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ABSTRACT 
Human activity recognition (HAR) has been 

an active area of research for decades. While 

traditional sensor-based activity recognition 

methods have demonstrated high recognition 

accuracy, they suffer from a significant 

overhead in terms of energy and computation, 

especially for resource-constrained devices. To 

address that, this thesis employs a multi-

faceted approach to arrive at an optimized 

system where the design involves optimization 

of energy consumption through number of 

sensors, computation through minimal set of 

features and reduced classifier size and cost 

through a nominal hardware platform.  

The performance of the design is evaluated 

against other baseline models in terms of 

classification accuracy and power 

consumption on two publicly available 

datasets. The experimental results on the 

Raspberry Pi Zero board show that the 

approach reduced the size of the network by 

60% and maintained an accuracy of 96% while 

consuming 1.07J. These results validate the 

viability of the system on resource-constrained 

devices, thereby making it affordable to low-

income groups.  

 

1. INTRODUCTION 
Context-aware ubiquitous computing has seen 

a meteoric growth with the ever-decreasing 

cost and size of microprocessors and sensors. 

Advances in the last decade on the 

development of embedded electronics and 

computer systems has improved the field of 

human activity recognition within context-

aware systems. This has impacted fields like 

health monitoring and management, security 

and surveillance, behaviour recognition and 

monitoring, and ambient assisted living, 

among other things. There is a need for low-

cost HAR designs that minimise data 

processing and resource consumption while 

accurately classifying the performed activity, 

to ensure the availability of activity 

recognition on low power systems. 

1.1 Motivation 
In literature, many activity recognition systems 

rely on data from multiple sensors and 

implement complex feature extraction and 

recognition algorithms. While this ultimately 

increases the accuracy of the system, it also 

increases the costs associated with energy 

consumption and complexity. There is a need 

for the deployment of HAR systems on cheap 

but resource-constrained embedded devices if 

these technologies are to be made universally 

accessible across various income groups.  

This thesis proposes a system which reduces 

the obtrusiveness and hardware cost by using 

the data from a single accelerometer. The use 

of a single sensor reduces the computation cost 

as well. Combined with the computationally 

inexpensive features calculated from the data, 

this makes it possible to implement the system 

on a low-cost embedded platform, without 

making huge trade-offs with the recognition 

accuracy. 

 

1.2 Research Questions 
This thesis aims to improve the energy 

efficiency of human activity recognition while 

maintaining a good predictive accuracy over 

the existing benchmark research. The design 

and optimisation of a human activity 

recognition model, for deployment on an 

embedded device, requires addressing the 

following research questions: 

Question 1: Which machine learning 

method can be used for the classifier?  

An extensive literature survey will assess the 

merits and demerits of various machine 

learning algorithms and score them 

accordingly. Evaluating and comparing each 

of these models can help in selecting the right 

approach for performing activity recognition. 

 

Question 2: Which factors affect the energy 

efficiency of sensor-based activity 

recognition?  

During the literature survey, the different 

factors that have a significant impact on 

energy consumption are studied. Factors that 

are independent of the selected classifier 
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algorithm, as well as the dependent factors, are 

considered. 

Question 3: How can the energy efficiency 

of the system be increased without a 

significant drop in its classification 

performance?  

Experiments on the independent factors is 

conducted to find the suitable techniques that 

can help in the construction of an energy-

efficient HAR system while maintaining 

acceptable accuracy levels.  

Question 4: Which parameters are vital to 

the optimisation of the classifier, and what 

are the optimal values of the parameters?  

Exhaustive experiments will be done with 

different values for the classifier parameters to 

establish an optimal configuration for the 

classifier that further improves its accuracy. 

The accuracy vs energy efficiency trade-off 

will be studied, prioritising energy efficiency. 

 

The result would be an energy-efficient human 

activity recognition system that is 

computationally light, is deployed on an 

embedded platform and whose accuracy is at 

par with other HAR systems in the literature. 

 

1.3 Outline 
The remainder of this thesis will start with a 

discussion of the related work in Chapter 2. 

The details of the datasets used in the research 

are discussed in Chapter 3. Chapter 4 presents 

the implemented HAR system. Chapter 5 

explains the conducted experiments and 

discusses the results. Chapter 6 concludes the 

thesis and provides scope for possible future 

work. 

 

 

2. RELATED WORK 
The fields of context-aware and ubiquitous 

computing have been at the forefront of 

research in human activity recognition using 

on-body sensors. With the extensive 

accessibility of smartphones, research has 

focused on data captured by the sensors 

embedded in them. Among these, the 

accelerometer sensor has been very popular 

due to its low energy requirement and good 

performance in capturing human motion. 

This chapter briefly overviews previous work 

done in the field of human activity recognition, 

and is structured as follows: Section 2.1 

discusses the different sensor placements 

studied in the literature, Section 2.2 presents 

how researchers have collected and processed 

data in the literature, Section 2.3 explains the 

process of feature selection and extraction, and 

Section 2.4 examines the choice of classifiers 

made in the literature. 

 

2.1 Sensor location and obtrusiveness 
In literature, many on-body sensor locations 

like the waist, wrist, thigh, ankle etc. have 

been discussed. [1] concluded that while 

accelerometers placed on the hip, wrist, upper 

arm, ankle and thigh performed well, the 

performance only dropped slightly with the 

uses of just two biaxial accelerometers on the 

thigh and the wrist respectively. [2] concluded 

that models aware of the locations of the 

sensors on the subject’s body performed better 

than the models that were independent of the 

location information. Recent deep learning 

architectures learn representations from raw 

data from multiple on-body sensors [3][4]. The 

obtrusiveness of on-body sensors plays an 

essential part in the success of a HAR system. 

Configurations like [5], [6], [1], and [7] are 

invasive and uncomfortable and unsuitable for 

HAR. Not only does the obtrusiveness of a 

system reduce by minimising the number of 

sensors, but it also reduces energy 

consumption and improves processing (fewer 

data to be processed). In the end, the number 

and location of on-body sensors are governed 

by user acceptance and resultant accuracy. 

 

2.2 Data collection and processing  
The first step of a HAR system is the 

collection of raw data from on-body sensors. 

This raw data is sampled for every sensor, and 

the resulting multivariate time series requires 
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synchronisation. This raw data can also be 

corrupted by various sources resulting in 

artefacts. The pre-processing step synchronises 

the multimodal sensor data, resulting in a time 

series. Signal processing algorithms are used 

to filter out the artefacts while ensuring the 

preservation of relevant information about the 

activities of interest. Techniques like 

calibration, unit conversion, normalisation, 

resampling, synchronisation, or signal-level 

fusion[8] can be used for pre-processing of 

accelerometer and gyroscope signals.  

The segments of the pre-processed data that 

are most likely to contain activity information 

are identified in the data segmentation stage. 

Since human activities are fluent, it is not easy 

to segment a continuous sensor data stream. 

Three window-based data segmentation 

techniques exist in the literature, activity-

defined window, event-defined window, and 

sliding window[9]. The sliding window 

approach is the most used technique because 

of its simplicity and better performance. The 

window length is a key factor for HAR 

systems since it directly determines the 

performance of the system. It is subject to a 

trade-off between precision and the 

computational load on the system; smaller 

windows can increase precision, but the 

increased number of samples would increase 

the computation load on the system. The 

optimal window size is not clear beforehand. 

Different window lengths have been used in 

the literature: 0.08s [10], 1s [11], 1.5s [12], 3s 

[13], 5s [14], 7s [15], 12s [16], or up to 30s 

[5]. Of course, this decision is influenced by 

the activities to be recognised and the 

attributes that are being measured. The 

generated samples are passed through a low-

pass filter to remove high-frequency noise 

[17]. Furthermore, a Butterworth filter is used 

to separate the low-frequency gravitational 

acceleration from the higher frequency body 

acceleration [18]. 

 

2.3 Feature selection and extraction  
In this stage, the segmented data streams are 

reduced into discriminatory activity features. 

The total number of features that are extracted 

from the data makes up the feature space. 

Ideally, features belonging to the same activity 

are clustered together, and those of different 

activities are clearly separated in the feature 

space. The recognition performance of the 

system depends on how clearly the feature 

groups are separated in the feature space. In 

literature, time-domain features such as mean 

and standard deviation have been used to 

distinguish between postures [19], and static 

and dynamic activities, respectively. In the 

case of multi-axial accelerometers, the 

correlation between different axes has been 

used to distinguish movement along different 

axes [20]. Frequency domain features like 

energy and entropy can help measure the 

periodicity and complexity of activities, 

respectively [21]. 

Not all features in the processed dataset are 

essential for recognition, and feature ranking 

and feature reduction techniques are useful to 

reduce computations and build simpler 

learning models. The complexity of the system 

can be reduced for the training and 

classification stages by using only a subset of 

the feature space. Additionally, this would 

prevent overfitting, and the system would 

generalise better for unseen data. As pointed 

out in [22] for a given set of training examples, 

increasing the number of features beyond the 

optimal subset of features among a set of N 

possible features will decrease performance. In 

literature, methods such as the Principal 

Component Analysis (PCA) and the Minimum 

Description Length (MDL) [23] have been 

used for feature reduction. [24] proposed a 

feature reduction system that reduced the 

number of features from 1170 to 30 by 

performing PCA. 

 

2.4 Choice of classifier  
In the context of human activity recognition, 

the training set consists of feature vectors 

extracted from time windows.  

a) Supervised learning  

Supervised learning takes training data 

which is labelled with the class names 
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(e.g., running, sitting), and its known 

outputs, to develop predictive models. 

 

i. Decision trees: Decision trees sort 

instances based on feature values 

using the Iterative Dichotomiser 

3(ID3) algorithm. In a decision tree, 

every node represents a feature, and 

each branch represents a value that the 

node can assume in the hierarchical 

model of a decision tree. Each branch 

from the root to a leaf node is a 

classification rule [25]. Post-pruning 

techniques are used to avoid over-

fitting decision trees.  

ii. Bayesian methods: The Bayesian 

Network (BN) [26] classifier and 

Naive Bayes (NB) [27] is the principal 

exponents of this family of classifiers. 

They use graphical models to calculate 

probability relationships between 

features. Topology construction of the 

directed acyclic graphs used for these 

methods is an issue since it is 

necessary to assume independence 

between feature nodes. These 

assumption does not hold in many 

cases. Bayesian Networks are not 

suitable for datasets with many 

features [28]. 

iii. Instance-based learning (IBL): These 

methods use a distance function to 

compare an instance with similar 

instances in the training set [23]. Since 

each new instance is evaluated against 

every instance in the training set, this 

makes these methods computationally 

very expensive. 

iv. Support Vector Machines: SVMs [29] 

use kernel functions to find the 

optimal hyperplane that partitions the 

given dataset with the maximum 

margin. The versatility of choosing the 

kernel function makes SVMs useful 

for higher dimensions. They are also 

memory efficient since the support 

vectors used for the decision function 

are just a subset of the feature points. 

v. Convolutional Networks: CNN’s are 

analogous to the neurons in the human 

brain. They incorporate local 

connections, parameter sharing, 

pooling and multi-layers. CNN's were 

the first hierarchical deep learning 

architectures [11]. CNN's have been 

used as an automatic feature extractors 

[11], [30]. In terms of HAR, CNNs 

can extract localised features and can 

retain pace and frequency information 

from extracted features because of 

their scale-invariance to changes in 

pace and frequency. 

 

vi. Recurrent Neural Network: Recurrent 

networks are suitable for exploiting 

temporal dependencies in movement 

data. RNN based LSTM (long short 

term memory) [31] was designed to 

avoid the conventional RNNs 

drawbacks with long-term 

dependencies. Each LSTM cell tracks 

its internal state and can learn to 

change it based on current and 

historical state values. LSTMs can 

thus retain information over many 

time-steps [32]. LSTMs can access the 

long-range context of sequential data, 

and its accuracy increases with an 

increase in available data. This also 

makes RNNs more susceptible to 

changes in the input data. 

 

b) Semi-supervised learning  

Some systems use partially unlabelled data 

to employ a semi-supervised learning 

approach. The efforts put into collection 

and precision of datasets has made 

supervised learning more prominent in 

literature, with only a few following semi-

supervised techniques. Semi-supervised 

techniques are useful when the annotation 

of data is difficult due to the high 

granularity of the activity [33]–[37]. Semi-

supervised methods do not follow a 

general approach. 
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2.5 Network Pruning 
Pruning of neural networks has been 

shown to be effective at reducing network 

complexity and improving generalisation 

[38]. The idea of pruning is to explore the 

redundancy in the model parameters and 

try to remove the redundant, non-

informative and uncritical parameters 

which are not crucial for model 

performance.  

 

a) Weight quantization  

Network compression using quantization 

works by reducing the number of bits 

required to represent weights and biases in 

a network. [39] showed that a significant 

improvement in speed can be achieved 

with minimal loss of accuracy if weights 

are represented using 8-bit quantization. 

The number of floating point operations 

and the memory usage was significantly 

reduced by using 16-bit fixed-point 

representation in [40].  

 

b) Network pruning  

Network pruning has been used to address 

the complexity of neural networks as well 

the over-fitting issue while training them. 

To remove the redundancy in networks, 

[41] proposed a data-free pruning method. 

[42] used a deep compression method to 

remove the redundant connections. 

Furthermore, the weights were quantized 

and then encoded using Huffman coding. 

In [43], low-cost hash functions were used 

to group the weights of a HashedNets 

model. [44] proposed a simple 

regularization method to perform 

quantization and pruning in a simple (re-) 

training procedure. 

  

 

3. DATASETS 
In this work two public HAR datasets, the 

WISDM dataset and the UCI HAPT dataset, 

are used for the training and classification 

purposes. These datasets were selected 

because,  

• The location of the smartphones on the 

subject’s body were less obtrusive [1] 

• Both the datasets lack rotational 

activities, which results in minimal 

overlap between the frequency 

domains of the gravitational and 

movement-related components of 

acceleration [45] and makes their 

separation using simple frequency-

based filters easier. 

 

3.1 WISDM Dataset 
The Wireless Sensor Data Mining (WISDM) 

Lab’s dataset [46] [47] contains sensor signal 

recordings of 36 subjects performing six 

activities- WALKING, WALKING 

UPSTAIRS, WALKING DOWNSTAIRS, 

SITTING, STANDING and JOGGING. The 

raw data consists of 1,098,207 data samples 

collected from the embedded tri-axial 

accelerometer of the subjects’ Android 

smartphones, which were kept in their front 

pockets. The sampling frequency was 20Hz. A 

total of 915 minutes of recording data is 

collected. The corresponding proportion of 

each activity is shown in figure 1.  

 

 

Figure 1: Distribution of the different activities in the 

WISDM dataset 

 

38.60%

11.20%9.10%
5.50%

4.40%

31.20%

WALKING WALKING UPSTAIRS

WALKING DOWNSTAIRS SITTING

STANDING JOGGING
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3.2 UCI HAPT Dataset 
The University of California Irvine’s Human 

Activities and Postural Transitions (UCI-

HAPT) dataset [48] is the updated version of 

the more popular UCI-HAR dataset [17]. It 

provides the original raw accelerometer and 

gyroscope signals collected from a waist-

mounted Samsung Galaxy S II phone. The 

dataset consists of signal recordings of 30 

subjects between the ages of 19 and 48 

performing three static activities- 

STANDING, SITTING and LYING; and three 

dynamic activities- WALKING, WALKING 

DOWNSTAIRS and WALKING UPSTAIRS; 

and six postural transitions- STAND_TO_SIT, 

SIT_TO_STAND, SIT_TO_LIE, 

LIE_TO_SIT, STAND_TO_LIE and 

LIE_TO_STAND. The data is collected at a 

sampling frequency of 50Hz. The 

corresponding proportion of each activity is 

shown in figure 2. 

 

 

Figure 2: Distribution of the different activities in the 

UCI-HAPT dataset 

 

4. HUMAN ACTION 

RECOGNITION 
The aim of this research was to develop a 

lightweight HAR model which uses data from 

embedded accelerometers. The general 

structure of HAR systems is similar to other 

pattern recognition systems, as shown in figure 

3. The input to the training phase is a time 

series stream of sensor data for the measured 

attributes. This data is pre-processed to 

denoise them and filter out any artifacts. 

Relevant features are extracted by splitting the 

time series data into time windows. In the 

training phase, these features are used by the 

learning methods to train an activity 

recognition model. In the testing phase, such a 

pre-trained classifier and new extracted 

features are used to calculate a predicted 

activity label. The implemented HAR process 

is discussed in the following subsections. 

 

 

Figure 3: General data flow for training and testing HAR 

systems based on wearable sensors[49] 

 

4.1 Pre-processing data 
The raw data was pre-processed by applying a 

rolling mean low-pass filter with a window 

size of 3 [30] to smoothen the signal and 

remove high frequency noise, as shown in 

figure 4. Furthermore, the gravitational 

17.33%

15.89%

17.20%15.23%

14.27%

13.11%

1.03%
0.74%

1.29% 1.15% 1.61%
1.14%

STANDING SITTING

LYING WALKING

WALKING UPSTAIRS WALKING DOWNSTAIRS

STAND TO SIT SIT TO STAND

SIT TO LIE LIE TO SIT
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component of the acceleration data was 

separated from the body motion component by 

using a low-pass Butterworth filter. 

 

 

Figure 4: Effect of the low-pass filter 

 

After the data was de-noised, it was sampled 

in fixed-width sliding windows. The 

percentage of overlap was 50% for both 

datasets. For the WISDM dataset, 100 

readings/window were used, whereas for the 

HAPT dataset, 150 readings/window were 

used. 

 

4.2 Feature extraction and 

Normalisation 
Selecting of the proper features from raw data 

is an important factor in the overall 

performance of a HAR system. Since the data 

is collected from triaxial accelerometers, 

features were extracted from each axis. The 

extracted features are Mean, Maximum, 

Minimum, Standard Deviation, Skew, Median, 

Kurtosis, Energy (normalized sum of squared 

amplitude) and Weighted Mean Frequency 

(calculated by PSD). Furthermore, the 

correlation between each pair of axes is used. 

This amounts to each sample being a (9*3 + 3) 

30-dimensional vector. 

To make sure that the gradient descents of 

different features can converge quickly, we 

transform all the features to a common scale. 

Using the min-max normalisation method, all 

the feature values are normalised to the 0-1 

scale. 

 

4.3 Dimensionality reduction 
Higher number of features or dimensions are 

harder to visualise and fail geometric intuition, 

and are computationally expensive to use. 

Dimensionality reduction is the process of 

projecting data to a lower dimensional 

subspace, such that redundant features are 

removed, and multi-collinearity taken care of. 

Ideally, the set of reduced features are a 

combination of the input variables and 

represent the same information, but in a lower 

dimensional subspace. The total (cumulative) 

variance is the sum of the individual variances 

of the principal components. As is evident 

from figure 5, more than 90% of the 

cumulative variance can be explained by the 

first 10 principal components. Principal 

Component Analysis (PCA) is used to reduce 

the dimensionality of the feature set. The key 

idea is to decompose the input into principle 

components, which are the linear combinations 

of the input features. 

 

 

Figure 5: Cumulative explained variance in the HAPT 

dataset 

 

4.4 CNN architecture 
The model developed for our experiment uses 

a sliding window size of size equal to the 

number of activity labels of the dataset for the 

convolution with a ReLU activation. 
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Following the convolutional layer is a max-

pooling layer, and then a flatten layer to 

convert the output of max-pooling function 

into a single vector. This is followed by a 

dense layer with a ReLU activation function, 

and a final dense layer with a 50% dropout 

rate and a softmax layer. The basic Keras [50] 

generated architectural view of the network is 

shown in figure 6. 

The ReLU activation function was used for its 

computational efficiency and decreased run 

time. Furthermore, ReLU avoids vanishing 

gradients over multiple layers. The softmax 

function was used in the output layer because 

it models probabilistic distributions well and is 

a good fit for 1 of N classification.  

The Adam optimiser was used because of its 

low memory requirements and computational 

efficiency; with MSE as the loss function. The 

epoch size was set to 50, learning rate to 

0.0004 and batch size to 32 samples. 

 

 

Figure 6: CNN architecture for HAR 

 

4.5 Network Pruning 
Once a CNN is fully trained, weights are 

assigned to the neurons with respect to their 

importance in the network, with the least 

active nodes being assigned values closer to 

zero. To reduce the size of the network, and 

speed-up inference, neurons with lower 

weights are removed. 

 

 

Figure 7: Number of parameters in a non-pruned 

network 

 

As can be seen from figure 7, the first dense 

layer contains the majority of the parameters, 

and it is this layer that was pruned. This was 

done by sorting the neurons according to their 

absolute values and then removing a certain 

percentage (pruning factor) of them. Once the 

neurons are removed and the network 

retrained, the pruned model has a significantly 

lower number of neurons, which reduces its 

memory footprint and computational 

requirement. The effect on accuracy isn’t 

significant up to a certain pruning factor (0.5 

in our case), after which higher weight neurons 

start getting removed and the accuracy 

plummets. Figure 8 shows an example of 

pruning.  
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Figure 8: Distribution of weights before pruning (top) 

and after pruning (down) the dense layer. Pruning 

removes neurons with weight values close to 0. 

 

5. EXPERIMENTS AND 

RESULTS 
The code for this thesis was written in Python 

3.x. This pipeline extensively uses open source 

machine learning libraries Scikit-Learn [51] 

and Numpy [52]. The deep learning models 

were developed using Keras [50] with 

TensorFlow [53] as backend. TensorFlow was 

used as the backend because it is well 

established in the deep learning community. 

Another advantage of TensorFlow is the 

format of the saved models. The TensorFlow 

documentation [54] describes SavedModel as 

“a language-neutral, recoverable, hermetic 

serialization format that enables higher-level 

systems and tools to produce, consume, and 

transform TensorFlow models”. The 

SavedModel format enables the saved models 

to be transferred to any device and perform 

inferences without the need of retraining or 

compatibility issues (provides TensorFlow is 

supported by the device). This enabled the 

experiments to be conducted on a PC and the 

Raspberry Pi Zero board, with the training 

done on the PC. 

 

5.1 PC 
The PC used is a Dell Inspiron 15 5559 with a 

6th Generation Intel Core i5-6200U 2.30GHz 

Processor. The laptop is not equipped with a 

dedicated GPU and hence GPU accelerated 

libraries were not used.  

 

5.1.1 Classification Accuracy and 

Sampling Frequency 

The impact of different sampling frequencies 

on the classification accuracy was 

investigated. As shown in figure 9, higher 

sampling frequencies give better classification 

accuracies, with a 3% loss in classification 

accuracy between the original sampling 

frequency of the HAPT dataset, 50Hz, and the 

lowest studied sampling frequency of 20Hz. 

Since the window size is the same while 

studying all the sampling frequencies, the 

reduction in accuracy can be attributed to two 

reasons, 

• Some of the characteristics of a signal 

captured at a higher sampling rate are 

missed at a low sampling rate. Less 

characteristics results in a lower 

accuracy for the classifier. As the 

sampling rate grows, we can observe a 

general trend of improving 

classification performance.  
 

• The original sampling rate for the 

HAPT dataset was 50Hz and the lower 

sampling rates were obtained by 

reducing the number of samples. Thus, 

the reduction in sampling rate directly 

resulted in a lower number of samples 

for the classifiers to be trained against, 

thereby affecting its accuracy. 
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Figure 9: Effect of Sampling Frequency on Accuracy 

(HAPT) 

 

5.1.2 Classification Accuracy and 

Feature Vector Dimensionality 

Figures 10 and 11 show how the accuracy 

changes with the feature vector 

dimensionality. While accuracy is higher when 

the number of features is more, the difference 

is not a lot. For both datasets, about 2% loss in 

accuracy is observed between the maximum 

and minimum values of the feature 

dimensions. Intuitively, reducing the number 

of features by a factor of 4 (or 2 in case of 

HAPT) should adversely affect the accuracy, 

but only a low drop-off in accuracy is 

observed. As seen in figure 5, most of the 

cumulative variance is explained by the first 

few principal components (dimensions). This 

means that a high classification accuracy can 

be achieved by using the principal 

components, and increasing the components 

beyond a certain point does not increase the 

accuracy of the classifier by a lot. 

 

 

Figure 10: Effect of Dimensionality on Accuracy 

(WISDM) 

 

 

Figure 11: Effect of Dimensionality on Accuracy (50Hz, 

HAPT) 

 

5.1.3 Classification Accuracy and 

Pruning 

Figures 12 and 13 show the trend for the 

accuracy to drop as the percentage of pruned 

weights increases. As the pruning factor 

increases, the higher weight neurons start to 

get affected by the pruning procedure and are 

removed from the network. This is why the 

reduction in accuracy is less initially, and then 

takes a plunge as more and more higher weight 

neurons start to get affected. 
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Figure 12: Effect of Pruning on Accuracy (WISDM) 

 

 

Figure 13: Effect of Pruning on Accuracy (50Hz, HAPT) 

 

5.1.4 Performance Comparison with 

other Classifiers 

The performance of the pruned CNN 

classifiers is compared with those of standard 

machine learning classifiers trained on the 

same datasets. Accuracy is chosen as the 

performance metric as size and energy 

consumption are not important factors when 

comparing classifier performances on a PC.  

The accuracy of our pruned CNNs are 

tabulated against other classifiers in tables 1 

and 2.  

As can been seen from tables 1 and 2, the 

pruned CNN has a slightly lower classification 

accuracy (difference of 2%) as compared to 

the other classifiers. Since the difference in 

accuracy is not huge, it can be concluded that 

the CNN does not face a huge disadvantage in 

terms of accuracy against the other classifiers. 

 

Table 1: Comparison of accuracy among classifiers 

(WISDM) 

Sampling 

rate 

PCA 

dims 
SVM KNN RF 

CNN 

(pruned) 

20 7 
0.9710

37 

0.9847

561 

0.9893

29 
0.960366 

20 8 
0.9657

01 

0.9809

451 

0.9908

54 
0.96189 

20 10 
0.9801

83 

0.9832

317 

0.9946

65 
0.960366 

20 20 
0.9885

67 

0.9847

561 

0.9916

16 
0.976372 

20 30 
0.9900

91 

0.9847

561 

0.9923

78 
0.980183 

 

 

Table 2: Comparison of accuracy among classifiers 

(HAPT) 

Sampling 

rate 

PCA 

dims 
SVM KNN RF 

CNN 

(pruned) 

20 15 
0.8894

31 

0.8902

44 

0.8951

22 
0.869106 

20 18 
0.9016

26 

0.8869

92 

0.9024

39 
0.877236 

20 21 
0.9032

52 

0.8894

31 

0.9016

26 
0.878862 

20 24 
0.9024

39 

0.8910

57 

0.8983

74 
0.87561 

20 27 
0.9032

52 

0.8910

57 

0.8975

61 
0.878049 

20 30 
0.9081

3 

0.8910

57 

0.8886

18 
0.881301 
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5.2 Raspberry Pi Zero 
The Raspberry Pi Zero is a single board 

computer with a single core 1GHz Broadcom 

BCM2835 CPU. At 65mm x 30mm x 5mm, it 

is smaller than bank cards, and weighs just 

nine grams. Its small dimensions, low cost and 

low input voltage requirement of just 5V make 

it ideal for embedded applications. Since the 

classifiers are trained on the PC, the inference 

trends generated by the Pi are the same. Unlike 

the PC, the energy and size considerations of 

inference tasks are important factors with the 

Pi. 

 

5.1.5 Energy Consumption and Sampling 

Frequency 

As observed in figure 14, the accuracy of the 

classifier increases with an increase in 

sampling frequency, but so does the energy 

consumption of the inference task. With a 

constant window size, the number of features 

calculated per window are higher for higher 

sampling rates. This results in more energy 

being consumed for inference, since more 

features need to be processed. 

 

 

Figure 14: Effect of Sampling Frequency on Accuracy 

and Energy consumption on Raspberry Pi Zero (HAPT) 

 

5.1.6 Energy Consumption and Feature 

Vector Dimensionality 

Figures 15 and 16 show the impact of feature 

vector dimensionality on the accuracy and 

energy consumption of the CNN on the Pi 

Zero. The drop in accuracy between the 

maximum and minimum PCA values is about 

2% for both datasets. This is an insignificant 

change when compared to the drop in energy 

consumption (1J per inference task).  

 

 

Figure 15: Effect of Dimensionality on Accuracy and 

Energy consumption on Raspberry Pi Zero (WISDM) 

 

 

Figure 16: Effect of Dimensionality on Accuracy and 

Energy consumption (50Hz, HAPT) 

 

By design, the kernel size of the CNN is 

dependent on the PCA dimensions. As the 

number of PCA dimensions are increased, the 

size of the kernel increases, which increases 

the number of parameters in the dense layer of 

the CNN. This increase in the number of 

parameters increases the energy consumption 

of the network.  
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5.1.7 Energy Consumption and Pruning 

As can be observed in figures 17-20, the 

energy consumption for inference tasks 

reduces as the level of pruning increases. This 

is because pruning reduces the number of 

connections and neurons in the classifier 

network, which in turn reduces the number of 

parameters in the network. As the number of 

parameters reduces, the energy consumption of 

the neural network reduces as well. As can be 

observed, the energy consumption of the 

classifiers for HAPT dataset are more than 

those for the WISDM dataset. A major reason 

for this is the kernel size used for the 

classifiers, with the kernel size for the HAPT 

classifiers being twice as big as that for 

WISDM classifiers (due to twice as many 

activities to classify in the HAPT dataset). 

Since the kernel size directly affects the 

number of parameters of the CNN, the 

classifiers trained for the HAPT dataset 

inherently have more parameters. 

 

 

Figure 17: Effect of Pruning on Energy consumption 

with PCA=10 (WISDM) 

 

Figure 18: Effect of Pruning on Energy consumption 

with PCA=30 (WISDM) 

 

 

Figure 19: Effect of Pruning on Energy consumption 

with PCA=30 (50Hz, HAPT) 

 

 

Figure 20: Effect of Pruning on Energy consumption 

with PCA=21 (50Hz, HAPT) 
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Table 3 shows the reduction in network 

parameters that is achieved by pruning the 

network. 

 

Table 3: Impact of Pruning on the number of network 

parameters (50Hz, HAPT) 

PCA dims Pruning percentage Number of CNN parameters 

30 0.1 11355 

30 0.2 10442 

30 0.3 9529 

30 0.4 8616 

30 0.5 6790 

30 0.6 5877 

30 0.7 4964 

30 0.8 4051 

30 0.9 3138 

 

5.1.8 Performance Comparison with 

other Classifiers 

The energy consumption of our pruned CNNs 

are tabulated against other machine learning 

classifiers in tables 4 and 5. Tables 4 and 5 

show the energy consumption of the 

classifiers. 

 

Table 4: Comparison of Energy Consumption (J) per 

Inference (WISDM) 

Sampling 

rate 

PCA 

dims 

SVM KNN RF CNN 

(pruned) 

20 7 
1.368156

254 

1.303820

527 

1.365370

75 

1.030004

95 

20 8 
1.472176

766 

1.404722

536 

1.365616

543 

1.076557

3 

20 10 
1.625521

636 

1.554691

029 

1.365879

849 

1.081347

15 

20 20 
2.304341

793 

2.256927

311 

1.366537

651 

1.326814

45 

20 30 
3.593727

446 

3.514954

674 

1.364904

997 

1.568844

55 

Table 5: Comparison of Energy Consumption (J) per 

Inference (HAPT) 

Sampling 

rate 

PCA 

dims 
SVM KNN RF 

CNN 

(pruned) 

20 15 

0.680

95691

2 

1.89531

8878 

1.14027

524 

0.890196

7 

20 18 

0.753

40666

8 

2.27600

8093 

1.08253

4659 

0.940637

509 

20 21 
0.840

8041 

2.31952

1618 

1.09094

8713 

1.008791

827 

20 24 

0.943

18097

8 

2.42989

5055 

1.10897

7079 

1.062097

203 

20 27 

1.002

30406

5 

2.57216

2366 

1.14833

3013 

1.156004

598 

20 30 

1.046

51093

5 

2.76559

6962 

1.16860

4136 

1.218192

226 

25 15 

0.971

33072

6 

2.45501

4789 

1.26878

6764 

0.949696

099 

25 18 

1.117

26529

6 

2.74753

4037 

1.21966

4645 

1.014809

765 

25 21 

1.239

19701

6 

3.02247

3562 

1.25844

0363 

1.117897

683 

25 24 

1.327

26346

3 

3.18354

5649 

1.24894

9409 

1.209725

888 

25 27 

1.421

31291

6 

3.54773

8552 

1.30835

005 

1.254905

105 

25 30 

1.574

42238

3 

3.78321

6143 

1.30580

8663 

1.556107

202 

40 15 

2.450

97435

7 

4.40506

748 

1.77570

5075 

1.422598

1 

40 18 

2.832

33258

7 

4.94700

4211 

1.71642

1437 

1.512317

944 

40 21 

2.933

40227

6 

5.57633

8995 

1.76013

0692 

1.801396

346 

40 24 

3.225

18447

6 

5.99359

4027 

1.81368

0053 

1.826097

81 

40 27 

3.441

66961

9 

6.49336

4096 

1.88311

0023 

2.079557

896 

40 30 

3.672

43884

8 

6.81560

0479 

1.91659

0655 

2.123178

506 

50 15 

4.002

44103

7 

5.82868

9325 

2.08901

8321 

1.524766

541 

50 18 

4.352

52140

8 

7.28109

5839 

2.02712

6658 

1.674859

941 

50 21 

4.499

14792

8 

7.96698

5822 

2.07020

9515 

1.936128

449 

50 24 

4.871

04774

7 

8.45628

2413 

2.13155

5521 

2.084341

574 

50 27 

5.260

31389

2 

9.46176

0461 

2.20840

5554 

2.364618

027 

50 30 

5.649

68123

4 

10.1301

5069 

2.25668

9584 

2.442194

259 
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As can be seen from tables 4 and 5, the energy 

consumption of the pruned CNN is much 

better than that of the other classifiers. In case 

of the results of the HAPT dataset, the pruned 

CNN and Random Forest classifiers are better 

for higher sampling rates and SVM is slightly 

better than the CNN for the lower sampling 

rates. 

In tables 6 and 7, the size of the classifiers is 

compared. 

Table 6: Comparison of size in KBs among classifiers 

(WISDM) 

Sampling 

rate 

PCA 

dims 
SVM KNN RF 

CNN 

(pruned) 

20 7 22 223 1232 10 

20 8 22 249 1523 10 

20 10 24 301 1659 12 

20 20 26 560 1945 21 

20 30 29 819 2027 31 

  

Table 7: Comparison of size in KBs among classifiers 

(HAPT) 

Sampling 

rate 

PCA 

dims 
SVM KNN RF 

CNN 

(pruned) 

20 15 82 372 5601 18 

20 18 90 442 5939 21 

20 21 100 512 6239 28 

20 24 108 583 6672 32 

20 27 117 653 6869 39 

20 30 125 723 7042 42 

 

6. CONCLUSION AND FUTURE 

WORK 
This thesis addressed the energy and 

computation overhead in HAR systems by 

optimizing workflow by using single 

accelerometer data and selecting minimal and 

computationally inexpensive features. The 

trade-off between accuracy and power 

consumption was studied and an energy 

efficient 1D CNN was designed and 

implemented on a Raspberry Pi Zero. By 

reducing the number of features from 30 to 7, 

and by pruning the network by a factor of 0.3, 

the accuracy was sacrificed by 2% for an 

energy reduction of 34.8%. Furthermore, the 

size of the network reduced by 67%. 

Table 8: Trade-off between accuracy, energy, and size 

for the CNN 

Parameter 

Model 

Final CNN Initial CNN 

Accuracy 0.960365854 0.987042683 

Energy Consumption (J) 1.03000495 1.5813746 

Size (kb) 10 31 

 

Compared to the best performing baseline 

model, the Random Forest classifier, our final 

CNN implementation had a classification 

accuracy that was 2% less, but it consumed 

24% less energy per inference. Compared to 

the small size of the SVM, the final CNN 

classifier was 54% smaller. The selection of 

the Pi Zero further reduced the cost of the 

system, thereby making it affordable for lower 

income user groups. 

 

Table 9: Performance comparison between classifiers 

Parameter 

Model 

SVM KNN RF 
Final 

CNN 

Accuracy 
0.9710

37 

0.9847

56 

0.9893

29 
0.960366 

Energy 

Consumption (J) 

1.3681

56 

1.3038

21 

1.3653

71 

1.030004

95 

Size (kb) 22 223 1232 10 

 

The implemented model is an offline model, 

i.e. the data used for training and testing the 

classifiers does not change. A future 

improvement can be an online implementation 

on the Pi Zero, wherein the classifier 

continuously learns, and the model weights are 

continuously updated based on new 

observations. Furthermore, TensorFlow was 

used as the Keras backend. The TensorFlow 

team is slowly rolling out the much-optimised 

version of TensorFlow, the TensorFlow Lite, 

for low power embedded devices. With the 

TensorFlow Lite support for the Pi Zero in the 

nearby future, the CNN models would be even 

more optimised, and the inference tasks would 

be more computationally and energy efficient.  
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