Automatic Detection of

Photographing or Filming

Zhiyuan Chen
BSc: Creative Technology

July 2020

Faculty of Electrical Engineering, Mathematics and Computer Science

University of Twente

Supervisor: Raymond Veldhuis

Critical Observer: Mannes Poel

Abstract

A wide use of cameras and portable devices with built-in cameras such as smartphones and
social media makes taking photos and sharing very easy, while unintentional capture of facial
image brings privacy concerns. To detect photographing or filming, a detection model using
the state of the art architecture of Faster R-CNN is designed to detect camera objects on still
images, which lays a foundation of the work of real-time detection of photographing or
filming. Choices such as selection of feature extractors, dataset selection and number of
region proposals are made on different models. Each model is tested and evaluated
concerning performance, false negative rate and bounding boxes etc.

Table of Contents

2 013 1 T SR 2
Chapter 1 - INtrodUCTION ..o sn s s n s s nnnnnns 5
1.1 Problem deSCriPtioN ... e se s sn s s s se s sesnas 5

1.2 Project baCKgroUNd..........c et ss s e sn s s s e s sesnas 5
1.2.1 RESEAICH QUESTION. ...t e 5

I BT U1 0 0 =1 Y 6
Chapter 2 - State Of the @rt ... e e s 6
A RO T | - 1 o] | [=Tox d o] o [H0 PRSP SYSRSTSR 7
2.1.1 ImageNet Dataset........ccinniis s 7

2.1.2 Open Images Dataset ... sseeas 7

2.1.3 CuStOM datasel.......ccccerirerriererrc e s 7

2.2 Object detection MOAEL ... s 8
2.2.1 R-CNN model FaMIlY ..o s sesss e sesss s sssssssssssssessssssesass 8

2.2.2 YOLO model family ... s se s e ssssssenns 10

2.2.3 CONCIUSION ...ttt n e nns 11

2.3 EValuation MELIICS ...cvciiueeireiccre et st st se s sttt e s s nn e saens 11
(030 =T o d=T gt B o [=T: 1 4 oY o 1R 12
3.1 Selection of object detection MOdel..........rrrrececee s 12

3.2 Selection Of DAtaSset.......cccocorrererercrcnenenereresee e ss s ssese e ssannas 13

3.3 Training data PrepProCeSSINGc.cocoorrererrresrsesesereresesesesesssssssesesssssssssssesesesessssenss 13
3.3.1 Downloading SUBSEL ... enes 13

3.3.2 Number of images for trainingcccevnerninennsncse s 13

3.3.3 Training fOrmMat ... 13

3.4 TraiNiNg ENVIFONIMENT.......ccocirererercceresis et s sssssseseseses s s ssssesesss s s s sssseseseasasssnss 13

3.5 TraiNiNg SETHING cccuceeeeeececcrre e e 14
3.5.1 Data augmentation ... 14

BT 2 T 1 o] 1KY T 14

3.5.3 LEArNINgG Fate......cccvceieeerierereriere s s sss s s st s e sns s nnes 14

3.5.4 INPUL iIMAQE MESIZEcerireeercireire et 15

3.6 Matching strategy and Crteria ... 15
£S5 700 8 (0] 6 4 1 =] o Vo) e 1T 15

3.6.2 NON MAaX SUPPIESSION ...cueuerireereriraesessesessssessesss s ssssssesssssssesssssssssssssssssssssssseses 15

3.6.3 MAP CalCUIAtiON.....ccoieecrrrcerrce s s e 16

3.7 Multiple camera detection task ... 17
Chapter 4 - SPeCIfiCation ... s ene e 17
LN R D F. 1 - 1T A =TT =Y [T o7 4 o T 17

4.2 Feature extractor SEIECLIONcccvvcceresererncne s s s se s sasseessnaes 18

4.2.1 Description of VGG16 and Resnet50 network.........ooevnmnmnenenennnscsssssnnns 19

e 5 R V€ 3 R 19

4.2.1.2 RESNELSE0 ...ttt ettt s e et s e e e 20

4.3 Number oOf region PropoSsals ... i s sassssssssses 20
Chapter 5 - Realization and evaluation...........ccvcreeeennnicnenssesssessse s ssesssenns 22
5.1 Model 1: Using VGG16 network as feature extractor..........ccccvveenvrvecnsessesensennens 22

L 0 R I 11 0T 1 gV JET=] A1 22

5.1.2 Training process eValuation ... e senns 22

5.1.3 Testing process evaluation ... sesesssssesns 26

L0 I B 2 L= L= ot Lo) o TSRS 31

5.2 Model 2: Using ResNet50 network as feature extractorcccceevvrveensereeensennens 32
L0 R I 11 0T 1 gV JET=] A1 o 32

5.2.2 Training process evValuationcoorcnnnsennnssesessesssess s s sesesesssenns 33

5.2.3 Testing process evaluation...........ccoecrrncnrsnsesesnssesessssssess s sssessssesessesssenas 34

Lo B 2 L= L= o o Lo o TSRS 35

5. 3 Model 3: Change the number of Rol of Model 2. 36
5.3.1 Training SETHING ..o s s s s s 36

5.3.2 Evaluation and reflection ... 37

5. 4 Model 4: Change the number of Rol of Model 1..........coinniicnrrsenerssene e 39

L 0 R I 11 0 V1 g T JET=] d A1 39

5.4.2 Evaluation and reflection ... 40

5. 5 Model 5: Training data reselection from Model 1..........cccoonnricnrrscnnnscsernsenens 42
5.5.1 Training SETHING ..ot s 43

5.5.2 Evaluation and refleCtionocnnncnnssesrs s senns 43

5.6 Testing detection model on images of other categoriesccccocvvrveeririecnienens 45
5.6.1 Testing on Model 1 ... se s enes 45

5.6.2 Testing 0N MoOdel 5 ... enes 49

LG T 30 Y 1= o T o T 51

5.7 CONCIUSION ..o ses e e sss e s sesss e s sesss e s s e s sensssnnsssssssensssssssssnssanssnens 52
Chapter 6 - EthiCal PreVIiEW ... s e s ssesnsssssesasssnsnnns 52
00 LYoo 1 o |3 Vo SRRSO 52

6.2 Video information storage and aCCess.......ccrmrrrrniiesnsnesssese s sessesaens 52

6.3 SYSLEIM SECUNILYcctiiireceiriiecire sttt st sttt st s st nn e s 53
Chapter 7 — FULUIE WOIK ...t se s s sss e s s ssesns e s saesnnsnns 53
7.1 Trade-off between accuracy and testing timeccoviicnvrccnsnsccncnecencenens 53

7.2 Change feature eXtractor ... s e saens 53

R T O 1 TIE 7Y [0 =1 = Tox o RS 53

7.4 More training iIMAgESccccccvcicririerersse st s s s e et sae e sae st s s e e s e sas e s e saees 54

7.5 Extend object detection to activity detectioncccvivcniirnninsccnsnerns 54

L= (=] =Y o T 54

Appendix 1 code for PreproCeSSINGurrsessseserssessssesessesssssssssssssssesssssssssssessssesssses 57

Appendix 2 code for training (VGG)......ccuccveerersmrsernsessessssesessssssssessssssssssesssssssssssssssssssses 62
Appendix 3 code for testiNg (VGG)ccucrvererrsmrsmresnsessessesesessesssssessssessssssssssssssssssssssssssses 86
Appendix 4 code for training (RESNEtS50).......ccocveereririeresrrserse s sesssenns 108
Appendix 5 code for testing (RESNet50)......ccccvvreereririeresersrrse s s saeenns 134

Chapter 1 - Introduction

1.1 Problem description

Camera has become strongly needed in human daily lives. It is used to record special and
meaningful moments. Nowadays actions of taking selfies, photos of others and photos of
sceneries can be frequently seen in public places. However, unintentional capture of facial
image can be a big issue of privacy due to the popularity of portable devices with built-in
cameras and advances in social networking services [1]. Because cameras are widely used, the
chance of being photographed is increasingly high. On the other hand, Social media increases
the efficiency of communication and online sharing can cause unwanted photos spreading
broadly in no time.

1.2 Project background

This topic of this research is one of three parts of a big project. The other two parts are
inhibition of photographing or filming and wearable design. The big project is aimed for a
wearable that can be worn on a person, which can perform automatic detection on
photographing and filming in sight from the perspective of the user and prevent the facial
image of the user being captured.

This big project is provided by DMB (Data Management & Biometrics) research group of
University of Twente. It is a new project based on the concept of protecting the privacy of
facial image from photographing or filming. There is some prior research conducted about
the inhibition part of the big project, that is blocking the capture of unwanted images. The
camera system and light sources are analyzed as well. However, the detection part is not
discussed in prior work.

Photographing or filming is a human-object activity of a person using a camera, where hand
gestures, actions and object positioning are involved. Therefore, photographing or filming
has its own characteristics of human object interactions, but it's not easy to detect complex
interactions. Considering the study goal of a bachelor program and feasibility, this research
will focus on the object detection on cameras to build the foundation of the big project, At
the same time errors may also occur if photographing or filming is predicted by camera object
detection only. For example, a camera can be carried in hand or hanging in front of the chest
of someone. Hence much space can be explored for further research.

1.2.1 Research question

Cameras have been developed over a long history. Various types of camera can be commonly
seen in daily life such as digital cameras, phone camera and movie camera. There are
variations in technologies in different types of cameras. For example, when it comes to auto
focusing, some cameras with assist lamps can project visible or IR signals to achieve this, while
phone cameras usually use image processing algorithms to achieve autofocusing. Therefore,
sensor-based detection on camera objects may have many limitations.

To have a general approach on detection of different types of cameras, a vision-based
detection method, object detection, will be explored in this research. Object detection in
computer vision has been a challenge until today. It belongs to the field of machine learning
and deep learning, in which many applications arise such as face recognition and action
recognition. The main goal of this research is to build custom camera object detection models
and train the detector in order to detect camera objects in natural scenes. Thus, the following
questions need to be answered:

Main question:

How to detect different types of handheld camera objects in daily scenes from still images
using existing architectures of detection models?

Sub questions:

How many cameras can be detected?

How to detect portable devices with built-in cameras such as smartphones?

How to precisely localize the camera objects?

How well can the cameras be detected?

What are the challenges of accurate detection?

1.3 Summary

This research consists of four parts. The first part is the background of this project and the
state-of-the-art review related to object detection. The second part is ideation and
specification. This part covers the designing process of the object detection model and
choices made. The realization and evaluation are in the third part. Here, several detection
models are tested and evaluated. Then, an ethical preview of the detection system is in the
next part. The last part discusses the future work for improvement of the detection on the
final purpose of this project.

Chapter 2 — State of the art

The main task of this project is to perform an object detection on the camera object. To

understand the vision-based recognition techniques, a state-of-the-art review is conducted
on data collection, object detection model and evaluation metrics.

2.1 Data collection

2.1.1 ImageNet Dataset

ImageNet [2] is a large-scale database that consists of tens of millions of annotated images
organized by the semantic hierarchy of WordNet. Up to the publication of this paper, there
are 12 subtrees with 5247 synsets and 3.2 million images in total in the database. This means
it can provide a comprehensive coverage of objects in life. The data collection scheme is
described with Amazon Mechanical Turk, which is used to label vision data. ImageNet is
intended to offer opportunities to researchers in the computer vision community and beyond.
It is also useful in applications such as object recognition, image classification and automatic
object clustering.

There are 9 synsets of photographic cameras [3] included in this dataset, which are flash
camera, candid camera, motion-picture camera (movie camera, cine-camera), point-and-
shoot camera, portrait camera, Polaroid camera (Polaroid Land camera), reflex camera, digital
camera and box camera (box Kodak).

2.1.2 Open Images Dataset

Open Images Dataset [4] is a dataset of 9.2M images with unified annotations for image
classification. It contains nearly 600 object classes together with image-level labels and
bounding boxes. There are also visual relationship annotations involving 57 classes. The
images often show complex scenes with several objects. It is advanced in scale, quality of
annotations and variety. It is also aimed on research and innovation purposes on image
classification, object detection, and visual relationship detection and beyond.

Camera is one of the categories of this dataset. There are a large amount of image resources
including cameras with bounding boxes or segmentation.

2.1.3 Custom dataset

There are two necessary steps for building a custom dataset. The first step is to gather image
data from the internet. J. Deng et al. [2] collect candidate images from the Internet by
querying several image search engines. And for each synset, the queries are the set of
WordNet synonyms in order to limit the images retrievable. The queries are also expanded
with the word from parent synsets or translated in other languages to further enlarge and
diversify the candidate pool. In another paper, A. Kuznetsova et al. [4] explain their image
acquisition as starting from Flickr to collect images with CC-BY license and removing images
with inappropriate content, near-duplicate images and images that appear elsewhere on the
internet. Then, the set of classes included in the dataset are derived from JFT, an internal
dataset at Google. Both papers show that for the selection of images in the dataset, it is
necessary to collect image data from the internet and do classification.

The other step is labelling. J. Deng et al. [2] use the service of Amazon Mechanical Turk (AMT),
a platform on which users can get paid by completing posted tasks. This means the labelling
is done by global users of AMT manually, which ensures the accuracy of labelling. On the
other hand, A. Kuznetsova et al. [4] point out that manually labelling large numbers of images
with the presence or absence of 19,794 different classes is not feasible considering the large
database to build. Therefore, they use a google-internal variant of the InceptionV2-based
image classifier, which is publicly available through the Google Cloud Vision API, to generate
predictions about labels. Afterwards, they use human verification of candidate labels.
Although two papers show different main methods for labelling, human verification is
important. Therefore, for self-developed datasets with a small number of classes, manual
labelling can be promising.

Besides, data augmentation can be an additional step when it comes to limited images. C .
Shorten and T. M. Khoshgoftaar [5] suggests a data-space solution to the problem of limited
data. In this survey there are various image augmentation algorithms discussed, including
geometric transformations, color space augmentations, kernel filters, mixing images, random
erasing, feature space augmentation etc. Data augmentation is aimed at expanding limited
datasets and improving the performance of the deep learning models.

2.2 Object detection model

2.2.1 R-CNN model Family

R-CNN is abbreviated from Region-based Convolutional Neural Networks. It was introduced
in the paper of R. Girshick et al. [6] in 2014, of which the architecture can be seen in fig 1.
Their R-CNN model consists of 3 modules. The first module generates category-independent
region proposals such as bounding boxes. The second one is a large convolutional neural
network that extracts a feature vector from each region. The third one is a set of linear SVM
(support-vector machine) classifiers that can classify the features. This R-CNN model is
measured on VOC 2012 database and achieves a good result of performance. It achieves a
mAP of 53.3% on VOC 2012 with more than 30% relative to the previous best results. This
shows that R-CNN is a milestone in object detection. A downside is that the feature extraction
has to pass on each of the candidate regions generated by the region proposals. This leaves
space for improvement in processing time.

Warped region

J[acroplanc? no. |
=2 person? yes.
I\ E
| Q\ -

1. Input images 2. Extract region 3. Compute CNN features 4. Classify regions
proposals (~2k)

CNN

Fig 1. The architecture of R-CNN [6]

R-CNN was further improved and developed into Fast R-CNN (Fast Region-based
Convolutional Network) in 2015. R. Girshick [7] proposed a Fast R-CNN architecture that
takes as input an entire image and a set of object proposals as shown in Fig 2. The network
first processes the whole image with several layers to produce a convolutional feature map.
Then, for each object proposal a Rol (region of interest) pooling layer extracts a fixed-length
feature vector from the feature map. Each feature vector is fed into a sequence of connected
layers. This results in two output layers: one produces a class prediction through softmax
probability estimates and the other outputs four real-valued numbers for each bounding box
position. Fast R-CNN model trains the very deep VGG16 network 9x faster than R-CNN and
achieves a higher mAP, which is 68.4%, on PASCAL VOC 2012. The Python and C++ source
code was made available online.

Outputs: bb X
softmax regressor

Rol feature
VeCtO r For each Rol

Fig 2. The architecture of Fast R-CNN [7]

Fast R-CNN was further improved into Faster R-CNN for detection speed and detection
accuracy by S. Ren et al. [8] in 2016, who introduce a Region Proposal Network (RPN) that
shares full-image convolutional features with the detection network, in which there is a
change in algorithm of computing proposals with a deep CNN , thus enabling nearly cost-
free region proposals. RPN is merged together with Fast R-CNN into a single network design.
This improves the detection system by a frame rate of 5fps (including all steps) on a GPU,
while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007, 2012, and
MS COCO datasets with 300 proposals per image. It achieves 75.9% mAP on the union set of
PASCAL VOC 2007, 2012, and MS COCO datasets with RPN and VGG16 pre-trained network.
The architecture of it can be seen in Fig 3. The source code in Python and C++ is also available
online.

classifier

propoy
Region Proposal Network

conv layers /

T 77

R

Fig 3. An illustration of Faster R-CNN model [8]

In addition, Mask R-CNN proposed by K. He et al. [9] extends Faster R-CNN by adding a
branch for predicting an object mask in parallel with the existing branch for bounding box
recognition. This supports Faster R-CNN for object instance segmentation. Mask R-CNN s
also easy to generalize to other tasks such as allowing us to estimate human poses in the
same framework. The simple and effective approach provides opportunities for future
research in instance-level recognition.

2.2.2 YOLO model family

YOLO (You Only Look Once) method was first presented in 2015 and revised in 2016 by J.
Redmon et al. [10]. It frames object detection as a regression problem. It uses a single neural
network that predicts bounding boxes and classes from the full image in one evaluation. The
architecture can be seen in Fig 4. The model first divides an image into a grid of cells. Each
grid cell predicts bounding boxes and confidence scores for those boxes. Each bounding box
contains the prediction of relation to the bounds of the grid cell and confidence. Each grid
cell also predicts class labels. The unified architecture is extremely fast. The YOLO model can
process images in real-time at 45 frames per second. A small version of the network, Fast
YOLO, can even process 155 frames per second. This shows the advantage of detection speed
of YOLO compared to other detectors, while it makes more localization errors. On the VOC
2012 test set, YOLO scores 57.9% mAP.

10

n2 =%
T R
’ =
) 3 L] A Y e— N
;u 14y 7] 7 7
n 3 ><: ><
56
) 1 o
- 7 7 7
3 192 256 512 024 024 1024 4096 30
Conv. Layer Conv.loyer Conv.layers Conv.layers Conv.layers Conv.layers Conn.layer Conn. Layer
7x7x64-52 3x3x192 1x1x128 1x1x256) .4 1x1x512 1.5 3x3x1024
Maxpool Layer Maxpool Layer 3x3x256 3x3x512 3x3x1024 3x3x1024
2x252 2x252 1x1x256 1x1x512 3x3x1024

3x3x512 3x3x1024 3x3x102452
Maxpool Layer Maxpool Layer
2x2.52 2x252

Fig 4. The architecture of YOLO [10]

YOLOvV?Z (YOLO9000) was an updated version of YOLO that was proposed by J. Redmon and
A. Farhadi [11] in 2016. The performance of the detection model is further improved. Batch
normalization is added on all the convolutional layers in YOLO, which leads to more
improvement in performance and helps regularize the model. YOLOv2 model, with high
resolution classifier, can run at varying sizes, offering an easy tradeoff between speed and
accuracy. It uses anchor boxes to predict coordinates of bounding boxes, but unlike Fast R-
CNN, it uses only convolutional layers to predict offsets and confidences for anchor boxes. It
also runs k-means clustering on the training set bounding boxes to automatically find good
priors for the network. For location prediction, YOLOv2 predicts location coordinates relative
to the location of the grid cell. This makes the network more stable. YOLOV? is better, faster
and stronger and achieved good results in VOC 2007. At 67 FPS, YOLOvZ2 gets 76.8% mAP on
VOC 2007. At 40 FPS, YOLOV2 gets 78.6% mAP.

YOLOv3 was added further improvements and proposed by J. Redmon and A. Farhadi [12] in
2018. There are some minor improvements from YOLOv2. A new network of feature extractor
is used. It has an improvement in inference time, with 57.9% mAP in 51 ms.

2.2.3 Conclusion

Both R-CNN and YOLO approaches are state of the art detection method in object detection.
R-CNN approach has more accurate detection result than YOLO approach. However, YOLO
approach shows outstanding advantage in detection speed. There are some common
network components design. The updating history through years also shows the learning and
improvement process. Both methods give insights to further research in the field of computer
vision and applications.

2.3 Evaluation metrics

11

2.3.1 Intersection over Union (loU)

loU computes intersection over the union of the two bounding boxes; the bounding box for
the ground truth and the predicted bounding box. It implies how the prediction fits the
ground truth [13]. A typical threshold value is 0.5. If IoU is larger than 0.5, the object detection
is classified as True Positive (TP). If IoU is smaller than 0.5, it is False Positive (FP). When a
ground truth is present in the image and model fails to detect the object. It will be classified
as False Negative (FN). True Negative (TN) means no prediction on an object, which is not
useful in object detection.

2.3.2 Average Precision (AP),

Average Precision (AP) is the most commonly used metric, derived from precision and recall
are the metrics to evaluate the performance of object detection [13]. AP is usually evaluated
on specific object categories. This means that it is computed for each object category
separately.

2.3.3 mean AP (mAP)

Mean AP (mAP) is adopted to compare performance over all object categories and result in
an average performance score as the final measure of performance. According to M.
Everingham et al., the AP summarizes the shape of the precision/recall curve and is defined
as thx’e mean precision at a set of eleven equally spaced recall 11 levels. O. Russakovsky et
al. [3] also states the metric of mAP to measure object detection accuracy.

Chapter 3 — Ideation

Unlike other graduation projects that are aimed for a complete system or a product, the goal
of this project is to build the detection system of a big project only. Thus, the ideation phase
of the design process of Creative Technology, including user interview, storyboard and user
needs analysis, does not fit this project because a sub system is far from users. This chapter
will give an overview of the design process of the camera object detector itself. This chapter
also works as a summary of the realization part.

3.1 Selection of object detection model

In Chapter 2, 2 popular object detection models YOLO family and R-CNN family are discussed.
YOLO has an advantage of detection speed in real-time detection, while R-CNN can achieve
high accuracy of detection without considering the speed. As this project is focusing on the
detection on still images, R-CNN is suitable for it. Thus, this project features object detection
using Faster R-CNN architecture, which is the state-of-the-art architecture within the R-CNN
family. Since detection is the only purpose of the project, there is no need of using Mask R-

12

CNN, which allows object segmentation.

3.2 Selection of Dataset

Chapter 2 also covers a few candidates of the dataset for training. ImageNet and Open Image
Dataset both have images of camera objects, with ImageNet having 1325 images [3] and
Open Image Dataset having 5037 images with bounding boxes [4]. Therefore, it is obvious
that Open Image Dataset can provide more training data as input to the camera detector.
Additionally, Open Image Dataset has images with a large variety of categories of objects,
including “Mobile Phone” category, which is of good use in detection specification.

3.3 Training data preprocessing

3.3.1 Downloading subset

The first thing to do is downloading a subset of the entire dataset because this project is
only aimed for specific camera detection instead of detection on many objects. Also, the
entire dataset is too large to download. Thus, it is necessary to download a subset of it. On
the site of Open Image Dataset, there are three .csv files that are important for this task.
The first one contains all the image names and their URLs. The second one contains image
IDs, label names and annotations. The third one contains label names and class names.
Thus, the first step is to find the label name of class of interest in the third file, which is
“"Camera”. Then, by matching the label name with that in the annotation file, images of
other classes are filtered out and those of “Camera” class remains. The next step is to match
the image IDs in the second file with those in the first file and download them.

3.3.2 Number of images for training

Here the number of downloading images is set to 1000 and images are randomly chosen
from all. The number is not too small nor too large. With this number, there might be
adequate resources for the detector to learn and it will not take too long for training.
Besides, the number is only an estimate of how much is needed at the very beginning.
There is also space for adjustment after some experiments.

3.3.3 Training format

After downloading, all camera images are saved in one folder. Then, all the images are
randomly divided into 2 sets, train set and test set, with the ratio of 8: 2. After this, all the
images will be parsed to find the coordinates of the bounding boxes and these are made
into .csv files together with image names. In the end, the .csv files will be written into .txt
files with the file path. Here the file path will be the path in the google drive when using
the Colab notebook.

3.4 Training environment
13

Due to the limitation on the access to labs and the lack of powerful GPU in home environment,
Colab notebook is used to speed up the training process. Colab notebook is a hosted Jupyter
notebook service that allows Python code writing and it is suitable for machine learning, data
science and research. It has free access to Tesla KBO GPU and abundant library resources, so
no prior configuration is needed. Like Jupyter notebook, it has a similar interactive interface,
which allows live code and data visualization.

3.5 Training setting

3.5.1 Data augmentation

To make the best of resources and to ensure higher accuracy in detection, data
augmentation is used in this project. It also helps to avoid overfitting. In this project,
horizontal flipping, vertical flipping and 90-degree rotation are used for data
augmentation. The data augmentation is only used in the process of training and not in
testing. With data augmentation methods listed, the dataset is supposed to be three
times bigger.

3.5.2 Batch size

Batch size is a term used in machine learning and it represents the number of training
samples in one iteration. There are batch mode, mini-batch mode and stochastic mode
respectively. Batch mode means the batch size is equal to the total number of training
samples so that the iteration and epoch values become equivalent. In mini-batch mode,
the batch size is larger than one but smaller than the total number of training samples.
In stochastic mode the batch size is one.

With data augmentation, it is possible to have nearly 3200 images for training, with the
800 original training samples. As explained by Z. Yao et al. [14], large batch training has
a number of well-known drawbacks, including degradation of accuracy, poor
generalization, wasted computation, and even poor robustness to adversarial
perturbations. However, large batch size can decrease the computational time
proportional to the increase in batch size. This means that a batch size of 16 will take less
computation than twice of the amount of a batch of 8. Thus, a big size can provide a
stable enough estimate of the gradient of the dataset. In this project the number of batch
size is set to 1000 from the beginning to start with.

3.5.3 Learning rate

Learning rate or step size is referred to as the amount that weights are updated during
training [15]. It is a configurable parameter used in the training of neural networks. In this
project Adam optimizer is used with the learning rate set to 0.0001, which is also chosen
in the official Faster R-CNN paper on PASCAL VOC dataset. However, a learning rate of
0.001 is also used in the paper. In the process of designing the detection system, learning
rate is not taken seriously as it might not affect the result significantly.

14

3.5.4 Input image resize

According to J. Huang et al., reducing input image size by half in both dimensions can
lower the accuracy consistently (by 15.88% on average) but also reduces inference time
by a relative factor of 27.4% on average. Subsequently, input image resolution has a great
impact on both accuracy and training time. In this project, resizing images is involved to
have faster training. The width and height of images both are reduced by half. Faster
training gives a good overview of how well the result can be and leaves the space for
improvement.

3.6 Matching strategy and criteria

3.6.1 loU threshold

loU is the ratio of the intersecting area to the union area of two bounding boxes, as shown in
Fig 5. The value ranges from 0 to 1, with 0 meaning there is no overlapping areas between
two bounding boxes and 1 meaning two bounding boxes are equal. loU can be used in
ground truth matching, non max suppression and mAP calculation.

By comparing the predicted bounding box with the ground truth box in the stage of
classification, loU helps to decide whether the prediction is “foreground” or “background”,
where “foreground” means a detected class. Additionally, an loU threshold is involved in this
process. For example, itis set to 0.5, 0.75 or between 0.5 and 0.95 on different datasets among
papers. By setting different thresholds of loU in the classification stage, the mAP varies. In the
project, this loU threshold is set to 0.5 and the evaluation is based on it.

Intersection

loU =

Union

]

Fig 5. Illustration of loU [17]

3.6.2 Non max suppression

loU is also applied in non max suppression. Non max suppression is functional when there
are more than one predicted bounding box candidates in a specific region of an image. It is
used to reduce the number of bounding box candidates to one by ignoring redundant,

15

overlapping bounding boxes. Non max suppression is able to ignore the small overlapping
bounding boxes and return only the large ones so that it is also applicable in multiple object
detection. There exists a threshold of loU in non max suppression to determine it. If loU in
non max suppression is larger than this threshold, bounding boxes will be dropped, while
bounding boxes will be kept if loU is smaller. An example of this project can be seen in Fig 6.

Camera: 72
CcdCamera: 922
Ccmera: 98 8

1000

Fig 6. Examples of before and after applying non max suppression in the order of top to
bottom, where the threshold of the top one is set to 1 and that of the bottom one is set to 0.

3.6.3 mAP calculation

Since loU helps to determine positive cases, it is applied to obtain precision and recall. In this
project, the average precision score is calculated using average_precision_score function in
sklearn.metrics, the function of calculation can be seen in Fig 7. P denotes precision and R
denotes recall. R contains true binary labels and P contains target scores, which is the
probability estimates of the positive class.

16

AP =) (R,— Rn_1)P,

n

Fig 7. Function of average_precision_score of sklearn.metrics to calculate AP [21]

3.7 Multiple camera detection task

Due to the characteristics of R-CNN structure, the detection is region-based just as the name
indicates. A single CNN network may not be able to locate multiple objects, but R-CNN allows
more than one region candidates for further searching. In the Faster R-CNN, anchor boxes
plays an important role. An anchor is a box, and the default value is 9 at each position. With
the stride of 16, a feature map with 37x50x256 dimensions can be outputted from a 600x
800x3 image. This leads to 1850 (37x50) positions. And each position there are 9 anchors
with different color or scales, which makes it 16650 (1850%9) anchor boxes. This makes
detection of small objects and multiple objects possible. With a regional proposal network
(RPN), a number of regions of interest will be selected, which can significantly reduce the
number. Depending on the number and boundaries of regions of interest, the coverage of
training resources regarding variants of camera objects, the feature similarity between
training and testing data, angles, lighting, contrast of the testing images etc., the research
question "how many cameras can be detected?” can be answered.

Chapter 4 — Specification

4.1 Dataset reselection

For the trial, the purpose is to make the detection model work, so the selection of the dataset
is not necessary to be very strict. As stated in chapter 3, 1000 random images containing
camera objects are chosen for training. To match the detection model with a specific
detection task, a reselection of the dataset is crucial. Since smartphones with built-in cameras
are popular today, detection models should be extended to detect phone cameras. In
addition, limited to the content of detection, which is daily scenes, some adjustments are also
made for existing camera images. Accordingly, a number of criteria are listed below:
Camera class:
® Remove images of cameras with only screen side
® Remove images of professional filming cameras (Big, can be easily noticed, little
chance appearing in public places, so not necessary for detection)
® Remove images of a few phone cameras to avoid duplicates of images in Mobile
phone class

17

® Remove surveillance cameras, robot built-in cameras, too old cameras and
digital camera icons etc. and only keep handheld cameras
Mobile phone class:
® Images of phones with only back side (main camera side)
® Only keep smartphone images, so filter out the old keyboard mobile phones

4.2 Feature extractor selection

The convolutional layer and the classifier layer have important roles in the Faster R-CNN
network. In the workflow of Faster R-CNN model, A pre-trained CNN network is used to work
as a feature extractor on image classification tasks. The region proposal task is initialized by
the convolutional layer in the Faster R-CNN network and a feature map will be generated.
The feature map is then passed to the Region Proposal Network (RPN) to have proposed
regions. Therefore, the choice of feature extractor will have influence on what features can be
processed in RPN. As shown in Fig 7, feature extractors have different accuracy levels and the
choice of feature extractor will impact the accuracy of the detector (mAP). Another finding
from this figure is that the choice of feature extractor has a greater impact on Faster R-CNN
and R-FCN architecture than SSD. In this project, the VGG16 network is first used as the
feature extractor, the same as that in the official paper. Afterwards, ResNet50 (Residual neural
network) is used to have some trials. Compared to ResNet50, ResNet101 has more layers and
is more expensive in computation, as VGG19 to VGG16. As shown in Fig 8, the choice of
feature extractor will also have influence on the GPU running time on testing images in
milliseconds. Since the project focuses on the detection on still images, processing time will
not be a concern, so that achieving high accuracy will be a top priority.

32
Meta Architecture N\
30 o Faster RCNN °) ® o
28 ® R-FCN 3. ;
® SSD 3 s
o 26 % o @ . o
: LN s
£ 24 © —~ }.o o
= RE s g
© (C) N Q Q
E 22 ol® @ e g
> = S = e J =
O 20 e 5
1] VB
18 g 9
) =
1 O Q
6 @ 2 e J
14
70 12 74 76 78 80 82

Feature Extractor Accuracy

Fig 7. Accuracy of detector (mAP on COCO) vs accuracy of feature extractor (as measured by

18

top-1 accuracy on ImageNet-CLS) [16]

40
Faster R-CNN w/ResNet, Hi Meta Architecture
iesistbroposats @ Faster RCNN [R-FCN ¢ SSD
[UL B e e (T — —
35 Reen i/ - =G ° 0
ResNe:HiRes, -, ” 2. O. /
100 Proposals D
‘D @ u Faster R-CNN w/Inception
Resnet, Hi Res, 300
30 A Ny ‘. % @ Pre::osals: S:rsides
o @]
<C
E @
325 F e
] @
>
o Feature Extractor
20 O Inception Resnet V2
@® Inception V2
SSD w/Inception V2, Lo Res @ Inception V3
15 SSD w/MobileNet, Lo Res @ MobileNet
@® Resnet 101
® VGG
10
0 200 400 600 800 1000

GPU Time

Fig 8. Accuracy vs time, with marker shapes indicating meta-architecture and colors indicating
feature extractor [16]

4.2.1 Description of VGG16 and Resnet50 network

4.2.1.1 VGG16

VGG16 is a convolutional neural network model proposed by K. Simonyan and A.
Zisserman [18]. The architecture can be seen in Fig 9. It consists of five blocks, where
there are a stack of convolutional layers and pooling layers. This is followed by three fully
connected layers and a softmax layer. All convolutional layers are also equipped with
RelU, which stands for rectification. Due to its depth and a number of fully connected
nodes, VGG16 is more than 500MB, which is very large compared to many other
networks. The application of VGG16 network can be seen in the base layer and
classification layer of Faster R-CNN network. This also starts from the pretrained weight
file from keras.

19

224 x 224 x3 224 x 224 x64

112 x 112 x 128

TX %512
14 x 14 x 512

—

Saaac

|28 x 28 x 512
1x1x4096 1x 1x1000

(=7 convolution+ReLU
) max pooling
fully nected+RelLU

softmax

Fig 9. Architecture of VGG16 network. [22]

4.2.1.2 ResNet50

The ResNet50 Model proposed by K. He et al. [19] consists of 5 stages, which can be
seen in Fig 10. From stage 2 to stage 5, each stage contains a convolutional block and
an identification block. Each convolutional block and each identification block have 3
convolution layers. There is a skip connection function in this network. If the convolution
and batch norm operations in convolutional block or identification block are done in a
way that the output shape is the same, there will be a shortcut created. The skip
connection can add the output from earlier layer to later layer, which helps to mitigate
the vanishing gradient problem.

input

ZERO
PAD

stage 1 stage 2 stage 3 stage 4 stage 5

oulpul
ReLU Flatten

Fig 10. Architecture of ResNet50 network [22]

4.3 Number of region proposals

Region proposals are regions of interest. Faster R-CNN is a two-stage detection network. In
the first stage, features outputted from an intermediate level of the feature extractor is

20

selected and used to predict class-agnostic box proposals [17]. Usually the first stage ends at
the second last block or stage of the network of the feature extractor. In the second stage,
the box proposals are used to crop the features from the feature map and then fed to the
remainder of the feature extractor (the last block or stage of the network)) in order to predict
a class and class-specific box refinement for each proposal. Thus, the number of proposals
will affect the feature extraction. It is also proved in Fig 11, where an increasing number of
box proposals will make a difference in detection accuracy, but it varies among different
feature extractors. According to the paper from S. Ren at al. [8], the number of proposals is
set to 300 when using VGG and RPN. In this project, the number of box proposals is set to 4
at the beginning for saving GPU time. A higher number will also be tested afterwards.

40 800

35 700
30 600
25 500

o

< v

€ £

= 20 400 F

e >

: 3

)

15 300
10 == .- 200
5 S AP £ i 4 L1 SIS S 4
0 0

10 20 50 100 300
Box Proposals

(a) FRCNN

Fig 11. Effect of proposing increasing number of regions on mAP accuracy (solid lines) and
GPU inference time (dotted) for Faster R-CNN [16]

21

Chapter 5 — Realization and evaluation

This chapter covers all the important experiments. All experiments are controlled experiments.
One variable or one setting is tested and evaluated between two experiments at a time. This
can bring out clear comparisons between two experiments in order to make improvements
on detection performance.

5.1 Model 1: Using VGG16 network as feature extractor

The first experiment builds on Faster R-CNN architecture with VGG16 CNN network as the
feature extractor. Since Faster R-CNN is a two-stage detection network, the first 4 blocks of
the VGG16 network are applied in the base layer, which is the convolution layer. The base
layer will output a feature map in order to predict class-agnostic box proposals. The base
layer is shared with the RPN layer and classification layer. The last block of VGG16 is applied
in the classification layer to predict class-specific boxes by cropping the features outputted
from the base layer.

5.1.1 Training setting

e Dataset: 1000 randomly selected camera images from the category of Camera of Open
Image Dataset (800 in the training set and 200 in the testing set)

Learning rate: 0.0001

Batch size: 1000

Number of regions of interest: 4

Image size: 300 px

5.1.2 Training process evaluation

Results are evaluated after training 80 epochs, 100 epochs, 120 epochs and 140 epochs
separately. The performance of the detector after training 120 epochs is the best among
four. The changes in the training process can be seen from Fig 12 to Fig 17. Fig 12 shows
the graph of the mean number of bounding boxes from RPN overlapping ground truth
boxes. The number grows very fast within the first 20 epochs and grows slowly with
fluctuations in the rest epochs. It indicates how the localization of camera objects
becomes precise over time. It can also represent the accuracy of RPN.

22

mean_overlapping_bboxes

12

1n

10

0 20 a0 &0 80 100 120

Fig 12. Mean number of bounding boxes from RPN overlapping ground truth boxes

Fig 13 shows how the refined bounding boxes from RPN fit the ground truth. The slope
of the curve changes less quickly than that of mean overlapping bounding boxes. In
general, but the curve has an increasing pattern as well. It indicates the accuracy of the
classifier.

dass_acc

090

0.85

0380

075 4

070

0 20 20 &0 80 100 120

Fig 13. Classifier accuracy for bounding boxes from RPN.

Figure 14 shows the loss curve of the RPN classifier and that of RPN regression. They both
present a trend of decreasing over time. The curve of the loss of RPN classifier becomes
stable after 60 epochs of training, which is satisfying.

23

loss_rpn_cls loss_rpn_regr
022

40
020
35
018
30
016

0.14

012

15
010

10
0.08

05
0.06

0.0

0 20)) 80 100 120 0 20 a0 & 80 100 120

Fig 14. Loss of RPN classifier and loss of RPN regression

The loss of detector classifier and loss of detector regression can be seen in Fig 15. These
two curves have similar patterns and both look like the curve of the loss of RPN regression.

loss_class_cls loss_class_regr

035
05
0.30

04 0.25
020
03

015

02 010

0 20 20 & 80 100 120 0 20 a0) 80 100 120
Fig 15. Loss of detector classifier and loss of detector regression
The total loss in Fig 16 is the total loss of all the losses in Fig 14 and Fig 15. The curve has a
similar pattern to that of the loss of RPN classifier since the loss of RPN classifier takes the

major part of the total loss and thus has the biggest effect. It indicates the predicting ability
of the detector is becoming stable over time.

24

total_loss

Fig 16. Total loss

The graph below shows the elapsed time in the training process. The total training process is
split into 3 sessions due to the need of testing detection models and avoiding overfitting.
Three maximums are noticeable in the graph, which were exactly at the starting point of each
training session. This is probably because the loading of saved weights requires extra time. At
each training session, the elapsed time is stable among epochs in general but may differ
between sessions. The changes in the training environment might be the reason, since the
training relies on the GPU of Colab.

elapsed_time

12 4

10

e

0 20 20 60 80 100 120

Fig 17. Elapsed time of training in epochs

25

5.1.3 Testing process evaluation

The mAP of performing testing in the test set of 200 images after training 80 epochs, 100
epochs, 120 epochs and 140 epochs is 0.601, 0.673, 0.684 and 0.642 separately, which
can be seen in Fig 12. Also, the percentage of images without bounding boxes among all
is 0%, 2.5%, 1.5%, 1.5% separately. This indicates the false negative rate under these training
settings is very low. After training 140 epochs, the detection turns to be overfitting since
the mAP drops from 0.684 to 0.642. The performance can also be explained through
sample images outputted from the testing file. The average testing time per image is 0.62
second. Overall, camera objects can be correctly located after training 80 epochs and
more. False positive cases happen more frequently after training 80 epochs and 100
epochs than after training 120 epochs. This is because the detection is refined after more
iterations. They are also more false positive cases after training 140 epochs compared to
training 120 epochs. This is probably due to overfitting of the detection model.

07 0.684

0.68 0.673

0.66
0.642

0.64

0.62

0.601

0.6

0.58

0.56

0.54
80 100 120 140

Number of training epochs

mAP

Fig 12. mAP values after training different numbers of epochs.

26

Some sample tested images are collected, which can be seen in Fig 18, 19 and 20. T, so only
the classification value is greater than the threshold, the bounding box is drawn in the tested
images. Fig 18 contains the sample images of single cameras that are correctly detected. It is
obvious that cameras can be correctly located, even small ones. The boundaries of bounding
boxes seem to be fine as well.

Camera: 99
-

—
YASHICA <
Y

= N

N

Camera: 99

/it gudl

)

Camera: 99

200 400 600 800 1000

Fig 18. A image collection of successful detected single cameras

Multiple cameras can also be detected. Some sample images are shown below. From Fig 19,

27

the image on the bottom left contains three cameras, but only one big bounding box is
drawn. This is probably due to the loU calculation, where the loU of the big box with any of
the ground truth boxes is greater than the threshold and smaller boxes with large
overlapping areas are dropped. As a comparison, the top image also contains multiple
camera objects, while all of them are in a distance with each other so that the bounding
boxes are drawn separately. The bottom right image shows a big bounding box that
contains multiple cameras as well, but some cameras are outside the box. loU in non max
suppression and the feature of the image probably are the reasons. With the feature of a
“U” shape of multiple cameras, bounding boxes with small intersection areas are dropped.

100

200

300

400

500

600

700

28

If you took away all the
camera parts, Beseler
Topcons would still be the
best light meters the
hobbyist could possibly want!

200
e o

-

N

400 y

600

800

BESELER TOPCON AUTO 100, 0-1, SUPER D €3

1000

0 100 200 300 400 500 600 700 - 2 00 €00 00 1000

Fig 19. A image collection of successful detected multiple cameras

Some false positive cases can be seen in Fig 20. The reason can be the similar patterns with
some cameras or camera parts. The bottom left picture indicates that a painting with frames
can also be regarded as the screen of a camera because of similar features. In the final stage
of this project, the screen side of the cameras is not necessary to detect since the goal is to
detect photographing or filming, where the lens side of the camera should be faced with
instead of the screen side. Therefore, a reselection of training images is needed.

29

:

400

600

800

1000

0 100 200 300 400

0

Fig 20. A image collection of false positive cases

200 400 600 800 1000

There are also some images without bounding boxes, which can be seen in Fig 20. This is
probably due to the classification value of bounding boxes being lower than the threshold or
the limitation of detector or training data.

30

00 400 60 80

Fig 20. A image collection of false negative cases

5.1.4 Reflection

Overall, the result is satisfying, the detection model can correctly locate most camera
objects with different sizes, types and angles. It can also detect multiple camera objects well.
This model has a decent performance regarding mAP. The bounding boxes of camera
objects that are drawn can detect boundaries of camera objects correctly with high
confidence scores. The model has a low false negative rate as well. Although the result is
satisfying, there is still space for improvement. This can be found out by changing training
settings, feature extractor and the selection of training data.

31

5.2 Model 2: Using ResNet50 network as feature extractor

Change feature extractor

Fig 21. An illustration of the change between Model 1 and Model 2

The second experiment uses ResNet50 CNN network as the feature extractor. An illustration
can be seen in Fig 21. In the base layer, VGG16 network with four blocks is replaced with
ResNet50 network with 4 stages. The ResNet50 network has 5 stages. Identification block and
convolutional block are defined separately and are used in stages. The first 4 stages are
applied in the base layer and the last stage of ResNet50 replaces the last block of VGG16 in
the classification layer. The input shape of Resnet50 is the same as VGG16, while the shape of
feature map input changes and the number of features changes from 512 to 1024.

5.2.1 Training setting

32

The training settings are the same as Model 1.

e Dataset: 1000 randomly selected camera images from the category of Camera of Open
Image Dataset (800 in the training set and 200 in the testing set)

Learning rate: 0.0001

Batch size: 1000

Number of regions of interest: 4

Image size: 300 px

5.2.2 Training process evaluation

The performance of the model becomes stable after training 240 epochs. The graphs
about bounding boxes, accuracy and loss in the training process can be seen from Fig 22
to Fig 25. Overall, all the curves have similar trends as the ones of Model 1. Different from
Model 1, the curves of mean number of overlapping boxes and classifier accuracy in Fig
22 grow faster in the early stage. Also, the curve of the mean number of overlapping
boxes has a tendency to drop after training 150 epochs, but the numbers are still over
11, which is acceptable. The

mean_overlapping_bboxes dass_acc

095

090

11
085

10
0.80

0 50 100 150 200 50 0 50 100 150 200 20
Fig 22. Mean number of bounding boxes from RPN overlapping ground truth boxes (left) and
classifier accuracy for bounding boxes from RPN (right)

loss_rpn_cls loss_rpn_regr

0.200
30

0175
25 4
0.150

20
0125

0.100

10 0.075

0.050
05 4

0.025

00

33

Fig 23. Loss of RPN classifier and loss of RPN regression

loss_class_cls loss_class_regr

05
04

04

03

03

0.2

0.2

01
01

T T T T T T T T T T
o 50 100 150 200 250 0 50 100 150 200 250

Fig 24. Loss of detector classifier and loss of detector regression

total_loss elapsed_time

; -

10

0 0 100 150 200 250 0 50 100 150 200 20

Fig 25. Total loss and the elapsed time of training in epochs

5.2.3 Testing process evaluation

After training 240 epochs, with the batch size of 1000, the detection models gives a stable
result of mAP, which is 0.609. It is lower compared to that of Model 1. In addition, the
percentage of images without bounding boxes among all is 24.5%, which indicates a high false
negative rate. This can also be seen from the outputted sample images, where images without
bounding boxes appear more frequently than Model 1. The bounding box threshold is set to
0.9 (90%) as well. Among the images where camera objects are correctly located, boundaries
of bounding boxes correspond to the boundaries of camera objects, which can be seen in Fig
26. Besides, false positive cases are barely seen among all sample images.

34

’
{ " Camera: 99
e
> F
L

o

100

200

300

400

500

€00

700

0 200 400 600 800 1000

Fig 26. Sample images of successful detected camera objects

5.2.3 Reflection

Compared to Model 1, this model has a lower false positive rate and a higher false negative
rate. The ResNet50 network has a deeper structure than VGG16, while the mAP of this
model is not as good as Model 1. Since camera objects can be correctly in most of the
cases, RPN and the classifier should work fine. Therefore, the feature generation might be a
reason. In the official paper written by S. Ren et al. [8], the number of proposals is set to 300
when using VGG and RPN together. However, the number is set to 4 in Model 1 and
different CNN networks might have different sensibilities to this. To analyse the effect of the
number of proposed regions, another experiment will be made in the next step.

35

5.3 Model 3: Change the number of Rol of Model 2

Change feature extractor

Change the number of Rol

Fig 27. An illustration of the changes between models

This model is based on Model 2 with the ResNet50 network as the feature extractor so that
the structure remains the same. Different from Model 2, the number of Rol is changed from
4 to 50, which can be seen from Fig 27. The number of Rol (region of interest) represents the
number of proposed regions to be selected for predicting bounding boxes. While increasing
the number of Rol, more memory is needed in the training phase.

5.3.1 Training setting
e Dataset: 1000 randomly selected camera images from the category of Camera of Open
Image Dataset (800 in the training set and 200 in the testing set)

36

Learning rate: 0.0001
Batch size: 1000
Number of regions of interest: 50

Image size: 300 px

5.3.2 Evaluation and reflection

The performance of the model is evaluated after training different numbers of epochs
such as 80, 100 and 120. After training 120 epochs, the mAP can reach 0.77, while the
percentage of images without bounding boxes among all is 48%, which indicates a high
false negative rate. Compared to Model 2 with the number of Rol equal to 4, the mAP
increases, while the false negative rate even increases. Training other different numbers
of epochs, the false negative rate is also very high. This shows that the model is probably
overfitting and the implementation of the ResNet50 is unsuccessful. Thus, the model is
given up for further training. Some sample images of successfully detected cameras can
be seen in Fig 28. The average testing time per image is 0.28 seconds. It can be seen that
successfully detected cameras are correctly located by bounding boxes, while not all
cameras in one image can be detected. Although the implementation of ResNet50
network is not successful, this model shows the potential of gaining higher mAP by
increasing the number of Rol.

37

0 200 400

Fig 28. Sample images of successful detected camera objects

38

5.4 Model 4: Change the number of Rol of Model 1

Change Change the number
feature extractor of Rol to 50

Change the number
of Rol to 50

Fig 29. An illustration of the changes between models

This model is based on Model 1 with VGG 16 as the feature extractor so that the structure
remains the same. The number of Rol is also changed to 50 like Model 3. An illustration of
the changes can be seen in Fig 29.

5.4.1 Training setting

e Dataset: 1000 randomly selected camera images from the category of Camera of Open
Image Dataset (800 in the training set and 200 in the testing set)

® |earning rate: 0.0001
Batch size: 1000

39

e Number of regions of interest: 50
e Image size: 300 px

5.4.2 Evaluation

The performance of the model is evaluated after training different numbers of epochs
such as 130, 150 and 170. It achieves the best result after training 150 epochs. The mAP
reaches 0.764 and the percentage of images without bounding boxes is 4.5%. Compared
to Model 1, the improvement of mAP is obvious. After training 170 epochs, the mAP
drops and the model turns to be overfitting. The result shows that the increasing number
of Rol can have a great impact on the performance of the model. Some sample images
can be seen in Fig 30. The average testing time is 0.41 seconds. Overall, the cameras can
be correctly located. There is no big difference between this model and model 1, while
by setting the bounding box threshold to a lower value, there are only a few bounding
boxes showing up. This indicates that there are fewer false positive cases compared to
Model 1 so that the mAP is higher. For the mAP calculation, all the boundning boxes are
considered, including those with relatively lower classification scores. This model implies
that with a higher number of Rol, the model can have better performance.

40

amera: 99 B8

0 200 400 600 800 000 ——ososili deia e

Fig 30. Sample images of successful detected camera objects

41

5.5 Model 5: Training data reselection from Model 1

- Training dataset

Change reselection

feature extractor

Change the number
of Rol to 50

Change the number
of Rol to 50

Fig 31. An illustration of changes between models

To answer the research question “How to detect portable devices with built-in cameras such
as smartphones”, the training images are reselected to fit the purpose of detecting
smartphones. The criteria of reselection are as described in the specification part.
Smartphones with camera side are included as part of the dataset. Some images in the
existing Camera set are removed such as Cameras with the screen side. In total 1000 images
are chosen for the new set. The ratio of number of training images and testing images is 8:2
for both categories but regarded as one class in the training process.

42

5.5.1 Training setting

e Dataset: 800 images from the category of Camera combined with 200 images of
smartphone images from the category of Mobile Phone of Open Image Dataset (800 in
the training set and 200 in the testing set)

Learning rate: 0.0001

Batch size: 1000

Number of regions of interest: 4

Image size: 600 px

5.5.2 Evaluation

After training 100 epochs, this model reaches the best result, with mAP of 0.70. The
percentage of images without bounding boxes is very low, which is 2%, while there are a few
more false detections compared to Model 1. The images of successfully detected cameras
and smartphones can be seen in Fig 32. Most camera or smartphone objects can be well
located. This model can get overfitted and have a huge drop of mAP easily. The newly
included smartphone images can be a big factor causing this, since there is a big difference
on the number of training images of smartphones and cameras. Smartphone images are
trained at same iterations as camera images so that the smartphone detection gets overfitted
earlier than camera detection. From sample images in Fig 33, a number of false detections
can be seen. To avoid the overfitting of the model, in the next step, images of two categories
can be training one by one. Also, more training images of smartphones can be selected. Due
to the limit of smartphone image resources in the Open Image Dataset, only around 200
smartphone images are chosen. Thus, dark colored objects and box shaped objects are easy
to detect. For further improvement of the model, a custom dataset of smartphone images
can be a good option to reduce the rate of false positive.

43

Camera: 99

Camera: 99

Camera: 98

100
/
200 P
J/
0 13)
@ // /
500 ¥/ y
i/ /
600
7/ / ™
:
' e
20 600 800 1000 o

Fig 32. Sample images of successful detected camera objects and smartphones

44

-

Camera: 99
400 Camera: 99

600

100

200

300

700

]

Fig 32. Sample images of false detections

5.6 Testing detection model on images of other categories

While the former experiments are done with camera and smartphone images only, it might
not be able to give an overview of the performance of the detection model in daily scenes.
To validate the detection models and answer the research questions, the detection model is
tested on images of other categories. In total, 100 images of 10 categories of Open Image
Dataset are chosen for this task. The categories are Book, Coffee cup, Handbag, Hat, Laptop,
Pillow, Remote control, Suitcase, Sunglasses andTelephone. These are the objects that can be
held, carried or worn and they are the common objects in daily life.

5.6.1 Testing on Model 1

First, Model 1 (using VGG16 and the old training set) is tested on this set of images. The
classification threshold is set to 0.9 and the percentage of images with bounding boxes
among all is 17%. Among all the testing images, two images contain lenses of camera and the
lenses are detected, which can be seen in Fig 33. Falsely detected cameras are analysed and
categorized with possible reasons. For example, in Fig 34, dark and reflective might be the
reasons for detection, with handbags, leather shoes and sunglasses being detected. From Fig

45

35, A cylinder-like shape might also be a reason for the wrong detection. In this figure, coffee
cups are detected as camera objects. In the training dataset, camera parts such as lenses are
also treated as camera objects so that it is reasonable some coffee cups are detected for the
similar shape to lenses. Wheels can also be falsely detected for the similar feature to lenses
as shown in Fig 36.

Fig 33. Detected lenses

46

L. 100
200 200
o
} e
% 300
%0 { 400 Camera: 99
500
600 600
N 700 -
0 200 400 &00 800 1000
800
GERARD DAREL
000
0 100 200 300 400 500 600 700

Fig 34. A collection of false detections

47

100

200 1

300 1

500

600

700

0 200 400 600 800

Fig 35. A collection of false detections

1000

48

100 A1

200 1

300

400

500

600

100

200

300

400

0 200 400 600 800 1000

Fig 36. A collection of false detections

5.6.2 Testing on Model 5
Model 1 (using VGG16 and the new training set) is tested on this set of images. The

49

classification threshold is set to 0.9 and the percentage of images with bounding boxes
among all is 49%. Among all the testing images, two images contain lenses of camera and the
lenses are detected as for Model 1. The problems of false detection in Model 1 are also
applicable to this model, with similar outputs of bounding boxes of images in section 5.6.2.
This model struggles a lot with sunglasses and many of them are detected as cameras, which
can be seenin Fig 37. Box shape objects such as suitcases, remote controls and laptop screens
are also detected. Some images are shown in Fig 38.

D e

=2

Fig 37. A collection of false detections

50

Fig 38. A collection of false detections

5.6.3 Reflection

These two models give an insight into the performance of detection in daily life. With a more
proper way to train images of camera objects and smartphone objects, Model 5 may have a
lower false positive rate. The problem of false detections with similar features should be
analysed and solved properly in order to have accurate detection. Camera parts in training is
a big issue. Training images with a whole object might help to avoid this. The detection of
smartphone objects might also be an issue since many box shaped objects will have the
potential to be detected.

51

5.7 Conclusion

Overall, the experiments of the models show the decent performance of the detection models
in detecting camera objects with VGG16 network as feature extractor. The small object task
and multiple object task can be handled well. The bounding boxes can also fit the objects
well. A combined detection model with choices made among the tested models has the
potential to achieve better performance. In real-time detection, accuracy will not be the only
criterion, while knowledge from feature extractors selection, training dataset selection and
training settings changes etc. will still be useful in the future detection system.

Chapter 6 Ethical preview

This part covers the potential ethical issues regarding the detection system, including
technological risks and followed privacy issues and trust issues. Case analysis is involved in
this process together with possible solutions.

6.1 Recording

Since the detection highly requires the use of cameras and sensors, the image processing of
the environment is inevitable. Although detect-and-prevent might be an efficient active
approach to protect the user's own facial image, it can risk violating the privacy of others.
Therefore, the real-time visual information must be dealt with properly. With the failure of
Google glass as an example, recording and displaying are allowed. Google glass users are
able to start recording a video by voice control and see a live view of this recording being
displayed. This drives much concern about privacy and even against laws in some countries
or regions. Hololens, a mixed reality glass product developed by Microsoft also allows the
recording function, while Hololens focuses more on business-related functionality and
gaming. Therefore, there is a little chance that Hololens is used in public places. This helps
Hololens receive less criticism than Google glass concerning privacy. Also, this shows the
possibility of using image recognition in specific scenarios. For the final wearable this project
is aimed for, it might still be challenging to use image recognition with cameras in daily scenes,
while the detection only requires real-time image processing and there might be fewer
concerns about privacy without the function of recording and displaying.

6.2 Video information storage and access

Visual information processing comes with data storage. The stored data also brings privacy
concerns on the possibility of data being shared. For example, a person might be able to
upload the stored data to the servers if the data is accessible. And a company might be able
to access the stored data from the product it designed. These are the potential risks of making
data accessible. This can cause trust issues on users and companies from other people as well.

52

To reduce the privacy concerns, there should be proper ways to deal with the data stored. As
an example, Hololens makes developers interact with the system using a specific set of
intermediate commands so that the stored data can be kept remotely. This can be meaningful
when it comes to the concern of sharing. Since stored visual information of augmented reality
might be useful to look back, storage can be important. However, for the purpose of detection
only, the data of processed visual information might not be necessary. Therefore, storing data
temporally and discarding it afterwards might also be a solution. Video data encoding or
blurring human faces in stored video data can be a possible solution as well.

6.3 System security

Having a secure system is also important to reduce privacy concerns. If a system can be easily
hacked, the system may face the problem of being abused on other purposes. This will
threaten the privacy of other people. Also, this can also indicate the reliability of a company.
Another possible consequence might be the intellectual property of a system itself. A secure
system will prevent replication of the system. Therefore, it is necessary to build a secure
system and have timely updates.

Chapter 7 Future work

7.1 Trade-off between accuracy and testing time

Since this project is only focusing on the performance of the detection model, time is not an
issue. However, in real-time detection, the speed of detection becomes important. In this
project, with the average elapsed time per image under 1 second in the testing process, the
detection models prove to be still useful in about 1 frame per second in real-time detection.
To have a quick reaction to the action of photographing or filming, a fast detection is needed,
so that 1 frame per second may not be enough for this purpose. When making real-time
detection, a trade-off between accuracy and testing time must be considered so that the
detection model can have a good balance between accuracy and time.

7.2 Change feature extractor

Based on the existing structure of the detector, for the purpose of real-time detection, some
more efficient feature extractors can be used such as MobileNet. MobileNet is a depth-wise
separable convolutional neural network for mobile vision applications [20] It has a smaller size
and fewer layers compared to VGG16. With a more efficient feature extractor, Faster R-CNN
network should be able to have better trade-off between accuracy and time.

7.3 One stage detector

53

For real-time detection, one stage detectors such as SSD and YOLO have an advantage of
testing speed. YOLO is one of the advanced one stage detectors with excellent high speed in
detection. Without having to achieve very high speed, it can ensure decent accuracy as well.
Therefore, together with an efficient convolution neural network, one stage detectors can be
a good option for the future work.

7.4 More training images

Although data augmentation is turned on during the training process, more training data will
still be a key to ensure better performance. In the testing phase, objects that have similar
features result in false positives. This directly affects the detection system in daily scene
detection. More training data means that there will be more resources to learn. Especially in
the detection of smartphones, all smartphones have a box shape with small variations, while
box shape is a very common shape of objects in daily life. Therefore, the intended detection
class of the detection model needs to be refined in order to prevent false detection

7.5 Extend object detection to activity detection

A human object activity consists of complicated actions, hand gestures and interaction
between objects and humans. To ensure better performance of the detection model in video
sequences, action detection will be a challenging task to deal with. Time and space features
might need to be extracted and analyzed in a different way to detect actions. This also
requires deeper knowledge and skills than object detection. Activity detection will have an
advantage of context reference. The action can be the contextual information of object and
object can be the contextual information of action. This will ensure a good understanding of
human object activity.

Reference

[1] T. Yamada, “Privacy Visor: Method for Preventing Face Image Detection by Using
Differences in Human and Device Sensitivity,” in Conference on Communications and
Multimedia Security, Magdeburg, CMS, 2013, pp.152-161.

[2]]. Deng, W. Dong, R. Socher, L. Li, Kai Li and Li Fei-Fei, "ImageNet: A large-scale hierarchical
image database,” 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami,
FL, 2009, pp. 248-255.

[3] O. Russakovsky*, J. Deng=*, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A.
Khosla, M. Bernstein, A. C. Berg and L. Fei-Fei. (* = equal contribution) ImageNet Large Scale
Visual Recognition Challenge. 1CV, 2015. http://www.image-
net.org/synset?wnid=n03974915#

[4] A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset, S. Kamali, S. Popov, M.
Malloci, A. Kolesnikov, T. Duerig, and V. Ferrari. The Open Images Dataset V4: Unified image
classification, object detection, and visual relationship detection at scale. [JCV, 2020.

54

[5] Shorten and T. M. Khoshgoftaar. A survey on Image Data Augmentation for Deep Learning.
J Big Data 6, 60 (2019). https://doi.org/10.1186/s40537-019-0197-0

[6] R. Girshick, J. Donahue, T. Darrell and J. Malik, "Rich Feature Hierarchies for Accurate Object
Detection and Semantic Segmentation,” 2014 IEEE Conference on Computer Vision and
Pattern Recognition, Columbus, OH, 2014, pp. 580-587, doi: 10.1109/CVPR.2014.81.

[7] R. Girshick, "Fast R-CNN," 2015 IEEE International Conference on Computer Vision (ICCV),
Santiago, 2015, pp. 1440-1448.

[8] S. Ren, K. He, R. Girshick and J. Sun, "Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks,” in IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 39, no. 6, pp. 1137-1149, 1 June 2017.

[9] K. He, G. Gkioxari, P. Dollar and R. Girshick, "Mask R-CNN," 2017 IEEE International
Conference on Computer Vision (ICCV), Venice, 2017, pp. 2980-2988. [9]

[10] J. Redmon, S. Diwvala, R. Girshick and A. Farhadi, "You Only Look Once: Unified, Real -
Time Object Detection,” 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, NV, 2016, pp. 779-788.

[11] J. Redmon and A. Farhadi, "YOLO9000: Better, Faster, Stronger,” 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 2017, pp. 6517-6525.
[12] J. Redmon, A. Farhadi, "Yolov3: An incremental improvement” in arXiv:1804.02767, 2018,
[online] Available: https://arxiv.org/abs/1804.02767.

[13] L. Liu, W. Ouyang, X. Wang et al. Deep Learning for Generic Object Detection: A Survey.
Int J Comput Vis 128, 261-318 (2020). https://doi.org/10.1007/s11263-019-01247-4

[14] Z. Yao et al. “Large batch size training of neural networks with adversarial training and
second-order information.” ArXiv abs/1810.01021 (2018) Available:
https://arxiv.org/abs/1810.01021

[15] I. Goodfellow, Y. Bengio, and A. Courville. Adaptive computation and machine learning
MIT Press, (2016). ISBN:978-0-262-03561-3

[16] J. Huang et al. Speed/Accuracy Trade-Offs for Modern Convolutional Object Detectors.
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI,
2017, pp. 3296-3297, doi: 10.1109/CVPR.2017.351.
[17] A. Zhang, Z. Lipton, M. Li, A. Smola. “Dive into Deep Learning” (2019)
[18] K. Simonyan and A. Zisserman. “Very Deep Convolutional Networks for Large-Scale
Image Recognition.” CoRR abs/1409.1556 (2015)
[19] K. He et al. “Deep Residual Learning for Image Recognition.” 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2016): 770-778.
[20] A. Howard et al. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications. (2017)
[21] Sklearn.metrics.average_precision_score
https://scikit-
learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
[22] VGG16 — Convolutional Network for Classification and Detection.

55

https://neurohive.io/en/popular-networks/vgg16/

[23] Understanding and Coding a ResNet in Keras.
https://towardsdatascience.com/understanding-and-coding-a-resnet-in-keras-
446d7ff84d33

56

Appendix 1 code for preprocessing

In []:
#Code modified from https://github.com/RockyXu66/Faster RCNN for Open Images Dataset Keras

import cv2

from matplotlib import pyplot as plt
import numpy as np

import os

import pandas as pd

import random

from skimage import io

from shutil import copyfile

import sys

import time

import tensorflow as tf
from tensorflow.keras.preprocessing.image import load img, img to array
In []:

tf. version

Load data from .csv file

In []:

images boxable fname = 'train-images-boxable.csv'
annotations bbox fname = 'oidvé6-train-annotations-bbox.csv'
class_descriptions fname = 'class-descriptions-boxable.csv'
In []:

images_boxable = pd.read csv(images boxable fname)
images boxable.head()

In []:

annotations bbox = pd.read csv(annotations bbox fname)
annotations_bbox.head()

XMin, XMax, YMin, YMax: coordinates of the box, in normalized image coordinates.

IsOccluded: Indicates that the object is occluded by another object in the image.

IsTruncated: Indicates that the object extends beyond the boundary of the image.

IsGroupOf: Indicates that the box spans a group of objects (e.qg., a bed of flowers or a crowd of people). We asked annotators
to use this tag for cases with more than 5 instances which are heavily occluding each other and are physically touching.
IsDepiction: Indicates that the object is a depiction (e.g., a cartoon or drawing of the object, not a real physical instance).

6. IsInside: Indicates a picture taken from the inside of the object (e.g., a car interior or inside of a building).

e

o

In []:

class_descriptions = pd.read csv(class descriptions fname, header=None)

class descriptions.head()

Plot Bounding box

In []:
def plot bbox(img id):

img _url = images boxable.loc[images boxable["image name"]==img id + '.jpg']['image url'].values[O0

57

img = io.imread(img url)

height, width, channel = img.shape

print (f"Image: {img.shape}")

bboxs = annotations bbox[annotations bbox['ImageID']==img id]
for index, row in bboxs.iterrows() :

xmin = row['XMin']
xmax = row['XMax']
ymin = row['YMin']
ymax = row['YMax']
xmin = int (xmin*width)
xmax = int (xmax*width)
ymin = int (ymin*height)
ymax = int (ymax*height)

label name = row(['LabelName']
class_series = class descriptions[class descriptions[0]==label name]
class name = class_series[1l].values[0]
print (f"Coordinates: {xmin,ymin}, {xmax,ymax}")
cv2.rectangle (img, (xmin,ymin), (xmax,ymax), (255,0,0), 5)
font = CVZ.FONT_HERSHEY_SIMPLEX
cv2.putText (img, class name, (xmin,ymin-10), font, 3, (0,255,0), 5)
plt.figure (figsize=(15,10))
plt.title('Image with Bounding Box')
plt.imshow (img)
plt.axis ("off")
plt.show ()

In []:

least objects 1img ids = annotations bbox["ImageID"].value counts().tail (50).index.values
for img id in random.sample (list (least objects img ids), 5):
plot bbox (img id)

Get subset of the whole dataset

In []:

class descriptions.loc[class descriptions[1l].isin(['Camera'])]

In [1:

Find the label name for 'Camera' classes

camera pd = class_descriptions[class descriptions[l]=='Camera']
label name camera = camera pd[0].values[0]

In []:

camera bbox = annotations bbox[annotations bbox['LabelName']==1label name camera]

print ('There are %d cameras in the dataset' % (len(camera bbox)))

In []:

camera img id = camera bbox['ImageID']
camera img id = np.unique (camera img id)
print ('There are %d images which contain cameras' % (len(camera img id)))

In []:

here I've chosen 1000
images n = 1000
subcamera_img_id = random.sample (list (camera img_id), n)

new = images boxable['image name'].str.split(".", n = 1, expand =
True) subcamera pd = images boxable.loc[new[0].isin(subcamera img id)]

subcamera pd.shape

In []:

subcamera pd.head()

In []:

subcamera dict = subcamera pd[["image name", "image url"]].set index('image name')

["image url"].to dict()

In []:

download images
classes = ['Camera']
for idx, obj type in enumerate(classes):
n _issues = 0
create the directory
if not os.path.exists(obj type):
os.mkdir (obj type)
for img name, url in subcamera dict.items():
try:
img = io.imread(url)
saved path = os.path.join(obj type, img name)
io.imsave (saved path, img)
except Exception as e:
n_issues += 1
print (f"Images Issues: {n_issues}")

Dataset format for Faster-RCNN code
(fname_path, xmin, xmax, ymin, ymax, class_name)
train: 0.8 validation: 0.2

In []:

save images to train and test

directory train path = 'train'
test path = 'test'
In []:

'mkdir train test

In [1:

random.seed (1)

In []:
for i in range(len(classes)):

all imgs = os.listdir(classes[i])

all imgs = [f for f in all imgs if not
f.startswith('.')] random.shuffle(all imgs)
limit = int (n*0.8)

train imgs = all imgs[:1limit]

test imgs = all imgs[limit:]

copy each classes' images to train

directory for j in range(len(train_imgs)):
original path = os.path.join(classes([i],
train imgs[j]) new path = os.path.join(train path,
train imgs([j]) copyfile(original path, new path)

copy each classes' images to test directory
for j in range(len(test imgs)):

original path = os.path.join(classes[i], test imgs([J])

new path = os.path.join(test path, test imgs([j])
copyfile (original path, new path)

59

In []:

label names = [label name camera]

train df = pd.DataFrame (columns=['FileName',6 'XMin', 'XMax', 'YMin', 'YMax', 'ClassName'])
Find boxes in each image and put them in a

dataframe train imgs = os.listdir(train path)
train imgs = [name for name in train imgs if not name.startswith('.')]

for i in range(len(train imgs)):

sys.stdout.write('Parse train imgs ' + str(i) + '; Number of boxes: ' + str(len(train df)) + '\
r')
sys.stdout.flush ()
img name = train imgs[i]
img id = img name[0:16]
tmp df = annotations_bbox[annotations bbox['ImagelID']==img id]
for index, row in tmp df.iterrows():
labelName = row['LabelName']
for i in range(len(label names)) :
if labelName == label names[i]:
train df = train df.append({'FileName': img name,
'XMin': row['XMin'],
'XMax': row['XMax'],
'YMin': row['YMin'],
'YMax': row['YMax'],
'ClassName': classes([i]},
ignore index=True)
In []:

train df.head()

In []:

train df.shape

In []:

train img ids = train df["FileName"].head() .str.split(".").str[0].unique ()

In []:
for img id in train img ids:

plot bbox(img id)

In []:

test df = pd.DataFrame (columns=['FileName', 'XMin', 'XMax', '¥YMin', 'YMax', 'ClassName'])

find boxes in each image and put them in a
dataframe test_imgs = os.listdir (test_path)
test imgs = [name for name in test imgs if not name.startswith('.')]

for i in range(len(test imgs)) :

sys.stdout.write('Parse test imgs ' + str(i) + '; Number of boxes: ' + str(len(test df)) + '\r'

sys.stdout.flush ()

img name = test imgs[i]
img id = img name[0:16]
tmp df = annotations_bbox[annotations bbox['ImagelID']==img_id]
for index, row in tmp df.iterrows():
labelName = row/['LabelName']
for i in range(len(label names)):
if labelName == label names[i]:
test df = test df.append({'FileName': img name,
'XMin': row['XMin'],
'XMax': row['XMax'],
'YMin': row['YMin'],
[1

'YMax': row['YMax'],

In []:

train df.to csv('train.csv')
test df.to csv('test.csv')

'ClassName'
ignore index=True)

classes[i]},

Write train.csv to annotation.txt and test.csv to test_annotation.txt

In [1:

train df =

for training
with open("annotation.txt",

"

pd.read csv('train.csv')

) as f:

for idx, row in train df.iterrows():
img = cv2.imread('train/' + row['FileName'])
height, width = img.shape[:2]
x1l = int(row['XMin'] * width)
x2 = int(row['XMax'] * width)
yl = int(row['¥YMin'] * height)
y2 = int(row['YMax'] * height)

google colab file path =
fileName = os.path.join (go
row['FileName']) className
f.write(fileName + ',' + s

l\nl)

','" 4+ className +

In []:

test df = pd.read csv('test.csv'
for test
with open("test annotation.txt",
for idx, X
sys.stdout.write (str (idx)
sys.stdout.flush ()

ogle colab file path,
= row['ClassName']
tr(xl) + ',' + str(yl)

)

"w+") as f:

row in test df.iterrows () :

+ '"\r'")

img = cv2.imread('test/' + row['FileName'])
height, width = img.shape[:2]
x1l = int(row['XMin'] * width)
x2 = int(row['XMax'] * width)
yl = int(row['YMin'] * height)
y2 = int (row['YMax'] * height)

google colab file path =
fileName = os.path.join (go
row['FileName']) className
f.write(fileName + ',' + s

','" + className + '\n')

ogle colab file path,
= row['ClassName']
tr(xl) + ',' + str(yl)

+

L

14

’

v

v

'drive/My Drive/GP/Dataset/train/'

+ str(x2)

'drive/My Drive/GP/Dataset/test/'

+ str(x2)

+

b

’

’

v

v

+ str(y2)

+ str(y2)

+

b

61

Appendix 2 code for training (VGG)

In []:

#Code modified from https://github.com/RockyXu66/Faster RCNN for Open Images Dataset Keras

from google.colab import drive

drive.mount ('/content/drive"')

Import libs

In [1:
from _ future import division

from _ future import print function
from _ future_ import absolute import
import random

import pprint

import sys

import time

import numpy as np

from optparse import OptionParser
import pickle

import math

import cv2

import copy

from matplotlib import pyplot as plt
import tensorflow as tf

import pandas as pd

import os

from sklearn.metrics import average precision_ score

from keras import backend as K

from keras.optimizers import Adam, SGD, RMSprop

from keras.layers import Flatten, Dense, Input, Conv2D, MaxPooling2D, Dropout
from keras.layers import GlobalAveragePooling2D, GlobalMaxPooling2D,
TimeDistributed from keras.engine.topology import get source inputs from
keras.utils import layer utils

from keras.utils.data utils import get file

from keras.objectives import categorical crossentropy

from keras.models import Model

from keras.utils import generic utils
from keras.engine import Layer, InputSpec
from keras import initializers, regularizers

Config setting

In []:

class Config:
def init (self):

Print the process or
not self.verbose = True
Name of base network
self.network = 'vgg'

Setting for data augmentation
self.use horizontal flips =
False self.use vertical flips =
False self.rot 90 = False

Anchor box scales
Note that if im size is smaller, anchor box scales should be scaled

Original anchor box scales in the paper is [128, 256, 512]
self.anchor box scales = [64, 128, 256]

Anchor box ratios
self.anchor box ratios = [[1, 1], [l./math.sqrt(2), 2./math.sqrt(2)], [2./math.sqrt(2),

1./math.s gqrt(2)]1]

Size to resize the smallest side of the image
Original setting in paper is 600. Set to 300 in here to save training

time self.im size = 300

image channel-wise mean to subtract
self.img channel mean = [103.939, 116.779, 123.68]

self.img scaling factor = 1.0

number of ROIs at

once self.num rois = 4

stride at the RPN (this depends on the network configuration)
self.rpn stride = 16

self.balanced classes = False

scaling the stdev
self.std scaling = 4.0
self.classifier regr std = [8.0, 8.0, 4.0, 4.0]

overlaps for RPN
self.rpn min overlap 0.
self.rpn max overlap = 0.

3
7

overlaps for classifier ROIs
self.classifier min overlap = 0.1

self.classifier max overlap = 0.5
placeholder for the class mapping, automatically generated by the
parser self.class mapping = None

self.model path = None

Parser the data from annotation file

In []:
def get data(input path):

"""pParse the data from annotation file

Args:
input path: annotation file path

Returns:
all data: list(filepath, width, height, list (bboxes))
classes count: dict{key:class name, value:count num}
e.g. {'Car': 2383, 'Mobile phone': 1108, 'Person': 3745}
class mapping: dict{key:class name, value: 1idx}
e.g. {'Car': 0, 'Mobile phone': 1, 'Person': 2}

mmn

found bg = False

all imgs = {}
classes count = {}
class mapping = {}

visualise = True
i=1
with open (input path,'r') as f:

print ('Parsing annotation files')

for line in f:

Print process

sys.stdout.write ('\r'+'idx="' + str(i))
i4=1

line split = line.strip().split(',")

Make sure the info saved in annotation file matching the format (path filename, x1, yl, x2,
y 2, class name)

Note:

One path filename might has several classes (class name)

x1, yl, x2, y2 are the pixel value of the origial image, not the ratio value

(x1, yl) top left coordinates; (x2, y2) bottom right coordinates

Rl [Pl mmmmmemssesessesmes

| |

| |

| |

| |

i So——esomsosoesoesoees x2,y2

(filename,x1,yl,x2,y2,class name) = line split

if class name not in classes count:
classes count[class name] = 1
else:

classes count[class name] += 1
if class name not in class mapping:

if class name == 'bg' and found bg == False:

print ('Found class name with special name bg. Will be treated as a background region

is usually for hard negative mining).')
found bg = True
class mapping[class name] = len(class mapping)

if filename not in all imgs:

all imgs[filename] = {}

img = cv2.imread(filename)

(rows,cols) = img.shape[:2]

all imgs[filename] ['filepath'] = filename
all imgs[filename] ['width'] = cols

all imgs[filename] ['height'] = rows

all imgs[filename] ['bboxes'] = []
if np.random.randint (0,6) > 0:

all imgs[filename]['imageset'] = 'trainval'
else:
all imgs[filename]['imageset'] = 'test'
all imgs[filename] ['bboxes'].append({'class': class name, 'x1':

t(yl), 'y2': int(y2)})

all data = []
for key in all imgs:
all_data.append(all_imgs[key])

make sure the bg class is last in the

list if found bg:

if class mapping['bg'] != len(class mapping) - 1:
key to switch =

len(class mapping)-1]11[0]

val to switch = class mapping['bg']
class mapping['bg'] = len(class mapping) - 1
class mappinglkey to switch] = val to switch

return all data, classes count, class mapping

Define ROI Pooling Convolutional Layer

In []:
class RoiPoolingConv (Layer) :

"'"'ROI pooling layer for 2D inputs.

See Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition,

K. He, X. Zhang, S. Ren, J. Sun
Arguments

int (x1),

'x2":

int (x2),

[key for key in class mapping.keys () if class mappinglkey] ==

yl

(this

in

64

pool size: int
Size of pooling region to use. pool size = 7 will result in a 7x7 region.

num_rois: number of regions of interest to be used
Input shape

list of two 4D tensors [X img,X roi] with shape:

X img:

(1, rows, cols, channels)"

X roi:

‘(1,num rois,4) list of rois, with ordering (x,y,w,h)
Output shape

3D tensor with shape:

(1, num rois, channels, pool size, pool size)’

def init (self, pool size, num rois, **kwargs):

self.dim ordering = K.common.image dim ordering()
self.pool size = pool size
self.num rois = num rois

super (RoiPoolingConv, self). init (**kwargs)

def build(self, input shape):
self.nb channels = input shape[0] [3]

def compute output shape(self, input shape):

return None, self.num rois, self.pool size, self.pool size, self.nb channels
def call (self, x, mask=None) :

assert (len(x) == 2)

x[0] is image with shape (rows, cols, channels)

img = x[0]

x[1] is roi with shape (num rois,4) with ordering (x,y,w,h)

rois = x[1]

input shape = K.shape (img)

outputs = []

for roi idx in range(self.num rois):
= rois[0, roi idx, 0]

= rois[0, roi_idx, 1]

= rois[0, roi idx, 2]

oo KX

= rois[0, roi_idx, 3]

= K.cast(x, 'int32'")
= K.cast(y, 'int32")
= K.cast(w, 'int32'")
= K.cast(h, '"int32'")

ooE KX

Resized roi of the image to pooling size (7x7)
rs = tf.image.resize(img[:, y:y+h, x:x+w, :], (self.pool size, self.pool size))
outputs.append(rs)

final output = K.concatenate (outputs, axis=0)

Reshape to (1, num rois, pool size, pool size, nb channels)
Might be (1, 4, 7, 7, 3)
final output = K.reshape(final output, (1, self.num rois, self.pool size, self.pool size,

s elf.nb channels))

permute dimensions is similar to transpose
final output = K.permute dimensions (final output, (0, 1, 2, 3, 4))

return final output

def get config(self):

config = {'pool size': self.pool size,
'num rois': self.num rois}
base config = super (RoiPoolingConv, self).get config()
return dict (list (base config.items()) + list(config.items()))

65

Vgg-16 model

In []:
def get img output length(width, height):
def get output length(input length):
return input length//16

return get output length(width), get output length (height)

def nn base (input tensor=None, trainable=False) :

input shape = (None, None, 3)

if input_tensor is None:
img input = Input (shape=input shape)
else:
if not K.is keras tensor (input tensor):
img input = Input (tensor=input tensor, shape=input shape)

else:
img input = input tensor
bn axis = 3
Block 1
x = Conv2D (64, (3, 3), activation='relu', padding='same',6 name='blockl convl') (img input)
x = Conv2D (64, (3, 3), activation='relu', padding='same',6 name='blockl conv2') (x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='blockl pool') (x)
Block 2
x = Conv2D (128, (3, 3), activation='relu', padding='same', name='block2 convl') (x)
x = Conv2D (128, (3, 3), activation='relu', padding='same', name='block2 conv2') (x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block2 pool') (x)
Block 3
x = Conv2D (256, (3, 3), activation='relu', padding='same', name='block3 convl') (x)
x = Conv2D (256, (3, 3), activation='relu', padding='same', name='block3 conv2') (x)
x = Conv2D (256, (3, 3), activation='relu', padding='same', name='block3 conv3') (x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block3 pool') (x)
Block 4
x = Conv2D (512, (3, 3), activation='relu', padding='same', name='block4 convl') (x)
x = Conv2D (512, (3, 3), activation='relu', padding='same', name='block4 conv2') (x)
x = Conv2D (512, (3, 3), activation='relu', padding='same', name='block4 conv3') (x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block4 pool') (x)
Block 5
x = Conv2D (512, (3, 3), activation='relu', padding='same', name='block5 convl') (x)
x = Conv2D (512, (3, 3), activation='relu', padding='same', name='block5 conv2') (x)
x = Conv2D (512, (3, 3), activation='relu', padding='same', name='block5 conv3') (x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='blockb5 pool') (x)
return x
RPN layer

In []:

def rpn layer (base layers, num anchors):

"""Create a rpn layer

Stepl: Pass through the feature map from base layer to a 3x3 512 channels convolutional la

yer
Keep the padding 'same' to preserve the feature map's size
Step2: Pass the stepl to two (1,1) convolutional layer to replace the fully connected
layer
classification layer: num anchors (9 in here) channels for 0, 1 sigmoid activation
output

regression layer: num anchors*4 (36 in here) channels for computing the

regression of bboxes with linear activation
Args:
base layers: vgg in here
num anchors: 9 in here

66

Returns:
[x class, x regr, base layers]
x class: classification for whether it's an object
x_regr: bboxes regression
base layers: vgg in here

mmn

x = Conv2D (512, (3, 3), padding='same',6 activation='relu', kernel initializer='normal',

name='r pn convl') (base layers)
x_class = Conv2D(num_anchors, (1, 1), activation='sigmoid', kernel initializer='uniform',
name= 'rpn out class') (x)

x_regr = Conv2D(num _anchors * 4, (1, 1), activation='linear', kernel initializer='zero',
name=' rpn out regress') (x)

return [x class, x regr, base layers]

Classifier layer

In []:

def classifier layer (base layers, input rois, num rois, nb classes = 4):

"""Create a classifier layer

Args:
base layers: vgg
input rois: " (1,num rois,4) 1list of rois, with ordering (x,y,w,h)
num rois: number of rois to be processed in one time (4 in here)

Returns:
list (out class, out regr)
out class: classifier layer output

out regr: regression layer output
mrmn

input shape = (num rois,7,7,512)
pooling regions = 7
out roi pool.shape = (1, num rois, channels, pool size, pool size)

num rois (4) 7x7 roi pooling
out roi pool = RoiPoolingConv(pooling regions, num rois) ([base layers, input rois])

Flatten the convlutional layer and connected to 2 FC and 2 dropout

out = TimeDistributed(Flatten(name="'flatten')) (out_roi_ pool)
out = TimeDistributed(Dense (4096, activation='relu',
name="fcl')) (out) out = TimeDistributed (Dropout (0.5)) (out)
out = TimeDistributed(Dense (4096, activation='relu',

name="'£fc2')) (out) out = TimeDistributed (Dropout (0.5)) (out)

There are two output layer
out class: softmax acivation function for classify the class name of the object
out regr: linear activation function for bboxes coordinates regression
out class = TimeDistributed(Dense(nb classes, activation='softmax',
kernel initializer='zero'), name='dense class {}'.format (nb classes)) (out)
note: no regression target for bg class
out regr = TimeDistributed(Dense(4 * (nb_classes-1), activation='linear',

kernel initializer='z ero'), name='dense regress {}'.format (nb classes)) (out)

return [out class, out regr]

1] 1»]

Calculate loU (Intersection of Union)

In []:

def union(au, bu, area intersection):

area_a = (aul2] - aul0]) * (au[3] - aulll])
area b = (bul2] - bu[0]) * (bul[3] - bu[l])
area union = area a + area b - area intersection

return area union

67

def intersection(ai, bi):

x = max(ai[0], bi[0])
y = max(ai[l], bi[1l])
w = min(ail[2], bi[2]) - x
h = min(ai[3], bi[3]) - ¥y
if w < 0 or h < O:

return 0

return w*h

def iou(a, b):
a and b should be (x1,yl,x2,y2)

if a[0] >= a[2] or a[l] >= a[3] or b[0] >= b[2] or b[l] >= b[3]:

return 0.0

area 1 = intersection(a, b)

area u = union(a, b, area i)

return float (area i) / float(area u + le-6)

Calculate the rpn for all anchors of all images

In []:
def calc_rpn(C, img _data, width, height, resized width, resized height, img length calc_function) :

""" (Important part!) Calculate the rpn for all anchors
If feature map has shape 38x50=1900, there are 1900x9=17100 potential anchors

Args:
C: config
img data: augmented image data
width: original image width (e.g. 600)
height: original image height (e.g. 800)
resized width: resized image width according to C.im size (e.g. 300)
resized height: resized image height according to C.im size (e.g. 400)

img length calc function: function to calculate final layer's feature map (of base model) size

a ccording to input image size

Returns:

y _rpn cls: list(num bboxes, y is box valid + y rpn overlap)

y is box valid: 0 or 1 (0 means the box is invalid, 1 means the box is valid)

y_rpn overlap: 0 or 1 (0 means the box is not an object, 1 means the box is an object)
y _rpn regr: list(num bboxes, 4*y rpn overlap + y rpn regr)

y_rpn regr: x1,yl,x2,y2 bunding boxes coordinates

downscale = float (C.rpn_stride)

anchor sizes = C.anchor box scales # 128, 256, 512

anchor ratios = C.anchor box ratios # 1:1, 1:2*sqrt(2), 2*sqrt(2):1
num anchors = len(anchor sizes) * len(anchor ratios) # 3x3=9

calculate the output map size based on the network architecture
(output width, output height) = img length calc function(resized width, resized height)

n _anchratios = len(anchor ratios) # 3

Initialise empty output objectives

y rpn overlap = np.zeros((output height, output width, num anchors))
y_is box valid = np.zeros ((output height, output width, num anchors))
y rpn regr = np.zeros ((output height, output width, num anchors * 4))

num bboxes = len(img data['bboxes'])

num_anchors_for bbox = np.zeros(num bboxes) .astype (int)

best anchor for bbox = -1*np.ones((num bboxes, 4)).astype(int)
best iou for bbox = np.zeros (num bboxes) .astype (np.float32)
best x for bbox = np.zeros((num bboxes, 4)).astype(int)
best dx for bbox = np.zeros((num bboxes, 4)).astype(np.float32)

get the GT box coordinates, and resize to account for image

resizing gta = np.zeros((num bboxes, 4))

for bbox_num, bbox in enumerate (img_data['bboxes']) :
get the GT box coordinates, and resize to account for image resizing
gta[bbox num, 0] = bbox['xl'] * (resized width / float (width))
gta[bbox num, 1] = bbox['x2'] * (resized width / float (width))

68

gtal[bbox num, 2] bbox['yl'] * (resized height / float (height))

bbox['y2'] * (resized height / float (height))

gta[bbox num, 3]
rpn ground truth

for anchor size idx in range (len(anchor sizes)):

for anchor ratio idx in range(n_anchratios):
anchor x = anchor sizes[anchor size idx] * anchor ratios[anchor ratio idx][0]

anchor y = anchor sizes[anchor size idx] * anchor ratios[anchor ratio idx][1]
for ix in range(output width) :

x—-coordinates of the current anchor box
x1l anc = downscale * (ix + 0.5) - anchor x / 2
x2 anc = downscale * (ix + 0.5) + anchor x / 2

ignore boxes that go across image
boundaries if x1 anc < 0 or x2 anc >

resized width: continue

for jy in range (output height):

y-coordinates of the current anchor box
yl anc = downscale * (jy + 0.5) - anchor y / 2
y2_anc = downscale * (jy + 0.5) + anchor y / 2

ignore boxes that go across image
boundaries if yl anc < 0 or y2 anc >

resized_height: continue

bbox type indicates whether an anchor should be a target
Initialize with 'negative'
bbox type = 'neg'

this is the best IOU for the (x,y) coord and the current anchor
note that this is different from the best IOU for a GT

bbox best iou for loc = 0.0

for bbox num in range (num_bboxes) :

get IOU of the current GT box and the current anchor box

curr_iou = iou([gta[bbox num, 0], gtal[bbox num, 2], gtalbbox num, 1], gta[bbox num,
311, [xl1 _anc, yl anc, x2 anc, y2 anc])

calculate the regression targets if they will be needed

if curr iou > best iou for bbox[bbox num] or curr iou > C.rpn max overlap:

cx = (gta[bbox num, 0] + gta[bbox num, 1]) / 2.0
cy = (gtal[bbox num, 2] + gta[bbox num, 3]) / 2.0
cxa = (x1 _anc + x2 anc)/2.0
cya = (yl anc + y2 anc)/2.0

x,y are the center point of ground-truth bbox
xa,yva are the center point of anchor bbox (xa=downscale * (ix + 0.5); ya=downscale *
(1y+0.5))

4=

w,h are the width and height of ground-truth bbox
wa,ha are the width and height of anchor bboxe

tx = (x - xa) / wa

ty = (v - yva) / ha

tw = log(w / wa)

th = log(h / ha)

tx = (cx - cxa) / (x2_anc - x1 anc)

ty = (cy - cya) / (y2 _anc - yl anc)

tw = np.log((gta[bbox num, 1] - gta[bbox num, 0]) / (x2_anc - x1 _anc))
th = np.log((gta[bbox num, 3] - gta[bbox num, 2]) / (y2_anc - yl anc))
if img data['bboxes'] [bbox num]['class'] != 'bg':

all GT boxes should be mapped to an anchor box, so we keep track of which anchor box was
best

if curr iou > best iou for bbox[bbox num]:

best anchor for bbox[bbox num] = [jy, ix, anchor ratio idx,

anchor size idx] best iou for bbox[bbox num] = curr iou

best x for bbox[bbox num,:] = [xl1 anc, x2 anc, yl anc,

y2_anc] best dx for bbox[bbox num,:] = [tx, ty, tw, th]

we set the anchor to positive if the IOU is >0.7 (it does not matter if there was
another better box, it just indicates overlap)
if curr_iou > C.rpn_max_overlap:

bbox_ type = 'pos'
69

num_anchors for bbox[bbox num] += 1
we update the regression layer target if this IOU is the best for the current (x,y)
and anchor position
if curr iou > best iou for loc:
best iou for loc = curr iou

best regr = (tx, ty, tw, th)

1if the IOU is >0.3 and <0.7, it is ambiguous and no included in the objective
if C.rpn min overlap < curr iou < C.rpn max overlap:
gray zone between neg and
pos if bbox type != 'pos':
bbox type = 'neutral'

turn on or off outputs depending on

IOUs if bbox type == 'neg':

y_is box valid[jy, ix, anchor ratio idx + n_anchratios * anchor size idx] =
1 y rpn overlap[jy, ix, anchor ratio idx + n_anchratios * anchor size idx] =
0 elif bbox type == 'neutral':

y_is _box _valid[jy, i1x, anchor_ratio_idx + n_anchratios * anchor size_ idx] =
0 y rpn overlap[jy, ix, anchor ratio idx + n_anchratios * anchor size idx] =
0 elif bbox type == 'pos':

y _is box valid[jy, ix, anchor ratio idx + n_anchratios * anchor size idx] =
1 y rpn overlap[jy, ix, anchor ratio idx + n_anchratios * anchor size idx]
= 1 start = 4 * (anchor ratio idx + n _anchratios * anchor size idx)

y_rpn regr[jy, ix, start:start+4] = best regr

we ensure that every bbox has at least one positive RPN region

for idx in range (num_anchors for bbox.shape[0]):

if num anchors for bbox[idx] == 0:

no box with an IOU greater than zero

if best anchor for bbox[idx, 0] == -1:
continue

y_is box valid[

best anchor for bbox[idx, 0], best anchor for bbox[idx,1], best anchor for bbox[idx,2] +
n_anchr atios *

best anchor for bbox[idx,3]] =1

y_rpn_overlap|[

best anchor for bbox[idx,0], best anchor for bbox[idx,1], best anchor for bbox[idx,2] +
n_anchr atios *

best anchor for bbox[idx,3]] =1

start = 4 * (best _anchor for bbox[idx,2] + n_anchratios *

best_anchor_for_bbox[idx,3]) y_rpn_regr|

best anchor for bbox[idx,0], best anchor for bbox[idx,1], start:start+4] = best dx for bbox[idx

o 8]

y_rpn_overlap = np.transpose(y rpn overlap, (2, 0, 1))
y_rpn_overlap = np.expand dims(y rpn overlap, axis=0)

y_is box valid = np.transpose(y is box valid, (2, 0, 1))
y is box valid = np.expand dims(y is box valid, axis=0)

y_rpn_regr = np.transpose(y rpn regr, (2, 0, 1))
y_rpn_regr = np.expand dims(y rpn regr, axis=0)

pos_locs = np.where(np.logical and(y rpn overlap[O, :, :, :] == 1, y is box valid[O, :, :, :] ==
))
neg locs = np.where(np.logical and(y rpn overlap[O0, :, :, :] == 0, y is box valid[0, :, :, :] ==

))

num_pos = len(pos_ locs[0])

one issue is that the RPN has many more negative than positive regions, so we turn off some
of the negative
regions. We also limit it to 256 regions.

num_regions = 256
if len(pos_locs[0]) > num regions/2:
val locs = random.sample (range (len(pos_locs[0])), len(pos locs[0]) - num regions/2)
y_is box wvalid[0, pos locs[0][val locs], pos_locs[l][val locs], pos locs[2][val locs]]
= 0 num pos = num regions/2
if len(neg locs[0]) + num pos > num regions:
val locs = random.sample (range (len(neg locs[0])), len(neg locs[0]) - num pos)
y is box valid[0, neg locs[0][val locs], neg locs[1l][val locs], neg locs[2][val locs]] = 0

y rpn cls = np.concatenate([y is box valid, y rpn overlap], axis=l)

y_rpn_regr = np.concatenate([np.repeat(y rpn overlap, 4, axis=1), y rpn regr],

return np.copy(y rpn cls), np.copy(y rpn _regr), num pos

Get new image size and augment the image

In []:
def get new img size(width, height, img min side=300):

if width <= height:
f = float (img min side) / width
resized height = int(f * height)
resized width = img min side
else:
f = float(img min side) / height
resized width = int(f * width)
resized height = img min side

return resized width, resized height

def augment (img data, config, augment=True) :

assert 'filepath' in img data
assert 'bboxes' in img data
assert 'width' in img data
assert 'height' in img data

img data aug = copy.deepcopy (img data)
img = cv2.imread(img data aug['filepath'])
if augment:

rows, cols = img.shapel[:2]

if config.use horizontal flips and np.random.randint (0, 2) == 0:

img = cv2.flip(img, 1)
for bbox in img data aug(['bboxes']:
x1 = bbox['x1l']

x2 = bbox['x2'"]
bbox['x2'] = cols - x1
bbox['x1'] = cols - x2
if config.use vertical flips and np.random.randint (0, 2) == 0:

img = cv2.flip(img, 0)
for bbox in img data aug(['bboxes']:
vyl = bbox['yl']

y2 = bbox['y2']
bbox['y2'] = rows - yl
bbox['yl'] = rows - y2

if config.rot 90:
angle = np.random.choice([0,90,180,270]1,1) [0]
if angle == 270:

img = np.transpose(img, (1,0,2))

img = cv2.flip(img, 0)

elif angle == 180:
img = cv2.flip(img, -1)
elif angle == 90:

img = np.transpose(img, (1,0,2))
img = cv2.flip(img, 1)
elif angle == O:

pass

for bbox in img data aug(['bboxes']:

x1 = bbox['x1l"]

x2 = bbox['x2']

vyl = bbox['yl']

y2 = bbox['y2']

if angle == 270:
bbox['x1'] = yl
bbox['x2'] = y2
bbox['yl'] = cols - x2
bbox['y2'] = cols - x1
elif angle == 180:
bbox['x2'] = cols - x1
bbox['x1'] = cols - x2

axis=1)

71

bbox['y2'] = rows - yl

bbox['yl'] = rows - y2

elif angle == 90:

bbox['x1'] = rows - y2

bbox['x2'] = rows - yl

bbox['yl'] = x1

bbox['y2'] = x2

elif angle == 0:

pass
img data aug['width'] = img.shape[1l]
img data aug['height'] = img.shape[0]

return img data aug, img

Generate the ground_truth anchors

In []:

def get anchor gt(all img data, C, img length calc function, mode='train'):
"mroyield the ground-truth anchors as Y (labels)

Args:

all img data: list(filepath, width, height, list (bboxes))
C: config

img length calc function: function to calculate final layer's feature map (of base model) size

a ccording to input image size
mode: 'train' or 'test'; 'train' mode need augmentation

Returns:

x 1img: image data after resized and scaling (smallest size = 300px)
Y: [y rpn cls, y rpn regr]

img data aug: augmented image data (original image with augmentation)
debug img: show image for debug

num pos: show number of positive anchors for debug

mmwn

while True:
for img data in all img data:
try:
read in image, and optionally add augmentation

if mode == 'train':

img data aug, x_img = augment (img data, C, augment=True)
else:
img data aug, x_img = augment (img data, C, augment=False)

(width, height) = (img data aug['width'], img data aug['height'])
(rows, cols,) = x img.shape

assert cols == width

assert rows == height

get image dimensions for resizing
(resized width, resized height) = get new img size(width, height, C.im size)

resize the image so that smalles side is length = 300px

X _img = cv2.resize(x img, (resized width, resized height), interpolation=cv2.INTER CUBIC)

debug img = x img.copy ()

try:
y rpn_ cls, y rpn regr, num pos = calc rpn(C, img data aug, width, height,
resiz ed height, img length calc function)
except:
continue

Zero-center by mean pixel, and preprocess image

x img = x img[:,:, (2, 1, 0)] # BGR -> RGB
X _img = x img.astype (np.float32)

x img[:, :, 0] -= C.img channel mean[0]
X img[:, :, 1] -= C.img channel mean([1]
x img[:, :, 2] -= C.img channel mean[2]

x img /= C.img scaling factor

resized width,

72

X _img = np.transpose(x _img, (2, 0, 1))
X _img = np.expand dims (x_img, axis=0)

y_rpn regr[:, y rpn regr.shape([l]//2:, :, :] *= C.std scaling

X _img = np.transpose(x_img, (0, 2, 3, 1))

y_rpn _cls = np.transpose(y rpn cls, (0, 2, 3, 1))

y_rpn_regr = np.transpose(y rpn regr, (0, 2, 3, 1))

yield np.copy(x img), [np.copy(y rpn cls), np.copy(y rpn regr)], img data aug,
debug img, num pos

except Exception as e:

print (e)
continue

Define loss functions for all four outputs

In [1:

lambda rpn regr = 1.0
lambda rpn class = 1.0

lambda cls regr = 1.0
lambda cls class = 1.0

epsilon = le-4

In []:
def rpn loss regr (num anchors) :
"""I,oss function for rpn regression
Args:
num_anchors: number of anchors (9 in here)
Returns:
Smooth L1 loss function
0.5*x%x (if x abs < 1)
x abx - 0.5 (otherwise)

mmn

def rpn loss regr fixed num(y true, y pred):

x is the difference between true value and predicted
vaue X = y truel[:, :, :, 4 * num anchors:] - y pred

absolute value of x
x_abs = K.abs (x)

If x abs <= 1.0, x bool =1
x bool = K.cast(K.less equal(x abs, 1.0), tf.float32)

return lambda rpn regr * K.sum(

y truel:, :, :, :4 * num anchors] * (x bool * (0.5 * x * x) + (1 - x bool) * (x abs - 0.5
))) / K.sum(epsilon + y true[:, :, :, :4 * num anchors])

return rpn loss regr fixed num

def rpn loss cls(num anchors):
"""I,oss function for rpn classification
Args:
num_anchors: number of anchors (9 in here)
y_ truefl:, :, :, :9]: [0,1,0,0,0,0,0,1,0] means only the second and the eighth box 1is
valid which contains pos or neg anchor => isValid
y truefl:, :, ¢, 9:]: [0,1,0,0,0,0,0,0,0] means the second box is pos and eighth box is neg
ative
Returns:
lambda * sum((binary crossentropy(isValid*y pred,y true))) / N

mmn

def rpn loss cls fixed num(y true, y pred):
return lambda rpn_ class * K.sum(y true[:, :, :, :num anchors] * K.binary crossentropy(y

pred[:, :, :, :]1, y true[:, :, :, num anchors:])) / K.sum(epsilon + y true[:, :, :, :num_anchors])

73

return rpn loss cls fixed num

def class loss regr(num classes):

"""Loss function for rpn regression
Args:
num_anchors: number of anchors (9 in here)
Returns:
Smooth L1 loss function
0.5*x*x (if x abs < 1)
x abx - 0.5 (otherwise)
mrmn
def class loss regr fixed num(y true, y pred):
X =y true[:, :, 4*num classes:] -
y_pred x abs = K.abs (x)
x bool = K.cast(K.less equal(x_abs, 1.0), 'float32')
return lambda cls regr * K.sum(y true[:, :, :4*num classes] * (x_bool * (0.5 * x * x) + (1 -
x bool) * (x abs - 0.5))) / K.sum(epsilon + y true[:, :, :4*num classes])
return class_loss_regr_ fixed num

def class loss cls(y true, y pred):

return lambda cls class * K.mean(categorical crossentropy(y true[O, :, :], y pred[O0, :, :]))

| 1;5

In []:

def non max suppression fast (boxes, probs, overlap thresh=0.9, max boxes=300) :

code used from here: http://www.pyimagesearch.com/2015/02/16/faster—-non-maximum-
suppression-python/
1if there are no boxes, return an empty list

Process explanation:
Step 1: Sort the probs list
Step 2: Find the larget prob 'Last' in the list and save it to the pick list
Step 3: Calculate the IoU with 'Last' box and other boxes in the list. If the IoU is
large r than overlap threshold, delete the box from list
Step 4: Repeat step 2 and step 3 until there is no item in the probs list
if len (boxes) ==
return []

H= FH= e

grab the coordinates of the bounding
boxes x1 = boxes[:, 0]

vyl = boxes[:, 1]

x2 boxes[:, 2]

y2 = boxes[:, 3]

np.testing.assert array less(xl, x2)
np.testing.assert array less(yl, y2)

1f the bounding boxes integers, convert them to floats --
this is important since we'll be doing a bunch of
divisions if boxes.dtype.kind == "i":

boxes = boxes.astype ("float")

initialize the list of picked indexes
pick = []

calculate the areas
area = (x2 - x1) * (y2 - yl)

sort the bounding boxes
idxs = np.argsort (probs)

keep looping while some indexes still remain in the indexes
list
while len(idxs) > O0:

grab the last index in the indexes list and add the

index value to the list of picked indexes

last = len(idxs) - 1

i = idxs[last]

pick.append (i)

find the intersection

xx1 int = np.maximum(x1[i], x1[idxs[:last]])
yyl int = np.maximum(yl[i], yl([idxs[:last]])

74

xxX2 int = np.minimum(x2[i], x2[idxs[:last]])
yy2_int = np.minimum(y2[i], y2[idxs[:last]])

ww_int = np.maximum (0, xx2 int - xxl1 int)
hh int = np.maximum(0, yy2 int - yyl int)

area_int = ww_int * hh int

find the union
area union = area[i] + area[idxs[:last]] - area_ int

compute the ratio of overlap overlap

area int/(area union + le-6)

delete all indexes from the index list that have

idxs = np.delete(idxs, np.concatenate(([last],
np.where (overlap > overlap thresh) [0])))

if len(pick) >= max_boxes:

break

return only the bounding boxes that were picked using the integer data
type boxes = boxes[pick].astype ("int")
probs = probs|[pick]

return boxes, probs

def apply regr np(X, T):
"""Apply regression layer to all anchors in one feature map
Args:

X: shape=(4, 18, 25) the current anchor type for all points in the feature map
T: regression layer shape=(4, 18, 25)

Returns:

X: regressed position and size for current anchor
mrrn

try:
x = X[0, :, :]
y:X[ll v 28]
w = X[2, r o]
h = X[3, :, :]
tx = T[O, 38, 3]
ty:T[ll y]
tw = T[2, :, :]
th = T[3, :, :]

cx = x + w/2.
cy =y + h/2.
cxl = tx * w + cx
cyl = ty * h + cy

wl = np.exp(tw.astype (np.float64)) * w
hl = np.exp(th.astype(np.float64)) * h

return np.stack
except Exception as

print (e)

return X

x1, yl, wl, hl])

x1l = cx1 - wl/2.
yl = cyl - hl/2.
x1 = np.round(x1l)
yl = np.round(yl)
wl = np.round(wl)
hl = np.round(hl)
([
e

def apply regr(x, y, w, h, tx, ty, tw, th):

Apply regression to x, y, w and
h try:

cx = x + w/2. cy

=y + h/2. cx1 =

tx * w + cx cyl

=ty * h + cy

wl = math.exp(tw) * w

hl = math.exp(th) * h

x1l = cx1l - wl/2.

yl = cyl - hl/2.

x1 = int (round (x1))
yl = int (round(yl))
wl = int (round(wl))
hl = int (round (hl))
return x1, yl, wl, hl
except ValueError:
return x, y, w, h
except OverflowError:
return x, y, w, h
except Exception as e:
print (e)
return x, y, w, h
def calc iou(R, img data, C,

[x1,

class mapping) :

"""Converts from (x1,yl,x2,y2) to (x,y,w,h) format

Args:

R: bboxes, probs

mmn

bboxes =

(width, height) =

img data['bboxes']

(img data['width'],

get image dimensions for resizing
= get new _img size (width, height, C.im size)

(resized width,

gta =

for bbox num, bbox in enumerate (bboxes) :

get the GT box coordinates,
[bbox num, 0] =

gta[bbox num,

gta

0
gta[bbox num, 1
gta[bbox num, 2
gta[bbox num, 3

np.zeros ((len (bboxes),

]
]
]
1

x_roi = []

y _class num = []
y_class_regr coords = []
y_class regr label = []
for debugging only

IoUs = []

resized height)

= int (round (bbox
= int (round (bbox
= int (round (bbox

(40 * (600 / 800)) / 16 =
['x1'] *
['x2'"]
'yl'] *
[]

= int (round (bbox

4))

1 y2 1

img data['height'])

R.shape[0]: number of bboxes (=300 from non max suppression)
for ix in range (R.shape[0]):

(x1, yl, x2, y2)

x1 = int (round(x1l))
yl = int (round(yl))
x2 = 1int (round (x2))
y2 = int (round(y2))
best _iou = 0.0
best bbox = -1

= R[ix, :]

Iterate through all the ground-truth bboxes to calculate the
iou for bbox num in range (len(bboxes)) :

curr_iou = iou([gta[bbox num,

yl, x2,

Find out the corresponding ground-truth bbox num with larget

y21)

01,

iou if curr_iou > best_iou:

best iou =

best bbox =

curr_iou

bbox num

gta[bbox num,

if best iou < C.classifier min overlap:

continue
else:
w = x2 - x1
h =y2 - vyl
x roi.append([x1l, vy1,

IgUs.append(best_iou)

W,

h])

2],

gta[bbox num,

11,

and resize to account for image resizing
int (round(1.875)) =

(resized width / float (width))/C.rpn stride))
* (resized width / float(width))/C.rpn stride))
(resized height / float (height))/C.rpn stride))
* (resized height / float (height))/C.rpn_stride))

2 (x in feature map)

gta[bbox num,

if C.classifier min overlap <= best iou < C.classifier max overlap:

hard negative example

cls_name = '

bg'

elif C.classifier max overlap <= best iou:

cls name =
cxg =

cyg =

(gta[best_bbox,
(gta[best bbox,

0]
2]

+ gta[best_bbox,

bboxes[best bbox] ['class']
+ gta[best bbox,

17)
31)

/ 2.0
/ 2.0

311,

76

cx =x1 +w/ 2.0
cy =yl +h / 2.0
tx = (cxg - cx) / float (w)
ty = (cyg - cy) / float(h)
tw = np.log((gta[best bbox, 1] - gta[best bbox, 0]) / float(w))
th = np.log((gta[best bbox, 3] - gtal[best bbox, 2]) / float(h))
else:
print ('roi = {}'.format (best iou))
raise RuntimeError
class num = class mapping[cls name]
class label = len(class mapping) * [0]
class label[class num] = 1
y_class num.append (copy.deepcopy (class label))
coords = [0] * 4 * (len(class mapping) - 1)
labels = [0] * 4 * (len(class mapping) - 1)
if cls name != 'bg':
label pos = 4 * class num
sx, sy, sw, sh = C.classifier regr_ std
coords[label pos:4+label pos] = [sx*tx, sy*ty, sw*tw, sh*th]
labels[label pos:4+label pos] = [1, 1, 1, 1]

y_class_regr coords.append (copy.deepcopy (coords))

y class regr label.append (copy.deepcopy (labels))
else:

y _class regr coords.append (copy.deepcopy (coords))

y _class regr label.append(copy.deepcopy (labels))

if len(x roi) 0:

return None, None, None, None

bboxes that iou > C.classifier min overlap for all gt bboxes in 300 non max suppression bbox

1.4

es
X = np.array(x_roi)
one hot code for bboxes from above => x roi (X)
Yl = np.array(y class num)
corresponding labels and corresponding gt bboxes
Y2 = np.concatenate([np.array(y class regr label),np.array(y class regr coords)],axis=1)
return np.expand dims (X, axis=0), np.expand dims(Yl, axis=0), np.expand dims (Y2, axis=0), IoUs
1
In []
def rpn to roi(rpn layer, regr layer, C, dim ordering, use regr=True, max boxes=300,overlap thresh=
0.9):
"""Convert rpn layer to roi bboxes
Args: (num _anchors = 9)

rpn layer: output layer for rpn classification
shape (1, feature map.height, feature map.width,
Might be (1, 18, 25, 18) if resized image is 400
regr layer: output layer for rpn regression

shape (1, feature map.height, feature map.width,
Might be (1, 18, 25,
C: config
use regr:

72) if resized image is 400

num_anchors)
width and 300

num_anchors)
width and 300

Wether to use bboxes regression in rpn

max boxes: max bboxes number for non-max-suppression (NMS)
overlap thresh: If iou in NMS is larger than this threshold, drop the box

Returns:

result: boxes from non-max-suppression (shape=(300,
coordinates for bboxes (on the feature map)

boxes:

mmn

regr layer

regr layer / C.std scaling

anchor sizes C.anchor box scales

anchor ratios C.anchor box ratios

assert rpn layer.shape[0] == 1

(rows, cols)

rpn_layer.shape[1:3]

curr_layer 0

A.shape

4))

(3 in here)
(3 in here)

(4, feature map.height, feature map.width, num anchors)

77

Might be (4, 18, 25, 18) if resized image is 400 width and 300
A is the coordinates for 9 anchors for every point in the feature map
=> all 18x25x9=4050 anchors cooridnates

oS HE

for anchor size in anchor sizes:

for anchor_ratio in anchor_ratios:
anchor x = (128 * 1) / 16 = 8 => width of current anchor
anchor y = (128 * 2) / 16 = 16 => height of current anchor

anchor_x = (anchor size * anchor ratio[0])/C.rpn stride
anchor_y = (anchor size * anchor ratio[l])/C.rpn stride

curr layer: 0~8 (9 anchors)
the Kth anchor of all position in the feature map (9th in total)

= np.zeros((4, rpn_ layer.shape[l], rpn layer.shape[2], rpn layer.shape[3]))

regr = regr layer([0, :, :, 4 * curr layer:4 * curr layer + 4] # shape => (18, 25, 4)

regr = np.transpose(regr, (2, 0, 1)) # shape => (4, 18, 25)

Create 18x25 mesh grid

For every point in x, there are all the y points and vice versa
X.shape = (18, 25)

Y.shape = (18, 25)

X, Y = np.meshgrid(np.arange (cols),np. arange (rows))

Calculate anchor position and size for each feature map point

A[O, :, :, curr_layer] = X - anchor x/2 # Top left x coordinate
A[l, :, :, curr_ layer] = Y - anchor y/2 # Top left y coordinate
A[2, :, :, curr layer] =anchor x # width of current anchor
A[3, :, :, curr layer] =anchor y # height of current anchor

Apply regression to x, y, w and h if there is rpn regression
layer if use regr:
Al:, :, :, curr layer] = apply regr np(A[:, :, :, curr layer], regr)

Avoid width and height exceeding 1
A[2, :, :, curr_layer] = np.maximum(l, A[2, :, :, curr layer])
A[3, :, :, curr layer] = np.maximum(l, A[3, :, :, curr layer])

Convert (x, y , w, h) to (x1, yl1, x2, y2)

x1, yl is top left coordinate

x2, y2 is bottom right coordinate

A[2, :, :, curr_layer] += A[O, :, :, curr layer]
A[3, :, :, curr layer] += A[l, :, :, curr layer]

Avoid bboxes drawn outside the feature map

A[O0, :, :, curr_layer] = np.maximum(O0, A[O, :, :, curr layer])

A[l, :, :, curr layer] = np.maximum(0, A[l, :, :, curr layer])

Al2, :, =, curr_layer] = np.minimum(cols-1, A[2, :, :,_curr layer])
Al3, 3, 3y curr:layer] = np.minimum(rows-1, A[3, :, :, curr:layery

curr_layer += 1

all boxes =np.reshape(A.transpose((0, 3, 1, 2)), (4, -1)).transpose((1,
all probs =rpn layer.transpose((0, 3, 1, 2)).reshape((-1))

x1 = all boxes[:, 0]
yl = all boxes[:, 1]
x2 = all boxes[:, 2]
y2 = all boxes[:, 3]

Find out the bboxes which is illegal and delete them from bboxes
list idxs = np.where((x1 - x2 >= 0) | (yl - y2 >= 0))
all boxes = np.delete(all boxes, idxs, 0)

all probs = np.delete(all probs, idxs, 0)

Apply non max suppression
Only extract the bboxes. Don't need rpn probs in the later process

0))

shape= (4050, 4)
shape=(4050,)

result = non max suppression fast(all boxes, all probs, overlap thresh=overlap thresh,

max_boxes=m ax boxes) [0]

return result

78

Start training

In []:
base path = 'drive/My Drive/GP'
train path = 'drive/My Drive/GP/Dataset/annotation.txt' # Training data (annotation file)

Augmentation flag
horizontal flips = True # Augment with horizontal flips in training.
vertical flips = True # Augment with vertical flips in training.

rot 90 = True # Augment with 90 degree rotations in training.

output weight path = os.path.join(base path, 'model/model frcnn vgg.hdf5'")

record path = os.path.join(base path, 'model/record.csv') # Record data (used to save the
losses, classification accuracy and mean average precision)

base weight path = os.path.join (base path, 'model/vggl6 weights tf dim ordering tf kernels.h5')

config output filename = os.path.join(base path, 'model vgg config.pickle')

In []:

Create the config
C = Config()

C.use horizontal flips = horizontal flips

C.use vertical flips = vertical flips
C.rot 90 = rot 90

C.record path = record path
C.model path = output weight path

C.base net weights = base weight path

In []

e e e e e e e e e S e S S S S oS oS #
This step will spend some time to load the data
e e e e e e e e e S e e S e e S e e eSS TS eSS e = #
st = time.time ()

train imgs, classes_count, class mapping = get data(train path)
print ()
print ('Spend %0.2f mins to load the data' % ((time.time()-st)/60))

In []:

if 'bg' not in classes count:

classes count['bg'] = 0

class mapping['bg'] = len(class mapping)

e.qg.

classes count: {'Car': 2383, 'Mobile phone': 1108, 'Person': 3745, 'bg': 0}
class mapping: {'Person': 0, 'Car': 1, 'Mobile phone': 2, 'bg': 3}

C.class mapping = class _mapping

print ('Training images per class:')

pprint.pprint (classes count)

print ('Num classes (including bg) = {}'.format (len(classes_count)))
print (class _mapping)

Save the configuration

with open(config output filename, 'wb') as config f:

pickle.dump (C, config f)

print ('Config has been written to {}, and can be loaded when testing to ensure correct

results'.f ormat (config output filename))

In []:

79

Shuffle the images with
seed random.seed (1)

random.shuffle (train imgs)

print ('Num train samples (images) {}'.format (len(train imgs)))

In []:

Get train data generator which generate X, Y, image data
data gen train = get anchor gt (train imgs, C, get img output length, mode='train')

Explore 'data_gen_train'

data_gen_train is an generator, so we get the data by calling next(data_gen_train)

In []:

X, Y, image data, debug img, debug num pos = next(data gen train)

In []:

print ('Original image: height=%d width=%d'% (image data['height'], image data['width']))
print ('Resized image: height=%d width=%d C.im size=%d'% (X.shape[l], X.shape[2], C.im size))
print ('Feature map size: height=%d width=%d C.rpn stride=%d'%(Y[0].shape[l], Y[O].shape[2],
C.rpn_s tride))

print (X.shape)

print (str(len(Y))+" includes 'y rpn cls' and 'y rpn regr'")

print ('Shape of y rpn cls {}'.format(Y[O].shape))

print ('Shape of y rpn regr {}'.format(Y[1l].shape))

print (image data)

)

print ('Number of positive anchors for this image: %d' % (debug num pos))

if debug num pos==0:

gt x1, gt x2 = 1mage data['bboxes'][0][" ']1*(X. shape[Z]/image_data['height']),
image data['bbo xes'][0]['x2']* (X. shape[Z}/lmage data['height'])

gt _yl, gt _y2 = image_ data['bboxes 1101¢[" "1+ (X. shape[l]/image_data['width']),
image data['bbox es'][0][" '1* (X shape[l]/lmage data['width'])

gt x1, gt yl, gt x2, gt y2 = int(gt_x1), int(gt_yl), int(gt x2), int(gt_y2)

img = debug img.copy ()

img = cv2.cvtColor (img, cv2.COLOR BGR2RGB)

color = (0, 255, 0)

cv2.putText (img, 'gt bbox', (gt x1, gt yl-5), cv2.FONT HERSHEY DUPLEX, 0.7, color, 1)
cv2.rectangle(img, (gt x1, gt yl), (gt x2, gt y2), color, 2)

cv2.circle (img, (int((gt_xl+gt_x2)/2), int((gt_yl+gt_y2)/2)), 3, eelewr, =i)

plt.grid()
plt.imshow (img)
plt.show ()
else:
cls = Y[0][O]
pos_cls = np.where (cls==1)
print (pos_cls)
regr = Y[1][0]

pos_regr = np.where (regr==1)

print (pos_regr)

print ('y rpn cls for possible pos anchor: {}'.format (cls[pos cls[0][0],pos cls[1][0],:]))
print ('y rpn regr for positive anchor: {}'.format (regr[pos regr[0] [0],pos_regr[1][0],:]))

gt _x1, gt x2 = image data['bboxes']
image datal['bbox es'][0]['x2']* (X.shape
]

["1+ (X. shape[2]/imageidata['width']),
]
gt _yl, gt _y2 = image data['bboxes'
]
2

image data['width'])

o1r’
2]/
01 ['yl"]*(X. shape[l]/imageidata['height'J),
11/1
1)

image data['height'])

image data['bbo xes'][0]['y2']* (X.shape
= , int(gt_yl), int(gt_x2), int(gt y2)

gt x1, gt yl, gt x2, gt y int (gt_x

img = debug img.copy ()

img = cv2.cvtColor (img, cv2.COLOR BGR2RGB)

color = (0, 255, 0)

cv2.putText (img, 'gt bbox', (gt x1, gt yl1-5), cv2.FONT HERSHEY DUPLEX, 0.7, color,
1) cv2.rectangle(img, (gt x1, gt yl), (gt x2, gt y2), color, 2)

cv2.circle (img, (int((gt xl+gt x2)/2), int((gt_yl+gt y2)/2)), 3, color, -1)

Add text

textLabel = 'gt bbox'

(retval,baseline) = cv2.getTextSize (textLabel,cv2.FONT HERSHEY COMPLEX,0.5,1)

textOrg = (gt_x1, gt_yl+5)

cv2.rectangle (img, (textOrg[0] - 5, textOrg[l]+baseline - 5), (textOrg[0]+retvall[0] + 5,
textOrg [l]-retvalll] - 5), (0, 0, 0), 2)

cv2.rectangle (img, (textOrg[0] - 5,textOrg[l]+baseline - 5), (textOrg[0]+retvall[0] + 5,
textOrg[1l]-retval[l] - 5), (255, 255, 255), -1)

cv2.putText (img, textLabel, textOrg, cv2.FONT HERSHEY DUPLEX, 0.5, (0, 0, 0), 1)

Draw positive anchors according to the

y rpn regr for i in range (debug num pos) :
color = (100+i*(155/4), 0, 100+i*(155/4))
idx = pos regr[2][i*4]/4
anchor size = C.anchor box scales[int (idx/3)]

anchor ratio = C.anchor box ratios[2-int ((idx+1)%3)]

center = (pos regr[l][i*4]*C.rpn stride, pos regr[0] [i*4]*C.rpn stride)
print ('Center position of positive anchor: ', center)

cv2.circle(img, center, 3, color, -1)

anc_w, anc_h = anchor size*anchor ratio[0], anchor size*anchor ratio[1l]

cv2.rectangle (img, (center[0]-int (anc_w/2), center[l]-int (anc_h/2)), (center[0]+int (anc_w/2)
, center[l]+int(anc_h/2)), color, 2)
cv2.putText (img, 'pos anchor bbox '+str(i+l), (center[0]-int(anc w/2),
center[1]-int (anc_h/2)-5), cv2.FONT HERSHEY DUPLEX, 0.5, color, 1)

print ('Green bboxes is ground-truth bbox. Others are positive anchors')
plt.figure (figsize=(8,8))

plt.grid()

plt.imshow (img)

plt.show ()

Build the model

In []:

input shape img = (None, None, 3)

img input = Input (shape=input shape img)
roi input = Input (shape=(None, 4))

define the base network (VGG here, can be Resnet50, Inception, etc)

shared layers = nn base(img input, trainable=True)

In []:

define the RPN, built on the base layers
num _anchors = len(C.anchor box scales) * len(C.anchor box ratios)

9 rpn = rpn layer (shared layers, num anchors)

classifier = classifier layer (shared layers, roi input, C.num rois, nb classes=len(classes count))

model rpn = Model (img input, rpn[:2])
model classifier = Model ([img input, roi input], classifier)

this is a model that holds both the RPN and the classifier, used to load/save weights for the
mo dels
model all = Model ([img input, roi input], rpn[:2] + classifier)

Because the google colab can only run the session several hours one time (then you need to
conne ct again),
we need to save the model and load the model to continue training
if not os.path.isfile(C.model path):
#If this is the begin of the training, load the pre-traind base network such as vgg-
16 try:
print ('This is the first time of your training')
print ('loading weights from {}'.format (C.base net weights))
model rpn.load weights (C.base net weights, by name=True)
model classifier.load weights(C.base net weights, by name=True)
except:
print ('Could not load pretrained model weights. Weights can be found in the

keras application folder \

81

https://github.com/fchollet/keras/tree/master/keras/applications')

Create the record.csv file to record losses, acc and mAP

record df = pd.DataFrame (columns=['mean overlapping bboxes', 'class acc', 'loss rpn cls',
'loss rpn regr', 'loss class cls', 'loss class regr', 'curr loss', 'elapsed time', 'mAP'])
else:

If this is a continued training, load the trained model from

before print ('Continue training based on previous trained model')

print ('Loading weights from {}'.format (C.model path))

model rpn.load weights(C.model path, by name=True)

model classifier.load weights(C.model path, by name=True)

Load the records
record df = pd.read csv(record path)

r mean overlapping bboxes = record df['mean overlapping bboxes']
r class_acc = record df['class acc']

r loss_rpn_cls = record df['loss rpn cls']

r loss rpn regr = record df['loss rpn regr']

r loss class_cls = record df['loss class cls']

r loss class regr = record df['loss class regr']

r curr loss = record df['curr loss']

r elapsed time = record df['elapsed time']

r mAP = record df['mAP']

print ('Already train %dK batches'$ (len(record df)))

optimizer = Adam(lr=1le-5)

optimizer classifier = Adam(lr=le-5)

model rpn.compile (optimizer=optimizer, loss=[rpn loss cls(num _anchors), rpn loss regr (num_anchors)
1)

model classifier.compile (optimizer=optimizer classifier, loss=[class loss_ cls,
class loss regr(len (classes count)-1)], metrics={'dense class {}'.format (len(classes count)):
'accuracy'}) model all.compile (optimizer='sgd', loss='mae')

In []:

Training setting
total epochs = len(record df)
r epochs = len(record df)

epoch length 1000

num_epochs 20

iter num = 0
total epochs += num_epochs

losses = np.zeros((epoch length, 5))
rpn_accuracy rpn monitor = []
rpn_accuracy for epoch = []

if len(record df)==

best loss = np.Inf
else:
best loss = np.min(r curr loss)

In []:

print (len(record df))

In []:

start time = time.time ()
for epoch num in range (num_epochs) :

progbar = generic utils.Progbar (epoch length)
print ('Epoch {}/{}'.format(r_epochs + 1, total epochs))

r_epochs += 1
while True:

82

try:

if len(rpn_accuracy_rpn_monitor) == epoch length and C.verbose:

mean overlapping bboxes =
float (sum(rpn_accuracy rpn monitor))/len(rpn accuracy rpn monitor)
rpn_accuracy rpn monitor = []
print ('Average number of overlapping bounding boxes from RPN = {} for {} previou
iterations'.format (mean overlapping bboxes, epoch length))
if mean overlapping bboxes ==
print ('RPN is not producing bounding boxes that overlap the ground truth

boxes Check RPN settings or keep training.')

Generate X (x img) and label Y ([y rpn cls, y rpn regr])
X, Y, img data, debug img, debug num pos = next(data gen train)

Train rpn model and get loss value [, loss rpn cls, loss rpn regr]
loss_rpn = model rpn.train_on_batch(X, Y)

Get predicted rpn from rpn model [rpn cls, rpn regr]
P rpn = model rpn.predict on batch (X)

R: bboxes (shape=(300,4))

Convert rpn layer to roi bboxes

R = rpn to roi(P_rpn[0], P rpn[l], C, K.common.image dim ordering(),
use regr=True, overlap thresh=0.7, max boxes=300)

note: calc iou converts from (x1,yl,x2,y2) to (x,y,w,h) format

X2: bboxes that iou > C.classifier min overlap for all gt bboxes in
300 non max suppression bboxes

Y1: one hot code for bboxes from above => x roi (X)

Y2: corresponding labels and corresponding gt bboxes

X2, Y1, Y2, IouS = calc iou(R, img data, C, class mapping)

If X2 is None means there are no matching
bboxes if X2 is None:
rpn_accuracy_ rpn_monitor.append (0)

rpn_accuracy for epoch.append(0)

continue
Find out the positive anchors and negative
anchors neg_samples = np.where(Y1[0, :, -1] == 1)
pos_samples = np.where(Y1[0, :, -1] == 0)
if len(neg samples) > 0:

neg_samples = neg samples[0]
else:

neg_samples = []
if len(pos_samples) > 0:

pos_samples = pos_samples[0]
else:
pos_samples = []

rpn_accuracy rpn monitor.append(len(pos samples))
rpn_accuracy for epoch.append((len (pos_samples)))

if C.num rois > 1:

If number of positive anchors is larger than 4//2 = 2, randomly choose 2 pos sam

les
if len(pos_samples) < C.num _rois//2:
selected pos samples = pos samples.tolist ()
else:
selected pos_ samples = np.random.choice (pos samples, C.num rois//2, replace=Fal
e) .tolist ()

Randomly choose (num rois - num pos) neg
samples try:
selected neg samples = np.random.choice(neg samples, C.num rois - len(selected
os_samples), replace=False).tolist()
except ValueError:
try:
selected neg samples = np.random.choice(neg samples, C.num rois -
len(selecte pos samples), replace=True).tolist()
except:
The neg samples is [[1 0]] only, therefore there's no negative

sample continue

83

pos

neg and pos

Save all the pos and neg samples in sel samples
sel samples = selected pos samples +
selected neg samples else:
in the extreme case where num rois = 1, we pick a random pos or neg
sample selected pos samples = pos_ samples.tolist ()
selected neg samples = neg samples.tolist()
if np.random.randint (0, 2):
sel samples = random.choice (neg samples)
else:
sel samples = random.choice (pos samples)

training data: [X, X2[:, sel samples, :]]

labels: [Y1[:, sel samples, :], Y2[:, sel samples, :]]

X => img data resized image

X2[:, sel samples, :] =>num rois (4 in here) bboxes which contains selected neg an

Y1[:, sel samples, :] =>one hot encode for num rois bboxes which contains selected

Y2[:, sel samples, :] => labels and gt bboxes for num rois bboxes which

contains selected neg and pos

loss class = model classifier.train on batch([X, X2[:, sel samples, :1],
[YI[:, sel samples, :], Y2([:, sel samples, :]1])

losses[iter num, 0] = loss rpn[l]

losses[iter num, 1] = loss rpn[2]

losses[iter num, 2] = loss class[1]

losses[iter num, 3] = loss class([2]

losses[iter num, 4] = loss_class[3]

iter num += 1

progbar.update (iter num, [('rpn cls', np.mean(losses[:iter num, 0])), ('rpn regr',

np.m ean(losses[:iter num, 1])),

('final cls', np.mean(losses[:iter num, 2])), ('final regr',

p.mean (losses[:iter num, 3]1))1)

if iter num == epoch length:
loss rpn _cls = np.mean(losses[:, 0])
loss _rpn _regr = np.mean(losses[:, 1])
loss class cls = np.mean(losses[:, 2])
loss _class _regr = np.mean(losses[:, 3])

class_acc = np.mean(losses[:, 4])

mean overlapping bboxes = float (sum(rpn_accuracy for epoch))

/ len(rpn accuracy for epoch)

rpn_accuracy for epoch = []

if C.verbose:

print ('Mean number of bounding boxes from RPN overlapping ground truth boxes:

}'.format (mean overlapping bboxes))

print ('Classifier accuracy for bounding boxes from RPN: {}'.format (class_acc))

print ('Loss RPN classifier: {}'.format(loss rpn cls))

print ('Loss RPN regression: {}'.format (loss_rpn regr))

print ('Loss Detector classifier: {}'.format(loss class cls))
print ('Loss Detector regression: {}'.format (loss class regr))

print ('Total loss: {}'.format(loss rpn cls + loss_rpn regr + loss class cls + 1

ss_class_regr))

,curr loss))

print ('Elapsed time: {}'.format (time.time() - start time))
elapsed time = (time.time ()-start time) /60
curr_loss = loss rpn cls + loss rpn regr + loss class cls +
loss class regr iter num = 0
start time = time.time ()

if curr loss < best loss:

if C.verbose:
print ('Total loss decreased from {} to {}, saving weights'.format (best los

best loss = curr_loss
model all.save weights (C.model path)

new_row = {'mean_overlapping bboxes':round(mean_overlapping_bboxes, 3),
'class_acc':round(class_acc, 3),
'loss_rpn cls':round(loss_rpn cls, 3),
'loss_rpn regr':round(loss_rpn regr, 3),
'loss class cls':round(loss class cls, 3),

84

'loss_class_regr':round(loss_class_regr, 3),
'curr loss':round(curr_loss, 3),
'elapsed time':round(elapsed time, 3),
'mAP': 0}
record df = record df.append(new row, ignore index=True)

record df.to csv(record path, index=0)
break

except Exception as e:

print ('Exception: {}'.format (e))
continue

print ('Training complete, exiting.')

1]

In []:

plt.figure (figsize=(15,5))

plt.subplot(1,2,1)

plt.plot (np.arange (0, r epochs), record df['mean overlapping bboxes'], 'r')
plt.title('mean overlapping bboxes"')

plt.subplot(l,2,2)

plt.plot (np.arange (0, r epochs), record df['class acc'], 'r'")
plt.title('class _acc')

plt.show ()

plt.figure (figsize=(15,5))

plt.subplot(1,2,1)

plt.plot (np.arange (0, r epochs), record df['loss rpn cls'], 'r')
plt.title('loss _rpn cls')

plt.subplot(l,2,2)

plt.plot (np.arange (0, r epochs), record df['loss rpn regr'], 'r'")
plt.title('loss rpn regr')

plt.show ()

plt.figure (figsize=(15,5))

plt.subplot(1,2,1)

plt.plot (np.arange (0, r epochs), record df['loss class cls'], 'r'")
plt.title('loss class cls')

plt.subplot(1l,2,2)

plt.plot (np.arange (0, r epochs), record df['loss class regr'], 'r')
plt.title('loss_class_regr')

plt.show ()

plt.plot (np.arange (0, r epochs), record df['curr loss'], 'r'")
plt.title('total loss')
plt.show ()

plt.figure (figsize=(15,5))

plt.subplot(1,2,1)

plt.plot (np.arange (0, r epochs), record df['curr loss'], 'r')
plt.title('total loss')

plt.subplot(1,2,2)

plt.plot (np.arange (0, r epochs), record df['elapsed time'], 'r')
plt.title('elapsed time')

plt.show/()

e

plt.title('loss')

plt.
plt.
plt.

H o HE S S

plt.

plt.plot (np.arange (0, r epochs),

plot (np.arange (0, r epochs),
plot (np.arange (0, r epochs),
plot (np.arange (0, r epochs),

plt.plot (np.arange (0, r epochs), record df['curr loss'],

show ()

In []:

record df['loss rpn cls'], 'b')

record df['loss rpn regr'],
record df['loss class cls'],
record df['loss class regr']

'm

vgr)
'Jf')

,'c’)

")

85

Appendix 3 code for testing (VGG)

In []:
#Code modified from https://github.com/RockyXu66/Faster RCNN for Open Images Dataset Keras

from google.colab import drive

drive.mount ('/content/drive"')

In []:

Ils

Import libs

In []:
from __ future_ import division

from _ future import print function
from _ future import absolute import
import random

import pprint

import sys

import time

import numpy as np

from optparse import OptionParser
import pickle

import math

import cv2

import copy

from matplotlib import pyplot as plt
import tensorflow as tf

import pandas as pd

import os

from sklearn.metrics import average precision_ score

from keras import backend as K

from keras.optimizers import Adam, SGD, RMSprop

from keras.layers import Flatten, Dense, Input, Conv2D, MaxPooling2D, Dropout
from keras.layers import GlobalAveragePooling2D, GlobalMaxPooling2D,
TimeDistributed from keras.engine.topology import get source inputs from
keras.utils import layer utils

from keras.utils.data_utils import get file

from keras.objectives import categorical crossentropy

from keras.models import Model

from keras.utils import generic utils
from keras.engine import Layer, InputSpec
from keras import initializers, regularizers

Config setting

In []:

class Config:

def init (self):

Print the process or
not self.verbose = True
Name of base network

self.network = 'vgg'

86

Setting for data augmentation

self.use horizontal flips = False

self.use vertical flips = False
self.rot 90 = False
Anchor box scales
Note that if im size is smaller, anchor box scales should be scaled

Original anchor box scales in the paper is [128, 256, 512]
self.anchor box scales = [64, 128, 256]

Anchor box ratios
self.anchor box ratios = [[1, 1], [l./math.sqrt(2), 2./math.sqgrt(2)], [2./math.sqrt(2),
1./math.s gqrt(2)1]]

Size to resize the smallest side of the image
Original setting in paper is 600. Set to 300 in here to save training

time self.im size = 300

image channel-wise mean to subtract
self.img channel mean = [103.939, 116.779, 123.68]

self.img scaling factor = 1.0

number of ROIs at

once self.num rois = 4

stride at the RPN (this depends on the network configuration)
self.rpn stride = 16

self.balanced classes = False

scaling the stdev
self.std scaling = 4.0
self.classifier regr std = [8.0, 8.0, 4.0, 4.0]

overlaps for RPN
self.rpn min overlap

0.3
0.7

self.rpn max overlap

overlaps for classifier ROIs
self.classifier min overlap = 0.1

self.classifier max overlap = 0.5
placeholder for the class mapping, automatically generated by the
parser self.class mapping = None

self.model path = None

Parser the data from annotation file

In []:

def get data(input path):

"""pParser the data from annotation file

Args:
input path: annotation file path

Returns:

all data: list(filepath, width, height, list (bboxes))
classes count: dict{key:class name, value:count num}
e.g. {'Car': 2383, 'Mobile phone': 1108, 'Person': 3745}
class mapping: dict{key:class name, value: 1idx}
e.g. {'Car': 0, 'Mobile phone': 1, 'Person': 2}

mmn

found bg = False

all imgs = {}
classes count = {}
class mapping = {}

visualise = True
i =1

with open (input path,'r') as f:

print ('Parsing annotation files')

for line in f:

Print process
sys.stdout.write ("\r'+'idx=' + str(i))
i4=1

line split = line.strip() .split(',")

Make sure the info saved in annotation file matching the format (path filename, x1, yl, x2,
y 2, class name)

Note:

One path filename might has several classes (class name)

x1, yl, x2, y2 are the pixel value of the origial image, not the ratio value

(x1, yl) top left coordinates; (x2, y2) bottom right coordinates

Kl , il mmemmemeseemeeseaes

| |

| |

| |

| |

e x2,y2

(filename,x1,yl,x2,y2,class name) = line split

if class name not in classes count:
classes count[class name] = 1
else:
classes count[class name] += 1

if class name not in class mapping:

if class name == 'bg' and found bg == False:
print ('Found class name with special name bg. Will be treated as a background region (this
is usually for hard negative mining).')
found bg = True
class mapping[class name] = len(class mapping)

if filename not in all imgs:

all imgs[filename] = {}

img = cv2.imread(filename)

(rows,cols) = img.shape[:2]

all imgs[filename] ['filepath'] = filename
all imgs[filename] ['width'] = cols

all imgs[filename] ['height'] = rows

all imgs[filename] ['bboxes'] = []
1f np.random.randint (0,6) > 0:

all imgs[filename]['imageset'] = 'trainval'
else:
all imgs[filename]['imageset'] = 'test'

all imgs[filename] ['bboxes'].append({'class': class name, 'x1': int(xl), 'x2': int(x2), 'yl': in

[
t(yl), 'y2': int(y2)})

all data = []
for key in all imgs:
all data.append(all imgs[key])

make sure the bg class is last in the
list if found bg:

if class mapping['bg'] != len(class mapping) - 1:
key to switch = [key for key in class mapping.keys() if class mapping[key] == len(class_mapping
)-1110]
val to switch = class mapping['bg']
class mapping['bg'] = len(class mapping) - 1
class mappinglkey to switch] = val to switch

return all data, classes_count, class mapping

Define ROI Pooling Convolutional Layer

In []:

89

class RoiPoolingConv (Layer) :

""'ROI pooling layer for 2D inputs.
See Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition,
K. He, X. Zhang, S. Ren, J. Sun
Arguments
pool size: int
Size of pooling region to use. pool size = 7 will result in a 7x7 region.
num rois: number of regions of interest to be used
Input shape
list of two 4D tensors [X img,X roi] with shape:
X img:
(1, rows, cols, channels)"
X roi:
‘(1,num rois,4) list of rois, with ordering (x,y,w,h)
Output shape
3D tensor with shape:
‘(1, num rois, channels, pool size, pool size)’

def init (self, pool size, num rois, **kwargs):

self.dim ordering = K.common.image dim ordering()
self.pool size = pool size
self.num rois = num rois

super (RoiPoolingConv, self). init (**kwargs)

def build(self, input shape):
self.nb channels = input shape[0] [3]

def compute output shape(self, input shape):

return None, self.num rois, self.pool size, self.pool size, self.nb channels

def call (self, x, mask=None) :
assert (len (x) == 2)

x[0] is image with shape (rows, cols, channels)

img = x[0]

x[1] is roi with shape (num rois,4) with ordering (x,y,w,h)
rois = x[1]

input shape = K.shape (img)
outputs = []

for roi idx in range(self.num rois):

= rois[0, roi idx, 0]
= rois[0, roi_idx, 1]

= rois[0, roi idx, 2]

oo KX

= rois[0, roi_idx, 3]

= K.cast(x, 'int32'")
= K.cast(y, 'int32")
K.cast(w, 'int32")
= K.cast (h, "int32")

ooE KX
I

Resized roi of the image to pooling size (7x7)
rs = tf.image.resize(img[:, y:y+th, x:x+w, :], (self.pool size, self.pool size))
outputs.append(rs)

final output = K.concatenate (outputs, axis=0)

Reshape to (1, num rois, pool size, pool size, nb channels)
Might be (1, 4, 7, 7, 3)

final output = K.reshape(final output, (1, self.num rois, self.pool size, self.pool size,

s elf.nb channels))

permute dimensions is similar to transpose
final output = K.permute dimensions (final output, (0, 1, 2, 3, 4))

return final output

def get config(self):

config = {'pool size': self.pool size,

'num rois': self.num rois}
base config = super (RoiPoolingConv, self).get config()
return dict (list (base config.items()) + list(config.items()))

Vgg-16 model

In []:

def get img output length(width, height):

def get output length(input length):
return input length//16

return get output length(width), get output length (height)

def nn base (input tensor=None, trainable=False) :

input shape = (None, None, 3)

if input tensor is None:

img input = Input (shape=input shape)

else:

if not K.is keras tensor (input tensor):

img input = Input (tensor=input tensor, shape=input shape)
else:
img input = input tensor
bn axis = 3
Block 1
x = Conv2D (64, (3, 3), activation='relu', padding='same',K name='blockl convl') (img input)
x = Conv2D (64, (3, 3), activation='relu', padding='same',6 name='blockl conv2') (x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='blockl pool') (x)
Block 2
x = Conv2D (128, (3, 3), activation='relu', padding='same', name='block2 convl') (x)
x = Conv2D (128, (3, 3), activation='relu', padding='same', name='block2 conv2') (x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block2 pool') (x)
Block 3
x = Conv2D (256, (3, 3), activation='relu', padding='same', name='block3 convl') (x)
x = Conv2D (256, (3, 3), activation='relu', padding='same', name='block3 conv2') (x)
x = Conv2D (256, (3, 3), activation='relu', padding='same', name='block3 conv3') (x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block3 pool') (x)
Block 4
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4 convl') (x)
x = Conv2D (512, (3, 3), activation='relu', padding='same', name='block4 conv2') (x)
x = Conv2D (512, (3, 3), activation='relu', padding='same', name='block4 conv3') (x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block4 pool') (x)
Block 5
x = Conv2D (512, (3, 3), activation='relu', padding='same', name='block5 convl') (x)
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5 conv2') (x)
x = Conv2D (512, (3, 3), activation='relu', padding='same', name='block5 conv3') (x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block5 pool') (x)
return x
RPN layer

In []:

def rpn layer (base layers,

"""Create a rpn layer

num_anchors) :

Stepl: Pass through the feature map from base layer to a 3x3 512 channels convolutional la

yer

Keep the padding 'same' to preserve the feature map's size

Step2: Pass the stepl to two (1,1) convolutional layer to replace the fully connected

layer

classification layer: num anchors (9 in here) channels for 0, 1 sigmoid activation

output

91

regression layer: num anchors*4 (36 in here) channels for computing the
regression of bboxes with linear activation
Args:
base layers: vgg in here
num _anchors: 9 in here

Returns:
[x class, x regr, base layers]
x class: classification for whether it's an object
X regr: bboxes regression
base layers: vgg in here

mmn

x = Conv2D (512, (3, 3), padding='same',6 activation='relu', kernel initializer='normal',

name='r pn convl') (base layers)
x_class = Conv2D(num_anchors, (1, 1), activation='sigmoid', kernel initializer='uniform',
name= 'rpn out class') (x)

x _regr = Conv2D(num_anchors * 4, (1, 1), activation='linear', kernel initializer='zero',
name=' rpn out regress') (x)

return [x class, x regr, base layers]

Classifier layer

In []:
def classifier layer (base layers, input rois, num rois, nb classes = 4):
"""Create a classifier layer
Args:
base layers: vgg
input rois: ' (1,num rois,4)’ 1list of rois, with ordering (x,y,w,h)
num rois: number of rois to be processed in one time (4 in here)
Returns:
list (out class, out regr)
out class: classifier layer output
out regr: regression layer output
mrmnn
input shape = (num _rois,7,7,512)
pooling regions = 7
out roi pool.shape = (1, num rois, channels, pool size, pool size)
num rois (4) 7x7 roi pooling
out roi pool = RoiPoolingConv(pooling regions, num rois) ([base layers, input rois])
Flatten the convlutional layer and connected to 2 FC and 2 dropout
out = TimeDistributed (Flatten (name='flatten')) (out roi pool)
out = TimeDistributed(Dense (4096, activation='relu',
name="'fcl'")) (out) out = TimeDistributed (Dropout (0.5)) (out)
out = TimeDistributed(Dense (4096, activation='relu',
name="'fc2')) (out) out = TimeDistributed (Dropout (0.5)) (out)
There are two output layer
out class: softmax acivation function for classify the class name of the object
out regr: linear activation function for bboxes coordinates regression
out class = TimeDistributed(Dense(nb_classes, activation='softmax',
kernel initializer='zero'), name='dense class {}'.format (nb classes)) (out)
note: no regression target for bg class
out regr = TimeDistributed(Dense(4 * (nb_classes-1), activation='linear',
kernel initializer='z ero'), name='dense regress {}'.format (nb classes)) (out)
return [out class, out regr]
1] 12]

Calculate loU (Intersection of Union)

In []:
def union(au, bu, area intersection):

area_a = (aul[2] - aul0]) * (au[3] - aulll])

92

area b = (bul[2] - bu[0]) * (bul[3] - bu[l])
area union = area a + area b - area intersection
return area union

def intersection(ai, bi):

x = max(ai[0], bi[0])
y = max(ai[l], bi[1])
w = min(aif2], bi[2]) - x
h = min(ai[3], bi[3]) -y
if w < 0 or h < 0O:

return 0

return w*h

def iou(a, b):
a and b should be (x1,yl,x2,y2)

if a[0] >= a[2] or a[l] >= a[3] or b[0] >= b[2] or b[l] >= b[3]:

return 0.0

area 1 = intersection(a, b)

area u = union(a, b, area i)

return float (area 1) / float (area u + le-6)

Calculate the rpn for all anchors of all images

In []:
def calc rpn(C, img data, width, height, resized width, resized height, img length calc_ function):

""" (Important part!) Calculate the rpn for all anchors
If feature map has shape 38x50=1900, there are 1900x9=17100 potential anchors

Args:

C: config

img data: augmented image data

width: original image width (e.g. 600)

height: original image height (e.g. 800)

resized width: resized image width according to C.im size (e.g. 300)

resized height: resized image height according to C.im size (e.g. 400)

img length calc function: function to calculate final layer's feature map (of base model) size
a ccording to input image size

Returns:

y rpn cls: list(num bboxes, y 1is box valid + y rpn overlap)

y_1s box valid: 0 or 1 (0 means the box is invalid, 1 means the box is valid)

y rpn overlap: 0 or 1 (0 means the box is not an object, 1 means the box is an object)
y _rpn regr: list(num bboxes, 4*y rpn overlap + y rpn regr)

y_rpn regr: x1,yl,x2,y2 bunding boxes coordinates
mran

downscale = float(C.rpn_stride)

anchor sizes = C.anchor box scales # 128, 256, 512

anchor ratios = C.anchor box ratios # 1:1, 1:2*sqrt(2), 2*sqrt(2):1
num_anzhors = len(anchor:sizgs) * len(anchor ratios) # 3x3=9

calculate the output map size based on the network architecture
(output width, output height) = img length calc function(resized width, resized height)

n _anchratios = len(anchor ratios) # 3

initialise empty output objectives

y_rpn_overlap = np.zeros((output height, output width, num anchors))
y is box valid = np.zeros((output height, output width, num anchors))
y_rpn_regr = np.zeros((output height, output width, num anchors * 4))

num bboxes = len(img data['bboxes'])

num_anchors_ for bbox = np.zeros(num bboxes) .astype (int)

best anchor for bbox = -1*np.ones((num bboxes, 4)).astype(int)
best iou for bbox = np.zeros(num bboxes) .astype (np.float32)
best x for bbox = np.zeros((num bboxes, 4)).astype (int)
best dx for bbox = np.zeros((num bboxes, 4)).astype(np.float32)

get the GT box coordinates, and resize to account for image resizing

93

gta = np.zeros ((num bboxes, 4))
for bbox num, bbox in enumerate (img datal['bboxes']):

get the GT box coordinates, and resize to account for image resizing
bbox['x1'] * (resized width / float (width))
gta[bbox num, 1] bbox['x2'] * (resized width / float (width))
gta[bbox num, 2] = bbox['yl'] * (resized height / float (height))

[3] = bbox][] * (resized height / float (height))

gta[bbox num, 0]

gta[bbox num,

rpn ground truth

for anchor size idx in range (len(anchor sizes)):

for anchor ratio idx in range(n_anchratios):
anchor x = anchor sizes[anchor size idx] * anchor ratios[anchor ratio idx][0]

anchor y = anchor sizes[anchor size idx] * anchor ratios[anchor ratio idx][1]
for ix in range(output width) :

x—-coordinates of the current anchor box
x1l anc = downscale * (ix + 0.5) - anchor x / 2
x2 anc = downscale * (ix + 0.5) + anchor x / 2

ignore boxes that go across image
boundaries if x1 anc < 0 or x2 anc >
resized _width: continue

for jy in range (output height):

y-coordinates of the current anchor box
yl anc = downscale * (jy + 0.5) - anchor y / 2
y2 anc = downscale * (jy + 0.5) + anchor y / 2

ignore boxes that go across image
boundaries if yl anc < 0 or y2 anc >

resized_height: continue

bbox type indicates whether an anchor should be a target
Initialize with 'negative'
bbox type = 'neg'

this is the best IOU for the (x,y) coord and the current anchor
note that this is different from the best IOU for a GT

bbox best iou for loc = 0.0

for bbox num in range (num_bboxes) :

get IOU of the current GT box and the current anchor box

curr_iou = iou([gta[bbox num, 0], gtal[bbox num, 2], gtalbbox num, 1], gta[bbox num,
311, [xl1 _anc, yl anc, x2 anc, y2 anc])

calculate the regression targets if they will be needed

if curr iou > best iou for bbox[bbox num] or curr iou > C.rpn max overlap:

cx = (gtal[bbox num, 0] + gta[bbox num, 1]) / 2.0
cy = (gtal[bbox num, 2] + gta[bbox num, 3]) / 2.0
cxa = (x1 _anc + x2 anc)/2.0
cya = (yl anc + y2 anc)/2.0

x,y are the center point of ground-truth bbox

xa,yva are the center point of anchor bbox (xa=downscale * (ix + 0.5); ya=downscale *
(iy+0.5))

w,h are the width and height of ground-truth bbox

wa,ha are the width and height of anchor bboxe

tx = (x - xa) / wa

ty = (v - yva) / ha

tw = log(w / wa)

th = log(h / ha)

tx = (cx - cxa) / (x2_anc - xl1 anc)

ty = (cy - cya) / (y2_anc - yl anc)

tw = np.log((gta[bbox num, 1] - gta[bbox num, 0]) / (x2_anc - x1 anc))
th = np.log((gta[bbox num, 3] - gta[bbox num, 2]) / (y2_anc - yl anc))
if img data['bboxes'] [bbox num]['class'] != 'bg':

all GT boxes should be mapped to an anchor box, so we keep track of which anchor box was
best

if curr iou > best iou for bbox[bbox num]:

best anchor for bbox[bbox num] = [jy, ix, anchor ratio idx,

anchor size idx] best iou for bbox[bbox num] = curr iou

best x for bbox[bbox num,:] = [xl anc, x2 anc, yl anc,

y2_anc] best dx for bbox[bbox num,:] = [tx, ty, tw, th]

we set the anchor to positive if the IOU is >0.7 (it does not matter if there was
another better box, it just indicates overlap)
if curr iou > C.rpn max overlap:
bbox type = 'pos'
num_anchors for bbox[bbox num] += 1
we update the regression layer target if this IOU is the best for the current (x,y)
and anchor position
if curr iou > best iou for loc:
best iou for loc = curr iou

best regr = (tx, ty, tw, th)

if the IOU is >0.3 and <0.7, it is ambiguous and no included in the objective
if C.rpn min overlap < curr iou < C.rpn max overlap:
gray zone between neg and
pos if bbox type != 'pos':
bbox type = 'neutral'

turn on or off outputs depending on
IOUs if bbox type == 'neg':

y_is _box _valid[jy, i1x, anchor_ratio_idx + n_anchratios * anchor size_ idx] =
1 y rpn overlap[jy, ix, anchor ratio idx + n_anchratios * anchor size idx] =
0 elif bbox type == 'neutral':

y _is box valid[jy, ix, anchor ratio idx + n_anchratios * anchor size idx] =
0 y rpn overlap[jy, ix, anchor ratio idx + n_anchratios * anchor size idx] =
0 elif bbox type == 'pos':

y_is box valid[jy, ix, anchor ratio idx + n_anchratios * anchor size idx] =

1 y rpn overlap[jy, ix, anchor ratio idx + n_anchratios * anchor size idx]

= 1 start = 4 * (anchor ratio idx + n_anchratios * anchor size idx)

y_rpn regr[jy, ix, start:start+4] = best regr

we ensure that every bbox has at least one positive RPN region

for idx in range (num_anchors for bbox.shape[0]) :

if num anchors for bbox[idx] == 0:

no box with an IOU greater than zero

if best anchor for bbox[idx, 0] == -1:
continue

y is box validl

Eesg;anéhoriforibbox[idx,O], best anchor for bbox[idx,1], best anchor for bbox[idx,2] + n_anchr
atios *

best anchor for bbox[idx,3]] =1

y_rpn_overlap|[

best anchor for bbox[idx, 0], best anchor for bbox[idx,1], best anchor for bbox[idx,2] +
n_anchr atios *

best anchor for bbox[idx,3]] = 1

start = 4 * (best anchor for bbox[idx,2] + n anchratios *

best_anchor_for_bbox[idx,3]) y_rpn_regr|

best anchor for bbox[idx,0], best anchor for bbox[idx,1], start:start+4] = best dx for bbox[idx

o 8]

y_rpn_overlap = np.transpose(y rpn overlap, (2, 0, 1))

y rpn overlap = np.expand dims(y rpn overlap, axis=0)

y_is box valid = np.transpose(y is box valid, (2, 0, 1))
y_is box valid = np.expand dims(y is box valid, axis=0)

y_Irpn_regr = np.transpose(y rpn regr, (2, 0, 1))
y rpn regr = np.expand dims(y rpn regr, axis=0)

pos_locs = np.where(np.logical and(y rpn overlap[O, :, :, :] == 1, y is box valid[0, :, :, :] ==
))

neg locs = np.where(np.logical and(y rpn overlap[O0, :, :, :] == 0, y is box valid[0, :, :, :] ==
))

num _pos = len(pos_locs[0])

one issue is that the RPN has many more negative than positive regions, so we turn off some
of the negative

regions. We also limit it to 256 regions.

num regions = 256

if len(pos_locs[0]) > num _regions/2:

val locs = random.sample (range (len(pos locs[0])), len(pos locs[0]) - numﬁregions/Z)
y is box wvalid[0, pos locs[0][val locs], pos locs[1l][val locs], pos locs[2][val locs]]

= 0 num_pos = num regions/2

95

if len(neg locs[0]) + num pos > num regions:

val locs = random.sample (range (len(neg locs[0])), len(neg locs[0]) - num pos)
y is box valid[0, neg locs[0] [val locs], neg locs[l][val locs], neg locs[2][val locs]] = 0
y_rpn_cls = np.concatenate([y is box valid, y rpn overlap], axis=1)

y_Irpn_regr = np.concatenate([np.repeat(y rpn overlap, 4, axis=1), y rpn regr],

axis=1) return np.copy(y rpn cls), np.copy(y rpn regr), num pos

Get new image size and augment the image

In []:
def get new img size(width, height, img min side=300):

if width <= height:
f = float (img min side) / width
resized height = int(f * height)

resized width = img min side
else: - - -

f = float(img min side) / height

resized width = int(f * width)

resized height = img min side

return resized width, resized height

def augment (img data, config, augment=True) :

assert 'filepath' in img data
assert 'bboxes' in img data
assert 'width' in img data
assert 'height' in img data

img data aug = copy.deepcopy (img data)
img = cv2.imread(img data aug['filepath'])
if augment:

rows, cols = img.shape[:2]

if config.use horizontal flips and np.random.randint (0, 2) == 0:

img = cv2.flip(img, 1)
for bbox in img data aug['bboxes']:
x1 = bbox['x1l']

x2 = bbox['x2']
bbox['x2'] = cols - x1
bbox['x1'] = cols - x2
if config.use vertical flips and np.random.randint (0, 2) == 0:

img = cv2.flip(img, 0)
for bbox in img data aug(['bboxes']:
vyl = bbox['yl']

y2 = bbox['y2']
bbox['y2'] = rows - yl
bbox['yl'] = rows - y2

if config.rot 90:
angle = np.random.choice([0,90,180,270],1) [0]
if angle == 270:

img = np.transpose(img, (1,0,2))

img = cv2.flip(img, 0)

elif angle == 180:
img = cv2.flip(img, -1)
elif angle == 90:

img = np.transpose(img, (1,0,2))
img = cv2.flip(img, 1)
elif angle == 0:

pass

for bbox in img data aug(['bboxes']:

x1 = bbox['x1l'
x2 = bbox['x2'
vyl = bbox['yl'

1
1
]
y2 = bbox['y2']
if angle == 270:
bbox['x1'] = vy
bbox['x2'] = vy

bbox['yl'] = cols - x2

bbox['y2'] = cols - x1
elif angle == 180:
bbox['x2'] = cols - x1
bbox['x1'] = cols - x2
bbox['y2'] = rows - yl
bbox['yl'] = rows - y2
elif angle == 90:
bbox['x1'] = rows - y2
bbox['x2'] = rows - yl
bbox['yl'] = x1
bbox['y2'] = x2
elif angle == 0:
pass
img data aug['width'] = img.shape[1l]
img data aug['height'] = img.shape[0]

return img data aug, img

Generate the ground_truth anchors

In []:
def get anchor gt(all img data, C, img length calc function, mode='train'):

"mroyield the ground-truth anchors as Y (labels)

Args:

all img data: list(filepath, width, height, list (bboxes))

C: config

img length calc function: function to calculate final layer's feature map (of base model) size
a ccording to input image size

mode: 'train' or 'test'; 'train' mode need augmentation

Returns:

x 1img: image data after resized and scaling (smallest size = 300px)
Y: [y rpn cls, y rpn regr]

img data aug: augmented image data (original image with augmentation)
debug img: show image for debug

num pos: show number of positive anchors for debug

mmn

while True:

for img data in all img data:

try:
read in image, and optionally add augmentation

if mode == 'train':

img data aug, x_img = augment (img data, C, augment=True)
else:
img data aug, x_img = augment (img data, C, augment=False)

(width, height) = (img data aug['width'], img data aug['height'])
(rows, cols,) = x img.shape

assert cols == width

assert rows == height

get image dimensions for resizing
(resized width, resized height) = get new img size(width, height, C.im size)

resize the image so that smalles side is length = 300px
X _img = cv2.resize(x img, (resized width, resized height), interpolation=cv2.INTER CUBIC)
debug img = x img.copy ()

try:
y rpn_ cls, y rpn regr, num pos = calc rpn(C, img data aug, width, height, resized width,
resiz ed height, img length calc function)
except:
continue

Zero-center by mean pixel, and preprocess image

x img = x img[:,:, (2, 1, 0)] # BGR -> RGB
X img = x img.astype (np.float32)

97

x img[:, :, 0] -= C.img channel mean[0]
X img[:, :, 1] -= C.img channel mean([1]
x img[:, :, 2] -= C.img channel mean[2]
x img /= C.img scaling factor

x_img = np.transpose(x _img, (2, 0, 1))
x_img = np.expand dims(x_img, axis=0)

y_rpn regr[:, y rpn regr.shape([l]//2:, :, :] *= C.std scaling

x_img = np.transpose(x img, (0, 2, 3, 1))
y _rpn cls = np.transpose(y rpn cls, (0, 2, 3, 1))
y_rpn_regr = np.transpose(y rpn regr, (0, 2, 3, 1))

yield np.copy(x img), [np.copy(y rpn cls), np.copy(y rpn regr)], img data aug,
debug img, num pos

except Exception as e:

print (e)
continue

In []:

def non max suppression fast (boxes, probs, overlap thresh=0.9, max boxes=300) :

code used from here: http://www.pyimagesearch.com/2015/02/16/faster-non-maximum-suppression-
pyt hon/
if there are no boxes, return an empty list

Process explanation:
Step 1: Sort the probs list
Step 2: Find the larget prob 'Last' in the list and save it to the pick 1list
Step 3: Calculate the IoU with 'Last' box and other boxes in the list. If the IoU is
large r than overlap threshold, delete the box from list
Step 4: Repeat step 2 and step 3 until there is no item in the probs list
if len(boxes) ==
return []

grab the coordinates of the bounding
boxes x1 = boxes[:, 0]

yl = boxes[:, 1]

X2 boxes[:, 2]

y2 = boxes[:, 3]

np.testing.assert array less(xl, x2)
np.testing.assert array less(yl, y2)

if the bounding boxes integers, convert them to floats --
this is important since we'll be doing a bunch of
divisions if boxes.dtype.kind == "i"

boxes = boxes.astype ("float")

initialize the list of picked indexes
pick = []

calculate the areas
area = (x2 - x1) * (y2 - yl)

sort the bounding boxes
idxs = np.argsort (probs)

keep looping while some indexes still remain in the indexes
list
while len(idxs) > 0:

grab the last index in the indexes list and add the

index value to the list of picked indexes

last = len(idxs) - 1

i = idxs[last]

pick.append (i)

find the intersection

xx1l int = np.maximum(x1[i], x1[idxs[:last]])
yyl int = np.maximum(yl([i], yl[idxs[:last]])
xx2 int = np.minimum(x2[i], x2[idxs[:last]])
yy2 int = np.minimum(y2[i], y2[idxs[:last]])

98

ww_int = np.maximum (0, xx2 int - xxl1 int)
hh int = np.maximum(0, yy2 int - yyl int)

area_int = ww_int * hh_int

find the union
area union = area[i] + area[idxs[:last]] - area int

compute the ratio of overlap overlap

= area int/(area union + le-6)

delete all indexes from the index list that have
idxs = np.delete(idxs, np.concatenate(([last],
np.where (overlap > overlap_ thresh) [0])))

if len(pick) >= max boxes:

break

return only the bounding boxes that were picked using the integer data
type boxes = boxes[pick].astype("int")
probs = probs[pick]

return boxes, probs
def apply regr np(X, T):

"""Apply regression layer to all anchors in one feature map
Args:

X: shape=(4, 18, 25) the current anchor type for all points in the feature map
T: regression layer shape=(4, 18, 25)

Returns:

X: regressed position and size for current anchor
mrmnn

try:

+
=
I

~
~
AR

cx = x + w/2.
cy =y + h/2.
cxl = tx * w + cx
cyl = ty * h + cy

wl np.exp (tw.astype (np.float64)) * w
hl = np.exp(th.astype(np.float64)) * h
x1l = cx1l - wl/2.
yl = cyl - hl/2.

x1 = np.round(xl)
yl = np.round(yl)
wl = np.round(wl)
hl = np.round(hl)

(

return np.stack([x1l, yl, wl, hl])
except Exception as e:

print (e)

return X

def apply regr(x, y, w, h, tx, ty, tw, th):
Apply regression to x, y, w and h

try:

cx = x + w/2. cy

=y + h/2. cx1 =

tx * w + cx cyl

=ty * h + cy

wl = math.exp(tw) * w

hl = math.exp(th) * h

x1l = cxl - wl/2.

yl = cyl - hl/2.

x1 = int (round (x1))

yl = int (round(yl))

wl = int (round(wl))

hl = int (round(hl))

return x1, yl, wl, hl

except ValueError:

return x, y, w, h
except OverflowError:
return x, y, w, h
except Exception as e:
print (e)
return x, y, w, h

In []:

def rpn to roi(rpn layer, regr layer, C, dim ordering, use regr=True, max boxes=300,overlap thresh=

0.9):
"""Convert rpn layer to roil bboxes

Args: (num _anchors = 9)

rpn layer: output layer for rpn classification
shape (1, feature map.height, feature map.width, num anchors)
Might be (1, 18, 25, 9) if resized image is 400 width and 300
regr layer: output layer for rpn regression
shape (1, feature map.height, feature map.width, num anchors)
Might be (1, 18, 25, 36) 1if resized image is 400 width and 300
C: config

use regr: Wether to use bboxes regression in rpn

max boxes: max bboxes number for non-max-suppression (NMS)
overlap thresh: If iou in NMS is larger than this threshold, drop the box

Returns:
result: boxes from non-max-suppression (shape= (300, 4))
boxes: coordinates for bboxes (on the feature map)

mmwn

regr layer = regr layer / C.std scaling

anchor sizes = C.anchor box scales # (3 in here)
anchor ratios = C.anchor box ratios # (3 in here)

assert rpn layer.shape[0] ==

(rows, cols) = rpn layer.shape[1:3]
curr_layer = 0
A.shape = (4, feature map.height, feature map.width, num anchors)

Might be (4, 18, 25, 9) if resized image is 400 width and 300

A is the coordinates for 9 anchors for every point in the feature map

=> all 18x25x9=4050 anchors cooridnates

A = np.zeros((4, rpn layer.shape[l], rpn layer.shape[2], rpn_layer.shape[3]))

for anchor size in anchor sizes:

for anchor ratio in anchor ratios:
anchor x = (128 * 1) / 16 = 8 => width of current anchor
anchor y = (128 * 2) / 16 = 16 => height of current anchor

anchor x = (anchor size * anchor ratio[0])/C.rpn stride
anchor y = (anchor size * anchor ratio[l])/C.rpn stride

curr layer: 0~8 (9 anchors)
the Kth anchor of all position in the feature map (9th in total)

regr = regr layer(0, :, :, 4 * curr layer:4 * curr layer + 4] # shape => (18, 25,

regr = np.transpose(regr, (2, 0, 1)) # shape => (4, 18, 25)

Create 18x25 mesh grid

For every point in x, there are all the y points and vice versa
X.shape = (18, 25)

Y.shape = (18, 25)

X, Y = np.meshgrid(np.arange (cols),np. arange (rows))

Calculate anchor position and size for each feature map point

A[O0, :, :, curr_layer] = X - anchor x/2 # Top left x coordinate
A[l, :, :, curr_layer] = Y - anchor y/2 # Top left y coordinate
A[2, :, :, curr layer] =anchor x # width of current anchor
A[3, :, :, curr_layer] =anchor y # height of current anchor

4)

100

Apply regression to x, y, w and h if there is rpn regression
layer if use regr:
A[:, :, :, curr_ layer] = apply regr np(A[:, :, :, curr layer], regr)

Avoid width and height exceeding 1
A[2, :, :, curr layer] = np.maximum(l, A[2, :, :, curr layer])
A[3, :, :, curr_ layer] np.maximum(1l, A[3, :, :, curr layer])

Convert (x, y , w, h) to (x1, yl, x2, y2)

x1, yl is top left coordinate

x2, y2 is bottom right coordinate

A[2, :, :, curr layer] += A[O0, :, :, curr layer]
A[3, :, :, curr_layer] += A[l, :, :, curr layer]

Avoid bboxes drawn outside the feature map

0, :, :, curr layer] = np.maximum(O, A[O, :, :, curr layer])

1, :, :, curr layer] np.maximum(0, A[l, :, :, curr layer])

2, :, :, curr layer] = np.minimum(cols-1, A[2, :, :, curr layer])
3, :, :, curr_layer] np.minimum(rows-1, A[3, :, :, curr layer])

Al
Al
Al
Al
curr_layer += 1
all boxes = np.reshape(A.transpose((0, 3, 1, 2)), (4, -1)).transpose((l, 0)) # shape=(4050, 4)
all probs = rpn layer.transpose((0, 3, 1, 2)).reshape((-1)) # shape=(4050,)

xl = all boxes[:, 0]
yl = all boxes[:, 1]
x2 = all boxes[:, 2]

y2 = all boxes[:, 3]
Find out the bboxes which is illegal and delete them from bboxes
list idxs = np.where((xl - x2 >= 0) | (yl - y2 >= 0))

all boxes = np.delete(all boxes, idxs, 0)
all probs = np.delete(all probs, idxs, 0)

Apply non max suppression
Only extract the bboxes. Don't need rpn probs in the later process
result = non max suppression fast(all boxes, all probs, overlap thresh=overlap thresh,

max boxes=m ax boxes) [0]

return result

In []:

base path = 'drive/My Drive/GP'

test path = 'drive/My Drive/GP/Dataset/test annotation.txt' # Test data (annotation file)
test base path = 'drive/My Drive/GP/Dataset/test' # Directory to save the test images
plt img path = 'drive/My Drive/GP/Dataset/plot saved'

config output filename = os.path.join(base path, 'model vgg config.pickle')

In []:
with open(config output filename, 'rb') as f in:

C = pickle.load(f in)

turn off any data augmentation at test
time C.use_horizontal flips = False
C.use vertical flips = False

C.rot_90 = False

In []:

101

Load the records

record df = pd.read csv(C.record path)

r epochs = len(record df)

plt.figure (figsize=(15,5))
plt.subplot(1,2,1)
plt.plot (np.arange (0, r epochs),

record df['mean overlapping bboxes'],

plt.title('mean overlapping bboxes"')

plt.subplot(1l,2,2)
plt.plot (np.arange (0, r epochs),
plt.title('class _acc')

plt.show ()
plt.figure (figsize=(15,5))

plt.subplot(1,2,1)
plt.plot (np.arange (0, r epochs),
plt.title('loss _rpn cls')

plt.subplot(1l,2,2)

plt.plot (np.arange (0, r epochs),
plt.title('loss rpn regr')
plt.show ()

plt.figure (figsize=(15,5))
plt.subplot(l,2,1)

plt.plot (np.arange (0, r epochs),
plt.title('loss class cls')

plt.subplot(1l,2,2)

plt.plot (np.arange (0, r epochs),
plt.title('loss class regr')
plt.show ()

plt.figure (figsize=(15,5))
plt.subplot(l,2,1)

plt.plot (np.arange (0, r epochs),
plt.title('total loss')

plt.subplot(1l,2,2)
plt.plot (np.arange (0, r epochs),
plt.title('elapsed time')

plt.show ()

Test

In []:

def format img size (img, C):

record df['class acc'], 'r')

record df['loss rpn cls'],

record df['loss rpn regr'],

record df['loss class cls']

')

record df['loss class regr'], 'r')

record df['curr loss'], 'r')

record df['elapsed time'],

"mr formats the image size based on config """

img min side = float(C.im size)
(height,width,) = img.shape
if width <= height:

ratio = img min side/width

new_height = int(ratio * height)

new width = int(img min side)
else:

ratio = img min side/height

new width = int(ratio * width)

new_height = int(img min side)

img = cv2.resize(img, (new width, new height),

interpolation=cv2.INTER CUBIC) return img, ratio

def format img channels(img, C):

"mr formats the image channels based on config """

img = img[:, :, (2, 1, 0)]
img = img.astype (np.float32)

img[:, :, 0] -= C.img channel mean([0]
img[:, :, 1] -= C.img channel mean[1]
img[:, :, 2] -= C.img channel mean([2]

img /= C.img scaling factor

lrl)

lrl)

102

img = np.transpose(img, (2, 0, 1))
img = np.expand dims (img, axis=0)
return img

def format img(img, C):

""" formats an image for model prediction based on config """
img, ratio = format img size(img, C)

img = format img channels(img, C)

return img, ratio

Method to transform the coordinates of the bounding box to its original
size def get real coordinates(ratio, x1, yl, x2, y2):

real x1 = int(round(xl // ratio

real yl = int(round(yl // ratio

real x2 = int(round(x2 // ratio
((

))
))
))
real y2 = int(round(y2 // ratio))

return (real x1, real yl, real x2 ,real y2)

In []:

num features = 512

input shape img = (None, None, 3)

input shape features = (None, None, num features)

img input = Input (shape=input shape img)

roi input = Input (shape=(C.num rois, 4))

feature map input = Input (shape=input shape features)

define the base network (VGG here, can be Resnet50, Inception, etc)
shared layers = nn base(img input, trainable=True)

define the RPN, built on the base layers

num_anchors = len(C.anchor box scales) * len(C.anchor box ratios)
rpn_layers = rpn_layer (shared layers, num anchors)

classifier = classifier layer (feature map input, roi input, C.num rois,
nb classes=len (C.class_mapp ing))

model rpn = Model (img input, rpn layers)

model classifier only = Model ([feature map input, roi input], classifier)

model classifier = Model ([feature map input, roi input], classifier)

print ('Loading weights from {}'.format (C.model path))

model rpn.load weights(C.model path, by name=True)
model classifier.load weights(C.model path, by name=True)

model rpn.compile (optimizer='sgd', loss='mse')
model classifier.compile (optimizer='sgd', loss='mse')

In []:

Switch key value for class mapping
class mapping = C.class mapping

class mapping = {v: k for k, v in

class mapping.items ()} print (class mapping)

class _to color = {class mapping([v]: np.random.randint (0, 255, 3) for v in class mapping}
In []:

test imgs = os.listdir(test base path)
imgs path = []

for i in range (50):

idx = np.random.randint (len(test imgs))
imgs path.append(test imgs[idx])

all imgs = []

classes = {}

103

In []:

If the box classification value is less than this, we ignore this
box bbox threshold = 0.84

for idx, img name in enumerate (imgs_path) :

if not img name.lower () .endswith(('.bmp', '.jpeg', '.jpg', '.png', '.tif', '.tiff')):

continue
print (img_ name)
st = time.time ()

filepath = os.path.join(test base path, img name)
img = cv2.imread(filepath)

X, ratio = format img(img, C)

X = np.transpose (X, (0, 2, 3, 1))

get output layer Y1, Y2 from the RPN and the feature maps F
Y1: y rpn cls

Y2: y rpn regr

[Yl, Y2, F] = model rpn.predict (X)

Get bboxes by applying NMS
R.shape = (300, 4)
R = rpn to roi(Y¥l, Y2, C, K.common.image dim ordering(), overlap thresh=0.7)

convert from (x1,yl,x2,y2) to (x,y,w,h)
R[:, 2] -= R[:, 0]
R[:, 3] -= R[:, 1]

apply the spatial pyramid pooling to the proposed
regions bboxes = {}
probs = {}

for jk in range(R.shape([0]//C.num rois + 1):

ROIs = np.expand dims(R[C.num rois*jk:C.num rois* (jk+1), :], axis=0)
if ROIs.shape[l] ==

break
if jk == R.shape[0]//C.num rois:

#pad R

curr_shape = ROIs.shape

target shape = (curr_shape[O],C.num_rois,curr_shape[Z])

ROIs padded = np.zeros (target shape) .astype (ROIs.dtype)

ROIs padded[:, :curr_shape[l], :] = ROIs

ROIs padded[0, curr_shape([l]:, :] = ROIs[0, 0, :]

ROIs = ROIs_ padded
[P_cls, P regr] = model classifier only.predict ([F, ROIs])
Calculate bboxes coordinates on resized

image for ii in range (P _cls.shapel[l]):
Ignore 'bg' class

if np.max (P _cls[0, ii, :]) < bbox threshold or np.argmax(P _cls[0, ii, :]) == (P_cls.shap
e[2] - 1)
continue
cls name = class mapping[np.argmax (P_cls[0, ii, :1)]

if cls_name not in bboxes:

bboxes[cls name] = []
probs([cls _name] = []

(x, y, w, h) = ROIs[0, ii, :]
cls num = np.argmax(P_cls[0, ii, :])
try:

(tx, ty, tw, th) = P regr[0, ii,

4*cls num:4* (cls numt+l)] tx /= C.classifier regr std[0]

ty /= C.classifier regr std[l]

tw /= C.classifier regr std[2]

th /= C.classifier regr std[3]

X, Y, W, h = apply regr(x, y, w, h, tx, ty, tw, th)
except:

pass

104

bboxes[cls name].append([C.rpn stride*x, C.rpn stride*y, C.rpn stride* (x+w), C.rpn strid
e* (y+h) 1)
probs[cls name] .append(np.max(P_cls[0, ii, :1))

all dets = []

for key in bboxes:

bbox = np.array(bboxes[key])

new_boxes, new_probs = non max suppression fast (bbox, np.array(probs[key]), overlap thresh=
0.2)
for jk in range (new boxes.shape([0]) :
(x1, yl, x2, y2) new boxes[Jjk, :]
Calculate real coordinates on original image
(real x1, real yl, real x2, real y2) = get real coordinates(ratio, x1, yl, x2, y2)
cv2.rectangle (img, (real x1, real yl), (real x2, real y2),
(int (class_to color[key][0]), int(class to color[key][1l]), int(class_to colorlkey][2])),4)

textLabel = '"{}: {}'.format (key,int (100*new probs[jk]))
all dets.append((key,100*new probs[jk]))

(retval,baseline) = cv2.getTextSize (textLabel,cv2.FONT HERSHEY COMPLEX,1,1)
textOrg = (real x1, real yl1-0)

cv2.rectangle (img, (textOrg[0] - 5, textOrg[l]+baseline - 5), (textOrg[0]+retvall[0] +
5, textOrg[l]-retvalll] - 5), (0, 0, 0), 1)

cv2.rectangle (img, (textOrg[0] - 5,textOrg[l]+baseline - 5), (textOrg[O]+retvall0] +
5, textOrg[l]-retval[l] - 5), (255, 255, 255), -1)

cv2.putText (img, textLabel, textOrg, cv2.FONT HERSHEY DUPLEX, 1, (0, O, 0), 1)

print ('Elapsed time = {}'.format (time.time() - st))
print (all dets)

plt.figure (figsize=(10,10))

#plt.grid()

plt.imshow (cv2.cvtColor (img, cv2.COLOR BGR2RGB))

#plt.savefig(os.path.join(plt img path, img name))
plt.show ()

4]].ﬁ

Measure mAP

In []:

def get map(pred, gt, f):
T={]

P={}

fx, fy = £

for bbox in gt:
bbox['bbox matched'] = False

pred probs = np.array([s['prob'] for s in pred])
box idx sorted by prob = np.argsort (pred probs) [::-1]

for box_idx in box idx_sorted by prob:

pred box = pred[box idx]
pred class = pred box['class']
pred x1 = pred box['x1l"]

pred x2 = pred box['x2'"]

pred yl = pred box['yl']

pred y2 = pred box['y2']

pred prob = pred box['prob']
if pred class not in P:

P[pred class] = []

T[pred class] = []
P[pred class].append (pred prob)
found match = False

for gt_box in gt:

gt class = gt box['class']
gt x1 = gt box['x1l']/fx
gt x2 = gt box['x2']/fx
gt _yl = gt box['yl']l/fy

105

gt_y2 = gt _box['y2']/fy
gt _seen = gt box['bbox matched']
if gt class != pred class:
continue
if gt seen:

continue

iou map = iou((pred x1, pred yl, pred x2, pred y2), (gt x1, gt yl, gt x2, gt y2))
if iou map >= 0.5:

found match = True

gt box['bbox matched'] = True
break
else:

continue

T[pred class].append(int (found match))

for gt box in gt:
if not gt box['bbox matched']:# and not gt box['difficult']:
if gt box['class'] not in P:
P[gt box['class']] = []
T[gt_box['class']] = []

T[gt box['class']].append (1)
P[gt box['class']].append(0)

#import pdb
#pdb.set trace ()
return T, P

In []:
def format img map (img, C):

"""Format image for mAP. Resize original image to C.im size (300 in here)

Args:
img: cv2 image
C: config

Returns:
img: Scaled and normalized image with expanding dimension
fx: ratio for width scaling
fy: ratio for height scaling

mmn

img min side = float(C.im size)
(height,width,) = img.shape

if width <= height:
f = img min side/width
new_height = int(f * height)
new width = int(img min side)
else:
f = img min side/height
new_width = int(f * width)
new_height = int(img min_side)
fx = width/float (new width)
fy = height/float (new_height)
img = cv2.resize(img, (new width, new height), interpolation=cv2.INTER CUBIC)
Change image channel from BGR to
RGB img = img[:, :, (2, 1, 0)]
img = img.astype (np.float32)

img[:, :, 0] -= C.img channel mean[0]
img[:, :, 1] -= C.img channel mean([1]
img[:, :, 2] -= C.img channel mean([2]

img /= C.img scaling factor

Change img shape from (height, width, channel) to (channel, height, width)
img = np.transpose(img, (2, 0, 1))

Expand one dimension at axis 0

img shape becames (1, channel, height, width)

img = np.expand dims (img, axis=0)

return img, fx, fy

In []:
print (class mapping)

106

In []:
This might takes a while to parser the
data test imgs, , = get data(test path)

In []:

T={}

P={}

mAPs = []

total time = []

FP num = 0

for idx, img data in enumerate(test imgs):
print ("{}/{}'.format (idx,len (test imgs)))
st = time.time ()
filepath = img data['filepath']

img = cv2.imread(filepath)
X, fx, fy = format img map(img, C)
Change X (img) shape from (1, channel, height, width) to (1, height, width,

channel) X = np.transpose(X, (0, 2, 3, 1))

get the feature maps and output from the RPN
[Yl, Y2, F] = model rpn.predict (X)

R = rpn to roi(Y¥l, Y2, C, K.common.image dim ordering(), overlap thresh=0.7)

convert from (x1,yl,x2,y2) to (x,y,w,h)
R[:, 2] -= R[:, 0]
R[:, 3] -= R[:, 1]

apply the spatial pyramid pooling to the proposed
regions bboxes = {}
probs = {}

for jk in range(R.shape[0] // C.num rois + 1):

ROIs = np.expand dims(R[C.num rois * jk:C.num rois * (jk + 1), :], axis=0)
if ROIs.shapel[l] ==

break
if jk == R.shape[0] // C.num rois:

pad R

curr_shape = ROIs.shape

target shape = (curr_shape[0], C.num rois, curr_shape([2])

ROIs padded = np.zeros (target shape) .astype (ROIs.dtype)

ROIs padded[:, :curr_shape[l], :] = ROIs

ROIs padded[0, curr_ shape[l]:, :] = ROIs[0, 0, :]

ROIs = ROIs_ padded
[P cls, P regr] = model classifier only.predict([F, ROIs])

Calculate all classes' bboxes coordinates on resized image (300, 400)
Drop 'bg' classes bboxes
for ii in range(P_cls.shape[l]):

If class name is 'bg', continue
if np.argmax (P cls[0, ii, :]) == (P _cls.shape[2] - 1):
continue

Get class name
cls name = class mapping[np.argmax (P cls[0, ii, :])]

if cls_name not in bboxes:

bboxes[cls name] = []
probs([cls name] = []

(x, y, w, h) = ROIs[0, ii, :]
cls num = np.argmax(P_cls[0, ii, :])

107

try:

(tx, ty, tw, th) = P regr[0, ii, 4 * cls num:4 * (cls num + 1)]
tx /= C.classifier regr std[0]

ty /= C.classifier regr std[1l]

tw /= C.classifier regr std[2]

th /= C.classifier regr std[3]

X, Y, W, h = roi helpers.apply regr(x, y, w, h, tx, ty, tw, th)

except:
pass

bboxes[cls name].append([l6 * x, 16 * y, 16 * (x + w), 16 * (y + h)])
probs[cls name].append(np.max (P cls[0, ii, :]))

all dets = []

for key in bboxes:

bbox = np.array(bboxes[key])

Apply non-max-suppression on final bboxes to get the output bounding boxe

new_boxes, new_probs = non max suppression fast (bbox, np.array(probs[key]), overlap thresh=
0.5)
for jk in range (new boxes.shape[0]) :
(x1, yl, x2, y2) = new boxes[jk, :]
det = {'x1': x1, 'x2': x2, 'yl': yl, 'y2': y2, 'class': key, 'prob':
new _probs[jk]} all dets.append(det)
print ('Elapsed time = {}'.format (time.time() -
st)) elapsed time = time.time() - st

total time.append(elapsed time)
t, p = get map(all dets, img data['bboxes'], (fx, fy))
for key in t.keys(

)

if key not in T

T [key] []

Plkey] = T[]
T[key] .extend(t[key])
Plkey] .extend(plkey])

all aps = []

for key in T.keys():
ap = average precision score(T[key], Pl[key])
print ('{} AP: {}'.format (key, ap))
all aps.append (ap)

print ('mAP = {}'.format (np.mean (np.array(all aps))))
mAPs .append (np.mean (np.array(all aps)))

#print (T)

#print (P)

if not all dets:
FP_num += 1
print ()
print ('mean average precision:', np.mean(np.array (mAPs)))

In []:
mAP = [mAP for mAP in mAPs if str (mAP) !='nan']
mean_average prec = round(np.mean(np.array (mAP)), 3)

print ('After training %dk batches, the mean average precision

is %0.3f'%$ (len(record df), mean average prec))

print ('Average elapsed time:', np.average (np.array(total time)))

print ('Percentage of images that without bounding boxes among all:', FP_num/len(test imgs))

record df.loc[len(record df)-1, 'mAP'] = mean average prec
record df.to csv(C.record path, index=0)
print('Save mAP to {}'.format (C.record path))

In []:

108

Appendix 4 code for training (ResNet50)

In []:
from google.colab import drive

drive.mount ('/content/drive"')

Import libs

In []:
from _ future import division

from _ future import print function
from _ future_ import absolute import
import random

import pprint

import sys

import time

import numpy as np

from optparse import OptionParser
import pickle

import math

import cv2

import copy

from matplotlib import pyplot as plt
import tensorflow as tf

import pandas as pd

import os

from sklearn.metrics import average precision score

from keras import backend as K

from keras.optimizers import Adam, SGD, RMSprop

from keras.layers import Flatten, Dense, Add, Input, Activation, Conv2D, MaxPooling2D,
AveragePooli ng2D, Dropout, ZeroPadding2D, BatchNormalization

from keras.layers import GlobalAveragePooling2D, GlobalMaxPooling2D,

TimeDistributed from keras.engine.topology import get source inputs from

keras.utils import layer utils

from keras.utils.data_utils import get file

from keras.objectives import categorical crossentropy

from keras.initializers import glorot uniform
from keras.models import Model

from keras.utils import generic utils
from keras.engine import Layer, InputSpec
from keras import initializers, regularizers

Config setting

In []:

class Config:
def init (self):

Print the process or
not self.verbose = True
Name of base network
self.network = 'resnet'

Setting for data augmentation
self.use horizontal flips =
False self.use vertical flips =
False self.rot 90 = False

Anchor box scales
Note that if im size is smaller, anchor box scales should be scaled

109

Original anchor box scales in the paper is [128, 256, 512]
self.anchor box scales = [64, 128, 256]

Anchor box ratios
self.anchor box ratios = [[1, 1], [l./math.sqrt(2), 2./math.sqrt(2)], [2./math.sqrt(2),

1./math.s qrt(2)]]

Size to resize the smallest side of the image
Original setting in paper is 600. Set to 300 in here to save training

time self.im size = 300

image channel-wise mean to subtract
self.img channel mean = [103.939, 116.779, 123.68]

self.img scaling factor = 1.0

number of ROIs at

once self.num rois = 4

stride at the RPN (this depends on the network configuration)
self.rpn stride = 16

self.balanced classes = False

scaling the stdev
self.std scaling = 4.0
self.classifier regr std = [8.0, 8.0, 4.0, 4.0]

overlaps for RPN
self.rpn min overlap = 0.3
self.rpn max overlap 0.7

overlaps for classifier ROIs
self.classifier min overlap = 0.1

self.classifier max overlap = 0.5
placeholder for the class mapping, automatically generated by the
parser self.class mapping = None

self.model path = None

Parser the data from annotation file

In []:
def get data(input path):

"""Parse the data from annotation file

Args:
input path: annotation file path

Returns:
all data: list(filepath, width, height, list (bboxes))
classes count: dict{key:class name, value:count num}
e.g. {'Car': 2383, 'Mobile phone': 1108, 'Person': 3745}
class mapping: dict{key:class name, value: 1idx}
e.g. {'Car': 0, 'Mobile phone': 1, 'Person': 2}
found bg = False
all imgs {}

classes count = {}

class _mapping = {}

visualise = True

i=1

with open (input path,'r') as f:
print ('Parsing annotation files')

for line in f£f:

110

Print process
sys.stdout.write ('"\r'+'idx="' + str(i))
i+=1

line split = line.strip().split(',")

Make sure the info saved in annotation file matching the format (path filename, x1, yl, x2,
y 2, class name)

Note:

One path filename might has several classes (class name)

x1, yl, x2, y2 are the pixel value of the origial image, not the ratio value

(x1, yl) top left coordinates; (x2, y2) bottom right coordinates

Rl [Pl mmmmmemssesessesmes

| |

| |

| |

| |

i So——esomsosoesoesoees x2,y2

(filename,x1,yl,x2,y2,class name) = line split

if class name not in classes count:

classes count[class name] = 1
else:
classes count[class name] += 1

if class name not in class mapping:

if class name == 'bg' and found bg == False:
print ('Found class name with special name bg. Will be treated as a background region (this
is usually for hard negative mining).')
found bg = True
class mapping[class name] = len(class mapping)

if filename not in all imgs:

all imgs[filename] = {}

img cv2.imread (filename)

(rows,cols) = img.shape[:2]

all imgs[filename] ['filepath'] = filename
all imgs[filename] ['width'] = cols

all imgs[filename] ['height'] = rows
all imgs[filename] ['bboxes'] [1]

1f np.random.randint (0,6) > 0:

all imgs[filename]['imageset'] = 'trainval'
else:
all imgs[filename]['imageset'] = 'test'

all imgs[filename] ['bboxes'].append({'class': class name, 'x1': int(xl), 'x2': int(x2), 'yl': in

[
t(yl), 'y2': int(y2)})

all data = []
for key in all imgs:
all data.append(all imgs[key])

make sure the bg class is last in the
list if found bg:

if class mapping['bg'] != len(class mapping) - 1:
key to switch = [key for key in class mapping.keys() if class mapping[key] == len(class_mapping
)-1110]
val to switch = class mapping['bg']
class mapping['bg'] = len(class mapping) - 1
class mappinglkey to switch] = val to switch

return all data, classes count, class mapping

Define ROI Pooling Convolutional Layer

In []:
class RoiPoolingConv (Layer) :

'"'"'ROI pooling layer for 2D inputs.

See Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition,
K. He, X. Zhang, S. Ren, J. Sun

Arguments

111

pool size: int
Size of pooling region to use. pool size = 7 will result in a 7x7 region.
num _rois: number of regions of interest to be used

Input shape

list of two 4D tensors [X img,X roi] with shape:

X img:

(1, rows, cols, channels)’

X roi:

‘(1,num rois,4) list of rois, with ordering (x,y,w,h)

Output shape

def

def

def

def

3D tensor with shape:
‘(1, num rois, channels, pool size, pool size)’

__init (self, pool size, num rois, **kwargs):

self.dim ordering = K.common.image dim ordering ()
self.pool size = pool size
self.num rois = num rois

super (RoiPoolingConv, self). init (**kwargs)

build(self, input shape):
self.nb channels = input shape[0] [3]

compute output shape(self, input shape):

return None, self.num rois, self.pool size, self.pool size, self.nb channels

call (self, x, mask=None) :
assert(len (x) == 2)

x[0] is image with shape (rows, cols, channels)

img = x[0]

x[1] is roi with shape (num rois,4) with ordering (x,y,w,h)
rois = x[1]

input shape = K.shape (img)
outputs = []

for roi idx in range(self.num rois):

= rois[0, roi_idx, 0]
= rois[0, roi idx, 1]

= rois[0, roi_idx, 2]

ooE KX

= rois[0, roi idx, 3]

= K.cast(x, 'int32'")
= K.cast(y, 'int32"')
K.cast(w, 'int32"')
= K.cast(h, 'int32'")

oo KX
I

Resized roi of the image to pooling size (7x7)
rs = tf.image.resize(img[:, y:y+th, x:x+w, :], (self.pool size, self.pool size))
outputs.append (rs)

final output = K.concatenate (outputs, axis=0)
Reshape to (1, num rois, pool size, pool size, nb channels)

Might be (1, 4, 7, 7, 3)
final output = K.reshape(final output, (1, self.num rois, self.pool size, self.pool size,

s elf.nb channels))

def

permute dimensions is similar to transpose
final output = K.permute dimensions(final output, (0, 1, 2, 3, 4))

return final output

get config(self):
config = {'pool size': self.pool size,
'num rois': self.num rois}
base config = super (RoiPoolingConv, self).get config()
return dict (list (base config.items()) + list(config.items()))

112

ResNet-50 model

In [1:
def get img output length(width, height):
return get output length(width), get output length (height)
def get output length (input length):
zero pad
input_iength += 6
apply 4 strided
convolutions filter sizes =
[7, 3, 1, 1] stride = 2
for filter size in filter sizes:
input length = (input length - filter size + stride) //
stride return input length
return get output length(width), get output length (height)

In []:

def identity block(input tensor, kernel size, filters, stage, block, trainable=True):

nb filterl, nb filter2, nb filter3 = filters

bn axis = 3

conv_name base = 'res' + str(stage) + block + ' branch'

bn _name base = 'bn' + str(stage) + block + ' branch'

x = Conv2D(nb filterl, (1, 1), name=conv_name base + '2a', trainable=trainable) (input tensor)
x = BatchNormalization(axis=bn axis, name=bn name base + '2a') (x)

x = Activation ('relu') (x)

b
I

Conv2D(nb_filter2, (kernel size, kernel size), padding='same', name=conv_name base +
'2b', trainable=trainable) (x)

x = BatchNormalization (axis=bn axis, name=bn name base + '2b') (x)

x = Activation('relu') (x) B - -

x = Conv2D(nb filter3, (1, 1), name=conv name base + '2c', trainable=trainable) (x)
x = BatchNormalization (axis=bn axis, name=bn name base + '2c') (x)

x = Add() ([x, input tensor])
x = Activation('relu') (x)
return x

def identity block td(input tensor, kernel size, filters, stage, block, trainable=True):

identity block time distributed

nb filterl, nb filter2, nb filter3 = filters

bn axis = 3
conv_name_base = 'res' + str(stage) + block + ' branch'
bn name base = 'bn' + str(stage) + block + ' branch'

x = TimeDistributed(Conv2D(nb filterl, (1, 1), trainable=trainable,

kernel initializer='normal'), name=conv name base + '2a') (input tensor)
x = TimeDistributed (BatchNormalization (axis=bn axis), name=bn name base + '2a') (x)
X = Activation('relu') (x) B B B

x = TimeDistributed(Conv2D(nb filter2, (kernel size, kernel size), trainable=trainable,
kernel initializer='normal',6padding='same'), name=conv_name base + '2b') (x)

x = TimeDistributed (BatchNormalization (axis=bn axis), name=bn name base + '2b') (x)

X = Activation('relu') (x) - - -

x = TimeDistributed(Conv2D(nb filter3, (1, 1), trainable=trainable,
kernel initializer='normal'), name=conv_name base + '2c') (x)
x = TimeDistributed(BatchNormalization (axis=bn axis), name=bn name base + '2c') (x)

x = Add() ([x, input tensor])
x = Activation('relu') (x)

return x

def conv_block (input tensor, kernel size, filters, stage, block, strides=(2, 2), trainable=True):

nb filterl, nb filter2, nb filter3 = filters

bn_axis = 3
conv_name base = 'res' + str(stage) + block + ' branch'
bn name base = 'bn' + str(stage) + block + ' branch'

x = Conv2D(nb filterl, (1, 1), strides=strides, name=conv_name base + '2a',
trainable=trainable) (input_ tensor)

X = BatchNormalization (axis=bn axis, name=bn name base + '2a') (x)

x = Activation('relu') (x) B B B

x = Conv2D(nb filter2, (kernel size, kernel size), padding='same', name=conv_name base +
'2b', trainable=trainable) (x)

X = BatchNormalization (axis=bn axis, name=bn name base + '2b') (x)
Activation('relu') (x) B B B

e
1

b
Il

Conv2D(nb_filter3, (1, 1), name=conv_name base + '2c', trainable=trainable) (x)
x = BatchNormalization (axis=bn axis, name=bn name base + '2c') (x)

shortcut = Conv2D(nb filter3, (1, 1), strides=strides, name=conv_name base + 'l',
trainable=tra inable) (input tensor)

shortcut = BatchNormalization (axis=bn axis, name=bn name base + 'l') (shortcut)
x = Add () ([x, shortcut])

X = Activation ('relu') (x)

return x

def conv block td(input tensor, kernel size, filters, stage, block, input shape, strides=(2, 2),
tr ainable=True) :

conv block time distributed

nb filterl, nb filter2, nb filter3 = filters

bn axis = 3
conv_name base = 'res' + str(stage) + block + ' branch'
bn_name base = 'bn' + str(stage) + block + ' branch'

x = TimeDistributed(Conv2D(nb filterl, (1, 1), strides=strides, trainable=trainable,

kernel ini tializer='normal'), input shape=input shape, name=conv_name base + '2a') (input_ tensor)
x = TimeDistributed(BatchNormalization (axis=bn axis), name=bn name base + '2a') (x)
x = Activation('relu') (x)
x = TimeDistributed(Conv2D(nb filter2, (kernel size, kernel size), padding='same',

trainable=tr ainable, kernel initializer='normal'), name=conv name base + '2b') (x)
x = TimeDistributed(BatchNormalization (axis=bn axis), name=bn name base + '2b') (x)
x = Activation('relu') (x)

x = TimeDistributed(Conv2D(nb filter3, (1, 1), kernel initializer='normal'),

name=conv_name base + '2c', trainable=trainable) (x)
x = TimeDistributed(BatchNormalization (axis=bn axis), name=bn name base + '2c') (x)

shortcut = TimeDistributed(Conv2D(nb_ filter3, (1, 1), strides=strides, trainable=trainable,
ker nel initializer='normal'), name=conv name base + 'l') (input tensor)
shortcut = TimeDistributed(BatchNormalization(axis=bn axis), name=bn name base + 'l') (shortcut)

x = Add() ([x, shortcut])
x = Activation('relu') (x)
return x
1] 2]

In []:

def nn base(input tensor=None, trainable=False):

Determine proper input shape
input shape = (None, None, 3)
if input tensor is None:

img input = Input (shape=input shape)
else:
if not K.is_ keras tensor (input tensor):

114

img input = Input (tensor=input tensor, shape=input shape)
else:
img input = input tensor
bn_axis = 3

x = ZeroPadding2D((3, 3)) (img_input)

x = Conv2D (64, (7, 7), strides=(2, 2), name='convl', trainable = trainable) (x)
x = BatchNormalization (axis=bn axis, name='bn convl') (x)
x = Activation('relu') (x)
x = MaxPooling2D((3, 3), strides=(2, 2)) (x)
x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1), trainable = trainable)
x = identity block(x, 3, [64, 64, 256], stage=2, block='b', trainable = trainable)
x = identity block(x, 3, [64, 64, 256], stage=2, block='c', trainable = trainable)
x = conv_block(x, 3, [128, 128, 512], stage=3, block='a', trainable = trainable)
x = identity block(x, 3, [128, 128, 512], stage=3, block='b', trainable = trainable)
x = identity block(x, 3, [128, 128, 512], stage=3, block='c', trainable = trainable)
x = identity block(x, 3, [128, 128, 512], stage=3, block='d', trainable = trainable)
x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a', trainable = trainable)
x = identity block(x, 3, [256, 256, 1024], stage=4, block='b', trainable = trainable)
x = identity block(x, 3, [256, 256, 1024], stage=4, block='c', trainable = trainable)
x = identity block(x, 3, [256, 256, 1024], stage=4, block='d', trainable = trainable)
x = identity block(x, 3, [256, 256, 1024], stage=4, block='e', trainable = trainable)
x = identity block(x, 3, [256, 256, 1024], stage=4, block='f', trainable = trainable)
return x

RPN layer

In []:
def rpn layer (base layers, num anchors) :

"""Create a rpn layer
Stepl: Pass through the feature map from base layer to a 3x3 512 channels convolutional la

yer
Keep the padding 'same' to preserve the feature map's size
Step2: Pass the stepl to two (1,1) convolutional layer to replace the fully connected
layer
classification layer: num anchors (9 in here) channels for 0, 1 sigmoid activation
output

regression layer: num anchors*4 (36 in here) channels for computing the
regression of bboxes with linear activation
Args:
base layers: resnet in here
num anchors: 9 in here

Returns:
[x class, x regr, base layers]
x class: classification for whether it's an object
x regr: bboxes regression
base layers: resnet in here

mmn

x = Conv2D (512, (3, 3), padding='same',6 activation='relu', kernel initializer='normal',

name='r pn convl') (base layers)
x class = Conv2D(num anchors, (1, 1), activation='sigmoid', kernel initializer='uniform',
name= 'rpn out class') (x)

x _regr = Conv2D(num anchors * 4, (1, 1), activation='linear', kernel initializer='zero',
name=' rpn out regress') (x)

return [x class, X regr, base layers]

Classifier layer

In []:
def classifier layers(x, input shape, trainable=False):

compile times on theano tend to be very high, so we use smaller ROI pooling regions
to workaround

115

(hence a smaller stride in the region that follows the ROI pool)
x = conv_block td(x, 3, [512, 512, 2048], stage=5, block='a', input shape=input shape,

strides=(2, 2), trainable=trainable)

identity block td(x, 3, [512, 512, 2048], stage=5, block='b', trainable=trainable)
x = identity block td(x, 3, [512, 512, 2048], stage=5, block='c', trainable=trainable)
x = TimeDistributed(AveragePooling2D((7, 7)), name='avg pool') (x)

return x

/| 1]

In []:

def classifier (base layers, input rois, num rois, nb classes = 21, trainable=False):

compile times on theano tend to be very high, so we use smaller ROI pooling regions
to workaround

pooling regions = 14
input shape = (num rois,14,14,1024)
out roi pool = RoiPoolingConv(pooling regions, num rois) ([base layers, input rois])
out = classifier layers(out roi pool, input shape=input shape, trainable=True)
out = TimeDistributed (Flatten()) (out)
out class = TimeDistributed(Dense (nb_classes, activation='softmax',
kernel initializer='zero'), name='dense class {}'.format (nb classes)) (out)

note: no regression target for bg class

out regr = TimeDistributed(Dense(4 * (nb_classes-1), activation='linear',
kernel initializer='z ero'), name='dense regress {}'.format (nb classes)) (out)

return [out class, out regr]

| 1.0]

Calculate loU (Intersection of Union)

In []:

def union(au, bu, area intersection):

area_a = (aul[2] - aul0]) * (au[3] - aulll])
area b = (bul[2] - bul[0]) * (bul[3] - bul[l])
area union = area a + area b - area intersection

return area_union

def intersection(ai, bi)
x = max(ai[0], bi[0])
y = max(ai[l], bi[l])
w = min(aif[2], bi[2]) - x
h = min(ai[3], bi[3]) - vy
if w < 0 or h < O:

return 0

return w*h

def iou(a, b):
a and b should be (x1,y1,x2,y2)
if a[0] >= a[2] or a[l] >= a[3] or b[0] >= b[2] or b[l] >= b[3]:

return 0.0

area 1 = intersection(a, b)

area u = union(a, b, area i)

return float (area i) / float (area_u + le-6)

Calculate the rpn for all anchors of all images

In []:
def calc _rpn(C, img data, width, height, resized width, resized height, img length calc_ function):

""" (Important part!) Calculate the rpn for all anchors
If feature map has shape 38x50=1900, there are 1900x9=17100 potential anchors

116

Args:
C: config

img data: augmented image data

width: original image width (e.g. 600)
height: original image height (e.g. 800)
resized width: resized image width according to C.im size (e.g. 300)

resized height: resized image height according to C.im size (e.g.

400)

img length calc function: function to calculate final layer's feature map (of base model) size

a ccording to input image size

Returns:

y _rpn cls: list(num bboxes, y is box valid + y rpn overlap)

y _1s box valid: 0 or 1 (0 means the box is invalid, 1 means the box is valid)
y_rpn overlap: 0 or 1 (0 means the box is not an object,
4*y rpn overlap + y rpn regr)

y_rpn regr: list(num bboxes,

y _rpn regr: x1,yl,x2,y2 bunding boxes coordinates

mmn

downscale = float (C.rpn stride)

anchor sizes = C.anchor box scales # 128, 256, 512

anchor ratios = C.anchor box ratios
num_anchors = len(anchor_sizes)

calculate the output map size based on the network architecture
img length calc function(resized width, resized height)

(output width, output height)

* len(anchor ratios) # 3x3=9

n_anchratios = len(anchor ratios) # 3

initialise empty output objectives

y_rpn_overlap = np.zeros((output height,

1:1, 1:2*sqrt (2), 2*sqrt(2):1

1 means the box is an object)

output width, num_anchors))

y is box valid = np.zeros((output height, output width, num anchors))
y_rpn_regr = np.zeros((output height, output width, num anchors * 4))

num_bboxes = len(img_data['bboxes'])

num_anchors for bbox = np.zeros(num bboxes) .astype (int)

best anchor for bbox = -1*np.ones((num bboxes, 4)) .astype (int)
best iou for bbox = np.zeros(num bboxes) .astype (np.float32)
best x for bbox = np.zeros ((num bboxes, 4)) .astype (int)

best dx for bbox = np.zeros((num bboxes,

get the GT box coordinates,

and resize to account for image

resizing gta = np.zeros ((num bboxes, 4))
for bbox num, bbox in enumerate (img datal['bboxes']):

get the GT box coordinates,

gta[bbox num, 0] = bbox['xl']
gta[bbox num, 1] = bbox['x2'"]
gta[bbox num, 2] = bbox['yl']
gta[bbox num, 3] = bbox['y2']

rpn ground truth

and resize to account for image resizing

*

*

*

*

(resized width / float (width))
(resized width / float (width))
(resized height / float (height))
(resized height / float (height))

for anchor size idx in range (len(anchor sizes)):

for anchor ratio idx in range(n_anchratios):

anchor x = anchor sizes[anchor size idx] * anchor ratios[anchor ratio idx] [0]

anchor_y = anchor_sizes[anchor_ size_ idx]

for ix in range(output width):

x-coordinates of the current anchor box
x1 anc = downscale * (ix + 0.5) - anchor x / 2
x2 anc = downscale * (ix + 0.5) + anchor x / 2

ignore boxes that go across image

boundaries if x1 anc < 0 or x2 anc >

resized width: continue

for jy in range (output height):

y-coordinates of the current anchor box
yl_anc = downscale * (jy + 0.5) - anchor_y / 2
y2 anc = downscale * (jy + 0.5) + anchor y / 2

ignore boxes that go across image

boundaries if yl anc < 0 or y2 anc >

resized height: continue

bbox type indicates whether an anchor should be a target

4)) .astype (np.float32)

* anchor_ratios[anchor ratio_idx][1]

117

Initialize with 'negative'

bbox_type = 'neg'

this is the best IOU for the (x,y) coord and the current anchor
note that this is different from the best IOU for a GT

bbox best iou for loc = 0.0

for bbox num in range (num bboxes) :

get IOU of the current GT box and the current anchor box

curr_iou = iou([gta[bbox num, 0], gtal[bbox num, 2], gtalbbox num, 1], gta[bbox num,
311, [xl1 anc, yl anc, x2 anc, y2 anc])

calculate the regression targets if they will be needed

if curr iou > best iou for bbox[bbox num] or curr iou > C.rpn max overlap:
11) / 2.0
31) / 2.0

cx = (gta[bbox num, 0] + gta[bbox_ num,
cy = (gta[bbox num, 2] + gta[bbox num,
cxa = (x1 _anc + x2 anc)/2.0
cya = (yl _anc + y2 anc)/2.0

x,y are the center point of ground-truth bbox
xa,yva are the center point of anchor bbox (xa=downscale * (ix + 0.5); ya=downscale *

(iy+0.5))
w,h are the width and height of ground-truth bbox
wa,ha are the width and height of anchor bboxe
tx = (x - xa) / wa
ty = (y - va) / ha
tw = log(w / wa)
th = log(h / ha)
tx = (cx - cxa) / (x2_anc - x1 anc)
ty = (cy - cya) / (y2 anc - yl anc)
tw = np.log((gta[bbox num, 1] - gta[bbox num, 0]) /
th = np.log((gta[bbox num, 3] - gtal[bbox num, 2]) /

if img datal['bboxes'] [bbox num] ['class']

all GT boxes should be mapped to an anchor box,

best

= "bg':

if curr iou > best iou for bbox[bbox num]:
best anchor for bbox[bbox num] = [jy,

best x for bbox[bbox num,

y2_anc] best dx for bbox[bbox num, :]

ix,

[txl tyl twl

Cy

th]

(x2_anc - x1 anc))
(y2 anc - yl anc))

so we keep track of which anchor box was

anchor ratio idx,
anchor size idx] best iou for bbox[bbox num] = curr iou
:] = [xl1_anc, x2 anc, yl an

we set the anchor to positive if the IOU is >0.7 (it does not matter if there was
another better box, it just indicates overlap)
if curr iou > C.rpn max overlap:

bbox type = 'pos'

num_anchors_for bbox[bbox num] += 1

we update the regression layer target if this IOU is the best for the current (x,y)

and anchor position
if curr iou > best

best iou for loc

best _regr = (tx,

_iou for loc:

= curr_iou

ty, tw, th)

1f the IOU is >0.3 and <0.7, it is ambiguous and no included in the objective

if C.rpn min overlap

gray zone between neg and

pos if bbox type

!= "pos':

bbox type = 'neutral'

turn on or off outputs depending on
IOUs if bbox type == 'neg':

y_1is_box_valid[jy,
1 y rpn overlapljy,
0 elif bbox type ==
y_is box valid[jy,
0 y rpn overlapl(jy,
0 elif bbox type ==
y_1is_box_valid[jy,
1 y rpn overlapl[jy,

ix, anchor ratio idx
ix, anchor ratio idx
'neutral’':

ix, anchor ratio idx
ix, anchor ratio idx
'pos':

ix, anchor ratio idx

+

+

< curr_iou < C.rpn max overlap:

n_anchratios
n_anchratios

n_anchratios
n_anchratios

n_anchratios

*

anchor_size_idx] =
anchor size idx] =

anchor size idx] =
anchor_size_ idx] =

anchor_size_idx] =

ix, anchor ratio idx + n_anchratios * anchor size idx]

= 1 start = 4 * (anchor ratio idx + n anchratios * anchor size idx)

y_rpn_regr(jy, ix,

start:start+4] = best regr

we ensure that every bbox has at least one positive RPN region

for idx in range (num_anchors_ for bbox.shape[0]) :

if num anchors for bbox[idx] == 0:

118

no box with an IOU greater than zero
if best anchor for bbox[idx, 0] == -1:
continue
y_is box valid[
best anchor for bbox[idx,0], best anchor for bbox[idx,1], best anchor for bbox[idx,2] + n_anchr
atios *
best anchor for bbox[idx,3]] =1
y _rpn overlap|
best anchor for bbox[idx, 0], best anchor for bbox[idx,1], best anchor for bbox[idx,2] +
n_anchr atios *

best anchor for bbox[idx,3]] =1

start = 4 * (best anchor for bbox[idx,2] + n_anchratios *

best anchor for bbox[idx,3]) y rpn regr[

best anchor for bbox[idx,0], best anchor for bbox[idx,1], start:start+4] = best dx for bbox[idx

g 8]

y_rpn _overlap = np.transpose(y rpn overlap, (2, 0, 1))
y_rpn_overlap = np.expand dims(y rpn overlap, axis=0)

y _is box valid = np.transpose(y is box valid, (2, 0, 1))
y_is box valid = np.expand dims(y is box valid, axis=0)

y_rpn _regr = np.transpose(y rpn regr, (2, 0, 1))
y_rpn_regr = np.expand dims(y rpn regr, axis=0)

pos_locs = np.where(np.logical and(y rpn overlap(O, :, :, :] == 1, y is box valid[0, :, :, :] ==1
))

neg locs = np.where(np.logical and(y rpn overlap(0, :, :, :] == 0, y is box valid[0, :, :, :] ==
))

num pos = len(pos locs[0])

one issue is that the RPN has many more negative than positive regions, so we turn off some

of the negative
regions. We also limit it to 256 regions.

num_regions = 256
if len(pos_locs[0]) > num regions/2:
val locs = random.sample (range (len(pos locs[0])), len(pos_locs[0]) - num_regions/Z)
y_is box wvalid[0, pos locs[0][val locs], pos_locs[1l][val locs], pos_locs[2][val locs]]
= 0 num pos = num regions/2
if len(neg locs[0]) + num pos > num regions:
val locs = random.sample (range (len(neg locs[0])), len(neg locs[0]) - num pos)
y_is_box_valid[O, neg locs[0] [val locs], neg locs[1l][val locs], neg locs[2][val locs]] = 0
y rpn cls = np.concatenate([y is box valid, y rpn overlap], axis=l)

y_Irpn_regr = np.concatenate([np.repeat(y rpn overlap, 4, axis=1), y rpn regr],

axis=1) return np.copy(y rpn cls), np.copy(y rpn regr), num pos

Get new image size and augment the image

In []:
def get new img size(width, height, img min side=300):
if width <= height:
f = float(img min side) / width
resized height = int(f * height)
resized width = img min side
else:
f = float (img min side) / height

resized width = int(f * width)
resized height = img min side

return resized width, resized height

def augment (img data, config, augment=True):

assert 'filepath' in img data
assert 'bboxes' in img data
assert 'width' in img data
assert 'height' in img data

img data aug = copy.deepcopy (img data)

119

img = cv2.imread(img data aug['filepath'])

if augment:

rows,

cols = img.shape[:2]

if config.use horizontal flips and np.random.randint (0O,

img

for
x1
x2
bbo
bbo

= cv2.flip(img, 1)
bbox in img data aug['bboxes']:

= bbox['x1l"']
= bbox['x2"']
x['"x2'] = cols - x1
x['x1'] = cols - x2

if config.use vertical flips and np.random.randint (0, 2)

e = np.random.choice([0,90,180,270],1) [0]

img data aug['width']

(1,0,2))

(1,0,2))

img = cv2.flip(img, O0)
for bbox in img data aug(['bboxes']:
yl = bbox['yl']
y2 = bbox['y2']
bbox['y2'] = rows - yl
bbox['yl'] = rows - y2
if config.rot 90:
angl
if angle == 270:
img = np.transpose (img,
img = cv2.flip(img, O0)
elif angle == 180:
img = cv2.flip(img, -1)
elif angle == 90
img = np.transpose (img,
img = cv2.flip(img, 1)
elif angle ==
pass

for bbox in

x1 = bbox|[

x2 = bbox|['
vyl = bbox['
y2 = bbox['
if angle ==
bbox['x1"]
bbox ["'x2"]
bbox['yl'"]
bbox['y2']
elif angle

bbox['x2"]
bbox ["'x1"]
bbox['y2']
bbox['yl']
elif angle

bbox['x1"]
bbox ["'x2"]
bbox['yl'"]
bbox['y2"']
elif angle

pass

img data aug('bboxes']:

x1"]
x2"']

yl']

y2']

270:

=yl

= y2

= cols - x2
= cols - x1
== 180:

= cols - x1
= cols - x2
= rows - yl
= rows - y2
== 90:

= rows - y2
= rows - yl
= x1

= img.shape[1l]

img data aug['height'] = img.shape[0]
return img data aug, img

Generate the ground_truth anchors

In

def get anchor gt(all img data, C, img length calc function, mode='train'):

[1:

"mroyield the ground-truth anchors as Y (labels)

Args:
all img data: list(filepath, width, height, list (bboxes))

C: config

img length calc function: function to calculate final layer's feature map (of base model) size
ccording to input image size

mode: 'train'

or 'test';

"train' mode need augmentation

120

Returns:

x 1img: image data after resized and scaling (smallest size = 300px)
Y: [y rpn cls, y rpn regr]

img data aug: augmented image data (original image with augmentation)
debug img: show image for debug

num pos: show number of positive anchors for debug

mmn

while True:

for img data in all img data:

try:
read in image, and optionally add augmentation

if mode == 'train':

img data aug, x _img = augment (img data, C, augment=True)
else:
img data aug, x_img = augment (img data, C, augment=False)

(width, height) = (img data aug['width'], img data aug['height'])
(rows, cols,) = x img.shape

assert cols == width

assert rows == height

get image dimensions for resizing
(resized width, resized height) = get new img size(width, height, C.im size)

resize the image so that smalles side is length = 300px

X _img = cv2.resize(x img, (resized width, resized height), interpolation=cv2.INTER CUBIC)

debug img = x img.copy ()

try:
y rpn_ cls, y rpn regr, num pos = calc rpn(C, img data aug, width, height, resized width,
resiz ed height, img length calc_ function)
except:
continue

Zero-center by mean pixel, and preprocess image

x img = x img[:,:, (2, 1, 0)] # BGR -> RGB
x img = x img.astype (np.float32)

x img[:, :, 0] -= C.img channel mean([O0]
x img[:, :, 1] -= C.img channel mean([1]
x img[:, :, 2] -= C.img channel mean([2]

x_img /= C.img_scaling factor

X _img = np.transpose(x_img, (2, 0, 1))
x img = np.expand dims(x img, axis=0)

y rpn regr[:, y rpn regr.shape[l]//2:, :, :] *= C.std scaling

x img = np.transpose(x img, (0, 2, 3, 1))
y_rpn _cls = np.transpose(y rpn cls, (0, 2, 3, 1))
y_rpn_regr = np.transpose(y rpn regr, (0, 2, 3, 1))
yield np.copy(x img), [np.copy(y rpn cls), np.copy(y rpn regr)], img data aug,
debug img, num pos
except Exception as e:

print (e)
continue

Define loss functions for all four outputs

In []:

lambda rpn regr = 1.0
lambda rpn_class = 1.0

lambda cls_regr = 1.0
lambda cls class = 1.0

121

epsilon = le-4

In []:
def rpn loss_ regr (num anchors) :
"""I,oss function for rpn regression
Args:
num_anchors: number of anchors (9 in here)
Returns:
Smooth L1 loss function
0.5*x*x (if x abs < 1)
x abx - 0.5 (otherwise)

mmn

def rpn loss regr fixed num(y true, y pred):

x is the difference between true value and predicted
vaue X = y truel[:, :, :, 4 * num anchors:] - y pred

absolute value of x
x abs = K.abs(x)

If x abs <= 1.0, x bool =1
x bool = K.cast(K.less equal(x _abs, 1.0), tf.float32)

return lambda rpn regr * K.sum(
y truel:, :, :, :4 * num anchors] * (x bool * (0.5 * x * x) + (1 - x bool) * (x abs - 0.5
))) / K.sum(epsilon + y true[:, :, :, :4 * num anchors])

return rpn loss regr fixed num

def rpn loss cls (num_anchors) :

"""ILoss function for rpn classification
Args:
num_anchors: number of anchors (9 in here)
y_ truefl:, :, :, :9]: [0,1,0,0,0,0,0,1,0] means only the second and the eighth box is
valid which contains pos or neg anchor => isValid
y truef:, :, :, 9:]: [0,1,0,0,0,0,0,0,0] means the second box is pos and eighth box is neg
ative
Returns:
lambda * sum((binary crossentropy(isValid*y pred,y true))) / N

mmn

def rpn loss cls fixed num(y true, y pred):
return lambda rpn_ class * K.sum(y true[:, :, :, :num anchors] * K.binary crossentropy(y
pred[:, :, :, :]1, y true[:, :, :, num anchors:])) / K.sum(epsilon + y true[:, :, :, :num_anchors])

return rpn loss cls fixed num

def class loss regr(num classes):
"""TLoss function for rpn regression
Args:
num_anchors: number of anchors (9 in here)
Returns:
Smooth L1 loss function
0.5*x*x (if x abs < 1)
x abx - 0.5 (otherwise)
mrmnn
def class loss regr fixed num(y true, y pred):
X =y true[:, :, 4*num classes:] -
y_pred x_abs = K.abs (x)
x _bool = K.cast(K.less equal(x_abs, 1.0), 'float32')
return lambda cls regr * K.sum(y true[:, :, :4*num classes] * (x bool * (0.5 * x * x) + (1 -
x bool) * (x abs - 0.5))) / K.sum(epsilon + y true[:, :, :4*num classes])
return class_loss_regr_fixed num

def class loss cls(y true, y pred):

return lambda cls class * K.mean(categorical crossentropy(y true[0, :, :], y pred[O0, :, :1))

4] 1;5

In []:
def non max suppression fast (boxes, probs, overlap thresh=0.9, max boxes=300) :

code used from here: http://www.pyimagesearch.com/2015/02/16/faster-non-maximum-suppression-

122

python/
i1f there are no boxes, return an empty list

Process explanation:
Step 1: Sort the probs list
Step 2: Find the larget prob 'Last' in the list and save it to the pick list
Step 3: Calculate the IoU with 'Last' box and other boxes in the list. If the IoU is
large r than overlap threshold, delete the box from 1list
Step 4: Repeat step 2 and step 3 until there is no item in the probs list
if len(boxes) ==
return []

H o H

grab the coordinates of the bounding
boxes x1 = boxes[:, 0]

yl = boxes[:, 1]

x2 = boxes[:, 2]

y2 = boxes[:, 3]

np.testing.assert array less(xl, x2)
np.testing.assert array less(yl, y2)

1f the bounding boxes integers, convert them to floats --
this is important since we'll be doing a bunch of
divisions if boxes.dtype.kind == "i"

boxes = boxes.astype ("float")

initialize the 1list of picked indexes
pick = []

calculate the areas
area = (x2 - x1) * (y2 - yl)

sort the bounding boxes
idxs = np.argsort (probs)

keep looping while some indexes still remain in the indexes
list
while len(idxs) > 0:

grab the last index in the indexes list and add the

index value to the list of picked indexes

last = len(idxs) - 1

i = idxs[last]

pick.append (1)

find the intersection

xx1l int = np.maximum(x1[i], x1[idxs[:last]])
yyl int = np.maximum(yl[i], yl[idxs[:last]])
xx2 int = np.minimum(x2[i], x2[idxs[:last]])
yy2_int = np.minimum(y2[i], y2[idxs[:last]])
ww_int = np.maximum(0, xx2 int - xxl1 int)

hh int = np.maximum(0, yy2 int - yyl int)
area_int = ww_int * hh int

find the union
area union = area[i] + area[idxs[:last]] - area int

compute the ratio of overlap overlap

= area_int/(area union + le-6)

delete all indexes from the index list that have
idxs = np.delete(idxs, np.concatenate(([last],
np.where (overlap > overlap thresh) [0])))

if len(pick) >= max boxes:

break

return only the bounding boxes that were picked using the integer data
type boxes = boxes[pick].astype("int")
probs = probs|[pick]

return boxes, probs
def apply regr np(X, T):

"""Apply regression layer to all anchors in one feature map

123

Args:
X: shape=(4, 18, 25) the current anchor type for all points in the feature map
T: regression layer shape=(4, 18, 25)

Returns:

X: regressed position and size for current anchor
mrrn

try:
x = X[0, :, :]
y = X[1, :, :]
w = X[2, :, :]
h = X[3, :, :]
tx = T[O0, :, :]
ty = T[1, :, :]
tw = TI[2, , 1]
th = T[3, :, :1]

cx = x + w/2.
cy =y + h/2.
cxl = tx * w + cx
cyl = ty * h + cy

wl = np.exp(tw.astype (np.float6d)) * w
hl = np.exp(th.astype(np.float64)) * h
x1l = cx1 - wl/2.
yl = cyl - hl/2.

x1 = np.round(x1l)
yl = np.round(yl)
wl = np.round(wl)
hl = np.round(hl

(T

)
return np.stack([xl, y1l, wl, hl])
except Exception as e:
print (e)
return X

def apply regr(x, y, w, h, tx, ty, tw, th):

Apply regression to x, y, w and
h try:

cx = x + w/2. cy

=y + h/2. cx1 =

tx * w + cx cyl

=ty * h + cy

wl = math.exp(tw) * w

hl = math.exp(th) * h

x1 = ¢cx1 - wl/2.

yl = cyl - hl/2.

x1 = int (round (x1))
yl = int (round(yl))
wl = int (round(wl))
hl = int (round(hl))

return x1, yl, wl, hl

except ValueError:
return x, y, w, h
except OverflowError:
return x, y, w, h
except Exception as e:
print (e)
return x, y, w, h

def calc iou(R, img data, C, class mapping):

"""Converts from (x1,yl,x2,y2) to (x,y,w,h) format

Args:
R: bboxes, probs

mmwn

bboxes = img datal'bboxes']

(width, height) = (img data['width'], img data['height'])
get image dimensions for resizing
(resized width, resized height) = get new img size(width, height, C.im size)

gta = np.zeros((len(bboxes), 4))

for bbox num, bbox in enumerate (bboxes) :

124

get the GT box coordinates, and resize to account for image resizing

gta[bbox num, 0] = (40 * (600 / 800)) / 16 = int(round(1.875)) = 2 (x in feature map)
gta[bbox num, 0] ['x1'] * (resized width / float (width))/C.rpn stride))

] = int(round(bbox['x2'] * (resized width / float(width))/C.rpn_stride))

] ['yl'] * (resized height / float (height))/C.rpn stride))
] ['y2'] * (resized height / float (height))/C.rpn stride))

0] = int (round (bbox
gta[bbox num, 1
gta[bbox num, 2] = int (round (bbox
[3

gta[bbox num, = int (round (bbox

x roi = []

y_class num = []

y _class _regr coords = []

y class regr label = []

IoUs = [] # for debugging only

R.shape[0]: number of bboxes (=300 from non max suppression)
for ix in range (R.shape([0]):

(x1, yl, x2, y2) = R[ix, :]
x1 = int (round(x1l))

yl = int (round(yl))

x2 = 1int (round (x2))

y2 = int (round(y2))

best iou = 0.0
best bbox = -1
Iterate through all the ground-truth bboxes to calculate the
iou for bbox num in range (len (bboxes)) :
curr_iou = iou([gtal[bbox num, 0], gta[bbox num, 2], gta[bbox num, 1], gta[bbox num, 3]1],
[x1, yl, %2, y2])

Find out the corresponding ground-truth bbox num with larget
iou if curr iou > best iou:
best iou = curr iou
best_bbox = bbox_ num
if best iou < C.classifier min overlap:
continue
else:
w = x2 - x1
h =y2 - vyl
X _roi.append([x1l, yl, w, h])
IoUs.append (best iou)

if C.classifier min overlap <= best iou < C.classifier max overlap:

hard negative example
cls_name = 'bg'
elif C.classifier max overlap <= best iou:
cls name = bboxes[best bbox]['class']
cxg = (gta[best bbox, 0] + gtalbest bbox, 1]) / 2.0
cyg = (gtalbest bbox, 2] + gtalbest bbox, 3]) / 2.0

cx =x1 +w/ 2.0
cy =yl +h / 2.0

tx = (cxg - cx) / float (w)

ty = (cyg - cy) / float(h)

tw = np.log((gta[best bbox, 1] - gta[best bbox, 0]) / float(w))

th = np.log((gta[best bbox, 3] - gtal[best bbox, 2]) / float (h))
else:

print('roi = {}'.format (best iou))

raise RuntimeError

class num = class mapping[cls name]

class label = len(class mapping) * [0]

class label[class num] = 1

y_class num.append (copy.deepcopy (class_ label))

coords = [0] * 4 * (len(class mapping) - 1)

labels = [0] * 4 * (len(class mapping) - 1)

if cls name != 'bg':
label pos = 4 * class_num
sx, sy, sw, sh = C.classifier regr std
coords[label pos:4+label pos] = [sx*tx, sy*ty, sw*tw, sh*th]
labels[label pos:4+label pos] (1, 1, 1, 1]
y _class regr coords.append (copy.deepcopy (coords))
y class regr label.append (copy.deepcopy (labels))

else:
y _class regr coords.append (copy.deepcopy (coords))
y_class regr label.append(copy.deepcopy (labels))

125

if len(x roi) ==

return None, None, None, None

bboxes that iou > C.classifier min overlap for all gt bboxes in 300 non max suppression bbox
es

X = np.array(x_roi)

one hot code for bboxes from above => x roi (X)

Yl = np.array(y class num)

corresponding labels and corresponding gt bboxes

Y2 = np.concatenate([np.array(y class regr label),np.array(y class regr coords)],axis=1)
return np.expand dims (X, axis=0), np.expand dims(Yl, axis=0), np.expand dims (Y2, axis=0), IoUs

4]]LE

In []:
def rpn to roi(rpn layer, regr layer, C, dim ordering, use regr=True, max boxes=300,overlap thresh=

©.9) g
"""Convert rpn layer to roi bboxes

Args: (num _anchors = 9)

rpn layer: output layer for rpn classification

shgbe (1, feature map.height, feature map.width, num anchors)
Might be (1, 18, 25, 18) if resized image is 400 width and 300
regr layer: output layer for rpn regression

shape (1, feature map.height, feature map.width, num anchors)
Might be (1, 18, 25, 72) if resized image is 400 width and 300
C: config

use regr: Wether to use bboxes regression in rpn
max _boxes: max bboxes number for non-max-suppression (NMS)
overlap thresh: If iou in NMS is larger than this threshold, drop the box

Returns:
result: boxes from non-max-suppression (shape= (300, 4))

boxes: coordinates for bboxes (on the feature map)
mrirn

regr layer = regr layer / C.std scaling
anchor sizes = C.anchor box scales # (3 in here)
anchor ratios = C.anchor box ratios # (3 in here)

assert rpn layer.shape[0] ==

(rows, cols) = rpn layer.shape[l:3]
curr_layer = 0
A.shape = (4, feature map.height, feature map.width, num anchors)

Might be (4, 18, 25, 18) if resized image is 400 width and 300

A is the coordinates for 9 anchors for every point in the feature map

=> all 18x25x9=4050 anchors cooridnates

A = np.zeros((4, rpn layer.shape[l], rpn layer.shape[2], rpn layer.shape[3]))

for anchor size in anchor sizes:

for anchor ratio in anchor ratios:

anchor x = (128 * 1) / 16 = 8 => width of current anchor
anchor y = (128 * 2) / 16 = 16 => height of current anchor
anchor x = (anchor size * anchor ratio[0])/C.rpn stride

anchor y = (anchor size * anchor ratio[l])/C.rpn stride

curr layer: 0~8 (9 anchors)

the Kth anchor of all position in the feature map (9th in total)

regr = regr layer[0, :, :, 4 * curr layer:4 * curr layer + 4] # shape => (18, 25, 4)
regr = np.transpose(regr, (2, 0, 1)) # shape => (4, 18, 25)

Create 18x25 mesh grid

For every point in x, there are all the y points and vice versa
X.shape = (18, 25)

Y.shape = (18, 25)

X, Y = np.meshgrid(np.arange (cols),np. arange (rows))

Calculate anchor position and size for each feature map point

A[O0, :, :, curr_layer] = X - anchor x/2 # Top left x coordinate
A[l, :, :, curr_layer] = Y - anchor y/2 # Top left y coordinate
A[2, :, :, curr layer] =anchor x # width of current anchor
A[3, :, :, curr_layer] =anchor y # height of current anchor

126

Apply regression to x, y, w and h if there is rpn regression
layer if use regr:
A[:, :, :, curr_ layer] = apply regr np(A[:, :, :, curr layer], regr)

Avoid width and height exceeding 1
A[2, :, :, curr layer] = np.maximum(l, A[2, :, :, curr layer])
A[3, :, :, curr layer] = np.maximum(l, A[3, :, :, curr layer])

Convert (x, y , w, h) to (x1, yl, x2, y2)

x1, yl is top left coordinate

x2, y2 is bottom right coordinate

A[2, :, :, curr layer] += A[O0, :, :, curr layer]
A[3, :, :, curr_layer] += A[l, :, :, curr layer]

Avoid bboxes drawn outside the feature map

A[O, :, :, curr layer] = np.maximum(O0, A[O, :, :, curr layer])
All, :, :, curr layer] = np.maximum(0, A[l, :, :, curr layer])
A[2, :, :, curr layer] = np.minimum(cols-1, A[2, :, :, curr layer])
A[3, :, :, curr layer] = np.minimum(rows-1, A[3, :, :, curr layer])

curr_layer += 1
all boxes = np.reshape(A.transpose((0, 3, 1, 2)), (4, -1)).transpose((l, 0)) # shape=(4050, 4)
all probs = rpn layer.transpose((0, 3, 1, 2)).reshape((-1)) # shape=(4050,)

xl = all boxes[:, 0]
yl all boxes[:, 1]
x2 = all boxes[:, 2]
y2 all boxes[:, 3]

Find out the bboxes which is illegal and delete them from bboxes

list idxs = np.where((xl - x2 >= 0) | (yl - y2 >= 0))

all boxes = np.delete(all boxes, idxs, 0)
all probs = np.delete(all probs, idxs, 0)

Apply non max suppression
Only extract the bboxes. Don't need rpn probs in the later process
result = non max suppression fast(all boxes, all probs, overlap thresh=overlap thresh,

max boxes=m ax boxes) [0]

return result

Start training

In []:

base path = 'drive/My Drive/GP'

train path = 'drive/My Drive/GP/Dataset/annotation.txt' # Training data (annotation file)
num rois = 4 # Number of RoIs to process at once.

Augmentation flag
horizontal flips = True # Augment with horizontal flips in training.
vertical flips = True # Augment with vertical flips in training.

rot 90 = True # Augment with 90 degree rotations in training.

output weight path = os.path.join(base path, 'model/model frcnn resnet50.hdf5")

record path = os.path.join (base path, 'model/record.csv') # Record data (used to save the

losses, classification accuracy and mean average precision)

base weight path = os.path.join(base path, 'model/resnet50 weights tf dim ordering tf kernels.h5')

config output filename = os.path.join(base path, 'model resnet config.pickle')

127

In []:

Create the config
C = Config()

C.use horizontal flips = horizontal flips
C.use vertical flips = vertical flips
C.rot 90 = rot 90

C.record path = record path
C.model path = output weight path
C.num rois = num rois

C.base net weights = base weight path

In []
i #
This step will spend some time to load the data
i #
st = time.time ()

train imgs, classes count, class mapping = get data(train path)
print ()
print ('Spend %0.2f mins to load the data' $ ((time.time()-st)/60))

In []:

if 'bg' not in classes count:

classes count['bg'] = 0

class mapping['bg'] = len(class mapping)

e.qg.

classes count: {'Car': 2383, 'Mobile phone': 1108, 'Person': 3745, 'bg': 0}
class mapping: {'Person': 0, 'Car': 1, 'Mobile phone': 2, 'bg': 3}

C.class mapping = class mapping

print ('Training images per class:')

pprint.pprint (classes count)

print ('Num classes (including bg) = {}'.format (len(classes count)))
print (class _mapping)

Save the configuration

with open(config output filename, 'wb') as config f:

pickle.dump (C,config f)

print ('Config has been written to {}, and can be loaded when testing to ensure correct

results'.f ormat (config output filename))

In []:

Shuffle the images with
seed random.seed (1)

random.shuffle (train_ imgs)

print ('Num train samples (images) {}'.format (len(train imgs)))

In []:

Get train data generator which generate X, Y, image data
data gen train = get anchor gt (train imgs, C, get img output length, mode='train')

Explore 'data_gen_train'

data_gen_train is an generator, so we get the data by calling next(data_gen_train)

In []:

X, Y, image data, debug img, debug num pos = next(data gen train)

In []:

128

print ('Original image: height=%d width=%d'% (image data['height'], image data['width']))

print ('Resized image: height=%d width=%d C.im size=%d'%(X.shape[l], X.shape[2], C.im size))
print ('Feature map size: height=%d width=%d C.rpn_strlde %d'(Y[0] .shape[1l], Y[O].shapel2],
C.rpn_s tride))

print (X.shape)

print (str(len(Y))+" includes 'y rpn cls' and 'y rpn regr'")

print ('Shape of y rpn cls {}'.format(Y[0].shape))

print ('Shape of y rpn regr {}'.format(Y[1l].shape))

print (image data)

o

print ('Number of positive anchors for this image: %d' % (debug num pos))

if debug num pos==0:

gt x1, gt x2 = image data['bboxes'][0]['x1l']*(X.shape[2]/image datal['height']),
image data['bbo xes'][0]['x2']* (X. shape[2]/image _data['height'])

gt yl, gt y2 = image data['bboxes'][0]['yl']*(X.shape[l]/image data['width']),
image data['bbox es'][0]['y2']* (X shape[l]/lmage data['width'])

gt x1, gt yl, gt x2, gt y2 = int(gt x1), int(gt yl), int(gt x2), int(gt y2)

img = debug img.copy ()

img = cv2.cvtColor (img, cv2.COLOR BGRZRGB)

color = (0, 255, 0)

cv2.putText (img, 'gt bbox', (gt x1, gt yl-5), cv2.FONT HERSHEY DUPLEX, 0.7, color, 1)
cv2.rectangle (img, (gt x1, gt yl), (gt x2, gt y2), color, 2)

cv2.circle(img, (int((gt xl+gt x2)/2), int((gt yl+gt y2)/2)), 3, color, -1)

plt.grid()
plt.imshow (img)
plt.show ()
else:
cls = Y[0][O]
pos_cls = np.where (cls==1)

print (pos_cls)

regr = Y[1][O0]

pos_regr = np.where (regr==1)

print (pos_regr)

print ('y rpn cls for possible pos anchor: {}'.format(cls[pos cls[0][0],pos cls[1][0],:]))
print ('y rpn regr for positive anchor: {}'.format (regr[pos regr[0][0],pos regr[1][0],:]1))

gt x1, gt x2 = image data['bboxes'][0]['x1'"']* (X. shape[ZJ/image_data['width']),
image data['bbox es'][0]['x2']*(X.shape[2]/1 image datal['width'])

gt yl, gt y2 = 1mage data['bboxes'][0]['yl']* (X.shape[l]/image data['height']),
image_aata['bgo xes'][0]['y2']*(X.shape[l]/image ~data['height']) B

gt x1, gt yl, gt x2, gt y2 = int(gt x1), int(gt_yl), int(gt x2), int(gt_y2)

img = debug img.copy ()

img = cv2.cvtColor (img, cv2.COLOR BGR2RGB)

color = (0, 255, 0)

cv2.putText (img, 'gt bbox', (gt x1, gt yl1-5), cv2.FONT HERSHEY DUPLEX, 0.7, color,
1) cv2.rectangle (img, (gt _x1, gt yl), (gt x2, gt y2), color, 2)

cv2.circle (img, (int((gt xl+gt x2)/2), int((gt yl+gt y2)/2)), 3, color, -1)

Add text

textLabel = 'gt bbox'

(retval,baseline) = cv2.getTextSize (textLabel, cv2.FONT HERSHEY COMPLEX,0.5,1)

textOrg = (gt _x1, gt yl+5)

cv2.rectangle (img, (textOrg[0] - 5, textOrg[l]+baseline - 5), (textOrg[0]+retvall0] + 5,
textOrg [l]-retvalll] - 5), (0, 0, 0), 2)

cv2.rectangle (img, (textOrg[0] - 5,textOrg[l]+baseline - 5), (textOrg[0O]+retvall0] + 5,
textOrg[1l]-retval[l] - 5), (255, 255, 255), -1)

cv2.putText (img, textLabel, textOrg, cv2.FONT HERSHEY DUPLEX, 0.5, (0, 0, 0), 1)

Draw positive anchors according to the
vy rpn regr for i in range (debug num pos) :

color = (100+i*(155/4), 0, 100+i*(155/4))

idx = pos regr[2][i*4]/4
anchor size = C.anchor box scales[int (idx/3)]

anchor ratio = C.anchor box ratios[2-int ((idx+1)%3)]

center = (pos regr[l][i*4]*C.rpn stride, pos regr([0] [i*4]*C.rpn stride)
print ('Center position of positive anchor: ', center)
cv2.circle(img, center, 3, color, -1)
anc_w, anc_h = anchor size*anchor ratio[0], anchor size*anchor ratio[1l]
cv2.rectangle (img, (center([0]-int(anc_w/2), center[l]-int(anc_h/2)), (center[0]+int (anc_w/2)
, center[l]+int(anc_h/2)), color, 2)
cv2.putText (img, 'pos anchor bbox '+str(i+l), (center([0]-int(anc w/2), center[1]-

129

int (anc_h/2)-5), cv2.FONT HERSHEY DUPLEX, 0.5, color, 1)

print ('Green bboxes is ground-truth bbox.

plt.figure (figsize=(8,8))

plt.grid()

plt.imshow (img)

plt.show ()

Build the model

In []:

input shape img = (None, None, 3)

img input
roi input

Input (shape=input shape img)
Input (shape= (None, 4))

define the base network (can be VGG, Resnet50, Inception, etc)

shared layers = nn base(img input, trainable=True)

In []:

define the RPN, built on the base layers
num _anchors

9 rpn =
classifier
traina ble

model rpn

= len(C.anchor box scales) * len(C.anchor_box_ratios)

rpn_layer (shared layers, num_anchors)

classifier (shared layers, roi input, C.num rois, nb classes=len(classes count),

True)

Model (img input, rpn[:2])

model classifier = Model([img input, roi input], classifier)

this is a model that holds both the RPN and the classifier,

mo dels
model all

Because the google colab can only run the session several hours one time (then you need to

Model ([img_input, roi input], rpn[:2] + classifier)

conne ct again),

we need to save the model and load the model to continue training

if not os.path.isfile(C.model path):

#If this is the begin of the training,

16 try

print ('This is the first time of your training')

print ('loading weights from {}'.format (C.base net weights))
model rpn.load weights(C.base net weights, by name=True)
model classifier.load weights(C.base net weights, by name=True)

except

print ('Could not load pretrained model weights. Weights can be found in the

keras application folder \
https://github.com/fchollet/keras/tree/master/keras/applications’)

Create the record.csv file to record losses, acc and mAP

record df = pd.DataFrame (columns=['mean overlapping bboxes', 'class acc',

'loss rpn regr', 'loss class cls', 'loss class regr', 'curr loss',

else:

If this is a continued training, load the trained model from
before print ('Continue training based on previous trained model')
print ('Loading weights from {}'.format (C.model path))
model rpn.load weights(C.model path, by name=True)

model classifier.load weights(C.model path, by name=True)

Load the records
record df = pd.read csv(record path)

r mean overlapping bboxes = record df['mean overlapping bboxes']
r class_acc = record df['class acc']

r loss _rpn cls = record df['loss rpn cls']

r loss rpn regr = record df['loss rpn regr']

r loss _class_cls = record df['loss class cls']

r loss class_regr = record df['loss class regr']

r curr loss = record df['curr loss']

r elapsed time = record df['elapsed time']

r mAP = record df['mAP']

Others are positive anchors')

'elapsed time',

load the pre-traind base network such as vgg-

'loss rpn cls',

"mAP'])

used to load/save weights for the

130

print ('Already train %dK batches'$ (len(record df)))

1*]

optimizer = Adam(lr=1le-5)
optimizer classifier = Adam(lr=le-5)

model rpn.compile (optimizer=optimizer, loss=[rpn loss cls(num _anchors), rpn loss_ regr (num_anchors)

1)

model classifier.compile (optimizer=optimizer classifier,
class loss regr(len (classes count)-1)], metrics={'dense class {}'.format (len(classes count)):
'accuracy'}) model all.compile (optimizer='sgd',

Traning setting

In []:

Training setting
total epochs = len(record df)
r epochs = len(record df)

epoch length = 1000
num_epochs = 100
iter num = 0

total epochs += num epochs

losses = np.zeros((epoch length, 5))
rpn_accuracy rpn monitor = []
rpn_accuracy for epoch = []

if len(record df)==

best loss = np.Inf
else:
best loss = np.min(r_ curr loss)

In []:

print (len(record df))

Start

In []:

start time = time.time ()
for epoch num in range (num_epochs) :

loss="mae')

progbar = generic utils.Progbar (epoch length)
print ('Epoch {}/{}‘.format(r_epochs + 1, total epochs))

r_epochs += 1

while True:

try:

if len(rpn_accuracy rpn monitor)

mean overlapping bboxes =

float (sum(rpn_accuracy rpn monitor))/len(rpn accuracy rpn monitor)

rpn_accuracy rpn monitor

print ('Average number of overlapping bounding boxes from RPN

epoch length and C.verbose:

iterations'.format (mean overlapping bboxes, epoch length))

if mean overlapping bboxes == 0:
print ('RPN is not producing bounding boxes that overlap the ground truth

boxes Check RPN settings or keep training.')

Generate X (x img) and label Y ([y rpn cls, y rpn regr])
X, Y, img data, debug img, debug num pos = next(data gen train)

Train rpn model and get loss value [, loss rpn cls, loss rpn regr]

loss=[class loss_ cls,

{} for {} previou

131

loss_rpn = model rpn.train on batch(X, Y)

Get predicted rpn from rpn model [rpn cls, rpn regr]
P rpn = model rpn.predict on batch (X)

R: bboxes (shape=(300,4))

Convert rpn layer to roi bboxes

R = rpn to roi(P_rpn[0], P rpn[l], C, K.common.image dim ordering(),
use regr=True, overlap thresh=0.7, max boxes=300)

note: calc iou converts from (x1,yl,x2,y2) to (x,y,w,h) format

X2: bboxes that iou > C.classifier min overlap for all gt bboxes in
300 non max suppression bboxes

Y1: one hot code for bboxes from above => x roi (X)

Y2: corresponding labels and corresponding gt bboxes

X2, Y1, Y2, IouS = calc iou(R, img data, C, class mapping)

If X2 is None means there are no matching

bboxes if X2 is None:
rpn_accuracy rpn monitor.append (0)
rpn_accuracy for epoch.append(0)

continue
Find out the positive anchors and negative
anchors neg_samples = np.where(Y1[0, :, -1] == 1)
pos_samples = np.where(Y1[0, :, -1] == 0)
if len(neg samples) > O0:

neg_samples = neg samples[0]
else:
neg_samples = []

if len(pos_samples) > 0:
pos_samples = pos samples[0]

else:
pos_samples

[]

rpn_accuracy rpn monitor.append(len(pos_samples))
rpn_accuracy for epoch.append((len(pos_samples)))

if C.num rois > 1:

If number of positive anchors is larger than 4//2 = 2, randomly choose 2 pos sam
les

if len(pos samples) < C.num rois//2:

selected pos_samples = pos_ samples.tolist()
else:
selected pos_samples = np.random.choice(pos samples, C.num rois//2, replace=Fal

e) .tolist ()

Randomly choose (num rois - num pos) neg
samples try:

selected neg samples = np.random.choice(neg samples, C.num rois - len(selected
os_samples), replace=False).tolist()
except:
selected neg samples = np.random.choice(neg samples, C.num rois -

len(selected os samples), replace=True).tolist()

Save all the pos and neg samples in sel samples
sel samples = selected pos samples +
selected neg samples else:
in the extreme case where num rois = 1, we pick a random pos or neg
sample selected pos samples = pos_samples.tolist ()
selected neg samples = neg samples.tolist()
if np.random.randint (0, 2):
sel samples = random.choice (neg samples)
else:
sel samples = random.choice (pos samples)

training data: [X, X2[:, sel samples, :]]

labels: [Y1[:, sel samples, :], Y2[:, sel samples, :]]

X B => img data resized image

X2[:, sel samples, :] =>num rois (4 in here) bboxes which contains selected neg an
pos

Y1[:, sel samples, :] =>one hot encode for num rois bboxes which contains selected
neg and pos

Y2[:, sel samples, :] => labels and gt bboxes for num rois bboxes which
contains selected neg and pos

132

loss class = model classifier.train on batch([X, X2[:, sel samples, :]],

[Y1[:, sel samples, :], Y2[:, sel samples, :]11])

losses[iter num, 0] = loss rpn[l]

losses[iter num, 1] = loss rpn[2]

losses[iter num, 2] = loss class([1]

losses[iter num, 3] = loss class([2]

losses[iter num, 4] = loss class([3]

iter num += 1

progbar.update (iter num, [('rpn cls', np.mean(losses[:iter num, 0])), ('rpn regr',
np.m ean(losses[:iter num, 1])),

('final cls', np.mean(losses[:iter num, 2])), ('final regr',

p.mean (losses[:iter num, 3]))])

if iter num == epoch length:

loss _rpn cls = np.mean(losses[:, 0

1)
loss _rpn _regr = np.mean(losses[:, 1])
loss class _cls = np.mean(losses[:, 2]
loss class regr = np.mean(losses[:, 3])
class_acc = np.mean(losses[:, 4])

mean overlapping bboxes = float (sum(rpn_accuracy for epoch))
/ len(rpn accuracy for epoch)
rpn_accuracy for epoch = []

if C.verbose:

print ('Mean number of bounding boxes from RPN overlapping ground truth boxes:
}'.format (mean overlapping bboxes))
print ('Classifier accuracy for bounding boxes from RPN: {}'.format (class_acc))

print ('Loss RPN classifier: {}'.format(loss rpn cls))

print ('Loss RPN regression: {}'.format(loss rpn regr))

print ('Loss Detector classifier: {}'.format(loss class cls))
print ('Loss Detector regression: {}'.format (loss class regr))

print ('Total loss: {}'.format(loss rpn cls + loss_rpn regr + loss class cls + 1
ss_class_regr))

print ('Elapsed time: {}'.format(time.time() - start time))
elapsed time = (time.time ()-start time) /60
curr_loss = loss_rpn cls + loss rpn regr + loss class cls +
loss class regr iter num = 0
start time = time.time ()

if curr loss < best loss:

if C.verbose:
print ('Total loss decreased from {} to {}, saving weights'.format (best los
,curr_loss))
best loss = curr_loss
model_all.save_weights(C.model_path)

new row = {'mean overlapping bboxes':round(mean overlapping bboxes, 3),
'class_acc':round(class_acc, 3),
'loss_rpn cls':round(loss_rpn cls, 3),
'loss_rpn regr':round(loss_rpn regr, 3),
'loss _class cls':round(loss class cls, 3),
'loss_class_regr':round(loss_class regr, 3),
'curr loss':round(curr_loss, 3),
'elapsed time':round(elapsed time, 3),
'mAP': 0}

record df = record df.append(new row, ignore index=True)
record df.to csv(record path, index=0)
break

except Exception as e:

print ('Exception: {}'.format (e))
continue

print ('Training complete, exiting.')

4] 1 Lﬁ

Graph

133

In []:

plt.figure (figsize=(15,5))
plt.subplot(1,2,1)
plt.plot (np.arange (0, r epochs), record df['mean overlapping bboxes'], 'r'")
plt.title('mean overlapping bboxes')

plt.subplot(1l,2,2)
plt.plot (np.arange (0, r epochs), record df['class acc'], 'r')
plt.title('class acc')

plt.show ()

plt.figure (figsize=(15,5))
plt.subplot(1l,2,1)
plt.plot (np.arange (0, r epochs), record df['loss rpn cls'], 'r')
plt.title('loss rpn cls')
plt.subplot(l,2,2)
plt.plot (np.arange (0, r epochs), record df['loss rpn regr'], 'r')
plt.title('loss rpn regr')
plt.show ()

plt.figure (figsize=(15,5))
plt.subplot(1,2,1)
plt.plot (np.arange (0, r epochs), record df['loss class cls'], 'r'")
plt.title('loss class cls')
plt.subplot(1l,2,2)

plt.plot (np.arange (0, r epochs), record df['loss class regr'], 'r')
plt.title('loss class regr')
plt.show ()

plt.plot (np.arange (0, r epochs), record df['curr loss'], 'r')
plt.title('total loss')
plt.show ()

plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.

H= H FH = FH o S

plt.
plt.
plt.
plt.
plt.

H= o H o HE W Sk

plt.

figure (figsize=(15,5))
subplot (1,2,1)

plot (np.arange (0, r epochs),
title('total loss')

subplot (1,2,2)

plot (np.arange (0, r epochs),
title('elapsed time')

show ()

title('loss')

plot (np.arange (0, r epochs),
plot (np.arange (0, r epochs),
plot (np.arange (0, r epochs),
plot (np.arange (0, r epochs),

show ()

In []:

record df['curr loss'], 'r')

record df['elapsed time'], 'r')

record df['loss rpn cls'], 'b')
record df['loss rpn regr'], 'g')
record df['loss class cls'], 'r')
record df['loss class regr'], 'c')

plt.plot (np.arange (0, r epochs), record df['curr loss'], 'm'")

134

Appendix 5 code for testing (ResNet50)

In []:
from google.colab import drive

drive.mount ('/content/drive"')

In []:

Ils

Import libs

In []:
from __ future_ import division

from _ future import print function
from _ future import absolute import
import random

import pprint

import sys

import time

import numpy as np

from optparse import OptionParser
import pickle

import math

import cv2

import copy

from matplotlib import pyplot as plt
import tensorflow as tf

import pandas as pd

import os

from sklearn.metrics import average precision_ score

from keras import backend as K

from keras.optimizers import Adam, SGD, RMSprop

from keras.layers import Flatten, Dense, Add, Input, Activation, Conv2D, MaxPooling2D,
AveragePooli ng2D, Dropout, ZeroPadding2D, BatchNormalization

from keras.layers import GlobalAveragePooling2D, GlobalMaxPooling2D,

TimeDistributed from keras.engine.topology import get source inputs from

keras.utils import layer utils

from keras.utils.data utils import get file

from keras.objectives import categorical crossentropy

from keras.initializers import glorot uniform
from keras.models import Model

from keras.utils import generic utils
from keras.engine import Layer, InputSpec
from keras import initializers, regularizers

Config setting

In []:

class Config:
def init (self):

Print the process or
not self.verbose = True
Name of base network

self.network = 'resnet'

135

Setting for data augmentation

self.use horizontal flips = False

136

self.use vertical flips = False
self.rot 90 = False
Anchor box scales
Note that if im size is smaller, anchor box scales should be scaled

Original anchor box scales in the paper is [128, 256, 512]
self.anchor box scales = [64, 128, 256]

Anchor box ratios
self.anchor box ratios = [[1, 1], [l./math.sqrt(2), 2./math.sqgrt(2)], [2./math.sqrt(2),
1./math.s gqrt(2)1]]

Size to resize the smallest side of the image
Original setting in paper is 600. Set to 300 in here to save training

time self.im size = 300

image channel-wise mean to subtract
self.img channel mean = [103.939, 116.779, 123.68]

self.img scaling factor = 1.0

number of ROIs at

once self.num rois = 4

stride at the RPN (this depends on the network configuration)
self.rpn stride = 16

self.balanced classes = False

scaling the stdev
self.std scaling = 4.0
self.classifier regr std = [8.0, 8.0, 4.0, 4.0]

overlaps for RPN
self.rpn min overlap

0.3
0.7

self.rpn max overlap

overlaps for classifier ROIs
self.classifier min overlap = 0.1

self.classifier max overlap = 0.5
placeholder for the class mapping, automatically generated by the
parser self.class mapping = None

self.model path = None

Parser the data from annotation file

In []:

def get data(input path):

"""pParser the data from annotation file

Args:
input path: annotation file path

Returns:

all data: list(filepath, width, height, list (bboxes))
classes count: dict{key:class name, value:count num}
e.g. {'Car': 2383, 'Mobile phone': 1108, 'Person': 3745}
class mapping: dict{key:class name, value: 1idx}
e.g. {'Car': 0, 'Mobile phone': 1, 'Person': 2}

mmn

found bg = False

all imgs = {}
classes count = {}
class mapping = {}

visualise = True
i =1

with open (input path,'r') as f:

137

print ('Parsing annotation files')

for line in f:

Print process
sys.stdout.write ("\r'+'idx=' + str(i))
i4=1

line split = line.strip() .split(',")

Make sure the info saved in annotation file matching the format (path filename, x1, yl, x2,
y 2, class name)

Note:

One path filename might has several classes (class name)

x1, yl, x2, y2 are the pixel value of the origial image, not the ratio value

(x1, yl) top left coordinates; (x2, y2) bottom right coordinates

Kl , il mmemmemeseemeeseaes

| |

| |

| |

| |

e x2,y2

(filename,x1,yl,x2,y2,class name) = line split

if class name not in classes count:
classes count[class name] = 1
else:
classes count[class name] += 1

if class name not in class mapping:

if class name == 'bg' and found bg == False:
print ('Found class name with special name bg. Will be treated as a background region (this
is usually for hard negative mining).')
found bg = True
class mapping[class name] = len(class mapping)

if filename not in all imgs:

all imgs[filename] = {}

img = cv2.imread(filename)

(rows,cols) = img.shape[:2]

all imgs[filename] ['filepath'] = filename
all imgs[filename] ['width'] = cols

all imgs[filename] ['height'] = rows

all imgs[filename] ['bboxes'] = []
1f np.random.randint (0,6) > 0:

all imgs[filename]['imageset'] = 'trainval'
else:
all imgs[filename]['imageset'] = 'test'

all imgs[filename] ['bboxes'].append({'class': class name, 'x1': int(xl), 'x2': int(x2), 'yl': in

[
t(yl), 'y2': int(y2)})

all data = []
for key in all imgs:
all data.append(all imgs[key])

make sure the bg class is last in the
list if found bg:

if class mapping['bg'] != len(class mapping) - 1:
key to switch = [key for key in class mapping.keys() if class mapping[key] == len(class_mapping
)-1110]
val to switch = class mapping['bg']
class mapping['bg'] = len(class mapping) - 1
class mappinglkey to switch] = val to switch

return all data, classes_count, class mapping

Define ROI Pooling Convolutional Layer

In []:

138

class RoiPoolingConv (Layer) :

""'ROI pooling layer for 2D inputs.
See Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition,
K. He, X. Zhang, S. Ren, J. Sun
Arguments
pool size: int
Size of pooling region to use. pool size = 7 will result in a 7x7 region.
num rois: number of regions of interest to be used
Input shape
list of two 4D tensors [X img,X roi] with shape:
X img:
(1, rows, cols, channels)"
X roi:
‘(1,num rois,4) list of rois, with ordering (x,y,w,h)
Output shape
3D tensor with shape:
‘(1, num rois, channels, pool size, pool size)’

def init (self, pool size, num rois, **kwargs):

self.dim ordering = K.common.image dim ordering()
self.pool size = pool size
self.num rois = num rois

super (RoiPoolingConv, self). init (**kwargs)

def build(self, input shape):
self.nb channels = input shape[0] [3]

def compute output shape(self, input shape):

return None, self.num rois, self.pool size, self.pool size, self.nb channels

def call (self, x, mask=None) :
assert (len (x) == 2)

x[0] is image with shape (rows, cols, channels)

img = x[0]

x[1] is roi with shape (num rois,4) with ordering (x,y,w,h)
rois = x[1]

input shape = K.shape (img)
outputs = []

for roi idx in range(self.num rois):

= rois[0, roi idx, 0]
= rois[0, roi_idx, 1]

= rois[0, roi idx, 2]

oo KX

= rois[0, roi_idx, 3]

= K.cast(x, 'int32'")
= K.cast(y, 'int32")
K.cast(w, 'int32")
= K.cast (h, "int32")

ooE KX
I

Resized roi of the image to pooling size (7x7)
rs = tf.image.resize(img[:, y:y+th, x:x+w, :], (self.pool size, self.pool size))
outputs.append(rs)

final output = K.concatenate (outputs, axis=0)

Reshape to (1, num rois, pool size, pool size, nb channels)
Might be (1, 4, 7, 7, 3)

final output = K.reshape(final output, (1, self.num rois, self.pool size, self.pool size,

s elf.nb channels))

permute dimensions is similar to transpose
final output = K.permute dimensions (final output, (0, 1, 2, 3, 4))

return final output

def get config(self):

config = {'pool size': self.pool size,
'num rois': self.num rois}
base config = super (RoiPoolingConv,

return dict (list (base config.items())

ResNet-50 model

In []:

def get img output length(width, height):

self) .get config()
+ list (config.items()))

return get output length(width), get output length (height)

def get output length (input length):
zero pad
input length += 6
apply 4 strided
convolutions filter sizes =

[7, 3, 1, 1] stride = 2
for filter size in filter sizes:
input length = (input length - filter size + stride) //
stride return input length
return get output length(width), get output length (height)
In []:
def identity block (input tensor, kernel size, filters, stage, block, trainable=True):
nb filterl, nb filter2, nb filter3 = filters
bn axis = 3
conv_name base = 'res' + str(stage) + block + ' branch'
bn name base = 'bn' + str(stage) + block + ' branch'

x = Conv2D(nb filterl, (1, 1), name=conv_name base + '2a', trainable=trainable) (input tensor)

x = BatchNormalization (axis=bn axis, name=bn name base + '2a') (x)

x = Activation('relu') (x)

x = Conv2D(nb filter2, (kernel size, kernel size), padding='same', name=conv_name base +
'2b', trainable=trainable) (x)

x = BatchNormalization (axis=bn axis, name=bn name base + '2b') (x)

x = Activation('relu') (x)

x = Conv2D(nb filter3, (1, 1), name=conv name base + '2c', trainable=trainable) (x)

x = BatchNormalization (axis=bn axis, name=bn name base + '2c') (x)

x = Add() ([x, input tensor])

x = Activation('relu') (x)

return x
def identity block td(input tensor, kernel size, filters, stage, block, trainable=True):

identity block time distributed

nb filterl, nb filter2, nb filter3 = filters

bn axis = 3

conv_name _base = 'res' + str(stage) + block + ' branch'

bn_name base = 'bn' + str(stage) + block + ' branch'

x = TimeDistributed(Conv2D(nb filterl, (1, 1), trainable=trainable,

kernel initializer='normal'), name=conv_name base

x = TimeDistributed(BatchNormalization (axis=bn .

+ '2a') (input_ tensor)
axis), name=bn name base + '2a') (x)

size, kernel size), trainable=trainable,

axis), name=bn name base + '2b') (x)

x = Activation('relu') (x)
x = TimeDistributed(Conv2D(nb filter2, (kernel .
kernel initializer='normal',6padding='same'), name=conv_name base + '2b') (x)
x = TimeDistributed(BatchNormalization (axis=bn_
x = Activation ('relu') (x)
x = TimeDistributed(Conv2D(nb filter3, (1, 1),

kernel initializer='normal'), name=conv_name base

X =

TimeDistributed (BatchNormalization (axis=bn_.

trainable=trainable,
+ '2c'") (x)
axis), name=bn name base + '2c') (x)

140

X Add () ([x, input tensor])

x = Activation ('relu') (x)

return x

def conv_block(input tensor, kernel size, filters, stage, block, strides=(2, 2), trainable=True):

nb filterl, nb filter2, nb filter3 = filters

bn axis = 3
conv_name base = 'res' + str(stage) + block + ' branch'
bn name base = 'bn' + str(stage) + block + ' branch'

x = Conv2D(nb filterl, (1, 1), strides=strides, name=conv_name base + '2a',
trainable=trainable) (input tensor)

X = BatchNormalization (axis=bn axis, name=bn name base + '2a') (x)

x = Activation('relu') (x) B B B

e
1

Conv2D(nb_filter2, (kernel size, kernel size), padding='same', name=conv_name base +
'2b', trainable=trainable) (x)

x = BatchNormalization (axis=bn axis, name=bn name base + '2b') (x)

x = Activation('relu') (x) a -

Conv2D(nb_filter3, (1, 1), name=conv_name base + '2c', trainable=trainable) (x)

X BatchNormalization (axis=bn axis, name=bn name base + '2c') (x)

shortcut = Conv2D(nb filter3, (1, 1), strides=strides, name=conv_name base + 'l',
trainable=tra inable) (input_ tensor)

shortcut = BatchNormalization (axis=bn axis, name=bn name base + 'l') (shortcut)
x = Add() ([x, shortcut])

x = Activation('relu') (x)

return x

def conv block td(input tensor, kernel size, filters, stage, block, input shape, strides=(2, 2),
tr ainable=True) :

conv block time distributed

nb filterl, nb filter2, nb filter3 = filters

bn axis = 3
conv_name base = 'res' + str(stage) + block + ' branch'
bn name base = 'bn' + str(stage) + block + ' branch'

x = TimeDistributed(Conv2D(nb filterl, (1, 1), strides=strides, trainable=trainable,

kernel ini tializer='normal'), input shape=input shape, name=conv name base + '2a') (input tensor)
x = TimeDistributed(BatchNormalization (axis=bn axis), name=bn name base + '2a') (x)
x = Activation('relu') (x)

x = TimeDistributed(Conv2D(nb filter2, (kernel size, kernel size), padding='same',
trainable=tr ainable, kernel initializer='normal'), name=conv_name base + '2b') (x)

x = TimeDistributed (BatchNormalization (axis=bn axis), name=bn name base + '2b') (x)

x = Activation('relu') (x) - B a

x = TimeDistributed(Conv2D(nb filter3, (1, 1), kernel initializer='normal'),

name=conv_name base + '2c', trainable=trainable) (x)
x = TimeDistributed(BatchNormalization (axis=bn axis), name=bn name base + '2c') (x)

shortcut = TimeDistributed(Conv2D(nb filter3, (1, 1), strides=strides, trainable=trainable,

ker nel initializer='normal'), name=conv_name base + 'l') (input tensor)
shortcut = TimeDistributed (BatchNormalization (axis=bn axis), name=bn name base + 'l1') (shortcut)
x = Add() ([x, shortcut])
x = Activation('relu') (x)
return x

1] 1]

In []:

def nn base (input tensor=None, trainable=False) :

Determine proper input shape

input shape = (None, None, 3)

141

if input tensor is None:

img input = Input (shape=input shape)

else:
if not K.is_ keras tensor (input tensor):
img input = Input (tensor=input tensor, shape=input shape)
else:
img input = input tensor
bn axis = 3

x = ZeroPadding2D((3, 3)) (img input)

x = Conv2D (64, (7, 7), strides=(2, 2), name='convl', trainable = trainable) (x)
x = BatchNormalization (axis=bn axis, name='bn convl') (x)
x = Activation('relu') (x)
x = MaxPooling2D((3, 3), strides=(2, 2)) (x)
x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1), trainable = trainable)
x = identity block(x, 3, [64, 64, 256], stage=2, block='b', trainable = trainable)
x = identity block(x, 3, [64, 64, 256], stage=2, block='c', trainable = trainable)
x = conv_block(x, 3, [128, 128, 512], stage=3, block='a', trainable = trainable)
x = identity block(x, 3, [128, 128, 512], stage=3, block='b', trainable = trainable)
x = identity block(x, 3, [128, 128, 512], stage=3, block='c', trainable = trainable)
x = identity block(x, 3, [128, 128, 512], stage=3, block='d', trainable = trainable)
x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a', trainable = trainable)
x = identity block(x, 3, [256, 256, 1024], stage=4, block='b', trainable = trainable)
x = identity block(x, 3, [256, 256, 1024], stage=4, block='c', trainable = trainable)
x = identity block(x, 3, [256, 256, 1024], stage=4, block='d', trainable = trainable)
x = identity block(x, 3, [256, 256, 1024], stage=4, block='e', trainable = trainable)
x = identity block(x, 3, [256, 256, 1024], stage=4, block='f', trainable = trainable)
return x

RPN layer

In []:
def rpn layer (base layers, num anchors):

"""Create a rpn layer
Stepl: Pass through the feature map from base layer to a 3x3 512 channels convolutional la

yer
Keep the padding 'same' to preserve the feature map's size
Step2: Pass the stepl to two (1,1) convolutional layer to replace the fully connected
layer
classification layer: num anchors (9 in here) channels for 0, 1 sigmoid activation
output

regression layer: num anchors*4 (36 in here) channels for computing the
regression of bboxes with linear activation
Args:
base layers: resnet in here
num_anchors: 9 in here

Returns:
[x class, x regr, base layers]
x class: classification for whether it's an object
x_regr: bboxes regression
base layers: resnet in here

mmn

x = Conv2D(512, (3, 3), padding='same', activation='relu', kernel initializer='normal',

name='r pn convl') (base layers)

x_class = Conv2D(num_anchors, (1, 1), activation='sigmoid', kernel initializer='uniform',
name= 'rpn out class') (x)

x_regr = Conv2D(num_anchors * 4, (1, 1), activation='linear', kernel initializer='zero',
name=' rpn_out regress') (x)

return [x class, x regr, base layers]

Classifier layer
In []:

142

def classifier layers(x, input shape, trainable=False):

compile times on theano tend to be very high, so we use smaller ROI pooling regions
to workaround

(hence a smaller stride in the region that follows the ROI pool)

x = conv_block td(x, 3, [512, 512, 2048], stage=5, block='a', input shape=input shape,

strides=(2, 2), trainable=trainable)

be identity block td(x, 3, [512, 512, 2048], stage=5, block='b', trainable=trainable)

x = identity block td(x, 3, [512, 512, 2048], stage=5, block='c', trainable=trainable)

x = TimeDistributed(AveragePooling2D((7, 7)), name='avg pool') (x)

return x
| 1.+]
In []:
def classifier (base layers, input rois, num rois, nb classes = 21, trainable=False):

compile times on theano tend to be very high, so we use smaller ROI pooling regions
to workaround

pooling regions = 14
input shape = (num _rois,14,14,1024)

out roi pool = RoiPoolingConv(pooling regions, num rois) ([base layers, input rois])
out = classifier layers(out roi pool, input shape=input shape, trainable=True)

out = TimeDistributed (Flatten()) (out)

out class = TimeDistributed(Dense(nb_classes, activation='softmax',
kernel initializer='zero'), name='dense class {}'.format (nb classes)) (out)
note: no regression target for bg class
out regr = TimeDistributed(Dense(4 * (nb_classes-1), activation='linear',
kernel initializer='z ero'), name='dense regress {}'.format (nb classes)) (out)
return [out class, out regr]

i 1»]

Calculate loU (Intersection of Union)

In []:

def union(au, bu, area intersection):

area_a = (aul2] - aul0]) * (au[3] - au[ll])
area b = (bul[2] - bul0]) * (bul[3] - bul[l])
area union = area a + area b - area intersection

return area_union

def intersection(ai, bi):

x = max(ai[0], bi[0])
y = max(ai[l], bi[l])
w = min(aif[2], bi[2]) - x
h = min(ai[3], bi[3]) - ¥y
if w < 0 or h < 0O:

return 0

return w*h

def iou(a, b):
a and b should be (x1,y1,x2,y2)

if a[0] >= a[2] or a[l] >= a[3] or b[0] >= b[2] or b[l] >= b[3]:

return 0.0

area 1 = intersection(a, b)

area u = union(a, b, area i)

return float (area i) / float (area_u + le-6)

Calculate the rpn for all anchors of all images

In []:

143

def calc rpn(C, img data, width, height, resized width, resized height, img length calc function):

"mrm(Important part!) Calculate the rpn for all anchors
If feature map has shape 38x50=1900, there are 1900x9=17100 potential anchors

Args:

C: config

img data: augmented image data

width: original image width (e.g. 600)

height: original image height (e.g. 800)

resized width: resized image width according to C.im size (e.g. 300)

resized height: resized image height according to C.im size (e.g. 400)

img length calc function: function to calculate final layer's feature map (of base model) size
a ccording to input image size

Returns:

y rpn cls: list(num bboxes, y 1s box valid + y rpn overlap)

y_1s box valid: 0 or 1 (0 means the box is invalid, 1 means the box is valid)

y_rpn overlap: 0 or 1 (0 means the box is not an object, 1 means the box is an object)
y_rpn regr: list(num bboxes, 4*y rpn overlap + y rpn regr)

y_rpn regr: x1,yl,x2,y2 bunding boxes coordinates

mmn

downscale = float (C.rpn stride)

anchor sizes = C.anchor box scales # 128, 256, 512

anchor ratios = C.anchor box ratios # 1:1, 1:2%*sqrt(2), 2*sqrt(2):1
num anchors = len(anchor sizes) * len(anchor ratios) # 3x3=9

calculate the output map size based on the network architecture
(output width, output height) = img length calc function(resized width, resized height)

n _anchratios = len(anchor ratios) # 3

initialise empty output objectives

y rpn overlap = np.zeros((output height, output width, num anchors))
y _is box valid = np.zeros((output height, output width, num anchors))
y rpn regr = np.zeros((output height, output width, num anchors * 4))

num_bboxes = len(img_data['bboxes'])

num_anchors_ for bbox = np.zeros(num_bboxes).astype(int)

best anchor for bbox = -1*np.ones((num bboxes, 4)).astype(int)
best iou for bbox = np.zeros (num bboxes) .astype (np.float32)
best x for bbox = np.zeros((num bboxes, 4)).astype(int)
best dx for bbox = np.zeros((num bboxes, 4)).astype(np.float32)

get the GT box coordinates, and resize to account for image

resizing gta = np.zeros((num bboxes, 4))

for bbox num, bbox in enumerate (img data['bboxes']):
get the GT box coordinates, and resize to account for image resizing
gta[bbox num, 0] = bbox['xl'] * (resized width / float (width))
gta[bbox num, = bbox['x2'] * (resized width / float (width))

bbox['yl'] * (resized height / float (height))
= bbox['y2'] * (resized height / float (height))

[1]
gta[bbox num, 2]
gta[bbox num, 3]

rpn ground truth

for anchor_size idx in range (len(anchor_sizes)):

for anchor_ratio idx in range(n_anchratios):
anchor x = anchor sizes[anchor size idx] * anchor ratios[anchor ratio idx] [0]

anchor y = anchor sizes[anchor size idx] * anchor ratios[anchor ratio idx][1]
for ix in range (output width):

x-coordinates of the current anchor box
xl anc = downscale * (ix + 0.5) - anchor x / 2
x2 anc = downscale * (ix + 0.5) + anchor x / 2

ignore boxes that go across image
boundaries if x1 anc < 0 or x2 anc >
resized width: continue

for jy in range(output height):

y-coordinates of the current anchor box
yl anc = downscale * (jy + 0.5) - anchor y /
y2_anc = downscale * (jy + 0.5) + anchor_y /

NN

ignore boxes that go across image boundaries

144

if yl anc < 0 or y2 anc > resized_height:

continue

bbox type indicates whether an anchor should be a target
Initialize with 'negative'
bbox type = 'neg'

this is the best IOU for the (x,y) coord and the current anchor
note that this is different from the best IOU for a GT

0.0

bbox best iou for loc

for bbox num in range (num_bboxes) :

get IOU of the current GT box and the current anchor box

curr iou = iou([gta[bbox num, 0], gta[bbox num, 2], gta[bbox num, 1], gta[bbox num,
311, [xl1 anc, yl anc, x2 anc, y2 anc])

calculate the regression targets if they will be needed

if curr_iou > best_iou_for bbox[bbox num] or curr_iou > C.rpn_max_ overlap:

cx = (gtal[bbox num, 0] + gta[bbox num, 1]) / 2.0

cy = (gtal[bbox num, 2] + gta[bbox num, 3]) / 2.0

cxa = (x1 anc + x2 anc)/2.0

cya = (yl anc + y2 anc)/2.0

x,y are the center point of ground-truth bbox

xa,ya are the center point of anchor bbox (xa=downscale * (ix + 0.5); ya=downscale *
(iy+0.5))
w,h are the width and height of ground-truth bbox

wa,ha are the width and height of anchor bboxe

tx = (x - xa) / wa

ty = (y - ya) / ha

tw = log(w / wa)

th log(h / ha)

tx = (cx - cxa) / (x2 anc - xl1 anc)

ty = (cy - cya) / (y2_anc - yl anc)

tw = np.log((gta[bbox num, 1] - gtal[bbox num, 0]) / (x2 _anc - x1 anc))
th = np.log((gta[bbox num, 3] - gta[bbox num, 2]) / (y2 _anc - yl anc))
if img data['bboxes'] [bbox num]['class'] != 'bg':

all GT boxes should be mapped to an anchor box, so we keep track of which anchor box was

best
if curr iou > best iou for bbox[bbox num]:
best anchor for bbox[bbox num] = [jy, ix, anchor ratio idx,
anchor size idx] best iou for bbox[bbox num] = curr iou
best x for bbox[bbox num,:] = [x1 anc, x2 anc, yl anc,

y2_anc] best dx for bbox[bbox num,:] = [tx, ty, tw, th]

we set the anchor to positive if the IOU is >0.7 (it does not matter if there was
another better box, it just indicates overlap)

if curr iou > C.rpn max overlap:

bbox_type = 'pos'

num_anchors for bbox[bbox num] += 1

we update the regression layer target if this IOU is the best for the current (x,y)
and anchor position

if curr iou > best iou for loc:

best iou for loc = curr iou

best regr = (tx, ty, tw, th)

if the IOU is >0.3 and <0.7, it is ambiguous and no included in the objective
if C.rpn min overlap < curr iou < C.rpn max overlap:
gray zone between neg and
pos if bbox type != 'pos':
bbox type = 'neutral'

turn on or off outputs depending on

IOUs if bbox type == 'neg':

y_is box valid[jy, ix, anchor ratio idx + n_anchratios * anchor size idx] =
1 y rpn overlap([Jjy, ix, anchor ratio idx + n anchratios * anchor size idx] =
0 elif bbox type == 'neutral':

y_1s_box_valid[jy, ix, anchor_ratio_idx + n_anchratios * anchor_size_ idx] =
0 y rpn overlap[jy, ix, anchor ratio idx + n_anchratios * anchor size idx] =
0 elif bbox type == 'pos':

y_is box valid[jy, ix, anchor ratio idx + n_anchratios * anchor size idx] =
1 y rpn overlap([jy, ix, anchor ratio idx + n anchratios * anchor size idx]
= 1 start = 4 * (anchor ratio idx + n_anchratios * anchor size idx)

y_rpn regr[jy, ix, start:start+4] = best regr

145

we ensure that every bbox has at least one positive RPN region

for idx in range (num_anchors for bbox.shape[0]) :
if num anchors for bbox[idx] ==
no box with an IOU greater than zero
if best anchor for bbox[idx, 0] == -1:
continue
y_is_box_valid[
best anchor for bbox[idx,0], best anchor for bbox[idx,1], best anchor for bbox[idx,2] + n_ anchr
atios *
best anchor for bbox[idx,3]] =1
y_rpn_overlap|
best anchor for bbox[idx, 0], best anchor for bbox[idx,1], best anchor for bbox[idx,2] +
n_anchr atios *

best anchor for bbox[idx,3]] =1

start = 4 * (best anchor for bbox[idx,2] + n_anchratios *

best anchor for bbox[idx,3]) y rpn regr|

best anchor for bbox[idx,0], best anchor for bbox[idx,1], start:start+4] = best dx for bbox[idx

7 8l

y_rpn_overlap = np.transpose(y rpn overlap, (2, 0, 1))
y_rpn_overlap = np.expand dims(y rpn overlap, axis=0)

y_is box valid = np.transpose(y is box valid, (2, 0, 1))
y_is box valid = np.expand dims(y is box valid, axis=0)

y_Irpn_regr = np.transpose(y rpn regr, (2, 0, 1))
y_rpn_regr = np.expand dims(y rpn regr, axis=0)

pos_locs = np.where(np.logical and(y rpn overlap(O, :, :, :] == 1, y is box valid[O0, :, :,] == 1
))

neg locs = np.where(np.logical and(y rpn overlap[O, :, :, :] == 0, y is box valid[O0, :, :, :] == 1
))

num pos = len(pos locs[0])

one issue is that the RPN has many more negative than positive regions, so we turn off some

of the negative
regions. We also limit it to 256 regions.

num_regions = 256
if len(pos locs[0]) > num_regions/Z:
val locs = random.sample (range (len(pos locs[0])), len(pos locs[0]) - num_regions/Z)
y_is box wvalid[0, pos locs[0][val locs], pos_locs[1l][val locs], pos_locs[2][val locs]]
= 0 num pos = num_ regions/2
if len(neg locs[0]) + num pos > num regions:
val locs = random.sample (range (len(neg locs[0])), len(neg locs[0]) - num pos)
y_is_box_valid[o, neg locs[0] [val locs], neg locs[1l][val locs], neg locs[2][val locs]] = 0
y_rpn_cls = np.concatenate([y is box valid, y rpn overlap], axis=1)

y_Irpn_regr = np.concatenate([np.repeat(y rpn overlap, 4, axis=1), y rpn regr],

axis=1) return np.copy(y rpn cls), np.copy(y rpn regr), num pos

Get new image size and augment the image

In []:
def get new img size(width, height, img min side=300):
if width <= height:
f = float(img min side) / width
resized height = int(f * height)
resized width = img min side
else:
f = float (img min side) / height

resized width = int(f * width)
resized height = img min side

return resized width, resized height

def augment (img data, config, augment=True):

assert 'filepath' in img data
assert 'bboxes' in img data
assert 'width' in img data

146

assert 'height' in img data

img data aug =

img

= cv2.imread(img data aug['filepath'])

if augment:

rows, cols =

copy.deepcopy (img_data)

img.shape[:2]

if config.use horizontal flips and np.random.randint (0O,

img = cv2.fl

for

if config.use vertical flips and np.random.randint (0,

x1 = bbox['
x2 = bbox['
bbox['x2"]
bbox ["'x1'"]

img = cv2.fl

for bbox in img data aug['bboxes']:

vyl = bbox['
y2 = bbox|['
bbox['y2"']
bbox['yl"']

ip (img, 1)

x1"']
x2"']
= cols - x1
= cols - x2

ip (img, 0)

y1']
y2']
= rows - yl
= rows - y2

if config.rot 90:

angle = np.random.choice([0,90,180,270]1,1) [0]

if angle == 270:

img = np.tr

img = cv2.f
elif angle =
img = cv2.f
elif angle =
img = np.tr
img = cv2.f
elif angle =
pass

for bbox in

x1 = bbox['x1']
x2 = bbox['x2'"]
yl = bbox['yl']
y2 = bbox['y2']
if angle == 270:
bbox['x1'] = yl
bbox['x2'] = y2
bbox['yl'] = cols - x2
bbox['y2'] = cols - x1
elif angle == 180:
bbox['x2'] = cols - x1
bbox['x1'] = cols - x2
bbox['y2'] = rows - yl
bbox['yl'] = rows - y2
elif angle == 90:
bbox['x1'] = rows - y2
bbox['x2'] = rows - yl
bbox['yl'] = x1
bbox['y2'] = x2
elif angle == O:
pass
img data aug['width'] = img.shape[1l]
img data aug['height'] = img.shape[0]

anspose (img,
lip (img, 0)
= 180:

lip (img, -1)

anspose (img,
lip(img, 1)

img data aug['bboxes']:

return img data aug, img

Generate the ground_truth anchors

In

def get anchor gt(all img data, C,
"mmoyield the ground-truth anchors as Y (labels)

[

1:

Args:

all img data: list(filepath, width, height, list (bboxes))
C:

config

bbox in img data aug['bboxes']:

(1,0,2))

(1,0,2))

2)

img length calc function, mode='train'):

147

img length calc function: function to calculate final layer's feature map (of base model) size
a ccording to input image size
mode: 'train' or 'test'; 'train' mode need augmentation

Returns:

x 1img: image data after resized and scaling (smallest size = 300px)
Y: [y rpn cls, y rpn regr]

img data aug: augmented image data (original image with augmentation)
debug img: show image for debug

num pos: show number of positive anchors for debug

mmwn

while True:

for img data in all img data:

try:
read in image, and optionally add augmentation

if mode == 'train':

img data aug, x _img = augment (img data, C, augment=True)
else:
img data aug, x_img = augment (img data, C, augment=False)

(width, height) = (img data aug['width'], img data aug['height'])
(rows, cols,) = x img.shape

assert cols == width

assert rows == height

get image dimensions for resizing
(resized width, resized height) = get new img size(width, height, C.im size)

resize the image so that smalles side is length = 300px
X _img = cv2.resize(x img, (resized width, resized height), interpolation=cv2.INTER CUBIC)
debug img = x img.copy ()

try:
y rpn_ cls, y rpn regr, num pos = calc rpn(C, img data aug, width, height, resized width,
resiz ed height, img length calc function)
except:
continue

Zero-center by mean pixel, and preprocess image

x img = x img[:,:, (2, 1, 0)] # BGR -> RGB
X _img = x img.astype (np.float32)

x img[:, :, 0] -= C.img channel mean[0]
x img[:, :, 1] -= C.img channel mean([1]
x img[:, :, 2] -= C.img channel mean([2]

x img /= C.img scaling factor

X img = np.transpose(x img, (2, 0, 1))

X _img = np.expand dims (x_img, axis=0)
y _rpn regr([:, y rpn regr.shape[l]//2:, :, :] *= C.std scaling

X _img = np.transpose(x_img, (0, 2, 3, 1))
y_rpn _cls = np.transpose(y rpn cls, (0, 2, 3, 1))
y_rpn_regr = np.transpose(y rpn regr, (0, 2, 3, 1))
yield np.copy(x _img), [np.copy(y rpn cls), np.copy(y rpn regr)], img data aug,
debug img, num pos
except Exception as e:

print (e)
continue

In []:
def non max suppression fast (boxes, probs, overlap thresh=0.9, max boxes=300) :

code used from here: http://www.pyimagesearch.com/2015/02/16/faster—-non-maximum-suppression-
pyt hon/
1f there are no boxes, return an empty list

Process explanation:
Step 1: Sort the probs list

148

Step 2: Find the larget prob

Step 3: Calculate the IoU with 'Last'

box and other boxes in the 1ist.

large r than overlap threshold, delete the box from 1list
Step 4: Repeat step 2 and step 3 until there is no item in the probs 1list

if len(boxes) == 0:

return []

grab the coordinates of the bounding

boxes x1 = boxes[:, 0]

yl = boxes[:, 1]

X2 = boxes[:, 2]

y2 = boxes[:, 3]
np.testing.assert array less(xl, x2)
np.testing.assert array less(yl, y2)

if the bounding boxes integers,

convert them to floats --

this is important since we'll be doing a bunch of

divisions if boxes.dtype.kind == "i"
boxes = boxes.astype("float")

initialize the list of picked indexes
pick = []

calculate the areas

area = (x2 - x1) * (y2 - yl)

sort the bounding boxes

idxs = np.argsort (probs)

keep looping while some indexes still remain in the indexes

list

while len(idxs) > 0:

grab the last index in the indexes list and add the

index value to the list of picked indexes
last = len(idxs) - 1

i idxs[last]

pick.append (i)

find the intersection

xx1 int = np.maximum(x1[i], x1[idxs[:last]]
yyl int = np.maximum(yl[i], yl[idxs[:last]]
xX2 int = np.minimum(x2[i], x2[idxs[:last]]
yy2 int = np.minimum(y2[i], y2[idxs[:last]]
ww_int = np.maximum(0, xx2 int - xxl1 int)
hh int = np.maximum(0, yy2 int - yyl int)

area_int ww_int * hh int

find the
area_union =

union

area[i] + area[idxs[:last]]

compute the ratio of overlap overlap

= area_int/(area union + le-6)

- area_int

delete all indexes from the index list that have

idxs = np.delete(idxs, np.concatenate(([last],
np.where (overlap > overlap thresh) [0])))
if len(pick) >= max boxes:

break

return only the bounding boxes that were picked using the integer data

type boxes = boxes[pick].astype("int")

probs = probs[pick]
return boxes, probs

def apply regr np(X, T):

"""Apply regression layer to all anchors in one feature map

Args:
X: shape=(4,

T: regression layer shape=(4, 18, 25)

18, 25) the current anchor type for all points in the feature map

'Last' in the list and save it to the pick list

If the IoU is

149

Returns:

X: regressed position and size for current anchor

mmn

try:

~
~
AR Y

cy =y + h/2.
cxl = tx * w + cx
cyl = ty * h + cy

wl = np.exp(tw.astype(np.float6d)) *

hl = np.exp(th.astype(np.float64d)) *
x1 = ¢cx1 - wl/2.

yl = cyl - hl/2.
x1 = np.round(xl)
yl = np.round(yl)
wl = np.round(wl)
hl = np.round(hl)

(

return np.stack([x1l, yl, wl, hl])
except Exception as e:

print (e)

return X

def apply regr(x, y, w, h, tx, ty, tw,
Apply regression to x, y, w and h
try:
cx = x + w/2. cy
=y + h/2. cxl1 =
tx * w + cx cyl
=ty * h + cy
wl = math.exp(tw) *
hl = math.exp(th) *
x1l = cx1 - wl/2.
yl = cyl - hl/2.

w
h

x1 = int (round (x1))
yl = int (round(yl))
wl = int (round(wl))
hl = int (round (hl))

return x1, yl, wl, hl

except ValueError:

return x, y, w, h
except OverflowError:
return x, y, w, h
except Exception as e:
print (e)
return x, y, w, h

In []:

def rpn_to roi(rpn layer, regr layer, C, dim ordering, use regr=True, max boxes=300,overlap thresh=

0.9):
nnrnconvert rpn J_ayer to roli bboxes

Args: (num _anchors = 9)

rpn layer: output layer for rpn classification

shgpe (1, feature map.height, feature map.width, num anchors)

Might be (1, 18, 25, 9) if resized image is 400 width and 300

regr layer: output layer for rpn regression

shape (1, feature map.height, feature map.width, num anchors)

Might be (1, 18, 25, 36) if resized image is 400 width and 300

C: config

use regr: Wether to use bboxes regression in rpn
max boxes: max bboxes number for non-max-suppression (NMS)
overlap thresh: If iou in NMS is larger than this threshold, drop the box

w
h

th) :

150

Returns:
result: boxes from non-max-suppression (shape= (300, 4))
boxes: coordinates for bboxes (on the feature map)

mmn

regr layer = regr layer / C.std scaling

anchor sizes = C.anchor box scales # (3 in here)
anchor ratios = C.anchor box ratios # (3 in here)

assert rpn layer.shape[0] ==

(rows, cols) = rpn layer.shape[1l:3]

curr_layer = 0

A.shape = (4, feature map.height, feature map.width, num anchors)

Might be (4, 18, 25, 9) if resized image is 400 width and 300

A is the coordinates for 9 anchors for every point in the feature map

=> all 18x25x9=4050 anchors cooridnates

A = np.zeros((4, rpn layer.shape[l], rpn layer.shape([2], rpn layer.shape[3]))

for anchor size in anchor sizes:

for anchor ratio in anchor ratios:

anchor x = (128 * 1) / 16 = 8 => width of current anchor
anchor y = (128 * 2) / 16 = 16 => height of current anchor
anchor x = (anchor size * anchor ratio[0])/C.rpn stride

anchor_y = (anchor size * anchor ratio[l])/C.rpn stride

curr layer: 0~8 (9 anchors)

the Kth anchor of all position in the feature map (9th in total)

regr = regr layer([0, :, :, 4 * curr layer:4 * curr layer + 4] # shape => (18, 25, 4)
regr = np.transpose(regr, (2, 0, 1)) # shape => (4, 18, 25)

Create 18x25 mesh grid

For every point in x, there are all the y points and vice versa
X.shape = (18, 25)

Y.shape = (18, 25)

X, Y = np.meshgrid(np.arange (cols),np. arange (rows))

Calculate anchor position and size for each feature map point

A[0, :, :, curr_layer] = X - anchor x/2 # Top left x coordinate
All, :, :, curr_layer] = Y - anchor y/2 # Top left y coordinate
A2, :, :, curr layer] =anchor x # width of current anchor
A[3, :, :, curr_layer] =anchor y # height of current anchor

Apply regression to x, y, w and h if there 1is rpn regression
layer if use regr:
A[:, :, :, curr layer] = apply regr np(A[:, :, :, curr layer], regr)

Avoid width and height exceeding 1
A[2, :, :, curr layer] = np.maximum(1l, A[2, :, :, curr layer])
A[3, :, :, curr_layer] = np.maximum(l, A[3, :, :, curr layer])

Convert (x, y , w, h) to (x1, yl, x2, y2)

x1, yl is top left coordinate

x2, y2 is bottom right coordinate

A[2, :, :, curr_layer] += A[O, :, :, curr layer]
A[3, :, :, curr_layer] += A[l, :, :, curr layer]

Avoid bboxes drawn outside the feature map

A[O0, :, :, curr_layer] = np.maximum(0, A[O0, :, :, curr_layer])

A[l, :, :, curr_layer] = np.maximum(0, A[l, :, :, curr_layer])

A[2, :, :, curr layer] = np.minimum(cols-1, A[2, :, :, curr layer])
] (

A[3, :, :, curr_layer np.minimum(rows-1, A[3, :, :, curr layer])

curr_ layer += 1
all boxes = np.reshape(A.transpose((0, 3, 1, 2)), (4, -1)).transpose((l, 0)) # shape=(4050, 4)
all probs = rpn_layer.transpose((0, 3, 1, 2)).reshape((-1)) # shape=(4050,)

x1 = all boxes[:, 0]
yl = all boxes[:, 1]
x2 = all boxes[:, 2]

y2 = all boxes[:, 3]

Find out the bboxes which is illegal and delete them from bboxes 1ist

151

idxs = np.where((xl - x2 >= 0) | (yl -

all boxes = np.delete(all boxes, idxs,

all probs = np.delete(all probs, idxs,

Apply non max suppression

y2 >= 0))

0)
0)

Only extract the bboxes. Don't need rpn probs in the later process

result = non max suppression fast(all b
max boxes=m ax boxes) [0]

return result

In []:

base path = 'drive/My Drive/GP'

test path = 'drive/My Drive/GP/Dataset/t
test base path = 'drive/My Drive/GP/Data
config output filename = os.path.join(ba
In []:

with open(config output filename, 'rb')

C = pickle.load(f in)

turn off any data augmentation at test
time C.use horizontal flips = False
C.use vertical flips = False

C.rot 90 = False

In []:

Load the records
record df = pd.read csv(C.record path)

r epochs = len(record df)

plt.figure (figsize=(15,5))
plt.subplot(1,2,1)

plt.plot (np.arange (0, r epochs), record |
plt.title('mean overlapping bboxes"')

plt.subplot(1l,2,2)
plt.plot (np.arange (0, r epochs), record |
plt.title('class_acc')

plt.show ()
plt.figure (figsize=(15,5))

plt.subplot(1l,2,1)
plt.plot (np.arange (0, r epochs), record |
plt.title('loss rpn cls"')

plt.subplot(1l,2,2)

plt.plot (np.arange (0, r epochs), record |
plt.title('loss rpn regr')

plt.show ()

plt.figure (figsize=(15,5))
plt.subplot(1,2,1)

plt.plot (np.arange (0, r epochs), record |
plt.title('loss class cls')

plt.subplot(l,2,2)
plt.plot (np.arange (0, r epochs), record |

oxes, all probs, overlap thresh=overlap thresh,

est annotation.txt' # Test data (annotation file)
set/test' # Directory to save the test images

se_path, 'model resnet config.pickle')

as f in:

df ['mean overlapping bboxes'], 'r')

df['class acc'], 'r')

df['loss _rpn cls'], 'r')

df['loss rpn regr'], 'r')

df ['loss class cls'], 'r')

df ['loss class regr'], 'r')

152

plt.title('loss class regr')

plt.show ()

plt.figure (figsize=(15,5))

plt.subplot(l,2,1)

plt.plot (np.arange (0, r epochs), record df['curr loss'], 'r')
plt.title('total loss')

plt.subplot(1l,2,2)
plt.plot (np.arange (0, r epochs), record df['elapsed time'], 'r')
plt.title('elapsed time')

plt.show ()

Test

In []:
def format img size(img, C):

" formats the image size based on config """
img min side = float (C.im_ size)
(height,width,) = img.shape

if width <= height:

ratio = img min side/width

new_height = int(ratio * height)

new width = int(img min side)
else:

ratio = img min_ side/height

new width = int(ratio * width)

new_height = int(img min side)

img = cv2.resize(img, (new width, new height),
interpolation=cv2.INTER CUBIC) return img, ratio
def format img channels(img, C):

""" formats the image channels based on config """

img = img[:, :, (2, 1, 0)]

img = img.astype (np.float32)

img[:, :, 0] -= C.img channel mean([0]
img[:, :, 1] -= C.img channel mean[1]
img[:, :, 2] -= C.img channel mean([2]

img /= C.img scaling factor

img = np.transpose(img, (2, 0, 1))
img = np.expand dims (img, axis=0)
return img

def format img(img, C):

"nr formats an image for model prediction based on config """
img, ratio = format img size (img, C)

img = format img channels(img, C)

return img, ratio

Method to transform the coordinates of the bounding box to its original

size def get real coordinates(ratio, x1, yl, x2, y2):

real x1 = int(round(xl // ratio))
real yl = int(round(yl // ratio))
real x2 = int(round(x2 // ratio))
real y2 = int(round(y2 // ratio))

return (real x1, real yl, real x2 ,real y2)

In []:

Feature num:

VGG: 512

Resnet50: 1024
Resnetl0l1: 1024

num_features = 1024
input shape img = (None, None, 3)
input shape features = (None, None, num features)

img input = Input (shape=input shape img)

153

roi input = Input (shape=(C.num rois, 4))

feature map input = Input (shape=input shape features)

define the base network (can be VGG, Resnet50, Inception, etc)
shared layers = nn base(img input, trainable=True)

define the RPN, built on the base layers

num_anchors = len(C.anchor box scales) * len(C.anchor box ratios)
rpn_layers = rpn_layer (shared layers, num anchors)

classifier = classifier (feature map input, roi input, C.num rois,
nb classes=len(C.class mapping), trainable = True)

model rpn = Model (img input, rpn layers)

model classifier only = Model ([feature map input, roi input], classifier)

model classifier = Model ([feature map input, roi input], classifier)

print ('Loading weights from {}'.format (C.model path))

model rpn.load weights(C.model path, by name=True)
model classifier.load weights(C.model path, by name=True)

model rpn.compile (optimizer='sgd', loss='mse')
model classifier.compile (optimizer='sgd', loss='mse')

In []:

Switch key value for class mapping
class mapping = C.class_mapping

class mapping = {v: k for k, v in

class mapping.items ()} print (class mapping)

class _to color = {class mapping[v]: np.random.randint (0, 255, 3) for v in class mapping}
In []:

test img num = 30
test imgs = os.listdir (test base path)

[]

for i in range(test img num) :

idx = np.random.randint (len(test imgs))
imgs path.append(test imgs[idx])

imgs path

all imgs = []

classes = {}

In []:
If the box classification value is less than this, we ignore this
box bbox threshold = 0.5

for idx, img name in enumerate (imgs_path) :

if not img name.lower () .endswith(('.bmp', '.jpeg', '.Jjpg', '.png', '.tif',

continue
print (img name)
st = time.time ()
filepath = os.path.join(test base path, img name)

img = cv2.imread(filepath)

X, ratio = format img(img, C)

X = np.transpose (X, (0, 2, 3, 1))

get output layer Y1, Y2 from the RPN and the feature maps F
Yi: y rpn cls

Y2: y rpn regr

[Yl, Y2, F] = model rpn.predict (X)

Get bboxes by applying NMS
R.shape = (300, 4)

R = rpn to roi(Y¥l, Y2, C, K.common.image dim ordering(), overlap thresh=0.7)

154

convert from (x1,yl,x2,y2) to (x,y,w,h)
R[:, 2] -= R[:, 0]
R[:I 3] - R[:I 1]

apply the spatial pyramid pooling to the proposed
regions bboxes = {}
probs = {}

for jk in range(R.shape[0]//C.num rois + 1):

ROIs = np.expand dims(R[C.num rois*jk:C.num rois* (jk+1), :], axis=0)
if ROIs.shape[l] == 0:

break
if jk == R.shape[0]//C.num rois:

#pad R

curr_shape = ROIs.shape

target shape = (curr_shape[0],C.num rois,curr shape[2])

ROIs padded = np.zeros (target shape) .astype (ROIs.dtype)

ROIs padded[:, :curr shape[l], :] = ROIs

ROIs padded[0, curr_shape[l]:, :] = ROIs[0, 0, :]

ROIs = ROIs padded
[P_cls, P regr] = model classifier only.predict ([F, ROIs])
Calculate bboxes coordinates on resized

image for ii in range(P_cls.shape[l]):
Ignore 'bg' class

if np.max(P_cls[0, ii, :]) < bbox threshold or np.argmax(P cls[0, ii, :]) == (P_cls.shap
e[2] - 1):

continue

cls name = class mapping[np.argmax (P_cls[0, ii, :]1)]

if cls_name not in bboxes:
bboxes[cls name] = []
probs[cls name] = []

(x, y, w, h) = ROIs[0, 1i, :]

cls num = np.argmax(P cls[0, ii, :])

try:
(tx, ty, tw, th) = P regr[0, ii,
4*cls num:4* (cls num+l)] tx /= C.classifier regr std[0]
ty /= C.classifier regr std[1]
tw /= C.classifier regr std[2]
th /= C.classifier regr std[3]
X, Y, W, h = apply regr(x, y, w, h, tx, ty, tw, th)

except:
pass

bboxes[cls name] .append([C.rpn stride*x, C.rpn stride*y, C.rpn_stride* (x+w), C.rpn strid
e* (y+h) 1)
probs([cls name] .append(np.max (P _cls[0, 1ii, :]))
all dets = []

for key in bboxes:

bbox = np.array(bboxes[key])

new _boxes, new probs = non max suppression fast (bbox, np.array(probs[key]), overlap thresh=

0.2)
for jk in range(new boxes.shape([0]):
(x1, yl, %2, y2) = new boxes[jk,:]
Calculate real coordinates on original image
(real x1, real yl, real x2, real y2) = get real coordinates(ratio, x1, yl, x2, y2)
cv2.rectangle (img, (real x1, real yl), (real x2, real y2),
(int (class_to colorlkey] [0]), int(class to color[key][1l]), int(class to color([key][2])),4)
textLabel = '"{}: {}'.format (key,int (100*new probs[jk]))
all dets.append((key,100*new probs[jk]))
(retval,baseline) = cv2.getTextSize (textLabel,cv2.FONT HERSHEY COMPLEX,1,1)
textOrg = (real x1, real yl-0)
cv2.rectangle (img, (textOrg[0] - 5, textOrg[l]+baselLine - 5), (textOrg[0]+retvall[0] +
5, textOrg[l]-retvalll] - 5), (0, 0, 0), 1)

155

cv2.rectangle (img,
textOrg[l]-retvall[l] 5),
cv2.putText (img,

(textOrgl
(255, 255,
textLabel,

Sy

print ('Elapsed time
print (all dets)
plt.figure (figsize=(10,10))
#plt.grid()

{}'.format (time. time ()

0] - 5,textOrg[l]+baseline - 5),
255), -1)
textOrg, cv2. FONT_HERSHEY_DUPLEX,

- st))

plt.imshow (cv2.cvtColor (img, cv2.COLOR BGR2RGB))

plt.show ()

J]

(textOrg[0]+retval[0] +

1, (0, 0, 0), 1)

1]

Measure mAP

In []:

def get map (pred, gt, f):

u={]
P={}
fx,

£

fy
for bbox in gt:
bbox ['bbox matched']

False

pred probs np.array([s['prob']

box idx sorted by prob

for box idx in box idx sorted by prob:

pred box = pred[box idx]

pred class = pred box['class']
pred x1 = pred box['xl'"]

pred x2 = pred box['x2']

pred yl = pred box['yl']

pred y2 = pred box['y2']

pred prob = pred box['prob']

if pred class not in P:

P[pred class] []

T [pred class] []
P[pred class].append (pred prob)
found _match False

for gt box in gt:

gt class = gt box['class']
gt x1 = gt box['x1l']/fx
gt x2 = gt box['x2']/fx
gt yl = gt box['yl']l/fy
gt_y2 = gt_box['y2']l/fy
gt seen = gt box['bbox matched']
if gt class != pred class:
continue
if gt seen:
continue
iou map = iou((pred x1, pred yl, pred x2, pred y2),
if iou map >= 0.5:
found match = True
gt _box['bbox matched'] = True
break
else:
continue

T[pred class].append(int (found match))

for gt box in gt:
if not gt box['bbox matched']:# and no
if gt box['class'] not in P:
P[gt_box['class']] [l
T[gt box['class']] []

T[gt box['class']].append (1)
P[gt box['class']].append(0)

#import pdb
#pdb.set trace ()
return T, P

np.argsort (pred probs) [:

for s in pred])

=11

t gt box['difficult']:

(gt_x1, gt_yl, gt x2, gt _y2))

156

In []:

def format img map (img, C):

"""Format image for mAP. Resize original image to C.im size (300 in here)

Args:
img: cv2 image
C: config

Returns:
img: Scaled and normalized image with expanding dimension
fx: ratio for width scaling
fy: ratio for height scaling

mmwn

img_min_side = float(C.im_size)
(height,width,) = img.shape

if width <= height:
f = img min side/width
new height = int (f * height)
new width = int(img min side)
else:
f = img min side/height
new_width = int(f * width)
new_height = int(img min side)
fx = width/float (new width)
fy = height/float (new _height)

img = cv2.resize(img, (new width, new height), interpolation=cv2.INTER CUBIC)

Change image channel from BGR to
RGB img = img[:, :, (2, 1, 0)]
img = img.astype (np.float32)

img[:, :, 0] -= C.img channel mean([0]
img[:, :, 1] -= C.img_channel mean([1]
img[:, :, 2] -= C.img channel mean([2]

img /= C.img scaling factor

Change img shape from (height, width, channel) to (channel, height,
img = np.transpose(img, (2, 0, 1))

Expand one dimension at axis 0

img shape becames (1, channel, height, width)

img = np.expand dims (img, axis=0)

return img, fx, fy

In []:

print (class _mapping)

In []:

This might takes a while to parser the

data test_imgs, , _ = get data(test path)
In []:

T={}

P={}

mAPs = []

total time = []

FP num = 0

for idx, img data in enumerate(test imgs):
print ("{}/{}'.format (idx,len (test imgs)))
st = time.time ()
filepath = img data['filepath']

img = cv2.imread(filepath)

X, fx, fy = format img map(img, C)

width)

Change X (img) shape from (1, channel, height, width) to (1, height, width,

channel) X = np.transpose(X, (0, 2, 3, 1))

get the feature maps and output from the RPN

157

[Y1, Y2, F] = model rpn.predict (X)

R = rpn to roi(Yl, Y2, C, K.common.image dim ordering(), overlap thresh=0.7)

convert from (x1,yl,x2,y2) to (x,y,w,h)
R[:, 2] -= R[:, 0]
R[:, 3] -= R[:, 1]

apply the spatial pyramid pooling to the proposed
regions bboxes = {}
probs = {}

for jk in range(R.shape[0] // C.num rois + 1):

ROIs = np.expand dims(R[C.num rois * jk:C.num rois * (jk + 1), :], axis=0)
if ROIs.shape[l] ==

break
if jk == R.shape[0] // C.num rois:

pad R

curr_shape = ROIs.shape

target shape = (curr shape[0], C.num rois, curr shape[2])

ROIs padded = np.zeros (target shape) .astype (ROIs.dtype)

ROIs padded[:, :curr shape[l], :] = ROIs

ROIs padded[0, curr shape[l]:, :] = ROIs[0, 0, :]

ROIs = ROIs padded
[P_cls, P regr] = model classifier only.predict ([F, ROIs])

Calculate all classes' bboxes coordinates on resized image (300, 400)
Drop 'bg' classes bboxes
for ii in range(P_cls.shape[l]):

If class name is 'bg', continue
if np.argmax (P _cls[0, ii, :]) == (P _cls.shape[2] - 1):
continue

Get class name
cls name = class_mapping[np.argmax (P_cls[0, ii, :])]

if cls name not in bboxes:

bboxes[cls name] = []
probs[cls name] = []

(x, y, w, h) = ROIs[0, ii, :]

cls num = np.argmax (P _cls[0, ii, :])

try:

(tx, ty, tw, th) = P regr[0, ii, 4 * cls num:4 * (cls num + 1)]

tx /= C.classifier regr std[0]

ty /= C.classifier regr std[1l]

tw /= C.classifier regr std[2]

th /= C.classifier regr std[3]

X, Y, W, h = roi helpers.apply regr(x, y, w, h, tx, ty, tw, th)
except:

pass

bboxes[cls name] .append([l6 * x, 16 * y, 16 * (x + w), 16 * (y + h)])
probs[cls name] .append(np.max(P_cls[0, 1i, :]))

all dets = []

for key in bboxes:

bbox = np.array(bboxes[key])

Apply non-max-suppression on final bboxes to get the output bounding boxe
new_boxes, new_probs = non max suppression fast (bbox, np.array(probs[key]), overlap thresh=

for jk in range(new boxes.shape([0]):
(x1, yl, x2, y2) = new boxes[jk, :]
det = {'x1': x1, 'x2': x2, 'yl': yl, 'y2': y2, 'class': key, 'prob':
new probs[jk]} all dets.append(det)

print ('Elapsed time = {}'.format (time.time () -

st)) elapsed time = time.time() - st

total time.append(elapsed time)

t, p = get map(all dets, img data['bboxes'], (fx, fy))

158

for key in t.keys(

if key not in

Plkeyl = [
T[key] .extend(

Plkey] .extend(plkey])

all aps = []

for key in T.keys():

)
b
Tlkeyl = []
]
t

ap = average precision score(T[key], Pl[key])

print('{} AP: {}'.format (key, ap))
all aps.append (ap)
print ('mAP = {}'.format (np.mean(np.array(all aps))))
mAPs.append (np.mean (np.array (all aps)))
#print (T)
#print (P)

if not all dets:
FP num += 1

print ()

print ('mean average precision:',

np.mean (np.array (mAPs)))

In []:
mAP = [mAP for mAP in mAPs if str (mAP) !="'nan']
mean_average prec = round(np.mean(np.array (mAP)), 3)

print ('After training %dk batches,

the mean average precision

is %0.3f'% (len(record df), mean average prec))

print ('Average elapsed time:', np.average(np.array(total time)))
print ('Percentage of images that without bounding boxes among all:', FP num/len(test imgs))

record df.loc[len(record df)-1,

"mAP'"]

= mean average prec

record df.to csv(C.record path, index=0)
print('Save mAP to {}'.format (C.record path))

In

159

