devising a quantum

computer. The quantum computation is performed based the physical properties of matter

and energy for an efficient calculation to solve any complex problem faster than classical

systems. This innovation threatens the security of the existing public-key cryptographic

solutions used to protect the data privacy. Based on the Shor’s discovery in 1994, on quan-

tum algorithm can break the integer factorization in polynomial-time. Hence, to ensure

state-of-art security solutions available against quantum computers attack, at the end of

2016 the National Institute of Standards and Technology (NIST) called for submissions

of “Public-Key Post-Quantum Cryptographic Algorithms”. The Report[CJL+] from NIST

has given an overview of the post-quantum cryptography family from which the proposed

algorithm primitives are developed.There were 82 Quantum-resistant asymmetric crypto-

graphic algorithm proposals were submitted and was evaluated on their secureness against

quantum as well as classical computers.Eventually 26 algorithms were considered as an

acceptable algorithm based on their design attributes and mathematical foundations for

Round 2.

Our Goal. An adversary with Quantum computer would target any online transac-

tions such as e-commerce, legal records/confidential data, internet banking etc., handled by

the Public Key Infrastructure(PKI)[Tha] in HTTPS. The PKI is a part of TLS Handshake

used for end-to-end encrypted communication between client and the server by issuing a

SSL/TLS certificate digitally signed, assuring the identity of the server. SSL/TLS certifi-

cate is vulnerable to certificate based attacks, where an adversary would spoof an legiti-

mate authority’s certificate signature by eavesdropping and forge it to their own certificate

thereby attaining the target network/machine. This indeed rise to the need of quantum-safe

signature certificates in PKI.

As Daniel J. Bernstein et.al [Ber09] proposed that a Quantum collision search algo-

rithm could find a collision in time complexity of O(2n/3) with a use of O(2n/3) hardware

components and whereas with the same hardware, a classical computer along with multiple

parallel units could find collisions in a time complexity of O(2n/6). This implies Quantum

computers are slower than classical computers to find the collision in hash, and so we con-

centrate on Hash-based signature(HBS) schemes. Our work focus on signature algorithms
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CHAPTER 1. INTRODUCTION

submitted in the NIST competition, to present a comparative study of Hash-based Signa-

ture algorithms - SPHINCS+ and LDWM (Lamport-Diffie-Winternitz-Merkle). SPHINCS+

is a stateless hash-based N-time signature that has been qualified by Round 2 submissions

and LDWM, a draft version of Leighton-Micali HBS (RFC8554) is an one-time signature

scheme which can be used as a stateful hash-based N-time signature as well.

An Algorithmic complexity designer creates a signature algorithm based on various

parameters to ensure that the algorithm renders the security properties like strong authen-

tication, non-repudiation, and integrity in quantum era. Hence, while implementing the

algorithm in the real-time application, a protocol designer should pay attention to math-

ematical problems, parameterization, and environmental dependencies. As any dedicated

adversary could break the system, due to code vulnerability in library implementation.

This comparative study helps a protocol designer to understand the hash-based signature,

its parameters and implement a quantum resistant infrastructure.
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Chapter 2

Preliminaries

As our goal of the thesis is to understand hash-based signature scheme, it is therefore

necessary to first understand the basics of cryptography. This Chapter provides the knowl-

edge about Hash functions, Digital signature, One-time and Many-time signatures. We will

also briefly cover the introduction to post-quantum cryptography and its necessity for this

decade along with the evolution of hash-based signature schemes. The above basics will

help us to understand the objective of our thesis in Chapter 3.

2.1 Digital Signatures

Digital Signatures are more like physical signature that are unforgeable, ensures the au-

thentication and integrity of any information transmitted over an secure channel with a

public-key cryptography setting. The Public-key cryptography [SSD] setting has a pair of

keys: a private key known only to the user and an equivalent public key known to the pub-

lic. When an contract is signed between the two parties, it ensures the data in the contract

is validated and agreed by both parties. Henceforth, the document cannot be modified

intentionally or unintentionally as it is duly signed by the parties. A Digital signature is

a virtual fingerprint on a digital document or message so that the document cannot be

modified from the time its signed. Generally, the original digital document is hashed into a

message digest and signed by the sender’s private key before its transmitted to the receiver.

The receiver generates the hash of the same document, decrypts the message digest using

the sender’s public key and compare it with the receiver’s hash value generated earlier. If

the hash value match, then the document is digitally unaltered. This ensures the following

properties achieved by the digital signature scheme:

• Authentication : As the document is approved by the sender.
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• Integrity : Due to the avalanche effect of the hash function, any change to the docu-

ment will change the hash value with which the receiver can find whether the docu-

ment is trustworthy.

• Non-Repudiation : The document is signed by the sender’s private key and so, the

sender cannot deny in case of loss of integrity.

2.1.1. Definiton. The Digital signature scheme is a triple of algorithms (Gen, S, V) for

a message space M.

• Gen(1n), a random algorithm which generates a key pair: private signing key sk and

public verification key pk with a security parameter n.

• S(sk, m), a signing algorithm that takes a message and private key sk as input and

outputs a signature σ. i.e., σ ← Ssk(m).

• V(pk, m, σ), a verification algorithm that takes a public key pk, message m, signature

σ as input and outputs b as either ′1′ or ′0′, based on verification of valid signature

on the Message m using the public key pk. i.e., b← Vpk(m,σ).

For all (pk, sk) generated by Gen(1n), if ∀m ∈M that holds Vpk(m,Ssk(m)) = ′1′ then the

Verification of the digital signature is deterministic and consistent.

2.1.1 Security Notions of Signature schemes

The notions are built based on the goal of an adversary A and the attack model provided to

A to explore the system. In general, the goal of an adversary is to create a valid signature

for a new message (Forgery) and the attack model will enable A to learn signature on

messages of his choice with a known public key from a signing oracle. The standard security

notion for signature scheme is the Existential forgery under chosen message attack(EU-

CMA) [BH16], used in practice as any adversary cannot achieve the forgery attempt in

this Chosen Message attack model. The EU-CMA is defined in [BH16] as an experiment,

where Dss(1n) denotes signature scheme with security parameter n and q queries passed

to the signing oracle by A.

Experiment ExpEU−CMA
Dss(1n) (A)

(sk, pk)← Gen(1n)

(m∗, σ∗)← ASsk(.)(pk)

Let (mi, σi)
q
1 be the queries and results pair of Ssk(.) from the oracle.

Output 1 iff Vpk(σ
∗,m∗) = 1 and m∗ /∈Miq

else 0
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From the experiment, the probability of an Adversary A succeeding can be written as

Pr[ExpEU−CMA
Dss(1n) (A) = 1]

2.1.2. Definiton. The Digital signature scheme Dss(1n)[BH16], is (t, ε, q) existentially

unforgeable under chosen message attacks(EU-CMA) if for all PPT adversaries A, the

algorithm runs with a time complexity of at most t and generates at most q queries to

the signing oracle. Then the probability of producing a valid signature for a message not

previously sent to the signing oracle is ≤ ε(t), a negligible function to break the scheme.

Pr[SuccEU−CMA
Dss(1n) (n) = 1] ≤ ε(t)

With the above experiment and definition, the negligible probability of succeeding in break-

ing the scheme made the digital signature to be used widely in all building blocks of Internet

and other infrastructure protocols.

2.2 Post-quantum signatures

With the wide spread of sensitive data online e.g legal records or software updates, Digital

signatures are widely used for all electronic communication over security protocols like

Transport layer(TLS) ensuring authenticity and identity of the server.Most of the Digital

signatures are created by the asymmetric key cryptography relies on computational hard

problems.This section briefs about the quantum attacks on classical systems, the need for

NIST competition procedure and proposals.

Quantum-based attacks

Though the computational hard problems are efficient for classical algorithms, the recent

advancement in quantum processing has broken such assumption. Most of the crypto-

graphic algorithms like RSA, ECDSA, Diffie-Hellman key exchange are insecure on quan-

tum computer as proposed in Shor’s algorithm[Sho75], that could solve the integer factor-

ization and discrete log problems in polynomial time. The Shor’s algorithm is comprised

of two parts: a Reduction part, where a classical system solves the factor structure to a

period problem and a Quantum part, for finding the period value using quantum fourier

transform.

A classical computer perform logical operations on the physical state of the switch with

1’s and 0’s called bits, whereas a quantum computer uses Quantum bits(qubits) to perform
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operations based on the quantum state of the switch. This qubits have two property making

the computer efficient than classical system.

• Superposition: Multiple states are possible at the same time.

• Entanglement: Change in one state would predict the change in another state.

Superposition property is used in the Quantum part of Shor’s algorithm to calculate

the period by iterating all the possible combinations of states, breaking the N value of RSA

in polynomial time.Hence, we have to replace the existing digital signature, key exchange

based on asymmetric algorithms.

According to another quantum-search algorithm called “Grover’s algorithm”[Gro96],

which can attack symmetric algorithms like AES128. Basically, Grover’s algorithm per-

forms an exhaustive search by traversing through an unsorted database of N entries, for a

single matching entry within O(
√
N). This analogy could be used to explain an attack on

a symmetric algorithm for a k-bit key, 2k/2 are required in polynomial time. This attack

can be mitigated by increasing the key value of the algorithm from AES128 to AES256.

An adversary with a quantum computer with 4000 bits, use Shor’s algorithm and

Grover’s algorithm can break both symmetric and asymmetric cryptosystems. The recent

achievement of Google supremacy[EC] with 53 qubit device called "Sycamore", performed

an operation in 200 seconds which would take 10,000 years for a supercomputer to compute.

The National Institute of Science and Technology(NIST) competition

The NIST is an U.S based non-regulatory federal agency governing advancement in sectors

like electric power grid, nanomaterials, computers, physics etc.,. Their primary mission

[Her] is to promote innovation and industrial competitiveness by advancing measurement

science, standards and technology and thereby improving the economy.Due to the recent

advancement in the quantum, a new branch of a scientific study Post-quantum Cryptog-

raphy initiated by NIST in 2006, to provide a standardisation suite for algorithms against

quantum computers. NIST gathered various proposals for evaluation in two rounds.The

proposals were mainly focus on five categories of algorithms, which includes lattice-based

cryptography, code-based cryptography, multivariate polynomial cryptography, hash-based

signatures and others interim standard, with each focus on different mathematical problem

that are quantum-resistant. The evaluation criteria [TZ19] of NIST for standardisation

involves the Security, Cost and Algorithm/Implementation factors. Out of 82 proposals

submitted, 69 algorithms were selected from Round 1 and then narrowed down to 26 al-

gorithms with 9 signature schemes in Round 2.The brief description of the evaluation

criteria[NIS]:
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• Security Definition should match IND-CCA2 for encryption algorithm, EUF-CMA

for signatures scheme, Side channel attack resistant for key exchange.Their security

level to withstand any quantum attack complexity is well-explained in Table 2.1.

• Cost Computational requirements with respect to time(speed) and memory(size).

Speed considers the hardware and software used to key generation/exchange, en-

cryption/decryption, sign/verify and Memory requirements considers the key size,

parameters for the security.

• Algorithm Possible Implementation in various platforms with tunable parameters

including parallelism and should be resistance to any attacks.

Level Description Classical

Bits

Quantum

Bits

I At least as hard to break as

AES128.(Exhaustive key search)

128 bits 64 bits

II At least as hard to break as

SHA256.(Collision search)

128 bits 80 bits

III At least as hard to break as

AES192.(Exhaustive key search)

192 bits 96 bits

IV At least as hard to break as

SHA384.(Collision search)

192 bits 128 bits

V At least as hard to break as

AES256.(Exhaustive key search)

256 bits 128 bits

Table 2.1: Security Level Categories by NIST [TZ19]

To provide a state of art security solution for the digital signature with respect to the

resource and time constraint, the following Figure 2.1 explains the classification of Hash-

based signature schemes submitted to NIST proposal.
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Figure 2.1: Classification of Hash-based Signature Schemes
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2.3 Hash Functions

A Hash function is defined as a key-value pair that maps data of arbitrary input size

to a fixed size output called hash code. For a function f and given a hash code value

y represented as f(x) = y, it is computationally infeasible for an adversary to find the

input key x.This is called the "One-way property". A cryptographic hash function H, is a

combination of key-value pair and one-way property (OWF) which is represented as H :

{0, 1}∗ → {0, 1}n adheres the following properties, refer [RS04] for overview :

• For a given output y = H(x), it is infeasible to find the input value x.

• For a given input x , it is infeasible to find a second pre-image value x′ where x 6= x′

and H(x) = H(x′).

• It is infeasible to find two inputs x and x′ where x 6= x′ to produce same value as

H(x) = H(x′).

2.3.1. Definiton. A cryptographic hash function is a hash function defined as H : {0, 1}m∗
{0, 1} → {0, 1}n where for the given input of length m, the function outputs a fixed size n

output such that the following property holds :

• Pre-image Resistance : for any given output y ← {0, 1}n i.e., y = H(x), it is com-

putationally infeasible to find x← {0, 1}m.

• Second pre-image Resistance : for any given input x ← {0, 1}m i.e., y = H(x), it is

computationally infeasible to find an input x′ so that x 6= x′ but H(x) = H(x′).

• Collision Resistance : finding two inputs x ← {0, 1}m and x′ ← {0, 1}m so that

x 6= (x′) but H(x) = H(x′) is computationally infeasible.

There is no efficient way to invert back the output from the function to retrieve the input.

This computational infeasibility in hash function, holds a shield against any cryptanalytic

attacks.Generally,a hash function maps a larger domain set (input) {0,1}∗ to a smaller

co-domain(output) set {0,1}n, there is possible to find a pre-image value based on the

birthday paradox concept.The Birthday Paradox is termed on a process of finding at least

two people sharing same birthday in a group of n people.With the same analogy for the

hash function, the probability of finding an equivalent pre-image and the likelihood of

collision is high, for example n= 64 bit input results in 264 different hash outputs then 4

billion(232) attempts of brute-forcing will break the system with the probability of 50%

though 2n pre-images are generated, 2n/2 collisions can be found. This is Birthday Attack

10
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achieved by brute-force strategy, can be time-consuming for a classical computer. Hence, a

Collision resistance hash function should have a long hash output than second pre-image

resistance to achieve high security level.

2.4 One-Time Signature

The concept of the hash-based signature scheme are constructed on One-time signature

(OTS) scheme. One-time scheme is a digital signature scheme which uses a collision re-

sistant hash function to sign messages in {0,1}∗. OTS scheme generates an unique key

pair (public key, private key) that can be used only once for sign and verify a message.

Using the same private key to sign multiple messages would debilitate the security by half,

as any probabilistic polynomial-time(PPT) adversary could compare two signatures from

same private key and forge the signature from the revealed part of private key.

But by the definition of EU-CMA in Digital signature, a (t, ε(t)) EU-CMA secure digital

signature scheme is also an one-time signature that is (t, ε(t), 1), where the adversary is

limited to query the signing oracle only once produce a valid signature different from one

already queried by the oracle with probability ≤ ε(t).

2.4.1. Definiton. The One-time signature scheme (Gen, S, V) is (t, ε) existentially un-

forgeable under chosen message attacks(EU-CMA) if for all PPT adversaries A, the algo-

rithm runs with a time complexity of at most t and generates only one query to the signing

oracle. Then the probability of producing a valid signature for a message not previously sent

to the signing oracle is ≤ ε(t), a negligible function to break the scheme.

Pr[SuccEU−CMA
OTS(1n) (n) = 1] ≤ ε(t)

Though OTS is highly efficient in generating key pair for sign and verify, the main limita-

tion is their validity which is inadequate for most applications.

2.5 Many-time signature

As one-time signature scheme is EU-CMA secure, it can be extended from {0, 1}n to sign

many messages {0, 1}∗ thereby new keys are generated to sign new message.

Stateful scheme Consider an one-time signature scheme (Gen, Sign, Ver) where the

length of the signature plus the length of the public key is less than the length of the

messages to be signed.

• Gen(1n) : Generates a key pair(pk0, sk0) to sign first message m1.

11
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• Gen(1n) : Generates a key pair(pk1, sk1) for next new message.

• Sign : Creates a signature σ1 = Ssk0(m1 || pk1), concatenation of message and the

public key.

Hence, the signature of m1 has (1,σ1,m1,pk1). Similarly for message m2, Gen(1n) gen-

erates a key pair (pk2, sk2) and the signature σ1 = Ssk1(m2 || pk2). Thus, the signature

sequence of m2 will be (2,σ1,σ2,m2,pk2), where σ1 is included as every signature sequence

is attested by the next public key.

Though Many time signature scheme can sign many new messages with new key pair,

the signature size increases linearly with respect to the message count. Also, the signer

should keep track of the signature state information includes the previously generated keys,

signature, signed messages count thereby increasing the cost of the storage and its is less

efficient, as it reveals information about previously used signature.Hence, a new concept

using a tree structure to allow two key pairs to be attested at one step was introduced

rather than one key pair for each step.The tree construction shown in Figure 2.2 is a

binary tree of height d, where each leaf node has one public-private key pair(pk,sk) and

every non-leaf node has the hash of its child nodes.The tree uses 2n leaf nodes to sign a

message, generating 2n signatures with a signature size of n.

Figure 2.2: Balanced Binary Tree of height d [Pas]

In this approach, the signer initially generates n key pairs as pk0, sk0, pk00, sk00,..., pk0n ,

sk0n and with other siblings they are stored in the tree.To sign a message m0, the public

key pk0 and pk1 are signed with sk creating a signature σ0, pk00 and pk01 are signed with

sk0 creating a signature σ1 likewise. Finally signature function Signsk0n (m) and returns

12
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a signature σ = (pk, σ0, pk0, σ1, pk00,..., σn−1, pk0n) and the verification function V er,

checks whether Signsk0n (m) holds valid signature of m by verifying σ0 attests to pk0 using

pk, σ1 attests to pk00 using pk0 and so on till pk0n . This scheme is one-time secure as every

signature is used only once in an efficient way.

Stateless scheme The requirement to keep track of the previous keys and their signa-

tures is a considerable drawback of the stateful schemes. In order to eliminate this require-

ment and primarily focusing on time-memory trade-off, a stateless scheme was proposed

with an idea to use a pseudo-random function for regeneration of the keys every time. The

algorithm Gen(1n) generates the key pair : public key, pk and secret key, sk. Along the

secret key sk, two seeds are also generated s1 and s2 for two pseudo-random functions f

and g. For node i, pki and ski is assigned by using fs1(i) as a randomness. Similarly in

signing algorithm Signski(m), random function gs2(m) is used. Then, the scheme regen-

erates the authentication path of the trees without any state by the signer to be shared

with the verifier. Hence, the Stateless scheme is a N -time signature scheme to sign up to

N signatures but if more than N signatures are generated then the security degrades as

stateless consumes more power with slower signature generation.

13
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Chapter 3

Basics of Post Quantum Signature

Scheme

Due to the depleting security in classical crypto-systems, cryptographers has to work on

hard problems even for quantum attacks before the creation of well-versed quantum com-

puters lead us to do research on “Post-quantum Cryptography”[BBD]. Though quantum-

resistant alternatives includes lattice-based cryptography, code-based cryptography, multi-

variate public key cryptography and hash-based signatures, we chose hash based signatures

for the following reasons. They are constructed based on the definition of cryptographic

hash function and its property explained in section 2.2.1. According to the “Grover’s algo-

rithm”, though quantum computers could find pre-image of hash functions are faster than

classical computers but the speedup process is less.For a quadratic computer to find a pre-

image of a n-bit hash takes O(2n/2) time but for a classical computer it is O(2n). So, on an

average the Grover’s algorithm needs
√
2n, then for n-bit hash output equivalent to 2n/2,

which can be satisfied by just increasing the internal capacity and doubling the output size

of the hash function. Hence, finding a pre-image takes longer for quantum system than a

classical computer, makes hash-based signature safest signature.

In this thesis we expand the hash-based signature schemes for our comparative analysis

of stateful LDWM and stateless SPHINCS+ algorithm. We will have a short overview of

components used to built LDWM and SPHINCS+ in this section.

3.1 Hash-Based Signature Schemes

Hash based signature are fast and simple remarkably when compared to other crypto-

graphic alternative proposed due to the evaluation of hash function and easy implementa-

tion in lightweight devices. The first hash based signature was developed by Leslie Lamport
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[Lam16] in 1979 is described below.

3.1.1 Lamport One-time signature (L-OTS)

The scheme rely on one-way function, typically hash functions for their collision resistant

property. The one-way function is defined as F : {0, 1}n → {0, 1}n, efficient to compute

but hard to invert without a trap-door setting.

Key pair Generation The private key of size 2m random bit-string (ski,0, ski,1) are

generated as a sequence (sk1,0, sk1,1, . . . , skm,0, skm,1) to sign m bit string. Then, one way

function F is applied to the private key to generate the public keys pk, as a sequence of

2m random bit string.

(F (sk1,0), F (sk1,1), . . . , F (skm,0), F (skm,1)) = (pk1,0, pk1,1, . . . , pkm,0, pkm,1)

Signature With key pair and message, we sign a message digest M∗ ∈ {0, 1}m, we divide

the string into individual bits and sign it with their corresponding private key bits. i.e.,

for every message bit mi , we map ski,0 with if mi = 0 and ski,1 with if mi = 1 then

concatenate all the bits to form signature σ.

(sk1,M∗, . . . , skm,M∗) = (σ1, . . . , σm) = σ.

Verification The resultant signature σ, has half of the private key values. The verifier

checks the validity of signature whether its mapped to the elements of public key using the

function F:

(F (σ1), . . . , F (σm)) ≡ (pk1,M∗, . . . , pkm,M∗).

This scheme is EU-CMA secure only if the key pair is used only once as defined in section

2.4.1. The downside is that if a same key pair is used to sign two different messages then

both the signature will reveal parts of the private keys used and is vulnerable for signature

forgery. For this reason, it is called “One-time signature”. In order to avoid forgery and

extend OTS to sign multiple messages, a user should generate 2m key pairs to sign m

bit message. Hence, the signature size and verification time increases with respect to the

arbitrary number of signatures to be signed for messages. But, indeed creation of larger

keys to sign multiple messages, would also gets exhausted in linear time proportional to

the sign operations. Due to the storage issues, L-OTS was not used in practice.
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3.1.2 Merkle Trees

Merkle extended L-OTS, to sign multiple messages by reducing the size of the public key to

a single key using a tree structure concept. This innovation is a solution to eliminate large

storage requirements of L-OTS. The tree structure is called “Merkle hash tree” [Mer82]

patented in 1982. Merkle hash tree is a balanced binary tree with each node is a hash of

its child node see Figure 3.1. The leaf nodes are the generated OTS public key and the

root node of the binary tree is the main public key, so the verifier has to store only the

root node rather than all the leaf node.

Figure 3.1: Merkle hash tree of height 3 based on [Mer82]

The tree structure eliminates the large storage requirements as for a possible N mes-

sages, a signer will generate N-OTS key pair, a log2(n) value to a create the Merkle hash

tree. Every node is a hash of the child nodes and so, N public keys(leaf node) are com-

pressed using a Hash function H which can be represented as OTS public key pki ,a leaf

node as hi = H(pki). The root node is the concatenation of the child nodes enabling the

signer to have one root node thereby the Merkle hash tree is used as a many-time public

key. To prove the authenticity of the signature generated has never used before, the signer

applies a divide and conquer technique to add an authentication path to the signature. The

Authentication path is a list of hashes to compute the root node. The Signer publishes a

list of values consists of the index of the used leaf nodes(public key), signature of the secret

key, leaf node(public key) value, authentication path from which the verifier computes the

root node. For example as shown in Figure 3.2 : the signer use pk3 for signing sig, then

the path for verification sent to verifier include h2, h8, h13 to compute the root node. The

signer publishes (3,sig, pk3, h2, h8, h13) so the verifier can compute from leaf progressing

till the root node as h3 = H(pk3), h9 = H(h2||h3), h12 = H(h8||h9), h14 = H(h12||h13),
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indeed the signature sig is originated from the main public key.

Figure 3.2: Merkle Hash tree representing Authentication path for public key pk3 with

dashed border nodes are computed for the verification.

Though it is not necessary for the verifier to know all the OTS public key to verify the

main public key. For a signer to generate more signatures, he has to create large tree with

key pairs for many-time signature. As per the computation cost with the time and space

complexity, it increases with respect to the traversing through the large Merkle hash tree.

Hence, Merkle has foreseen this issue and also proposed a deterministic way to generate

private keys using pseudo-random generator and a seed value. This technique reduces the

large storage issue as to short seed value to obtain many-time public key.

3.1.3 Winternitz One-time signature (W-OTS)

The W-OTS published in Merkle’s paper[Mer89], is a modification of Lamport one-time

signature for shorter signature and it was further analysed by Dods et al. [DSS]. The W-

OTS is parameterised by the variable w, is a power of 2 denotes the number of bits to

be signed simultaneously rather than sign-per-bit. The W-OTS scheme uses an one way

function f : {0, 1}n × {0, 1}n → {0, 1}n and a hash function h :{0, 1}∗ → {0, 1}m, as the

basic idea is to apply the function f repeatedly 2w−1 times on an input x ∈ {0, 1}n, to
form a function chain like f(f(f(x))) = f3(x).The generation of signature for a message

M of m-bit length using W-OTS is as follows with reference to [BDE+]:

Key Generation Let n ∈ N be a security parameter, Choose a Winternitz parameter

w ∈ N, w ≥ 2 for compression level and a input value x ∈ {0, 1}n.
The private key sk, for i=0,..., l-1 is list of randomly chosen values of length l with n bits
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as

(sk0, . . . , skl−1)← {0, 1}(n,l)

where l represents the number of m-bits values in an uncompressed private key, public key

and signature, computed as

l1 = d
m

w
e, l2 = d

blog(l1)c+ 1 + w

log(w)
e, l = l1 + l2

The public key pk, is computed by applying function f on every private key ski, w-1 times

to form Winternitz hash function chain.

(pk0, pk1, . . . , pkl−1) = (x, f1sk1(x), f
2
sk2(x), . . . , f

2w−1

skl−1
(x))

Signature Generation With the message digest d = h(M), add necessary zeros to the

left of the d such that the length of d is divisible by w. Then split the hash d, into l1
binary blocks of size w resulting in d = (m0||...||ml1−1). We compute the checksum c

=
∑l1−1

i=0 (2w − mi), add necessary zeros to the left of c so that the length is divisible

by w. The resulted C string is split into l2 blocks of size w as c = (c0||...||cl2−1).The
signature is the concatenation of Message digest and checksum, where b = (b0||...||bl−1) =
(m0||m1||...||ml1−1||c0||...||cl2−1).

σ = (σ0, . . . , σl−1) = (f b0sk0(x), . . . , f
bl−1

skl−1
(x))

Verification To verify the signed message (M ,σ), we calculate the checksum as same

as it was calculated in signature generation step for constructing b = (b0||...||bl−1).If the
comparison holds pk′i = pki for i=0,...,l-1, then the signature is accepted.

(f2
w−1−b0

σ0 (pk0), . . . , f
2w−1−bl−1

σl−1
(skl−1)) = (pk′0, pk

′
1, . . . , pk

′
l−1)

3.1.1. Example. For a message value "Hello" hashed using SHA-256 outputs a message

digest "185f8db32271fe25f561a6fc938b2e264306ec304eda518007d1764826381969", set w=4

where the message digest of 256-bit is split into bit string bi of w length forming 64

Winternitz hash chain. The signer then publishes the public key as f15(sk16) and sign the

7th byte value(0111) with f7(sk7). The verifier computes the signature of f7 by computing

f15−9(f9(sk9)).

Security of W-OTS : Based on the above example 3.1.1, in order to create a signature,

we reveal the intermediate values of the function chain of the public key as 15−9 = 7 i.e.,
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Any adversary eavesdrop the message and its signing nature, could modify the message or

signature by increment of f accordingly to sign the next byte. Hence, Winternitz applied

checksum to prevent attacker from modifying the signature.Also, iterating one-way function

f on the message provides shorter signatures than L-OTS but increases the number of

function applied from 1,..., 2w − 1 times.The larger w value, shorter signature and longer

the signing, verification time makes W-OTS secure.

3.2 Lamport-Diffie-Winternitz-Merkle Scheme (LDWM)

This section describes the one-time signature scheme of the LDWM scheme in detail as pro-

posed in draft-mcgrew-hash-sigs-02[MC]. The LDWM scheme is a draft version of Leighton-

Micali Hash-based signature scheme(LMS)[MCF19] published in 2019. LDWM is a stateful

scheme, a combination of one-time signature along with Merkle-Winternitz tree structure,

allows to keep track(state) of the signatures generated.

Functions LDWM scheme uses OTS as the building block as explained in Section 2.4.1,

also has two components H, collision-resistant hash function and F, one-way pre-image

resistant function. The Hash function H, takes any message of arbitrary length (in bytes)

as input and returns fixed n-byte value represented as H : {0, 1}∗ → {0, 1}n whereas

the one-way function F accepts m-byte string and outputs m-byte represented as F i :

{0, 1}m → {0, 1}m.Let F be an i-folded iterative value for LDWM denoted as

F i(x) =

x, if i = 0

F (F i−1(x)), if i > 0

Parameters The security parameters of LDWM are m and n values, as they determine

the byte size of the private key, public key and the signature. The Winternitz parameter

w, is the number of bits of the message to be signed simultaneously rather than per-bit

signature. Usually w ∈ {1, 2, 4, 8}, larger the w value few elements are included in the

signature, providing short signatures but the key generation, signing and verification slows

down. However, there is no impact on security but the value of w is considered to be a

trade-off between the size of the signature to the computational effort. The parameters are

illustrated in the Table 3.1 below.
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Parameter Description

m The length in bytes of each element of an LDWM signature.

n The length in bytes of the result of the hash function.

w Winternitz parameter.

p The number of m-byte string elements that make up the LDWM signature.

ls The number of left-shift bits used in the checksum function C.

Table 3.1: Lamport-Diffie-Winternitz-Merkle(LDWM) Scheme Parameters.

Key pair Generation The LDWM private key denoted as x, is an array of size p contain-

ing m-byte strings. As the nature of the OTS, the private key can be used only once to sign

one message. The pseudo code to generate the unique private key randomly is explained

in Algorithm 1.

Algorithm 1 Generating a Private Key
for ( i = 0; i < p; i = i + 1 ) do

set x[i] to a uniformly random m-byte string

end for

return x

The LDWM public key is the hash value of the private key x, where each element of x is

passed through the function F , (2w − 1) times and the resultant y, is hashed altogether.

The function F is defined as F (2w−1) and Algorithm 2 generates the public key.

Algorithm 2 Generating a Public Key From a Private Key
e = 2w − 1

for ( i = 0; i < p; i = i + 1 ) do

y[i] = F e(x[i])

end for

return H(y[0] || y[1] || ... || y[p-1])

Signature Generation In order to avoid forgery, signature generated is proofed with

checksum function C, as proposed in Algorithm 3. The LDWM signature is generated by

hashing the message using H and concatenate with the checksum value calculated. Then

the resultant is split to the sequence of w-bit value and according to each bit value, the

function F is applied with the corresponding private key. The output of F are concatenated

as signature and the pseudo code is as follows in Algorithm 3 and Algorithm 4 :
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Algorithm 3 Checksum Calculation
sum = 0

for ( i = 0; i < u; i = i + 1 ) do

sum = sum + (2w − 1) - coef(S, i, w)

end for

return (sum « ls) . ls is the left-shift operation

Algorithm 4 Generating a Signature From a Private Key and a Message
V = (H(message) || C(H(message)))

for ( i = 0; i < p; i = i + 1 ) do

a = coef(V, i, w)

y[i] = F a(x[i])

end for

return (y[0] || y[1] || ... || y[p-1])

Finally, the Signer provides the signature, message and the public key to the verifier

for verification.

Verification The Signature is an array of m-byte of strings denoted as y where the veri-

fier will use function F on w-bit string of message hash and checksum value computed as

shown in the pseudo code below :

Algorithm 5 Verifying a Signature and Message Using a Public Key
V = (H(message) || C(H(message)))

for ( i = 0; i < p; i = i + 1 ) do

a = (2w − 1) - coef(V, i, w)

z[i] = F a(y′[i])

end for

if public key is equal to H(z[0] || z[1] || ... || z[p-1]) then

return 1 . message signature is valid

else

return 0 . message signature is invalid

end if

With the hash value of resultant value z equal to the public key, then the message

signature is considered as valid.
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Security of LDWM : The concrete security quantifies the success probability of an

adversary break the scheme using any of the security parameters value, running for a spe-

cific time. It focus on the increasing the difficulty level to prevent forging the signature

ensure "k-bit security" i.e., for a largem, n value, in order to forge a signature an adversary

should use 2k, k bits. With reference to the security analysis[Kat16] of LDWM scheme,

having Hash function H and Function F as independent random oracle which runs q-times

and k-bits are calculated to ensure security for various scenario as explained below.

• Hash Collision : A signature can be forged if an adversary is able to find a collision. To

avoid the Birthday attack, the output size of Hash function H should be at least 2k

bits. In order to ensure k-bit security, the adversary has to run O(2k) computations

to break the scheme i.e., then to break the hash output of 2k the adversary has to

perform O(22k) computations, which is infeasible.

• Assume N instance of LDWM scheme run by the same signer or multiple signer,

then there could be a chance of some hash value to be equal to the existing public

key generated.

Consider any ith public key pki =H(yi0, ..., y
i
p−1) formed by computing y from distinct

x value as y∗0 = F e(x∗0),..., y∗p−1 = F e(x∗p−1).For any of the x′ value, hash is equal to

the pki then it is vulnerable for forge signature with respect to the public key. The

probability of success for this scenario is q.N/2n. Hence, to ensure k-bit security the

output size of Hash function H should be at least k + logN bits.

3.3 SPHINCS+

The basic concept of stateless scheme is to primarily eliminate the states in the signa-

ture. The stateful schemes like XMSS[HBG+18](eXtended Merkle Signature scheme), keeps

track(state) of One-time key pairs used in generating signatures. If any key-pair state lost

in an adversary’s procession, then he will be available to predict a valid signature. In or-

der to ensure security, stateless schemes called SPHINCS was proposed to eliminate state.

SPHINCS[BHH+15] is 128-bit post quantum secure scheme constructed with Winternitz

OTS and Merkle tree structure. The randomized leaf (index) selection from Merkle tree

reduces the chance of choosing the same key-pair and also the use of hypertree where ev-

ery node is considered to be a Merkle tree itself, increases the security level of SPHINCS.

Thus, it is considered to be easy replacement for the existing cryptosystems but SPHINCS

provides large signature, performing long computation.The upgraded version of SPHINCS

with improvements was published as SPHINCS+[BHK+19].
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3.3.1 Components of SPHINCS+ Framework

SPHINCS+ is a stateless hash-based signature scheme which was selected for second Round

among the nine signature schemes submitted for NIST competition.Similar to LDWM,

SPHINCS+ relies on the properties of cryptographic hash function. The SPHINCS+ hash

tree is a hypertree structure consisting of multiple layers of hash trees to it. The Winternitz

OTS keys signs the leaf nodes to the each root nodes of the lower level tree. A few-time

signature FORS is used for signing the messages and the keys are in the leaf node of

the lowest level of the Hypertree.This section describes SPHINCS+ components shown in

Figure 3.3 in detail, as proposed in [BHK+19] with Winternitz OTS+, hypertree and Forest

of Random subsets(FORS).

Figure 3.3: Hypertree Model of SPHINCS+

Winternitz-OTS+ (WOTS+)

It is an hash-basedWinternitz Onetime-signature(OTS) variant proposed by Hülsing[Hül17]

generates shorter signature and targeted to prevent Multi-target attack, refer section 3.1.3

for WOTS. WOTS+ has replaced hash function f , with keyed second pre-image resistant

hash function fk: {0,1}n → {0,1}n, where k(key space) ∈ {0,1}n, i.e., for every key k, the

function fk computes bitwise XOR of the input with a randomization element r as fk(x ⊕
ri) for any i, reducing the signature size by 50% at 80bits security level.
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Key Generation Let n ∈ N be a security parameter, Choose a Winternitz parameter

w ∈ N, w ≥ 2 for compression level and random elements r ∈ {0,1}(n,w−1). This algorithm

uses an input seed s, to reduce the storage issue as every time unique key can be regener-

ated from the seed itself.

The private key sk, for i=0,..., l-1 is a n-byte value pseudo randomly generated from s as

(sk0, . . . , skl−1)← {0, 1}(n,l)

where l represents the number of m-bits values in an uncompressed private key, public key

and signature, computed as

l1 = d
m

log2(w)
e, l2 = b

log2(l1(w − 1))

log2(w)
c+ 1, l = l1 + l2

The public key pk, is computed by applying function f on every private key ski, w-1 times

to form Winternitz hash function chain.

(pk0, pk1, . . . , pkl−1) = (x⊕ r, f1sk1(x⊕ r), f
2
sk2(x⊕ r), . . . , f

2w−1
skl−1

(x⊕ r))

Signature Generation With the message digest d = h(M) and randomization element r,

compute the base w representation of d = (m0||...||ml1−1), mi ∈ {0,...,w-1}. Also, Compute

the checksum c =
∑l1−1

i=0 (2w− 1−mi), generate c = (c0||...||cl2−1), and append c of length

l2 resulting in b = (b0||...||bl−1) = (m0||m1||...||ml1−1||c0||...||cl2−1).The signature is:

σ = (σ0, . . . , σl−1) = (f b0sk0(x⊕ r), . . . , f
bl−1

skl−1
(x⊕ r))

Verification To verify the signed message (M ,σ), calculate the checksum as same as

calculated in signature generation for constructing b = (b0||...||bl−1).If the comparison holds

pk′i = pki for i=0,...,l-1, then the signature is accepted.

(f2
w−1−b0

σ0 (pk0 ⊕ r), . . . , f2
w−1−bl−1

σl−1
(pkl−1 ⊕ r)) = (pk′0, pk

′
1, . . . , pk

′
l−1)

Hypertree

A single Merkle tree structure of height h is used to sign a message N = 2h, 2h public

keys has to be generated as leaf nodes and hash it every two nodes to the root node

for the public key. For a large tree of h = 256, the cost of the operation increases by

time and size with respect to signing and verification operation as traversing from leaf

to root for authentication path. A new construction of tree chaining was introduced in

SPHINCS[BHH+15] called Hypertree. It is a tree of trees construction of height h, which

serves as certification tree for verification and as WOTS+ key pair in the leaf node of each

tree. The Authentication path and the signature from the leaf node to the root is attached

24



CHAPTER 3. BASICS OF POST QUANTUM SIGNATURE SCHEME

to the intermediate trees, so that the top-most root holds the complete authentication path.

Also, the leaf nodes(WOTS+ public key) attached to the intermediate tree is deterministic

in nature. During the key generation algorithm, the tree is generated virtually with height

h and intermediate layers d as there is no dependencies among the roots of intermediate

tree.

FORS

SPHINCS+ as a few-time signature scheme, uses Forest of Random subsets(FORS), a

concept of decision trees defined in terms of k values and t=2a, to sign ka bits of string.

Key pair Generation The private key is a group of k sets of t value each, are generated

randomly from a secret seed using Pseudo-random function together form a kt n-bits

value.The Public key is a k binary hash trees of height a with a t values of private key as

elements.

Signature For message of ka bits, extract k strings for a bits, where each bit is assigned

as a leaf node in each of the k binary hash tree(FORS).The Signature consists of the index

of the nodes and the authentication paths.

Verification The verifier reconstructs the root node using the authentication path and

uses the tweakable hash function Thk to reconstruct the public key.

3.3.2 SPHINCS+

SPHINCS+ has two types of construction namely robust, based on XMSS and simple,

based on LMS. The robust construction generates a pseudo random bit-masks which

are later XOR-ed with the input wheres simple construction doesnot support bit-masks

and so they are faster, reduction in compression calls when combined with compressed

address.There are three instantiations of hash function for respective construction, are

SHA256, SHAKE256 and Haraka.Further they are categorized into two as size-optimized

represented as "s" and speed-optimized represented as "f" at the end of the signature

method.For NIST submission, SPHINCS+ includes 36 instantiations, a combination of

3 security levels, 3 hash functions, simple and robust instants, speed and size optimiza-

tion.Here we focus on SPHINCS+-SHA-256 with 128s,192s and 256s for a simple hash

function.
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Function SPHINCS+ use two pseudo-random functions(PRF , PRFmsg), a keyed function

(F ), a keyed hashed function(Hmsg) defined and explained below.

3.3.1. Definiton. The Pseudo-random function PRF, is function whose output is diffi-

cult to differentiate from any other functions within the same domain and range of the

input.Hence, it is used in key generation. The Pseudo-random function PRFmsg is used in

adding randomness to the message compression.

PRF : {0, 1}n × {0, 1}256 → {0, 1}n

PRFmsg : {0, 1}n × {0, 1}n × {0, 1}∗ → {0, 1}n

Hmsg : {0, 1}n × {0, 1}n × {0, 1}n × {0, 1}∗ → {0, 1}m

It also has a special function called Tweakable hash function Th, a function to hold specific

information and public parameters to be added to the input.The keyed function and keyed

hash function Hmsg, process any length of messages for compression that are applied to

special cases in tweakable hash function.

F : {0, 1}n × {0, 1}256 × {0, 1}n → {0, 1}n def
= Th1

H : {0, 1}n × {0, 1}256 × {0, 1}2n → {0, 1}n def
= Th2

3.3.2. Definiton. The Tweakable hash function is defined as a mapping of α-bit message

M to an n-bit hash value.Let α ∈ N, P be the public parameters and T be the tweak

parameter.

Th : P × T × {0, 1}α → {0, 1}n

For SPHINCS+-SHA256 the functions are defined as follows:

Hmsg(R,PK.seed, PK.root,M) =MGF1− SHA− 256(SHA− 256(R ‖ PK.seed ‖

PK.root ‖M),m)

PRF (SEED,ADRS) = SHA− 256(SEED ‖ ADRSc)

PRFmsg(SK.prf,OptRand,M) = HMAC − SHA− 256(SK.prf,OptRand ‖M)

The simple variant, the tweakable hash functions are defined as follows:

F (PK.seed,ADRS,M1) = SHA− 256(PK.seed ‖ toByte(0, 64− n/8) ‖ ADRSc ‖M1)

H(PK.seed,ADRS,M1 ‖M2) = SHA− 256(PK.seed ‖ toByte(0, 64− n/8) ‖ ADRSc

‖M1 ‖M2)

Thl(PK.seed,ADRS,M) = SHA− 256(PK.seed ‖ toByte(0, 64− n/8) ‖ ADRSc ‖M)
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The output of F, H, PRF, PRFmsg depends on the parameter set, if it demands the length

n < 256 then the first n bits of the output is considered.

Parameters The parameters are the variables from the various components used in con-

struction of SPHINCS+ illustrated in Table 3.2. Winternitz parameter w, is a trade-off

between time and size in signature operation.Usually w ∈ {4, 16, 256}, larger the value is

set, then smaller the signature and slower the signature generation.

Parameter Description

m The length of message digest in bytes

n The length of SPHINCS+ signature in bytes

h The height of the hypertree

d The layers count in the hypertree

k The number of trees in FORS

t The number of leave in FORS tree

w Winternitz parameter.

PK.root Top root node of n bytes length [Public]

PK.seed Random public seed of n bytes length [Public]

SK.seed Random private seed generates WOTS+ of n bytes length [Private]

SK.prf To randomized message digest of n bytes length [Private]

Th Tweakable Hash Function

Table 3.2: SPHINCS+ Scheme Parameters.

Key pair Generation The public key is a set of two n-bit values, where the root node

of the hypertree is generated using WOTS+, and a random public seed value PK.seed.

The private key is a set of two n-bit values: SK.seed to generate pseudo-random secret

keys(WOTS+ and FORS) and SK.prf to generate unpredictable index and randomize the

message digest.

Signature The Signature in message M ∈ {0, 1}∗, is generated using pseudo random-

izer represented as R = PRF (SK.prf,OptRand,M), R is applied on the message and

SK.prf . To sign the randomised message hash Hmsg, the index of the leaf node is cho-

sen using R. The index chooses the tree in the hypertree as well as the leaf node in the

chosen tree for signing, as the message digest MD with idx can be represented as (MD ||

idx) = Hmsg(R,PK.seed, PK.root,M).Therefore, signature contains the index value idx,

randomness R, FORS signature, one WOTS+ signature and authentication path per layer
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of trees. The signature generation is deterministic is nature, and so randomness is quite

important.

Verification To verify the SPHINCS+ signature, the verifier must compute the message

hash Hmsg, and verify the FORS signature, WOTS+ signature and authentication path

per tree for root computations.By this the verifier will be able to compute the root node,

and if it is equal to the public key, then the signature is valid.
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Chapter 4

Analysis of LDWM and SPHINCS+

The Evaluation of the Algorithms basically focus on their implementation on Public key

infrastructure either as quantum resistant certificates or cryptographic library over TLS

that will be suitable for quantum era. The NIST evaluation criteria explained in section

2.2 is considered with the key parameters focusing on the classical and quantum security

level(Security), size of the signature, public key and private key (Cost) and availability of

code(Algorithm Implementation). Some of the other aspects considered are the category

of Hash based schemes chosen: Stateful and Stateless and their maximum number of sig-

natures limited in each scheme. This section briefs about the evaluation methodology and

provides empirical evidence based on the Key generation time, signature generation and

verification time for LDWM and SPHINCS+.

4.1 Implementation Details

Though the algorithms LDWM and SPHINCS+ differ from each other as stateful and

stateless respectively, they share the OTS signature structure as a basic foundation for

their scheme and also applies WOTS variants on the tree structure for signature, verifica-

tion.We have implemented the LDWM algorithm in JAVA language with reference to the

draft-mcgrew-hash-sigs-02[MC] is attached in the Chapter 6 implemented with the details

explained in section 3.2. The original implementation of SPHINCS+ written in C can be

found in [SPH],is utilised for the comparative study. We have considered SHA256 as hash

functions, as it outputs 128,192 or 256 bit length, assuring the security level of 1,3 or

5 respectively.The parameter selection plays a role in time and space complexity in any

applications, the study focus on implementing quantum hash-based signature in a Public

key Infrastructure for the test parameters for LDWM and SPHINCS+ as given in Table

4.1 and 4.2 respectively.
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Signature Method H F m n w p ls

LDWM_SHA256_M32_W1 SHA256 SHA256 32 32 1 265 7

LDWM_SHA256_M32_W2 SHA256 SHA256 32 32 2 133 6

LDWM_SHA256_M32_W4 SHA256 SHA256 32 32 4 67 4

LDWM_SHA256_M32_W8 SHA256 SHA256 32 32 8 34 0

Table 4.1: Signature Methods for Testing LDWM code

Instantiations n h d log(t) k w security level public key secret key

SPHINCS+-128s 16 64 8 15 10 16 1 32 64

SPHINCS+-192s 24 64 8 16 14 16 3 48 96

SPHINCS+-256s 32 64 8 14 22 16 5 64 128

Table 4.2: Signature Methods for Testing SPHINCS+ code

4.2 Key Attributes from NIST

4.2.1 Security

The available cryptosystems so far are susceptible to attacks in one or another, so the

security level of the schemes built has to be estimated. The common way of security level

estimation is using the notion of "bit security" i.e., any attack in the system requires O(2b)

operations to break. For a quantum level cryptography, "quantum bit security" needs to

be estimated for an adversary with quantum computer access. This Security assessment is

based on the building blocks of an algorithm, security assumption they hold against known

attacks, amount of parameters selections. From the NIST report[Bar20], the security level

1(128 bits) has to be achieved by the proposed submission. To achieve 128 bits security

level with classical systems, use LDWM signature methods in Table 4.2 with m=32.

The implementation of LDWM generates one-time signature using Winternitz concept

of grouping message bits according to Winternitz parameter and sign it. The Winternitz

OTS along with Merkle tree, reduce the key size providing flexibility between signature size

and generation time.But this implementation doesnot have Merkle tree construction. As an

initial work of LMS, the LDWM rely on the one-way function F , to be pre-image resistant

function and the Hash function H, to be collision-resistant.With Winternitz parameter

w=1, LDWM is existentially unforgeable under an adaptive chosen message attack(EU-

CMA) with c bit of Checksum mapped using F added to the hash message, making an

adversary difficult to attempt forgery. The LDWM is post-quantum resistant with m and
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n value is doubled so that it is protected against Grover’s attack.

Similar to LDWM, SPHINCS+ is post-quantum existentially unforgeable under an

adaptive chosen message attack(EU-CMA) using a single function F , second-preimage

resistant and a tweakable Hash function Th, collision resistant. Both the functions in multi-

target setting focus on mitigating multi-target attack. The Multi-target attack is where an

adversary can invert the function to find the target value and if succeeds then he can attack

factor of the number of targets.Hence, for mitigation the keyed hash function was used as

for each hash call different key and bit-masks are used.The hash function with second-

preimage property is used instead of one-way function i.e., even if an adversary accessing

Quantum random oracle model and able to receive public parameters, it is difficult to find

a second pre-image from the previous query for the same public parameter P and Tweak T .

With FORS security, the adversary rights to chose the index, cannot learn or replace any

secret and finding a message from a key set or indexes is impossible that the the tweakable

hash function is generated one per hash call and selects a FORS key pair, so an adversary

will not be able to find the weakest point in the key pair.

4.2.2 Cost/Performance Analysis

The Performance of the LDWM and SPHINCS+ code is analysed by generating several ran-

dom messages given as input and the cost of signature, verification operation was measured

on an Intel(R) Core(TM) i5-8250 CPU @1.60GHz 1.80GHz machine running Windows 10.

The LDWM code was developed in JAVA language in Eclipse IDE, with a capability

to sign and verify for 100 random messages which is each of size 1 KB and tested with

the signature methods as test parameters given in Table 4.2. We have used SHA-256 for

Hashing function and also as one-way functions for the generation of public key, signature

and verification. refer section 3.2 for Algorithms.

Time Taken

Signature Method Key Generation Signature Verification

LDWM_SHA256_M32_W1 29.7ms 5.44ms 5.89ms

LDWM_SHA256_M32_W2 28.31ms 7.15ms 7.74ms

LDWM_SHA256_M32_W4 35.11ms 13.25ms 14.37ms

LDWM_SHA256_M32_W8 167.57ms 73.54ms 78.45ms

Table 4.3: LDWM Time Analysis

The original implementation of SPHINCS+ written in C Language, for the thesis work

we converted the C code to JAVA language using SWIG tool. The tool generates an
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interface through which the C methods can be called. Same methodology of LDWM was

used for SPHINCS+ as generating 100 random messages each of size 1KB was implemented

and analyzed the running time taken for key pair, signing and verification for Table 4.2

test parameters.

Time Taken

Signature Method Key Generation Signature Verification

SPHINCS+_SHA256_128s 11.1ms 164.2ms 0.19ms

SPHINCS+_SHA256_192s 19.88ms 427.15ms 0.367ms

SPHINCS+_SHA256_256s 38.21ms 448.5ms 0.681ms

Table 4.4: SPHINCS+ Time Analysis

Based on the results given in Table 4.3 and Table 4.4, Each public key, private key

and signature are calculated using the n parameter. For n=32, LDWM generates key and

signature size of 64 bytes value whereas For n=16,24,32, SPHINCS+ generates 2n private

keys and 4n public keys accordingly. Hence, we compare the LDWM_SHA256 _M32 _W8

with SPHINCS+-256s as they provide same key length of public keys, SPHINCS+-256s is

faster in key generation and verification when compared to LDWM.

4.2.3 Algorithm

The goal of the Post Quantum cryptographic algorithm is to ensure the availability of

its implementation either as a replacement or enhancement for the existing cryptosystems

and also flexible enough to support public key encryption, key exchange,Signature and

verification. In order to analysis the compatibility of SPHINCS+ and LDWM, we will

discuss on their implementation in a real-time application. As though the algorithm is

efficient and provide security, the algorithm should fit in the business requirements. The

algorithm chosen are of Digital signature category, we chose Public Key Infrastructure to

discuss more.

Every organisation relies on the security of their Infrastructure, as their operations

involve in and out transactions of data, the identity of the sender and receiver are kept

in compact using keys. Hence, to secure the keys involved in the every transaction, a wise

way to keep in them in a form of certificates specifically as X.509 certificates.Thereby,

the establishment and management of public keys ensures secure channel across a public

network providing both authentication and encryption.

Public Key Infrastructure(PKI) provides certificates is considered to be digital pass-

ports provides identity of the participant with their public key, attested from a mutually
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trusted third party claimed to be Certificate Authority(CA). The International Telecom-

munication Union(ITU) maintains a X.509 structure [XT19] as a standardization for public

key certificates generation. A X.509 format [CP08] consists of three elements:

Components of X.509

• tbscertificate : The certificate to be signed.

• signatureAlgorithm : An identifier used by CA to sign the certificate.It also has

Object Identifier and various other parameters for the algorithm to be identified.

• signatureValue : Digital Signature encoded as Bit string. Other components are ver-

sion, serial number, signature, issuer(CA), Validity period, subject, subjectPublicK-

eyInfo.

The certificate binds the public key with the sender and identity is preserved, this process

is done by the Registry Authority(RA).Once, the identity is verified, the RA sends confir-

mation to the CA to generate the signature and sign it using the CA’s private key. The

issued certificate can be verified by the CA’s public key included in the CA certificate.

The PKI has an hierarchical structure of CA’s depicts as a trust model between sender

and receiver. The root node has the RootCA, the leaf nodes are the identifiers and the

other nodes form a certificate chain with intermediate CAs. For a transaction between

two parties, the receiver will send a certificate chain to the sender consisting of his own

certificate and all the other certificates that reach up to the RootCA.Thereby, the sender

could verify the authenticity of the receiver and if the other nodes are interlinked with

each other with valid signature, so the sender can trust receiver’s certificate. Two signa-

ture schemes used for verification are RSA and Elliptic curve Digital Signature Algorithm.

From [Bid06, p. 968], a Symmetric Key size of 128 bytes provides a security level of AES

128 equivalent to RSA 3072 with three parameters generating private key and public key

approximately 1800 bytes and 390 bytes approximately. ECDSA algorithm NIST P-256

generates a signature size of 512 bits for n = 256, public key 2n= 512 bits and private key

as 768 bits. X.509 standard is widely used as it does not have any restrictions on the public

key type and algorithm used for signature. This flexibility allows any length of signatures

to be generated for the public keys.The PKI certificate issuance is used in TLS protocol

on the Internet, to support confidential channel between client and server. For client au-

thentication, client sends its certificate along with its certificate chain to the server fro

verification during the TLS handshake. For server authentication, all the certificates along

the way to the root, certificate chain will be sent to the client for verification.Hence, the
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amount of data transaction depends on the certificates containing signature’s and public

key’s size that are transferred.

Discussion As X.509 certificates were already implemented in LDWM by the Industry,

we focus on SPHINCS+ algorithm. In general, the size of a digital certificate depends on

the algorithm used, key size and signature components. There is no upper limit set for

X.509 certificate file so for a 512 byte private key, the size increases by 4/3, providing a

size of 1420 bytes for an unencrypted private key. The size will increase for an encryption

and the file containing private key is limited to hold less than 2048 bytes.SPHINCS+is a

good candidate for hash-based signature to be adopted by the Industry as it is available

as API provides smaller signature size and has multiple variants to chose according to

the developer’s notions on size and speed.SPHINCS+ being a stateless with small key size

can be easily maintained and transferred as certificates with minimal security assumptions

with Hash function.
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Chapter 5

Conclusion

As the Quantum threat rise in cryptography, it eventually affects the PKI. But, we are

preparing ourselves with the research on post-quantum cryptography instructed by NIST.

Several alternatives were chosen by NIST, to replace the existing system working with

RSA and other classical schemes.Based on the LDWM and SPHINCS+ benchmark results,

we found post-quantum digital signature scheme potentially can be used in Infrastructure.

Thereby it forms as a recommendation for replacement of algorithms.The SPHINCS+

analyzed can be implemented on X.509 certificates and also as self-signed certificates can

be viable option with available libraries based on the security, cost and implementation

analysis.As the goal of the thesis, in conclusion we have provided the parameter set and

the empirical results by testing LDWM, SPHINCS+ for a developer to consider while

implementing an algorithm along with the security benefits.
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Chapter 6

Reference

6.1 Source code

// Algorithm 0: Generating a Private Key

private static ArrayList<String> generate_private_key(Parameter p)

throws NoSuchAlgorithmException {

String value ="";

for(int counter=0; counter < p.getParameter_p(); counter++)

{

// Random seeds are generated for private keys

byte[] seed = generatePRNG();

MessageDigest algorithm = MessageDigest.getInstance(p.getAlgorithm_F());

byte[] encodedhash = algorithm.digest(seed);

for (byte b : encodedhash) {

sb.append(String.format("%02x", b));

}

if(p.getAlgorithm_F().equals("SHA256-20"))

{

value = sb.substring(0, 20);

}

else {

value = sb.toString();

}

private_Key.add(value);

sb.delete(0, sb.length());

}

36



CHAPTER 6. REFERENCE

return private_Key;

}

// Algorithm 1: Generating a Public Key From a Private Key

private static ArrayList<String> generate_public_key(Parameter p,

ArrayList<String> private_Key) throws NoSuchAlgorithmException {

int parameter_e = (int) (Math.pow(2, p.getParameter_w()) - 1);

String result_0 = "";

String value="";

for(int counter = 0; counter < p.getParameter_p(); counter++)

{

String data = private_Key.get(counter);

for(int counter_e = 0; counter_e < parameter_e ; counter_e++)

{

MessageDigest algorithm = MessageDigest.getInstance(p.getAlgorithm_F());

byte[] encodedhash = algorithm.digest(data.getBytes());

for (byte b : encodedhash) {

sb.append(String.format("%02x", b));

}

if(p.getAlgorithm_F().equals("SHA256-20"))

{

value = sb.substring(0, 20);

}

else {

value = sb.toString();

}

data=value;

sb.delete(0, sb.length());

}

public_Key.add(data);

result_0 = result_0.concat(data);

}

MessageDigest algorithm = MessageDigest.getInstance(p.getAlgorithm_H());

byte[] encodedhash = algorithm.digest(result_0.getBytes());

for (byte b : encodedhash) {

sb.append(String.format("%02x", b));
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}

//concatenated public key hash value

public_Key.add(0, sb.toString());

sb.delete(0, sb.length());

return public_Key;

}

// Algorithm 2: Checksum Calculation

private static String create_checksum(Parameter p, String data)

throws NoSuchAlgorithmException {

int parameter_e = (int) (Math.pow(2, p.getParameter_w()) - 1);

int parameter_ls = 16 - (p.getParameter_v() * p.getParameter_w());

int parameter_sum = 0;

List<Integer> decimals = new ArrayList<>();

MessageDigest algorithm = MessageDigest.getInstance(p.getAlgorithm_H());

byte[] encodedhash = algorithm.digest(data.getBytes()); // Message hashed

for (byte b : encodedhash) {

sb.append(String.format("%8s", Integer.toBinaryString(b & 0xFF))

.replace(’ ’, ’0’));

}

String hashedData = sb.toString();

//Split to w-bit values [Coeff(S,i,w)]

decimals = coeff(hashedData,p.getParameter_w());

for (int counter = 0; counter < p.getParameter_u(); counter++)

{

parameter_sum = parameter_sum + parameter_e - decimals.get(counter);

}

sb.delete(0, sb.length());

String i = String.format("%16s", Integer.toBinaryString(parameter_sum))

.replace(’ ’, ’0’);

i = i.substring(parameter_ls,i.length()).replace(’ ’, ’0’);

return i;

}
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// Algorithm 3: Generating a Signature From a Private Key and a Message

private static ArrayList<String> create_signature(Parameter p,

ArrayList<String> private_Key, String data) throws NoSuchAlgorithmException {

String value="";String result_0 ="";

List<Integer> decimals = new ArrayList<>();

MessageDigest algorithm = MessageDigest.getInstance(p.getAlgorithm_H());

byte[] encodedhash = algorithm.digest(data.getBytes());

for (byte b : encodedhash) {

sb.append(String.format("%8s", Integer.toBinaryString(b & 0xFF))

.replace(’ ’, ’0’));

}

String hashedData = sb.toString();

sb.delete(0, sb.length());

//Create checksum

String C_H_message = create_checksum(p, data);

String parameter_V = hashedData.concat(C_H_message);

decimals = coeff(parameter_V, p.getParameter_w());

for(int counter=0; counter < p.getParameter_p();counter++)

{

int parameter_a = decimals.get(counter);

data = private_Key.get(counter);

for(int counter_a=0; counter_a < parameter_a ;counter_a++)

{

algorithm = MessageDigest.getInstance(p.getAlgorithm_F());

encodedhash = algorithm.digest(data.getBytes());

for (byte b : encodedhash) {

sb.append(String.format("%02x", b));

}

if(p.getAlgorithm_F().equals("SHA256-20"))

{

value = sb.substring(0, 20);

}

else {

value = sb.toString();

}

data=value;
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sb.delete(0, sb.length());

}

created_signature.add(data);

result_0= result_0.concat(data);

}

return created_signature;

}

// Algorithm 4: Verifying a Signature and Message Using a Public Key

private static ArrayList<String> verify_signature(Parameter p,

ArrayList<String> public_Key, String data, ArrayList<String> created_signature)

throws NoSuchAlgorithmException {

String value="";String result_0 ="";

List<Integer> decimals = new ArrayList<>();

MessageDigest algorithm = MessageDigest.getInstance(p.getAlgorithm_H());

byte[] encodedhash = algorithm.digest(data.getBytes());

for (byte b : encodedhash) {

sb.append(String.format("%8s", Integer.toBinaryString(b & 0xFF))

.replace(’ ’, ’0’));

}

String hashedData = sb.toString();

//Create checksum

String C_H_message = create_checksum(p, data);

String parameter_V = hashedData.concat(C_H_message);

//Split to w-bit values [Coeff(V,i,w)]

decimals = coeff(parameter_V,p.getParameter_w());

for(int counter=0; counter < p.getParameter_p(); counter++)

{

int parameter_a = ((int)(Math.pow(2, p.getParameter_w()) - 1))

- decimals.get(counter);

data = created_signature.get(counter);

for(int counter_a=0;counter_a < parameter_a;counter_a++)

{

algorithm = MessageDigest.getInstance(p.getAlgorithm_F());
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encodedhash = algorithm.digest(data.getBytes());

for (byte b : encodedhash) {

sb.append(String.format("%02x", b));

}

if(p.getAlgorithm_F().equals("SHA256-20"))

{

value = sb.substring(0, 20);

}

else {

value = sb.toString();

}

data = value;

sb.delete(0, sb.length());

}

verified_signature.add(data);

//concatenated signatures

result_0= result_0.concat(data);

}

algorithm = MessageDigest.getInstance(p.getAlgorithm_H());

encodedhash = algorithm.digest(result_0.getBytes());

for (byte b : encodedhash) {

sb.append(String.format("%02x", b));

}

boolean flag = matching_signature(sb.toString(),public_Key.get(0));

sb.delete(0, sb.length());

return verified_signature;

}
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