
Encoder-Forecaster-Decoder: a Modular Deep

Learning Framework for Cloudage Forecasting

Master’s Thesis

M.H. de Bijl

6th August 2020

Committee

University of Twente

Dr. M. Poel
Dr.Ir. J. Ettema

Supervision

Alten Nederland

H.M. Logmans
G. Klarenbeek

abstract

Solar Team Twente is always looking to increase their performance in the
world solar challenge. An essential part of their race strategy is the weather
model, which is tasked to forecast the surface solar irradiance (SSI). The cur-
rent weather model lacks detail in both spatial and temporal resolution. SSI
forecasts based on geostationary satellite observations of cloudage do have the
desired resolution. Since cloudage is highly correlated with SSI, forecasting
cloudage is an accurate method for forecasting SSI.

Based on state-of-the-art deep learning models, the modular encoder-forecaster-
decoder framework is proposed to forecast cloudage. The models that make
up the elements of this framework are determined by experimentation to be
the SegNet model for the encoder and decoder, and the TrajGRU cell as the
forecaster. The forecasting performance of the novel model, together with the
TV-L1 optical flow method, the ConvLSTM model, and the TrajGRU model is
measured for different forecast horizons on a data set containing cloud masks.
In the end, it was determined that the TrajGRU model performs the best. The
proposed framework lacks the ability to forecast due to inherent flaws in its
design.

1

Contents

1 Introduction 4
1.1 Research goal . 4
1.2 Research questions . 5
1.3 Contribution . 5
1.4 Outline . 5

2 Background 6
2.1 Solar team requirements . 6
2.2 Forecasting solar irradiance . 6
2.3 Satellite imagery . 8

2.3.1 From satellite observations to cloud masks 9
2.3.2 From cloud masks to surface solar irradiance 9

2.4 Cloud motion . 10
2.5 History of cloudage forecasting 10
2.6 Optical flow . 10
2.7 Deep learning spatiotemporal sequence forecasting 11

2.7.1 Activations . 11
2.7.2 Convolutions and pooling 11
2.7.3 Deconvolutions and unpool 12
2.7.4 Upsampling . 12
2.7.5 Recurrent neural networks 13
2.7.6 Loss . 15
2.7.7 Performance metrics . 16

2.8 Scope . 16

3 Related work 17
3.1 Persistence . 17
3.2 TV-L1 . 17
3.3 Convolutional LSTM . 17
3.4 Trajectory GRU . 19

4 Methodology 21
4.1 Encoder-Forecaster-Decoder framework 21
4.2 Model selection . 21

4.2.1 Encoder & decoder . 22
4.2.2 Forecaster . 23

4.3 Data . 23
4.4 Integration . 27

4.4.1 Encoder & decoder . 27
4.4.2 Forecaster . 30

4.5 Optimisation . 34
4.5.1 Architecture . 34
4.5.2 Training . 35
4.5.3 Analysis . 35

2

4.6 Evaluation . 36
4.6.1 Models . 37
4.6.2 Forecast horizon . 37
4.6.3 Analysis . 38

5 Results 39
5.1 Integration . 39

5.1.1 Encoder & decoder . 39
5.1.2 Forecaster . 40

5.2 Optimisation . 41
5.3 Evaluation . 44
5.4 Repeating runs . 44
5.5 Cloud specific evaluation . 45

6 Discussion 47
6.1 Results . 47

6.1.1 Encoder-forecaster-decoder framework 47
6.2 Methodology . 48
6.3 Recommendation . 48

7 Conclusion 50

8 Future work 51

Appendices 56

A Glossary 56

B Network implementation details 57
B.1 Encoder . 58
B.2 Decoder . 59
B.3 Forecaster . 67
B.4 Evaluation models . 68

C Example of results 70
C.1 Integration . 70

C.1.1 Encoder-decoder . 70
C.1.2 Integrated networks . 71

C.2 Optimisation . 72
C.3 Evaluation . 73

3

1 Introduction

The world solar challenge is a solar-powered car race through Australia covering
more than 3000 kilometres. To win this race, you have to develop a fast car,
but perhaps more importantly you have to practice a perfect race strategy.
The strategy determines how fast you should drive at each moment to race
optimally, given the constraints of the battery power and solar panel area, the
parameters of the car, and the weather conditions. Solar Team Twente has been
participating in this biennial race since 2005 and has come close to first place
in several editions. However, they have never been able to seize victory. They
believe their car is top-notch, however, there is room for improvement in the
second part of the strategy equation. A more accurate and higher resolution
weather forecast model means a more accurate and optimal strategy. This desire
for an improved weather forecast model has lead them to their software partner
Alten, which proposed this as a possible research project to me, which finally
lead to this thesis.

There are several possible methodologies on which an improved weather
forecast model can be based. However, given the requirements of the Solar
Team, using satellite imagery is the most justifiable. Satellite imagery is an
effective data source because it can accurately ascertain surface solar irradiance
(W/m2), which is the most significant factor in the strategy model of the solar
team. The surface solar irradiance is determined from satellite imagery by
taking the cloudage and position of the sun into account. Because cloudage
has the most significant impact on the variability of surface solar irradiance,
forecasting cloudage is an accurate method to forecast surface solar irradiance.

Forecasting cloudage from satellite imagery can be classified as a spatiotem-
poral sequence forecasting (STSF) problem. Much research exists in this field;
however, very few have been applied to cloudage forecasting specifically. There-
fore, this research will test different STSF models on cloudage forecasting. More
importantly, a novel STSF framework is proposed, which employs dedicated en-
coder, forecaster, and decoder elements to solve the cloudage forecasting prob-
lem.

1.1 Research goal

The main goal of the research is to use the proposed framework to develop a
novel model that can accurately forecast cloudage. This includes finding the
optimal elements of which such a model could exist. Furthermore, the per-
formance of the novel model, together with existing STSF models, on cloudage
forecasting is analysed. This is all done to be able to make a recommendation
towards the Solar Team regarding an improved forecast model for their race
strategy.

4

1.2 Research questions

A research question is defined to aid in achieving the research goal.

How does an encoder-forecaster-decoder modular spatiotemporal se-
quence forecasting deep learning model compare against state-of-
the-art spatiotemporal sequence forecasting models with regards to
cloudage forecasting?

As it is the goal to develop a novel model that could aid the Solar Team in
regards of their race strategy, a model based on the proposed framework is
compared against other available models regarding their performance on cloud-
age forecasting.

To answer this question, three sub-questions are defined that are used as
guidelines to find the specific implementation of the novel model.

1. What are suitable models to be used as the encoder, decoder, and fore-
caster elements?

2. How many images as the input sequence are optimal?

3. What are the possible forecasting horizons?

1.3 Contribution

The contribution of this research is two-fold. First, the performance of existing
STSF models with regards to cloudage forecasting is analysed. Because each
STSF problem has its specific characteristics, the performance of STSF models
on other problems cannot be directly translated cloudage forecasting.

Secondly, a modular framework is proposed which could be used as the basis
for many STSF models. This framework could, in theory, be used for different
applications by using a similar approach in regards to determining the exact
implementation of the elements of the framework.

1.4 Outline

The structure of this thesis is as follows. First, some background is provided
in section 2. Second, in section 3 relevant computer vision and deep learning
techniques are described. Third, the methodologies to design, optimise, and
evaluate the novel network are described in section 4. Fourth, the results of the
methodology are described in section 5, and discussed in section 6. Last, the
work is concluded in section 7 and future work is presented in section 8.

5

2 Background

This section gives a background on the problem statement and the proposed
approach. First, the requirements of the solar team are discussed. Secondly,
from the possible solar irradiance forecasting methodologies, it is explained how
satellite imagery fits the requirements the best. Third, it is elaborated why
cloud masks are the best possible data product from satellite imagery. Fourth,
a short background on cloudage forecast methodologies, as well as why an STSF
deep learning approach has been chosen is given. Fifth, the basic building blocks
of deep learning STSF models are elaborated. And in conclusion, the scope of
this research is outlined.

2.1 Solar team requirements

During the world solar challenge, the race strategy is managed by the strategist,
who rides in the decision-making unit (DMU) van behind the solar car. The
strategy determines at what speed the solar car should drive. The strategist
uses a strategy model, that is based on the parameters of the solar car, and
a weather forecast model. During the race, the strategy model is constantly
updated based on the performance of the car, as well as on new weather reports.
The weather forecast model forecasts the surface solar irradiance (SSI) because
it is an important factor in the available energy for the solar car.

The current weather forecast model has characteristics and limitations that
do not fit its purpose very well. Both the temporal and spatial resolution is too
low. The model has forecasts in steps of three hours, with a forecast horizon
of 120 hours ahead. A new forecast is available every 12 hours. The forecast
contains values every ten km2. An example of a strategic decision that cannot
be made on the current forecast model is to determine when an upcoming cloud
crosses the path of the solar car, such that the strategy model can determine
whether to speed up to avoid the cloud, or to slow down to a more efficient
speed to save power under the cloud.

Ideally, a new forecast model would not replace the current forecast model
but complement it. This means that it should preferably have a forecast horizon
of 12 hours, but at least 3 hours. It should frequently have new forecasts.
Moreover, it should have a higher spatial resolution. To be able to fit into the
current strategy model, the novel model should forecast solar irradiance.

2.2 Forecasting solar irradiance

Solar irradiance is the power per unit area (W/m2), received from the sun in
the form of electromagnetic radiation for a specified range of wavelengths. The
solar irradiance that arrives at the surface of the earth is called surface solar
irradiance (SSI). SSI depends on the height of the sun above the horizon and
atmospheric conditions.

The forecasting of solar irradiance can be divided into two main methodo-
logies: statistical time series methods and physical methods. Statistical time

6

series methods use historical observations to fit or train some type of model.
This is very effective if the location of the historical observations matches the
location of the solar power system of interest. However, due to the influence of
geographical features around the area of interest, these models are not applicable
everywhere [1].

Models that capture the physical properties that influence solar irradiance
are more adaptable regarding the location of interest. The physical phenomenon
that influences solar irradiance are mostly properties of the current state of the
atmosphere. However, due to the chaotic nature of the atmosphere, it is hard
to capture it in a model. Three sub methods can be described that try to deal
with this chaos: numerical weather prediction (NWP), sky imagery, and satellite
imagery. A summary of their properties can be found in table 1.

NWP models use current observations of the atmosphere in combination
with mathematical equations to make forecasts. NWP models usually have
a spatial coverage of the entire earth and a spatial resolution of two to fifty
kilometres. Forecasts are usually calculated four times a day, with a temporal
resolution of one to three hours. This is due to the computationally intensive
dynamic equations underlying these models. A forecast for solar irradiance is
inferred from the forecasted state of the atmosphere.

Sky imaging methods use camera installation aimed at the sky to observe
clouds. Because cloudage has the most significant impact on solar irradiance,
forecasting cloudage is an accurate method to forecast ground irradiance. The
relation between cloudage and surface solar irradiance is further discussed in
the next section.

Sky imaging methods forecast cloudage by observing the cloud position from
two or more subsequent sky images and determining the future trajectory of the
clouds using computer vision techniques. However, this technique has the limita-
tion that it can only forecast for a small area around the camera installation. By
using a mobile camera installation, this approach becomes more flexible. How-
ever, it then becomes more difficult for a model to take the different geographical
features into account because they can change depending on the location of the
camera. Another disadvantage of sky imaging methods is the brightness of the
sun. The most important region in the sky cannot be observed well due to this
limitation.

Satellite imagery methods use a similar method as sky imaging methods,
where a sequence of satellite observations are used to forecast SSI.

When comparing the characteristics of the methodologies in table 1, as well
as the (dis)advantages of the methods, the methodology that matches the re-
quirements of the Solar Team the best is satellite imagery. Therefore, solar
irradiance forecasting using satellite imagery will be the focus of this research.
A background regarding this approach is discussed in the next section.

7

Technique Sampling rate Spatial resolution Horizon
Persistence - - Minutes
Sky imagery 30 seconds 10 to 100 meters 10s of minutes
Satellite imagery 15 minutes 1 km 5 hours
NWP 1-3 hours 2-50 km 10 days

Table 1: Characteristics of the three physical methodologies [2], and the per-
sistence method, further discussed in section 3.1.

2.3 Satellite imagery

In this section, some necessary background is given regarding satellite imagery.
There are two types of weather satellites in use: sun-synchronous and geosta-
tionary orbiting. Sun-synchronous satellites orbit the earth around the poles
at always the same angle towards the sun. From their point of view, the earth
rotates beneath them, resulting in a different view each time the satellite makes
an orbit. Geostationary satellites orbit the earth above the equator at such an
altitude that their orbit has the same duration as the rotation of the earth,
locking their view of the earth at always the same position. This characteristic
makes them a good data source for nowcasting, and will, therefore, be used in
the research as well.

Weather satellite carry instruments which observe electromagnetic waves
reflected by the atmosphere. The raw observations from these instruments are
called level 0 products. The raw observations are processed, and quality control
is applied, resulting in the so-called level 1 products. The level 1 products are
the building blocks for more advanced level 2 and level 3 products, which use
algorithms to combine the observations to obtain useful meteorological values,
such as cloud properties, ocean temperatures, or locations of active fires.

One of the available products is SSI. Because the satellite’s sensors cannot
directly observe the SSI, it has the be inferred from the observations. Empirical
methods (e.g. [3]) relate satellite observations of cloudage linearly to ground-
based measurements of the SSI. The cloudage is also a product of the satellite
observations. It is obtained by combining observations of reflectance and tem-
perature of the atmosphere. Physical methods (e.g. [4]) model the relation
between the satellite observations and the SSI by employing radiative transfer
modelling.

While using the SSI product from satellite observations to forecast SSI seems
convenient, it adds additional complexity which can be prevented. While the
variability of SSI on an hourly time scale is mostly dependent on cloudage, on
a daily time scale, it is mostly dependant on the day and night cycle. This
can cause issues when the two dependencies start to overlap. By splitting the
forecasting of SSI into two parts, namely forecasting cloudage, and determin-
ing SSI from the forecasted cloudage, a more accurate result can be obtained
[5]. Another advantage of this approach is that the algorithms that determine
the relation between cloudage and SSI are constantly evolving [6], and novel

8

methods can be incorporated in the SSI forecasting model. Therefore, in this
research, the focus will be on forecasting cloudage. Determining SSI from the
cloudage is explicitly not part of this research.

In the next two paragraphs, a more in-depth background is given on how
cloudage is obtained from satellite observations, as well as how SSI is determined
from cloudage.

2.3.1 From satellite observations to cloud masks

By algorithmically combining observations of wavelengths in the visible and
infrared spectrum, clouds can be distinguished from the earth’s surface. The
detected clouds are represented in a cloud mask, which is a matrix with values
that indicate the amount of cloudage. The indices of the matrix correspond
with coordinates on earth.

The optical thickness of the clouds has the most significant impact on the
amount of solar irradiance that arrives at ground level [7]. Optical thickness is
the ratio of incident to transmitted radiation. An illustration of this effect can
be seen in figure 1. The optical thickness represented in the cloud mask.

By using a sequence of cloud masks, future cloud masks can be forecasted,
from which the SSI can be determined as will be explained in the next section.

2.3.2 From cloud masks to surface solar irradiance

By finding the relation between the optical thickness of the cloudage and the
SSI, the SSI can be determined from cloud masks. There exist two types of
methods that try to find this relation: conventional statistical methods, and
machine learning (ML) based methods. They can be divided into two categories:
Conventional statistical methods determine the relation between cloudage and
SSI by fitting a function based on observations of cloudage and SSI by using
statistical methods. ML-based methods use a similar method; however, now
ML techniques are used to find the relation.

Figure 1: The effect of different types of clouds on surface solar irradiance [7].

9

2.4 Cloud motion

To be able to forecast cloudage, the basic underlying principles of the motion
of clouds have to be understood. The chaotic nature of the atmosphere governs
the motion of clouds. Due to the state of the atmosphere, clouds are moved
by the wind, are formed or dissipated, and rise or descend due to temperature
differences. These effects lead to a complex four-dimensional cloud dynamic,
which makes forecasting on a local level very hard.

2.5 History of cloudage forecasting

Shortly after the launch of the first weather satellite, the first analysis of cloud
motion was performed [8]. In those days, the analysis of cloud motion was
performed to analyse and forecast wind [9]. This analysis was done by tra-
cing a cloud position at time t0, and superimposing the cloud position at time
t1. A vector between the two cloud blobs shows the motion between the two
timestamps and is used as a forecast for the next timestamp. These vectors
are also known as cloud motion vectors (CMVs). In figure 2 an illustration
of this technique can be seen. Due to the ever-increasing amount of satellite
data, methods to obtain CMVs in an automated manner were necessary. These
automated techniques are based on computer vision techniques. The current
state-of-the-art computer-vision based techniques to forecast cloudage use op-
tical flow, of which a background is given in the next section (2.6).

Recently, machine learning techniques have been successfully applied to the
domain of cloudage forecasting as well [10], by viewing it as a spatiotemporal
sequence forecasting problem. While computer vision techniques have been ex-
tensively researched in the domain of cloudage forecasting, the recent advance-
ments in the domain of spatiotemporal sequence forecasting using deep learning
are promising, and will, therefore, be the basis for this research. A background
regarding the building blocks of these deep learning networks is given in section
2.7.

2.6 Optical flow

Optical flow (OF) is a technique to obtain motion vectors between two images,
which can be used to forecast cloud positions. OF techniques are based on the
brightness assumption:

I(x, y, t) = I(x+ ∆x, y + ∆y, t+ ∆t) (1)

meaning that a pixel at position x, y at time t with intensity I(x, y, t) has moved
by ∆x,∆y after ∆t time. This motion can be used to obtain the motion vector
for that pixel. However, when trying to resolve this equation, it becomes appar-
ent this is an equation in two unknowns, namely ∆x and ∆y. This is also known
as the aperture problem [12]. To resolve equation 1 additional constraints are
necessary. All methods that employ optical flow introduce such a constraint to
estimate the optical flow.

10

(a) Tracing clouds from satellite im-
agery by hand to determine the motion
vectors using a loop projector [8].

(b) An example of two clouds blobs
at two time steps and a motion vector
that shows the motion between the two
time steps [11].

Figure 2: An illustration how motion vectors were historically obtained.

2.7 Deep learning spatiotemporal sequence forecasting

As a background, the building blocks for (STSF) deep neural networks are briefly
described in this section.

2.7.1 Activations

Activation functions are applied to the output of a neural network layer. The
activation functions that are used in this research can be found in table 2.

Name Formula
σ (sigmoid) σ(x) = 1

1+e−x

tanh tanh(x) = ex−e−x

ex+e−x

ReLU [13] ReLU(x) = max(0, x)

Table 2: Several activation functions used in deep learning models.

2.7.2 Convolutions and pooling

The convolutional and pooling layer are used to capture the translation invari-
ance of spatial data. For a 2D convolutional layer, the output H ∈ RCo×Ho×Wo

is determined by scanning over the input X ∈ RCi×Hi×Wi and applying a filter
W ∈ RCi×Co×Kh×Kw :

H =W ∗ X + b (2)

where ∗ denotes the convolution operation and b is the bias.
The pooling layer is similar to the convolutional layer, where the input is

scanned, and a mapping function is applied. Pooling layers do not use paramet-
ers for the mapping but use aggregate functions such as max, sum or average.

11

The pooling layer is usually used as a downsampling layer to reduce the spatial
dimensions.

2.7.3 Deconvolutions and unpool

The deconvolution and unpool layers are proposed as the inverse of the con-
volution and pooling layer. Deconvolution, or rather transposed convolutions,
calculates its output by reversing the forward and backward pass of a regular
convolution. This operation can be considered as taking the gradient of the
convolution with regards to its input.

In principle, the pooling layer is not invertible. However, an approximation
can be made by using additional information in the form of switch variables
[14]. The switch variables contain the indices of the maxima for each pooling
region. An illustration of this process can be seen in figure 3. Unpooling layers
are used as upsampling layers to increase spatial dimensions. However, other
upsampling methods are also used in deep learning. These are discussed in the
next section.

2.7.4 Upsampling

While unpooling is an efficient manner to restore spatial resolution [15], other
spatial upsampling methods are also employed in deep learning. A short de-
scription of the available methods is given here, refer to [16] for a more in depth
analysis.

Transposed convolution Deconvolution, or transposed convolution, as dis-
cussed in the previous section can be used for upsampling by setting the stride of
the transposed convolution larger than one [17]. An illustration of this process
can be seen in figure 4.

Decomposed transposed convolution By splitting the transposed convo-
lution in a horizontal and vertical 1D transposed convolution, a similar result
can be achieved as regular transposed convolution with a reduced number of
parameters [18].

Bilinear upsampling & convolution More conventional interpolation meth-
ods are combined with deep learning methods by upsampling the spatial resol-
ution using bilinear upsampling, followed by a convolutional layer.

Bilinear upsampling & separable convolution A regular 2D convolution
attempts to learn correlations across two spatial dimensions and a channel di-
mension. Separable convolution separates this by a specific operation for spatial
correlations and a specific operation for cross-channel correlations, depthwise
convolution and pointwise convolution respectively [19]. Separable convolution
is combined with bilinear upsampling, which increases the spatial resolution.

12

Bilinear additive upsampling Bilinear additive upsampling increases spa-
tial resolution by employing bilinear upsampling. Then, the average of a specific
number of consecutive channels is taken. The ratio determines the number of
consecutive channels. By setting the ratio to four, the available amount of in-
formation is preserved: the spatial resolution is increased by a factor four by
the bilinear upsampling (w×h→ 2w× 2h). And at the same time, the channel
dimension is decreased by a factor four.

Figure 3: An illustration of upsampling using the pooling indices. The max-
pool layer returns the maximum values for a specific kernel size, as well as
the indices of the maximum values, captured by a switch variable. In this
case, the kernel size and stride is two, which means the four by four matrix is
downsampled to a two by two matrix. At the unpool layer, the switch variables
are used to reconstruct the data. The maximum value is set at its original index,
while the other values are filled with zeros. Taken from [20].

(a) Stride = 1 (b) Stride = 2

Figure 4: Illustration of upsampling by using transposed convolution. This is
an example for 1D data, but the same holds for 2D data. On top is the input,
below is the output. This example shows a transposed convolution with kernel
size 2. When using stride=2, there is not a literal gap in the input data, however,
the output is projected with a gap. In the case of stride=2, the output is then
adjoined, and not overlapping, such when stride=1. The resulting output has
twice the resolution of the input.

2.7.5 Recurrent neural networks

Recurrent neural networks (RNN) are a generalisation of the feedforward net-
works (FNN), which allow cyclical connections in the network. These so-called
recurrent connections make RNN suitable for capturing of patterns over time.
RNNs are trained by using stochastic gradient descent. The gradient is calcu-
lated by unfolding the RNN and applying backpropagation on this unfolded net-
work. This type of backpropagation is also known as backpropagation through

13

time (BPTT). However, after processing several time steps in this manner, the
unfolded network becomes very large, causing vanishing or exploding gradient
problems [21]. An often applied solution for this problem is using gates to con-
trol the information flow between iterations. Two gated RNNs are discussed in
the next paragraphs.

LSTM Long short-term memory networks consists of units that capture the
long-term dependencies of the data. A unit consists of a cell and three gates.
The three gates; the input gate, the forget gate, and the output gate, control
the information flow between the current input, the previous unit’s output and
the cell. This approach causes the gradient to be trapped in the cell, and not
to vanish. The equations that govern LSTMs are:

it = σ (Wxixt +Whiht−1 +Wci ◦ ct−1 + bi)

ft = σ (Wxfxt +Whfht−1 +Wcf ◦ ct−1 + bf)

ct = ft ◦ ct−1 + it ◦ tanh (Wxcwt +Whcht−1 + bc) (3)

ot = σ (Wxoxt +Whoht−1 +Wco ◦ ct + bo)

ht = ot ◦ tanh (ct)

where ◦ is the hadamard product, σ is the sigmoid function, xt is the input at
time t, ht−1 is the hidden state of the previous time step, it is the input gate, ft
is the forget gate, ct is the cell state, ot is the output gate, and ht is the hidden
state. W and b are the weights and biases between the different gates as well
as the cell, which are updated during training.

GRU Gated recurrent unit networks are very similar to LSTM networks.
However, they lack the output gate, resulting in less parameters compared to the
LSTM. For some cases, GRUs have similar performance compared to LSTM [22].
However, LSTMs are strictly stronger [23]. The equations that govern GRUs
are very similar to LSTMs:

zt = σ (Wxzxt +Whzht−1 + bz)

rt = σ (Wxrxt +Whrht−1 + br) (4)

ĥt = tanh (Wxhxt + rt ◦ (Whhht−1) + bh)

ht = (1− zt) ◦ ĥt + zt ◦ ht−1

where zt is the update gate, rt is the reset gate, ĥ is the new information, and
ht is the output. W and b are the weights and biases between the gates, which
are updated during training.

Stacking An important factor in recurrent networks is the number of stacked
recurrent elements. By stacking multiple recurrent elements, a deep recurrent
network can be build which can obtain patterns over time well [24]. An example
of a stacked network can be found in figure 5.

14

In a multilayer RNN, the input x
(l)
t for layer l (l ≥ 2) at time t is the

output of the previous layer h
(l−1)
t . This RNN

(l)
t also receives the hidden state

of its previous iteration h
(l)
t−1, or an initial state (usually set to 0) if no previous

iteration is available.

it−2 it−1 it

Input

RNN
(1)
t−2 RNN

(1)
t−1 RNN

(1)
t

Layer 1

RNN
(2)
t−2 RNN

(2)
t−1 RNN

(2)
t

Layer 2

...
...

...

RNN
(n)
t−2 RNN

(n)
t−1 RNN

(n)
t

Layer n

ot−2 ot−1 ot

Figure 5: This illustration shows an unfolded stacked recurrent network. The
RNN units in the same layer are in essence the same unit, but at different time
steps.

2.7.6 Loss

The gradient for updating the weights of a deep network is the gradient towards
a loss function that defines the difference between the output of the network
and the expected output (ground truth). The loss function is chosen such that
it fits the learning goal of the network.

MSE The de facto standard for image reconstruction is mean squared error
(MSE) loss [25]:

MSE
(
I, Î
)

=
1

w · h

w∑
i=1

h∑
j=1

(
Ii,j − Îi,j

)2

(5)

where I is the ground truth image, Î is the output image of the network, and
w, h are the dimensions of the image.

SSIM Structural similarity index measure (SSIM) is designed as a loss func-
tion that more closely measures the perceived loss for humans [26]. SSIM is

15

based on three comparison measures that measure the luminance, contrast and
structure between two images, resulting in the following equation:

SSIM(I, Î) = 1−
(
2µIµÎ + c1

) (
2σIÎ + c2

)(
µ2
I + µ2

Î
+ c1

)(
σ2
I + σ2

Î
+ c2

) (6)

where µI and µÎ are the average of I and Î respectively, σ2
I and σ2

Î
are the

variance of I and Î respectively, σIÎ is the covariance of I and Î, and c1, c2 are
used to stabilise the equation and are set by:

c1 = (k1L)
2

c2 = (k2L)
2

(7)

where k1 and k2 are small constants, default at 0, 01 and 0, 03 respectively, and
L is the dynamic range of the pixel values, typically L = 2#bits per pixel − 1.

2.7.7 Performance metrics

The same metric usually measures the performance of a network as its loss
function. However, other variants exist as well. Forecast skill, for example, is
often used to indicate the performance of some model in regards to a baseline
model. A skill measure determines the skill score. For example, using the MSE
as the skill metric:

skill score = 1− MSEmodel

MSEbaseline
(8)

2.8 Scope

Based on the requirements of the solar team, the methodologies that will be
used in this research are determined. The resulting scope is a deep learning
STSF model that can forecast a cloud mask, based on previous cloud masks
obtained from geostationary satellite imagery.

16

3 Related work

In this section, the related work concerning cloud motion forecasting is dis-
cussed.

3.1 Persistence

Persistence forecasting is a basic forecasting model. It assumes that the obtained
clouds do not move after the last input time frame. For short forecast horizons,
this model performs reasonably well. The research shows that up to 1 hour, this
model is a good baseline. For longer horizons, the results diminish.

3.2 TV-L1

TV-L1 is an optical flow-based model. As explained above, to resolve equation
1, additional constraints are needed. The TV-L1 model proposed by Zack et
al. [27] uses total variation (TV) as a regularisation term as this additional
constraint. The L1 norm is used as the error term between the two images,
resulting in the following error function, which is minimised towards u and v to
obtain the optical flow:

E(I0, I1) =

∫∫
{λ |I0(x, y)− I1(x+ u, y + v)|+ |∇u|+ |∇v|} dxdy (9)

where I0 and I1 are the input images, u and v are the resulting flow, and λ is
the weight between the L1 error term and the TV regularisation term.

While this approach is good at finding displacements at a pixel level, it fails
for larger displacements. Perez et al. developed an algorithm to determine
TV-L1 OF for larger scales as well, by employing a pyramid of scales [28]. A
pyramid is a set of downscaled versions of the input image at different scales.
The optical flow obtained at a coarse level in the pyramid are used as a starting
point for obtaining the optical flow at a more detailed level.

Urbich et al. [29] applied the TV-L1 method to cloud motion forecasting
using satellite imagery. It outperforms another OF method, and has an error of
10% for 30 minutes forecasts, to 20% for 2-hour forecasts.

3.3 Convolutional LSTM

Shi et al. researched the usage of machine learning for the purpose of nowcast-
ing of precipitation. They proposed an extension on LSTMs to use convolu-
tional structures at the gates inside the LSTM cells called convolutional LSTM

17

(ConvLSTM) [30]. The LSTM equations in 3 are updated as follows:

it = σ (Wxi ∗ Xt +Whi ∗ Ht−1 +Wci ◦ Ct−1 + bi)

ft = σ (Wxf ∗ Xt +Whf ∗ Ht−1 +Wcf ◦ Ct−1 + bf)

Ct = ft ◦ Ct−1 + it ◦ tanh (Wxcwt +Whcht−1 + bc) (10)

ot = σ (Wxo ∗ Xt +Who ∗ Ht−1 +Wco ◦ Ct + bo)

Ht = ot ◦ tanh (Ct)

where ∗ is the convolutional operation, input X , hidden state H, cell state C,
and gates it, ft, ot are 3D tensors, with two spatial dimensions and a channel
dimension.

By using the convolution operation in the gate-to-gate transitions, the spatial
awareness is improved compared to the regular LSTM. Another advantage is the
reduced number of parameters, while the convolutional kernel, represented by
the weights, is shared within a gate-to-gate transitions. For a regular LSTM,
each connection in the gate-to-gate transitions has its own weight, also known
as a fully connected (FC) network.

Shi et al. build a network using ConvLSTM as a building block, using
an encoder-forecaster structure [31], as illustrated in figure 6. The encoder
compresses the input sequence into a hidden state, and the forecaster uses this
to make a prediction. The link between the encoder and forecaster is achieved
by copying the last hidden state of the encoder to the initial states and cell
outputs of the forecaster.

This network of stacked ConvLSTM layers in a encoder-decoder structure is
compared against a similar regular LSTM network, as well as a state-of-the-art
optical flow method. The ConvLSTM network outperformed both other meth-
ods, showing that it is suitable for precipitation nowcasting, and thus potential
for nowcasting the complex dynamics of cloudage.

Encoder

input

ConvLSTM
(1)
t

ConvLSTM
(2)
t

Forecaster

ConvLSTM
(3)
t

ConvLSTM
(4)
t

output

H(1)
t

H(2)
t

Figure 6: The architecture of the ConvLSTM based network, taken from [30].

18

3.4 Trajectory GRU

Shi et al. followed ConvLSTM up with an extension on GRUs. They describe
a characteristic of ConvLSTM that harms its potential for nowcasting precip-
itation, namely that that the convolutional recurrence structure is location-
invariant, while motion of clouds is location-variant. Scaling and rotation of
clouds will therefore be correlated less in consecutive frames. They propose an
extension on ConvGRU which takes the location of features into account. Con-
vGRU is an extension on GRU, similarly as ConvLSTM to LSTM. The GRU
equations from 4 become:

Zt = σ (Wxz ∗ Xt +Whz ∗ Ht−1 + bz)

Rt = σ (Wxr ∗ Xt +Whr ∗ Ht−1 + br) (11)

H′t = f (Wxh ∗ Xt +Rt ◦ (Whh ∗ Ht−1) + bh)

Ht = (1−Zt) ◦ H′t + Zt ◦ Ht−1

where f is the activation function.
The deficiency of ConvGRU and ConvLSTM is that the connection structure

and weights are fixed for all locations in the input image. However, due to
scaling or rotation, different neighbours around a location are relevant, due to
the direction of the flow of the motion. Shi et al. propose Trajectory GRU
[32], which employs a sub network that generates neighbourhoods with relevant
neighbours for each location, using the previous hidden state and the current
input. The neighbourhoods are incorporated into the GRU equations as follows:

Ut,Vt = γ (Xt,Ht−1) ,

Zt = σ

(
Wxz ∗ Xt +

L∑
l=1

W l
hz ∗ warp (Ht−1,Ut,l,Vt,l)

)

Rt = σ

(
Wxr ∗ Xt +

L∑
l=1

W l
hr ∗ warp (Ht−1,Ut,l,Vt,l)

)
(12)

H′t = f

(
Wxh ∗ Xt +Rt ◦

(
L∑

l=1

W l
hh ∗ warp (Ht−1,Ut,l,Vt,l)

))
Ht = (1−Zt) ◦ H′t + Zt ◦ Ht−1

where L is the number of allowed neighbours, Ut,Vt ∈ RL×H×W contain the
neighbourhoods generated by sub network γ, W l

hz, W l
hr, W l

hh are the weights
for projecting the channels, and the warp function selects the neighbours pointed
by Ut,Vt from Ht−1 using bilinear interpolation.

TrajGRU is incorporated in a similar Encoder-Forecaster structure as [30].
However, downsampling using convolution with stride is done between the Tra-
jGRU layers in the encoder, as well as upsampling using deconvolution with
stride in the forecaster. Furthermore, the forecaster is in the reverse order of
the encoder, which was not the case for the ConvLSTM network. This is be-
cause hidden state of the higher layers contain more coarse information, which

19

is refined by the hidden states of the lower layers. An illustration of this network
can be found in figure 7. Because of the architecture of this network, the per-
formance of TrajGRU is compared directly with ConvLSTM, by swapping the
ConvRNN layers with the respective implementations. It was shown that Tra-
jGRU outperforms ConvGRU, as well as ConvLSTM. All these convolutional
recurrent neural networks are denoted as ConvRNN models.

Encoder

inputt

Convolution
(e1)
t

TrajGRU
(e1)
t

Convolution
(e2)
t

TrajGRU
(e2)
t

Convolution
(e3)
t

TrajGRU
(e3)
t

Forecaster

TrajGRU
(f1)
t

Deconvolution
(f1)
t

TrajGRU
(f2)
t

Deconvolution
(f2)
t

TrajGRU
(f3)
t

Deconvolution
(f3)
t

Convolution
(f4)
t

outputt

H(e1)
t

H(e2)
t

H(e3)
t

Figure 7: Architecture of TrajGRU, taken from [32].

20

4 Methodology

Based on the related work, a novel framework is conceptualised, which will be
discussed in-depth in the next section. The approach to answering the research
question using this framework is as follows. First, suitable models are selected
for the encoder, forecaster, and decoder elements. Second, the data that will
be used for the training, testing, and evaluation are explained. Third, from the
possibly multiple suitable models, the optimal combination is determined. This
is done by implementing each element, train the combined elements as a network,
and compare the results on a test set. Fourth, the obtained combination of
elements is optimised by tuning the hyperparameters of this network. And last,
the performance of this novel network is compared against existing models, such
as described in the related work.

4.1 Encoder-Forecaster-Decoder framework

A good starting point in developing a novel neural network is to look at exist-
ing models that try to solve the same or a similar problem. From the research
discussed in the related work, two relevant deep neural networks are described:
ConvLSTM based, and TrajGRU based. They both employ some type of en-
coding structure, which encodes the input data to reduces its complexity. As
well as a corresponding decoding element, which reconstructs the encoded data
to a usable forecast image. This observation has also been made by Shi et al. in
their survey of machine learning for STSF [10], who labelled it as the Encoder-
Forecast framework. The encoder and forecaster parts of the TrajGRU and
ConvLSTM network have been labelled in their respective illustrations of the
networks (figure 6, 7).

These intertwined encoder and decoder networks of ConvRNN layers result
in a complex network architecture. However, given this notion, and the usage
of encoder and decoder elements by these networks, it begs the question of
whether the problem can be solved by using distinct encoder, forecaster, and
decoder elements. By using a dedicated encoder and decoder structure which
would tackle the spatial complexity, and a dedicated forecast element which
would tackle the temporal complexity, the forecasting problem might be solved
as well. The advantages of this Encoder-Forecaster-Decoder framework are: a
more simple network which might be easier to train, the possibility to exchange
elements for other variants which might perform better, and the possibility to
use pre-trained elements, which decreases overall training time. An abstract
overview of this framework is illustrated in figure 8.

4.2 Model selection

This section describes the selection criteria for the encoder, decoder and fore-
caster, as well as the approach for finding suitable models for these elements.
The selected models will also be discussed here, while these form the basis for
the rest of the methodology.

21

Input

Encoder

Encoded input

Forecaster

Encoded forecast

Decoder

Forecast

Figure 8: A schematic overview of the proposed framework.

The general approach for finding suitable models for the three elements is
made by dissecting the state-of-the-art deep learning STSF models for their basic
building blocks. These building blocks will have a state-of-the-art approach
themselves. These will be the models considered for selection.

First, the selection criteria, suitable models, and the selected models for the
encoder and decoder are discussed, then for the forecaster.

4.2.1 Encoder & decoder

The primary criterion for the encoder is to downsample the spatial resolution
to decrease the complexity for the forecaster, and for the decoder to upsample
the spatial resolution to restore the original size. The second criterion is for the
encoder and decoder to be independent because the decoder should be able to
decode the forecast made by the forecaster, which computes the forecast based
on encoded input. If there is some kind of dependency between the encoder
and decoder, the encoded forecast might not be able to be decoded correctly.
The last criterion is that the encoder and decoder should be compatible with
the forecaster. This means that the output of the encoder should be able to be
processed by the forecaster and that the output of the forecaster should be able
to be processed by the decoder.

The basic building block for down- and upsampling of spatial resolution
used in the state-of-the-art STSF models are convolutions, (un)pooling, decon-
volutions, and up- and downsampling [10, 33, 32, 34, 35]. The state-of-the-
art models of these building blocks, which fit the criteria, are convolutional
encoder-decoders. Convolutional encoder-decoders stack stages of convolutions
and pooling to form an encoder, and the inverse as a decoder. Many of such
convolutional encoder-decoders exist [20, 15, 36, 37, 38, 39], however, according
to Badrinarayanan et al., their SegNet model outperforms all others. Therefore,
the SegNet model is selected for the basis of the encoder and the decoder.

22

4.2.2 Forecaster

The basic criterion for the forecast is to be able to capture temporal patterns.
Furthermore, it should have some way to capture spatial patterns as well. While
the encoder and decoder reduce the complexity of the spatial resolution, the
forecaster should have spatial awareness. Otherwise, spatial correlations might
be lost to some degree.

From the state-of-the-art STSF models, two building blocks are obtained
that fit these criteria for the forecaster, namely convolutional LSTM [30] and
trajectory GRU [32]. In the state-of-the-art, these building blocks are combined
with convolutional layers which down- and upsample the data in between the
ConvRNN layers. In the proposed framework, these operations are strictly
separated. Therefore, the ConvLSTM and TrajGRU building blocks will be
considered standalone as the forecaster.

4.3 Data

As described in section 2.3, cloud masks from geostationary satellites are the
data type utilised in this research. There are roughly five geostationary plat-
forms that could provide the necessary data, which are summarised in table
3.

Country Operator Platform Satellite Location

USA NOAA GOES GOES-14 105°W
GOES-15 128°W
GOES-16 75,2°W
GOES-17 137,2°W

EU EUMETSAT MSG Meteosat-8 41,5°E
Meteosat-9 3,5°E
Meteosat-10 9,5°E
Meteosat-11 0°E

Russia Roscosmos Elektro-L Elektro-L No.1 14,5°W
Elektro-L No.2 77,8°E
Elektro-L No.3 165,80°E

India INSAT INSAT INSAT-3A 93,5°E
INSAT-3D 82°E
INSAT-3DR 74°E

Japan JMA Himawari Himawari 8 140,7°E
Himawari 9 140°E

Table 3: An overview of the current geostationary weather satellites in use.

When deciding which platform to use, the following factors are relevant:

1. Spatial resolution. The spatial resolution is the number of pixels available
for a certain area. When the resolution is higher, more information is
available, which improves the forecast.

23

2. Temporal resolution. The temporal resolution is the measure in the time
between subsequent images. With a higher temporal resolution, there is
more information available on the motion of the clouds, which results in
a more accurate forecast.

3. Spatial coverage. The spatial coverage is the amount of terrain that is
covered by the images. This measure is less relevant for the accuracy of
the forecast and more relevant for the applicability of the forecast model
in certain areas. If the spatial coverage encompasses the full disk of earth,
the forecast will not be accurate for local forecasts. And vice versa, if
the spatial coverage is a few hundred kilometres, the forecast model will
probably not handle full-disk satellite images very well.

4. Temporal coverage. The temporal coverage is the amount of time that the
data set covers. This is relevant because the cloud types and the prevailing
wind are sometimes depended on the season.

5. Availability. The ease of obtaining the data, and the format of the provided
data, is important for processing the data into the required format for the
models.

The satellites of the Japanese Meteorological Agency (JMA) at 140°east cover
Australia as well. However, their data sets were not publicly accessible, and
requests for access proved to be fruitless. While it would be beneficial to have
a data set that covers the race location in Australia, it is not essential. The
weather around Australia on a synoptic scale is unique due to its size and
geographic position. However, on a mesoscale at which this research is focused,
the dynamics that influence the motion of clouds occur at other places in the
world as well.

Given that the desired data set was unavailable, and other data sets also
capture the dynamics of cloud motion adequately, the CLoud property dAtAset
using SEVIRI - Edition 2 (CLAAS-2) [40] data set has been chosen. This data
set is primarily chosen because it was readily available. Furthermore, it has
high temporal coverage and temporal resolution.

CLAAS-2 is a dataset developed by the Satellite Application Facility on
Climate Monitoring (CM SAF), a joint effort of multiple national meteorological
services coordinated by the EUMETSAT. This data set is based on observations
made by the SEVIRI sensor on the geostationary Meteosat second generation
(MSG) satellites. A quick overview of the characteristics of this data set can be
found in table 5.

The cloud masks in this data set consist of one of five possible values:

0: Non-processed. Because the cloud masks are stored in a square mat-
rix, some matrix cells fall outside the earth’s disk and are labelled non-
processed.

1: Cloud free.

2: Cloud contaminated.

24

3: Cloud filled.

4: Snow or ice. For this research, snow or ice cells are considered cloud-free,
as they do not influence the SSI.

A visualisation of such a cloud mask can be found in figure 9.
The algorithm that determines the cloud mask from the satellite observa-

tions uses a combination of thresholds for seven of the twelve channels avail-
able on SEVIRI. An overview of the used channels and their purpose can be
found in table 4. This algorithm was validated by comparing its obtained
cloud mask with the observations from CALIOP, a LIDAR sensor on CALIPSO.
CALIOP has much higher accuracy, due to its active technology, and the fact
that CALIPSO is a polar-orbiting satellite. The SEVIRI-based algorithm has
a cloud detection rate of 87%, and a false positive rate of 17% [41], using the
CALIOP observations as a baseline.

Because the spatial resolution of the cloud mask is quite high, they are
divided into 10x10 sub cloud masks. This is done for two reasons. Foremost
due to the goal of the model: by having smaller sections, the model should
be able to detect smaller movement, which aligns with the requirements of the
solar team. Secondly, this is done due to hardware limitations. The original
size of the cloud masks requires much memory to store. The sub cloud masks
that contain non-processed data points are not considered in this research. An
illustration of the selected sub masks can be found in figure 9.

The data set is divided into three categories: train data, validation data,
and test data: 72%, 18% and 10% respectively. The training data is used to
train the models. The validation data is used to validate the configuration of
the models. And the test data is used to analyse the models.

Channel Usage
0,6 µm The two visible wavelength channels are used

to observe clouds during daytime.0,8 µm

1,6 µm The near infrared channel is used to distinguish
clouds from snow or ice.

3,9 µm The medium infrared channels are used to
oberve clouds during the day, and especially
during night when the visible channels are
not usefull.

8,7 µm
10,8 µm
12,0 µm

Table 4: The different channels of the SEVIRI satellite used by the cloud mask
algorithm of CM SAF [42].

25

Property Value
Spatial resolution Due to the curvature of the earth, the spatial

resolution diminishes from 3 km at nadir towards 11
km at the edge of the field of view:

Image taken from [41].
Temporal resolution A new data point is available every 15 minutes.
Spatial coverage MSG disk, which is the visible part of earth from the

view point of a geostationary satellite at 0° longitude.
Temporal coverage 2004-01-19 - 2015-12-31. However, due to storage

limitations, this is limited to 2015-01-01 - 2015-12-31
for this research.

Table 5: Characteristics of the CLAAS-2 data set.

(a)

Non-processed

Cloud free Cloud
contaminated

Cloud filled

(b)

Figure 9: An example of a could mask. This cloud mask is based on satellite
observations on 1st of Januari 2015, at 00:00. (a) shows the cloud mask over a
map of earth. (b) shows how the selected sub cloud masks.

26

4.4 Integration

In this section, the experiments are described that will determine the best com-
bination of elements for the novel network. First, the experiment that will
determine the configuration of the encoder and decoder is discussed. Then,
the experiment for the integration of the encoder, forecaster and decoder is
explained.

4.4.1 Encoder & decoder

In section 4.2 a single suitable model was selected for the encoder and decoder,
namely the SegNet model. The SegNet model consists of an encoder and a
decoder, which are coupled to form a complete network. The original goal of
the SegNet model is to segment the pixels of an image into one of several classes.
The usage of the SegNet model in this research is quite different. That is to say;
the encoder is used to efficiently downsample an input image into an encoding,
which is fed to a forecaster. The result of the forecaster is upsampled by the
decoder, to reconstruct the forecast. This change in the goal of the model does
not require many adjustments to the architecture of the network. Only one
implementation detail regarding the upsample method in the decoder has to be
adjusted. Because many different upsample methods exist (see section 2.7.4), an
analysis of those methods integrated into the decoder is warranted, to determine
which upsample method will be used in the decoder. The experiment that forms
the basis of this analysis is explained in this section.

First, the adjustment to the SegNet model and the resulting neural network
architectures is explained. Secondly, the methodology for training the networks
is described. Lastly, the methodology of the analysis, which determines which
upsample method will be used in the decoder is elaborated.

Architecture The architecture of the SegNet model consists of an encoder
based on the VGG-16 network [43] and a corresponding decoder. The encoder
consists of multiple convolutional stages, which in itself consists of multiple con-
volutional layers wrapped by a ReLU activation function, followed by a max-pool
layer. The decoder is very similar; an unpool layer is followed by multiple convo-
lutional layers wrapped by a ReLU activation function. As explained in section
2.7.3, the unpool operation uses switch variables, produces during a correspond-
ing max-pool operation to compute the inverse of the max-pool. However, this
goes against the requirement of the encoder and decoder to be independent.
How the switch variables affect the reconstruction of an encoding is briefly in-
vestigated, by implementing the SegNet model, sans the softmax layer at the
end that is used to classify a pixel in a class. This model is trained in a similar
method as explained in the next paragraph. Then, two cloud masks are encoded
and reconstructed, using the same switch variables. The results can be found in
figure 10. The reconstructed cloud masks are very accurate. However, there is
almost no difference between the reconstructed images, while the input images
are very different. This is due to how much information (3,9 MB) is available

27

in the switch variables compared to the encoding (0,25 MB), which the model
will learn to use optimally. Therefore, the SegNet architecture is adjusted by
incorporating the upsample methods as mentioned in section 2.7.4:

• Transposed convolution

• Decomposed transposed convolution

• Bilinear upsampling & convolution

• Bilinear upsampling & separable convolution

• Bilinear additive upsampling

This means that there will be five models for this experiment. The difference
between these models compared to the original SegNet model is: the replacement
of the unpool layer in the decoder with one of the mentioned upsample method
and the removal of the softmax layer at the end of the SegNet model that is
used for classifying the pixels. The generic structure of these models can be
found in figure 11. Each model has the same encoder but differs in the decoder.
The detailed architecture of the encoder and all the different decoders can be
found in appendix B.

Training As mentioned before, the goal of the encoder is to efficiently encode
an input cloud mask. The goal of the decoder is the reconstruct an encoded
forecast as accurately as possible. However, to minimise the number of variables
that can impact the performance of the decoder, no forecaster will be used in
this experiment. The encoder and decoder are coupled directly, as is the case
for the original SegNet model.

Each of the five different decoders has an associated instance of the encoder.
While the architecture of the instances of the encoders do not differ, they might
adapt to its specific decoder, making them incompatible with other decoders.
The following networks are trained:

Encoder-DecoderBilinearAdditiveUpsampling

Encoder-DecoderBilinearUpsamplingConvolution

Encoder-DecoderBilinearUpsamplingSeparableConvolution

Encoder-DecoderDecomposedTransposedConvolution

Encoder-DecoderTransposedConvolution

The encoder and decoder are trained as one network. This is achieved by
feeding a cloud mask to the encoder, which encodes it into an encoding. The
encoding is fed to the decoder, which tries to reconstruct the encoding as ac-
curately as possible. The difference between the reconstructed cloud mask and
the input cloud mask is measured by the MSE loss. This loss is backpropagated

28

Switch variables

Switch variables

Encoder

Encoder

Decoder

Decoder

Figure 10: An illustration of the issue with upsampling using unpooling. The
two cloud masks are encoded using the same network. Both encoding are de-
coded using the same switch variables produced during the encoding of the first
image. The resulting reconstructed images are very accurate, however, very
similar. When this upsample method would be incorporated in the encoder-
forecaster-decoder framework, the forecaster would be bypassed by the switch
variables, loosing the forecasting ability of the model.

through the decoder and encoder to update their weights using the Adam op-
timiser [44] with learning rate 0, 0005. This process is repeated for a train data
set of 100 000 cloud masks selected randomly from all available cloud masks.
Each of the five models is trained using the same train data set, again to min-
imise the variability between the models. After training, the performance of the
model is analysed, as will be explained in the next paragraph.

Analysis The analysis consists of comparing the performance of the different
variants of encoder-decoder on a test data set, consisting of 13 888 randomly
selected cloud masks, which did not appear in the train data set. The perform-
ance metrics that are used to capture the performance of the models are the
average MSE and average SSIM. The average MSE is determined by:

1

N

N∑
n

MSE
(
In, În

)
(13)

whereN is the test data set size, and In, În are the cloud mask and reconstructed
cloud mask at index n from the test data set.

29

Encoder Decoder

Encoding

: ReLU(Conv + batch) : max-pool : upsample

Figure 11: An overview of the architecture for the encoder and decoder, based
on the SegNet model. In the SegNet model, the upsample layer is implemented
by the unpool operation. In this experiment, five other upsample methods are
used.

The average SSIM is determined by:

1

N

N∑
n

SSIM
(
In, În

)
(14)

Both the average MSE, as well as the average SSIM, will be used to determine
the upsample method to be used in the decoder for the rest of the research.

4.4.2 Forecaster

In section 4.2 two suitable building blocks were selected for the forecaster,
namely ConvLSTM and TrajGRU. The goal of the forecaster aligns with the
goal of the two ConvRNN blocks, that is to say, finding patterns in a spatiotem-
poral sequence. Therefore, the two blocks can be integrated into the framework
without many adjustments.

In this section, an experiment is described that is used to compare the per-
formance of the two ConvRNNs when they are integrated into the encoder-
forecaster-decoder framework. The best performing model will be used in the
rest of the research.

First, the resulting architecture of integrating the two building blocks in the
framework is explained. Secondly, it is explained how these models are trained.
And finally, the methodology of the analysis is elaborated.

Architecture This paragraph explains how the ConvLSTM and TrajGRU
layers are implemented, given the concept as explained in the related work,
and how they are adjusted to fit the proposed framework. First ConvLSTM is
explained, then TrajGRU.

ConvLSTM The proposed adjustment to the LSTM architecture as ex-
plained in equation 10 is implemented by using convolutional layers that contain

30

the weights and biases as required. The layers perform the required convolu-
tional operations. The following pseudocode shows how this is achieved:

Algorithm 1: ConvLSTM algorithm.

ConvLSTM(xt, ht− 1, ct− 1):
it = sigmoid(Wxi(xt) + Whi(ht− 1) + ct− 1 ∗ Wci)
ft = sigmoid(Wxf(xt) + Whf(ht− 1) + ct− 1 ∗ Wcf)
ct = ft ∗ ct− 1 + it ∗ tanh(Wxc(xt) + Whc(ht− 1))
ot = sigmoid(Wxo(xt) + Who(ht− 1) + ct ∗ Wco)
ht = ot ∗ tanh(ct)
return ht, ct

where Wxi, Whi, Wxf, Whf, Wxc, Whc, Who, Wxo are convolutional layers,
and Wci, Wcf, Wco are tensors containing weights. The hyperparameters for
these convolutional layers are set the same as in the original research, which
investigated different settings to determine the most optimal. For the ConvL-
STM to fit the framework, the number of channels in the convolutional layers
must match the number of channels in the encoding, which is 512. The details
of the convolutional layers can be found in appendix B.3.

TrajGRU The TrajGRU equations from 12 are implemented in a similar
manner as ConvLSTM, where the convolutional operations are implemented
using convolutional layers, resulting in the following pseudocode:

Algorithm 2: TrajGRU algorithm

TrajGRU(xt, ht− 1):
ut, vt = flow generator(xt, ht− 1)
zt=sigmoid(Wxz(xt)+Whz(warp(ht− 1, ut, vt)))
rt=sigmoid(Wxr(xt)+Whr(warp(ht− 1, ut, vt)))
h’t=sigmoid(Wxh(xt)+Whh(warp(ht− 1, ut, vt)))
ht=(1-zt)∗h’t+zt∗ht− 1

return ht

where Wxz, Whz, Wxr, Whr, Wxh, Whh are convolutional layers, and ut,
vt, are the flow field generated by the flow generator. The hyperparameters
of the convolutional layer are set the same as the original research. For the
TrajGRU to fit the framework, the input channels of the convolutional layers
have to be set to the number of channels in the encoding, namely 512. The
details can be found in appendix B.3.

The flow generator is a sub network that determines the motion flow from
the current input and the previous hidden state. The same flow generator
architecture is used as in the original research: a one hidden layer convolutional
network that takes the concatenation of xt and ht− 1 as its input. This results
in the following pseudocode:

31

Algorithm 3: Flow generator algorithm.

flow generator(xt, ht− 1):
input2flow = tanh(i2f conv(xt))
hidden2flow = tanh(h2f conv(ht− 1))
u = u conv(i2f + h2f))
v = v conv(i2f + h2f)
return u, v

where i2f conv, i2h conv, u conv, v conv are convolutional layers, whose
details can be found in appendix B.3.

The obtained flow are used to warp the previous hidden state. The warp
function is given by the following pseudocode:

Algorithm 4: Warp algorithm

warp(x, u, v):
mesh grid returns coordinate matrices from coordinate vectors.
xx, yy = mesh grid([0, . . ., x.width], [0, . . ., x.height])
u grid = xx + u
v grid = yy + v
scale grids to [-1,1]
u grid = 2 * u grid / max(x.width - 1, 1) - 1
v grid = 2 * v grid / max(x.height - 1, 1) - 1

For each output location [i, j], the values from u grid[i]
v grid[j] specify a pixel location in input x, which is obtained
using bilinear interpolation.
The sampling grid specifies the sampling pixel locations
normalised by the input spatial dimensions. Therefore, the
values of u/v grid should range between [-1, 1].
output = grid sample(x, u grid, v grid)
return output

Training The goal of the integrated models is to compute a forecast from a
number of input cloud masks. Therefore, ConvLSTM and TrajGRU are integ-
rated with the encoder and decoder, as obtained by the experiment in section
4.4.1, to form a complete model. To minimise the variability between the two
models, the parameters of the encoder and decoder are fixed, such that only the
parameters of the forecaster are adjusted during training. The parameters of
the encoder and decoder are set by the parameters obtained during the training
of the encoder and decoder. Otherwise the encoding would not be meaningful.
Thus the following composed models are considered for this experiment:

Encoderfixed → ConvLSTM → Decoderfixed

Encoderfixed → TrajGRU → Decoderfixed

32

00:00 01:00 02:00 03:00

Input Forecast ground truth

Figure 12: An example of an unencoded input series used during training of
the models. The cloud masks are from the first of June 2015. The fourth image
is the ground truth for the forecast.

To train the model, it is fed a sequence of three cloud masks as input. The
cloud masks are each one hour appart. These settings are chosen as a middle
ground between the amount of information available for the forecaster, and the
time of training the models. Other settings are considered during optimisation.
Each cloud mask is encoded by the encoder. The sequence of encodings is fed
to the forecaster, where the initial state is set to 0:

ht− 1 = 0
for encoding in encodings:

ht− 1 = forecaster(encoding, ht− 1)
return ht− 1

The last state ht− 1 after iterating through the encodings is considered as the
encoded forecast. This encoded forecast is fed to the decoder, which decodes it
to a reconstructed forecast. The loss of the reconstructed forecast compared to
the ground truth is computed using the MSE loss. The loss is backpropagated
through the model to update the weights of the forecaster using the Adam op-
timiser with a learning rate of 0, 0005. This process is repeated for a train data
set of 100 000 cloud mask sequences. The sequences are not sequential. An
example of such a sequence can be found in figure 12. After training, the per-
formance of the models is analysed, as will be explained in the next paragraph.

Analysis The analysis consists of comparing the performance of the trained
models on a test data set, consisting of 13 888 sequences of cloud masks with
the same properties as the train sequences, which did not appear in the train
data set. The metrics that are used to capture the performance of the models
are the average MSE and average SSIM.

Both the average MSE, as well as the average SSIM, will be used to determine
the integrated model that is considered to be further optimised.

33

4.5 Optimisation

Once the best performing model has been determined, it is optimised by adjust-
ing its hyperparameters. At this point, the second sub research question is also
considered, that is to say: how many images as the input sequence is optimal?

The approach for finding the optimal configuration is to take the basic net-
work configuration that was used in the previous experiment and apply grid-
search for finding the optimal combination of hyperparameters. Because most
of the hyperparameters in the models have already been optimised by previ-
ous research, the focus will be on the hyperparameters that are relevant to the
proposed framework. For example, the kernel size for any of the convolutional
layers is not considered, as this has already been established. The hyperpara-
meters that will be considered are the number of stacked RNN layers in the
forecaster and the number of input images for the model.

First, the two hyperparameters that are considered are briefly explained, as
well as the adjustments to the architecture. Second, the manner of training and
analysis of the proposed models are discussed.

4.5.1 Architecture

In this section, the architecture of the networks that will be tested for finding the
optimal hyperparameters configuration is discussed. The network as obtained
by the previous experiment will be regarded as the baseline. First, the number
of layers and its impact is discussed. And second, the number of input images
is discussed.

Stacking layers As described in the background (2.7.5), by stacking multiple
RNN elements a more complex network can be constructed, which is expected to
increase performance [45]. The ConvRNN used as the forecaster is the element
that will be stacked. The element itself would not need any adjusting, only the
forward pass trough the forecaster has to be adjusted to the number of layers,
as shown in figure 5. The following pseudocode shows the implementation of
the adjusted forward pass:

Algorithm 5: Forward pass through a stacked RNN.

StackedRNN(xt, stacked ht−1):
input = xt

for i in [0, . . ., l]:
output = ConvRNNi(input, stacked ht−1[i])
stacked ht[i] = output
input = output

return output, stacked ht

Where l is the number of layers, and ConvRNNi is the ConvRNN at layer i.
The number of layers will range from one to five during grid search. The

hyperparameters of the ConvRNN at each layer will not differ from the baseline,
as most of the hyperparameters are already optimised, as mentioned before.

34

Input As described in the background (2.7.5), the loss of the forecast is back-
propagated through the network for the number of inputs. By increasing the
input size, the backpropagation can run further back, which could increase per-
formance. However, this also increases computation time. The baseline config-
uration has an input size of three. An input size from one up to five will be tested
during grid search. The models that will receive only one input image would not
be able to learn temporal correlations, while there is no temporal information.
These models would serve as a baseline for the other configurations.

4.5.2 Training

The proposed configurations will be trained analogous to the method as the
previous experiment, as described in section 4.4.2. However, the parameters
of the encoder and decoder will no longer be fixed. The expectation is that
the encoder-decoder will adapt to the forecaster, resulting in a more accurate
forecast. The configuration of the 25 models are as follows:

Layers

In
p

u
t

(1,1) (2,1) (3,1) (4,1) (5,1)
(1,2) (2,2) (3,2) (4,2) (5,2)
(1,3) (2,3) (3,3) (4,3) (5,3)
(1,4) (2,4) (3,4) (4,4) (5,4)
(1,5) (2,5) (3,5) (4,5) (5,5)

4.5.3 Analysis

Once the networks have been trained, their performance is measured on a valid-
ation data set using the average MSE. However, next to the performance metrics
to compare the performance of the different configurations between each other,
the performance is also measured against an intrinsic encoded and reconstructed
persistence forecast. This encoded persistence forecast is obtained by encoding
the last input image and reconstructing it again using the decoder. By compar-
ing this encoded persistence forecast with the forecast made by the complete
network, the forecastability of the forecaster can be better analysed. Because
the encoded persistence forecast has gone through the same encoding and decod-
ing, it has undergone the same loss of information and accuracy as the forecast
made by the whole network. It can, therefore, be used as a baseline to measure
the performance of the forecaster. The performance of the forecaster will be
compared against the encoded persistence forecast by using an MSE based skill
score:

skill =
MSEforecaster

MSEencoded persistence forecast
(15)

An illustration of obtaining the encoded persistence forecast can be found in
figure 13.

35

The optimal hyperparameter configuration will be chosen based on the aver-
age MSE loss and skill. The performance of this configuration is further analysed
in the next section.

Input

Encoder

Encoded input

Forecaster

Encoded forecast

R
egu

la
r

fo
recastin

g

P
ersisten

ce
fo

recastin
g

Decoder

Forecast

Figure 13: An illustration of the process for obtaining the persistence forecast.

4.6 Evaluation

In this section, the evaluation method for the novel model as determined by the
previous experiment is elaborated. The performance of this model is compared
against four other models, all discussed in the related work. First, as a baseline,
persistence forecasting is used. This method should not be confused with the
encoded persistence forecast, as proposed in the previous section. Secondly, as
the optical flow method, the state-of-the-art algorithm TV-L1 is used. And
lastly, the models based on ConvLSTM and TrajGRU are considered as the
state-of-the-art deep learning models. To distinguish between the ConvLSTM
and TrajGRU building blocks as used in the forecaster, the model based on
the encoder-forecaster-decoder framework will be denoted as the novel model,
and the state-of-the-art models from the related work based on ConvLSTM and
TrajGRU will be denoted as the ConvLSTM evaluation model and the TrajGRU
evaluation model.

At this point, the third sub-question is also considered: what are the possible
forecasting horizons? For the novel model, as well as the ConvLSTM and Tra-
jGRU evaluation models, to be able to make a forecast for different horizons,
the models need to be trained afresh on a train data set adjusted to the new
forecast horizon.

First, the details of the implementation of the four comparison models are
discussed. Secondly, the methodology for different forecast horizons is elabor-
ated. Lastly, the methodology for the analysis of the performance of the models,
as well as the comparison, is elaborated.

36

4.6.1 Models

Persistence The persistence forecast model is easily implemented, it returns
the last input image as a forecast.

TV-L1 The implementation of the TV-L1 method is done using the OpenCV
library, as proposed by Urbich et al. [29]. The parameters of the TV-L1 al-
gorithm are set similar to the previously mentioned research.

The cloud mask forecast is determined by computing the motion vectors
between the last two input cloud masks using the TV-L1 algorithm and applying
the obtained motion vectors to the latter input image. This approach does not
need to be adapted for cloud mask forecasting, while the TV-L1 algorithm is
able to compute the motion vectors on cloud masks as well.

This approach is applicable if the time between the input images is the same
as the forecast horizon. Otherwise, the process can be iterated, by using the
obtained forecast as a new input cloud mask, to obtain the forecast at the
required forecast horizon.

ConvLSTM & TrajGRU evalution models ConvLSTM and TrajGRU
are both used as building blocks for complex networks (3.3, 3.4). However,
as described by Shi et al. [32], the proposed framework from the ConvLSTM
research is subpar to the framework proposed in the TrajGRU research. There-
fore, both the ConvLSTM and the TrajGRU building blocks are implemented
in a model based on the framework as proposed in the TrajGRU research (fig-
ure 7). The details of the implementation of these models can be found in the
appendix B.4. These models are trained analogous to the training method of
the novel model.

4.6.2 Forecast horizon

The forecast horizon is measured from the last input image to the ground truth.
From the requirements of the Solar Team, a forecast horizon up to 6 hours is
desirable. However, given the limitations of cloudage forecasting using satellite
imagery, as described in section 2.2, forecast horizons up to three hours are
considered.

The machine learning-based models, the novel model and the ConvLSTM
and TrajGRU evaluation models, have to be trained for each forecast horizon
specifically. The adjustments that have to be made to achieve a desired forecast
horizon are only to the training and test data set. When the ground-truth cloud
mask is set at the specific forecast horizon, the model will learn to forecast for
that horizon. The time steps between the input images will be kept at one hour
when possible.

The forecast horizons that will be considered are 30 minutes, one hour, two
hours, and three hours. An overview of the timestamps of the input images, as
well as the ground truth, can be found in table 6.

37

Forecast horizon Input time stamps Ground truth time stamp
30 minutes t0 t30min t60min t90min

1 hour t0 t1h t2h t3h
2 hours t0 t1h t2h t4h
3 hours t0 t1h t2h t5h

Table 6: An overview of the timestamps for the input images, as well as the
ground truth, for the different forecast horizons. This assumes an input size
of three, while this might not be the most optimal configuration that will be
determined by optimising the hyperparameters.

4.6.3 Analysis

The analysis of the performance of the models on the different forecast horizons
is done using the average MSE on a test data set. Furthermore, the MSE is used
to determine cloud masks which the models perform well on, as well as cloud
masks that the models perform poorly on. These cloud masks are analysed to
find matching cloudage, to determine which type of cloudage is difficult for the
models to forecast, as well as the type of cloudage that is easy to forecast.

38

5 Results

In this section, the results of the experiments, as described in the methodology,
are discussed. The experiments were implemented using python and the PyT-
orch machine learning framework1, and ran on the high-performance cluster of
the University of Twente.

5.1 Integration

5.1.1 Encoder & decoder

The experiment for the encoder and decoders is designed to find the most op-
timal upsample method in the decoder. Five different encoder-decoder pairs
were trained, and their performance on a test data set is analysed in this sec-
tion. The performance of the models can be found in table 7. Examples of the
reconstructed cloud masks can be found in the appendices in figure 17.

The performance of the upsampling methods is quite close, except for bilinear
additive upsampling. This is somewhat surprising, while the performance of
bilinear additive upsampling in other research [16] was up to par, or even better,
compared to the other methods, for a wide variety of problems. When looking
into the loss during training, as well as intermediate examples of cloud mask
reconstruction, no anomalies were found which could be the cause for this lack
in performance of the bilinear additive upsampling method.

Of all the methods, transposed convolution performs the best. It performs
slightly worse in regards to the average SSIM compared to bilinear upsampling
& separable convolution, but this is negligibly small. However, a visual inspec-
tion of the reconstructed cloud masks shows the typical chequerboard artefacts
associated with deconvolution [46]. Furthermore, while the decomposed trans-
posed convolution performs similarly as the regular transposed convolution in
regards to the average MSE, it shows these artefacts more clearly. Consequently,
it suffers in regards to the average SSIM, showing the advantage of using SSIM
in addition to MSE.

In the end, the transposed convolution is chosen as the upsample method
to be used in the decoder, as the reconstruction artefacts are deemed tolerable
compared to the gained performance.

1repository: https://github.com/appeljus/encoder-forecaster-decoder

39

https://github.com/appeljus/encoder-forecaster-decoder

Upsample method Average MSE Average SSIM
Bilinear additive upsampling 0,683 0,276
Bilinear upsampling & convolution 0,397 0,307
Bilinear upsampling & separable convolution 0,334 0,334
Decomposed transposed convolution 0,336 0,283
Transposed convolution 0,315 0,333

Table 7: The performance measured by the average MSE and the average
SSIM of the models consisting of an encoder and decoder with the specified
upsampling method on the test data set. A lower average MSE indicates good
performance. A lower SSIM indicates poor performance.

5.1.2 Forecaster

The experiment for the forecaster is designed to find the best performing element
to be used as the forecaster: ConvLSTM or TrajGRU. These building blocks
were integrated with the encoder and decoder as determined by the previous
experiment into the encoder-forecaster-decoder framework as complete models.
These models were trained and tested. The performance of the models on the
test set can be found in table 8. Examples of the reconstructed forecast can be
found in the appendix in figure 18.

The performance of the models is significantly worse in regards to the per-
formance metric, as well as a (subjective) visual inspection of the reconstruc-
ted cloud masks, compared to the previous experiment. While the encoder-
forecaster-decoder models will inherently never be able to perform better than
the encoder-decoder models, three times as worse for the average MSE is quite
poor. This is probably caused by fixing the parameters of the encoder and de-
coder. The parameters of the encoder and decoder are set by the parameters
obtained during the previous experiment. However, the encoder and decoder
were directly coupled in that context. While in this experiment, a forecaster is
placed in between. During training, the forecaster will adjust to the encoder
and decoder. In contrast, the reverse is not the case: the encoder and decoder
will not adjust to the forecaster. This is probably the cause for the lack of
performance, as the performance during optimisation, when the parameters for
the encoder and decoder were not fixed, is a lot better, as can be seen in the
next section.

When inspecting examples of the reconstructed forecast, the chequerboard
pattern is even more clear for this experiment. It clearly shows an eleven by
eleven pattern, which is due to the size of the encoding when processed by
the forecaster. However, as with the performance, this disappears when the
parameters of the encoder and decoder are not fixed.

Although there are some remarks regarding the performance of the integ-
rated models, the TrajGRU element is chosen to be used as the forecaster in the
subsequent experiments. Even though its performance is poor, it is still better
than the performance of the ConvLSTM element.

40

Forecaster Average MSE Average SSIM
ConvLSTM 1,397 0,295
TrajGRU 0,923 0,285

Table 8: The performance of the models consisting of the encoder, the specified
forecaster, and the decoder on the test data set measured by the average MSE
and average SSIM.

5.2 Optimisation

The experiment for the optimisation of the hyperparameters used an exhaustive
grid search on the specified range of the number of input images and the number
of layers of the TrajGRU element in the forecaster. In table 9, the performance
of the 25 different models measured by the average MSE on a validation set
is given. In table 10, the skill of the models compared to its intrinsic encoded
persistence forecast is given. Examples of the reconstructed forecast can be
found in the appendix in figure 19.

The first observation given results is that more layers result in a worse fore-
cast, even though the opposite was expected. The same can be said for the
number of input images: increasing the number of input images decreases the
forecast performance. This indicates that the models are not learning to forecast
but to reconstruct the last input image as accurately as possible. Especially the
number of input images is an indication of this behaviour: by grouping the mod-
els by the number of input images, the models with one input images perform
on average the best. It is worrying that models with no temporal information
(single input image) perform the best when developing a model that should find
patterns over time.

The encoded persistence forecast was constructed to form a baseline which
should indicate the forecasting ability of the models by using a skill score
between the model and the baseline. However, when investigating the loss
of the encoded persistence forecast during the training of the models, it seems
that it would not be a reliable baseline. When the parameters of the encoder
and decoder are adjusted during training, the performance of the encoded per-
sistence forecast changes as well. The expectation was that the encoder and
decoder would remain in sync, meaning that an encoding by the encoder can
be accurately reconstructed by the decoder, resulting in a stable performance of
the encoded persistence forecast. However, this is not the case as can bee seen
in figure 14, where the loss of the encoded persistence forecast during training
is plotted. It shows erratic behaviour, meaning that the adjustments to the
parameters of the encoder and decoder during training result in a highly vari-
able persistence encoding forecast performance. Therefore, the skill between the
encoded persistence forecast and the model will not be used as a performance
measure to determine the optimal configuration.

Although the models do not show the ability to forecast, an optimal con-
figuration is still chosen to be further evaluated. While the model with three

41

layers and five input image has the lowest average MSE, this configuration is
not chosen, as it has been concluded that in general increasing the number of
layers reduces the performance of the model. In conclusion, the configuration
that is further evaluated has one layer and four input images.

Layers
1 2 3 4 5

Input

1 0,424 0,428 0,563 0,507 0,699
2 0,412 0,586 0,469 0,400 0,820
3 0,564 0,576 0,489 0,514 0,676
4 0,375 0,541 0,479 0,540 0,847
5 0,400 0,648 0,369 1,062 0,842

Table 9: The performance of the encoder-forecaster-decoder model using the
specified number of layers in the forecaster and number of input images on a
validation set measured by the average MSE. The colors indicate the perform-
ance, green means top performance, yellow means reasonable performance, and
red mean poor performance.

Layers
1 2 3 4 5

Input

1 0,342 0,119 0,179 0,240 -0,409
2 0,100 0,117 0,405 0,647 -0,001
3 0,123 -0,159 0,637 0,546 -0,004
4 0,096 0,495 0,507 0,524 0,009
5 0,161 -0,301 0,507 0,071 -0,022

Table 10: The performance of the encoder-forecaster-decoder model using the
specified number of layers in the forecaster and number of input images on a
validation set measured by the skill compared to their encoded persistence fore-
cast. The colours indicate performance. The colour scale is independent of the
scale used in table 9. Green means top performance, yellow means reasonable
performance, and red mean poor performance. In the end, the skill was not
used as a performance measure to determine the optimal configuration.

42

0 20000 40000 60000 80000 100000
Iterations

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Cu
m

ul
at

iv
e

m
ov

in
g

av
er

ag
e

M
SE

Loss of encoded persistence forecast during training

layers: 1, input: 1
layers: 2, input: 1
layers: 3, input: 1
layers: 4, input: 1
layers: 5, input: 1

layers: 1, input: 2
layers: 2, input: 2
layers: 3, input: 2
layers: 4, input: 2
layers: 5, input: 2

layers: 1, input: 3
layers: 2, input: 3
layers: 3, input: 3
layers: 4, input: 3
layers: 5, input: 3

layers: 1, input: 4
layers: 2, input: 4
layers: 3, input: 4
layers: 4, input: 4
layers: 5, input: 4

layers: 1, input: 5
layers: 2, input: 5
layers: 3, input: 5
layers: 4, input: 5
layers: 5, input: 5

Figure 14: The loss of the encoded persistence forecast during training. The
loss is measured by the cumulative moving average (CMA) MSE. The CMA
at iteration n is determined by averaging the loss of all preceding iterations:
MSE1+...+MSEn

n . The CMA is used to show the development of the performance
during training, instead of the performance of individual iterations. The plot is
best viewed in colour.

43

5.3 Evaluation

The evaluation of the chosen configuration is done by comparing its performance
for different forecast horizons with the performance of a baseline method and
three state-of-the-art models. In table 11, the performance of the five different
models on the four forecast horizons is given. In the appendices in figure 20
examples of the forecasts can be found. The analysis of the performance on the
different types of cloud masks can be found in section 5.5.

What stands out first is the poor performance of the optical flow method
TV-L1 for forecast horizons after 1 hour. This is probably due to compounding
errors. The optical flow method finds motion vectors between two images and
uses the motion vectors to make a forecast. The forecast for one hour is used
to compute the forecast for two hours, and the forecast for two hours for the
forecast for three hours. This approach was chosen as it was used in research
similar to cloudage forecasting. However, it seems the implementation is not
applicable for our case.

Secondly, the conclusion by Shi et al. [32] that TrajGRU outperforms other
ConvRNN models is once again confirmed. It shows an improvement over Con-
vLSTM on all forecast horizons, as well as the proposed novel model.

Third, the performance of the novel model is not as expected. Unlike the
other models, the performance increases for longer forecast horizons, until the
forecast horizon of three hours. This could indicate some anomaly during the
training of the models. To investigate this atypical behaviour, an additional
experiment was conducted. This experiment trains and tests the novel model
ten distinct times. This experiment is further explained in the next section.

Model
Persistence TV-L1 ConvLSTM TrajGRU Novel model

F
o
re

c
a
st

h
o
ri

z
o
n

30 min 0,473 0,381 0,296 0,234 0,512
1 h 0,563 0,480 0,373 0,321 0,479
2 h 0,594 1,340 0,383 0,322 0,455
3 h 0,621 1,630 0,405 0,368 0,571

Table 11: The performance of the baseline, three state-of-the-art, and the
novel model on the test set measured by the average MSE.

5.4 Repeating runs

To see whether the atypical behaviour of the novel model is due to an anomaly
during training, the configuration of the novel model for the 1-hour forecast
horizon is taken and trained and tested ten times. For each iteration, the model
is reinitialised to ensure that there is no connection between the runs. By
repeating the training and testing, it can be determined whether the random
initialisation of the model before training has any impact on the performance of
the model during testing. As can be seen in table 12, there is a large difference

44

in the performance of the ten iterations on the test set. However, this cannot
be traced back to the training method, as the performance during training is
very similar. What could be the cause for similar performance during training,
but deviating results during testing has not been uncovered.

Average train MSE Average test MSE
1. 0,384 0,347
2. 0,384 0,369
3. 0,385 0,385
4. 0,387 0,447
5. 0,388 0,457
6. 0,384 0,472
7. 0,386 0,407
8. 0,387 0,419
9. 0,386 0,381

10. 0,387 0,422

Table 12: Results of repeating the training and testing with the same con-
figuration of the novel model ten times. The average train MSE shows the
performance of the models during training. The average test MSE shows the
performance of the models on an unseen test set.

5.5 Cloud specific evaluation

From the performance of the models on different types of cloudage, a few re-
marks can be made.

First, all the models perform equivalently on the cloud masks. That is to
say, an easy cloud mask is easy for all models, and a difficult cloud mask is
difficult for all models.

Secondly, cloud mask containing almost no cloudage are very easy to fore-
cast, as can be expected. However, almost completely clouded cloud masks are
forecasted with an average performance.

The most difficult cloud masks can be divided into two categories: cloud
masks with multiple cloud layers (figure 15), and cloud masks containing mul-
tiple small clouds (figure 16). For the former type of cloud masks, the models
are bad at distinguishing between the layers, and forecast the cloud layers as
one blob, based on the previous motion of one of the layers. For the latter
type of cloud masks, the forecasts blur between cloud and cloud-free. Due to
this blurriness, the error on both cloud and cloud-free rises, resulting in bad
performance.

45

Figure 15: An example of a difficult to forecast cloud mask containing multiple
layers of clouds. While it is difficult to see 3D layers in a black and white 2D
image, the black blob in the lower middle stays mostly in the same place, while
the grey blob moves across it.

Figure 16: An example of a difficult to forecast cloud mask containing a lot
of small clouds.

46

6 Discussion

In this section, the results as presented in the previous section, the design of the
encoder-forecaster-decoder model, and the limitations of the proposed meth-
odology are discussed. In the end, a recommendation for the Solar Team is
made.

6.1 Results

Given the results, several remarks can be made. First, the encoded persistence
forecast is not a reliable baseline for the forecasting abilities of the network.
The encoded persistence forecast will change due to the learning of the encoder-
decoder. Especially because it seems that the encoder-forecaster-decoder model
tries to reconstruct the input image, instead of making a forecast, the encoder
and decoder adapt to the forecaster, resulting in inconsistent encoded persist-
ence forecasts. The adapting of the encoder and decoder could be a constraint,
by adding the loss of the encoded persistence forecast to the backpropagation
algorithm. That way, the encoding would be regularised, similarly to variational
autoencoders.

Secondly, the performance of the deep learning state-of-the-art models on
cloudage forecasting is excellent. While the comparison to the optical flow
method cannot be adequately made, as the performance of the TV-L1 model
is substandard, the comparison to the baseline model shows that the STSF
models perform similarly on cloudage forecasting as on other STSF problems.
The performance of the novel model is discussed in the next section.

6.1.1 Encoder-forecaster-decoder framework

As discussed, the encoder-forecaster-decoder does not seem to have forecasting
abilities. There are a few characteristics that could contribute to this. First,
compared to the TrajGRU evaluation model, the encoder-forecaster-decoder
does not have connections between the encoder and decoder. Not having con-
nections between the encoder and decoder was an explicit design choice, because
it would interfere with the forecasting. However, as has been shown by the Tra-
jGRU evaluation model, it could be done in such a manner that it enhances the
forecasting. Although the type of connection and information should be care-
fully selected, as has been shown by the impact of the switch variables (figure
3).

Secondly, the forecaster is tasked to find patterns over time. These patterns
are in the spatial dimension. However, because the encoder heavily downsamples
the spatial dimensions, there is not much information left to find these patterns.
The encodings do have many channels. However, the forecaster is not specifically
designed to employ the channels to find patterns, which might leave a lot on
the table in terms of finding those patterns.

47

6.2 Methodology

The proposed methodology has many limitations. First, the used data type is
not practical for determining SSI. The used cloud masks only have three possible
values. There are data sets available that contain cloud masks with more detail,
also known as cloud optical thickness. However, because the optical thickness
is obtained using the visible light channels on the satellite’s sensor, they are
not available during night time, limiting the available data points. Therefore,
the choice was made to use the cloud masks, as described. While the resulting
SSI using cloud mask would be worse, it does show the ability of the models to
forecast cloudage. Both cloud masks and optical thickness based models are in
principle trying to forecast the underlying motion of clouds.

Secondly, the methodology of training the models can be improved. Cur-
rently, the train data set is large enough that a single pass is sufficient for the
models to achieve satisfactory performance. However, it is common to use a
smaller train data set and multiple passes (or epochs) over the data set. While
either approach is valid, by using epochs, the training of the models can be
better tuned and monitored. In the used methodology, the models were trained
for a specific number of iterations. However, a stopping criterion is usually used
to determine when the models have achieved satisfactory performance during
training. By using a stopping criterion, over- or underfitting can be preven-
ted. Using epochs and a stopping criterion could both aid in discovering the
anomalies as discussed in section 5.4 of the results.

Third, the novel model is compared against three state-of-the-art models,
which is a good indication of its relative performance. Nonetheless, perhaps
the most crucial model is missing: the model currently in use by the Solar
Team. While the intention is to use a nowcasting model in combination with
the current model in use by the solar team, it would be beneficial to known
the performance difference. A comparison between the novel model and the
NWP model as used by the Solar Team is missing because it requires much
processing to match the available forecasts of the NWP model to the test data
set as used in this research. Since the general performance of nowcasting models
using satellite data compared to NWP models is already well established, it was
decided not to include such a comparison in this research.

6.3 Recommendation

Based on the results and the experience of this research, a recommendation
towards the Solar Team can be made. The considerations for the Solar Team
to employ an additional forecast model in their race strategy are the gained
performance and the required time for implementation. Because the Solar Team
is very busy with many aspects of designing the solar car, as well as the strategy
model, decisions have to be made regarding what to work on. Therefore, it is not
recommended for them to implement a new weather forecast model themselves.
Both deep learning and optical flow methods require a deep understanding of the
inner workings, as well as much time to implement them. Consequently, a solar

48

surface irradiance forecasting service could be employed, similarly to the current
service provided by the ECMWF. While deep learning-based methods would
outperform other methods, currently there is no service available that employs
deep learning. Most services that provide SSI forecast use satellite obtained
SSI, and displace them using NWP obtained winds. However, the services that
employ optical flow methods on satellite obtained SSI achieve higher accuracy,
and are therefore recommended to be used by the Solar Team.

49

7 Conclusion

In this thesis, the encoder-forecaster-decoder framework was proposed, a deep
learning approach for forecasting cloudage. This framework was proposed based
on observations from related work, and its exact configuration was determined
based on the research questions as stated in section 1.

The first sub research question regarded what models could be used in the
framework: What are suitable models to be used as the encoder, decoder, and
forecaster elements? Based on several requirements and desired characteristics,
different models were selected. The different combinations of these models were
implemented in the framework, and their performance was compared between
themselves. In the end, a SegNet based encoder and decoder were used, and a
TrajGRU element as the forecaster.

Secondly, the obtained model was optimised, based on the second sub re-
search question: How many images in the input sequence is optimal? An ex-
haustive grid search was used on the number of input images, as well as the
number of recurrent layers. The performance of the 25 different models was
compared between them, and it was determined that four input images and one
layer were optimal.

Third, the performance of the optimised novel model was evaluated on four
different forecast horizons to answer the third sub research question: What are
the possible forecasting horizons? Because the behaviour of the novel model was
atypical, and the underlying problem of this behaviour could not be determined,
this question remains unanswered.

In conclusion, the main research question is answered: How does an encoder-
forecaster-decoder modular spatiotemporal sequence forecasting deep learning model
compare against state-of-the-art spatiotemporal sequence forecasting models with
regards to cloudage forecasting? To this end, the performance of the novel model
was compared to the performance of a baseline and three state-of-the-art models,
and it was determined that the novel model does not achieve similar perform-
ance, and seems to lacks the ability to actual forecast which is likely due to the
underlying framework.

50

8 Future work

Through the performed research, several possibilities for future work have been
discovered.

First, while the current design of the encoder-forecaster-decoder framework
is not optimal, additional research regarding connections between the encoder
and decoder could result in better forecasts. Although the TrajGRU model
already uses such connection, its architecture does not allow for a modular
approach to find the optimal elements to be used in the network.

Secondly, as it has been shown that the state-of-the-art STSF models can
forecast cloudage based on cloud masks, a more practical use-case for the fore-
casting of SSI would be to forecast optical thickness, or even SSI directly. The
forecasting of optical thickness would probably not require many adjustments
to the TrajGRU model, as it is very similar to cloud mask forecasting. However,
the forecasting of SSI might require adjustments to the architecture to take the
additional dependency on the position of the sun into account.

Third, the benefits of the encoded persistence forecast as a baseline are evid-
ent: it provides a baseline that has gone through the same loss of information
as a forecasting model, more clearly showing the ability of that model to make
accurate forecasts. However, as shown in this research, its performance is de-
pendant on the ever-adapting model. Additional research to better employ the
encoded persistence forecast is required, for example, by adding the loss of the
encoded persistence forecast to the loss of the model, making it perhaps a more
stable baseline.

51

References

[1] E. M. Guillot, T. H. Vonder Haar, J. M. Forsythe, and S. J. Fletcher,
“Evaluating satellite-based cloud persistence and displacement nowcasting
techniques over complex terrain,” Weather and forecasting, vol. 27, no. 2,
pp. 502–514, 2012.

[2] S. Pelland, J. Remund, J. Kleissl, T. Oozeki, and K. De Brabandere, Photo-
voltaic and Solar Forecasting: State of the Art. INTERNATIONAL EN-
ERGY AGENCY, 10 2013.

[3] R. Perez, P. Ineichen, K. Moore, M. Kmiecik, C. Chain, R. George, and
F. Vignola, “A new operational model for satellite-derived irradiances: de-
scription and validation,” Solar Energy, vol. 73, no. 5, pp. 307–317, 2002.

[4] C. Gautier, G. Diak, and S. Masse, “A simple physical model to estimate
incident solar radiation at the surface from goes satellite data,” Journal of
Applied Meteorology, vol. 19, no. 8, pp. 1005–1012, 1980.

[5] S. D. Miller, M. A. Rogers, J. M. Haynes, M. Sengupta, and A. K.
Heidinger, “Short-term solar irradiance forecasting via satellite/model
coupling,” Solar Energy, vol. 168, pp. 102–117, 2018.

[6] G. Huang, Z. Li, X. Li, S. Liang, K. Yang, D. Wang, and Y. Zhang, “Es-
timating surface solar irradiance from satellites: Past, present, and future
perspectives,” Remote Sensing of Environment, vol. 233, p. 111371, 2019.

[7] C. I. Team, “Cloud effects on earth’s radiation,” Apr 2000.

[8] T. Fujita, D. L. Bradbury, and C. Murino, A study of mesoscale cloud
motions computed from ATS-I and terrestrial photographs. Department of
the Geophysical sciences, University of Chicago, 1968.

[9] W. P. Menzel, “Cloud tracking with satellite imagery: From the pioneering
work of ted fujita to the present,” Bulletin of the American Meteorological
Society, vol. 82, no. 1, pp. 33–48, 2001.

[10] X. Shi and D.-Y. Yeung, “Machine learning for spatiotemporal sequence
forecasting: A survey,” arXiv preprint arXiv:1808.06865, 2018.

[11] H. S. Muench, Short-range Forecasting of Cloudiness and Precipitation
Through Extrapolation of GOES Imagery. Air Force Geophysics Labor-
atories, Air Force Systems Command, United States, 1981.

[12] M. D. Binder, N. Hirokawa, and U. Windhorst, eds., Aperture Problem,
pp. 159–159. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.

[13] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural net-
works,” in Proceedings of the fourteenth international conference on artifi-
cial intelligence and statistics, pp. 315–323, 2011.

52

[14] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in European conference on computer vision, pp. 818–833,
Springer, 2014.

[15] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep con-
volutional encoder-decoder architecture for image segmentation,” IEEE
transactions on pattern analysis and machine intelligence, vol. 39, no. 12,
pp. 2481–2495, 2017.

[16] Z. Wojna, V. Ferrari, S. Guadarrama, N. Silberman, L.-C. Chen, A. Fathi,
and J. Uijlings, “The devil is in the decoder: Classification, regression
and gans,” International Journal of Computer Vision, vol. 127, no. 11-12,
pp. 1694–1706, 2019.

[17] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, “Deconvolutional
networks,” in 2010 IEEE Computer Society Conference on computer vision
and pattern recognition, pp. 2528–2535, IEEE, 2010.

[18] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethink-
ing the inception architecture for computer vision,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 2818–
2826, 2016.

[19] F. Chollet, “Xception: Deep learning with depthwise separable convolu-
tions,” in Proceedings of the IEEE conference on computer vision and pat-
tern recognition, pp. 1251–1258, 2017.

[20] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for se-
mantic segmentation,” in Proceedings of the IEEE international conference
on computer vision, pp. 1520–1528, 2015.

[21] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training re-
current neural networks,” in International conference on machine learning,
pp. 1310–1318, 2013.

[22] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

[23] G. Weiss, Y. Goldberg, and E. Yahav, “On the practical computational
power of finite precision rnns for language recognition,” arXiv preprint
arXiv:1805.04908, 2018.

[24] R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio, “How to construct deep
recurrent neural networks,” arXiv preprint arXiv:1312.6026, 2013.

[25] H. Zhao, O. Gallo, I. Frosio, and J. Kautz, “Loss functions for image restor-
ation with neural networks,” IEEE Transactions on computational imaging,
vol. 3, no. 1, pp. 47–57, 2016.

53

[26] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality
assessment: from error visibility to structural similarity,” IEEE transac-
tions on image processing, vol. 13, no. 4, pp. 600–612, 2004.

[27] C. Zach, T. Pock, and H. Bischof, “A duality based approach for realtime
tv-l 1 optical flow,” in Joint pattern recognition symposium, pp. 214–223,
Springer, 2007.

[28] J. S. Pérez, E. Meinhardt-Llopis, and G. Facciolo, “Tv-l1 optical flow es-
timation,” Image Processing On Line, vol. 2013, pp. 137–150, 2013.

[29] I. Urbich, J. Bendix, and R. Müller, “A novel approach for the short-term
forecast of the effective cloud albedo,” Remote Sensing, vol. 10, no. 6, 2018.

[30] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c. Woo,
“Convolutional lstm network: A machine learning approach for precipita-
tion nowcasting,” in Advances in neural information processing systems,
pp. 802–810, 2015.

[31] N. Srivastava, E. Mansimov, and R. Salakhudinov, “Unsupervised learn-
ing of video representations using lstms,” in International conference on
machine learning, pp. 843–852, 2015.

[32] X. Shi, Z. Gao, L. Lausen, H. Wang, D.-Y. Yeung, W.-k. Wong, and W.-c.
Woo, “Deep learning for precipitation nowcasting: A benchmark and a new
model,” in Advances in neural information processing systems, pp. 5617–
5627, 2017.

[33] C. Tan, X. Feng, J. Long, and L. Geng, “Forecast-clstm: A new con-
volutional lstm network for cloudage nowcasting,” in 2018 IEEE Visual
Communications and Image Processing (VCIP), pp. 1–4, IEEE, 2018.

[34] J. Oh, X. Guo, H. Lee, R. L. Lewis, and S. Singh, “Action-conditional
video prediction using deep networks in atari games,” in Advances in neural
information processing systems, pp. 2863–2871, 2015.

[35] R. Goroshin, M. F. Mathieu, and Y. LeCun, “Learning to linearize un-
der uncertainty,” in Advances in Neural Information Processing Systems,
pp. 1234–1242, 2015.

[36] J. Yang, B. Price, S. Cohen, H. Lee, and M.-H. Yang, “Object contour
detection with a fully convolutional encoder-decoder network,” in Proceed-
ings of the IEEE conference on computer vision and pattern recognition,
pp. 193–202, 2016.

[37] A. A. Shvets, V. I. Iglovikov, A. Rakhlin, and A. A. Kalinin, “Angiodys-
plasia detection and localization using deep convolutional neural networks,”
in 2018 17th ieee international conference on machine learning and applic-
ations (icmla), pp. 612–617, IEEE, 2018.

54

[38] R. Yasrab, “Ecru: An encoder-decoder based convolution neural network
(cnn) for road-scene understanding,” Journal of Imaging, vol. 4, no. 10,
p. 116, 2018.

[39] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional net-
works for biomedical image segmentation,” in International Conference on
Medical image computing and computer-assisted intervention, pp. 234–241,
Springer, 2015.

[40] S. Finkensieper, J. Meirink, G. van Zadelhoff, T. Hanschmann, N. Benas,
M. Stengel, P. Fuchs, R. Hollmann, and M. Werscheck, “Claas-2: Cm saf
cloud property dataset using seviri–edition 2, satellite application facility
on climate monitoring,” Satellite Appl. Facil. Clim. Monit, 2016.

[41] C. SAF, “Algorithm theoretical basis document, seviri cloud physical
products, claas edition 2, eumetsat satellite application facility on climate
monitoring,” tech. rep., SAF/CM/KNMI/ATBD/SEVIRI/CPP, 2016.

[42] J. Schmid, “The seviri instrument,” in Proceedings of the 2000 EUMETSAT
meteorological satellite data user’s conference, Bologna, Italy, vol. 29, 2000.

[43] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[44] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[45] M. Hermans and B. Schrauwen, “Training and analysing deep recurrent
neural networks,” in Advances in neural information processing systems,
pp. 190–198, 2013.

[46] A. Odena, V. Dumoulin, and C. Olah, “Deconvolution and checkerboard
artifacts,” Distill, 2016.

55

Appendices

A Glossary

CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observations

CALIOP Cloud-Aerosol Lidar with Orthogonal Polariza-
tion

CLAAS-2 CLoud property dAtAset using SEVIRI - Edi-
tion 2

CM SAF Satellite Application Facility on Climate Monit-
oring

CNN Convolutional Neural Network
ConvLSTM Convolutional Long Short-Term Memory
ConvRNN Convolutional Recurrent Neural Network
ECMWF European Centre for Medium-Range Weather

Forecasts
EUMETSAT European Organisation for the Exploitation of

Meteorological Satellites
GOES Geostationary Operational Environmental

Satellite
GRU Gated Recurrent Unit.
INSAT Indian National Satellite System
JMA Japan Meteorological Agency
LIDAR Laser Imaging, Detection, And Ranging
LSTM Long Short-Term Memory
ML Machine Learning
MSG Meteosat Second Generation
NOAA National Oceanic and Atmospheric Administra-

tion
NWP Numerical Weather Prediction
ReLU Rectified Linear Unit
RNN Recurrent Neural Network
SSI Surface Solar Irradiance
STSF SpatioTemporal Sequence Forecasting
TrajGRU Trajectory Gated Recurrent United
TV Total Variation

56

B Network implementation details

In this appendix the details of the architectures of the used deep neural networks
are described. The tables contain all the layers present in the models. In
principle, the input would arrive at the top of the table, and is passed between
the layers from the top to bottom row. The activation functions have been
ommited for readability.

57

B
.1

E
n

co
d

e
r

Table 14: Encoder - The hyperparameters of the layers of the SegNet based encoder.

Name Type Kernel Stride Padding In shape Out shape

Stage 1 Encoder -
conv 1 Conv 3× 3 1× 1 1× 1 1× 363× 363 64× 363× 363
conv 2 Conv 3× 3 1× 1 1× 1 64× 363× 363 64× 363× 363

pool Max-pool 2× 2 2× 2 0× 0 64× 363× 363 64× 181× 181
Stage 2 Encoder -

conv 1 Conv 3× 3 1× 1 1× 1 64× 181× 181 128× 181× 181
conv 2 Conv 3× 3 1× 1 1× 1 128× 181× 181 128× 181× 181

pool Max-pool 2× 2 2× 2 0× 0 128× 181× 181 128× 90× 90
Stage 3 Encoder -

conv 1 Conv 3× 3 1× 1 1× 1 128× 90× 90 256× 90× 90
conv 2 Conv 3× 3 1× 1 1× 1 256× 90× 90 256× 90× 90
conv 3 Conv 3× 3 1× 1 1× 1 256× 90× 90 256× 90× 90

pool Max-pool 2× 2 2× 2 0× 0 256× 90× 90 256× 45× 45
Stage 4 Encoder -

conv 1 Conv 3× 3 1× 1 1× 1 256× 45× 45 512× 45× 45
conv 2 Conv 3× 3 1× 1 1× 1 512× 45× 45 512× 45× 45
conv 3 Conv 3× 3 1× 1 1× 1 512× 45× 45 512× 45× 45

pool Max-pool 2× 2 2× 2 0× 0 512× 45× 45 512× 22× 22
Stage 5 Encoder -

conv 1 Conv 3× 3 1× 1 1× 1 512× 22× 22 512× 22× 22
conv 2 Conv 3× 3 1× 1 1× 1 512× 22× 22 512× 22× 22
conv 3 Conv 3× 3 1× 1 1× 1 512× 22× 22 512× 22× 22

pool Max-pool 2× 2 2× 2 0× 0 512× 22× 22 512× 11× 11

58

B
.2

D
e
co

d
e
r

Table 15: Bilinear Upsampling - The hyperparameters of the layers of the bilinear upsampling decoder.

Name Type Kernel Stride Padding In shape Out shape

Stage 5 Decoder -
upsample Bilinear - - - 512× 11× 11 512× 22× 22
conv 3 Conv 3× 3 1× 1 1× 1 512× 22× 22 512× 22× 22
conv 2 Conv 3× 3 1× 1 1× 1 512× 22× 22 512× 22× 22
conv 1 Conv 3× 3 1× 1 1× 1 512× 22× 22 512× 22× 22

Stage 4 Decoder -
upsample Bilinear - - - 512× 22× 22 512× 45× 45
conv 3 Conv 3× 3 1× 1 1× 1 512× 45× 45 512× 45× 45
conv 2 Conv 3× 3 1× 1 1× 1 512× 45× 45 512× 45× 45
conv 1 Conv 3× 3 1× 1 1× 1 512× 45× 45 256× 45× 45

Stage 3 Decoder -
upsample Bilinear - - - 256× 45× 45 256× 90× 90
conv 3 Conv 3× 3 1× 1 1× 1 256× 90× 90 256× 90× 90
conv 2 Conv 3× 3 1× 1 1× 1 256× 90× 90 256× 90× 90
conv 1 Conv 3× 3 1× 1 1× 1 256× 90× 90 128× 90× 90

Stage 2 Decoder -
upsample Bilinear - - - 128× 90× 90 128× 181× 181
conv 2 Conv 3× 3 1× 1 1× 1 128× 181× 181 128× 181× 181
conv 1 Conv 3× 3 1× 1 1× 1 128× 181× 181 64× 181× 181

Stage 1 Decoder -
upsample Bilinear - - - 64× 181× 181 64× 363× 363
conv 2 Conv 3× 3 1× 1 1× 1 64× 363× 363 64× 363× 363
conv 1 Conv 3× 3 1× 1 1× 1 64× 363× 363 1× 363× 363

59

Table 16: Bilinear Additive Upsampling - The hyperparameters of the layers of the bilinear additive upsampling decoder.

Name Type Kernel Stride Padding In shape Out shape Other params

Stage 5 Decoder -
upsample Bilinear - - - 512× 11× 11 512× 22× 22
average Average channels - - - 512× 22× 22 128× 22× 22 ratio = 4
conv 3 Conv 3× 3 1× 1 1× 1 128× 22× 22 128× 22× 22
conv 2 Conv 3× 3 1× 1 1× 1 128× 22× 22 128× 22× 22
conv 1 Conv 3× 3 1× 1 1× 1 128× 22× 22 128× 22× 22

Stage 4 Decoder -
upsample Bilinear - - - 128× 22× 22 128× 45× 45
average Average channels - - - 128× 45× 45 32× 45× 45 ratio = 4
conv 3 Conv 3× 3 1× 1 1× 1 32× 45× 45 32× 45× 45
conv 2 Conv 3× 3 1× 1 1× 1 32× 45× 45 32× 45× 45
conv 1 Conv 3× 3 1× 1 1× 1 32× 45× 45 32× 45× 45

Stage 3 Decoder -
upsample Bilinear - - - 32× 45× 45 32× 90× 90
average Average channels - - - 32× 90× 90 8× 90× 90 ratio = 4
conv 3 Conv 3× 3 1× 1 1× 1 8× 90× 90 8× 90× 90
conv 2 Conv 3× 3 1× 1 1× 1 8× 90× 90 8× 90× 90
conv 1 Conv 3× 3 1× 1 1× 1 8× 90× 90 8× 90× 90

Stage 2 Decoder -
upsample Bilinear - - - 8× 90× 90 8× 181× 181
average Average channels - - - 8× 181× 181 2× 181× 181 ratio = 4
conv 2 Conv 3× 3 1× 1 1× 1 2× 181× 181 2× 181× 181
conv 1 Conv 3× 3 1× 1 1× 1 2× 181× 181 2× 181× 181

Stage 1 Decoder -
upsample Bilinear - - - 2× 181× 181 2× 363× 363

60

average Average channels - - - 2× 363× 363 1× 363× 363 ratio = 2
conv 2 Conv 3× 3 1× 1 1× 1 1× 363× 363 1× 363× 363
conv 1 Conv 3× 3 1× 1 1× 1 1× 363× 363 1× 363× 363

61

Table 17: Bilinear Upsampling & Seperable Convolution - The hyperparameters of the layers of the bilinear & seperable
convolution upsampling decoder.

Name Type Kernel Stride Padding In shape Out shape Other params

Stage 5 Decoder -
upsample Bilinear - - - 512× 11× 11 512× 22× 22
depthwise Conv 3× 3 1× 1 1× 1 512× 22× 22 1536× 22× 22 groups = 512
pointwise Conv 1× 1 1× 1 0× 0 1536× 22× 22 512× 22× 22
conv 3 Conv 3× 3 1× 1 1× 1 512× 22× 22 512× 22× 22
conv 2 Conv 3× 3 1× 1 1× 1 512× 22× 22 512× 22× 22
conv 1 Conv 3× 3 1× 1 1× 1 512× 22× 22 512× 22× 22

Stage 4 Decoder -
upsample Bilinear - - - 512× 22× 22 512× 45× 45
depthwise Conv 3× 3 1× 1 1× 1 512× 45× 45 1536× 45× 45 groups = 512
pointwise Conv 1× 1 1× 1 0× 0 1536× 45× 45 512× 45× 45
conv 3 Conv 3× 3 1× 1 1× 1 512× 45× 45 512× 45× 45
conv 2 Conv 3× 3 1× 1 1× 1 512× 45× 45 512× 45× 45
conv 1 Conv 3× 3 1× 1 1× 1 512× 45× 45 256× 45× 45

Stage 3 Decoder -
upsample Bilinear - - - 256× 45× 45 256× 90× 90
depthwise Conv 3× 3 1× 1 1× 1 256× 90× 90 769× 90× 90 groups = 256
pointwise Conv 1× 1 1× 1 0× 0 768× 90× 90 256× 90× 90
conv 3 Conv 3× 3 1× 1 1× 1 256× 90× 90 256× 90× 90
conv 2 Conv 3× 3 1× 1 1× 1 256× 90× 90 256× 90× 90
conv 1 Conv 3× 3 1× 1 1× 1 256× 90× 90 128× 90× 90

Stage 2 Decoder -
upsample Bilinear - - - 128× 90× 90 128× 181× 181
depthwise Conv 3× 3 1× 1 1× 1 128× 181× 181 384× 181× 181 groups = 128

62

pointwise Conv 1× 1 1× 1 0× 0 384× 181× 181 128× 181× 181
conv 2 Conv 3× 3 1× 1 1× 1 128× 181× 181 128× 181× 181
conv 1 Conv 3× 3 1× 1 1× 1 128× 181× 181 64× 181× 181

Stage 1 Decoder -
upsample Bilinear - - - 64× 181× 181 64× 363× 363
depthwise Conv 3× 3 1× 1 1× 1 64× 363× 363 192× 363× 363 groups = 64
pointwise Conv 1× 1 1× 1 0× 0 192× 363× 363 64× 363× 363
conv 2 Conv 3× 3 1× 1 1× 1 64× 363× 363 64× 363× 363
conv 1 Conv 3× 3 1× 1 1× 1 64× 363× 363 1× 363× 363

63

Table 18: Decomposed Transposed Convolution Upsampling - The hyperparameters of the layers of the decomposed
transposed convolution upsampling decoder.

Name Type Kernel Stride Padding In shape Out shape Other params

Stage 5 Decoder -
horizontal upsample Transposed Conv 1× 2 1× 2 0× 0 512× 11× 11 512× 11× 22 output padding = 0× 1
vertical upsample Transposed Conv 2× 1 2× 1 0× 0 512× 11× 22 512× 22× 22 output padding = 1× 0
conv 3 Conv 3× 3 1× 1 1× 1 512× 22× 22 512× 22× 22
conv 2 Conv 3× 3 1× 1 1× 1 512× 22× 22 512× 22× 22
conv 1 Conv 3× 3 1× 1 1× 1 512× 22× 22 512× 22× 22

Stage 4 Decoder -
horizontal upsample Transposed Conv 1× 2 1× 2 0× 0 512× 22× 22 512× 22× 45 output padding = 0× 1
vertical upsample Transposed Conv 2× 1 2× 1 0× 0 512× 22× 45 512× 45× 45 output padding = 1× 0
conv 3 Conv 3× 3 1× 1 1× 1 512× 45× 45 512× 45× 45
conv 2 Conv 3× 3 1× 1 1× 1 512× 45× 45 512× 45× 45
conv 1 Conv 3× 3 1× 1 1× 1 512× 45× 45 256× 45× 45

Stage 3 Decoder -
horizontal upsample Transposed Conv 1× 2 1× 2 0× 0 256× 45× 45 256× 45× 90 output padding = 0× 1
vertical upsample Transposed Conv 2× 1 2× 1 0× 0 256× 45× 90 256× 90× 90 output padding = 1× 0
conv 3 Conv 3× 3 1× 1 1× 1 256× 90× 90 256× 90× 90
conv 2 Conv 3× 3 1× 1 1× 1 256× 90× 90 256× 90× 90
conv 1 Conv 3× 3 1× 1 1× 1 256× 90× 90 128× 90× 90

Stage 2 Decoder -
horizontal upsample Transposed Conv 1× 2 1× 2 0× 0 128× 90× 90 128× 90× 181 output padding = 0× 1
vertical upsample Transposed Conv 2× 1 2× 1 0× 0 128× 90× 181 256× 181× 181 output padding = 1× 0
conv 2 Conv 3× 3 1× 1 1× 1 128× 181× 181 128× 181× 181
conv 1 Conv 3× 3 1× 1 1× 1 128× 181× 181 64× 181× 181

Stage 1 Decoder -

64

horizontal upsample Transposed Conv 1× 2 1× 2 0× 0 64× 181× 181 64× 363× 363 output padding = 0× 1
vertical upsample Transposed Conv 2× 1 2× 1 0× 0 64× 181× 363 64× 363× 363 output padding = 1× 0
conv 2 Conv 3× 3 1× 1 1× 1 64× 363× 363 64× 363× 363
conv 1 Conv 3× 3 1× 1 1× 1 64× 363× 363 1× 363× 363

65

Table 19: Transposed Convolution Upsampling - The hyperparameters of the layers of the transposed convolution
upsampling decoder.

Name Type Kernel Stride Padding In shape Out shape Other params

Stage 5 Decoder -
upsample Transposed Conv 2× 2 2× 2 0× 0 512× 11× 11 512× 22× 22 output padding = 1× 1
conv 3 Conv 3× 3 1× 1 1× 1 512× 22× 22 512× 22× 22
conv 2 Conv 3× 3 1× 1 1× 1 512× 22× 22 512× 22× 22
conv 1 Conv 3× 3 1× 1 1× 1 512× 22× 22 512× 22× 22

Stage 4 Decoder -
upsample Transposed Conv 2× 2 2× 2 0× 0 512× 22× 22 512× 45× 45 output padding = 1× 1
conv 3 Conv 3× 3 1× 1 1× 1 512× 45× 45 512× 45× 45
conv 2 Conv 3× 3 1× 1 1× 1 512× 45× 45 512× 45× 45
conv 1 Conv 3× 3 1× 1 1× 1 512× 45× 45 256× 45× 45

Stage 3 Decoder -
upsample Transposed Conv 2× 2 2× 2 0× 0 256× 45× 45 256× 90× 90 output padding = 1× 1
conv 3 Conv 3× 3 1× 1 1× 1 256× 90× 90 256× 90× 90
conv 2 Conv 3× 3 1× 1 1× 1 256× 90× 90 256× 90× 90
conv 1 Conv 3× 3 1× 1 1× 1 256× 90× 90 128× 90× 90

Stage 2 Decoder -
upsample Transposed Conv 2× 2 2× 2 0× 0 128× 90× 90 128× 181× 181 output padding = 1× 1
conv 2 Conv 3× 3 1× 1 1× 1 128× 181× 181 128× 181× 181
conv 1 Conv 3× 3 1× 1 1× 1 128× 181× 181 64× 181× 181

Stage 1 Decoder -
upsample Transposed Conv 2× 2 2× 2 0× 0 64× 181× 181 64× 363× 363 output padding = 1× 1
conv 2 Conv 3× 3 1× 1 1× 1 64× 363× 363 64× 363× 363
conv 1 Conv 3× 3 1× 1 1× 1 64× 363× 363 1× 363× 363

66

B.3 Forecaster

Table 20: ConvLSTM Cell

Name Type Kernel Stride Padding Channel I/O

Wxi Conv 3× 3 1× 1 1× 1 512/512
Whi Conv 3× 3 1× 1 1× 1 512/512
Wxf Conv 3× 3 1× 1 1× 1 512/512
Whf Conv 3× 3 1× 1 1× 1 512/512
Wxc Conv 3× 3 1× 1 1× 1 512/512
Whc Conv 3× 3 1× 1 1× 1 512/512
Wxo Conv 3× 3 1× 1 1× 1 512/512
Who Conv 3× 3 1× 1 1× 1 512/512

Table 21: TrajGRU Cell

Name Type Kernel Stride Padding Channel I/O

Flow generator
i2f conv Conv 5× 5 1× 1 2× 2 512/32
h2f conv Conv 5× 5 1× 1 2× 2 512/32
u conv Conv 5× 5 1× 1 2× 2 32/L, L = 9
v conv Conv 5× 5 1× 1 2× 2 32/L, L = 9

TrajGRU
Wxz Conv 3× 3 1× 1 1× 1 512/512
Wxr Conv 3× 3 1× 1 1× 1 512/512
Wxh Conv 3× 3 1× 1 1× 1 512/512
Whz Conv 1× 1 1× 1 0× 0 512 · L/512, L = 9
Whr Conv 1× 1 1× 1 0× 0 512 · L/512, L = 9
Whh Conv 1× 1 1× 1 0× 0 512 · L/512, L = 9

67

B
.4

E
v
a
lu

a
tio

n
m

o
d

e
ls

Table 22: TrajGRU evaluation model.

Name Type Kernel Stride Padding In shape Out shape Other params

Encoder
conv1 Conv 7× 7 5× 5 1× 1 1× 363× 363 8× 72× 72
rnn1 TrajGRU 3× 3 1× 1 1× 1 8× 72× 72 64× 72× 72 L = 13
conv2 Conv 5× 5 3× 3 1× 1 64× 72× 72 64× 24× 24
rnn2 TrajGRU 3× 3 1× 1 1× 1 64× 24× 24 192× 24× 24 L = 13
conv3 Conv 3× 3 2× 2 1× 1 192× 24× 24 192× 12× 12
rnn3 TrajGRU 3× 3 1× 1 1× 1 192× 12× 12 192× 12× 12 L = 9

Forecaster
rnn1 TrajGRU 3× 3 1× 1 1× 1 192× 12× 12 192× 12× 12 L = 9
conv1 Transposed Conv 4× 4 2× 2 1× 1 192× 12× 12 192× 24× 24
rnn2 TrajGRU 3× 3 1× 1 1× 1 192× 24× 24 192× 24× 24 L = 13
conv2 Transposed Conv 5× 5 3× 3 1× 1 192× 24× 24 64× 72× 72
rnn3 TrajGRU 3× 3 1× 1 1× 1 64× 72× 72 64× 72× 72 L = 13
conv3 Transposed Conv 7× 7 5× 5 1× 1 64× 72× 72 8× 363× 363
conv4 Conv 1× 1 1× 1 0× 0 8× 363× 363 1× 363× 363

68

Table 23: ConvLSTM evaluation model.

Name Type Kernel Stride Padding In shape Out shape

Encoder
conv1 Conv 7× 7 5× 5 1× 1 1× 363× 363 8× 72× 72
rnn1 ConvLSTM 3× 3 1× 1 1× 1 8× 72× 72 64× 72× 72
conv2 Conv 5× 5 3× 3 1× 1 64× 72× 72 64× 24× 24
rnn2 ConvLSTM 3× 3 1× 1 1× 1 64× 24× 24 192× 24× 24
conv3 Conv 3× 3 2× 2 1× 1 192× 24× 24 192× 12× 12
rnn3 ConvLSTM 3× 3 1× 1 1× 1 192× 12× 12 192× 12× 12

Forecaster
rnn1 ConvLSTM 3× 3 1× 1 1× 1 192× 12× 12 192× 12× 12
conv1 Transposed Conv 4× 4 2× 2 1× 1 192× 12× 12 192× 24× 24
rnn2 ConvLSTM 3× 3 1× 1 1× 1 192× 24× 24 192× 24× 24
conv2 Transposed Conv 5× 5 3× 3 1× 1 192× 24× 24 192× 72× 72
rnn3 ConvLSTM 3× 3 1× 1 1× 1 192× 72× 72 64× 72× 72
conv3 Transposed Conv 7× 7 5× 5 1× 1 64× 72× 72 8× 363× 363
conv4 Conv 1× 1 1× 1 0× 0 8× 363× 363 1× 363× 363

69

C Example of results

C.1 Integration

C.1.1 Encoder-decoder

Figure 17: Examples of a reconstructed cloud mask by the different up-
sampling methods. First row from left to right: ground truth, bilinear up-
sampling & convolutions, bilinear additive upsampling. Second row from left
to right: bilinear upsampling & separable convolutions, decomposed transposed
convolution, transposed convolution.

70

C.1.2 Integrated networks

input 1 input 2 input 3 Forecast

Figure 18: Examples of the reconstructed forecast made by the integrated
models. The forecast are from top to bottom: ground truth, ConvLSTM, Traj-
GRU.

71

C.2 Optimisation

Figure 19: Examples of the reconstructed forecast made by the different mod-
els in the grid search. The rows are the number of layers, the columns are the
number of input cloud masks. The first row are the ground truths, the second
row are the models with one layer, down to the sixth row with the models with
five layers. The first column are the models with one input cloud masks, the
fifth columns are the models with five input cloud masks.

72

C.3 Evaluation

Figure 20: Examples of the forecasts made by the different model used during
evaluation. The columns are the forecast horizons, from left to right: 30 minutes,
1 hour, 2 hours, 3 hours. The rows are the different models. From top to bottom:
ground truth, persistence, TV-L1, ConvLSTM evaluation models, TrajGRU
evaluation models, and the novel model.

73

	Introduction
	Research goal
	Research questions
	Contribution
	Outline

	Background
	Solar team requirements
	Forecasting solar irradiance
	Satellite imagery
	From satellite observations to cloud masks
	From cloud masks to surface solar irradiance

	Cloud motion
	History of cloudage forecasting
	Optical flow
	Deep learning spatiotemporal sequence forecasting
	Activations
	Convolutions and pooling
	Deconvolutions and unpool
	Upsampling
	Recurrent neural networks
	Loss
	Performance metrics

	Scope

	Related work
	Persistence
	TV-L1
	Convolutional LSTM
	Trajectory GRU

	Methodology
	Encoder-Forecaster-Decoder framework
	Model selection
	Encoder & decoder
	Forecaster

	Data
	Integration
	Encoder & decoder
	Forecaster

	Optimisation
	Architecture
	Training
	Analysis

	Evaluation
	Models
	Forecast horizon
	Analysis

	Results
	Integration
	Encoder & decoder
	Forecaster

	Optimisation
	Evaluation
	Repeating runs
	Cloud specific evaluation

	Discussion
	Results
	Encoder-forecaster-decoder framework

	Methodology
	Recommendation

	Conclusion
	Future work
	Appendices
	Glossary
	Network implementation details
	Encoder
	Decoder
	Forecaster
	Evaluation models

	Example of results
	Integration
	Encoder-decoder
	Integrated networks

	Optimisation
	Evaluation

