

MASTER THESIS

Towards Transfer Learning in E-Discovery:

Finding the Optimal Classifier And

Evaluating Domain Adaptation Methods

J.L. Pebesma

July 2020

STUDY PROGRAMS
MSc. Computer Science

MSc. Interaction Technology

EXAMINATION COMMITTEE
Dr. C. Seifert (chair)

Dr.ing. G. Englebienne

Prof.dr. D.K.J. Heylen

Y. van Son, MSc.

Executive Summary

The digitisation of modern society leaves footprints everywhere. In the legal field, it has led to
the rise of e-discovery, short for electronic discovery. Once suspicion of fraud arises, possible
evidence and other documents relevant to the matter have to be found in large, unstructured
datasets, neither knowing what the documents look like nor how many there are. The process of
manually reviewing these documents takes lots of time and can be supported using technology.
This study focuses on finding the most optimal classification model for the relevant emails, using
the most common data source for e-discovery, textual email data.

Classification Model

The aim is to develop a classification model based on natural language processing and machine
learning techniques. Thereby the optimal combination of a vectorisation method and a machine
learning algorithm has to be found. It is currently best practise in e-discovery to use a Support
Vector Machine combined with tf-idf weighting. In recent years, word embeddings have gained
popularity. To see if these can outperform tf-idf vectorisation, Word2Vec embeddings using
either Continuous Bag of Words or Skip-Grams and the pre-trained Flair embeddings are evalu-
ated. As for the machine learning algorithms, Naive Bayes and the Support Vector Machine are
the standards in text classification. These methods are compared to models that are increasingly
being used in (imbalanced) text classification, such as ensemble methods and neural networks.
The baseline models are compared to the Gradient Boosting Machine, Random Forest, Multi-
layer Perceptron, Long Short-Term Memory and Recurrent Convolutional Neural Network. The
optimal model for the two evaluated datasets proved to be the Multilayer Perceptron with tf-idf
vectorisation.

Metadata Inclusion

After picking the optimal model, the metadata is considered. When using the subject line of
the email, one dataset misclassified significantly less emails, while the performance fo the other
dataset remained similar. Metadata features based on the timestamp, sender and recipients were
filtered by feature selection. However, no subset of metadata features was found that improved
the performance of either dataset.

Transfer Learning

The use of transfer learning in the e-discovery domain is evaluated by an unsupervised, semi-
supervised and supervised approach. Since two datasets were available, either dataset could be
used as the source dataset once, resulting in two transfers. For the unsupervised approach, three
methods are evaluated. The baseline is the SrcPrior method, during which the target data is
classified using a model that is optimised and pre-trained on the source dataset. The TgtPrior
method uses the model architecture that has been optimised for the target dataset. Two domain
adaptation methods are applied, the Domain-Adversarial Neural Network (DANN) and the
Transfer Component Analysis (TCA). The latter combined with either 1-Nearest Neighbors or
the optimised Multilayer Perceptron. The TgtPrior method, the TCA combined with an MLP
and the DANN all show an increase in performance for both transfers. This shows that domain
adaptation is beneficial for the classification of an unlabelled set. For the semi-supervised and
supervised approaches, the performance is more dependent on how balanced the source dataset is.
The transfer from a more balanced set to a less balanced one shows an increase in performance,
while the transfer vice versa shows either a decrease or no significant change. Two methods
increase the performance for both transfers, one pre-trains a model on the source dataset using
the model architecture optimised on the less imbalanced dataset, and the other one uses the

ii

prediction of a pre-trained source model on the target dataset as an extra feature in the target
model. The methods using the data of both datasets at once scored in between the individual
scores of the datasets.

Explainable Artificial Intelligence

In the domain of legal technology, there is a lack of trust in artificial intelligence, due to machine
learning models being considered as a black box. When using explainable Artificial Intelligence,
the models could be made more explainable and transparent. This could help increase the
trust in machine learning and enable the models to be controlled more easily. The ‘why’ for a
prediction can be answered, which gains more insight into the working of the e-discovery model,
enabling possible new insights and improvements. Unexpected classifications can be justified and
potential bias can be eliminated, so fairness and compliance to legislation can be assured. An
e-discovery model can be transformed into an explainable model using an interpretation method,
such as the saliency map or (anchored) Local Interpretable Model-Agnostic Explanations.

iii

Acknowledgements

This thesis marks the end of seven years of being a student at the University of
Twente. It has been a time I have thoroughly enjoyed and which taught me a
lot, on so many levels. When I started in 2013 as a student for the bachelor
Business & IT, I did not foresee that I would end up graduating two master
degrees. I hope I can put my education to good use and forever continue

learning.
First of all, I want to thank my supervisors Christin Seifert and Gwenn

Englebienne, who have supervised me since starting the thesis. Together we
found a way to effectively merge two graduation theses into one. During our
meetings, you always took any new ideas I had into account and brainstormed
with me to come to possible solutions. Our meetings helped me in finding a
fitting scope for this thesis and aided me in looking into the right concepts, I
learned a lot. I also want to express my gratitude to Dirk Heylen, who at the
end agreed to join my examination committee. And last but not least, I want
to thank my company supervisor, Youri van Son. I am really grateful for your

supervision. You have read through many draft versions and have always
provided me with extremely helpful feedback. Your punctuality and eye for

detail are a gift, and I want to thank you for all the time you spent supervising
me and your commitment.

Furthermore, I want to thank Johannes Scholtes for agreeing to meet me on two
occasions and showing an interest in this study. Your extensive knowledge
about e-discovery and its current practices were extremely helpful. I really

appreciated your advice and tips.
I am extremely thankful to the Forensic Technology team at KPMG for giving
me the opportunity of writing my thesis as part of their team. I am glad to

have spent most of the time at your office and being part of such a great group
of people, it made writing my thesis a much more enjoyable process.

Finally, I am grateful for my family and friends, who supported me throughout
this process. Their encouraging and kind words were very much appreciated.

iv

Contents

List of Tables vii

List of Figures viii

List of Abbreviations ix

List of Symbols x

1 Introduction 1
1.1 Introduction to E-Discovery . 1
1.2 How Machine Learning Can Help . 1
1.3 Transferring Knowledge Between Cases: Transfer Learning 2
1.4 Insights Into the Black Box of Machine Learning: Explainable Artificial Intelligence 2
1.5 Problem Statement . 2
1.6 Research Questions . 3
1.7 Structure . 3

2 Background 4
2.1 Processing an E-Discovery Case . 4
2.2 Tagging the Emails . 6
2.3 Enron: the Best Known Example . 7

3 Related Work 9
3.1 Feature Engineering . 9

3.1.1 Inclusion of Metadata . 10
3.2 Machine Learning . 10

3.2.1 Neural Networks . 11
3.2.2 Model Optimisation . 12

3.3 Model Evaluation . 12
3.4 Transfer Learning . 13
3.5 Explainable Artificial Intelligence . 14
3.6 Interpretation Methods . 16

4 Research Method 19
4.1 Datasets . 19
4.2 Pre-processing . 19
4.3 Vectorisation . 20
4.4 Classification Models . 21

4.4.1 Model Evaluation . 23
4.5 Model Tuning . 24
4.6 Metadata . 26

4.6.1 Metadata Evaluation . 28
4.7 Learning Bounds . 31
4.8 Domain Adaptation . 32

5 Results 36
5.1 Pre-processing . 36
5.2 Hyperparameter optimisation . 36
5.3 Classifier Performance . 41
5.4 Inclusion of Metadata . 43
5.5 Transfer Learning . 45

v

5.5.1 Learning Bounds . 45
5.5.2 Unsupervised Approach . 47
5.5.3 Semi-supervised Approach . 49
5.5.4 Supervised Approach . 50

6 Explainable AI 52
6.1 Implications for Legal Technology . 52

7 Discussion 54
7.1 Error Analysis . 54
7.2 Vectorisation and Model Optimisation . 54
7.3 Inclusion of Metadata . 55
7.4 Transfer Learning . 56

7.4.1 Unsupervised approach . 56
7.4.2 Semi-supervised and supervised approaches 57

7.5 Limitations and Suggestions for Future Research 58

8 Conclusion 61
8.1 Contributions . 63

Appendices 64

vi

List of Tables

1 List of Abbreviations . ix
2 Notations User Centrality . x
3 Notations Transfer Learning . x
4 Confusion matrix (columns are true labels, rows are predictions) 12
5 Distribution of relevant emails per dataset . 19
6 The hyperparameters per model, the asterisk (*) indicating model restrictions for

altering after training . 26
7 Transfer approaches with their baseline and included methods 35
8 Data entry of an email (original email shown in Figure 5) 36
9 Hyperparameters used for grid optimisation, the asterisk(*) indicating that the

value cannot be altered after training . 37
10 Optimal hyperparameters found using grid search per dataset and vectorisation

method . 38
11 Hyperparameters used for Bayesion Optimisation with Gaussian Processes 39
12 Hyperparameters Multilayer Perceptrons . 40
13 Hyperparameters LSTM . 41
14 Hyperparameters RCNN . 41
15 Friedman Ranks per dataset and averaged . 42
16 Optimal parameters for the MLP with tf-idf vectorisation per dataset 43
17 F2-scores and their standard deviation with and without the subject per dataset 43
18 Mutual information of metadata features per dataset 44
19 Best performing metadata subsets and their F2-score, per search direction and

dataset . 44
20 F2-scores and their standard deviation for each metadata subset 45
21 Summary of domain adaptation methods . 45
22 Probability distributions of dataset A and dataset B 46
23 F2-scores and their standard deviation for the different model architectures per

dataset . 46
24 Optimised parameters for DANN . 48
25 F2-scores and their standard deviation for the unsupervised transfer methods . . 49
26 F2-scores and their standard deviation for the semi-supervised transfer methods . 50
27 F2-scores and their standard deviation for the supervised transfer methods 51

vii

List of Figures

1 Example email . 5
2 Explainability and accuracy of different machine learning classifiers, from Gandhi [50] 17
3 Layers of an RCNN, based on Lai et al. [70]. 23
4 Layers of the implemented RCNN with an extra pooling layer. The altrications

are shown in white. 23
5 Example email, out of the Enron dataset . 37
6 Distribution of the number of tokens per dataset 38
7 Training times in seconds for a simple LSTM model on five epochs shown for the

cut-off on the 90th and 99th percentile . 40
8 Performance of TCA with 1-NN . 47
9 Performance of TCA with MLP from dataset A to dataset B 47
10 Performance of TCA with MLP from dataset B to dataset A 48
11 Performance of TrAdaBoost using either model architecture 49
12 Performance of TrAdaBoost using either model architecture 50
13 Visuals of training and validation performance and loss for the MLP variations. . 65
14 Visuals of training and validation performance and loss for the LSTM variations. 67
15 Visuals of training and validation performance and loss for the RCNN variations. 68
16 Error matrix showing the classification (0 is correct, 1 is misclassified) per email

over the different model architectures evaluated on dataset A. 69
17 Error matrix showing the classification (0 is correct, 1 is misclassified) per email

over the different model architectures evaluated on dataset B. 70
18 Error matrix showing the classification (0 is correct, 1 is misclassified) per email

with and without the subject tokens added on dataset A. 71
19 Error matrix showing the classification (0 is correct, 1 is misclassified) per email

with and without the subject tokens added on dataset B. 72
20 Error matrix showing the classification (0 is correct, 1 is misclassified) per email

for unsupervised transfer learning methods with dataset A as target dataset. . . . 73
21 Error matrix showing the classification (0 is correct, 1 is misclassified) per email

for unsupervised transfer learning methods with dataset B as target dataset. . . . 74
22 Error matrix showing the classification (0 is correct, 1 is misclassified) per email

for semi-supervised transfer learning methods with dataset A as target dataset. . 75
23 Error matrix showing the classification (0 is correct, 1 is misclassified) per email

for semi-supervised transfer learning methods with dataset B as target dataset. . 76
24 Error matrix showing the classification (0 is correct, 1 is misclassified) per email

for supervised transfer learning methods with dataset A as target dataset. 77
25 Error matrix showing the classification (0 is correct, 1 is misclassified) per email

for supervised transfer learning methods with dataset B as target dataset. 78

viii

List of Abbreviations

Abbreviation Meaning
ADM Automated Decision Making
AI Artificial Intelligence
aLIME Anchored Local Interpretable Model-Agnostic Explanation
AUC Area Under Curve
AUPRC Area Under Precision-Recall Curve
BO-GP Bayesian Optimisation with Gaussian Process
CBOW Continuous Bag of Words
CNN Convolutional Neural Network
DANN Domain-Adversarial Neural Network
E-discovery Electronic Discovery
FN False Negative
FP False Positive
GBM Gradient Boosting Machine
GloVe Global Vectors
k-NN k-Nearest Neighbours
L2X Learning to Explain
LIME Local Interpretable Model-agnostic Explanation
LRP Layer-wise Relevance Propagation
LSTM Long Short-Term Memory
MLP Multilayer Perceptron
NB Naive Bayes
NLP Natural Language Processing
NN Neural Network
ReLU Rectified Linear Unit
RF Random Forest
RCNN Recurrent Convolutional Neural Network
RNN Recurrent Neural Network
ROC Receiver Operator Curve
SGD Stochastic Gradient Descent
SHAP SHapley Additive exPlanations
SVM Support Vector Machine
TAR Technology Assisted Review
TCA Transfer Component Analysis
TF Transfer Learning
TN True Negative
TP True Positive
tf-idf term frequency - inverse document frequency
TrAdaBoost Transfer Adaptive Boosting
TREC Text REtrieval Conference
W2V Word2Vec
XAI Explainable Artificial Intelligence

Table 1: List of Abbreviations

ix

Lists of Symbols

Symbol Definition
G Graph
v Vertex (node)
σst Shortest path between vertices s and t
σst(v) Shortest path between vertices s and t through node v
d(y, v) Distance between vertices y and v
deg(s) Number of adjacent edges to node s

Table 2: Notations User Centrality

Symbol Definition
X Feature matrix
Y Label vector
D Domain
DS Source domain
DT Target domain
S Source email dataset in domain DS
T Target email dataset in domain DT
T Task
TS Source task
TT Target task
XS , YS Data from source domain
XT , YT Data from target domain
h Hypothesis, a possible classifier
H All hypotheses (all possible classifiers)
x Possible outcome
X All possible outcomes
PS(x) Probability distribution of x in S
PT (x) Probability distribution of x in T
εDS

(h) Error rate of classifier h over S
εDT

(h) Error rate of classifier h over T

Table 3: Notations Transfer Learning

x

1

1 Introduction

Fraud is a costly affair which may concern billions of dollars [83]. Once there might be a
suspicion of fraud, possible evidence should be found and the case should be evaluated. An
investigation requires a lot of effort and a vast amount of time. This is mainly caused by the
digitalisation of society, wherein we send an enormous number of emails and e-messages. It is
even stated that we send around one million emails during our working life, which will likely only
increase [99]. Finding evidence for a case of suspected fraud, can thus sometimes be compared
to finding a needle in a haystack. It might even be worse since one does not know what this
figurative needle looks like. This means that one has to find evidence, while neither knowing
exactly which documents one is looking for, nor if any documents are present, and in case they
are present, how many there are. When one has to filter certain documents out of a set, this
can be done manually. However, by exploring algorithms such as predictive coding, which try to
find the documents relevant to the case of fraud in a large unstructured collection of documents
by themselves, the process can be speed up immensely. Without these techniques, more than
70% of the total costs of an investigation may be spent on reviewing the documents [83]. This
makes the need for automated review apparent.

1.1 Introduction to E-Discovery

When there is a suspicion of fraud, evidence or other relevant documents need to be found in
large, unstructured datasets. This process is called e-discovery, short for electronic discovery, also
called Electronic Data Discovery [31]. One of the best-known cases of fraud is the Enron case,
where emails served as evidence in the conviction of the CEO [68]. The company went bankrupt
after an accountancy scandal and in the aftermath, the gathered emails were made public for
research purposes. To find out about the fraud, all mailboxes of executive managers were
reviewed. Due to the enormous number of emails, over half a million [81], doing this manually
takes an excessive number of hours. To limit these hours, the process of finding documents
that might contain evidence can be automated. An algorithm can be used to predict which
documents might be relevant. This is called Technology Assisted Review (TAR) or predictive
coding. Predictive coding can help improve the performance of the review, as well as decrease
the time and workload needed. The way this technique is implemented can vary from searching
with keywords to self-learning algorithms.

1.2 How Machine Learning Can Help

Currently, e-discovery is performed by identifying people of interest and using search terms. It
is checked whether the document is sent to or by persons that are suspected of being involved in
fraudulent activities, and if this document was published in the relevant time frame the fraud or
its motive might have been discussed. With document retrieval and machine learning techniques
getting more sophisticated and maturing, it could be an opportunity to find relevant documents
by developing a model using those techniques [8]. This is why it is of great importance to find
out which characteristics of a document may predict its relevance. If a model can be trained on
those features, it could speed up the review process immensely. To extract features from emails,
the text of the email can be vectorised [111]. On top of that, the metadata of the email can be
extracted and used [64].
Machine Learning is a subfield of Artificial Intelligence (AI), in which algorithms can identify
and learn patterns out of data. Therefore, it offers the possibility to create a model that
can differentiate between a document that is relevant to the case and one that is not. The
disadvantages of creating an e-discovery model are the small number of datasets that are publicly
available for training, the small size of these datasets which makes it harder to train a stable

1.3 Transferring Knowledge Between Cases: Transfer Learning 2

model and the opacity of the model, for which it is not known upon which characteristics the
document classification is based.

1.3 Transferring Knowledge Between Cases: Transfer Learning

Once a model performs well on a case, it remains a question whether this model with its char-
acteristics just fits this case well, or if the model can be generalised over multiple cases [47].
When humans are learning a new skill, they make use of the skills they already acquired, to
learn the new skill more quickly [75]. This could also be applied to an e-discovery algorithm.
The knowledge gathered in one case might be useful for the training process in another case,
since they may share some characteristics [84]. E-discovery cases are often imbalanced, only a
small part of the emails is considered relevant. Since a model needs sufficient training data of all
classes to perform well, transfer learning can be especially helpful. Deep learning models have
the opportunity to learn complex patterns, but they are need a lot of data to make sense of its
latent patterns [103]. E-discovery cases are considered small in that aspect, thus the ability to
use more cases in the training might result in a better performing model [65]. Transfer learning
could eliminate the need to manually label each new case in its entirety since the ability to use
data of other cases could minimize the effort of manual labelling, which is costly [37].

1.4 Insights Into the Black Box of Machine Learning: Explainable Artificial
Intelligence

Despite the promises of machine learning models, these models might not be trusted, especially
in sensitive domains, due to their lack of transparency [90]. In the legal domain, there is a
certain reluctance to use AI, due to a lack of understanding of how these models operate [24].
In addition to that, models may rely on undesirable features for classification. An example is
the Amazon hiring algorithm, which appeared to negatively score all-female schools or female
language on resumes. This was caused by the bias of the training set, which contained the
resumes of the current IT staff that were almost all male [36]. If the predictions of an algorithm
lead to decisions that can influence lives, such as assessing someone’s risk of recidivism, the need
for transparency and interpretability become even more apparent [2].
Due to an increasing interest in transparency, the subject of explainable Artificial Intelligence
(XAI) is becoming more popular, trying to explain the black box called machine learning.

1.5 Problem Statement

Once fraud is suspected, an e-discovery process can be started. Currently, this process starts with
the scoping the case, whereby filters and search terms are identified to limit the search results.
These results are then manually reviewed on their relevance to the case, which is expensive due
to the number of hours people needed for review.
Machine learning has shown potential for this task, whereby both the content and metadata of
communication seem to help the classification. However, not much research has been done on
the use of machine learning in e-discovery. Ideally, a classification model is trained, in a way that
requires no further input, except the emails themselves. Apart from limited available research
into the most optimal machine learning model, there are two other major limitations to the use
of machine learning in e-discovery.
One is that the datasets are relatively small, thus some patterns may not be picked up on.
Knowledge about finding relevant documents may be transferred between different fraud cases.
By using the knowledge learnt from each case and applying transfer learning, the knowledge can
be strengthened and findings can be solidified.
Another limitation is that the machine learning model may act as a black box, which is inconve-
nient for tasks that focus on creating transparency, such as fraud investigations. This limitation

3 1.6 Research Questions

is further discussed and possible solutions are considered, such as the implications of using XAI
in e-discovery.

This aim of this thesis is to optimise a classification model and create more insight into
the transferability between cases while considering the implications of applying
explainable AI in the legal domain. To support this research aim, research questions are
specified.

1.6 Research Questions

The following research questions have been formulated, to support the aim defined in the previ-
ous subsection. The performance mentioned in the questions is measured by the F2-score, which
is explained in Section 4.4.1.

RQ1. To what extent do word embeddings increase the performance of an e-discovery model
compared to the use of tf-idf vectors?

RQ2. Which machine learning model that is currently used in e-discovery performs best on the
provided cases?

RQ3. How can the performance of the model be improved using the available metadata?

RQ4. To what extent is the knowledge between the provided e-discovery cases transferable?
SQ4.1 Is the knowledge between the cases transferable?
SQ4.2 To what extent can an unlabelled dataset benefit from a form of transfer learning?
SQ4.3 To what extent can the performance of the model be increased using a form of transfer
learning?

RQ5. To what extent could explainable AI serve the use of machine learning in legal technology?

1.7 Structure

This thesis contains a background chapter, the approach for the study, its results, the discussion
and conclusion. The background in Chapter 2 highlights the given case and the current way
of working in e-discovery, the related work in Chapter 3 notes the current state of the art
in e-discovery, text classification, transfer learning and explainable AI. The approach for this
study can be found in Chapter 4. The implications for the use of explainable AI in legal
technology are discussed in Chapter 6. It is followed by the results in Chapter 5, of which
the discussion is in Chapter 7, alongside the limitations and recommendations for future work.
The last chapter, Chapter 8, contains the conclusion.

4

2 Background

The Forensic Technology team of KPMG is concerned with the discovery, investigation and
prevention of fraudulent activities, corruption and cyber incidents. They can secure data from
computers, phones or other digital sources, to analyse and find the facts. This department has a
lot of experience with working with unstructured data, using their data-driven solution to create
insights. Their way of working is transparent so that it could be used as evidence in litigation.
They have multiples areas of expertise, among others;

• Forensic Data Analysis, which focuses on detecting fraud by analysing administrative
and financial data;

• Cyber Incident Response, which involves responding to cyber incidents and supporting
an organisation in their response; and

• Computer Forensics & E-Discovery, which centres on securing and investigating elec-
tronic data, such as emails.

This study is conducted for the Forensic Technology department to assist the last-mentioned
area, with a focus on e-discovery. The goal in an e-discovery case is to find documents that
are relevant for a fraud investigation. This could either be used in litigation or used leading
up to a dismissal or a settlement. There are different sorts of investigations that the Forensic
Technology team assists in, whereby the solution can benefit from e-discovery. These are, among
others:

• Regulatory requests,

• Internal audit,

• Mergers and acquisitions (beforehand knowledge),

• Deduplication,

• Internal signals, which can be of:

– Fraud, or

– Non-compliance (internal or external rules).

In most cases, a case starts when an organisation suspects fraudulent activities. Hereby a case
is defined as the entire process following this inquiry. Another inquiry of this organisation will
result in a new case. During a case, a document can be a lot of things, examples being an
email, a spreadsheet, an image, a PDF or a chat history such as a Slack conversation. These
examples highlight the multi-modality of documents, meaning they can contain textual and
visual data in all sorts of forms. Another characteristic of e-discovery is that documents are
usually unstructured, which means that they are neither stored in a relational database nor
have pre-defined data types. This makes it harder to search them.

2.1 Processing an E-Discovery Case

For each case, the data first needs to be secured. This could be an email box, containing all
emails with attachments, or an entire hard drive, or one or more external disks. It is important
to secure data as soon as possible, so there is no time for anyone to change or delete evidence.
Once the data is safely secured, the scope of the case can be identified.
The scope of the e-discovery case states which documents should be included in the case and
which should not. The most common type of e-discovery case is textual communication data [30].
More than 50% of e-discovery documents are said to be emails [31]. Therefore, the scope of this

5 2.1 Processing an E-Discovery Case

study is on textual email data. This means that other email data, such as a PDF attachment,
is ignored to limit the scope of the project.
With the scope limited to emails, the only data properties are those of an email. The exception
is the BCC field of an email, which is not stored for any of the available datasets. An email
consists of the following properties:

Date: {Timestamp email sent}
From: {Sender’s address}
To: {List of receiving addresses}
Cc: {List of receiving addresses}
Subject: {Textual subject}
Content: {Email body}
Attachments: {Attached documents}
Priority: {Importance level}

As an example, an email out of the public Enron set is shown in Figure 1.

From: Kitchen Louise [mailto:Louise.Kitchen@ENRON.com]
Sent: Tuesday, January 22, 2002 22:51
To: Belden Tim <Tim.Belden@ENRON.com>;
Milnthorp Rob <Rob.Milnthorp@ENRON.com>

Cc: Schoppe Tammie <Tammie.Schoppe@ENRON.com>
Subject: Trip to Stamford

We are scheduled to meet with Mike Hutchins and John Costas in
Stamford on Friday. Tammie is co-ordinating the trip but essentially
there is no current plan for Thursday night but we will need to be
there in time for an early start on Friday. On Friday each of us
will meet with John and Mike, have lunch, tour the facilities etc
then depart.

That’s all I know - Tammie is trying to get more details.

Louise

EDRM Enron Email Data Set has been produced in EML, PST and NSF
format by ZL Technologies, Inc. This Data Set is licensed under
a Creative Commons Attribution 3.0 United States License
<http://creativecommons.org/licenses/by/3.0/us/> . To provide
attribution, please cite to "ZL Technologies, Inc.
(http://www.zlti.com)."

Figure 1: Example email

The scope of an e-discovery case is limited by specifying search terms and filters. These filters
could indicate which people or email addresses should be present as either sender or receiver.
Furthermore, a filter can be applied on the time stamp to filter emails sent either before or after

2.2 Tagging the Emails 6

one point in time or between two points in time. These filters are combined until a sufficient
number of emails are filtered, so the manual review of these emails can be started. The emails
that are returned by the filters and search terms are called ‘tagged’ emails. The process of
finding and reviewing them is called Technology-Assisted Review (TAR).

2.2 Tagging the Emails

The decision on which class a document belongs to can be seen as either a binary classification
problem or an information retrieval problem. Both methods have been used in e-discovery
tasks [107, 81, 96]. The main difference is that classification algorithms can classify documents
without any additional input, while information retrieval methods need an input query to rank
the relevance of the documents. An information retrieval method always needs this point of
reference, while a classification method does not. This enables an information retrieval method
to work without labelled training data, as it focuses on the distance between a document and the
query. A classification method determines the class a document belongs to, based upon features
that are present in that document. When used unsupervised, the method usually appoints
classes based upon clusters. In case labelled data is available, the classifier can learn from these
labels and predict the label of new input. Since the model should be able to classify emails
without any prior knowledge of the case, it is considered a classification problem.
The documents that are relevant for litigation are called ‘responsive’ [107]. When looking for
responsive documents, the privileged ones should be excluded. Privileged documents contain
(personal) information that should not be used in court. Examples hereof are an email containing
private information about someone’s health or an email conversation with your lawyer. Also,
mails containing sensitive personal information, such as social security numbers, may either be
excluded or censured. In the cases used in this study, the privileged emails have already been
excluded.
The current approach is to start an investigation by defining the scope. First, it should be stated
which documents should be included in the investigations, and which not. This can concern
specifying document types and identifying document locations or individual documents. Then
the filters that should be applied to the data are determined. An exploratory search is done
with search terms, which are (combinations of) words that should occur in the document. It can
be that a specific combination of words should occur in the document, or that at least one of a
specified list of words should occur. This specification is called a Boolean Operator. Once the
search terms are defined, additional filters can be added. The documents can be filtered based
upon persons included (as owner, sender or receiver of the document) or upon time span.
The union of the documents that are returned by these filters are seen as ‘tagged’. These tagged
documents are then returned as the list of possibly responsive documents, which needs to be
reviewed. The reviewing process of the tagged documents based on their relevance is done
manually. This may take up a lot of time, depending on the number of tagged documents and
how clear it is whether they are relevant. Therefore, it should be noted that the filters and
search terms should neither be too broad nor too narrow. When they are too broad, a lot of
documents need to be reviewed manually, leading to high costs. When they are too narrow, the
responsive documents may be missed, which is considered as more negative. For every case, the
queries should be formulated and the filters should be redefined. All these factors are influencing
the scoping process, which can be quite time-consuming because of it.
The number of documents being responsive out of all the tagged documents is called the pre-
cision. The number of responsive documents returned, considering all responsive documents,
is called the recall. During litigation, the recall is of greater importance and outweighs the
precision. Rather to manually review a couple more documents than miss an important one.

7 2.3 Enron: the Best Known Example

2.3 Enron: the Best Known Example

An example case is Enron, a company that went bankrupt in 2001 [68]. Just before the company
went bankrupt, the faults in their accounting were uncovered. These entailed how they artificially
created profit and hid their debts. This created a huge scandal, that quickly led to the end of
a company with more than 21,000 employees and the largest file for Chapter 11 bankruptcy up
until that moment [62].
Back then, all the email boxes of executive managers were secured for the investigation. Af-
ter the investigation, the emails were made public and after that, the emails were sold to a
researcher. Since then, the Enron case has become a public dataset which supported research
into e-discovery. The emails gathered for the legal investigation have been cleaned before the
dataset was made public. The cleaning process entailed removing the privileged documents and
duplicate emails. Furthermore, computer-generated folders were disregarded. For preparation
purposes, invalid email addresses were altered to valid fictional ones, and the to-field of emails
sent without recipients were filled with ‘no_address@enron.com’. Alongside that, some email
boxes were deleted due to personal requests. Moreover, emails containing personal data, such as
birth dates, social security numbers and credit cards numbers, were excluded from the dataset.
The original dataset contained 619,446 messages, while the cleaned one contains around 500,000
messages and is distributed by EDRM [45]. It is the largest available ‘real’ dataset for e-discovery
online, creating the first standard for e-discovery studies [71]. Some of the emails in this dataset
have been used in the lawsuit, enabling the evaluation of the dataset [105].
As a walk-through example of an e-discovery case, imagine that the Enron case would be redone.
The Department of Justice is assigned to the case. Hereby they suspect that fraud is committed
in Enron’s bookkeeping. However, their official documentation does not support these claims.
Thus an e-discovery case is started. When applying the current way of working, they should
start with securing the data. All data that might be relevant should be secured, whereby thought
is given to what may be relevant to not gather too much. The data gathered in this example
will be the email boxes of all employees that are in positions that could have known about it or
have anything to do with it. Alongside their email boxes, their hard disks could also be secured.
However, this is left out of the example to fit the scope of this study, which is limited to textual
email data.
Once the data is stored and safe, the scoping begins. During the scoping process, it is discussed
what data should be investigated, and, just as important, what data should not be investigated.
In this case, it is decided that the email boxes of all executive managers are used, which were
around 150 people. The reason for this is that these people might have known of the fraudulent
issues, or have been involved in them. Due to the large scope of the suspected fraud, concerning
billions of dollars, chances that more than one employee is responsible, or that the employee(s)
involved would have influential functions, are high.
After filtering the mailboxes to the executive managers, other filters are defined, considering
the current number of tagged (filtered) emails is around half a million. A time filter might be
applied when it is certain that a fraudulent situation had not started before a specific point in
time. In this case, revenue increased by more than 750% between 1996 and 2000. This can be
an indicator that the situation started after 1996, five years before the bankruptcy. For this
example, the time filter is thus set to after the first of January, 1996.
When these two filters are set, the number of emails that should be investigated would still
be enormous. Next, search terms are defined. The case concerns financial fraud, leading to
bankruptcy after the stock price fell to less than a dollar. About six months prior, the stock
price was still above 90$. This shows the stock price was probably kept high artificially. Search
terms that can be applied are ‘budget’, ‘revenue’ and ‘buyback’. Alongside that, the current CEO
Jeffrey Skilling and his predecessor Kenneth Lay were suspected of having a large influence and
sometimes doing obscure things. Therefore, their names might also hit some responsive emails.
Applying this combination of filters and search terms would result in a list of emails that have

2.3 Enron: the Best Known Example 8

been tagged as possibly responsive. Based on this list, the filters can be updated iteratively, to
get to a list of tagged documents that is neither too large nor too small. For instance, when
these search terms and filters give limited results, other variants for Jeffrey Skilling and Kenneth
Lay can be added, Jeff Skilling and Ken Lay. Or when there are too many results, the time
filter can be adjusted to start a year later. Once it is assumed that all responsive emails are
in the dataset, while there are not too many documents to review, the list is finalised. All the
emails contained in this list are then manually reviewed based on their relevance for the case,
thus whether they can be used as evidence. This is then considered the result of the case.

9

3 Related Work

Predictive coding intends to split the tasks between humans and computers in the best way
possible, which should give the best result according to Barnett and Godjevac [9]. The semantic
knowledge of humans is mirrored by creating useful features, which can be created by language
processing. The speed, precision and efficiency of computers are used in the form of algorithms
and machine learning models.

3.1 Feature Engineering

To extract the semantic information from the email, the words in the emails are processed
to create useful features. The most used method in e-discovery to vectorise email content is
term frequency-inverse document frequency (tf-idf) weighting, which serves as a baseline for this
study. The tf-idf score is calculated per individual term, showing how characterizing this term
is for the document it occurs in [67]. It consists of two parts, the term frequency and the inverse
document frequency. The term frequency is the number of times the term occurs. The inverse
document frequency (idf) is defined as the total number of documents in the collection divided
by the number of documents in which the term occurs. Since the total number of documents
is often a large number, usually the log is taken of the idf. With term i, the total number of
documents in the collection N and the number of documents containing the term ni, the idf of
term i is defined as: idfi = log(Nni

). For each term i in document j, the weight wi,j is defined
as tfi,j × idfi, whereby tfi,j is the number of times term i occurs in document j. This term
assigns higher weights to words that occur a lot in one document, but rarely show up in other
documents.
Another method of vectorisation is creating word embeddings. These have not yet been tested
in e-discovery, but have been used successfully in transfer learning on email classification by
Azarbonyad et al. [6] and Liu et al. [74]. This indicates that there is a possibility that e-discovery
on email data might benefit from using word embeddings, due to the similarity in the sort of
data. There are multiple methods of creating word embeddings. This vectorisation method
creates a multidimensional space, to which words are mapped. Its concept builds on the idea
that similar words, with a similar meaning and function, should be mapped close to each other
in the embedded space [29]. Word embeddings sparked particular interest after the introduction
of the Word2Vec (W2V) model by Mikolov et al. [78]. This model bases its mapping upon either
the Continuous Bag of Words (CBOW) method or Skip-grams. Subsequently, more complex
models such as Bidirectional Encoder Representations from Transformers (BERT), Embeddings
from Language Models (ELMo), Global Vectors (GloVe) and Flair were introduced [74, 4]. When
comparing the W2V models to these more advanced word embedding models, the W2V models
need less data to be trained. The W2V model can be initialised and trained independently per
dataset, which is why this study considers both mapping methods.
For e-discovery, it is important that local patterns in the data are discovered. If the embedded
space is trained upon just the data itself instead of on a pre-trained larger set, local patterns
may become clearer. An example is that the word ‘bank’ would have a different position when
the embedded space is trained on emails of a financial institution than on emails of interior
designers. If a pre-trained model is used, the position of this word should be similar, because
of training data having already influenced the embedding. Since the focus is on local patterns
and out of vocabulary words are not occurring, GloVe and W2V are suitable algorithms for this
study. The difference between W2V and GloVe is that W2V is a predictive algorithm using a
neural network, for example predicting that the word ‘money’ might occur based on the word
‘bank’ occurring, while GloVe saves the co-occurrences of each term in a large co-occurrence
matrix [88]. This means that W2V only contains implicit information about the co-occurrence
between terms in its representation, while GloVe uses matrix factorisation and thereby keeps
this co-occurrence information. Furthermore, Camacho-Collados et al. [25] found out that W2V

3.2 Machine Learning 10

with CBOW performed slightly better on the detection of outlying terms than GloVe when they
wanted to find the terms that did not belong to a group.
Apart from these models that create a new embedded space for the dataset, some models are
pre-trained on large datasets, such as Wikipedia. These models can be considered more stable,
due to more training data being available. Zalando’s Flair framework [4] is considered, which
contains pre-trained word embeddings for the Dutch language. This aligns with the primary
language of both datasets used in this study.
Different ways of vectorising the text may request different pre-processing steps. When using
word embeddings, it is advised by Mikolov to usually remove punctuation and sometimes lower-
case the text [77]. It is also a possibility to substitute numbers with a pre-specified token (such
as ‘<NUM>’).

3.1.1 Inclusion of Metadata

The content of the email is the most obvious input data. Apart from that, the metadata of
an email, such as the sender, receiver and subject may also contain information [107]. Jones et
al. [64] investigated how this metadata could be of value for the prediction. They mentioned
the length of the email, number of attachments, attachments names, file types, recipients count,
copy count and combined recipient count. These variables are also available in our case. After
establishing the metadata that should be added, they looked into how to add the metadata for
an optimal effect. Hereby an approach concatenating the metadata with its header worked best
for their datasets, thus an email with subject ‘lunch’ would get ‘SUBJECT_lunch’ concatenated
to its body. However, these results proved not to be significant for each dataset. This is the only
study done to the use of email metadata in e-discovery, thus it has not been reproduced and
there is no consensus over if and how email metadata should be used to improve the performance
of an e-discovery process.
Other values could be included as metadata, apart from the part that is already available.
Vinjumur [107] suggest exploiting the language with POS tags, named entity tags and the
likelihood that a sentence makes sense. Also, the role of a sender or receiver in the network can
be taken into account [61]. In this way, e-discovery can be applied based upon analysis of the
social network.
When considering the mentioned metadata metrics, the ones that consistently improve perfor-
mance should be included in the model. The process of finding out which features do so is called
feature selection. There are three main methods to apply feature selection: filtering, wrapping
and embedding [56]. Filter methods are based upon statistical measures to score the importance
of each feature independently, based upon its influence on the performance of the model. This is
a fast method that only takes into account the correlation of features to the label, which is the
class they belong to. Wrapping methods consider combinations of features, working either for-
wards by continuing to add the best performing feature while starting from none, or backwards
by eliminating features after having started with using all of them. To evaluate the feature com-
bination, a predictive model needs to be used, which has to be defined beforehand. Embedded
methods look at the contribution of the features during the process of model creation, such as
the feature importance in a decision tree-based model or the coefficient in a linear SVM.

3.2 Machine Learning

There are many machine learning models available to classify documents. The Naive Bayes (NB)
model is used by many e-discovery vendors, as well as in text classification, and is thus considered
a baseline model [10]. Besides the Naive Bayes model, the Support Vector Machine (SVM) is
being used in a lot of email classification systems [96]. Scholtes et al. mentioned the SVM as
the leading technique in the field of text classification. Therefore, it is considered a baseline as
well.

11 3.2 Machine Learning

Because of time constraints, not all available machine learning classification models are tested.
The dissertation of Vinjumur [107] is used to indicate which models are promising enough. The
reason for using her dissertation is that her study, about e-discovery on privileged emails, is the
one most similar to this study, out of the found studies. She indicated that Logistic Regres-
sion and Naive Bayes have a very similar performance to standard Support Vector Machines.
Furthermore, she proposed using an Artificial Neural Network and two ensemble methods: the
Random Forest and Gradient Boosting Machine.
Aside from that study, Yang et al. [111] looked into the effectiveness of popular e-discovery al-
gorithms. They identified Linear Regression, Support Vector Machines and Gradient Boosting
as well-performing algorithms. Within the domain of Artificial Neural Networks, they high-
lighted the Multilayer Perceptron (MLP), Long Short-Term Memory (LSTM) and Recurrent
Convolutional Neural Network (RCNN).

3.2.1 Neural Networks

A model that is able to use adaptive functions, is the neural network [16]. A neural network
consists of one input and one output layer and at least one hidden layer in between those.
Each layer contains one or more neurons. The last layer determines the predicted class for each
sample. There exist multiple sorts of neural networks, each of them with a different design.
When a neural network has multiple hidden layers, it is considered a deep neural network.
The Multilayer Perceptron (MLP) uses one or more fully-connected layers, in which all the
neurons are connected to all nodes of the previous layer. Where one layer can learn a either
a linear or a non-linear function, multiple layers can learn more complex functions [29]. Each
node has an activation function, typically all nodes in a layer use the same activation function.
In addition to fully-connected layers, there are other types of layers available. One of them is
the convolutional layer, which outputs a weighted sum of the values in a convolutional window
of a specified size. The weights are shared between the different windows in a layer. Apart
from convolutional layers, there are also recurrent layers. Examples being the ‘vanilla’ recurrent
layer and the LSTM layer. The characteristic of a recurrent layer is that it contains a state,
which contains information about previously inputted data [29]. An LSTM layer is a kind of
recurrent layer, which can carry information across observations [29]. This is to try to solve the
vanishing gradient problem, which can occur among others when using a saturating activation
function on a lot of sequence steps, causing the gradient to approximate zero. An LSTM layer
can be bidirectional, which means that it actually consists of two layers, one forward and one
backward layer. This increases performance, but also the computation time [29]. Another sort
of layer that an RCNN can contain is a pooling layer, of which the most common types are
the average pooling layer and the maximum pooling (also max-pooling) layer. The max-pooling
layer only returns the maximum value of each pooling window, while the average pooling returns
the average of that window.
Next to the sort of layers that are implemented, the number of neurons for each layer should
be determined. The neural nets can be subject to either under or overfitting, meaning that
respectively there are not enough neurons to model the complexity of the data, or the model fits
too tightly around the training data [59].
Possible values for the number of nodes can be found based upon exploratory analysis and
research, taking into account the work of Stathakis et al. [101] and Heaton et al. [59] on the
number of nodes and layers a neural network should have.
Next to the layers and nodes, the performance is dependent on the loss function used, as well as
on the optimisation function and its learning rate. The loss in a binary classification problem
is usually defined by the binary cross-entropy [29]. The most commonly used optimisation
functions with learning rates centred around their default value are considered [29].
Furthermore, the performance can benefit from dropout, which drops a number of randomly
selected neurons per run to avoid overfitting [100]. The fraction of neurons that should be

3.3 Model Evaluation 12

dropped is defined by the dropout ratio.

3.2.2 Model Optimisation

To find the optimal model architecture, the hyperparameters of each model need to be tuned.
For each model, different hyperparameters are considered. They influence the performance in
such a way that there is an optimal set of hyperparameters for each specific model per dataset,
which may have a significantly better performance than other sets of hyperparameters. There
are multiple ways of finding the optimal hyperparameters for a model [15]. One of them is
manual search, during which multiple combinations are tried, to find one that works for the
case. This gives some insight into the influence of the hyperparameters. However, it could be
that the optimum is not found, due to some values or combinations that have not been tried.
The hyperparameters might overfit on the dataset, resulting in a set of hyperparameters that
will only work on that dataset or a set found in a local optimum. An automated approach is
more thorough and has an increased chance of getting an optimal solution [15]. Examples of
automated approaches are:

• Grid search, which is considered the most basic and complete variant of hyperparameter
optimisation [15]. It uses a list of parameters and their probable values as a grid. Then,
all possible combinations are tried, to find the best performing one;

• Random search, which uses a statistical distribution per hyperparameter, instead of
a discrete set [15]. The motivation for this is that not all hyperparameters are equally
important for the performance of the model. Therefore, not all set-ups have to be tested,
but it tries more variations of the important parameters. Furthermore, it is said to be
more efficient than grid search [14].

• Optimization algorithms, which models a loss function while considering the model a
black box [15]. These seem to have an advantage when being used for computationally
expensive models. Among others, the Bayesian Optimisation with Gaussian Process (BO-
GP) is an optimization algorithm, which uses the Bayesian function as an estimator for
modelling the loss and thereby tries to find the optimum of that function.

3.3 Model Evaluation

To measure whether improvements have been made, the performance of the classification model
is measured. The evaluation of a classifier is often quantified by a confusion matrix [46]. In case
of a binary classification problem, it is a 2x2 matrix, which is defined in Table 4.

Responsive Non-responsive
Responsive True Positive (TP) False Positive (FP)
Non-responsive False Negative (FN) True Negative (TN)

Table 4: Confusion matrix (columns are true labels, rows are predictions)

The precision is defined by the number of TP divided by the number of TP and FP together.
Thus, in the case of finding responsive documents, the precision is the proportion of responsive
documents over the found documents. The recall is defined as the sum of TP divided by the
number of TP and FN. Thus the recall is defined as the proportion of the responsive documents
found. Aside from precision and recall, another popular metric is the accuracy, which measures

the percentage of correctly classified documents. Their respective formulas are P =
TP

TP + FP

for precision, R =
TP

TP + FN
for recall, and A =

TP + TN

TP + TN + FP + FN
for accuracy.

13 3.4 Transfer Learning

To quantify the performance of retrieval algorithms the F1-score is often used, which is the
harmonic mean of the recall and precision [60]. The F1-score is an instance of the Fβ-score with
β = 1, which is shown in Equation 1.

Fβ = (1 + β2) · precision× recall
(β2 · precision) + recall

(1)

Rijsbergen [92] stated that the F -measure was derived to measure the effectiveness of retrieval
for users that find recall β times as important as precision. The F1-score is the harmonic mean
of recall and precision, the F0.5-score assigns a higher weight to precision than to recall and the
F2-score weights recall over precision.
The Fβ-score, precision, recall and accuracy are considered threshold scores since they are based
upon a specific count of correct classifications and incorrect ones. Another way of measuring
performance is using rank scores, which are able to evaluate rankings by showing their per-
formance over different thresholds, such as the Receiver Operator Characteristic (ROC) Curve
and its Area Under Curve (AUC) [38, 20]. Instead of using precision and recall, this metric
uses sensitivity and specificity. Sensitivity uses the same formula as recall, while specificity is

formulated as SPC =
TN

TN + FP
. Similar to the ROC is the Precision Recall Curve, which uses

the Area Under Precision-Recall Curve (AUPRC) [20].
When choosing the performance metric, the skew of the dataset should be considered [63]. The
skew is defined by Equation 2.

Skew =
negative examples

positive examples
(2)

When the data is highly skewed, the data is imbalanced. In general, e-discovery datasets are
imbalanced, since only a few emails are responsive out of the entire set of emails. Jeni et al. [63]
calculated these scores on the same datasets, to show the influence of skew. Hereby it became
clear that most scores were influenced by skew, though the F1-score and AUPRC were only
affected in one direction (Skew > 1.0) and the AUC score seemed to remain consistent. The
other scores that were measured included the accuracy and the ROC curve.

3.4 Transfer Learning

To transfer the knowledge from one dataset to another, transfer learning can be applied. Transfer
learning has not yet been applied to e-discovery. Whether the domain and task of the two models
are the same affects the choice of transfer learning setting. The domain concerns the features
that are used in the classification process, while the task is the classification that should be made.
When both the domain and task are the same, traditional machine learning can be applied [84].
When the task is different, either inductive or unsupervised transfer learning can be applied.
Hereby Pan et al. [84] describe unsupervised transfer learning as a situation in which no labels
are needed, such as clustering or dimensionality reduction. When the task is the same, but the
domain is different but related, transductive transfer learning can be applied. This corresponds
to the case of e-discovery. The transductive transfer learning setting focuses on improving the
target classifier, based upon the knowledge gathered from the source data, whereby the source
domain is not the same as the target domain. In e-discovery, this domain gap can be seen as
the different vocabulary and case subject of each dataset. The task in both e-discovery cases
is still the same, namely to predict which emails are indicative of fraudulent behaviour. In the
transductive setting, domain adaptation methods can be applied to decrease any gap between
the source and target domain. Domain methods can be approached in the following ways [84,
110, 39]:

• instance-based, which utilises the source instances, though their weight is adjusted based
upon their similarity to the target domain;

3.5 Explainable Artificial Intelligence 14

• feature-representation-based (either symmetric or asymmetric), which focuses on find-
ing a feature representation that works for both domains. This could be asymmetric, by
re-weighting the source features to resemble the target features, or symmetric, by creating
a shared latent representation across the domains;

• parameter-based, which aims for finding shared parameters or priors between the re-
spective models, to enhance the knowledge transfer; and

• relational-knowledge-based, which tightly couples the source and target domain based
upon a pre-defined relationship.

Since the goal is transductive transfer learning, only instance-based and feature-representation-
based methods apply out of the initial four [84]. Aside from these approaches, hybrid methods
are also a possibility [110, 39].
In case the optimal model is a deep neural network, deep domain adaptation methods could
also be applied. In the case of deep domain adaptation, three additional approaches are men-
tioned [103]:

• mapping-based, which can map instances of both domains into a new space, which
increases the similarity between the domains;

• network-based, which concerns the partial re-use of the network that is trained on the
source domain; and

• adversarial-based, which tries to find transferable representations of the source and
target domain, based on adversarial technologies.

Mapping-based methods are similar to symmetric feature-representation-based methods since
they both focus on creating a shared representation of the data in a new space. The network-
based approach is often used in transfer learning with neural networks, by copying the first n
layers of the source model to the target model [112]. Then they can either be frozen or fine-
tuned by the training on the target task. The remaining layers can be randomly initialised,
or copied but not frozen. During the copying and freezing phase, many variations are possible.
The thought behind freezing the first layers is that the first layers create general representations,
while the later layers are more specific for the task. The adversarial methods are often focused
on image data, such as Adversarial Discriminative Domain Adaptation (ADDA) [106].
Apart from these mentioned methods, there are many more domain adaptation methods, such as
EasyAdapt (EA) [37], Structural Correspondence Learning [18], Transfer Component Analysis
(TCA) [85], TrAdaBoost [35], Subspace Alignment (SA) [48] and a Domain-Adversarial Neural
Network (DANN) [3].
Domain adaptation has been applied to email data before in two studies of Azarbonyad et al. [7,
6]. In the first study, Azarbonyad et al. [7] focus on computing the semantic shifts in discourse. In
the second study, Azarbonyad et al. [6] look into domain adaptation for commitment detection
in the Enron and Avocado email datasets. In this paper they focused on characterising the
differences between email sets, to later perform transfer learning. The methods of transfer
learning used were feature-level adaptation, sample-level adaptation and an auto-encoder to
leverage both.

3.5 Explainable Artificial Intelligence

In current Artificial Intelligence (AI) practice, the model is often treated as some sort of black
box [95]. The model has input and output, but what happens inside of it remains unknown
or is not interpretable. Since recent years this lack of transparency is being addressed more,
leading to a rise of interest in Explainable Artificial Intelligence (XAI) [2]. This field focuses

15 3.5 Explainable Artificial Intelligence

on explaining the decision-making process of machine learning models, which is often hard to
interpret.
Interpretability centres on the ‘why’ of a prediction, when the prediction can be interpreted, it
is possible to answer the ‘why-question’ of why this prediction has been made [79]. Especially
when a model can influence someone’s life, the need for interpretability is high [80]. A model
predicting whether a person prefers books or movies based upon their tweets would need less
interpretability than a model deciding whether someone is eligible for a loan. In the last case,
just a prediction is not enough. Aside from the prediction, one would want to know which
factors need to be changed in what way, to get a different outcome. Doshi-Velez and Kim [43]
argue that the prediction itself is not enough and the need for interpretability comes from the
problem formalisation being incomplete. This means that for tasks and problems only a what
(prediction) is not satisfactory and a why (explanation) is needed as well. Rüping [94] defines
the three goals of interpretability as a model being accurate, understandable and efficient.
Apart from interpretability, a model also needs transparency to be explainable [108]. Trans-
parency covers simulatability, decomposability and algorithmic transparency [72]. The issue at
hand for simulatability is that a person should be able to classify something manually, based
upon the model. This means that the model should be understandable enough for a human to be
read and understood so that people can infer the model’s decisions correctly. Decomposability
entails that each part of the model has an intuitive explanation. In case of a decision tree, this
means that each split contains an explanation on what it does exactly. Each part of the model
should be accounted for, it should be explainable on its own. When a model has algorithmic
transparency, it can be proven that they can get to a unique solution on an unseen dataset. For
example, a linear classifier improves by fitting a line between those classes. The training process
is transparent, for a new dataset it can be reasoned whether if the linear classifier can divide
the classes. For neural networks, especially deep neural networks, it cannot be known from the
start whether they will be able to solve a problem when one is presented.
There are more reasons for wanting to explain a model, such as to detect and reduce bias in
a model or to find out ways the model could fail. An example is the commotion caused by
the Amazon hiring process in 2018 when it became clear that their algorithm was trained for
hiring men and indicated negative hiring advice when an all women’s school or more ‘female’
language was used [36]. Another example is the tank classification set, which is a well-known
tale of AI gone wrong. In this example, images were classified as to whether they were showing a
tank [26]. However, according to the tale, it appeared that the model was not good at classifying
tanks, but rather at identifying whether the weather was sunny [28]. Supposedly, all pictures in
the training set containing a tank showed sunny weather, while pictures not containing a tank
showed gloomier weather. The tale zooms in on the fact that a model can learn unexpected
patterns, which we may not always realize. It is an example of a situation where XAI could have
helped verify the model to see if it is trained on the correct features. In turn, this could also
uncover possible biases or other weaknesses in the model. Furthermore, it could lead to further
insights by exploring the relations between features within the model and possible causality.
When looking into safety measures, being able to explain the model might help to find the
loopholes [80]. An example would be when you are looking into self-driving cars and how they
recognise bikers. The car should know where the bikers are to avoid dangerous collisions. If the
model shows that it focuses on the two wheels touching the ground for classifying something
as a bike, it can be questioned whether a three-wheeler would also be recognised. Once these
matters become apparent, they can be fixed before any accidents occur. When the safety of the
method is ensured, the models may be used in more critical cases.

3.6 Interpretation Methods 16

Doshi-Velez and Kim [43] argue that a model is more likely to have the following traits, once it
is explainable:

• Fairness, meaning that the prediction has no implicit nor explicit bias;

• Privacy, ensuring that no privileged data is used;

• Reliability, meaning that small changes in the input have no major influence on the
prediction;

• Causality, ensuring that causal relationships are apparent; and

• Trust, checking whether humans can trust its decisions, compared to those of a black box.

To create an explainable model, interpretation methods can be used. At the moment, there seems
to be no consensus on which traits or properties an explainable model needs to have, though
many papers are overlapping on these traits. An important property of an explainable model is
its fidelity. The fidelity of a model should describe how well the explanation approximates the
prediction of the machine learning model [80].
In addition to these traits, Adadi et al. [2] mention the principles they think AI should adhere
to, namely the A.R.T. principles:

• Accountability, the need to be able to explain and justify the decisions and actions of
the AI model;

• Responsibility, considering the role of people and the capabilities of AI models; and

• Transparency, the need to be able to describe, inspect and reproduce the output of the
mechanism.

3.6 Interpretation Methods

To overcome the principle of some machine learning models being considered ‘a black box’,
interpretation methods can be used. XAI tries to either make this black box explainable or
work around it [95]. Whether a model can be made explainable and the effort that it takes
depends on the model, whereby a decision tree is intrinsically suited for interpretability, while
a neural network is not [94]. The relation between models and their explainability is shown in
Figure 2. Here it is visible that classification rules, which could also be described as if-then logic,
regression algorithms and decision trees are more explainable than other models. These models
can be considered white models since they are explainable by itself.
Below some of the most established techniques [27] are highlighted:

• Salient map [98] computes the gradient of the classification of an input entry with respect
to the input vector itself. This gradient can then be used to mask the input, creating a
heatmap visualisation of the importance of the features in the vector [98]. In case the
input does not have a classification, a Parzen window approximation can be used [27]. A
Parzen window can estimate a probability density function for a certain feature when the
distribution is unknown. This enables the creation of a salient map on unlabelled data.
The advantage of salient maps is that they should be able to explain the decision of any
classifier [27].

• Integrated Gradient [102] is an explanation technique based upon the axioms Sensitivity
and Implementation Variance. The sensitivity ensures that when one feature is different
between two input vectors and these vectors result in different predictions, then this feature
should have a non-zero attribution to the gradient. With the axiom of implementation

17 3.6 Interpretation Methods

Figure 2: Explainability and accuracy of different machine learning classifiers, from Gandhi [50]

variance, two models are considered functionally equivalent when both their input vectors
result in the same output vectors. In this way, the contribution of each feature to the
gradient should be the same. The result of the Integrated Gradient is an additive model,
created by cumulating the gradients between the inputs and their outputs.

• Layer-wise Relevance Propagation (LRP) [5] estimates which elements are most important
for the classification decision. These can then be highlighted, to gain more insight into the
decision process.

• DeepLIFT, [97] is a method that is specifically designed for usage in neural networks. It
decomposes and back-propagates the output to trace the value of each input feature.

• Local Interpretable Model-agnostic Explanation (LIME) [90], is an explanation technique
that creates an interpretable model, which is then trained to fit the prediction. Based on
the original input, LIME generates slightly different samples. These generated samples are
then inputted to the original model. The differences in predictions are used to evaluate
the importance of the features. This new interpretable model should then be a good
approximation locally. However, over the global model, this representation might be less
accurate. Therefore, it is considered to have local fidelity. This sort of model, training a
shallow model to mimic the function of a deeper one, is also called a proxy model [52].

• Anchored LIME (aLIME) [91] is a variation of LIME. It creates anchors, which are if-then
rules that have clear coverage. They state the conditions for which the explanation is valid
so that the prediction of the anchor is not influenced by changes in other features.

• Shapley Additive Explanations (SHAP) [76] is a method developed in game theory to
explain the division of the pay-out. SHAP uses Shapley values, which are approximated
by a kernel SHAP, to quantify the importance of certain features out of the input. This is
a computing-intensive process, though the theory is solid and not an approximation.

• Learning to Explain (L2X) [27] is a technique based upon instance-wise feature selection.
This means that based upon a prediction of a model, the instance-wise feature selection
explores the importance of each input feature. With L2X a neural network is created, to
map the feature importance as weights and return the set of the features that have the

3.6 Interpretation Methods 18

largest weights. Once the L2X model is trained, only a single pass is required. According
to Chen et al. [27], L2X seems to outperform the other mentioned XAI methods (Salient
map, LRP, DeepLIFT, SHAP and LIME) on four cases, based on clock time and their
ability to identify the most influential features.

Some methods have been designed to explain specific classifiers, such as the DeepLIFT method
that can explain neural networks. These are model-specific XAI methods. The benefit of a
model-specific XAI method is that their performance might be increased, due to their fit to the
method. A model-agnostic technique works around the model by using the prediction and the
input, thus considering the model as a black box. Examples of model-agnostic techniques are
LIME, SHAP and L2X.

19

4 Research Method

This chapter discusses the approach for this study, which consists of multiple stages. The result
of each stage is needed to proceed to the next one. The datasets used in this study are introduced
in section 4.1. Using these datasets, the following steps are taken:

1. Vectorising the emails. The data is first pre-processed, which is described in section 4.2.
Then the emails are vectorised, which is discussed in section 4.3.

2. Tuning and Choosing the Classification Model. The considered classification models
are discussed in section 4.4 and their evaluation metric in section 4.4.1. The approach for
tuning the hyperparameters of the models is discussed in section 4.5.

3. Evaluating of Metadata. The metadata features are discussed in section 4.6. The
methods used for selecting the metadata features that are contributing to the performance
are described in section 4.6.1.

4. Testing the Learning Bounds. The learning bounds, which indicate if a positive knowl-
edge transfer is expected, are explained in section 4.7.

5. Applying Domain Adaptation Methods. The transfer learning approaches and the
domain adaptation methods are discussed in section 4.8.

4.1 Datasets

For this study, three datasets are available. The Enron set is used for examples since this dataset
is publicly available. This dataset has been limited to the mailboxes of six employees, of whom
emails could be found that were used in court. The emails used in court make up the responsive
part of the emails. Two other datasets, dataset A and dataset B, are anonymized datasets
provided by KPMG. The majority of these emails are Dutch. Due to their confidential nature,
further specifics on these datasets cannot be shared.
Due to the extreme imbalance of the Enron set and its sort of fraud being unique, as well as that
the set is English and gathered and filtered differently than most sets, this set is not included
in the evaluation of the classifiers, metadata and transfer methods. For these purposes, only
dataset A and dataset B are considered, since these share their collection, filtering and pre-
processing methods. Future datasets are more likely to be similar to dataset A or dataset B
than to the Enron dataset.
The distribution between responsive and non-responsive emails in the datasets can be seen in
Table 5.

Dataset Enron Dataset A Dataset B
Responsive 22 (1.0%) 136 (6.8%) 205 (21.2%)
Non-responsive 22074 (99.0%) 1863 (93.2%) 761 (78.8%)
Total 22096 (99.0%) 1999 (100%) 966 (100%)

Table 5: Distribution of relevant emails per dataset

4.2 Pre-processing

In Algorithm 1 the pseudocode for the pre-processing phase is shown, which cleans the emails
and increase their usefulness. The pre-processing steps are inspired by Scholtes et al. [96]. First,
the footer, punctuation and multi-spaces are removed. Then the text is put to lowercase and the
tokens are created. The tokens are then filtered on alphanumeric tokens that contain at least 3
characters. The numeric tokens are replaced by ‘<NUM>’ [77].

4.3 Vectorisation 20

Algorithm 1 Pre-processing of email body
Input: Email body
Output: List of tokens
SET content AS email body
REMOVE(footer)
REMOVE(non-alphanumeric characters)
LOWERCASE(content)
SET tokens as TOKENIZE(content)
SET processed tokens AS new list
for all token IN tokens do
if token IS numeric then

REPLACE token WITH ‘<NUM>’
ADD token TO processed tokens

end if
if token IS alphanumeric AND length(token) > 2 then

ADD token TO processed tokens
end if

end for
return processed tokens

4.3 Vectorisation

After the pre-processing of the text, the outputted tokens should be vectorised. Based upon the
related literature, four vectorisation methods are evaluated:

• Term-frequency inverse-document frequency (tf-idf) values;

• Word2Vec (W2V), based upon Continuous Bag of Words (CBOW);

• Word2Vec (W2V), based upon Skip-grams (SKIP); and

• Flair, (Dutch) pre-trained word embeddings.

To calculate the tf-idf values, an email is considered as a document. The vocabulary of a
dataset entails the unique set of words for all the emails in that dataset. This vocabulary is
present during the processing of the case. However, due to the confidential matter of e-discovery
datasets, we assume that the vocabulary of a case may not be saved after its processing, to
protect the original emails. For each email, a vector is initialised, with its length equal to the
size of the vocabulary. The tf-idf values of each token in the email are added to this vector,
corresponding to their place in the vocabulary. To reduce the feature space, the features with
the lowest tf-idf scores are removed from the document vectors, since they contribute the least
to the classification decision. This cut-off is applied to speed up the model. The threshold for
the scores to be included is calculated as min + (max - min) * percentage, whereby the lowest
and highest values of all document features are used [96]. The percentage should be a low value
not to exclude too much. In this study, a percentage of 1% is chosen. The cut-off is performed
on the raw tf-idf values. After removing the features that are below the threshold, the values
are normalised per vector. Thus for each email, each tf-idf value is divided by the maximum
tf-idf value of that email. Since this may result in very small values, the base 10 logarithm is
taken of each value [96]. In this way, the models may pick up on trends easier.
Another way of vectorising the emails is by using word embeddings. For this, two W2V mod-
els are used, one using CBOW and one using Skip-grams. Aside from the self-trained word
embedding models, a pre-trained word embedding model is used, namely Flair. These embed-
ding models are not further trained on the data since the pre-trained Dutch models are already
bidirectional and trained on much larger datasets.

21 4.4 Classification Models

The models need two-dimensional input data, except for the LSTM and RCNN. These require
sequential data, thus three-dimensional input data. A two-dimensional matrix consists of all
emails as the first dimension, with their features as the second dimension. Sequential input
requires that for each email the features are put in per observation, instead of all at once. In
case of an email, this means that each token is vectorised and put in subsequently. In this way,
the classifier gains information about the order of the tokens as well. This could be advantageous
for the performance, however, this also increases computational load.
To enable sequential input, the vectorisation of the emails has to be redone. Hereby the model
input is transformed from two-dimensional (emails × features) to three-dimensional (emails ×
observations × features).
For the tf-idf sequential input, the tf-idf vector should be restructured, since one tf-idf vector
per observation does not fit into memory either. Instead of using the tf-idf vector, only the tf-idf
value of the token itself is used as input. This means that information about the vocabulary is
lost. However, by only creating one feature dimension, the sequence becomes processable. Due
to limited resources, Flair embeddings are not evaluated on the sequential models, since their
sequential form exceeds the available memory.
When processing the emails, each email is considered a sample and each token an observation. To
process the input, all samples that are inputted at the same time need to have the same number
of observations. This is a restriction of the implementation of the neural networks, for which
Tensorflow v2.1.0 API for Python is used [1]. To process the sample in batches of more than
one, the samples with fewer observations are padded with zeros to create input vectors of the
same size. However, if the longest sequence is taken as the dimension for the observations, this
can cause the input matrix to be increasingly sparse and large. Since the available resources are
limited and the sequential models are computationally expensive, two methods are considered to
improve the memory usage and processing time. The performance might thus be more optimal
when these methods are not applied, but they are needed to make the process manageable in
terms of computing power and time.
One method is to maximise the dimension of the observations to a certain percentile so that
the longest sequences are cut off. Combined with the need for padding, shortening the longest
sequence can have a significant effect on memory use and processing time. When choosing the
percentile, one needs to keep in mind that the higher the percentile, the less information is lost
and the less the training time is decreased.
Besides that, mini-batching can be applied, which is also called sequence bucketing [13, 42].
This method constructs so-called buckets of a pre-defined number of samples, which can be
inputted subsequently. Each bucket is padded to the maximum sequence length within that
bucket, which is almost always less than the overall maximum sequence length. Therefore, less
redundant padding is inputted. To find the optimal batch size, the time for training one model
can be measured for each bucket size. It should have a positive effect on the runtime when the
bucket size is a power of two [55]. The considered bucket sizes are 2n with n ranging from one
to seven, creating values between 2 and 128.

4.4 Classification Models

A problem similar to e-discovery is spam detection, for which the Naive Bayes algorithm can be
considered as baseline [67]. For e-discovery, the current baseline model is the Support Vector
Machine [96, 11].
Not much research has been found to the use of different machine learning models in e-discovery.
Based on Yang [111] and Vinjumur [107], more models can be identified that may be effective
for e-discovery. Both the baselines and the models mentioned by these papers are considered.
Therefore, aside from these two baseline models, two ensemble methods and one neural network
are considered. All these models process the data per email. Additionally, two sequential neural
networks are tested, which process the email per token instead of as a whole.

4.4 Classification Models 22

The models that are evaluated, are:

• Naive Bayes (NB),

• Support Vector Machine (SVM),

• Random Forest (RF),

• Gradient Boosting Machine (GBM),

• Multilayer Perceptron (MLP),

• Long Short-Term Memory (LSTM), and

• Recurrent Convolutional Neural Network (RCNN).

When using the Scikit-learn package, the SVM can be implemented in two manners. The original
SVM does not support partial or incremental learning, as it can only learn in one instance as
implemented in Scikit-learn, therefore all parameters are immutable for this model. The SVM
can also be implemented with a linear kernel and trained with Stochastic Gradient Descent
(SGD). In Scikit-learn, this is implemented through their so-called SGD classifier, which does
support partial learning. Therefore, this classifier is also included in the model evaluation,
defined as SGD.
Several design choices have been made for the neural networks, thus the MLP, LSTM and RCNN.
In these neural networks, the last layer uses the sigmoid activation function, since e-discovery
concerns a binary classification problem.
In the LSTM model, a dropout layer is added after each LSTM layer to reduce the risk of
overfitting. On top of this, a fully-connected layer is stacked.
The Recurrent Convolutional Neural Network (RCNN) for text classification is designed accord-
ing to the paper of Lai et al. [70]. It consists of several layers, as depicted in Figure 3. It starts
with a bidirectional vanilla recurrent layer, containing 3 nodes per layer. Then a convolutional
layer with a kernel size of 1 is added. In this design, a maximum pooling layer is stacked on top
of this. Next, a fully-connected layer is added, which uses the tanh function as the activation
function. The output layer in the study of Lai et al. [70] uses the softmax function with as
many nodes as there are unique classification labels. However, this study uses a layer with the
sigmoid function with only one node, since e-discovery is a binary classification problem. The
optimisation function for the RCNN is the stochastic gradient descent function.
Due to this setup containing a max-pooling layer, the only node that is learning from back-
propagation is the node with the highest value per email. Due to the limited number of training
samples, this could negatively impact the performance. To get more feedback from the training
process, additional max-pooling layers with a smaller pooling size can be used, combined with
convolutional layers. This is depicted in Figure 4 and results in more elaborate back-propagation.
The pooling size of these additional max-pooling layers depends on the number of extra layers
that need to be added. To ensure a symmetric design, we assume that all non-global pooling
layers have the same pooling size k. This pooling size can then be calculated using the number
n of pooling layers and the sequence length S per sample. A pooling layer with pooling size k
reduces the dimensionality of the sequence length S with S× (1k)

n. When solving this equation,
this leads to a maximum pooling size k of n

√
S.

23 4.4 Classification Models

Figure 3: Layers of an RCNN,
based on Lai et al. [70].

Figure 4: Layers of the implemented
RCNN with an extra pooling layer.
The altrications are shown in white.

4.4.1 Model Evaluation

The chosen evaluation metric for this study is the F2-score since both recall and precision need
to be considered for e-discovery, whereby more emphasis is needed on the recall. The AUPRC
weights the precision and recall equally. Therefore, the F2-score is used as the principal metric
for evaluation, since a higher F2-score indicates a more desirable model.
When training a model, it can either overfit or underfit. To ensure the performance is depicted
accurately, several steps can be taken [16]. First of all, the dataset can be split into the train
and test set. Hereby a random state needs to be specified, so the created split is reproducible.
A common ratio between the train data and the test data is four to one so that they contain
relatively 80% and 20% of the data. Due to the imbalance of the data, the folds are stratified, so
that each fold contains at least a couple of responsive emails. For five-fold cross-validation, the
model is initialised five times, whereby each time a different one of the five folds, thus 20% of

4.5 Model Tuning 24

the data, is used as the test set. Hereby the model is using the optimal architecture as defined
below. The performance of a model is measured by averaging the F2-scores of the five runs.
To determine the best performing model, each model is evaluated twice, with the random states
0 and 1, which increases the stability of the performance estimate. The final performance is then
defined as the average of the performance of both random states. When altering the random
state, among others the initialisation of models and the split of the training and test set are
influenced.
Per dataset, the mean and standard deviation of the F2-scores for each model and vectorisation
combination are noted. These are then compared using the Friedman test [40], which ranks the
models for each dataset separately. The optimal model and vectorisation method are chosen,
based upon the average ranking for each model and vectorisation method combination. With
the Friedman Rank, it can be tested whether the model-vectorisation combinations perform
significantly different. If the p-value is lower than a certain confidence interval α, it can be
assumed that their performances are significantly different.

4.5 Model Tuning

To tune the models, a hyperparameter optimisation method should be chosen. As primary hy-
perparameter optimisation method, the grid search is chosen, due to its accuracy, reproducibility
and completeness. The grid per model consists of all its hyperparameters and their possible val-
ues, which can be seen in Table 6. The to be tuned parameters, together with their possible
values, have been inspired by manual exploration, the book ‘Deep Learning’ of Goodfellow et
al. [54] and the study of Olsen et al. [82] to hyperparameters, the latter which can be consulted
for explanations on their function.
For every combination of parameters, cross-validation is used to compute a mean F2-score and
its standard deviation. This is done with five folds, which is the default number of folds. If
more folds are used, the folds can become relatively small thus decreasing the pattern matching
capabilities of the model, while also being more computing-intensive. In addition to that, fewer
folds might be less stable in terms of results [23]. Neural networks are trained with five epochs
during the optimisation process.
There are two sorts of parameters, those that can be changed after initialisation, such as the
learning rate, and those that cannot be changed due to model restrictions, such as the SVM
kernel. Since all models, except for the neural networks, are implemented using their Scikit-learn
implementation [86], the parameters are based upon the restriction of that package. Due to the
sensitivity of the performance to the model parameters, both parameter types require a different
approach.
For the mutable parameters, the optimal value for that model, vectorisation method and dataset
can be used. This is the set of hyperparameters that results in the best performance for this
set-up. However, since the overarching goal of this study is to transfer knowledge, the immutable
parameters should be optimal for all sets. The datasets were trained, optimised and evaluated
separately.
Neural networks have a larger number of variations in their hyperparameters. When performing
a grid search along these, the limited available resources would be exceeded. Therefore, Bayesian
Optimisation with Gaussian Processes (BO-GP) is applied [58]. When using this method, the
hyperparameters that need to be tuned are considered as the dimensions that have to be opti-
mised with regards to the F2-score. This is done by modelling a loss score, whereby the classifier
is searching for the minimum value of the F2-score. The optimizer is called a maximum of 500
times for the MLP model, which has two-dimensional input data. For the models handling
three-dimensional input data, the LSTM and the RCNN, the optimizer is called fewer times
to keep the computing time feasible. These sequential models are both called 100 times. For
two-dimensional data an initial batch size of one is used, while for three-dimensional data the
larger batch size of 64 is used, due to time constraints, to reduce computation time further.

25 4.5 Model Tuning

In case this proves not to be sufficient, a percentile cut-off and mini-batching can be applied.
For this, multiple percentiles and various batch sizes can be evaluated, to see which method, or
combination of methods, reduces the computing time to a considerable amount.
For the parameters that are not optimised, their default values are used, as implemented in the
Tensorflow v2.1.0 API for Python [1]. This means that among others, the LSTM layers use
the tanh activation function and that the weights for the fully-connected and LSTM layers are
initialised using a Xavier normal initialiser [53].

Model Parameter
NB Priors

Var. smoothing
SVM Class weights*

C*
Kernel*
Coefficient*
Gamma* (γ)
Degree*

SGD Class weights
Learning rate (η)
Initial learning rate (η0)
Exponent for inverse scaling learning rate
Penalty*
Loss
Alpha (α)

GBM Number of estimators
Maximum features
Maximum depth
Loss
Learning rate

RF Number of estimators
Maximum features
Maximum depth
Class weights
Criterion

Neural networks Threshold
Optimizer*
Learning rate*
Epochs*
Batch size*

MLP Number of input nodes
Number of dense nodes
Number of dense layers
L2 regularizer
Activation function
Dropout

LSTM Number of dense nodes
Number of LSTM nodes
Bidirectionality LSTM layer
L2 regularizer
Activation function dense layer
Dropout

4.6 Metadata 26

RCNN Number of pooling layers
Number of convolutional nodes
Number of dense nodes

Table 6: The hyperparameters per model, the asterisk (*) indicating model restrictions for
altering after training

Once the optimised parameters are known, the learning rate, batch size and epochs are defined
by visualising the training and validation loss and F2-score. For this, a visual is created for each
batch size and learning rate. These plots can be found in Appendix 8. The performance and loss
are measured over either 200 epochs, for the MLP, or 100 epochs, for the LSTM and RCNN. The
distinction in epochs is because of training time, which is much longer for sequential models.
The batch sizes (1, 2, 4, 8, 16, 32 and 64) are all powers of twp, which should decrease the run
time [55] Hereby the upper bound of 64 is chosen, so the batch sizes are neither too large nor too
generalizing for the relatively small datasets. The learning rates that are considered are 10−n

with n an integer ranging from two to six [55, 12], with an upper bound of the optimal learning
rate found during the optimisation over the original five epochs. The reason for defining the
learning rate, batch size and number of epochs after the initial optimization, is since using more
epochs in this optimisation phase is not feasible in terms in of time. However, the batch size
and learning rate are two hyperparameters that have a large, direct influence on the training
process of the model. Therefore, it makes more sense to determine them at the same time.
Based upon the produced visuals, a combination of hyperparameters is chosen whereby the
model is learning in the most stable manner possible, while not overfitting. This would mean
that the loss goes down of both the training and validation sets, while the performance increases.
The number of epochs is defined by the least loss over the validation set. This should prevent
overfitting while ensuring that the model does learn. The optimal trade-off is made manually,
based upon the produced plots.

4.6 Metadata

Aside from the text in the email body, more information is available or can be extracted per
email. Both the number of attachments and the priority level of an email are metadata features
that are available for each email. The sender, receiver(s), timestamp and subject have to be
processed to be used as input to the model.

Subject Similarly to the body of the email, the subject of the email can be taken into account.
This can be done by using the same method that is applied for the vectorisation of the body of
the email. For the values of the terms to be correct, the tokens of both the body and subject
of the mail are used when creating them. This is to ensure that the tokens of the subject are
not out of vocabulary. To process all tokens at the same time, the tokens of the subject are
concatenated to the tokens of the body.

Sender and Receivers More information might be gained by looking at the sender and
receiver(s) of the email. This can be done by observing the number of receivers, or by looking
at their relevant importance among all senders and receivers. When considering the importance
of someone, the centrality can be used as a measure. To use the centrality, the communication
network should be considered as a graph, whereby the senders and receivers are the nodes and the
emails the directed links between them [61]. The centrality indicates the structural importance
of a node [93], which is measured in the following aspects:

• betweenness, quantifying for how many nodes this node functions as a bridge for the
shortest path between two other nodes;

27 4.6 Metadata

• closeness, calculating the average length of the shortest path between this node and all
other nodes in the graph; and

• degree, showing the number of vertices a node has, thus how many other people someone
has sent emails to.

The centrality is measured using the igraph package [34]. Based upon a graph G, including
all mail traffic as the edges E and mail addresses involved as the vertices V , the metrics can
be extracted. The betweenness is defined in Equation 3 based on [21], where σst is the total
number of shortest paths from node s to node t with σst(v) as the number of those paths that
pass through node v. The closeness is defined in Equation 4 as in [49], where d(y, v) is the
distance between vertices y and v. The degree is defined in Equation 5 as in [21], where deg(v)
is the number of its adjacent edges.

CB(v) =
∑

s6=v 6=t∈V

σst(v)

σst
(3)

CC(v) =
1∑

y d(y, v)
(4)

CD(v) = deg(v) (5)

The values are averaged over all recipients in the ‘to’ and ‘cc’ fields together, so each email has
the same vector length for the receivers. This results in six vectors, namely the three centrality
values for both the sender and its receivers.

Timestamp Another feature that might be of importance, is the time an email is sent. This
time can be split into a date and the time of day. When processing this information, it should be
taken into account that the main information that is to be extracted should be a generic indicator
for fraud. In this study, the following features are extracted from the email timestamp:

• Local time of sending,

• Day of the week,

• Position in timeline.

For the local time of sending, the hour and minutes are noted in one variable, by creating a
continuous variable that shows the minutes as the percentage of an hour. This means that for
the timestamp 11:45, the featured value would be 11.75.
The day of the week is a categorical variable, ranging from Monday to Sunday, respectively zero
to six.
Lastly, the position in time relative to the investigation is added as a metadata feature. For
this, two metrics are evaluated that use a relative data instead of an absolute date. By using
a relative data, the created feature is more generic, so it solves problems with different cases
having non-overlapping date ranges. Two methods are tested to implement a relative date. The
first method is to number the days, starting on the day of the first email of the set [61, 113]. This
variation is called ‘numbered all days’. Sometimes systems emails are present in the dataset,
which are dated on an initiation date, such as 01-01-1980. This date is an outlier compared to
the rest of the emails. To circumvent the influence of these system emails on this metric, it is
proposed to number only the days on which at least one email is sent, creating a sequence that
ignores gaps in communication. This variation is called ‘numbered mail days’. Both ‘numbered
all days’ and ‘numbered mail days’ are evaluated.

4.6 Metadata 28

Another possibility to show relative time is by sorting the timestamps and dividing them by a
number, thus creating time-blocks. This number by which it is divided should be large enough
to span less than a couple of months in time and small enough to represent (more than) a day.
The chosen numbers are 10, 50, 100, 250 and 500. The reason for defining the time-blocks as
having 1/X of the dates, instead of blocks containing 1/X of the time delta between the oldest
and newest email, is again to circumvent the influence of outliers. Since the datasets only contain
966 and 1999 records, a maximum of 500 steps is chosen, since a higher number would result in
the ‘numbered mail day’ variable. In case the datasets were larger, time-blocks containing more
than 500 emails could be added as features.
Before using these metrics as features for the classifier, they are normalised by dividing all
values per feature over its maximum value. This is to help the classification process [17]. When
combining the previously introduced features, it results in the following list:

• Number of attachments,

• Importance,

• Time of day,

• Weekday,

• Day (numbered all days),

• Day (numbered only mail days),

• Timestep (steps=10),

• Timestep (steps=50),

• Timestep (steps=100),

• Timestep (steps=250),

• Timestep (steps=500),

• Number of receivers,

• Centrality sender,

– Betweenness,

– Closeness,

– Degree,

• Centrality receiver(s),

– Betweenness,

– Closeness,

– Degree.

4.6.1 Metadata Evaluation

Before using all the metadata features in the classification process, it has to be evaluated whether
they have a positive effect on the classification. To explore the data, the mutual information
between the metadata features and their target can be calculated. This might indicate which
features may be relevant. However, two features that may not contain much information by
themselves may lead to a significant improvement when combined. Since the designed metadata

29 4.6 Metadata

features may be dependent on each other for their usefulness, the selection process can benefit
from an approach that takes the interdependence of features into account [56]. Therefore, the
wrapping method is used. Apart from interdependences within the metadata features, they
may also prove to be more helpful when combined with the token features. Therefore, the
feature selection should take all interdependencies into account, while being computationally
manageable.

To apply the wrapper method to both the metadata and vectorised tokens at the same time
exceeds the computational and time resources. Apart from that, it is intended that the token
features are kept and that only the metadata features are eliminated that are not contributing
to the performance.

The approach of adding features is gradual. First, it is evaluated whether adding the subject
as text to the body would improve the performance. For this, the features are generated in
the same manner as with the original optimised model. However, this time the tokens of the
subject are added to the tokens. Again, five-fold cross-validation is applied. Over the results of
these folds, McNemar’s test is applied to check whether the models perform equally [41]. If the
F2-score is higher when the subject is added, McNemar’s test can be used to see whether the
difference in misclassified emails is significant. The reason for using McNemar’s test is that it
is the recommended test when training and evaluating a model is expensive [89, 22]. A paired
t-test cannot be applied in this case, due to the use of k-fold cross-validation. Since the dataset
is not large enough to create a separate training and test set for each fold, leave-one-out cross-
validation is used. Therefore, there is no independence between samples, which violates the
assumption of independence of the paired t-test. Based on the significance scores, it is decided
to either include the subject or not.

When adding the other metadata features, feature selection is applied to find the most optimal
subset of features. The direction of the selection should depend on the number of relevant
features with regards to the total number of features [73]. Since this is not known, both the
forward and backward feature selection methods are applied. Thereby each search method trains
the model on the original tokens and possibly the subject, depending on whether it significantly
improved the performance. The performance of a model with its included subset of metadata
features is defined by the F2-score on the test set. Hereby the initialization seed, as well as
the random state used in dividing the train and test sets, are set to zero. The train set and
the test set is 20% of the total set. Due to limited time and resources, the performance is not
cross-validated.

The forward selection method starts with training the optimal model using only the tokens. After
noting the initial result, thus the model performance on the test set without any metadata, each
next best-performing metadata feature is found by trying to concatenate each feature to the
existing features and scoring the model. The feature that achieves the highest F2-score is added
to the dataset. Then, each remaining metadata feature is again concatenated to the dataset, now
including the previous best-performing feature, again noting the performances. This continues
for as many times as there are metadata features, resulting in a list containing the combinations
that are performing best for each number of features included. The pseudocode for this forward
feature selection can be seen in Algorithm 2.

4.6 Metadata 30

Algorithm 2 Pseudocode for forward feature selection
Input: All tokens and all metadata features
Output: Optimal subsets of metadata features
SET results AS new list
SET features AS new list
SET remaining features AS list of all metadata features
for all no. of metadata features do

SET best F2-score AS 0.
for all feature IN remaining features do

TRAIN model WITH (tokens + features + feature) RESULT F2-score
if F2-score > best F2-score then

SET best F2-score AS F2-score
SET best feature AS feature

end if
end for
ADD best feature TO features
REMOVE best feature FROM remaining features
ADD (features, best F2-score) TO results

end for
return results

The backward selection method operates similarly, though it works the other way around and
starts by including all metadata features. The pseudocode for this search can be found in
Algorithm 3. It iterates over all the remaining metadata features and eliminates the feature that
is being left out during the run with the best F2-score since that shows that its contribution to
the performance in that specific case is the least. The metadata is pruned this way until only
one metadata feature is left.

Algorithm 3 Pseudocode for backward feature selection
Input: All tokens and all metadata features
Output: Optimal subsets of metadata features
SET results AS new list
SET features AS list of all metadata features
for all no. of metadata features do

SET best F2-score AS 0.
for all feature IN features do

TRAIN model WITH (tokens + features - feature) RESULT F2-score
if F2-score > best F2-score then

SET best F2-score AS F2-score
SET least feature AS feature

end if
end for
REMOVE least feature FROM features
ADD (features, best F2-score) TO results

end for
return results

For each dataset, the forward and backward feature selection methods are applied, resulting
in the four lists of metadata features that performed best during each approach. To find the
optimal subset of features for both datasets, the optimal forward and backward subset for each
dataset are applied to both datasets, as well as the union of the forward and backward subsets.

31 4.7 Learning Bounds

The union is taken both per subset and over both subsets. The resulting subset lists are thus
the results for the forward search, the backward search and the union of those two searches,
for each of the two datasets separately and the union of these datasets. These nine options are
tested, this time with five-fold cross-validation. Hereby the subset showing the most significant
increase in performance for both datasets, compared to the performance using only the tokens,
is chosen to be included in the optimal model, by concatenating it to the padded tokens. When
the optimal model is sequential, an extra sequence containing the metadata is added. In case no
subset shows a significant improvement, no metadata features are added in the optimal model.

4.7 Learning Bounds

Once the optimal model has been chosen, the possible advantages of transfer learning can be
considered. First, a look is taken whether the learning bounds defined by Blitzer [19] hold. The
learning bounds are designed to test the similarity between datasets [19]. Below, its variables
are defined:

S as the source email dataset in domain DS
T as the target email dataset in domain DT
x as a label of the datasets
X as all possible labels of the datasets
PS(x) as the probability distribution of x in S
PT (x) as the probability distribution of x in T
h as a hypothesis, a possible classifier
H as all hypotheses, which are all possible classifiers
εDS

(h) as the error rate of classifier h over S
εDT

(h) as the error rate of classifier h over T

To define the learning bound, it is important to know how similar the domains are. For this,
Blitzer et al. [19] state that the distribution distance dH should be used. He states this distri-
bution distance holds the advantage of being able to work with a finite unlabelled sample, com-
pared to the Kullback-Leibler divergence. However, since our study uses two labelled datasets,
the Kullback-Leibler divergence DKL is used [67], as shown in Equation 6. The log is taken
to base two. When Equation 8 holds, the target error is considered as within learning bounds.
This indicates that there is a reasonable chance of a positive transfer from the source data to
the target data since it can be assumed there is a classifier that performs well for both. The
mathematical proof for the learning bounds can be found in the dissertation of Blitzer on domain
adaptation [17]. The classifier h is the best performing classifier as chosen utilising the Friedman
Rank in the previous chapter.

DKL(PS ||PT) =
∑
x∈X

PS(x)log

(
PS(x)

PT (x)

)
(6)

κ = min
h∈H

[εDS
(h) + εDT

(h)] (7)

εDT
(h) ≤ εDS

(h) + κ+DKL(PS ||PT) (8)

with κ as defined in Equation 7,
DKL as defined in Equation 6 and

h as some classifier with low error on both DS and DT .

4.8 Domain Adaptation 32

4.8 Domain Adaptation

There are a lot of manners to transfer knowledge from one domain to the other, ranging from
basic to complex. Before introducing the more complex transfer methods, some basic transfer
methods are highlighted, based upon Daumé III et al. [37].

TgtOnly Only the target data is used to train and test a model, with the hyperparameters
optimised on the target dataset.

All Both datasets are used to train and test the model. This means that the data of the two
datasets is concatenated to be used to evaluate the model. The hyperparameters are either
the set that causes the least loss for both sets, or a concatenation of the optimal layers,
depending on whether the model is a neural network. To test this, all architectures are
evaluated separately.

Pred The predictions of the source model on the target data are used as an extra feature [37].
For this, a model that is pre-trained on the source data predicts the class of each sample
in the target set, after which this prediction is concatenated to the features of this sample.
The target model is then trained and tested on the target set, including these predictions.
The predictions are considered as an extra feature.

These methods require a source and target dataset, together with a classifier. Apart from
these methods, domain adaptation methods can be applied. Based on related work, two cate-
gories of domain adaptation methods apply to our study, namely instance-based and feature-
representation-based. In case the optimal classifier is a neural network, three additional cate-
gories are mentioned, which are mapping-based, network-based and adversarial-based.
For each of these approaches, one method is used, based upon Pan et al. [84], Weiss et al. [110]
and Tan et al. [103]. Based on the similarity between (symmetric) feature-representation-based
and mapping-based transfer methods, both focus on mapping the instances to a new shared
(latent) space, only one method is considered for both of these approaches. The network-based
and adversarial-based methods only apply in case a deep neural network is the most optimal
classification model.

Transfer Adaptive Boosting (TrAdaBoost) For instance-based domain adaptation, TrAdaBoost
is chosen [84, 110, 103]. This method adapts the sample weight of each instance, by predicting
the class of each weighted instance [35]. In case it classifies a source instance incorrectly, it de-
creases the weight of that sample, while it increases the weights of misclassified target instances.
A disadvantage of this method is that it needs the source data during the transfer process. This
method is iterative, thus adapting the sample weights for a certain number of iterations. This
number needs to be set beforehand. It is determined by running the model for a large number
of iterations while noting the F2-score per iteration. The iteration that causes the least relative
loss for either target dataset is selected as the number of iterations. The implementation of the
method is based on Zhuang et al. [114].

Transfer Component Analysis (TCA) For (symmetric) feature-representation-based domain adap-
tation, this study uses TCA [85, 110]. This method focuses on creating a latent subspace by
identifying so-called transfer components, which are common features that are distributed in a
similar way over the datasets [85]. These transfer components are learned by a kernel, which
uses Maximum Mean Discrepancy (MMD) to minimize the distance between the data distribu-
tions from both domains. The code is based on its implementation in the libTLDA package [69].
Hereby the gamma (γ) is set to 0.5, conforming to the paper of Pan et al. [85]. The gamma
is a trade-off parameter, balancing the dependence between features and labels. The linear,
Laplacian and RBF kernels are considered, with either 10, 20 or 30 dimensions. The number of

33 4.8 Domain Adaptation

dimensions indicates how many transfer components are identified. Since the datasets used by
Pan et al. [85] in their original paper contain more records than the ones used in this study, addi-
tional dimensions are added to the experiment, to test whether a larger dimension can represent
the complexity and specifics of the datasets used in this study better. The added dimensions are
50, 100, 150 and 200. The transfer is evaluated with the optimised MLP models and a k-Nearest
Neighbors (k-NN) model with k = 1 since this is the model used in the original paper. For each
of these models, the optimal kernel and dimensions are determined.

Layer-copying The approach that is part of network-based domain adaptation, focuses on re-
using pre-trained layers of a source model to improve the performance of the target model. It
does not have an explicit name in literature. The most basic way of doing so would be to com-
pletely copy the layers of a model pre-trained on the source data and use it as the prior of the
target training and prediction process. This means all the weights would be copied from this
source model to the target model. In addition to copying all the source weights, experiments
can be done by partially copying the weights of the source network, with the option of freezing
them. Yosinski et al. [112] mention that deep layers should transition from extracting general
knowledge to more domain-specific features. These layers could either be frozen, to preserve the
knowledge, or only copied, so the knowledge can be adapted to better fit the target domain. In
the same study, they experimented by copying from both the same and a different network, and
either freezing the layers or letting them maintain their learning ability. Hereby they showed
that copying the layers from a different network while letting them be fine-tuned by the new
dataset performed best. This experiment was done on a computer vision experiment, so the
results of applying this method to text could be different. However, since it is not the aim to
fully optimise this method, but merely to test whether it can improve the classification process
in e-discovery, the method is implemented according to their best-performing one. This means
that first all layers are trained on the source data. When training on the target set, the weights
are copied and not frozen, so they are fine-tuned by the target set. The copying of all pre-
trained layers to the target model is included in the transfer method comparison, whereby the
architecture of the model is either optimised for the source data, defined as SrcPrior, or for the
target data, defined as TgtPrior. In both cases, the model is trained on the source data and
consecutively fine-tuned and tested on the target data.

Domain-Adaptive Neural Network (DANN) This approach makes use of adversarial technology,
to create a latent space for both domains, in the form of a neural network. This model contains
two classifiers, whereby one classifies the class of the data point, while the other one classifies
the data point as being from either source or target domain. The loss of the first classifier is
minimised, while the loss of the latter is maximised. Therefore, the first layers create a latent
mapping, after which the source and target data should be indistinguishable. Then, the class
classifier should be able to determine the class of each data point, while the domain classifier
should be unable to detect the domain the data point is from.
For this study, DANN is preferred over other adversarial-based domain adaptation methods,
such as ADDA (Adversarial Discriminative Domain Adaptation) [106], which is mentioned as an
example by Tan et al. [103]. The reason for choosing DANN is that its authors have provided
the implementation online [51].
The method makes use of early stopping, whereby 10% of the source data set is used as the vali-
dation for the early stopping criteria. Initially, the method has a hidden layer using the sigmoid
activation function 25 nodes. If the optimal model is a neural network, its optimal activation
function can be evaluated as well. The number of nodes can also be adjusted to fit the datasets,
whereby the range for the number of nodes in the paper is (1, 5, 12, 25, 75, 100, 150, 200). In
addition to that, the learning rate of DANN can be adjusted, for which the authors consider
values between 10−4 and 10−1. Lastly, the lambda (λ) adaptation rate can be adjusted, which

4.8 Domain Adaptation 34

weights the domain adaptation regularisation term. For this parameter, five values ranging from
10−2 to 1 and equally spaced in log-space are used. For each transfer, thus from dataset A to
dataset B and vice versa, these parameter ranges are evaluated in an exhaustive search. The
parameter values generating the least relative loss over both transfers, as compared with the
optimal parameters, are the ones used for the final evaluation. The final evaluation is done over
two states (zero and one), whereby the state only influences the formation of the early stopping
validation set.

Some methods introduced in the previous section are dependent on the availability of the target
labels. The availability of these labels indicates the sort of transfer method.

When the target labels are present, it is considered a case of supervised transfer learning.
Thereby the aim is to improve the performance on the target dataset using the knowledge
gathered on the source dataset. The baseline for supervised transfer learning is the TgtOnly
method since this is the best achievable performance without transferring any knowledge. The
supervised methods are evaluated by averaging the F2-scores of five-fold cross-validation over
two random states.

When only a part of the target labels is available, it is considered semi-supervised transfer
learning. The same goal and methods apply as with supervised learning, however, there is less
knowledge about the target domain. In case of semi-supervised transfer learning, the part that
is labelled should be sufficient to have an impact while fine-tuning the model, while it should still
be doable to label this seed manually. Therefore, a ratio of 0.2 is chosen. In this way it can be
tested with five-fold cross-validation, making sure each data point is included in the training set
once, thereby creating a stable overview of its performance and simplifying the comparison with
fully supervised transfer learning. The results of these approaches can indicate how dependent
the performance is on the provision of target labels. The evaluation of the semi-supervised
methods is the same as with supervised methods.

In case of unsupervised transfer learning, no target labels are available. The goal is to transfer
knowledge from one labelled case to an unlabelled one, to predict the labels of the target set
without any prior knowledge. In current practice, this could help create training seeds for new
cases, so it does not need to be coded. Since no initial model can be trained on only the target
features, without any labels, the baseline is the SrcPrior method. The knowledge gathered of
the source dataset, namely the optimal model pre-trained on the source data, can be used to
provide initial labels for the target dataset, which serves as the initial performance on the target.
To evaluate the impact of the model architecture, the TgtPrior method can be applied, which
uses the model architecture optimised for the target dataset. All unsupervised methods are
evaluated by taking the average F2-score over two random states, except for TCA using k-NN,
which does not make use of random states. If the model is deterministic without any random
states, only the one F2-score is reported.

Apart from whether the target labels are available, the choice of method can be dependent on
whether the source data is available. Since e-discovery can be a confidential matter, in some
cases the source data may not be available for use. Hereby it could be that only the vocabulary is
unavailable, thus that the vectorised emails can be used, since without the vocabulary the original
emails cannot be recovered. In cases where the vectorised source data is also unavailable, the
pre-trained models are the only knowledge that can be transferred. Of the considered methods,
TCA, DANN, TrAdaBoost and the All method need the vectorised source data. The Pred,
SrcPrior and TgtPrior methods do not need source data, only the pre-trained models.

A schema containing the methods and baseline per supervision level can be seen in Table 7.

35 4.8 Domain Adaptation

Approach Unsupervised Semi-supervised Supervised
Target labels available No Partly (20%) Yes
Baseline SrcPrior TgtOnly TgtOnly
Methods TCA Pred Pred

DANN TrAdaBoost TrAdaBoost
SrcPrior SrcPrior
TgtPrior TgtPrior

All

Table 7: Transfer approaches with their baseline and included methods

36

5 Results

5.1 Pre-processing

The result of the pre-processing pipeline can be seen in Table 8, which shows how the data is
stored after the pre-processing. The original email comes from the Enron set and can be seen
in Figure 5.

TIMESTAMP 22-01-2002, 22:51
FROM ‘louise.kitchen@enron.com’
TO (‘tim.belden@enron.com’, ‘To’),

(‘rob.milnthorp@enron.com’, ‘To’),
(‘tammie.schoppie@enron.com’, ‘Cc’)

ATTACHMENTS 0
IMPORTANCE 0
SUBJECT ‘trip’, ‘stamford’
TOKENS ‘scheduled’, ‘meet’, ‘with’, ‘mike’, ‘hutchins’, ‘john’, ‘costas’, ‘stamford’,

‘friday’, ‘tammie’, ‘ordinating’, ‘trip’, ‘essentially’, ‘current’, ‘plan’,
‘thursday’, ‘night’, ‘need’, ‘time’, ‘early’, ‘start’, ‘friday’, ‘friday’,
‘meet’, ‘with’, ‘john’, ‘mike’, ‘lunch’, ‘tour’, ‘facilities’, ‘etc’, ‘depart’,
‘know’, ‘tammie’, ‘trying’, ‘get’, ‘details’, ‘louise’

RESPONSIVE 0

Table 8: Data entry of an email (original email shown in Figure 5)

The dimensionality of the input data is determined by the vectorisation method and, in case of
a sequential input, the number of tokens per email. The distribution of the number of tokens
per email is shown per dataset in Figure 6.
The W2V vectorisation has a dimensionality of 300. This results in an input shape of (1966,
300) and (966, 300) for respectively dataset A and dataset B. The first number hereby indicating
the number of emails that each set contains. In the sequential variant, the dimensions are either
(1966, 4774, 300) or (966, 2485, 300), for respectively dataset A and dataset B. After being
maximised to the 90th quartile, the dimensions are (1999, 923, 300) and (966, 665, 300) for
respectively dataset A and dataset B.
The tf-idf scores have different dimensions per dataset. Dataset A has a dimensionality of (1966,
17213) for the tf-idf scores. With a threshold of 1%, the cut-value ratio is 0.0599, which reduces
the dimensionality to (1996, 5119). The sequential variant has an original dimensionality of
(1966, 4774, 1), which is reduced to (1966, 923, 1) when maximised to the 90th quartile. For
dataset B the original dimension of the tf-idf tokens is (966, 13225). With the same threshold,
the cut-off ratio of this dataset is 0.0274, which reduces its dimensionality to (966, 5549). The
sequential variant has an initial dimensionality of (966, 2485, 1), which is reduced to (966, 665,
1) when maximised to the 90th quartile.

5.2 Hyperparameter optimisation

To find the most optimal model, hyperparameter optimisation is applied. The Naive Bayes,
Support Vector Machine, Support Vector Machine with SGD training, Random Forest and
Gradient Boosting Machine are optimized by grid searches. The values that make up the grid
can be found in Table 9. For explanations of the parameters, Olson et al. [82] can be consulted.
After testing each combination of values in five-fold cross-validation, the most optimal values
are determined, which can be found in Table 10. With these optimal values, their F2-score is
determined by another five-fold cross-validation on two random states. The average score is
taken as the final score of each model, after which all scores are ranked per dataset.

37 5.2 Hyperparameter optimisation

From: Kitchen Louise [mailto:Louise.Kitchen@ENRON.com]
Sent: Tuesday, January 22, 2002 22:51
To: Belden Tim <Tim.Belden@ENRON.com>; Milnthorp Rob <Rob.Milnthorp@ENRON.com>
Cc: Schoppe Tammie <Tammie.Schoppe@ENRON.com>
Subject: Trip to Stamford

We are scheduled to meet with Mike Hutchins and John Costas in Stamford on Friday.
Tammie is co-ordinating the trip but essentially there is no current plan for
Thursday night but we will need to be there in time for an early start on Friday.
On Friday each of us will meet with John and Mike, have lunch, tour the facilities
etc then depart.

That’s all I know - Tammie is trying to get more details.

Louise

EDRM Enron Email Data Set has been produced in EML, PST and NSF format by ZL
Technologies, Inc. This Data Set is licensed under a Creative Commons Attribution
3.0 United States License <http://creativecommons.org/licenses/by/3.0/us/> . To
provide attribution, please cite to "ZL Technologies, Inc. (http://www.zlti.com)."

Figure 5: Example email, out of the Enron dataset

Parameters Values
Naive Bayes
Priors None Class weights
Var. smoothing 10−11 10−10 10−9 10−8 10−7

Support Vector Machine
Class weights* TRUE FALSE
Kernel* RBF Linear Poly Sigmoid
C* 0.1 1 10 100
Degree* 1 2 3 4 5
Gamma* Auto Scale
Coefficient* -0.5 0 0.5 1
Support Vector Machine with Stochastic Gradient Descent Training
Class weights TRUE FALSE
Loss Hinge Squared hinge
Penalty* L1 L2
Alpha 10−1 10−2 10−3 10−4 10−5

Learning rate Constant Optimal Invscaling Adaptive
Eta0 10−1 10−2 10−3 10−4 10−5

Power t 0 0.25 0.5 0.75 1
Gradient Boosting Machine
Loss Deviance Exponential
Max. features None Squared log2
Max. depth None 2 4 8 16 32 64 100
Number of estimators 2 4 8 16 32 64 100 150 200
Learning rate 0.05 0.1 0.2 0.3
Random Forest
Class weights TRUE FALSE
Criterion Gini Entropy
Max. features None Squared log2
Max. depth None 2 4 8 16 32 64 100
Number of estimators 2 4 8 16 32 64 100 150 200

Table 9: Hyperparameters used for grid optimisation, the asterisk(*) indicating that the value
cannot be altered after training

5.2 Hyperparameter optimisation 38

(a) Distribution of number of tokens in
dataset A

(b) Distribution of number of tokens in
dataset B

Figure 6: Distribution of the number of tokens per dataset

Dataset Vectorisation Parameters
Naive Bayes Priors Var. smoothing
Dataset A W2V-CBOW TRUE 10−9

Dataset B W2V-CBOW FALSE 10−9

Dataset A W2V-SKIP FALSE 10−9

Dataset B W2V-SKIP FALSE 10−9

Dataset A tf-idf FALSE 10−9

Dataset B tf-idf FALSE 10−9

Dataset A Flair FALSE 10−9

Dataset B Flair FALSE 10−9

Support Vector Machine Class weights Kernel C Degree Gamma Coefficient
Dataset A W2V-CBOW TRUE Poly 100 5 Scale 0.5
Dataset B W2V-CBOW TRUE Poly 100 5 Scale 0.5
Dataset A W2V-SKIP TRUE Poly 10 5 Scale 1
Dataset B W2V-SKIP TRUE Poly 10 5 Scale 1
Dataset A tf-idf TRUE Sigmoid 100 3 Scale 1
Dataset B tf-idf TRUE Sigmoid 100 3 Scale 1
Dataset A Flair TRUE Poly 10 5 Scale 0
Dataset B Flair TRUE Poly 10 5 Scale 0
SVM with SGD Training Class weights Loss Penalty Alpha Learning rate Eta0 Power t
Dataset A W2V-CBOW TRUE Hinge L2 10−5 Adaptive 10−2 0
Dataset B W2V-CBOW TRUE Squared hinge L2 10−5 Adaptive 10−3 0
Dataset A W2V-SKIP TRUE Hinge L1 10−4 Adaptive 10−1 0
Dataset B W2V-SKIP TRUE Squared hinge L1 10−2 Adaptive 10−3 0
Dataset A tf-idf TRUE Squared hinge L1 10−3 Adaptive 10−1 0
Dataset B tf-idf TRUE Hinge L1 10−5 Invscaling 10−1 0
Dataset A Flair TRUE Squared hinge L2 10−2 Adaptive 10−2 0
Dataset B Flair TRUE Hinge L2 10−3 Adaptive 10−2 0
Gradient Boosting Machine Loss Max depth Max features Number of estimators Learning rate
Dataset A W2V-CBOW Deviance None Squared 4 0.30
Dataset B W2V-CBOW Deviance None None 100 0.10
Dataset A W2V-SKIP Deviance 16 log2 2 0.20
Dataset B W2V-SKIP Deviance 4 Squared 100 0.30
Dataset A tf-idf Deviance 16 None 4 0.20
Dataset B tf-idf Exponential 16 None 200 0.05
Dataset A Flair Deviance 16 None 4 0.30
Dataset B Flair Deviance 2 None 200 0.20
Random Forest Class weights Max depth Max features Number of estimators Criterion
Dataset A W2V-CBOW TRUE 4 Squared 200 Entropy
Dataset B W2V-CBOW TRUE 2 log2 32 Gini
Dataset A W2V-SKIP TRUE 2 log2 32 Entropy
Dataset B W2V-SKIP TRUE 2 log2 200 Gini
Dataset A tf-idf TRUE 2 None 16 Gini
Dataset B tf-idf TRUE 4 log2 150 Gini
Dataset A Flair TRUE 2 None 200 Entropy
Dataset B Flair TRUE 2 Squared 64 Entropy

Table 10: Optimal hyperparameters found using grid search per dataset and vectorisation
method

The categories and ranges that are used for the BO-GP optimisation process for the parameters
of the models are noted in Table 11.

39 5.2 Hyperparameter optimisation

Parameters Values
Multilayer Perceptron low high
Number of layers 1 5
Number of input nodes 1 200
Number of dense nodes 1 200
L2 regularizer 10−10 10−1

Dropout ratio 0.0 0.8
Threshold 0.1 0.9
Learning rate* 10−6 10−2 ReLU
Optimizer* Adam Adadelta Adagrad SGD RMSprop
Activation function Tanh Sigmoid ReLU
LSTM low high
Number of LSTM nodes 1 100
Number of dense nodes 1 200
L2 regularizer 10−10 10−1

Dropout ratio 0.0 0.8
Threshold 0.1 0.9
Learning rate* 10−4 10−2

Optimizer* Adam Adadelta Adagrad SGD RMSprop
Activation function Tanh Sigmoid ReLU
RCNN low high
Number of convolutional layers 0 10
Number of convolutional nodes 1 100
Number of dense nodes 1 200
Learning rate* 10−4 10−2

Threshold 0.1 0.9

Table 11: Hyperparameters used for Bayesion Optimisation with Gaussian Processes

Due to limited resources, the number of parameters and their ranges for the LSTM models are
narrowed, such as the number of (LSTM) layers. Since the optimisation still exceeds computation
resources, sequence bucketing is used in combination with a cut-off to further speed up the model.
The cut-off is tried on both the 90th and the 99th quartiles of the longest sequence length. The
bucket size is determined by timing the training of a simple LSTM model for five epochs with
different bucket sizes, of which the fastest is chosen. This simple model consists of an input
and an output layer with one mono-directional LSTM layer in between, this LSTM layer has 64
nodes and uses the tanh activation function. The model is compiled with the Adam optimizer.
The training durations are shown in Figure 7, which shows that a bucket size of 64 is fastest.

During the hyperparameter optimisation, the initial batch size used for the MLP is 1. The
LSTM implements buckets with a batch size of 64 and the RCNN works with a batch size of
64. The RCNN does not use bucketing, as it runs faster than the LSTM and uses the sequence
length to determine the nodes in its pooling layers, which therefore should be the same in each
sequence. Both sequential methods make use of a cut-off at the 90th percentile.

5.2 Hyperparameter optimisation 40

Figure 7: Training times in seconds for a simple LSTM model on five epochs shown for the
cut-off on the 90th and 99th percentile

The optimised values for the MLP, LSTM and RCNN can be seen in respectively Table 12,
13, 14. The optimal learning rate, batch size and epochs are explored using these optimised
hyperparameters. They are defined by visualising the training and validation loss and F2-score.
For this, a visual is created for each batch size (2, 4, 8, 16, 32 and 64) and learning rate, over
either 500 epochs, for the MLP, or 200 epochs, for the LSTM and RCNN. The range of learning
rates that is tried is 10−n with n an integer between six and two [54], with the learning rate
optimised over the original 5 epochs as the upper bound.

The visuals showing the chosen curves are depicted in Appendix 8, in Figure 13, 14 and 15
for respectively the MLP, LSTM and RCNN. The performance of the model is determined by
taking the average of five-fold cross-validation on the same two random states as with the grid
searches. The MLP models show an overall better performance using the newly deduced learning
rate than with the learning rate that was optimised with BO-GP over 5 epochs.

Dataset Dataset A Dataset B Dataset A Dataset B Dataset A Dataset B Dataset A Dataset B
Vectorisation W2V-CBOW W2V-CBOW W2V-SKIP W2V-SKIP tf-idf tf-idf Flair Flair
Parameters
Number of input nodes 200 200 200 103 136 194 199 1
Number of dense nodes 111 200 82 31 49 200 32 122
Number of dense layers 1 1 3 2 2 3 1 5
Dropout ratio 0 0.1 0.2 0.4 0.3 0.4 0.2 0
L2-regularizer 10−10 10−10 10−7 10−7 2× 10−5 10−8 5× 10−9 10−10

Threshold 0.1 0.4 0.6 0.5 0.1 0.1 0.1 0.3
Activation function ReLU ReLU ReLU ReLU Tanh ReLU Tanh ReLU
Optimizer Adam Adam Adam Adam Adam Adam Adam Adam
Learning rate 10−5 10−5 10−5 10−5 10−5 10−5 10−5 10−5

Batch size 1 1 1 1 1 1 1 1
Epochs 50 50 100 100 25 25 75 75

Table 12: Hyperparameters Multilayer Perceptrons

41 5.3 Classifier Performance

Dataset Dataset A Dataset B Dataset A Dataset B Dataset A Dataset B
Vectorisation W2V-CBOW W2V-CBOW W2V-SKIP W2V-SKIP tf-idf tf-idf
Parameters
Number of LSTM nodes 76 4 44 53 46 48
Number of dense nodes 166 146 155 58 41 39
Bidirectional FALSE FALSE TRUE TRUE TRUE TRUE
Dropout ratio 0.3 0.01 0.4 0.6 0.39 0.33
L2-regularizer 1.9× 10−9 4.3× 10−8 2.2× 10−5 3.3× 10−7 1.6× 10−10 8.8× 10−7

Threshold 0.2 0.16 0.31 0.14 0.24 0.45
Activation function ReLU Sigmoid Tanh ReLU Tanh Tanh
Optimizer RMSprop RMSprop Adam Adam SGD SGD
Learning rate 10−4 10−4 10−2 10−2 10−2 10−2

Batch size 8 8 16 16 4 4
Epochs 75 75 20 20 30 30

Table 13: Hyperparameters LSTM

Dataset Dataset A Dataset B Dataset A Dataset B Dataset A Dataset B
Vectorisation W2V-CBOW W2V-CBOW W2V-SKIP W2V-SKIP tf-idf tf-idf
Parameters
Number of dense nodes 195 42 1 57 200 100
Number of convolutional nodes 58 9 1 65 50 1
Number of convolutional layers 3 3 10 7 10 3
Threshold 0.44 0.49 0.23 0.5 0.28 0.5
Learning rate 10−4 10−4 10−4 10−4 10−2 10−2

Batch size 1 1 1 1 4 4
Epochs 40 40 50 50 25 25

Table 14: Hyperparameters RCNN

5.3 Classifier Performance

In Table 15 the F2-scores can be found per model and vectorisation method for each dataset.
The scores noted are the average of five-fold cross-validation on two random states, along with
their standard deviation. When looking at the F2-scores, it shows that the first dataset is more
imbalanced, which results in lower F2-scores on average. Per dataset, the averaged F2-scores are
ranked, with the possibility of ties and using half ranks. The last column in the table notes the
average rank over both datasets. Based on the ranks the Friedman Rank calculation is made.

5.3 Classifier Performance 42

Dataset A Dataset B
Model Vectorisation F2-score St. Dev Rank F2-score St. Dev Rank Avg Rank
NB W2V-CBOW 0.305 0.03 19 0.578 0.04 18 18.5
NB W2V-SKIP 0.306 0.03 18 0.607 0.04 16 17
NB tf-idf 0.197 0.06 30 0.555 0.05 26 28
NB Flair 0.297 0.02 21 0.568 0.04 23 22
SVM W2V-CBOW 0.308 0.09 17 0.646 0.07 12 14.5
SVM W2V-SKIP 0.374 0.07 8 0.671 0.05 7 7.5
SVM tf-idf 0.339 0.09 12 0.636 0.05 14 13
SVM Flair 0.360 0.08 10 0.658 0.06 8 9
SGD W2V-CBOW 0.364 0.06 9 0.638 0.06 13 13
SGD W2V-SKIP 0.411 0.04 5 0.634 0.05 15 15
SGD tf-idf 0.398 0.06 6 0.694 0.06 4 5
SGD Flair 0.380 0.06 7 0.657 0.06 9 8
GBM W2V-CBOW 0.215 0.03 28 0.445 0.06 29 28.5
GBM W2V-SKIP 0.202 0.06 29 0.550 0.05 27 28
GBM tf-idf 0.292 0.08 22 0.545 0.07 28 25
GBM Flair 0.239 0.04 27 0.564 0.05 24 25.5
RF W2V-CBOW 0.348 0.08 11 0.598 0.05 17 14
RF W2V-SKIP 0.327 0.05 13 0.649 0.06 11 12
RF tf-idf 0.298 0.05 20 0.563 0.07 25 22.5
RF Flair 0.314 0.07 15 0.651 0.04 10 12.5
MLP W2V-CBOW 0.320 0.05 14 0.673 0.05 6 10
MLP W2V-SKIP 0.533 0.15 2 0.696 0.03 3 2.5
MLP tf-idf 0.581 0.15 1 0.882 0.10 1 1
MLP Flair 0.522 0.19 3 0.800 0.07 2 2.5
LSTM W2V-CBOW 0.267 0.00 26 0.574 0.00 21 23.5
LSTM W2V-SKIP 0.267 0.00 23.5 0.574 0.00 21 22.25
LSTM tf-idf 0.267 0.00 25 0.574 0.00 21 23
RCNN W2V-CBOW 0.464 0.16 4 0.575 0.04 19 11.5
RCNN W2V-SKIP 0.313 0.07 16 0.683 0.09 5 10.5
RCNN tf-idf 0.267 0.00 23.5 0.392 0.27 30 26.75

Table 15: Friedman Ranks per dataset and averaged

This problem has 29 degrees of freedom, noted as df , which is the number of possible com-
binations between models and vectorisation methods, which is 30 and noted as k, minus one.
The number of datasets is two, noted as n. The R is the summed rank per model-vectorisation
combination, after which the R2, the squared Friedman Rank, is calculated for each model-
vectorisation combination. The Friedman statistic Q is calculated as

Q =
12n

k(k + 1)

k∑
j=1

(R− k + 1

2
)2.

By taking the chi-squared distribution of Q and df , the p-value is calculated. When p is lower
than α, which is 1 minus the confidence level, the hypothesis that the mean model-vectorisation
performances are the same can be rejected. With a confidence level of 99%, the value of α = 0.01.
Based upon the values given by Table 15, Q and R2 can be calculated, which are respectively
52.648 and 36991. This results in a p-value of 0.0046. Since this p-value is lower than α, it
can be assumed that the performance of the model-vectorisation combinations is significantly
different.
Based upon the averaged Friedman Ranks, the chosen model is the Multilayer Perceptron, com-
bined with tf-idf vectorisation. This is a neural network, whereby the optimized hyperparameters
can be seen in Table 16. In further experiments, only this model is used.

43 5.4 Inclusion of Metadata

Parameter Dataset A Dataset B
Number of input nodes 136 194
Number of fully-connected hidden nodes 49 200
Number of fully-connected hidden layers 2 3
Dropout 0.3 0.4
L2-regularizer 2× 10−5 10−8

Activation function Tanh ReLU
Threshold 0.1 0.1
Optimization function Adam Adam
Learning rate 10−5 10−5

Batch size 1 1
Epochs 25 25

Table 16: Optimal parameters for the MLP with tf-idf vectorisation per dataset

5.4 Inclusion of Metadata

The first step in adding the metadata is to inspect the effect of adding the subject to the tokens.

For each dataset, the performance of the classifier is evaluated twice. One time it is evaluated
with only the tokens of the email body and one time including the tokens of the subject, to
test whether adding the subject tokens improves the F2-score and leads to significantly less
misclassified instances. The confidence interval is defined as 99%, thus the alpha α is 0.01.
The performance is measured by using five-fold cross-validation over two random states, thus
creating ten observations per dataset. The average F2-score over these ten observations is noted
as the result for each condition, which can be seen in Table 17.

Dataset Without subject With subject
Dataset A 0.579 (0.138) 0.626 (0.150)
Dataset B 0.889 (0.097) 0.888 (0.080)

Table 17: F2-scores and their standard deviation with and without the subject per dataset

For dataset A, the model performance improves when adding the subject. When the subject
is added to the tokens of dataset B, the F2-score is almost equal, except for a lower standard
deviation. When applying McNemar’s test to both, the p-values are 2.32 × 10−10 and 0.68 for
dataset A and dataset B respectively. For dataset A, this value is lower than the alpha α of 0.01,
thus it can be said that with 99% confidence the performance is significantly different when the
subject is added. This is not the case for dataset B, in which case the models perform roughly
equally. However, due to the similar performance and lessened standard deviation, the addition
of the subject is not considered a negative influence at all. Therefore, the subject is included in
the next steps.

To explore the metadata features, the mutual information scores between each metadata feature
and the class labels are calculated per dataset. This results in the values as can be seen in
Table 18.

5.4 Inclusion of Metadata 44

Metadata feature Dataset A Dataset B
Number of attachments 0.008 0.005
Importance 0.000 0.001
Time of day 0.136 0.308
Weekday 0.003 0.005
Day (all days) 0.145 0.289
Day (only mail days) 0.246 0.514
Timestep (steps=10) 0.003 0.060
Timestep (steps=50) 0.024 0.107
Timestep (steps=100) 0.039 0.143
Timestep (steps=250) 0.086 0.242
Timestep (steps=500) 0.120 0.356
Number of receivers 0.003 0.011
Betweenness sender 0.000 0.000
Betweenness receiver(s) 0.000 0.000
Closeness sender 0.000 0.000
Closeness receiver(s) 0.000 0.000
Degree sender 0.026 0.059
Degree receiver(s) 0.000 0.000

Table 18: Mutual information of metadata features per dataset

A forward and a backward feature selection search is applied per dataset after the classification
model is pre-trained on the content and subject tokens. The best performing subset per search
direction and dataset can be seen in Table 19. Of these four subsets, the union is taken per
dataset and direction, which results in nine subsets of metadata features.

Dataset F2-score No. of Features
features

Forwards
Dataset A 0.5028 5 Weekday, importance, no. of receivers,

closeness (to), degree (to).
Dataset B 0.7184 1 No. of receivers

Backwards
Dataset A 0.4776 9 Day numbered, day (only mail days), timestep (10),

timestep (50), timestep (100), no. of receivers,
closeness (to), degree (to), betweenness (to).

Dataset B 0.6720 1 Day (only mail days).

Table 19: Best performing metadata subsets and their F2-score, per search direction and dataset

Since the subsets of dataset B are included in the subsets of dataset A for both directions of
the feature selection search, the three union subsets over the datasets are not included. They
would contain the same subsets as the subsets found for just dataset A. To note the subsets,
the first letter of the direction or directions of the search is combined with the number of the
dataset the search was for. Thus the subsets that are evaluated are F-A, F-B, B-A, B-B, BF-A
and BF-B. The evaluation of these subsets on both datasets is shown in Table 20, whereby they
are evaluated together with the tokens of the content and subject, using the model optimised
for that dataset.

45 5.5 Transfer Learning

Subset Dataset A Dataset B
Without metadata 0.579 (0.138) 0.889 (0.097)
With subject 0.626 (0.150) 0.888 (0.080)
F-A 0.584 (0.162) 0.836 (0.152)
F-B 0.621 (0.147) 0.888 (0.085)
B-A 0.583 (0.167) 0.824 (0.145)
B-B 0.615 (0.150) 0.862 (0.124)
BF-A 0.580 (0.169) 0.822 (0.146)
BF-B 0.616 (0.155) 0.862 (0.124)

Table 20: F2-scores and their standard deviation for each metadata subset

This evaluation shows that none of the metadata subsets found performed consistently better
than the baseline. Of the found subsets, the ones optimised for dataset B show the most
potential, of which the F-B seems to increase the performance more, compared to B-B and BF-
B. The metadata subsets optimised for dataset A show a decline in performance. This is true
for F-A, B-A and BF-A on both dataset A and dataset B, where they all have p-values lower
than 0.0001 on McNemar’s test, meaning they misclassified significantly more emails.
The outcome of this evaluation is that none of the metadata features is added to the input data.

5.5 Transfer Learning

This section shows the results for testing the learning bounds and evaluating the domain adapta-
tion methods. For reference, the methods that are evaluated have been summarized in Table 21.

Method Explanation
TgtOnly Train and test the model on the target data
All Train and test the model on all data
Pred A pre-trained source model predicts the target labels, these predictions

are added as an extra feature to the target dataset.
Then the model is trained and test the target data, including the extra feature.

SrcPrior Train the source model on the source data, then fine-tune and test this model
on the target data.

TgtPrior Train the target model on the source data, then fine-tune and test this model
on the target data.

TrAdaBoost Train and test a model on all data iteratively, updating the weights of
samples based on whether they are misclassified.

TCA Identify the transfer components on all data, then train and test a classifier
on these components. This classifier is either an MLP or 1-NN.

DANN A model that creates a latent subspace for all data, after which both the
domain and the label of the data are predicted. The domain classification
loss should be maximised and the label classification loss minimized.

Table 21: Summary of domain adaptation methods

5.5.1 Learning Bounds

Before the actual transfer of knowledge, the learning bounds should be evaluated. The Kullback-
Leibler divergence DKL between the domains is based on the probability distributions in Ta-
ble 22.

5.5 Transfer Learning 46

x Non-responsive Responsive
Distribution PA(x) 0.068 0.932
Distribution PB(x) 0.212 0.788

Table 22: Probability distributions of dataset A and dataset B

Next, the classifier with the highest performance for both datasets should be found. Therefore,
the models optimised for dataset A and dataset B are tested on both datasets separately. Both
models have a different input layer and separate hidden layers. The number of hidden layers
along with its activation function differ per model. To combine this, the hidden layers are
concatenated in a fully-connected manner. Apart from the dissimilarity in hidden layers, both
models use the same output layer, optimization function, learning rate, epochs and batch size.
It could be argued that by concatenating the hidden layers, this new model can pick up on
both phenomena, due to its fit to both datasets and increased complexity. The layers can be
concatenated in both directions, either starting with the three hidden ReLU layers or with
the two hidden tanh layers. The hidden layers are fully-connected, the output layer with its
one sigmoid node remains only at the end. The results for the different model architectures,
evaluated per dataset, can be seen in Table 23.

Model architecture Dataset A Dataset B
Dataset A 0.623 (0.149) 0.807 (0.117)
Dataset A - Dataset B 0.630 (0.168) 0.858 (0.057)
Dataset B - Dataset A 0.693 (0.203) 0.877 (0.095)
Dataset B 0.694 (0.211) 0.900 (0.087)

Table 23: F2-scores and their standard deviation for the different model architectures per dataset

Based on these results, the model architecture optimised for dataset B shows the best result.
Therefore, this model is used as classifier h in the learning bounds formulas. With this classi-
fier h, the average error rates for five-fold cross-validation are noted as εD1(h) and εD2(h) for
respectively dataset A and dataset B. The sum of the average error rates is κ. The values for
the equations for the learning bounds are the following:

DKL(P1||P2) = 0.114

DKL(P2||P1) = 0.157

εD1(h) = 0.131

εD2(h) = 0.063

κ = 0.194

0.063 = εD2(h) ≤ εD1(h) + κ+DKL(P1||P2) = 0.439

0.131 = εD1(h) ≤ εD2(h) + κ+DKL(P2||P1) = 0.414

This shows that the equations hold for both transfers, thus domains appear similar enough for
a positive knowledge transfer in either direction.
To enable an easy transfer between both domains in the domain adaptation experiments, the
dimensionality of both datasets are made equal. Once the initial tf-idf cut-off has been applied,
the dimensionality of a data point is 5119 in dataset A, while it is 5549 in dataset B. The data
of dataset A is padded with zeros to 5549, so each model can be trained and tested on either
dataset.

47 5.5 Transfer Learning

5.5.2 Unsupervised Approach

The baseline of the unsupervised method is the SrcPrior method, which trains the model, which
is optimised on the source dataset, on the source data before evaluating it on the target dataset.
This method is applied using both optimal model architecture, the one optimised for dataset A
and dataset B.

To apply TCA, its kernel and number of dimensions need to be determined. This is done
separately for the variation using 1-NN and the one using an MLP. The performance of TCA
using 1-NN can be seen in Figure 8. Based on this graph, the parameters are determined as a
linear kernel with 20 dimensions, which had the least relative loss.

For the MLP variation, the performance for the transfer from dataset A to dataset B can be seen
in Figure 9 and the performance for the transfer from dataset B to dataset A in Figure 10. The
parameters for the MLP variation are determined as the Laplacian kernel with 150 dimensions.

(a) TCA using 1-NN from dataset A to
dataset B

(b) TCA using 1-NN from dataset B to
dataset A

Figure 8: Performance of TCA with 1-NN

(a) TCA using MLP with model architec-
ture dataset A

(b) TCA using MLP with model architec-
ture dataset B

Figure 9: Performance of TCA with MLP from dataset A to dataset B

5.5 Transfer Learning 48

(a) TCA using MLP with model architec-
ture dataset A

(b) TCA using MLP with model architec-
ture dataset B

Figure 10: Performance of TCA with MLP from dataset B to dataset A

To optimise DANN, the activation function, number of nodes, learning rate, adaptation rate
and output function are tuned. The optimal parameters found per transfer and the parameters
with the least relative loss, considered the most optimal for both, are shown in Table 24. The
optimal F2-score for the transfer from dataset A to dataset B is 0.5739, for the transfer from
dataset B to dataset A the F2-score is 0.2832. For the transfer from dataset A to dataset B,
the best performance is achieved by classifying all emails as responsive, in most cases using the
threshold and a sigmoid hidden layer, while the output layer also uses the sigmoid function.
When all emails are classified as responsive, the F2-score is 0.5739, which is noted 469 out of
1620 times during the optimisation of DANN. The parameter combination shown in the table
is the first combination tried that achieved the highest F2-score. After considering the relative
loss for each parameter combination per transfer, the least relative loss is 0.0378. This loss is
based on the F2-score that is achieved with this parameter combination for the transfer from
dataset B to dataset A, which is 0.2725. The parameters that are noted as optimal in the table
are used to evaluate DANN.

Parameter Dataset A → Dataset B → Optimal
Dataset B Dataset A

Hidden nodes 1 1 100
Activation function Sigmoid Sigmoid Tanh
Learning rate 10−1 10−1 10−1

Adaptation rate 1.00 1.00 0.3162
Output function Sigmoid Softmax Sigmoid
Threshold True True True

Table 24: Optimised parameters for DANN

The evaluated methods for the unsupervised transfer are shown in Table 25. Based on these
results, a few observations can be made. Between the SrcPrior and TgtPrior method, TgtPrior
shows the best results for both transfers.

The TCA method using an MLP shows that for both transfers the model optimised for dataset B
slightly outperforms the model optimised for dataset A. The latter model architecture classifies
almost every email as responsive, while the first one puts more effort into classifying emails
as both classes. This also reflects in their standard deviations. However, the differences in
performance are only marginal. For the 1-NN variation, no random states are used, thus resulting
in one value without a standard deviation.

49 5.5 Transfer Learning

Method Model architecture Dataset A → Dataset B →
Dataset B Dataset A

SrcPrior Src 0.253 (0.041) 0.104 (0.080)
TgtPrior Tgt 0.318 (0.196) 0.164 (0.051)
TCA 1-NN 0.132 (-) 0.189 (-)
TCA MLP (Dataset A) 0.574 (0.000) 0.268 (0.000)
TCA MLP (Dataset B) 0.581 (0.007) 0.270 (0.004)
DANN - 0.574 (0.000) 0.270 (0.004)

Table 25: F2-scores and their standard deviation for the unsupervised transfer methods

5.5.3 Semi-supervised Approach

The only semi-supervised method of which a parameters needs to be optimised is the TrAdaBoost
method, of which the number of iterations needs to be determined. The performance over the
iterations is visualised for both transfers in Figure 11, whereby for each transfer both model
architectures are evaluated in the same figure. The architecture optimised for dataset B showed
actual results, while the architecture optimised for dataset A classified every email as responsive.
This is reflected in the straight line, showing no improvement. Based on the results, the number
of iterations is set as eight, since this gives the least relative loss.

(a) Performance of TrAdaBoost from
dataset A to dataset B

(b) Performance of TrAdaBoost from
dataset B to dataset A

Figure 11: Performance of TrAdaBoost using either model architecture

The performance of the methods that are evaluated for the semi-supervised transfer can be seen
in Table 26. It shows that between SrcPrior and TgtPrior, the model architecture optimised for
dataset B performs best in both cases. This is different from the unsupervised setting, where
the TgtPrior method performs better in both cases. The Pred method does not perform well,
though not worse than the baseline. The TrAdaBoost method only shows a learning curve with
the model architecture optimised for dataset B, as with the one optimised for dataset A, the
model returned every email as responsive. That also reflects in the standard deviation of both
TrAdaBoost methods with the architecture optimised on dataset A.

5.5 Transfer Learning 50

Method Model architecture Dataset A → Dataset B →
Dataset B Dataset A

TgtOnly Tgt 0.690 (0.105) 0.356 (0.051)
SrcPrior Src 0.733 (0.076) 0.622 (0.147)
TgtPrior Tgt 0.752 (0.090) 0.535 (0.121)
Pred Src - Tgt 0.692 (0.109) 0.390 (0.112)
TrAdaBoost Dataset A 0.394 (0.000) 0.394 (0.000)
TrAdaBoost Dataset B 0.562 (0.217) 0.685 (0.321)

Table 26: F2-scores and their standard deviation for the semi-supervised transfer methods

5.5.4 Supervised Approach

For the supervised TrAdaBoost, the number of iterations needs to be determined as well. In
Figure 12 the F2-scores over the iterations of TrAdaBoost are shown per transfer. Based on
these results, the number of iterations is set at four. This means that the supervised variant of
TrAdaBoost needs only half as many iterations as the semi-supervised variant.

(a) F2-scores over the iterations of TrAd-
aBoost from dataset A to dataset B

(b) F2-scores over the iterations of TrAd-
aBoost from dataset B to dataset A

Figure 12: Performance of TrAdaBoost using either model architecture

The results of all methods can be seen in Table 27. Of the results for TgtOnly, for both transfers
the architecture optimised for dataset A performs poorest, followed by the dataset A - dataset B
concatenation. The dataset B architecture and the one starting with the hidden layers optimised
for dataset B performed best and second-best for both transfers.

For the SrcPrior and TgtPrior methods, the one using the dataset B architecture performs best,
which is similar to the semi-supervised result. The Prior method based upon the dataset B ar-
chitecture performs best on the dataset A to dataset B transfer and second-best on the dataset B
to dataset A transfer. The Pred method performs slightly poorer than the Prior method us-
ing the dataset B architecture but equal or better than the Prior method using the dataset A
architecture.

The TrAdaBoost method classified all emails as responsive with model architecture A, while
with model architecture B the method performance can be compared to the All method for the
dataset A to dataset B transfer, while it is the top performance for the dataset B to dataset A
transfer.

51 5.5 Transfer Learning

Method Model architecture Dataset A → Dataset B →
Dataset B Dataset A

TgtOnly Tgt 0.884 (0.100) 0.631 (0.137)
All Tgt 0.780 (0.139) 0.750 (0.000)
All Src - Tgt 0.733 (0.122) 0.765 (0.144)
SrcPrior Src 0.859 (0.087) 0.777 (0.175)
TgtPrior Tgt 0.910 (0.091) 0.684 (0.117)
Pred Tgt - Src 0.891 (0.079) 0.684 (0.211)
TrAdaBoost Dataset A 0.394 (0.000) 0.394 (0.000)
TrAdaBoost Dataset B 0.723 (0.260) 0.806 (0.050)

Table 27: F2-scores and their standard deviation for the supervised transfer methods

52

6 Explainable AI

Explainable AI (XAI) can help to increase the transparency of the model and thereby the trust
in the model. Especially once a task has to be done in compliance with legislation, models
can only be used when they are transparent [95]. Explainability has potential in the legal
domain, since algorithms should behave in an equitable, honest and non-discriminatory manner
to be used in the process [2]. In addition, XAI may be used to prove algorithms behave in a
non-discriminatory manner, so their outcomes can be used as evidence.

6.1 Implications for Legal Technology

One of the downsides of using machine learning or artificial intelligence in the legal domain is
that many algorithms are not transparent. To some extent, there is a certain reluctance to use
it, according to Butterfield et al. [24] this is because of a lack of understanding of Technology
Assisted Review (TAR) and comfort with old patterns. This is partly caused by TAR not being
completely accepted in courts in the USA, due to a lack of transparency in the methodology and
process. This lack of transparency in the USA might be caused by the work-product doctrine,
which states that information about the work that is done to handle a case is privileged. This
is similar to attorney-client privilege, through which all communication between an attorney
and their client is privileged and cannot be used in a case. However, opposed to attorney-client
privilege, which only concerns an attorney and their client, the work-product doctrine entails
all people that worked on the case. Hereby their work product would be their judgement over
the relevance of the emails. The doctrine is used to prevent them from having to explain their
way of working. In case they would use an e-discovery classification model, their way of working
would include the creation of a seed set, which is needed for training the model. If this seed set
would need to be disclosed, this could cause issues, since this would include having to disclose the
non-responsive emails in the seed. This disclosure is outside of the scope of discovery obligations.
However, there is also support for creating a transparent TAR process, such as the Cooperation
Proclamation of the Sedona Conference, which ‘urges parties to work in a cooperative rather
than an adversarial manner to resolve discovery issues to stem the monetary costs of discovery
disputes’ [104]. It is argued that the costs of developing a transparent solution outweigh the
money saved by employing TAR [24].
When the TAR models that make use of AI become more explainable, it can gain them more
acceptance in court. There are several other reasons for introducing explainable AI (XAI).
According to Adadi et al. [2], these are:

• Explain to justify, when the system makes an unexpected decision, it can be justified
more easily once the model is explainable, also the system operating ethically and without
bias can be checked;

• Explain to control, by improving the understanding of how the system behaves, potential
weaknesses and errors can be identified sooner, leading to increased control over the system;

• Explain to improve, when a model can be explained and understood, it can also be
improved more easily; and

• Explain to discover, since models might be able to outperform humans at a task, an
explainable model lead to new insights.

These are confirmed by Samek et al. [95], who define the reasons for using XAI as being for
compliance with legislation, verification of the system, improvement of the system and to learn
from the system. Thereby their reasoning largely overlaps with the reasons of Adadi et al. [2].
Waltl et al. reported specifically on the need for explainability in machine learning in legal tech-
nology [108]. Due to the criticality of being able to explain how you gathered your information

53 6.1 Implications for Legal Technology

to the court, the used algorithms need to be explainable. Another issue limiting the use of new
technologies is the so-called ‘stare decisis’, which states that cases should be handled in the
same way as precedent similar cases. In the Netherlands, this principle is handled less rigidly,
though it exists and is sometimes considered the right way to act [44]. However, when using
machine learning for e-discovery, it should be clear how the possible evidence was selected. This
contributes to the current way of working, which still uses search terms and filters, remaining
that way. It all boils down to a need to be interpretable and transparent, both to a client and
to the court.
An example of the use of AI in legal technology can be seen in the USA, where they have an
AI system called COMPAS that predicts how likely a convict is to re-offend [57]. This system
should be fair and non-discriminatory and the only way this can be ensured is by explainability.
There has been a case, Loomis vs. Wisconsin, in which the use of an AI system to decide over
someone’s sentence was disputed [2]. The workings of COMPAS were not obvious to the Judge
since the system is closed and its algorithm secret.
This example highlights the need for Automated Decision Making (ADM) to be explainable.
Especially in critical domains, such as the legal system, there is not yet a lot of work done to
make the ADM processes explainable [2]. Processes that are using ADM are occurring more and
more often, with the possibility of affecting our life [108]. Waltl et al. [108] mention three reasons
for the rise in ADM. First off, it is because of digital data becoming more easily available, which
is needed to apply machine learning. Next, computing infrastructures can handle increasingly
larger amounts of data. Lastly, the algorithms that are currently used can process increasingly
complex tasks.
These ADM systems might need to conform to certain rules, to protect the consumers. For
example, it may not discriminate based upon gender, race or age. In the 1990s, research showed
that people already had expectations for ADM systems, legal expert systems in specific [108].
Two of these expectations were related to the current concept of explainability, namely that the
ADM should be able to easily understand and follow the knowledge representation and that its
decisions should be explainable and transparent. With XAI becoming more prominent, these
expectations could be met, enabling a carefully automated process.
In recent years, some studies have been done to the use of interpretable machine learning in
critical ADM systems, such as the proposal for simple rules for bail decisions of Jung et al. [66],
Corbett-Davies et al. [32] discussing the fairness of algorithms that are used for making conse-
quential decisions and Germany running a project, AlgorithmWatch [87], to check the fairness
of among others their video surveillance system and credit scoring.
Predictions made by an AI model are in principle mathematical operations, which follow strict
procedures. By making them more transparent, they would be more explainable. This could
cause an increase in trust that these systems make fair decisions, causing the acceptance of
these systems to grow [108]. In addition to that, by making the AI interpretable, new insights
to optimise the systems could be gathered. The system might be able to explain how it classifies
responsive emails, possibly uncovering hidden patterns indicating fraudulent behaviour that are
not intuitive for people.
The roadmap for the use of XAI is thus not laid out yet. The use of AI within ADM seems to gain
momentum, but there is resistance due to its complex nature and opacity. If explainable models
would be applied to e-discovery, new hidden patterns in emails relating to their responsiveness
might be uncovered. Next to that, there is more control over the process, due to an increased
insight into the behaviour of the system. Thereby it can be checked whether the system operates
fairly and without any bias. This could lead to a system being trusted more and gaining
acceptance, which could increase its use and open the way for more development.

54

7 Discussion

In this chapter, the findings shown in the previous chapter, Chapter 5, are discussed. For
this, the errors and their consistency are analysed. Furthermore, the results of the classifier
comparison, the inclusion of the metadata and the transfer learning results are discussed.

7.1 Error Analysis

After manually inspecting the misclassified emails, there does not appear to be a reason for why
they are misclassified. It is not because of their language, because both English and multi-lingual
emails get correctly classified and misclassified to the same extent. The same is true for short
and long emails, which also get equally misclassified, the number of tokens an email contains
does not seem to play a role in this. Furthermore, the words occurring in the emails were
considered. Some words are case-specific, such as specific proper nouns that are tied to the case.
However, these words occurred as often in correctly classified emails as in misclassified ones, for
both responsive and non-responsive emails. The topic of a message and whether the message
contains a call to action do not seem to be reasons for the classifier to classify them incorrectly.
The same is the case for emails centring around an attachment, a link to an attachment or a
past or future meeting, as well as for emails containing tables and emails with lots of forwards.
Since the acquisition of the emails is already focused on only getting emails that have a chance of
being responsive, the emails are effectively pre-filtered. This pre-filtering consists of the choices
for whose email boxes are secured and if the entire email box is secured, or only after a certain
date. It could be that because of this pre-filtering, the proper nouns and words associated with
the case are seen as less important. Most of the responsive emails may revolve around the same
subject, but a lot of the non-responsive emails do as well. In this case, the classifier might pick
up on a pattern that is not intuitive for people. The classifier could be classifying emails as
responsive based on ‘common’ words that occur more often in responsive emails, but that we
would not consider informative or indicative as the source of responsiveness.
All in all, no clear characteristics are found for the misclassification during the manual review
of the misclassified emails. By visualising the emails in a matrix, visualising per method which
emails are misclassified, possible patterns might be found of some emails getting misclassified
never or all the time. These matrices can be seen in Appendix 8, whereby each email is rep-
resented by a thin row. After inspecting these, it seems that there is some consistency across
rows. However, when looking into these emails, no patterns can be found to trace the partial
consistency back to common characteristics.

7.2 Vectorisation and Model Optimisation

The hyperparameters for the neural networks have been optimised with BO-GP. One of the
disadvantages of this optimisation method is that it models the loss over the parameters that
are optimised, whereby it could be that the most optimal setting is never found due to the
loss function getting stuck in a local optimum. Due to limited resources, this could not be
circumvented. An example of a local optimum in this study is that the MLP with the architecture
optimised for dataset B has a better performance on dataset A than the architecture that is
optimised on dataset A itself. The architecture optimised on dataset A does not combine well
with dataset B, which could indicate that these parameters have overfitted on dataset A.
During the sequential vectorisation, an observation is defined as a token. Experiments can be
done by defining an observation differently, for example as a sentence or an n-gram. For the
sequential tf-idf vectors, only the tf-idf value for the token itself is noted. This erases a lot of
information about the vocabulary that is available the entire tf-idf vector is used. An option to
circumvent this would be to perform Principal Component Analysis (PCA) on the original tf-idf

55 7.3 Inclusion of Metadata

vectors. PCA could also be applied to the non-sequential tf-idf and word embedding vectors, to
possibly increase feature usability.
Furthermore, the sequential models have a weak performance compared to the other models.
This could be due to a sequential model not being the best fit for an e-discovery problem, but
it is more likely that it would need more complexity to correctly model the case. Due to limited
resources, not all hyperparameters were fully explored. For the LSTM model, the number of
both LSTM and fully-connected layers could be increased, as well as the number of neurons they
contain. Both mono-directional and bidirectional LSTM layers can be alternated. Aside from
that, the sequences could be maximised to a quartile higher than 90 and the processing could be
tried without bucketing. For both the LSTM and the RCNN, the batch size could be adjusted
more freely.
During the optimisation process, the batch size could have been included in the hyperparameter
search. To do this and get to a stable result, the number of runs during the search should have
been increased, to ensure an optimum is found.
Once the optimised values per model were found, it showed each vectorisation manner performed
differently. The W2V-CBOW embeddings show an overall weak performance, for none of the
models it is the best vectorisation manner and for five of the eight models it has the lowest
performance. The Flair embeddings show an average performance, neither being the best nor the
worst vectorisation method for each model. For all the models, the best performance is achieved
using either W2V-SKIP embeddings or tf-idf vectors. Thereby the tf-idf vectors perform best for
the SVM with SGD training, GBM and MLP, while the W2V-SKIP has the best performance
for the NB, SVM, RF, LSTM and RCNN. It is worth noting that the results for the SVM and
SGD implementations are quite different per vectorisation manner, showing that the training
method of the SVM affects the results. Aside from that, the SVM with tf-idf values is a strong
baseline to beat, since it would have the highest score if it was not for the MLP.

7.3 Inclusion of Metadata

The results show that the only metadata that improves the performance or performs equally well
on either dataset is the subject. The rest of the metadata features decrease the performance of
at least one model. A possible explanation for this is that the model parameters are optimised
on only the token data. Therefore, the found architectures might not be beneficial for the added
metadata, which can consist of other features than text vectorisation. This could also explain
why adding the subject does improve the performance of the model.
The subsets of metadata that performed best for each dataset were defined based upon their
performance on one iteration, instead of on multiple iterations using cross-validation or different
random states. Therefore, it could be that other metadata sets might be equally or better suited
when tested more thoroughly. The optimal sets found contained much more metadata features
for dataset A than for dataset B. This is unexpected since the mutual information scores between
the metadata features and the class labels are higher for dataset B. The metadata feature with
the highest mutual formation on both datasets, the day (only mails days), only shows in the
backwards feature selection. Other metadata features with higher scores, namely the time of
day, timestep (steps=500) and day (all days) are not included in any of the optimal subsets. This
shows that the mutual information is not very informative for whether the metadata features
would improve the performance when combined with the token data. The subset of metadata
features that performs best when combined with the tokens, namely the F-B subset, only contains
the metadata feature number of receivers. This feature does not have a high mutual information
score, but this seems true for all features found by forward feature selection. Thereby it is
confirming that the mutual information scores are not indicative for improved performance on
the model optimised on the tokens. In this case, they seem to generate more noise. The
performance decreases, since a lot of non-responsive emails are classified as responsive.
In the current setting, the subject is concatenated to the tokens of the body as to form the

7.4 Transfer Learning 56

input data. Since the subject contains fewer tokens and thus is more specific, it is a possibility
to create two input layers, one for the tokens and one for the metadata features, and form a
multi-input model. Hereby the input layer for the subject is merged into the network a few
layers in. This would allow the first layers to create a latent space for the features created of the
email body, after which the subject features are concatenated and the data is processed further.

7.4 Transfer Learning

During the evaluation of the four possible model architectures on both datasets, the architecture
optimised on dataset B performed best on both datasets. This indicates that the hyperparam-
eter optimisation on the dataset A has not found this optimum. This is always a possibility
with Bayesian Optimisation, where not all combinations are tested, unlike to the exhaustive
grid optimisation. The architecture with the weakest performance on both datasets is the one
concatenating the hidden layers of dataset A and dataset B. This concatenation starts with 2
hidden layers of 49 nodes with the tanh activation function, followed by 3 hidden layers of 200
nodes with the ReLU activation function. Normally, hidden layers have a decreasing number of
nodes, instead of increasing. Therefore, it is expected that this concatenation would not perform
optimally. The dataset B architecture and the one combining dataset B - dataset A show that
larger hidden layers with a ReLU activation function seem to be more suitable to find general
patterns in the data than smaller ones with a tanh function. This phenomenon can be observed
on the results of the All method as well.

7.4.1 Unsupervised approach

For unsupervised transfer learning, the baseline methods SrcPrior and TgtPrior are used, of
which TgtPrior always performs better. This indicates that the architecture optimised for each
dataset increases the performance of that set, independent of whether the model was trained on
that set. This is partly unexpected since dataset A performed better when trained and tested on
the architecture optimised on dataset B, while in this case, the best architecture for the transfer
from dataset B to dataset A is the one optimised for dataset A.
Furthermore, TCA showed consistently better results with the model architecture optimised for
dataset B. When the model architecture optimised for dataset A is used, the method classifies
every email as responsive. This performs better than when 1-NN is used to classify the transfer
components. However, 1-NN does make a distinction in responsive and non-responsive emails,
though not enough emails are classified as responsive for each transfer to get a competitive per-
formance. This can be seen more clearly in the error matrix in Figures 20 and 21 in Appendix 8,
where the 1-NN variant classifies fewer emails incorrectly when TCA uses an MLP for classifica-
tion. The MLP has a higher dimensionality, which increases its ability to model more complex
relations compared to using 1-NN. However, since the model is optimised on tf-idf values and
not on transfer components, it could not have been expected that it would perform as well as it
does for the tf-idf values.
The DANN method does not perform well. For both transfers, it classifies most emails as
responsive. Its performance could be improved by creating a deep network, instead of the
shallow one that is evaluated. For this, the implementation should be extended to include the
possibility of multiple layers, whereby a division has to be made which layers form the latent
space and which belong to the class classifier. The optimised hyperparameters indicate that the
networks with only one node in its hidden layer perform best for the individual datasets. This
could be caused by the one node making less of a division between the classes, thus classifying
more emails as responsive. It is remarkable that for both datasets, the best result for each dataset
individually has 1 hidden node that uses the sigmoid activation function, while the parameters
with the least relative loss include 100 hidden nodes that use the tanh activation function. A
reason for this is that the transfer from dataset A to dataset B seems to work better using the

57 7.4 Transfer Learning

sigmoid function in the output layer, though for this transfer many sets of parameters achieve
the same optimal performance by classifying all emails as responsive. The transfer from dataset
B to dataset A shows better results by using the softmax function in the output layer. When a
different function is chosen in the output layer, the rest of the parameters is heavily influenced.
Overall, the unsupervised methods seem to increase the performance of the baseline method,
SrcPrior. This is the case for all methods, except for the TCA method using 1-NN in the
dataset A to dataset B transfer. The method scoring best on both transfers is the TCA method
using an MLP with a model architecture optimised on dataset B. However, this is only by a small
margin, compared to the TCA method using the model architecture optimised on dataset A and
the DANN method. The TgtPrior method also improved on the baseline, but this was less
compared to the TCA method using an MLP and the DANN method.

7.4.2 Semi-supervised and supervised approaches

In the semi-supervised and supervised approaches, the performance for the transfer from dataset A
to dataset B is higher overall, but the increase in performance is lower. Compared to the unsu-
pervised approach, the influence of labelled target instances is visible, since the performance of
the methods differs a lot between both transfers.
In both approaches, considering SrcPrior and TgtPrior, the Prior method using the model
architecture based upon dataset B performs best. This is different from the results of SrcPrior
and TgtPrior in the unsupervised approach, where TgtPrior performed better than SrcPrior for
both transfers. An explanation for this is that in the unsupervised approach, the model is only
trained on the source data, while in the (semi-)supervised approach, the model is fine-tuned on
the target data. This could cause the model using the architecture optimised on dataset A to
only perform well when fine-tuned on the dataset A. For the semi-supervised approach, these
methods are the highest performing methods on the dataset A to dataset B transfer. On the
other transfer they are only surpassed by the TrAdaBoost method using the dataset B model
architecture.
For the Pred method, the results differed between the semi-supervised and supervised approach.
For the semi-supervised approach, the results are only slightly better than the baseline TgtOnly,
but worse than with either SrcPrior or TgtPrior. It could be that the weights connected to the
prediction are not trained sufficiently, as they are only trained on the labelled part (20%) of the
target data. In the supervised approach, the Pred method performs better than the TgtOnly
and equal to or better than the Prior method based on the architecture of dataset A. This shows
more potential than in the semi-supervised approach, possibly since to the weights connected to
the predictions are fine-tuned on more data.
When considering TrAdaBoost in both the supervised and the semi-supervised approach, the
optimal number of iterations for the supervised approach is only half of the optimal number of
iterations for the semi-supervised approach. This could be caused by the increased number of
target labels available for training in the supervised approach, which can increase the learning
curve. TrAdaBoost only shows a learning curve when combined with the model architecture
optimised on dataset B. This could be because of those layers using the ReLU activation function,
instead of the tanh function the other architecture uses. When the architecture optimised on
dataset A is used, all emails are classified as responsive each time. Both TrAdaBoost and
TCA prove to be a bad combination with the model architecture optimised on dataset A. Most
probably, this has to do with the tanh activation function and the hidden layers containing
fewer nodes. When the architecture optimised on dataset B is used, the methods perform quite
well. When applying TrAdaBoost, during the first few iterations it first starts classifying more
emails as responsive, after which it starts classifying fewer non-responsive emails as responsive.
This causes the performance to first increase. Then the performance drops when all emails are
classified as non-responsive, after which the model starts making distinctions again. For the
transfer from dataset B to dataset A, TrAdaBoost is the best performing method, while in the

7.5 Limitations and Suggestions for Future Research 58

other transfer it has the worst performance. This is most likely caused by TrAdaBoost being
evaluated on both the source and the target data. Emails from dataset A are misclassified more
often than from dataset B, thus the incorrectly classified source instances of dataset A decrease
the performance in this case. For the transfer from dataset B to dataset A, the performance
benefits from the instances of dataset B that are correctly classified more often.
Alike TrAdaBoost, the All method is evaluated on a combination of the source and target data.
This is visible in the fact that their performance lies between the performances of dataset A and
dataset B. The model architecture that is used seems to influence the performance, in a way
that is in line with the other results. If the architecture starts with the hidden layers that were
optimised for dataset B, namely 3 hidden layers with a ReLU activation function and 200 nodes,
the results are highest. Adding the hidden layers optimised for dataset A, which are 2 hidden
layers with a tanh activation function and 49 nodes, slightly decreases the performance. If the
architecture only contains the tanh layers, the results are lower than when the model starts with
the ReLU layers. The lowest performance is noted when the ReLU layers are added behind the
tanh layers, in that case, the number of nodes in the hidden layers increases instead of decreases.
This is uncommon since a latent space of a lower dimensionality is then transformed to a higher
dimensionality, while no more data is inputted. Based on the results, the All method should
only be used if the source set is less imbalanced than the target dataset, otherwise, it seems
more likely to decrease the performance.
One of the most evident results of transfer learning is that the transfer from dataset B to
dataset A shows more improvement than vice versa. The reason for this might be the source
dataset. Since dataset B already showed better results when evaluated on its own, these results
may strengthen the learning process on dataset A. This is most likely caused by dataset B being
more balanced. It seems that when a more imbalanced set is used as the source set, the target
set shows decreasing results. The only manner to increase the results of the more balanced
target set is by using the source set to initialise the weights of the network.
The impact of having the actual source data available, which is needed for the All and TrAd-
aBoost methods, is limited. For the supervised transfer from dataset B to dataset A, the
TrAdaBoost method combined with the model architecture optimised on dataset B gives the
best results. However, the best results that are from the SrcPrior method, followed by the
All methods. This shows that the SrcPrior method would be a valid choice to transfer knowl-
edge, since no source data is needed, except for the pre-trained network. In addition to that,
this method is only evaluated on the target set, instead of both sets, and gives an increase in
performance for both transfers.
The difference between semi-supervised and supervised seems to be that in the semi-supervised
method, the performance increase realised by the transfer methods is relatively larger than in
the supervised approach. However, the overall performance in the supervised approach is higher.
Overall, the Prior method of which the hyperparameters are optimised on dataset B and the
Pred method show an increase over both transfers, for both the semi-supervised and supervised
approach. All other methods do not improve on the baselines for both transfers. The advantage
of these methods is that they also do not need the source data.

7.5 Limitations and Suggestions for Future Research

When using machine learning for text classification, a large and increasing number of models
is available. Only a small number of models is tested in this study. More research can be
done on the performance of other machine learning models on recall text classification problems,
especially e-discovery. Besides that, the tuning of the (hyper)parameters of the models can
be tested more thoroughly. Hereby computational power and resources should be taken into
account. In case more resources would have been available, such as a GPU, the neural networks
could be optimised more thoroughly, especially the sequential neural networks. The number
of hyperparameters and their ranges could be extended, to allow for more complex modelling.

59 7.5 Limitations and Suggestions for Future Research

Also, the data might need to be compromised less. The cut-off ratios that are used in this study
might be relaxed or made abundant if more memory is available. This study shows that rather
simple sequential models do not perform better than an optimised MLP model. However, this
could be because of the lower complexity of the tested sequential models. If resources allowed for
further optimisation, they may outperform the MLP at one point. If the hyperparameters are
evaluated more extensively, the optimal model might have better results. However, one should
be cautious to not overfit the hyperparameters on the datasets.
If more cases would be available, specifically the same type of case, it can be evaluated whether
this improves the transfer. By generalising over the same type of case, it could be that due to
the similarity of the domain, the positive influence of transferred knowledge can be enlarged.
When preparing a dataset containing fraudulent cases for classification, there is an imbalanced
class problem. To gather more data, resampling methods might be used. Many of the current
methods focus on visual resampling or the resampling of numerical data. Experiments can be
done by translating emails back and forth, as well as substituting some words for synonyms, to
resample textual data. However, there is no defined approach to apply any of these techniques.
Aside from the resampling methods, the responsive emails could be oversampled or the other
class undersampled.
During this study, only two representative datasets were available. This means that the results
are not generalizable outcomes for the e-discovery classification problem. The performance of the
vectorisation methods, classifying algorithms and model architectures are indicators for these
specific situations. They could be indicative of an optimal classifier for e-discovery. However,
these findings would have to be reproduced with multiple different datasets to come to a possible
optimal approach that might be a generic solution for the domain. The same is true for the
transfer approach, the methods showing the most potential for these transfers might not be the
same when other datasets are used.
The two datasets contained mainly Dutch emails. The results of having datasets that differ in
language or form of fraud could also greatly influence the classification and transfer process.
By developing a more elaborate overview of how the language and case of fraud influence the
classifier settings and gathered knowledge, the chances of finding a generic e-discovery (transfer)
model can be increased.
In this study, the available metadata of emails is considered in the classification process. Apart
from this already available metadata, more metadata could be generated. Examples hereof are
using POS-tags (part-of-speech-tags) or flagging based upon occurrences of certain terms or
constructs. There is only limited research available on the creation of this extra data for e-
discovery, to which additional research would be beneficiary. Alongside that, the parameters of
the models could be optimised on the metadata, to show the possibilities of using the metadata
for classifying the emails.
For some of the transfer learning methods, different parameters and settings could be evaluated,
which have not been tested due to time restrictions. DANN could be tested with a deep network,
instead of the shallow one used. Hereby the layers forming the latent space and the classifiers
can be extended by one or more layers. Furthermore, TrAdaBoost can be evaluated using an
SVM to classify the instances. The method was evaluated using this model in the original paper.
Future research could be done if the type of classifier influences the effect of using TrAdaBoost.
Aside from the applied transfer learning methods, other transfer methods could be tested. This
study evaluated only one method per domain adaptation approach. Therefore, more methods
are available per approach, which may perform better. This could be older models, such as
EasyAdapt [37] or Structural Correspondence Learning [18], or other recent methods that are
more aligned to the state-of-the-art, such as Adversarial Discrimination Domain Adaptation
(ADDA) [106]. For some domain adaptation methods, such as ADDA, no studies have been
found where the method is applied to a text classification problem. This could also be interesting
for future research. Aside from that, methods from other transfer learning fields, such as multi-

7.5 Limitations and Suggestions for Future Research 60

source learning, can be applied to e-discovery.
Furthermore, there could be opportunities for active learning, based on Technology-Assisted
Review. Once a small subset is reviewed on relevance, this feedback could be implemented back
into the model to gradually improve the performance. The Continuous Active Learning method
of Cormack and Grossman [33] can used as the baseline. Aside from this baseline, there are
not many other studies introducing active learning methods for e-discovery. The dissertation
of Wang [109] on active transfer learning can be used. The use of active learning might create
opportunities for improving both the performance of the classifier and the transfer method.
Considering XAI, no studies have yet explored the use of XAI in e-discovery. It can be interesting
to find out if hidden patterns could be uncovered, gaining more insight into what makes the model
classifies certain emails as responsive. Next to that, an experiment can be done as to how well
a proxy model would perform compared to the more complex machine learning classifiers.

61

8 Conclusion

The aim of this thesis is to optimise a classification model and create more insight into
the transferability between cases while considering the implications of applying ex-
plainable AI in the legal domain. This aim should be achieved by answering the research
questions, based upon the results.

RQ1. To what extent do word embeddings increase the performance of an e-discovery model
compared to the use of tf-idf vectors?
Three types of word embeddings are evaluated in this study, Word2Vec based upon Continuous
Bag of Words, Word2Vec based on Skip-grams and bi-directional Flair embeddings. The optimal
model makes use of tf-idf vectorisation, instead of word embeddings. Over the seven models that
are evaluated, tf-idf vectorisation performs best on the Support Vector Machine with stochastic
gradient descent training, Gradient Boosting Machine and Long Short-Term Memory. However,
on the Naive Bayes, Support Vector Machine, Random Forest and Recurrent Convolutional
Neural Network it is outperformed by word embeddings. On the last three, Word2Vec based on
Skip-grams showed the best performance. Of the word embedding types, Word2Vec based on
Skip-grams showed the most potential, followed by Flair. The Word2Vec embedding based on
Continuous Bag of Words had an overall weak performance.

RQ2. Which machine learning model that is currently used in e-discovery performs best on the
provided cases?
The Multilayer Perceptron combined with tf-idf vectorisation showed the best performance on
both datasets. Furthermore, this model could also be combined with Word2Vec based on Skip-
grams or Flair to perform well, since these were the second and third best options for both
datasets. If the Multilayer Perceptron would not have been included, the Support Vector Ma-
chine with stochastic gradient descent training performs best on either model, which is the
current baseline for e-discovery. The performance of the sequential neural networks, the Long
Short-Term Memory and the Recurrent Convolutional Neural Network, was firmly influenced
by the limited amount of resources available. Therefore, only a simple form of these networks
has been evaluated.

RQ3. How can the performance of the model be improved using the available metadata?
The only metadata that showed positive results when added is the subject, which has a signifi-
cant increase in performance for one dataset and similar results with a lower standard deviation
for the other. All other metadata subsets found by forward and backward feature selection did
not improve the performance. This could be caused by the parameters of the model, which
have been optimised solely on tokens. To improve the performance of the e-discovery model
using metadata features, further research has to be done on how the most usable features can
be engineered and on the fine-tuning of a model to get suitable information of them.

RQ4. To what extent is the knowledge between the provided e-discovery cases transferable?
The answer to his questions is covered by the three sub-questions.

SQ4.1 Is the knowledge between the cases transferable?
The learning bounds hold, showing that there is a chance for positive transfer of knowledge.
The results are symmetrical, thus the learning bounds hold in both directions.

SQ4.2 To what extent can an unlabelled dataset benefit from a form of transfer learning?
When the target set is unlabelled, it concerns an unsupervised transfer approach. The baseline
for this approach is the SrcPrior method, which uses a pre-trained source model to classify the

62

target set. The domain adaptation methods TgtPrior, Transfer Component Analysis (TCA)
and the Domain-Adversarial Neural Network (DANN) are applied in addition to this baseline
method. Except for TCA using 1-Nearest Neighbours, all methods outperformed the baseline on
both transfers. This shows that an unlabelled dataset can indeed benefit from a form of trans-
fer learning. Hereby TCA, using a Multilayer Perceptron with hidden layers using the ReLU
activation function, and DANN considerably increased the baseline results for both transfers.
However, they did so by classify most emails as responsive. The TgtPrior method outperformed
the SrcPrior method in both cases, but by less than the other methods did. The TCA using a
Multilayer Perceptron and DANN show potential, but might need more fine-tuning to optimise
its results.

SQ4.3 To what extent can the performance of the model be increased using a form of transfer
learning?
When part of the target set is labelled, it concerns a semi-supervised approach. In this case, the
goal is to optimise the performance using a transfer method. However, the method showing the
best results is dependent on the transfer. The methods that are evaluated are Pred, which uses
the prediction of the source model on the target data as an extra feature, Transfer Adaptive
Boosting (TrAdaBoost), SrcPrior, TgtPrior and in case of the supervised approach, All, which
trains and evaluates a model on the concatenation of both datasets.
When transferring from a less balanced set to a more balanced set, TgtPrior has the best
performance and SrcPrior the second-best. In case the transfer is from the more balanced set
to the less balanced set, the TrAdaBoost method with the source model architecture performs
best, followed by the SrcPrior and TgtPrior methods. Hereby, the model architecture with
more neurons and the ReLU activation function outperforms the one with fewer neurons and
the tanh activation function in every case.
For the supervised setting, the results are similar. The performances in the supervised setting
show a smaller increase than in the semi-supervised setting. The F2-scores of the All method
seem to be an average of the performances of TgtOnly for both datasets, showing a performance
increase for the less balanced set and a decrease for the more balanced set. For the latter set,
the F2-scores are higher overall, due to a larger number of responsive emails in the dataset itself.
Furthermore, the effect of the transfer seems to be dependent mostly on the quality of the source
set. In case the source set is more balanced, the target set can benefit from this. If this is the
other way around, the observed increases in performance are only marginal. The only methods
outperforming the baselines for both transfers are the Prior method using the model archi-
tecture optimised on the more balanced dataset and the Pred method. These would be good
baselines to use for future experiments, while they also do not need any source data, except for
the pre-trained networks.

RQ5. To what extent could interpretability serve the use of machine learning in legal technol-
ogy?
If a model becomes more explainable and its algorithms more transparent, multiple positive
changes can occur. It can help verify that the system is not biased and complies with legis-
lation, as well as help gain insight into hidden pattern and development possibilities. First,
the possibilities of developing interpretable models for e-discovery should be evaluated. Cur-
rently, no studies can be found about applying XAI to e-discovery. Once the performance of
interpretable models is comparable to complex, well-performing classifiers, the opportunities for
using machine learning in more legal cases might arise. However, this will probably be in the
long run.

63 8.1 Contributions

8.1 Contributions

This thesis contains multiple contributions. First off, it adds to the existing research in the e-
discovery domain. This thesis contributes by showing the results of four vectorisation methods
and seven classification models. We show that combining a Multilayer Perceptron with tf-idf
vectorisation is the best classifier for the two available datasets, beating the current baseline in
e-discovery, the Support Vector Machine with tf-idf vectorisation.
Furthermore, no other study has been found that applies transfer learning to e-discovery. In
this study, three approaches to transfer learning are evaluated: unsupervised, semi-supervised
and supervised transfer learning. We show that applying transfer learning in e-discovery can be
beneficial, independent of whether target labels are available.
Lastly, we contribute by summarising the current possibilities of machine learning and artificial
intelligence in legal technology, and how explainable AI might enlarge these opportunities.

Appendices 64

Appendices

Appendix A: Visuals epochs

(a) Dataset A with W2V-CBOW perfor-
mance (b) Dataset A with W2V-CBOW loss

(c) Dataset B with W2V-CBOW perfor-
mance (d) Dataset B with W2V-CBOW loss

(e) Dataset A with W2V-SKIP perfor-
mance (f) Dataset A with W2V-SKIP loss

(g) Dataset B with W2V-SKIP perfor-
mance (h) Dataset B with W2V-SKIP loss

65 Appendices

(i) Dataset A with tf-idf performance (j) Dataset A with tf-idf loss

(k) Dataset B with tf-idf performance (l) Dataset B with tf-idf loss

(m) Dataset A with FLAIR performance (n) Dataset A with FLAIR loss

(o) Dataset B with FLAIR performance (p) Dataset B with FLAIR loss

Figure 13: Visuals of training and validation performance and loss for the MLP variations.

Appendices 66

(a) Dataset A with W2V-CBOW perfor-
mance (b) Dataset A with W2V-CBOW loss

(c) Dataset B with W2V-CBOW perfor-
mance (d) Dataset B with W2V-CBOW loss

(e) Dataset A with W2V-SKIP perfor-
mance (f) Dataset A with W2V-SKIP loss

(g) Dataset B with W2V-SKIP perfor-
mance (h) Dataset B with W2V-SKIP loss

67 Appendices

(i) Dataset A with tf-idf performance (j) Dataset A with tf-idf loss

(k) Dataset B with tf-idf performance (l) Dataset B with tf-idf loss

Figure 14: Visuals of training and validation performance and loss for the LSTM variations.

(a) Dataset A with W2V-CBOW perfor-
mance (b) Dataset A with W2V-CBOW loss

(c) Dataset B with W2V-CBOW perfor-
mance (d) Dataset B with W2V-CBOW loss

Appendices 68

(e) Dataset A with W2V-SKIP perfor-
mance (f) Dataset A with W2V-SKIP loss

(g) Dataset B with W2V-SKIP perfor-
mance (h) Dataset B with W2V-SKIP loss

(i) Dataset A with tf-idf performance (j) Dataset A with tf-idf loss

(k) Dataset B with tf-idf performance (l) Dataset B with tf-idf loss

Figure 15: Visuals of training and validation performance and loss for the RCNN variations.

69 Appendices

Appendix B: Misclassification Matrices

Figure 16: Error matrix showing the classification (0 is correct, 1 is misclassified) per email over
the different model architectures evaluated on dataset A.

Appendices 70

Figure 17: Error matrix showing the classification (0 is correct, 1 is misclassified) per email over
the different model architectures evaluated on dataset B.

71 Appendices

Figure 18: Error matrix showing the classification (0 is correct, 1 is misclassified) per email with
and without the subject tokens added on dataset A.

Appendices 72

Figure 19: Error matrix showing the classification (0 is correct, 1 is misclassified) per email with
and without the subject tokens added on dataset B.

73 Appendices

Figure 20: Error matrix showing the classification (0 is correct, 1 is misclassified) per email for
unsupervised transfer learning methods with dataset A as target dataset.

Appendices 74

Figure 21: Error matrix showing the classification (0 is correct, 1 is misclassified) per email for
unsupervised transfer learning methods with dataset B as target dataset.

75 Appendices

Figure 22: Error matrix showing the classification (0 is correct, 1 is misclassified) per email for
semi-supervised transfer learning methods with dataset A as target dataset.

Appendices 76

Figure 23: Error matrix showing the classification (0 is correct, 1 is misclassified) per email for
semi-supervised transfer learning methods with dataset B as target dataset.

77 Appendices

Figure 24: Error matrix showing the classification (0 is correct, 1 is misclassified) per email for
supervised transfer learning methods with dataset A as target dataset.

Appendices 78

Figure 25: Error matrix showing the classification (0 is correct, 1 is misclassified) per email for
supervised transfer learning methods with dataset B as target dataset.

79 REFERENCES

References

[1] Martìn Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Sys-
tems. 2015. url: https://www.tensorflow.org/.

[2] Amina Adadi and Mohammed Berrada. “Peeking Inside the Black-Box: A Survey on
Explainable Artificial Intelligence (XAI)”. In: IEEE Access 6 (2018), pp. 52138–52160.
issn: 2169-3536. doi: 10.1109/ACCESS.2018.2870052. url: https://ieeexplore.
ieee.org/document/8466590/.

[3] Hana Ajakan et al. “Domain-Adversarial Neural Networks”. In: (2014). arXiv: 1412.4446.
url: http://arxiv.org/abs/1412.4446.

[4] Alan Akbik et al. “FLAIR: An Easy-to-Use Framework for State-of-the-Art NLP”. In:
Proc. 2019 Conf. North (2019), pp. 54–59. doi: 10.18653/v1/N19-4010. url: http:
//aclweb.org/anthology/N19-4010.

[5] Leila Arras et al. “"What is relevant in a text document?": An interpretable machine
learning approach”. In: PLoS One 12.8 (Aug. 2017). Ed. by Grigori Sidorov. issn: 1932-
6203. doi: 10.1371/journal.pone.0181142. url: https://dx.plos.org/10.1371/
journal.pone.0181142.

[6] Hosein Azarbonyad, Robert Sim, and Ryen W. White. “Domain Adaptation for Commit-
ment Detection in Email”. In: (2019), pp. 672–680. doi: 10.1145/3289600.3290984.

[7] Hosein Azarbonyad et al. “Words are Malleable: Computing Semantic Shifts in Political
and Media Discourse”. In: 3 (Nov. 2017). arXiv: 1711.05603. url: http://arxiv.org/
abs/1711.05603.

[8] Thomas I. Barnett. “AWAY WITH WORDS: The Myths and Misnomers of Conventional
Search Strategies and the Search for Meaning in eDiscovery”. In: DESI 2015. 2015. url:
http://users.umiacs.umd.edu/%7B~%7Doard/desi6/papers/Barnett.pdf.

[9] Thomas I. Barnett and Svetlana Godjevac. “Faster, better, cheaper legal document re-
view, pipe dream or reality?” In: DESI 2011. 2011, pp. 1–16. url: http://legacydirs.
umiacs.umd.edu/%7B~%7Doard/desi4/papers/barnett3.pdf.

[10] Deborah Baron, Angela Bunting, and Brian J Krupczak. “Turning Back Time : The
Application of Predictive Technology to Big Data”. In: DESI 2013 (2013), pp. 1–7. url:
http://www.umiacs.umd.edu/%7B~%7Doard/desi5/%7B%5C#%7DPapers.

[11] Jason R. Baron and Jesse B. Freeman. “Cooperation, Transparency, and the Rise of Sup-
port Vector Machines in E-Discovery: Issues Raised by the Need to Classify Documents
as Either Responsive or Nonresponsive”. In: DESI 2013. 2013, pp. 1–19. url: http:
//users.umiacs.umd.edu/%7B~%7Doard/desi5/additional/Baron-Jason-final.pdf.

[12] Yoshua Bengio. “Practical recommendations for gradient-based training of deep archi-
tectures”. In: Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect.
Notes Bioinformatics) 7700 LECTU (2012), pp. 437–478. issn: 03029743. doi: 10.1007/
978-3-642-35289-8-26. arXiv: 1206.5533.

[13] Yoshua Bengio, Ian J. Goodfellow, and Aaron Courville. “Sequence Modeling : Recurrent
and Recursive Nets”. In: Deep Learn. 2015. Chap. 10, pp. 324–365.

[14] James Bergstra and Yoshua Bengio. “Random search for hyper-parameter optimization”.
In: J. Mach. Learn. Res. 13 (2012), pp. 281–305. issn: 15324435.

[15] James Bergstra et al. “Algorithms for hyper-parameter optimization”. In: Adv. Neural
Inf. Process. Syst. 24 25th Annu. Conf. Neural Inf. Process. Syst. 2011, NIPS 2011.
2011. isbn: 9781618395993.

https://www.tensorflow.org/
https://doi.org/10.1109/ACCESS.2018.2870052
https://ieeexplore.ieee.org/document/8466590/
https://ieeexplore.ieee.org/document/8466590/
https://arxiv.org/abs/1412.4446
http://arxiv.org/abs/1412.4446
https://doi.org/10.18653/v1/N19-4010
http://aclweb.org/anthology/N19-4010
http://aclweb.org/anthology/N19-4010
https://doi.org/10.1371/journal.pone.0181142
https://dx.plos.org/10.1371/journal.pone.0181142
https://dx.plos.org/10.1371/journal.pone.0181142
https://doi.org/10.1145/3289600.3290984
https://arxiv.org/abs/1711.05603
http://arxiv.org/abs/1711.05603
http://arxiv.org/abs/1711.05603
http://users.umiacs.umd.edu/%7B~%7Doard/desi6/papers/Barnett.pdf
http://legacydirs.umiacs.umd.edu/%7B~%7Doard/desi4/papers/barnett3.pdf
http://legacydirs.umiacs.umd.edu/%7B~%7Doard/desi4/papers/barnett3.pdf
http://www.umiacs.umd.edu/%7B~%7Doard/desi5/%7B%5C#%7DPapers
http://users.umiacs.umd.edu/%7B~%7Doard/desi5/additional/Baron-Jason-final.pdf
http://users.umiacs.umd.edu/%7B~%7Doard/desi5/additional/Baron-Jason-final.pdf
https://doi.org/10.1007/978-3-642-35289-8-26
https://doi.org/10.1007/978-3-642-35289-8-26
https://arxiv.org/abs/1206.5533

REFERENCES 80

[16] Christopher M. Bishop. Pattern Recognition and Machine Learning. Ed. by Michael I.
Jordan, Jon Kleinberg, and Bernhard Schölkopf. 1st ed. Springer-Verlag New York, 2006.
isbn: 9780387310732.

[17] John Blitzer. “Domain Adaptation - a PhD thesis”. PhD thesis. University of Pennsylva-
nia, 2007.

[18] John Blitzer, Ryan McDonald, and Fernando Pereira. “Domain adaptation with structural
correspondence learning”. In: Proc. 2006 Conf. Empir. Methods Nat. Lang. Process. -
EMNLP ’06. July. Morristown, NJ, USA: Association for Computational Linguistics,
2006, p. 120. isbn: 1932432736. doi: 10.3115/1610075.1610094. url: http://portal.
acm.org/citation.cfm?doid=1610075.1610094.

[19] John Blitzer et al. “Learning bounds for domain adaptation”. In: Adv. Neural Inf. Process.
Syst. 20 - Proc. 2007 Conf. (2009), pp. 1–12.

[20] Kendrick Boyd, Kevin H. Eng, and C. David Page. “Area under the Precision-Recall
Curve: Point Estimates and Confidence Intervals”. In: Lect. Notes Comput. Sci. (including
Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). Vol. 8190 LNAI. PART 3.
2013, pp. 451–466. isbn: 9783642409936. doi: 10.1007/978-3-642-40994-3_29. url:
http://link.springer.com/10.1007/978-3-642-40994-3%7B%5C_%7D29.

[21] Ulrik Brandes. “A faster algorithm for betweenness centrality”. In: J. Math. Sociol. 25.2
(June 2001), pp. 163–177. issn: 0022-250X. doi: 10.1080/0022250X.2001.9990249.
url: http://www.tandfonline.com/doi/abs/10.1080/0022250X.2001.9990249.

[22] Jason Brownlee. “How to Calculate McNemar’s Test to Compare Two Machine Learning
Classifiers”. In:Mach. Learn. Mastery (2018), pp. 1–19. url: https://machinelearningmastery.
com/mcnemars-test-for-machine-learning/.

[23] Jason Brownlee. How to Grid Search Hyperparameters for Deep Learning Models in
Python With Keras. 2018. url: https://machinelearningmastery.com/grid-search-
hyperparameters-deep-learning-models-python-keras/ (visited on 12/17/2019).

[24] William P Butterfield, Conor R Crowley, and Jeannine Kenney. “Reality Bites: Why
TAR’s Promises Have Yet to be Fulfilled”. In: DESI 2013. 2013.

[25] José Camacho-Collados and Roberto Navigli. “Find the word that does not belong: A
Framework for an Intrinsic Evaluation of Word Vector Representations”. In: Proc. 1st
Work. Eval. Vector-sp. Represent. NLP. Stroudsburg, PA, USA: Association for Com-
putational Linguistics, 2016, pp. 43–50. doi: 10 . 18653 / v1 / W16 - 2508. url: http :
//aclweb.org/anthology/W16-2508.

[26] Lawrence Chapin, Simon Attfield, and Efeosasere Moibi Okoro. “Predictive Coding, Sto-
rytelling and God: Narrative Understanding in e-Discovery”. In: DESI 2013. 2013, pp. 1–
15.

[27] Jianbo Chen et al. “Learning to Explain: An Information-Theoretic Perspective on Model
Interpretation”. In: Proc. 35th Int. Conf. Mach. Learn. Vol. 80. Feb. 2018, pp. 883–892.
arXiv: 1802.07814. url: http://arxiv.org/abs/1802.07814.

[28] Ravikiran Chimatapu, Hani Hagras, and Andrew Starkey. “Theory and Practice of Natu-
ral Computing”. In: Theory Pract. Nat. Comput. Springer International Publishing, 2017,
pp. 3–20. isbn: 978-3-319-71068-6. doi: 10.1007/978- 3- 319- 71069- 3. url: http:
//link.springer.com/10.1007/978-3-319-71069-3.

[29] F Chollet. Deep Learning with Python. Manning, 2018. isbn: 9783958458406. url: https:
//books.google.de/books?id=ouVcDwAAQBAJ.

[30] Jack G Conrad. “E-Discovery Revisited: A Broader Perspective for IR Researchers”. In:
DESI 2007. 2007, pp. 321–345.

https://doi.org/10.3115/1610075.1610094
http://portal.acm.org/citation.cfm?doid=1610075.1610094
http://portal.acm.org/citation.cfm?doid=1610075.1610094
https://doi.org/10.1007/978-3-642-40994-3_29
http://link.springer.com/10.1007/978-3-642-40994-3%7B%5C_%7D29
https://doi.org/10.1080/0022250X.2001.9990249
http://www.tandfonline.com/doi/abs/10.1080/0022250X.2001.9990249
https://machinelearningmastery.com/mcnemars-test-for-machine-learning/
https://machinelearningmastery.com/mcnemars-test-for-machine-learning/
https://machinelearningmastery.com/grid-search-hyperparameters-deep-learning-models-python-keras/
https://machinelearningmastery.com/grid-search-hyperparameters-deep-learning-models-python-keras/
https://doi.org/10.18653/v1/W16-2508
http://aclweb.org/anthology/W16-2508
http://aclweb.org/anthology/W16-2508
https://arxiv.org/abs/1802.07814
http://arxiv.org/abs/1802.07814
https://doi.org/10.1007/978-3-319-71069-3
http://link.springer.com/10.1007/978-3-319-71069-3
http://link.springer.com/10.1007/978-3-319-71069-3
https://books.google.de/books?id=ouVcDwAAQBAJ
https://books.google.de/books?id=ouVcDwAAQBAJ

81 REFERENCES

[31] Jack G Conrad. “E-Discovery revisited: the need for artificial intelligence beyond informa-
tion retrieval”. In: Artif. Intell. Law 18.4 (Dec. 2010), pp. 321–345. issn: 0924-8463. doi:
10.1007/s10506-010-9096-6. url: http://link.springer.com/10.1007/s10506-
010-9096-6.

[32] Sam Corbett-Davies and Sharad Goel. “The Measure and Mismeasure of Fairness: A
Critical Review of Fair Machine Learning”. In: CoRR (July 2018). arXiv: 1808.00023.
url: http://arxiv.org/abs/1808.00023.

[33] Gordon V. Cormack and Maura R. Grossman. “Evaluation of machine-learning protocols
for technology-assisted review in electronic discovery”. In: Proc. 37th Int. ACM SIGIR
Conf. Res. Dev. Inf. Retr. - SIGIR ’14. New York, New York, USA: ACM Press, 2014,
pp. 153–162. isbn: 9781450322577. doi: 10.1145/2600428.2609601. url: http://dl.
acm.org/citation.cfm?doid=2600428.2609601.

[34] Gabor Csardi and Tamas Nepusz. “The igraph software package for complex network
research”. In: InterJounal Complex Sy (2006). url: http://igraph.org.

[35] Wenyuan Dai et al. “Boosting for transfer learning”. In: Proc. 24th Int. Conf. Mach.
Learn. - ICML ’07. New York, New York, USA: ACM Press, 2007, pp. 193–200. isbn:
9781595937933. doi: 10.1145/1273496.1273521. url: http://portal.acm.org/
citation.cfm?doid=1273496.1273521.

[36] Jeffrey Dastin. Amazon scraps secret AI recruiting tool that showed bias against women.
San Francisco, 2018.

[37] Hal Daumé III. “Frustratingly Easy Domain Adaptation”. In: (July 2009). arXiv: 0907.
1815. url: http://arxiv.org/abs/0907.1815.

[38] Jesse Davis and Mark Goadrich. “The relationship between Precision-Recall and ROC
curves”. In: Proc. 23rd Int. Conf. Mach. Learn. - ICML ’06. Vol. 73. 10. New York, New
York, USA: ACM Press, 2006, pp. 233–240. isbn: 1595933832. doi: 10.1145/1143844.
1143874. arXiv: 1609.07195. url: http://portal.acm.org/citation.cfm?doid=
1143844.1143874.

[39] Oscar Day and Taghi M. Khoshgoftaar. “A survey on heterogeneous transfer learning”.
In: J. Big Data 4.1 (2017). issn: 21961115. doi: 10.1186/s40537-017-0089-0.

[40] Janez Demšar. “Statistical comparisons of classifiers over multiple data sets”. In: J. Mach.
Learn. Res. 7 (2006), pp. 1–30. issn: 15337928.

[41] Thomas G. Dietterich. “Approximate Statistical Tests for Comparing Supervised Classi-
fication Learning Algorithms”. In: Neural Comput. 10.7 (1997), pp. 1895–1923.

[42] Patrick Doetsch, Pavel Golik, and Hermann Ney. “A comprehensive study of batch con-
struction strategies for recurrent neural networks in MXNet”. In: (May 2017). arXiv:
1705.02414. url: http://arxiv.org/abs/1705.02414.

[43] Finale Doshi-Velez and Been Kim. “Towards A Rigorous Science of Interpretable Machine
Learning”. In: (2017), pp. 1–13. arXiv: 1702.08608. url: http://arxiv.org/abs/1702.
08608.

[44] Coen Drion. “Stare decisis”. In: Ned. Juristenbl. (2014).

[45] Duke Law. EDRM. url: https://www.edrm.net/ (visited on 05/15/2019).

[46] Tom Fawcett. “An introduction to ROC analysis”. In: Pattern Recognit. Lett. 27.8 (2006),
pp. 861–874. issn: 01678655. doi: 10.1016/j.patrec.2005.10.010.

[47] Tom Fawcett and Foster Provost. “Adaptive fraud detection”. In: Data Min. Knowl. Dis-
cov. 1.3 (1997), pp. 291–316. issn: 13845810. doi: 10.1023/A:1009700419189. url:
https : / / link . springer . com / content / pdf / 10 . 1023 % 7B % 5C % %7D2FA % 7B % 5C %
%7D3A1009700419189.pdf.

https://doi.org/10.1007/s10506-010-9096-6
http://link.springer.com/10.1007/s10506-010-9096-6
http://link.springer.com/10.1007/s10506-010-9096-6
https://arxiv.org/abs/1808.00023
http://arxiv.org/abs/1808.00023
https://doi.org/10.1145/2600428.2609601
http://dl.acm.org/citation.cfm?doid=2600428.2609601
http://dl.acm.org/citation.cfm?doid=2600428.2609601
http://igraph.org
https://doi.org/10.1145/1273496.1273521
http://portal.acm.org/citation.cfm?doid=1273496.1273521
http://portal.acm.org/citation.cfm?doid=1273496.1273521
https://arxiv.org/abs/0907.1815
https://arxiv.org/abs/0907.1815
http://arxiv.org/abs/0907.1815
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1145/1143844.1143874
https://arxiv.org/abs/1609.07195
http://portal.acm.org/citation.cfm?doid=1143844.1143874
http://portal.acm.org/citation.cfm?doid=1143844.1143874
https://doi.org/10.1186/s40537-017-0089-0
https://arxiv.org/abs/1705.02414
http://arxiv.org/abs/1705.02414
https://arxiv.org/abs/1702.08608
http://arxiv.org/abs/1702.08608
http://arxiv.org/abs/1702.08608
https://www.edrm.net/
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1023/A:1009700419189
https://link.springer.com/content/pdf/10.1023%7B%5C%%7D2FA%7B%5C%%7D3A1009700419189.pdf
https://link.springer.com/content/pdf/10.1023%7B%5C%%7D2FA%7B%5C%%7D3A1009700419189.pdf

REFERENCES 82

[48] Basura Fernando et al. “Unsupervised Visual Domain Adaptation Using Subspace Align-
ment”. In: ICCV 2013. 2013, pp. 2960–2967.

[49] Linton C. Freeman. “Centrality in Social Networks I: Conceptual Clarification”. In: Soc.
Networks 1.3 (Jan. 1979), pp. 215–239. issn: 03788733. doi: 10.1016/0378-8733(78)
90021- 7. arXiv: 0112110 [cond-mat]. url: https://linkinghub.elsevier.com/
retrieve/pii/0378873378900217.

[50] Preet Gandhi. KDnuggets Explainable Artificial Intelligence. 2019. url: https://www.
kdnuggets.com/2019/01/explainable-ai.html (visited on 10/02/2019).

[51] Pascal Germain and Hana Ajakan. Domain Adaptation Representation Learning Algo-
rithm. 2017. url: https://github.com/GRAAL-Research/domain%7B%5C_%7Dadversarial%
7B%5C_%7Dneural%7B%5C_%7Dnetwork (visited on 06/01/2020).

[52] Leilani H Gilpin et al. “Explaining Explanations: An Overview of Interpretability of
Machine Learning”. In: 5th IEEE Int. Conf. Data Sci. Adv. Anal. (DSAA 2018). 2018.
arXiv: 1806.00069. url: http://arxiv.org/abs/1806.00069.

[53] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training deep feedfor-
ward neural networks”. In: J. Mach. Learn. Res. 9 (2010), pp. 249–256. issn: 15324435.

[54] Ian J. Goodfellow. “Practical Methodology”. In: Deep Learn. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2015. Chap. 11. doi: 10.1007/978-3-642-66712-1_3. url: http:
//link.springer.com/10.1007/978-3-642-66712-1%7B%5C_%7D3.

[55] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. “Optimization for Training Deep
Models”. In: Deep Learn. 2016, pp. 334–376. isbn: 9780262035613. doi: 10.1007/978-
3-319-94463-0_8. arXiv: 1411.4555v1.

[56] Isabelle Guyon and André Elisseeff. “An Introduction to Variable and Feature Selection”.
In: J. Mach. Learn. Res. 3 (2003), pp. 1157–1182.

[57] Karen Hao and Jonathan Stray. “Can you make AI fairer than a judge ? Play our court-
room algorithm game”. In: MIT Technol. Rev. (2019).

[58] Tim Head et al. Scikit-optimize. 2018. doi: 10.5281/zenodo.1207017.

[59] Jeff Heaton. The Number of Hidden Layers. 2017. url: https://www.heatonresearch.
com/2017/06/01/hidden-layers.html (visited on 11/29/2019).

[60] Thomas J. Helling, Johannes C. Scholtes, and Frank W. Takes. “A Community-Aware
Approach for Identifying Node Anomalies in Complex Networks”. In: Stud. Comput. In-
tell. Vol. 812. 2019, pp. 244–255. isbn: 9783030054106. doi: 10.1007/978-3-030-05411-
3_20. url: http://link.springer.com/10.1007/978-3-030-05411-3%7B%5C_%7D20.

[61] Hans Henseler. “Network-based filtering for large email collections in E-Discovery”. In:
Artif. Intell. Law 18.4 (Dec. 2010), pp. 413–430. issn: 0924-8463. doi: 10.1007/s10506-
010-9099-3. url: http://link.springer.com/10.1007/s10506-010-9099-3.

[62] History.com Editors. Enron files for bankruptcy. 2009. url: https://www.history.com/
this-day-in-history/enron-files-for-bankruptcy (visited on 10/08/2019).

[63] Laszlo A. Jeni, Jeffrey F. Cohn, and Fernando De La Torre. “Facing Imbalanced Data–
Recommendations for the Use of Performance Metrics”. In: 2013 Hum. Assoc. Conf.
Affect. Comput. Intell. Interact. IEEE, Sept. 2013, pp. 245–251. isbn: 978-0-7695-5048-0.
doi: 10.1109/ACII.2013.47. url: http://ieeexplore.ieee.org/document/6681438/.

[64] Amanda Jones et al. “The Role of Metadata in Machine Learning for Technology Assisted
Review”. In: DESI 2015. 2013. 2014, pp. 1–12. url: http://users.umiacs.umd.edu/
%7B~%7Doard/desi6/papers/JonesFinal.pdf.

https://doi.org/10.1016/0378-8733(78)90021-7
https://doi.org/10.1016/0378-8733(78)90021-7
https://arxiv.org/abs/0112110
https://linkinghub.elsevier.com/retrieve/pii/0378873378900217
https://linkinghub.elsevier.com/retrieve/pii/0378873378900217
https://www.kdnuggets.com/2019/01/explainable-ai.html
https://www.kdnuggets.com/2019/01/explainable-ai.html
https://github.com/GRAAL-Research/domain%7B%5C_%7Dadversarial%7B%5C_%7Dneural%7B%5C_%7Dnetwork
https://github.com/GRAAL-Research/domain%7B%5C_%7Dadversarial%7B%5C_%7Dneural%7B%5C_%7Dnetwork
https://arxiv.org/abs/1806.00069
http://arxiv.org/abs/1806.00069
https://doi.org/10.1007/978-3-642-66712-1_3
http://link.springer.com/10.1007/978-3-642-66712-1%7B%5C_%7D3
http://link.springer.com/10.1007/978-3-642-66712-1%7B%5C_%7D3
https://doi.org/10.1007/978-3-319-94463-0_8
https://doi.org/10.1007/978-3-319-94463-0_8
https://arxiv.org/abs/1411.4555v1
https://doi.org/10.5281/zenodo.1207017
https://www.heatonresearch.com/2017/06/01/hidden-layers.html
https://www.heatonresearch.com/2017/06/01/hidden-layers.html
https://doi.org/10.1007/978-3-030-05411-3_20
https://doi.org/10.1007/978-3-030-05411-3_20
http://link.springer.com/10.1007/978-3-030-05411-3%7B%5C_%7D20
https://doi.org/10.1007/s10506-010-9099-3
https://doi.org/10.1007/s10506-010-9099-3
http://link.springer.com/10.1007/s10506-010-9099-3
https://www.history.com/this-day-in-history/enron-files-for-bankruptcy
https://www.history.com/this-day-in-history/enron-files-for-bankruptcy
https://doi.org/10.1109/ACII.2013.47
http://ieeexplore.ieee.org/document/6681438/
http://users.umiacs.umd.edu/%7B~%7Doard/desi6/papers/JonesFinal.pdf
http://users.umiacs.umd.edu/%7B~%7Doard/desi6/papers/JonesFinal.pdf

83 REFERENCES

[65] Michael I. Jordan and Tom M. Mitchell. “Machine learning: Trends, perspectives, and
prospects”. In: Science (80-.). 349.6245 (2015), pp. 255–260. issn: 10959203. doi: 10.
1126/science.aaa8415.

[66] Jongbin Jung et al. “Simple rules for complex decisions”. Feb. 2017. url: http://arxiv.
org/abs/1702.04690.

[67] Daniel Jurafsky and James H. Martin. Speech and language processing. 2nd ed. Prentice-
Hall Inc., 2008. isbn: 0130950696.

[68] Bryan Klimt and Yiming Yang. “The Enron Corpus: A New Dataset for Email Classifi-
cation Research”. In: Eur. Conf. Mach. Learn. 2004. Springer, Berlin, Heidelberg, 2004,
pp. 217–226. doi: 10.1007/978-3-540-30115-8_22. url: http://link.springer.com/
10.1007/978-3-540-30115-8%7B%5C_%7D22.

[69] Wouter M. Kouw. LibTLDA. 2018. url: https://github.com/wmkouw/libTLDA.

[70] Siwei Lai et al. “Recurrent convolutional neural networks for text classification”. In: Proc.
29th AAAI Conf. Artif. Intell. 3 (2015), pp. 2267–2273.

[71] Jessica Leber. “The Immortal Life of the Enron E-mails”. In: MIT Technol. Rev. (2013).
url: https://www.technologyreview.com/s/515801/the-immortal-life-of-the-
enron-e-mails/.

[72] Zachary C. Lipton. “The mythos of model interpretability”. In: Commun. ACM 61.10
(Sept. 2017), pp. 36–43. issn: 0001-0782. doi: 10.1145/3233231. arXiv: 1606.03490.
url: https://dl.acm.org/doi/10.1145/3233231.

[73] Huan Liu and Lei Yu. “Toward integrating feature selection algorithms for classifica-
tion and clustering”. In: IEEE Trans. Knowl. Data Eng. 17.4 (Apr. 2005), pp. 491–502.
issn: 1041-4347. doi: 10.1109/TKDE.2005.66. url: http://ieeexplore.ieee.org/
document/1401889/.

[74] Yong Liu et al. “An evaluation of transfer learning for classifying sales engagement emails
at large scale”. In: Proc. - 19th IEEE/ACM Int. Symp. Clust. Cloud Grid Comput. CC-
Grid 2019 (2019), pp. 542–548. doi: 10.1109/CCGRID.2019.00069.

[75] Jie Lu et al. “Transfer learning using computational intelligence: A survey”. In: Knowledge-
Based Syst. 80 (May 2015), pp. 14–23. issn: 09507051. doi: 10.1016/j.knosys.2015.
01.010. url: http://dx.doi.org/10.1016/j.knosys.2015.01.010.

[76] Scott M Lundberg and Su-in Lee. “A Unified Approach to Interpreting Model Predic-
tions”. In: 31st Conf. Neural Inf. Process. Syst. (NIPS 2017). Long Beach, CA, USA,
2017.

[77] Tomas Mikolov. Word2Vec pre-processing. 2015. (Visited on 10/23/2019).

[78] Tomas Mikolov et al. “Efficient Estimation of Word Representations in Vector Space”. In:
(Jan. 2013), pp. 1–12. arXiv: 1301.3781. url: http://arxiv.org/abs/1301.3781.

[79] Tim Miller. “Explanation in Artificial Intelligence: Insights from the Social Sciences”. In:
(June 2017). arXiv: 1706.07269. url: http://arxiv.org/abs/1706.07269.

[80] Christoph Molnar. Interpretable Machine Learning. 1st ed. 2019. url: https://christophm.
github.io/interpretable-ml-book/.

[81] Douglas W. Oard et al. “Evaluation of information retrieval for E-discovery”. In: Artif.
Intell. Law 18.4 (Dec. 2010), pp. 347–386. issn: 09248463. doi: 10.1007/s10506-010-
9093-9. url: http://www.forrester.com/Research/Document/Excerpt/0,7211,
40619,00.html%20http://link.springer.com/10.1007/s10506-010-9093-9.

[82] Randal S. Olson et al. “PMLB: A large benchmark suite for machine learning evaluation
and comparison”. In: BioData Min. 10.1 (2017), pp. 1–13. issn: 17560381. doi: 10.1186/
s13040-017-0154-4. arXiv: 1703.00512.

https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1126/science.aaa8415
http://arxiv.org/abs/1702.04690
http://arxiv.org/abs/1702.04690
https://doi.org/10.1007/978-3-540-30115-8_22
http://link.springer.com/10.1007/978-3-540-30115-8%7B%5C_%7D22
http://link.springer.com/10.1007/978-3-540-30115-8%7B%5C_%7D22
https://github.com/wmkouw/libTLDA
https://www.technologyreview.com/s/515801/the-immortal-life-of-the-enron-e-mails/
https://www.technologyreview.com/s/515801/the-immortal-life-of-the-enron-e-mails/
https://doi.org/10.1145/3233231
https://arxiv.org/abs/1606.03490
https://dl.acm.org/doi/10.1145/3233231
https://doi.org/10.1109/TKDE.2005.66
http://ieeexplore.ieee.org/document/1401889/
http://ieeexplore.ieee.org/document/1401889/
https://doi.org/10.1109/CCGRID.2019.00069
https://doi.org/10.1016/j.knosys.2015.01.010
https://doi.org/10.1016/j.knosys.2015.01.010
http://dx.doi.org/10.1016/j.knosys.2015.01.010
https://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1706.07269
http://arxiv.org/abs/1706.07269
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://doi.org/10.1007/s10506-010-9093-9
https://doi.org/10.1007/s10506-010-9093-9
http://www.forrester.com/Research/Document/Excerpt/0,7211,40619,00.html%20http://link.springer.com/10.1007/s10506-010-9093-9
http://www.forrester.com/Research/Document/Excerpt/0,7211,40619,00.html%20http://link.springer.com/10.1007/s10506-010-9093-9
https://doi.org/10.1186/s13040-017-0154-4
https://doi.org/10.1186/s13040-017-0154-4
https://arxiv.org/abs/1703.00512

REFERENCES 84

[83] Nicholas M. Pace and Laura Zakaras. Where the Money Goes Understanding Litigant
Expenditures for Producing Electronic Discovery. Ed. by RAND Corporation. 2012. isbn:
9780833050632. doi: 10.1214/07-EJS057. url: http://www.rand.org/content/dam/
rand/pubs/monographs/2011/RAND%7B%5C_%7DMG996.pdf.

[84] Sinno Jialin Pan and Qiang Yang. “A Survey on Transfer Learning”. In: IEEE Trans.
Knowl. Data Eng. 22.10 (Oct. 2010), pp. 1345–1359. issn: 1041-4347. doi: 10.1109/
TKDE.2009.191. url: http://ieeexplore.ieee.org/document/5288526/.

[85] Sinno Jialin Pan et al. “Domain Adaptation via Transfer Component Analysis”. In: IEEE
Trans. Neural Networks 22.2 (Feb. 2011), pp. 199–210. issn: 1045-9227. doi: 10.1109/
TNN.2010.2091281. url: https://www.cse.ust.hk/%7B~%7Dqyang/Docs/2009/TCA.
pdf%20http://ieeexplore.ieee.org/document/5640675/.

[86] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: J. Mach. Learn. Res.
12 (2011), pp. 2825–2830.

[87] Kristina Penner and Louisa Well. POLITICAL DEBATES ON ASPECTS OF AUTOMA-
TION – GOVERNMENT AND PARLIAMENT. Tech. rep. AlgorithmWatch, 2019.

[88] Jeffrey Pennington, Richard Socher, and Christopher Manning. “Glove: Global Vectors
for Word Representation”. In: Proc. 2014 Conf. Empir. Methods Nat. Lang. Process.
96. Stroudsburg, PA, USA: Association for Computational Linguistics, 2014, pp. 1532–
1543. doi: 10.3115/v1/D14-1162. url: http://www.aclweb.org/anthology/D14-
1162%20http://aclweb.org/anthology/D14-1162.

[89] Sebastian Raschka. “Model Evaluation, Model Selection, and Algorithm Selection in Ma-
chine Learning”. In: CoRR (Nov. 2018). arXiv: 1811.12808. url: http://arxiv.org/
abs/1811.12808.

[90] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “"Why Should I Trust You?"”.
In: Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. - KDD ’16. New
York, New York, USA: ACM Press, Feb. 2016, pp. 1135–1144. isbn: 9781450342322. doi:
10.1145/2939672.2939778. arXiv: 1602.04938. url: http://arxiv.org/abs/1602.
04938.

[91] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Anchors : High-Precision
Model-Agnostic Explanations”. In: 32nd AAAI Conf. Artif. Intell. 2018.

[92] C.J. van Rijsbergen. Information Retrieval. 1st ed. 1975.

[93] Ryan Rowe et al. “Automated social hierarchy detection through email network anal-
ysis”. In: Proc. 9th WebKDD 1st SNA-KDD 2007 Work. Web Min. Soc. Netw. Anal. -
WebKDD/SNA-KDD ’07. New York, New York, USA: ACM Press, 2007, pp. 109–117.
isbn: 9781595938480. doi: 10.1145/1348549.1348562. url: http://portal.acm.org/
citation.cfm?doid=1348549.1348562.

[94] Stefan Rüping. “Learning Interpretable Models”. PhD Dissertation. Universität Dort-
mund, 2006.

[95] Wojciech Samek, Thomas Wiegand, and Klaus-Robert Müller. “Explainable Artificial
Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models”. In:
CoRR (Aug. 2017). arXiv: 1708.08296. url: http://arxiv.org/abs/1708.08296.

[96] Johannes C. Scholtes, Tim Van Cann, and Mary Mack. “The Impact of Incorrect Training
Sets and Rolling Collections on Technology-Assisted Review”. In: DESI 2013 (2013). url:
http://www.umiacs.umd.edu/%7B~%7Doard/desi5/additional/Scholtes.pdf.

[97] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. “Learning Important Features
Through Propagating Activation Differences”. In: (Apr. 2017). arXiv: 1704.02685. url:
http://arxiv.org/abs/1704.02685.

https://doi.org/10.1214/07-EJS057
http://www.rand.org/content/dam/rand/pubs/monographs/2011/RAND%7B%5C_%7DMG996.pdf
http://www.rand.org/content/dam/rand/pubs/monographs/2011/RAND%7B%5C_%7DMG996.pdf
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/TKDE.2009.191
http://ieeexplore.ieee.org/document/5288526/
https://doi.org/10.1109/TNN.2010.2091281
https://doi.org/10.1109/TNN.2010.2091281
https://www.cse.ust.hk/%7B~%7Dqyang/Docs/2009/TCA.pdf%20http://ieeexplore.ieee.org/document/5640675/
https://www.cse.ust.hk/%7B~%7Dqyang/Docs/2009/TCA.pdf%20http://ieeexplore.ieee.org/document/5640675/
https://doi.org/10.3115/v1/D14-1162
http://www.aclweb.org/anthology/D14-1162%20http://aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162%20http://aclweb.org/anthology/D14-1162
https://arxiv.org/abs/1811.12808
http://arxiv.org/abs/1811.12808
http://arxiv.org/abs/1811.12808
https://doi.org/10.1145/2939672.2939778
https://arxiv.org/abs/1602.04938
http://arxiv.org/abs/1602.04938
http://arxiv.org/abs/1602.04938
https://doi.org/10.1145/1348549.1348562
http://portal.acm.org/citation.cfm?doid=1348549.1348562
http://portal.acm.org/citation.cfm?doid=1348549.1348562
https://arxiv.org/abs/1708.08296
http://arxiv.org/abs/1708.08296
http://www.umiacs.umd.edu/%7B~%7Doard/desi5/additional/Scholtes.pdf
https://arxiv.org/abs/1704.02685
http://arxiv.org/abs/1704.02685

85 REFERENCES

[98] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. “Deep Inside Convolutional
Networks: Visualising Image Classification Models and Saliency Maps”. In: (Dec. 2013),
pp. 1–8. arXiv: 1312.6034. url: http://arxiv.org/abs/1312.6034.

[99] Sabine Sluijters. Indica | ’Je kunt niets met je documenten als je er niet naar kunt zoeken’.
Nov. 2015.

[100] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from Over-
fitting”. In: J. Mach. Learn. Res. 15 (2014), pp. 1929–1958.

[101] D. Stathakis. “How many hidden layers and nodes?” In: Int. J. Remote Sens. 30.8 (Apr.
2009), pp. 2133–2147. issn: 0143-1161. doi: 10.1080/01431160802549278. url: https:
//www.tandfonline.com/doi/full/10.1080/01431160802549278.

[102] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. “Axiomatic Attribution for Deep
Networks”. In: (Mar. 2017). arXiv: 1703.01365. url: http://arxiv.org/abs/1703.
01365.

[103] Chuanqi Tan et al. “A Survey on Deep Transfer Learning”. In: Lect. Notes Comput.
Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). Vol. 11141
LNCS. 2018, pp. 270–279. isbn: 9783030014230. doi: 10.1007/978-3-030-01424-7_27.
arXiv: 1808.01974. url: http://link.springer.com/10.1007/978-3-030-01424-
7%7B%5C_%7D27.

[104] The Sedona Conference. The Sedona Conference Cooperation Proclamation. Tech. rep.
The Sedona Conference, 2008.

[105] The United States Department of Justice Archives. Enron Trial Exhibitis and Releases.
url: https://www.justice.gov/archive/index-enron.html (visited on 06/12/2019).

[106] Eric Tzeng et al. “Adversarial Discriminative Domain Adaptation”. In: Proc. - 30th IEEE
Conf. Comput. Vis. Pattern Recognition, CVPR 2017 (Feb. 2017), pp. 2962–2971. doi:
10.1109/CVPR.2017.316. arXiv: 1702.05464. url: http://arxiv.org/abs/1702.
05464.

[107] Jyothi K. Vinjumur. “Predictive Coding Techniques With Manual Review to Identify
Privileged Documents in E-Discovery”. PhD thesis. University of Maryland, 2018. isbn:
9780438145832.

[108] Bernhard Waltl and Roland Vogl. “Explainable Artificial Intelligence – the New Frontier
in Legal Informatics”. In: Jusletter IT (Feb. 2018). url: http://codex.stanford.edu/.

[109] Xuezhi Wang. “Active Transfer Learning”. PhD thesis. Carnegie Mellon University, 2016.

[110] Karl Weiss, Taghi M. Khoshgoftaar, and DingDing Wang. “A survey of transfer learning”.
In: J. Big Data 3.1 (Dec. 2016). issn: 2196-1115. doi: 10.1186/s40537-016-0043-6.
url: http://journalofbigdata.springeropen.com/articles/10.1186/s40537-016-
0043-6.

[111] Eugene Yang et al. “Effectiveness results for popular e-discovery algorithms”. In: Proc.
16th Ed. Int. Conf. Articial Intell. Law - ICAIL ’17. New York, New York, USA: ACM
Press, 2017, pp. 261–264. isbn: 9781450348911. doi: 10.1145/3086512.3086540. url:
http://dl.acm.org/citation.cfm?doid=3086512.3086540.

[112] Jason Yosinski et al. “How transferable are features in deep neural networks?” In: 27
(Nov. 2014). arXiv: 1411.1792. url: http://arxiv.org/abs/1411.1792.

[113] Dong Zhang et al. “Modeling Interactions from Email Communication”. In: 2006 IEEE
Int. Conf. Multimed. Expo. IEEE, July 2006, pp. 2037–2040. doi: 10.1109/ICME.2006.
262614. url: http://ieeexplore.ieee.org/document/4037030/.

[114] Fuzhen Zhuang et al. Transfer Learning Toolkit: Primers and Benchmarks. Tech. rep.
2019. arXiv: 1911.08967. url: http://arxiv.org/abs/1911.08967.

https://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034
https://doi.org/10.1080/01431160802549278
https://www.tandfonline.com/doi/full/10.1080/01431160802549278
https://www.tandfonline.com/doi/full/10.1080/01431160802549278
https://arxiv.org/abs/1703.01365
http://arxiv.org/abs/1703.01365
http://arxiv.org/abs/1703.01365
https://doi.org/10.1007/978-3-030-01424-7_27
https://arxiv.org/abs/1808.01974
http://link.springer.com/10.1007/978-3-030-01424-7%7B%5C_%7D27
http://link.springer.com/10.1007/978-3-030-01424-7%7B%5C_%7D27
https://www.justice.gov/archive/index-enron.html
https://doi.org/10.1109/CVPR.2017.316
https://arxiv.org/abs/1702.05464
http://arxiv.org/abs/1702.05464
http://arxiv.org/abs/1702.05464
http://codex.stanford.edu/
https://doi.org/10.1186/s40537-016-0043-6
http://journalofbigdata.springeropen.com/articles/10.1186/s40537-016-0043-6
http://journalofbigdata.springeropen.com/articles/10.1186/s40537-016-0043-6
https://doi.org/10.1145/3086512.3086540
http://dl.acm.org/citation.cfm?doid=3086512.3086540
https://arxiv.org/abs/1411.1792
http://arxiv.org/abs/1411.1792
https://doi.org/10.1109/ICME.2006.262614
https://doi.org/10.1109/ICME.2006.262614
http://ieeexplore.ieee.org/document/4037030/
https://arxiv.org/abs/1911.08967
http://arxiv.org/abs/1911.08967

	List of Tables
	List of Figures
	List of Abbreviations
	List of Symbols
	Introduction
	Introduction to E-Discovery
	How Machine Learning Can Help
	Transferring Knowledge Between Cases: Transfer Learning
	Insights Into the Black Box of Machine Learning: Explainable Artificial Intelligence
	Problem Statement
	Research Questions
	Structure

	Background
	Processing an E-Discovery Case
	Tagging the Emails
	Enron: the Best Known Example

	Related Work
	Feature Engineering
	Inclusion of Metadata

	Machine Learning
	Neural Networks
	Model Optimisation

	Model Evaluation
	Transfer Learning
	Explainable Artificial Intelligence
	Interpretation Methods

	Research Method
	Datasets
	Pre-processing
	Vectorisation
	Classification Models
	Model Evaluation

	Model Tuning
	Metadata
	Metadata Evaluation

	Learning Bounds
	Domain Adaptation

	Results
	Pre-processing
	Hyperparameter optimisation
	Classifier Performance
	Inclusion of Metadata
	Transfer Learning
	Learning Bounds
	Unsupervised Approach
	Semi-supervised Approach
	Supervised Approach

	Explainable AI
	Implications for Legal Technology

	Discussion
	Error Analysis
	Vectorisation and Model Optimisation
	Inclusion of Metadata
	Transfer Learning
	Unsupervised approach
	Semi-supervised and supervised approaches

	Limitations and Suggestions for Future Research

	Conclusion
	Contributions

	Appendices

