
i

MASTER THESIS

Human Activity Recognition based

on Energy Efficient Schemes

Karan Rawat

Master of Science in Embedded Systems

FACULTY OF ELECTRICAL ENGINEERING, MATHEMATICS AND COMPUTER SCIENCE
(EEMCS)

PERVASIVE SYSTEMS (PS)

EXAMINATION COMMITTEE

Prof.dr.ing Paul J.M. Havinga

Dr. D.V. Le Viet Duc

IR. E. Molenkamp

<DATE>

i

ACKNOWLEDGEMENTS

I would like to express my heartfelt gratitude to my supervisors Dr. P. J. M. Havinga and Dr. D. V. Le

Viet Duc for their encouragement and more importantly their patience with this project. I would like

to thank Mr. Molenkamp for agreeing to be a part of my committee.

Finally I owe everything to my parents without whom I would not be here.

ii

LIST OF ABBREVIATIONS

Abbreviation Description

BN Bayesian Network

CNN Convolutional Neural Network

HAR Human Activity Recognition

IBL Instance Based Learning

KNN K-Nearest Neighbour

LSTM Long Short-Term Memory

MDL Minimum Description Length

NB Naïve Bayes

PCA Principle Component Analysis

PSD Power Spectral Density

RF Random Forest

RNN Recurrent Neural Network

SVM Support Vector Machine

iii

LIST OF FIGURES

Figure 1: Distribution of the different activities in the WISDM dataset ... 6

Figure 2: Distribution of the different activities in the UCI-HAPT dataset .. 7

Figure 3: General data flow for training and testing HAR systems based on wearable sensors[49] 7

Figure 4: Effect of the low-pass filter ... 7

Figure 5: Cumulative explained variance in the HAPT dataset .. 8

Figure 6: CNN architecture for HAR .. 9

Figure 7: Number of parameters in a non-pruned network ... 9

Figure 8: Distribution of weights before pruning (top) and after pruning (down) the dense layer.

Pruning removes neurons with weight values close to 0. ... 10

Figure 9: Effect of Sampling Frequency on Accuracy (HAPT) ... 11

Figure 10: Effect of Dimensionality on Accuracy (WISDM) ... 11

Figure 11: Effect of Dimensionality on Accuracy (50Hz, HAPT) ... 11

Figure 12: Effect of Pruning on Accuracy (WISDM) ... 12

Figure 13: Effect of Pruning on Accuracy (50Hz, HAPT) ... 12

Figure 14: Effect of Sampling Frequency on Accuracy and Energy consumption on Raspberry Pi Zero

(HAPT) ... 13

Figure 15: Effect of Dimensionality on Accuracy and Energy consumption on Raspberry Pi Zero

(WISDM) .. 13

Figure 16: Effect of Dimensionality on Accuracy and Energy consumption (50Hz, HAPT)............... 13

Figure 17: Effect of Pruning on Energy consumption with PCA=10 (WISDM) 14

Figure 18: Effect of Pruning on Energy consumption with PCA=30 (WISDM) 14

Figure 19: Effect of Pruning on Energy consumption with PCA=30 (50Hz, HAPT) 14

Figure 20: Effect of Pruning on Energy consumption with PCA=21 (50Hz, HAPT) 14

iv

LIST OF TABLES

Table 1: Comparison of accuracy among classifiers (WISDM) ... 12

Table 2: Comparison of accuracy among classifiers (HAPT) .. 12

Table 3: Impact of Pruning on the number of network parameters (50Hz, HAPT) 15

Table 4: Comparison of Energy Consumption (J) per Inference (WISDM) ... 15

Table 5: Comparison of Energy Consumption (J) per Inference (HAPT) .. 15

Table 6: Comparison of size in KBs among classifiers (WISDM) ... 16

Table 7: Comparison of size in KBs among classifiers (HAPT) .. 16

Table 8: Trade-off between accuracy, energy, and size for the CNN ... 16

Table 9: Performance comparison between classifiers ... 16

v

CONTENTS
ACKNOWLEDGEMENTS .. i

LIST OF ABBREVIATIONS .. ii

LIST OF FIGURES ... iii

LIST OF TABLES ... iv

ABSTRACT .. 2

1. INTRODUCTION ... 2

1.1 Motivation .. 2

1.2 Research Questions .. 2

1.3 Outline .. 3

2. RELATED WORK .. 3

2.1 Sensor location and obtrusiveness .. 3

2.2 Data collection and processing ... 3

2.3 Feature selection and extraction ... 4

2.4 Choice of classifier ... 4

2.5 Network Pruning .. 6

3. DATASETS .. 6

3.1 WISDM Dataset ... 6

3.2 UCI HAPT Dataset... 7

4. HUMAN ACTION RECOGNITION ... 7

4.1 Pre-processing data .. 7

4.2 Feature extraction and Normalisation .. 8

4.3 Dimensionality reduction ... 8

4.4 CNN architecture.. 8

4.5 Network Pruning .. 9

5. EXPERIMENTS AND RESULTS ... 10

5.1 PC ... 10

5.1.1 Classification Accuracy and Sampling Frequency .. 10

5.1.2 Classification Accuracy and Feature Vector Dimensionality ... 11

5.1.3 Classification Accuracy and Pruning .. 11

5.1.4 Performance Comparison with other Classifiers ... 12

5.2 Raspberry Pi Zero... 13

5.1.5 Energy Consumption and Sampling Frequency .. 13

5.1.6 Energy Consumption and Feature Vector Dimensionality .. 13

5.1.7 Energy Consumption and Pruning .. 14

5.1.8 Performance Comparison with other Classifiers ... 15

6. CONCLUSION AND FUTURE WORK ... 16

BIBLIOGRAPHY ... vii

2

ABSTRACT
Human activity recognition (HAR) has been

an active area of research for decades. While

traditional sensor-based activity recognition

methods have demonstrated high recognition

accuracy, they suffer from a significant

overhead in terms of energy and computation,

especially for resource-constrained devices. To

address that, this thesis employs a multi-

faceted approach to arrive at an optimized

system where the design involves optimization

of energy consumption through number of

sensors, computation through minimal set of

features and reduced classifier size and cost

through a nominal hardware platform.

The performance of the design is evaluated

against other baseline models in terms of

classification accuracy and power

consumption on two publicly available

datasets. The experimental results on the

Raspberry Pi Zero board show that the

approach reduced the size of the network by

60% and maintained an accuracy of 96% while

consuming 1.07J. These results validate the

viability of the system on resource-constrained

devices, thereby making it affordable to low-

income groups.

1. INTRODUCTION
Context-aware ubiquitous computing has seen

a meteoric growth with the ever-decreasing

cost and size of microprocessors and sensors.

Advances in the last decade on the

development of embedded electronics and

computer systems has improved the field of

human activity recognition within context-

aware systems. This has impacted fields like

health monitoring and management, security

and surveillance, behaviour recognition and

monitoring, and ambient assisted living,

among other things. There is a need for low-

cost HAR designs that minimise data

processing and resource consumption while

accurately classifying the performed activity,

to ensure the availability of activity

recognition on low power systems.

1.1 Motivation
In literature, many activity recognition systems

rely on data from multiple sensors and

implement complex feature extraction and

recognition algorithms. While this ultimately

increases the accuracy of the system, it also

increases the costs associated with energy

consumption and complexity. There is a need

for the deployment of HAR systems on cheap

but resource-constrained embedded devices if

these technologies are to be made universally

accessible across various income groups.

This thesis proposes a system which reduces

the obtrusiveness and hardware cost by using

the data from a single accelerometer. The use

of a single sensor reduces the computation cost

as well. Combined with the computationally

inexpensive features calculated from the data,

this makes it possible to implement the system

on a low-cost embedded platform, without

making huge trade-offs with the recognition

accuracy.

1.2 Research Questions
This thesis aims to improve the energy

efficiency of human activity recognition while

maintaining a good predictive accuracy over

the existing benchmark research. The design

and optimisation of a human activity

recognition model, for deployment on an

embedded device, requires addressing the

following research questions:

Question 1: Which machine learning

method can be used for the classifier?

An extensive literature survey will assess the

merits and demerits of various machine

learning algorithms and score them

accordingly. Evaluating and comparing each

of these models can help in selecting the right

approach for performing activity recognition.

Question 2: Which factors affect the energy

efficiency of sensor-based activity

recognition?

During the literature survey, the different

factors that have a significant impact on

energy consumption are studied. Factors that

are independent of the selected classifier

3

algorithm, as well as the dependent factors, are

considered.

Question 3: How can the energy efficiency

of the system be increased without a

significant drop in its classification

performance?

Experiments on the independent factors is

conducted to find the suitable techniques that

can help in the construction of an energy-

efficient HAR system while maintaining

acceptable accuracy levels.

Question 4: Which parameters are vital to

the optimisation of the classifier, and what

are the optimal values of the parameters?

Exhaustive experiments will be done with

different values for the classifier parameters to

establish an optimal configuration for the

classifier that further improves its accuracy.

The accuracy vs energy efficiency trade-off

will be studied, prioritising energy efficiency.

The result would be an energy-efficient human

activity recognition system that is

computationally light, is deployed on an

embedded platform and whose accuracy is at

par with other HAR systems in the literature.

1.3 Outline
The remainder of this thesis will start with a

discussion of the related work in Chapter 2.

The details of the datasets used in the research

are discussed in Chapter 3. Chapter 4 presents

the implemented HAR system. Chapter 5

explains the conducted experiments and

discusses the results. Chapter 6 concludes the

thesis and provides scope for possible future

work.

2. RELATED WORK
The fields of context-aware and ubiquitous

computing have been at the forefront of

research in human activity recognition using

on-body sensors. With the extensive

accessibility of smartphones, research has

focused on data captured by the sensors

embedded in them. Among these, the

accelerometer sensor has been very popular

due to its low energy requirement and good

performance in capturing human motion.

This chapter briefly overviews previous work

done in the field of human activity recognition,

and is structured as follows: Section 2.1

discusses the different sensor placements

studied in the literature, Section 2.2 presents

how researchers have collected and processed

data in the literature, Section 2.3 explains the

process of feature selection and extraction, and

Section 2.4 examines the choice of classifiers

made in the literature.

2.1 Sensor location and obtrusiveness
In literature, many on-body sensor locations

like the waist, wrist, thigh, ankle etc. have

been discussed. [1] concluded that while

accelerometers placed on the hip, wrist, upper

arm, ankle and thigh performed well, the

performance only dropped slightly with the

uses of just two biaxial accelerometers on the

thigh and the wrist respectively. [2] concluded

that models aware of the locations of the

sensors on the subject’s body performed better

than the models that were independent of the

location information. Recent deep learning

architectures learn representations from raw

data from multiple on-body sensors [3][4]. The

obtrusiveness of on-body sensors plays an

essential part in the success of a HAR system.

Configurations like [5], [6], [1], and [7] are

invasive and uncomfortable and unsuitable for

HAR. Not only does the obtrusiveness of a

system reduce by minimising the number of

sensors, but it also reduces energy

consumption and improves processing (fewer

data to be processed). In the end, the number

and location of on-body sensors are governed

by user acceptance and resultant accuracy.

2.2 Data collection and processing
The first step of a HAR system is the

collection of raw data from on-body sensors.

This raw data is sampled for every sensor, and

the resulting multivariate time series requires

4

synchronisation. This raw data can also be

corrupted by various sources resulting in

artefacts. The pre-processing step synchronises

the multimodal sensor data, resulting in a time

series. Signal processing algorithms are used

to filter out the artefacts while ensuring the

preservation of relevant information about the

activities of interest. Techniques like

calibration, unit conversion, normalisation,

resampling, synchronisation, or signal-level

fusion[8] can be used for pre-processing of

accelerometer and gyroscope signals.

The segments of the pre-processed data that

are most likely to contain activity information

are identified in the data segmentation stage.

Since human activities are fluent, it is not easy

to segment a continuous sensor data stream.

Three window-based data segmentation

techniques exist in the literature, activity-

defined window, event-defined window, and

sliding window[9]. The sliding window

approach is the most used technique because

of its simplicity and better performance. The

window length is a key factor for HAR

systems since it directly determines the

performance of the system. It is subject to a

trade-off between precision and the

computational load on the system; smaller

windows can increase precision, but the

increased number of samples would increase

the computation load on the system. The

optimal window size is not clear beforehand.

Different window lengths have been used in

the literature: 0.08s [10], 1s [11], 1.5s [12], 3s

[13], 5s [14], 7s [15], 12s [16], or up to 30s

[5]. Of course, this decision is influenced by

the activities to be recognised and the

attributes that are being measured. The

generated samples are passed through a low-

pass filter to remove high-frequency noise

[17]. Furthermore, a Butterworth filter is used

to separate the low-frequency gravitational

acceleration from the higher frequency body

acceleration [18].

2.3 Feature selection and extraction
In this stage, the segmented data streams are

reduced into discriminatory activity features.

The total number of features that are extracted

from the data makes up the feature space.

Ideally, features belonging to the same activity

are clustered together, and those of different

activities are clearly separated in the feature

space. The recognition performance of the

system depends on how clearly the feature

groups are separated in the feature space. In

literature, time-domain features such as mean

and standard deviation have been used to

distinguish between postures [19], and static

and dynamic activities, respectively. In the

case of multi-axial accelerometers, the

correlation between different axes has been

used to distinguish movement along different

axes [20]. Frequency domain features like

energy and entropy can help measure the

periodicity and complexity of activities,

respectively [21].

Not all features in the processed dataset are

essential for recognition, and feature ranking

and feature reduction techniques are useful to

reduce computations and build simpler

learning models. The complexity of the system

can be reduced for the training and

classification stages by using only a subset of

the feature space. Additionally, this would

prevent overfitting, and the system would

generalise better for unseen data. As pointed

out in [22] for a given set of training examples,

increasing the number of features beyond the

optimal subset of features among a set of N

possible features will decrease performance. In

literature, methods such as the Principal

Component Analysis (PCA) and the Minimum

Description Length (MDL) [23] have been

used for feature reduction. [24] proposed a

feature reduction system that reduced the

number of features from 1170 to 30 by

performing PCA.

2.4 Choice of classifier
In the context of human activity recognition,

the training set consists of feature vectors

extracted from time windows.

a) Supervised learning

Supervised learning takes training data

which is labelled with the class names

5

(e.g., running, sitting), and its known

outputs, to develop predictive models.

i. Decision trees: Decision trees sort

instances based on feature values

using the Iterative Dichotomiser

3(ID3) algorithm. In a decision tree,

every node represents a feature, and

each branch represents a value that the

node can assume in the hierarchical

model of a decision tree. Each branch

from the root to a leaf node is a

classification rule [25]. Post-pruning

techniques are used to avoid over-

fitting decision trees.

ii. Bayesian methods: The Bayesian

Network (BN) [26] classifier and

Naive Bayes (NB) [27] is the principal

exponents of this family of classifiers.

They use graphical models to calculate

probability relationships between

features. Topology construction of the

directed acyclic graphs used for these

methods is an issue since it is

necessary to assume independence

between feature nodes. These

assumption does not hold in many

cases. Bayesian Networks are not

suitable for datasets with many

features [28].

iii. Instance-based learning (IBL): These

methods use a distance function to

compare an instance with similar

instances in the training set [23]. Since

each new instance is evaluated against

every instance in the training set, this

makes these methods computationally

very expensive.

iv. Support Vector Machines: SVMs [29]

use kernel functions to find the

optimal hyperplane that partitions the

given dataset with the maximum

margin. The versatility of choosing the

kernel function makes SVMs useful

for higher dimensions. They are also

memory efficient since the support

vectors used for the decision function

are just a subset of the feature points.

v. Convolutional Networks: CNN’s are

analogous to the neurons in the human

brain. They incorporate local

connections, parameter sharing,

pooling and multi-layers. CNN's were

the first hierarchical deep learning

architectures [11]. CNN's have been

used as an automatic feature extractors

[11], [30]. In terms of HAR, CNNs

can extract localised features and can

retain pace and frequency information

from extracted features because of

their scale-invariance to changes in

pace and frequency.

vi. Recurrent Neural Network: Recurrent

networks are suitable for exploiting

temporal dependencies in movement

data. RNN based LSTM (long short

term memory) [31] was designed to

avoid the conventional RNNs

drawbacks with long-term

dependencies. Each LSTM cell tracks

its internal state and can learn to

change it based on current and

historical state values. LSTMs can

thus retain information over many

time-steps [32]. LSTMs can access the

long-range context of sequential data,

and its accuracy increases with an

increase in available data. This also

makes RNNs more susceptible to

changes in the input data.

b) Semi-supervised learning

Some systems use partially unlabelled data

to employ a semi-supervised learning

approach. The efforts put into collection

and precision of datasets has made

supervised learning more prominent in

literature, with only a few following semi-

supervised techniques. Semi-supervised

techniques are useful when the annotation

of data is difficult due to the high

granularity of the activity [33]–[37]. Semi-

supervised methods do not follow a

general approach.

6

2.5 Network Pruning
Pruning of neural networks has been

shown to be effective at reducing network

complexity and improving generalisation

[38]. The idea of pruning is to explore the

redundancy in the model parameters and

try to remove the redundant, non-

informative and uncritical parameters

which are not crucial for model

performance.

a) Weight quantization

Network compression using quantization

works by reducing the number of bits

required to represent weights and biases in

a network. [39] showed that a significant

improvement in speed can be achieved

with minimal loss of accuracy if weights

are represented using 8-bit quantization.

The number of floating point operations

and the memory usage was significantly

reduced by using 16-bit fixed-point

representation in [40].

b) Network pruning

Network pruning has been used to address

the complexity of neural networks as well

the over-fitting issue while training them.

To remove the redundancy in networks,

[41] proposed a data-free pruning method.

[42] used a deep compression method to

remove the redundant connections.

Furthermore, the weights were quantized

and then encoded using Huffman coding.

In [43], low-cost hash functions were used

to group the weights of a HashedNets

model. [44] proposed a simple

regularization method to perform

quantization and pruning in a simple (re-)

training procedure.

3. DATASETS
In this work two public HAR datasets, the

WISDM dataset and the UCI HAPT dataset,

are used for the training and classification

purposes. These datasets were selected

because,

• The location of the smartphones on the

subject’s body were less obtrusive [1]

• Both the datasets lack rotational

activities, which results in minimal

overlap between the frequency

domains of the gravitational and

movement-related components of

acceleration [45] and makes their

separation using simple frequency-

based filters easier.

3.1 WISDM Dataset
The Wireless Sensor Data Mining (WISDM)

Lab’s dataset [46] [47] contains sensor signal

recordings of 36 subjects performing six

activities- WALKING, WALKING

UPSTAIRS, WALKING DOWNSTAIRS,

SITTING, STANDING and JOGGING. The

raw data consists of 1,098,207 data samples

collected from the embedded tri-axial

accelerometer of the subjects’ Android

smartphones, which were kept in their front

pockets. The sampling frequency was 20Hz. A

total of 915 minutes of recording data is

collected. The corresponding proportion of

each activity is shown in figure 1.

Figure 1: Distribution of the different activities in the

WISDM dataset

38.60%

11.20%9.10%
5.50%

4.40%

31.20%

WALKING WALKING UPSTAIRS

WALKING DOWNSTAIRS SITTING

STANDING JOGGING

7

3.2 UCI HAPT Dataset
The University of California Irvine’s Human

Activities and Postural Transitions (UCI-

HAPT) dataset [48] is the updated version of

the more popular UCI-HAR dataset [17]. It

provides the original raw accelerometer and

gyroscope signals collected from a waist-

mounted Samsung Galaxy S II phone. The

dataset consists of signal recordings of 30

subjects between the ages of 19 and 48

performing three static activities-

STANDING, SITTING and LYING; and three

dynamic activities- WALKING, WALKING

DOWNSTAIRS and WALKING UPSTAIRS;

and six postural transitions- STAND_TO_SIT,

SIT_TO_STAND, SIT_TO_LIE,

LIE_TO_SIT, STAND_TO_LIE and

LIE_TO_STAND. The data is collected at a

sampling frequency of 50Hz. The

corresponding proportion of each activity is

shown in figure 2.

Figure 2: Distribution of the different activities in the

UCI-HAPT dataset

4. HUMAN ACTION

RECOGNITION
The aim of this research was to develop a

lightweight HAR model which uses data from

embedded accelerometers. The general

structure of HAR systems is similar to other

pattern recognition systems, as shown in figure

3. The input to the training phase is a time

series stream of sensor data for the measured

attributes. This data is pre-processed to

denoise them and filter out any artifacts.

Relevant features are extracted by splitting the

time series data into time windows. In the

training phase, these features are used by the

learning methods to train an activity

recognition model. In the testing phase, such a

pre-trained classifier and new extracted

features are used to calculate a predicted

activity label. The implemented HAR process

is discussed in the following subsections.

Figure 3: General data flow for training and testing HAR

systems based on wearable sensors[49]

4.1 Pre-processing data
The raw data was pre-processed by applying a

rolling mean low-pass filter with a window

size of 3 [30] to smoothen the signal and

remove high frequency noise, as shown in

figure 4. Furthermore, the gravitational

17.33%

15.89%

17.20%15.23%

14.27%

13.11%

1.03%
0.74%

1.29% 1.15% 1.61%
1.14%

STANDING SITTING

LYING WALKING

WALKING UPSTAIRS WALKING DOWNSTAIRS

STAND TO SIT SIT TO STAND

SIT TO LIE LIE TO SIT

STAND TO LIE LIE TO STAND

8

component of the acceleration data was

separated from the body motion component by

using a low-pass Butterworth filter.

Figure 4: Effect of the low-pass filter

After the data was de-noised, it was sampled

in fixed-width sliding windows. The

percentage of overlap was 50% for both

datasets. For the WISDM dataset, 100

readings/window were used, whereas for the

HAPT dataset, 150 readings/window were

used.

4.2 Feature extraction and

Normalisation
Selecting of the proper features from raw data

is an important factor in the overall

performance of a HAR system. Since the data

is collected from triaxial accelerometers,

features were extracted from each axis. The

extracted features are Mean, Maximum,

Minimum, Standard Deviation, Skew, Median,

Kurtosis, Energy (normalized sum of squared

amplitude) and Weighted Mean Frequency

(calculated by PSD). Furthermore, the

correlation between each pair of axes is used.

This amounts to each sample being a (9*3 + 3)

30-dimensional vector.

To make sure that the gradient descents of

different features can converge quickly, we

transform all the features to a common scale.

Using the min-max normalisation method, all

the feature values are normalised to the 0-1

scale.

4.3 Dimensionality reduction
Higher number of features or dimensions are

harder to visualise and fail geometric intuition,

and are computationally expensive to use.

Dimensionality reduction is the process of

projecting data to a lower dimensional

subspace, such that redundant features are

removed, and multi-collinearity taken care of.

Ideally, the set of reduced features are a

combination of the input variables and

represent the same information, but in a lower

dimensional subspace. The total (cumulative)

variance is the sum of the individual variances

of the principal components. As is evident

from figure 5, more than 90% of the

cumulative variance can be explained by the

first 10 principal components. Principal

Component Analysis (PCA) is used to reduce

the dimensionality of the feature set. The key

idea is to decompose the input into principle

components, which are the linear combinations

of the input features.

Figure 5: Cumulative explained variance in the HAPT

dataset

4.4 CNN architecture
The model developed for our experiment uses

a sliding window size of size equal to the

number of activity labels of the dataset for the

convolution with a ReLU activation.

9

Following the convolutional layer is a max-

pooling layer, and then a flatten layer to

convert the output of max-pooling function

into a single vector. This is followed by a

dense layer with a ReLU activation function,

and a final dense layer with a 50% dropout

rate and a softmax layer. The basic Keras [50]

generated architectural view of the network is

shown in figure 6.

The ReLU activation function was used for its

computational efficiency and decreased run

time. Furthermore, ReLU avoids vanishing

gradients over multiple layers. The softmax

function was used in the output layer because

it models probabilistic distributions well and is

a good fit for 1 of N classification.

The Adam optimiser was used because of its

low memory requirements and computational

efficiency; with MSE as the loss function. The

epoch size was set to 50, learning rate to

0.0004 and batch size to 32 samples.

Figure 6: CNN architecture for HAR

4.5 Network Pruning
Once a CNN is fully trained, weights are

assigned to the neurons with respect to their

importance in the network, with the least

active nodes being assigned values closer to

zero. To reduce the size of the network, and

speed-up inference, neurons with lower

weights are removed.

Figure 7: Number of parameters in a non-pruned

network

As can be seen from figure 7, the first dense

layer contains the majority of the parameters,

and it is this layer that was pruned. This was

done by sorting the neurons according to their

absolute values and then removing a certain

percentage (pruning factor) of them. Once the

neurons are removed and the network

retrained, the pruned model has a significantly

lower number of neurons, which reduces its

memory footprint and computational

requirement. The effect on accuracy isn’t

significant up to a certain pruning factor (0.5

in our case), after which higher weight neurons

start getting removed and the accuracy

plummets. Figure 8 shows an example of

pruning.

10

Figure 8: Distribution of weights before pruning (top)

and after pruning (down) the dense layer. Pruning

removes neurons with weight values close to 0.

5. EXPERIMENTS AND

RESULTS
The code for this thesis was written in Python

3.x. This pipeline extensively uses open source

machine learning libraries Scikit-Learn [51]

and Numpy [52]. The deep learning models

were developed using Keras [50] with

TensorFlow [53] as backend. TensorFlow was

used as the backend because it is well

established in the deep learning community.

Another advantage of TensorFlow is the

format of the saved models. The TensorFlow

documentation [54] describes SavedModel as

“a language-neutral, recoverable, hermetic

serialization format that enables higher-level

systems and tools to produce, consume, and

transform TensorFlow models”. The

SavedModel format enables the saved models

to be transferred to any device and perform

inferences without the need of retraining or

compatibility issues (provides TensorFlow is

supported by the device). This enabled the

experiments to be conducted on a PC and the

Raspberry Pi Zero board, with the training

done on the PC.

5.1 PC
The PC used is a Dell Inspiron 15 5559 with a

6th Generation Intel Core i5-6200U 2.30GHz

Processor. The laptop is not equipped with a

dedicated GPU and hence GPU accelerated

libraries were not used.

5.1.1 Classification Accuracy and

Sampling Frequency

The impact of different sampling frequencies

on the classification accuracy was

investigated. As shown in figure 9, higher

sampling frequencies give better classification

accuracies, with a 3% loss in classification

accuracy between the original sampling

frequency of the HAPT dataset, 50Hz, and the

lowest studied sampling frequency of 20Hz.

Since the window size is the same while

studying all the sampling frequencies, the

reduction in accuracy can be attributed to two

reasons,

• Some of the characteristics of a signal

captured at a higher sampling rate are

missed at a low sampling rate. Less

characteristics results in a lower

accuracy for the classifier. As the

sampling rate grows, we can observe a

general trend of improving

classification performance.

• The original sampling rate for the

HAPT dataset was 50Hz and the lower

sampling rates were obtained by

reducing the number of samples. Thus,

the reduction in sampling rate directly

resulted in a lower number of samples

for the classifiers to be trained against,

thereby affecting its accuracy.

11

Figure 9: Effect of Sampling Frequency on Accuracy

(HAPT)

5.1.2 Classification Accuracy and

Feature Vector Dimensionality

Figures 10 and 11 show how the accuracy

changes with the feature vector

dimensionality. While accuracy is higher when

the number of features is more, the difference

is not a lot. For both datasets, about 2% loss in

accuracy is observed between the maximum

and minimum values of the feature

dimensions. Intuitively, reducing the number

of features by a factor of 4 (or 2 in case of

HAPT) should adversely affect the accuracy,

but only a low drop-off in accuracy is

observed. As seen in figure 5, most of the

cumulative variance is explained by the first

few principal components (dimensions). This

means that a high classification accuracy can

be achieved by using the principal

components, and increasing the components

beyond a certain point does not increase the

accuracy of the classifier by a lot.

Figure 10: Effect of Dimensionality on Accuracy

(WISDM)

Figure 11: Effect of Dimensionality on Accuracy (50Hz,

HAPT)

5.1.3 Classification Accuracy and

Pruning

Figures 12 and 13 show the trend for the

accuracy to drop as the percentage of pruned

weights increases. As the pruning factor

increases, the higher weight neurons start to

get affected by the pruning procedure and are

removed from the network. This is why the

reduction in accuracy is less initially, and then

takes a plunge as more and more higher weight

neurons start to get affected.

0.85

0.86

0.87

0.88

0.89

0.9

20 25 40 50

A
cc

u
ra

cy

Sampling frequency (Hz)

Accuracy

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

7 8 10 20 30

A
cc

u
ra

cy

PCA dimensions

Accuracy

0.865

0.87

0.875

0.88

0.885

0.89

0.895

0.9

15 18 21 24 27 30

A
cc

u
ra

cy

PCA dimensions

Accuracy

12

Figure 12: Effect of Pruning on Accuracy (WISDM)

Figure 13: Effect of Pruning on Accuracy (50Hz, HAPT)

5.1.4 Performance Comparison with

other Classifiers

The performance of the pruned CNN

classifiers is compared with those of standard

machine learning classifiers trained on the

same datasets. Accuracy is chosen as the

performance metric as size and energy

consumption are not important factors when

comparing classifier performances on a PC.

The accuracy of our pruned CNNs are

tabulated against other classifiers in tables 1

and 2.

As can been seen from tables 1 and 2, the

pruned CNN has a slightly lower classification

accuracy (difference of 2%) as compared to

the other classifiers. Since the difference in

accuracy is not huge, it can be concluded that

the CNN does not face a huge disadvantage in

terms of accuracy against the other classifiers.

Table 1: Comparison of accuracy among classifiers

(WISDM)

Sampling

rate

PCA

dims
SVM KNN RF

CNN

(pruned)

20 7
0.9710

37

0.9847

561

0.9893

29
0.960366

20 8
0.9657

01

0.9809

451

0.9908

54
0.96189

20 10
0.9801

83

0.9832

317

0.9946

65
0.960366

20 20
0.9885

67

0.9847

561

0.9916

16
0.976372

20 30
0.9900

91

0.9847

561

0.9923

78
0.980183

Table 2: Comparison of accuracy among classifiers

(HAPT)

Sampling

rate

PCA

dims
SVM KNN RF

CNN

(pruned)

20 15
0.8894

31

0.8902

44

0.8951

22
0.869106

20 18
0.9016

26

0.8869

92

0.9024

39
0.877236

20 21
0.9032

52

0.8894

31

0.9016

26
0.878862

20 24
0.9024

39

0.8910

57

0.8983

74
0.87561

20 27
0.9032

52

0.8910

57

0.8975

61
0.878049

20 30
0.9081

3

0.8910

57

0.8886

18
0.881301

0.7

0.75

0.8

0.85

0.9

0.95

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
cc

u
ra

cy

Pruning percentage

PCA=7 PCA=8 PCA=10

PCA=20 PCA=30

0.7

0.75

0.8

0.85

0.9

0.95

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
cc

u
ra

cy

Pruning percentage

PCA=15 PCA=18 PCA=21

PCA=24 PCA=27 PCA=30

13

5.2 Raspberry Pi Zero
The Raspberry Pi Zero is a single board

computer with a single core 1GHz Broadcom

BCM2835 CPU. At 65mm x 30mm x 5mm, it

is smaller than bank cards, and weighs just

nine grams. Its small dimensions, low cost and

low input voltage requirement of just 5V make

it ideal for embedded applications. Since the

classifiers are trained on the PC, the inference

trends generated by the Pi are the same. Unlike

the PC, the energy and size considerations of

inference tasks are important factors with the

Pi.

5.1.5 Energy Consumption and Sampling

Frequency

As observed in figure 14, the accuracy of the

classifier increases with an increase in

sampling frequency, but so does the energy

consumption of the inference task. With a

constant window size, the number of features

calculated per window are higher for higher

sampling rates. This results in more energy

being consumed for inference, since more

features need to be processed.

Figure 14: Effect of Sampling Frequency on Accuracy

and Energy consumption on Raspberry Pi Zero (HAPT)

5.1.6 Energy Consumption and Feature

Vector Dimensionality

Figures 15 and 16 show the impact of feature

vector dimensionality on the accuracy and

energy consumption of the CNN on the Pi

Zero. The drop in accuracy between the

maximum and minimum PCA values is about

2% for both datasets. This is an insignificant

change when compared to the drop in energy

consumption (1J per inference task).

Figure 15: Effect of Dimensionality on Accuracy and

Energy consumption on Raspberry Pi Zero (WISDM)

Figure 16: Effect of Dimensionality on Accuracy and

Energy consumption (50Hz, HAPT)

By design, the kernel size of the CNN is

dependent on the PCA dimensions. As the

number of PCA dimensions are increased, the

size of the kernel increases, which increases

the number of parameters in the dense layer of

the CNN. This increase in the number of

parameters increases the energy consumption

of the network.

0

0.5

1

1.5

2

2.5

3

0.85

0.855

0.86

0.865

0.87

0.875

0.88

0.885

0.89

0.895

0.9

20 25 40 50

En
er

gy
 c

o
n

su
m

p
ti

o
n

 (
J)

A
cc

u
ra

cy

Sampling frequency (Hz)

Accuracy Energy consumption

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

7 8 10 20 30

En
er

gy
 c

o
n

su
m

p
ti

o
n

 (
J)

A
cc

u
ra

cy

PCA dimensions

Accuracy Energy consumption (J)

0

0.5

1

1.5

2

2.5

3

0.865

0.87

0.875

0.88

0.885

0.89

0.895

0.9

15 18 21 24 27 30

En
er

gy
 c

o
n

su
m

p
ti

o
n

 (
J)

A
cc

u
ra

cy

PCA dimensions

Accuracy Energy Consumption

14

5.1.7 Energy Consumption and Pruning

As can be observed in figures 17-20, the

energy consumption for inference tasks

reduces as the level of pruning increases. This

is because pruning reduces the number of

connections and neurons in the classifier

network, which in turn reduces the number of

parameters in the network. As the number of

parameters reduces, the energy consumption of

the neural network reduces as well. As can be

observed, the energy consumption of the

classifiers for HAPT dataset are more than

those for the WISDM dataset. A major reason

for this is the kernel size used for the

classifiers, with the kernel size for the HAPT

classifiers being twice as big as that for

WISDM classifiers (due to twice as many

activities to classify in the HAPT dataset).

Since the kernel size directly affects the

number of parameters of the CNN, the

classifiers trained for the HAPT dataset

inherently have more parameters.

Figure 17: Effect of Pruning on Energy consumption

with PCA=10 (WISDM)

Figure 18: Effect of Pruning on Energy consumption

with PCA=30 (WISDM)

Figure 19: Effect of Pruning on Energy consumption

with PCA=30 (50Hz, HAPT)

Figure 20: Effect of Pruning on Energy consumption

with PCA=21 (50Hz, HAPT)

1.075

1.08

1.085

1.09

1.095

1.1

1.105

0.1 0.3 0.5 0.7 0.9

En
er

gy
 C

o
n

su
m

p
ti

o
n

 (
J)

Pruning percentage

PCA=10

1.49

1.5

1.51

1.52

1.53

1.54

1.55

1.56

1.57

1.58

1.59

0.1 0.3 0.5 0.7 0.9

En
er

gy
 C

o
n

su
m

p
ti

o
n

 (
J)

Pruning percentage

PCA=30

2.15

2.2

2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6

2.65

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

En
er

gy
 c

o
n

su
m

p
ti

o
n

 (
J)

Pruning Percentage

PCA=30

1.7

1.75

1.8

1.85

1.9

1.95

2

2.05

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

En
er

gy
 c

o
n

su
m

p
ti

o
n

 (
j)

Pruning Percentage

PCA=21

15

Table 3 shows the reduction in network

parameters that is achieved by pruning the

network.

Table 3: Impact of Pruning on the number of network

parameters (50Hz, HAPT)

PCA dims Pruning percentage Number of CNN parameters

30 0.1 11355

30 0.2 10442

30 0.3 9529

30 0.4 8616

30 0.5 6790

30 0.6 5877

30 0.7 4964

30 0.8 4051

30 0.9 3138

5.1.8 Performance Comparison with

other Classifiers

The energy consumption of our pruned CNNs

are tabulated against other machine learning

classifiers in tables 4 and 5. Tables 4 and 5

show the energy consumption of the

classifiers.

Table 4: Comparison of Energy Consumption (J) per

Inference (WISDM)

Sampling

rate

PCA

dims

SVM KNN RF CNN

(pruned)

20 7
1.368156

254

1.303820

527

1.365370

75

1.030004

95

20 8
1.472176

766

1.404722

536

1.365616

543

1.076557

3

20 10
1.625521

636

1.554691

029

1.365879

849

1.081347

15

20 20
2.304341

793

2.256927

311

1.366537

651

1.326814

45

20 30
3.593727

446

3.514954

674

1.364904

997

1.568844

55

Table 5: Comparison of Energy Consumption (J) per

Inference (HAPT)

Sampling

rate

PCA

dims
SVM KNN RF

CNN

(pruned)

20 15

0.680

95691

2

1.89531

8878

1.14027

524

0.890196

7

20 18

0.753

40666

8

2.27600

8093

1.08253

4659

0.940637

509

20 21
0.840

8041

2.31952

1618

1.09094

8713

1.008791

827

20 24

0.943

18097

8

2.42989

5055

1.10897

7079

1.062097

203

20 27

1.002

30406

5

2.57216

2366

1.14833

3013

1.156004

598

20 30

1.046

51093

5

2.76559

6962

1.16860

4136

1.218192

226

25 15

0.971

33072

6

2.45501

4789

1.26878

6764

0.949696

099

25 18

1.117

26529

6

2.74753

4037

1.21966

4645

1.014809

765

25 21

1.239

19701

6

3.02247

3562

1.25844

0363

1.117897

683

25 24

1.327

26346

3

3.18354

5649

1.24894

9409

1.209725

888

25 27

1.421

31291

6

3.54773

8552

1.30835

005

1.254905

105

25 30

1.574

42238

3

3.78321

6143

1.30580

8663

1.556107

202

40 15

2.450

97435

7

4.40506

748

1.77570

5075

1.422598

1

40 18

2.832

33258

7

4.94700

4211

1.71642

1437

1.512317

944

40 21

2.933

40227

6

5.57633

8995

1.76013

0692

1.801396

346

40 24

3.225

18447

6

5.99359

4027

1.81368

0053

1.826097

81

40 27

3.441

66961

9

6.49336

4096

1.88311

0023

2.079557

896

40 30

3.672

43884

8

6.81560

0479

1.91659

0655

2.123178

506

50 15

4.002

44103

7

5.82868

9325

2.08901

8321

1.524766

541

50 18

4.352

52140

8

7.28109

5839

2.02712

6658

1.674859

941

50 21

4.499

14792

8

7.96698

5822

2.07020

9515

1.936128

449

50 24

4.871

04774

7

8.45628

2413

2.13155

5521

2.084341

574

50 27

5.260

31389

2

9.46176

0461

2.20840

5554

2.364618

027

50 30

5.649

68123

4

10.1301

5069

2.25668

9584

2.442194

259

16

As can be seen from tables 4 and 5, the energy

consumption of the pruned CNN is much

better than that of the other classifiers. In case

of the results of the HAPT dataset, the pruned

CNN and Random Forest classifiers are better

for higher sampling rates and SVM is slightly

better than the CNN for the lower sampling

rates.

In tables 6 and 7, the size of the classifiers is

compared.

Table 6: Comparison of size in KBs among classifiers

(WISDM)

Sampling

rate

PCA

dims
SVM KNN RF

CNN

(pruned)

20 7 22 223 1232 10

20 8 22 249 1523 10

20 10 24 301 1659 12

20 20 26 560 1945 21

20 30 29 819 2027 31

Table 7: Comparison of size in KBs among classifiers

(HAPT)

Sampling

rate

PCA

dims
SVM KNN RF

CNN

(pruned)

20 15 82 372 5601 18

20 18 90 442 5939 21

20 21 100 512 6239 28

20 24 108 583 6672 32

20 27 117 653 6869 39

20 30 125 723 7042 42

6. CONCLUSION AND FUTURE

WORK
This thesis addressed the energy and

computation overhead in HAR systems by

optimizing workflow by using single

accelerometer data and selecting minimal and

computationally inexpensive features. The

trade-off between accuracy and power

consumption was studied and an energy

efficient 1D CNN was designed and

implemented on a Raspberry Pi Zero. By

reducing the number of features from 30 to 7,

and by pruning the network by a factor of 0.3,

the accuracy was sacrificed by 2% for an

energy reduction of 34.8%. Furthermore, the

size of the network reduced by 67%.

Table 8: Trade-off between accuracy, energy, and size

for the CNN

Parameter

Model

Final CNN Initial CNN

Accuracy 0.960365854 0.987042683

Energy Consumption (J) 1.03000495 1.5813746

Size (kb) 10 31

Compared to the best performing baseline

model, the Random Forest classifier, our final

CNN implementation had a classification

accuracy that was 2% less, but it consumed

24% less energy per inference. Compared to

the small size of the SVM, the final CNN

classifier was 54% smaller. The selection of

the Pi Zero further reduced the cost of the

system, thereby making it affordable for lower

income user groups.

Table 9: Performance comparison between classifiers

Parameter

Model

SVM KNN RF
Final

CNN

Accuracy
0.9710

37

0.9847

56

0.9893

29
0.960366

Energy

Consumption (J)

1.3681

56

1.3038

21

1.3653

71

1.030004

95

Size (kb) 22 223 1232 10

The implemented model is an offline model,

i.e. the data used for training and testing the

classifiers does not change. A future

improvement can be an online implementation

on the Pi Zero, wherein the classifier

continuously learns, and the model weights are

continuously updated based on new

observations. Furthermore, TensorFlow was

used as the Keras backend. The TensorFlow

team is slowly rolling out the much-optimised

version of TensorFlow, the TensorFlow Lite,

for low power embedded devices. With the

TensorFlow Lite support for the Pi Zero in the

nearby future, the CNN models would be even

more optimised, and the inference tasks would

be more computationally and energy efficient.

vii

BIBLIOGRAPHY

[1] L. Bao and S. S. Intille, “Activity

Recognition From User-Annotated

Acceleration Data,” in Pervasive

Computing; Springer:

Heidelberg/Berlin, Germany, 2004, pp.

1–17.

[2] T. Sztyler and H. Stuckenschmidt,

“On-body localization of wearable

devices: An investigation of position-

aware activity recognition,” in

Proceedings of the 2016 IEEE

International Conference on Pervasive

Computing and Communications

(PerCom), Sydney, Australia, 2016, pp.

1–9.

[3] F. J. Ordóñez and D. Roggen, “Deep

convolutional and lstm recurrent neural

networks for multimodal wearable

activity recognition,” Sensors, vol. 16,

p. 115, 2016.

[4] S. Ha and S. Choi, “Convolutional

neural networks for human activity

recognition using multiple

accelerometer and gyroscope sensors,”

in Proceedings of the 2016

International Joint Conference on

Neural Networks (IJCNN), Vancouver,

BC, Canada, 2016, pp. 381–388.

[5] E. M. Tapia et al., “Real-time

recognition of physical activities and

their intensities using wireless

accelerometers and a heart rate

monitor,” in Proceedings -

International Symposium on Wearable

Computers, ISWC, 2007, pp. 37–40.

[6] J. Pärkkä, M. Ermes, P. Korpipää, J.

Mäntyjärvi, J. Peltola, and I. Korhonen,

“Activity classification using realistic

data from wearable sensors,” IEEE

Trans. Inf. Technol. Biomed., vol. 10,

no. 1, pp. 119–128, 2006.

[7] M. Ermes, J. Parkka, and L. Cluitmans,

“Advancing from offline to online

activity recognition with wearable

sensors,” in Engineering in Medicine

and Biology Society. 30th Annual

International Conference of the IEEE,

2008, pp. 4451–4454.

[8] D. Figo, P. Diniz, D. Ferreira, and J.

Cardoso, “Preprocessing techniques for

context recognition from accelerometer

data,” Pers. Ubiquitous Comput., vol.

14, no. 7, pp. 645–662, 2010.

[9] O. Banos, J. Galvez, M. Damas, H.

Pomares, and I. Rojas, “Window size

impact in human activity recognition,”

Sensors, vol. 14, no. 4, pp. 6474–6499,

2014.

[10] M. Berchtold, M. Budde, H. R.

Schmidtke, and M. Beigl, “An

extensible modular recognition concept

that makes activity recognition

practical,” in Lecture Notes in

Computer Science (including subseries

Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics),

2010, vol. 6359 LNAI, pp. 400–409.

[11] S. Reddy, M. Mun, J. Burke, D. Estrin,

M. Hansen, and M. Srivastava, “Using

mobile phones to determine

transportation modes,” ACM Trans.

Sens. Networks, vol. 6, no. 2, pp. 1–27,

2010.

[12] J. Cheng, O. Amft, and P. Lukowicz,

“Active capacitive sensing: Exploring a

new wearable sensing modality for

activity recognition,” Pervasive

Comput., vol. 6030, no. May 2014, pp.

319–336, 2010.

[13] D. Minnen, T. Westeyn, D. Ashbrook,

P. Presti, and T. Starner, “Recognizing

soldier activities in the field,” IFMBE

Proc., vol. 13, pp. 236–241, 2007.

[14] K. Altun and B. Barshan, “Human

activity recognition using

inertial/magnetic sensor units,” Hum.

Behav. Understanding, Lect. Notes

Comput. Sci., pp. 38–51, 2010.

[15] D. McGlynn and M. G. Madden, “An

ensemble dynamic time warping

classifier with application to activity

recognition,” in Research and

Development in Intelligent Systems

XXVII, London:Springer, 2011, pp.

339–352.

viii

[16] Ó. D. Lara, A. J. Prez, M. A. Labrador,

and J. D. Posada, “Centinela: A human

activity recognition system based on

acceleration and vital sign data,”

Pervasive Mob. Comput., vol. 8, no. 5,

pp. 717–729, Oct. 2012.

[17] D. Anguita, A. Ghio, L. Oneto, X.

Parra, and J. L. Reyes-Ortiz, “A public

domain dataset for human activity

recognition using smartphones,”

ESANN 2013 proceedings, 21st Eur.

Symp. Artif. Neural Networks, Comput.

Intell. Mach. Learn., no. April, pp.

437–442, 2013.

[18] F. R. Allen, E. Ambikairajah, N. H.

Lovell, and B. G. Celler,

“Classification of a known sequence of

motions and postures from

accelerometry data using adapted

Gaussian mixture models,” Physiol.

Meas., vol. 27, no. 10, pp. 935–951,

2006.

[19] P. H. Veltink, H. B. J. Bussmann, W.

De Vries, W. L. J. Martens, and R. C.

Van Lummel, “Detection of static and

dynamic activities using uniaxial

accelerometers,” IEEE Trans. Rehabil.

Eng., vol. 4, no. 4, pp. 375–385, 1996.

[20] T. Brezmes, J.-L. Gorricho, and J.

Cotrina, “Activity Recognition from

Accelerometer Data on a Mobile

Phone,” in Distributed Computing,

Artificial Intelligence, Bioinformatics,

Soft Computing, and Ambient Assisted

Living, 2009, pp. 796–799.

[21] K. Laasonen, M. Raento, and H.

Toivonen, “Adaptive On-Device

Location Recognition,” in Pervasive

Computing, 2004, pp. 287–304.

[22] U. Maurer, A. Smailagic, D. P.

Siewiorek, and M. Deisher, “Activity

recognition and monitoring using

multiple sensors on different body

positions,” in Proc. International

Workshop on Wearable and

Implantable Body Sensor Networks,

2006, pp. 113–116.

[23] I. H. Witten and E. Frank, Data Mining

Practical Machine Learning Tools and

Techniques, Elsevier. 2005.

[24] K. Altun, B. Barshan, and O. Tunçel,

“Comparative study on classifying

human activities with miniature inertial

and magnetic sensors,” Pattern

Recognit., vol. 43, no. 10, pp. 3605–

3620, 2010.

[25] J. Quinlan, “C4.5: programs for

machine learning, Morgan Kaufmann

Publishers,” 1993.

[26] P. Antal, “Construction of a classifier

with prior domain knowledge

formalised as bayesian network,” in

Proc. 24th Annual Conference of the

IEEE Industrial Electronics Society,

1998, pp. 2527–2531.

[27] H. Zhang, “The Optimality of Naive

Bayes,” in FLAIRS Conference, 2004.

[28] J. Cheng, R. Greiner, J. Kelly, D. Bell,

and W. Liu, “Learning Bayesian

networks from data: An information-

theory based approach,” Artif. Intell.,

vol. 137, pp. 43–90, 2002.

[29] C. Cortes and V. Vapnik, “Support

Vector Networks,” Mach. Learn., vol.

20, pp. 273–297, 1995.

[30] A. M. Khan, Y. K. Lee, S. Y. Lee, and

T. S. Kim, “A triaxial accelerometer-

based physical-activity recognition via

augmented-signal features and a

hierarchical recognizer,” IEEE Trans.

Inf. Technol. Biomed., vol. 14, no. 5,

pp. 1166–1172, 2010.

[31] J. Penttil, J. Peltola, and T. Seppnen,

“A speech/music discriminator based

audio browser with a degree of

certanity measure,” in Proc.

International Workshop Information

Retrieval, 2001, pp. 125–131.

[32] S. Hochreiter and J. Schmidhuber,

“Long Short-term Memory,” Neural

Comput., vol. 9, no. 8, pp. 1735–1780,

1997.

[33] M. Stikic, D. Larlus, and B. Schiele,

“Multi-graph based semisupervised

learning for activity recognition,” in

International Symposium on Wearable

Computers, 2009, pp. 85–92.

[34] M. Stikic, D. Larlus, S. Ebert, and B.

ix

Schiele, “Weakly supervised

recognition of daily life activities with

wearable sensors,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 33, no.

12, pp. 2521–2537, 2011.

[35] A. Ali, R. King, and G. Z. Yang,

“Semi-supervised segmentation for

activity recognition with multiple

eigenspaces,” in International Summer

School and Symposium on Medical

Devices and Biosensors, 2008, pp.

314–317.

[36] D. Guan, W. Yuan, Y.-K. Lee, A.

Gavrilov, and S. Lee, “Activity

recognition based on semi-supervised

learning,” in 13th IEEE International

Conference on Embedded and Real-

Time Computing Systems and

Applications, 2007, pp. 469–475.

[37] T. Huynh and B. Schiele, “Towards

less supervision in activity recognition

from wearable sensors,” in 10th IEEE

International Symposium on Wearable

Computers, 2006, pp. 3–10.

[38] Y. Gong, L. Liu, M. Yang, and L. D.

Bourdev, “Compressing deep

convolutional networks using vector

quantization,” CORR, vol. abs/1412.6,

2014.

[39] V. Vanhoucke, A. Senior, and M. Z.

Mao, “Improving the speed of neural

networks on cpus,” Deep Learn.

Unsupervised Featur. Learn. Work.

NIPS, 2011.

[40] S. Gupta, A. Agrawal, and P.

Gopalakrishnan, K. Narayanan, “Deep

learning with limited numerical

precision,” in Proceedings of the 32nd

International Conference on

International Conference on Machine

Learning, 2015, pp. 1737–1746.

[41] S. Srinivas and R. V. Babu, “Data-free

parameter pruning for deep neural

networks,” in in Proceedings of the

British Machine Vision Conference

2015, BMVC 2015, Swansea, UK,

September 7-10, 2015, pp. 31.1–31.12.

[42] S. Han, H. Mao, and W. J. Dally,

“Deep compression: Compressing deep

neural networks with pruning, trained

quantization and huffman coding,” in

International Conference on Learning

Representations (ICLR), 2016.

[43] W. Chen, J. Wilson, S. Tyree, K. Q.

Weinberger, and Y. Chen,

“Compressing neural networks with the

hashing trick,” in JMLR Workshop and

Conference Proceedings, 2015.

[44] K. Ullrich, E. Meeds, and M. Welling,

“Soft weight-sharing for neural

network compression,” CORR, vol.

abs/1702.0, 2017.

[45] V. T. van Hees et al., “Separating

Movement and Gravity Components in

an Acceleration Signal and

Implications for the Assessment of

Human Daily Physical Activity,” PLoS

One, vol. 8, no. 4, pp. 1–10, 2013.

[46] G. M. Weiss and J. W. Lockhart, “The

impact of personalization on

smartphone-based activity

recognition,” AAAI Work. - Tech. Rep.,

vol. WS-12-05, pp. 98–104, 2012.

[47] J. R. Kwapisz, G. M. Weiss, and S. A.

Moore, “Activity Recognition using

Cell Phone Accelerometers,” 2010.

[48] J. L. Reyes-Ortiz, L. Oneto, A. Samà,

X. Parra, and D. Anguita, “Transition-

Aware Human Activity Recognition

Using Smartphones,” Neurocomputing,

vol. 171, pp. 754–767, 2016.

[49] J. Morales and D. Akopian, “Physical

activity recognition by smartphones, a

survey,” Biocybern. Biomed. Eng., vol.

37, no. 3, pp. 388–400, 2017.

[50] F. Chollet and others, “Keras.” GitHub,

2015.

[51] G. Varoquaux, L. Buitinck, G. Louppe,

O. Grisel, F. Pedregosa, and A.

Mueller, “Scikit-learn,” GetMobile

Mob. Comput. Commun., vol. 19, no. 1,

pp. 29–33, 2015.

[52] S. Van Der Walt, S. C. Colbert, and G.

Varoquaux, “The NumPy array: A

structure for efficient numerical

computation,” Comput. Sci. Eng., vol.

13, no. 2, pp. 22–30, 2011.

[53] M. Abadi et al., “TensorFlow: Large-

x

Scale Machine Learning on

Heterogeneous Distributed Systems,”

2016.

[54] “Using the SavedModel format.”

[Online]. Available:

https://www.tensorflow.org/guide/save

d_model.

1

