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1 Introduction

Facial recognition systems are increasingly being used in places where the iden-
tity of a person has to be verified. One of these places is the border control post
at the airport. Because of the important role of these systems, it is critical to
evaluate their vulnerabilities to attacks. One way to attack these systems is by
creating face morphs as described in [I]. This technique allows multiple persons
to use the same travel documents for identification by creating an image that
looks like all of these persons at the same time. This is done by generating
a morph, an image that combines the facial features of multiple persons into
one image of a face such that a facial recognition system accepts all persons
involved as the morphed face. An example of morphing can be seen in Fig-
ure The use of this method allows malicious actors to present themselves
as a different person which could, for instance, allow a sought-after criminal to
travel without getting caught at the border. Because of these security risks, it is
important to improve the resilience of facial recognition systems against morphs.

Person 1 Person 2

0]

Figure 1: An example of morphing between person 1 and person 2. In this
case the morph is generated by a neural network.

A way to improve the detection of morphs is to generate a large set of high-
quality morphs that can be used to train facial recognition systems to be more
robust to morphs. The manual method of creating face morphs, such as de-
scribed in [I], can produce high-quality morphs but can take a lot of time per
morph. This is not a problem for a malicious actor who could spend a day
to manually edit the morph, but this is a problem if one wants to produce
many high-quality morphs. Therefore a different method of morph generation
is required. One promising method of morph generation is the use of generative
neural network models such as generative adversarial networks (GAN) and vari-
ational autoencoders (VAE). In [2] a method that combines elements of these
generative models is proposed to generate high-quality morphs. Similarly, in [3]
another method for face generation and manipulation is proposed that combines
GANs and VAEs.

In this paper, several improvements are proposed that aim to either change
the morphing method or train the network to produce better morphs. The goal
is to improve the morphs in such a way that they are closer to the input faces



according to a facial recognition system while remaining realistic to the human
eye.

2 Background

This section introduces important background information that is in many cases
necessary to understand the state of the art and the new ideas proposed in this

paper.

2.1 Convolutional Neural Networks

Neural networks with convolutional layers will be used for this thesis. Since con-
volutions are not the main focus of this research and a well-written explanation
would span multiple pages, an in-depth explanation is not provided here. In [4]
an introduction is given to convolutions in general. For transposed convolutions
[5] provides a good introduction.

2.2 Generative Adversarial Networks

’ D learns to better discern real and generated samples ‘

’ G learns to generate more convincing samples ‘

Figure 2: The GAN training cycle

Generative Adversarial Networks (GANs)[7] are a framework for training
generative neural network models. A GAN consists of a generator network (G)
and a discriminator network (D). G generates images from vectors containing
random noise. The values in these so-called latent vectors are usually sampled
from the standard normal distribution. D takes and image and outputs whether
this image is from the dataset (real) or whether it is generated by G (fake). Dur-
ing training D is fed both real and fake images separately and it has to learn to
discern the fake images from the real as well as possible. Figure [3]shows the flow
of data through a GAN. Meanwhile G is trained to generate images such that
D thinks that they are real. This creates the loop as shown in Figure [2| where
both networks continuously improve. This cycle might lead one to believe that
a GAN will eventually converge to near-perfect images, but unfortunately this
is often not the case. GANs are often unstable and require careful tuning to get
right.

In terms of network architecture, G usually consists of multiple transposed
convolutional layers that slowly scale up the image from the input latent vector



Fake/Real

Figure 3: A schematic of the data flow in a GAN. Note that the 2 arrows
leading into D do not mean that D has 2 separate inputs but rather that both
real and fake images are used as input during training. (images are from taken
from the CelebA dataset[6] and from one of the trained models)

z, which can be seen as a 1 x 1 pixels image with a number of channels equal to
the size of the vector, up to the final output image which in this case is 64 x 64
pixels and 3 color channels. D is usually modelled as a convolutional neural
network that takes these 64 x 64 pixel images and scales the image down until
it finally ends up with one single output value that outputs whether the image
appears real or fake.

2.3 VAE/GAN

The default GAN architecture is not able to reconstruct images, it is only able
to generate new images. To generate morphs, another network is needed that
“encodes” images into the latent space. This way it is possible to encode two
input images, compute the mean latent vector and then generate the morph
from that mean latent vector. In [3] a technique called VAE/GAN is introduced
that combines variational autoencoders (VAEs) and GANs. This technique is
able to encode images to a latent vector, decode images from a latent vector, as
well as generate new images similar to a VAE. Due to the added GAN part it
produces images of a substantially better quality than VAEs would. One of the
main findings in the paper is the ﬁﬁi}fé loss. A normal VAE uses a pixel-wise
reconstruction loss to evaluate how well the model reconstructs and image when
the image is first encoded to a latent vector which is then decoded back to an
image. This setup often results in very soft and blurry images in places where
there is much variation in the dataset (ie. the background behind faces. ‘C]]:)ﬁiljé
uses the activations of the [-th layer of the GAN discriminator instead of pixels,
which greatly improves image quality. This method of measuring the difference
between two images will be used in this thesis, where the activations of the I-th
layer of the discriminator will be referred to as Dis;.



2.4 Metrics for Face Recognition Systems

In order to evaluate a Face Recognition System (FRS) or a method that tries
to fool an FRS, metrics are required to quantify their performance. A number
of common metrics used in this field are discussed in this section.

2.4.1 FAR and FRR

The first two metrics are FAR and FRR, the False Acceptance Rate which
measures the error of accepting a claim that is false and the False Reject Rate
which is the proportion of truthful claims that have been denied. These metrics
both apply to the authentication system.

24.2 MMPMR

The earlier introduced FAR and FRR are not well suited for morph evaluation.
A morph is only effective if it matches all people involved in the morph. To see
why FAR fails in this situation, assume that two morphing methods are being
compared. The first morphing method takes two input images and returns the
first one. The second morphing method produces perfect morphs 50% of the
time and produces unrecognizable images the other 50% of the time. When
both methods are evaluated over multiple image pairs, they will both be ac-
cepted 50% of the time and rejected 50% of the time. This is undesirable since
only the second morphing method can produce useful morphs.

To improve the assessment of morphing techniques [§] introduces multiple
new metrics. One of these is the Mated Morph Presentation Match Rate
or MMPMR.

The MMPMR is computed over a set of M generated morphs. Each of these
morphs m is a morph between NV, subjects. Between a morph and a reference
photo of each of its subjects a similarity score S} is calculated using some face
recognition algorithm. These algorithms return the similarity score as a number
representing the similarity between two faces. The threshold 7 determines the
minimal similarity score at which two faces are considered similar. A morphing
attack only succeeds when all subjects are considered similar to the morph.
Therefore only the similarity score of the subject that matches the morph the
least has to be compared to the threshold to measure if a morphing attack was
successful. The MMPMR counts the number of successful morphing attacks
and divides this by the total number of morphs M. Formally, the MMPMR for
similarity scores is defined as

M
1 .
MMPMR(7) = U g { L_{nlnNm Sm} > T}

.....

~



For this paper only N,, = 2 will be used, which simplifies the equation to

M
MMPMR(7) = % > {[min(Sg),Sff))} > 7'}
m=1

3 State of the Art

In MorGANJ2] the use of neural networks and more specifically GANs for mor-
phing is introduced. This section introduces MorGAN and also briefly discusses
LMA, the baseline used in MorGAN.

3.1 LandMark based Attacks (LMA)

MorGAN|2], which will be discussed later, mentions LMA as the standard
method for automatically creating morphs. LMA does not use neural networks
for morphing. Instead it finds facial landmarks and applies multiple operations
to alirgn these features and morph them together between two images. The
automatic method is described in a tutorial[9] on creating face morphs with
OpenCV. LMA is not further evaluated in this thesis.

3.2 MorGAN

In MorGANJ2| an architecture for generating morphs is proposed that uses their
novel MorGAN framework for training Deep Neural Networks to generate faces,
which is then used to create morphs. Their technique is based on Adversarially
Learned Inference (ALI)[10], which will be explained in this section as a part of
MorGAN. Real images sampled from the training set are denoted as x and are
sampled from ¢(z), the distribution of real images. Latent vectors are denoted
as z and are sampled from the distribution of latent vectors p(z), which is in
this case a standard normal distribution. In MorGAN the generators G, and
G, are trained to generate a latent representation Z from an image x and an
image & from a sampled z respectively. The discriminator D learns to discern
between (z,2) and (%, z) samples. G, is optimized to let D believe that the Z
it generated is actually a real z from p(z) and G, is optimized to let D believe
that its & is a real x from ¢(z). Additionally pixel-wise reconstruction loss is
placed on the output of G,(G.(x)) to preserve identity. Figure [4] shows a di-
agram with the data-flow and losses in the MorGAN algorithm. Algorithm
shows the MorGAN training algorithm in pseudo-code.

In MorGAN the following procedure is proposed to generate a morph, as-
suming trained networks:

1. Take the 2 images, pre-process them and then calculate their latent rep-
resentations using GG,. This gives you Z; and 2,

2. Linearly interpolate them using Z = (1 — 8)2; + 822 with 8 =0.5.



3. Decode % using G, to get the output image.

MorGAN utilises multiple loss functions that together combine into one loss
function for the generator. Lgan.g is the GAN loss for both G, and G, in
MorGAN, it becomes higher as the & generated by G, or the Z generated by
G looks more fake to D than the real z or  accompanying them in the (z, z)
tuple. This loss achieves 2 things. It assures that the generated & and Z match
real samples as close as possible, and that the mappings of G, and G, become
each other’s inverse. This means that G;(G,(z)) should result in an & that
looks like & and the same for z and 2. The GAN losses are defined such that
this goal is achieved. For a batch of M samples they are defined as follows:

M M
1 N 1 P
LGAN-D = i E log(D(x™, ) — i E log(1 — D(2@, 29))

i=1 j=1

M M
1 ) ) 1 ) .
- _ (1) 5(0)yy _ = 7 (1) (1)
Laan.g = Y glog(l D(z'\", z2")) % ;log(D(m ,2\))
This part of MorGAN is the same as the ALI algorithm. It differs from the
theoretical definition of the GAN loss, where Lgan.g would simply be equal to
—Lgan.p. Both in GAN [7] and ALI [10] this choice for the alternative Lgan.a
over —Laan-p is made because it provides better gradients when D outperforms

G by a large margin.

Unfortunately this GAN loss alone is not enough to ensure that G,(G.(z))
preserves the identity of the person in the input image. Therefore Lpixel is
added by MorGAN on top of ALL Lyixel is an additional loss that measures the
pixel-wise difference between the input image and the reconstruction G, (G, (z)).
These losses are then combined in Ly, which is equal to Lgan-¢ + oLpixel. &
is a parameter used to influence the strength of Lpixer relative to Loan.g. A
larger o will cause Lpixel to have more influence and thus will theoretically lead
to better reconstructions but possibly less realistic images.

ALI and MorGAN model G, such that it outputs a probability distribution
over the latent space rather than a single latent vector. The output of G, is a
mean vector and standard deviation or variance vector depending on implemen-
tation. Values are then sampled from normal distributions with these means
and standard deviations or variances. By making the output of G, stochastic,
G, can theoretically encode stochastic features in the dataset (like the exact po-
sitions of hair or the way clouds in the background are shaped). It also allows
G to go from a distribution with a finite number of samples (¢(z)) to a distri-
bution with infinite samples (p(z)) while still being able to cover every possible
value in the latent space. Whether this stochasticity of G, is actually necessary
is up to debate, as BiGAN [I1] proposes a similar architecture as ALI without
the stochasticity and does not appear to have problems because of this omission.



In order to allow for back-propagation of the gradients from the GAN and
reconstruction losses through this sampling operation, the so-called reparame-
terization trick is used. The idea of the reparameterization trick is to sample
from a standard normal distribution N'(0, I) and then re-scale it to N'(u, 0%1)
using the outputs of the encoder. The equation for sampling then becomes

p+o®e where €~ N(0,I)

Where » denotes element-wise multiplication between two vectors. € is in this
case a vector with the same number of dimensions as the latent vector. Now it
is possible to back-propagate the error through g and o.

X
z
1 Iy
T \? U
N T,z
['pixe\l‘ ~ . ( )
S~ T
el recon D Fake/Real
4
(#,2) Lean-p
L Lean-c
T
Z

Figure 4: A schematic of the MorGAN structure during training. This diagram
shows the flow of data through the different networks. Multiple arrows into one
network do not indicate that a network takes 2 simultaneous inputs, but rather
that the model is fed both inputs separately during training. The tuples that are
fed into D do denote that both elements in the tuple are given to D at the same
time. This diagram is remade after the same diagram in [Z].
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Algorithm 1: MorGAN algorithmic training procedure

0q,0p < randomly initialize network parameters

repeat
a:(l), R ,.13(1\4) ~ q(x) // Sample M images from the data distribution
Z(l), .. .,Z(M) Np(z) // Sample M vectors from a Normal distribution
20) Gz(x(i)),i =1,....M // Compute GG, generation
:ﬁ(j) — Gx(z(j)),j =1,..., M // Compute G, generation
:%EQCOH — Gx(Gz (I(i))),i = 1, ey M // Compute reconstructed z
pgi) — l)(.iﬁ(i)7 2(7)),2 =1,...,M // Compute Discriminator predictions

P« DEWD DY j=1,... M
// Compute discriminator loss

M 3 M j
Loan-p — —5 XM log(py)) — & 320 log(1 — )
// Compute generator loss

M 4 M i
Loanc  — 2 log(1 - py)) — & oM log(ps)

w H (K,
ACpixel — ﬁ Zk:l Zl:l ’x(k’l) - xl("eco)n|
£syn <~ EGAN—G + a‘cpixel
0p < 0p — Vg, LeAN-D
9G — GG - VOG Esyn

until convergence

4 Research Questions

To what extent can the quality of morphs generated by MorGAN, as measured
by a facial recognition system, be improved by

1. using a feature-based reconstruction loss similar to the one used in VAE/GAN
instead of the pixel-wise reconstruction loss used by MorGAN?

2. adding a morph loss to the existing losses?
3. further optimizing the morphs using gradient descent?

4. using a neural network to morph two latent vectors instead of using the
mean latent vector?

5 Global Approach

This section introduces the possible improvements introduced in the research
questions in more detail while staying high-level. The exact implementation
used will be discussed in the methodology section.

11



5.1 Reconstruction Loss Similar to VAE/GAN

In MorGAN the reconstruction loss is computed using an L1 loss between the
input image and the reconstruction of that image. Pixel-wise losses like this one
often make the image softer. This also happens in MorGAN if the reconstruction
loss scaling factor « is increased. In order to improve the face reconstruction
performance of MorGAN it would be beneficial to be able to increase o without
making the image softer. A possible way to achieve this is to apply a loss
similar to the LDt loss in VAE/GAN. This loss would be used as an alternative
way of computing the reconstruction loss in MorGAN. In this loss the output
of the [-th layer in the discriminator is computed and the difference between
those activations is used as the error. Since the discriminator learns to discern
real and fake images, these activation maps might contain useful features. By
comparing the images this way the hope is that facial features are mostly forced
to be similar while less important information like the background receives less
attention.

5.2 Morph Loss

The ultimate goal of face morph generation is to generate an image of a face
that looks like the same person as all input persons, while also not looking like a
generated image. GANs are optimized to do the latter, as they aim to generate
realistic images. ALI introduces an encoder that is also trained using the GAN
loss, but it often fails to reconstruct the image in such a way that the identity
of a person is retained. MorGAN improves this by adding a reconstruction loss
on top of ALI. This greatly improves the reconstruction performance, but might
not necessarily improve morphing performance since it is not guaranteed that a
taking the mean between two latent vectors will result in a face with the “mean
identity” according to an FRS.

In order to potentially improve morphing performance, a morph loss is added
to the default MorGAN algorithm which aims to directly optimize morphing
performance of the model. Each training step the model will generate a morph
in the same way as it is done when generating a normal MorGAN morph. This
morph is generated between the images in the batch and a batch of random im-
ages from the train set. Then the morph loss will evaluate how close this morph
is to the input images. In a perfect world this morph loss would be the same as
the distance metric used for computing the MMPMR. This way the MMPMR
can be optimized directly. However, using a full FRS each training step does
come with a large computational cost. Using a pixel-wise distance measure is
computationally efficient, but also forces the network to morph the images on
a pixel level instead of only morphing the facial features. In preliminary exper-
iments this had a large adverse effect on image quality. As a trade-off between
computational cost and similarity to the MMPMR, a distance measure based
on the LR from the VAE/GAN paper is chosen for this thesis. The exact

llike
implementation of this morph loss will be further discussed in the methodology

12



section.

5.3 Alternatives to Taking the Mean of Two Latent Vec-
tors

Up until now the latent vector of the morph is always computed using the mean
of two latent vectors. There is no guarantee that this method of morphing is
optimal for the latent encoding learned by the model. It may, therefore, be
wise to explore different methods for selecting the morph latent vector. These
two approaches both aim to explore whether the morphing method itself can be
improved.

5.3.1 Using Gradient Descent

In order to further improve the morphing performance of the trained models,
this approach aims to further optimize the morphs and reconstructions made by
fully trained models. This is done by optimizing the latent vectors with respect
to the reconstruction and morph losses for a single pair of input images. This
greatly increases the duration of generating a single morph, but might also yield
an increase in morphing performance.

5.3.2 Using a Neural Network

Another possible method of improving the morphing process is training an extra
neural network that is given two latent vectors and produces a morphed latent
vector. This morphing network is trained using the morph loss and can either
be trained as part of the MorGAN with morph loss training loop or it can
be trained for a fully converged model. A morph network like can introduce
instability into the training process and can also lead to a biased morphing
process where one latent vector is favored over the other. In the methodology
section the challenges and design choices will be addressed in more detail.

6 Methodology

This section describes how the possible improvements presented in the previous
section will be trained, evaluated and what design decisions were made for the
implementation.

6.1 Dataset

A large dataset of faces is required in order to be able to train the networks.
Similar to MorGAN the CelebA dataset[6] was chosen. The CelebA dataset
consists of pictures with a large variety of poses and backgrounds. It also con-
tains information about the identity of all images in the dataset. The number
of unique identities in the dataset is a lot smaller than the number of images
in the dataset and thus many images are of the same identity. This is useful

13



since at least 2 images are required for proper evaluation, which will be further
explained in the evaluation section.

6.1.1 Cropping and Alignment

The task of face generation can be made significantly easier by aligning faces.
The faces in the CelebA are already aligned, but it proved to be hard to repro-
duce the exact face alignment method used by the CelebA dataset. In order
to be flexible in terms of dataset and allow for the use of images from other
sources as well, the images were aligned and cropped using Dlib [12]. Specifi-
cally shape_predictor_5_face_landmarks.dat[I3] was used to align the im-
ages using the dlib.get_face_chip method. This method also cropped and
resized the images to 64 x 64 pixels. The cropping cuts away a large amount of
the background of the image which is irrelevant for the task of morphing. Some
images before and after these steps can be found in Figure [f]

Figure 5: Comparison of normal CelebA images (top) and the same images
after the Dlib crop and align procedure (bottom)

6.1.2 Filtering

The CelebA dataset is a dataset consisting of a diverse set of poses. Many
faces are sideways, which is not the type of image usually used for passports.
Therefore all images that are not in a frontal pose have been filtered out of the
dataset. For this purpose the alignment data provided by the CelebA dataset
itself is used. For the pose detection, the positions of the nose and eyes are used.
First they are normalized to be between 0 and 1 using the width and height of the
image. Then the distances from the left and right eyes to the nose are computed.
The absolute difference between these distances is used as a measure for how
sideways the face is. In order to stay close to the methodology of MorGAN,
the threshold was chosen such that the resulting dataset size was close to the
103,480 reported in MorGAN. This resulted in a threshold of 0.0288924 and a
final dataset size of 102,025. Any image with an absolute difference below or
equal to this threshold is included.

6.1.3 Partitioning

A test and validation set of unseen images are required to be able to evaluate
the networks. CelebA does come with a predefined partitioning between train,

14



validation and test sets. This partitioning, however, does put images of the same
identity into different splits. In order to guarantee that the test and validation
set only contain unseen identities, a new partitioning is made. Some identities
have a large number of images attached to them, sometimes even more than
30. During evaluation every identity is used only once, so that would waste a
large number of images that could have been used for training. To alleviate
this problem, only identities with 3, 4, 5, or 6 images attached to them will
be included in the validation and test sets. Initially the test set was chosen to
contain 1000 unique identities and the validation set was chosen to contain 500
unique identities. In the evaluation section an additional filtering step will be
introduced that cuts down these numbers to 632 unique identities in test and
346 unique identities in the validation set.

6.2 Training

The train set is used to train all the models. This training is done in many
runs over the entire train set, such a complete run over the train set is often
referred to as an epoch. Since the entire dataset usually does not fit into GPU
memory, training is done in (mini)batches. The gradients computed for a mini-
batch are an approximation of the gradients for the entire dataset, but much
cheaper to compute. A different batch size appears to have many effects on
training and the optimal configuration is still up for discussion. In this case, the
training algorithm samples batches of size 65 from the shuffled train set, loads
the respective images from disk and transforms the entire batch to a tensor with
32-bit floating point pixel values between 0 and 1. This batch of real images
becomes a tensor with 65 images, consisting of 3 color channels and a resolution
of 64 x 64. In many examples in the thesis, examples are given without the
batch dimension. This is done to ensure readability, everything that has to do
with training a network or latent vector is done batch-wise.

What is done with these batches of real images is depends on the algorithm.
The default MorGAN algorithm serves as the basis for all other implementa-
tions except for the latent vector optimization, where the models are already
trained beforehand. All models are built using the same structure, which can
be found in Table [} This layout was chosen to stay consistent with ALI and
MorGAN. Better possible layouts have since been discovered, as will be alluded
to in the Future Work section, but these are not relevant since the main goal is
to improve the algorithm regardless of model layout.

Models are trained mainly on a NVIDIA 1080 TT graphics card, where train-
ing takes anywhere between one and three days depending on the chosen algo-
rithm and settings. For rapid testing of improvements, most ideas were not
immediately tested on 64 x 64 images, but rather on a smaller resolution train-
ing set of 28 x 28 images. This dataset is simply acquired by resizing the images
in the normal dataset to 28 x 28 when loading them from disk. This is obviously
not representative of the final data-set and can also not be used to estimate val-

15



ues like the MMPMR. It does allow for quick stability and bug testing and for
estimating some hyperparameters. As noted before, all final models are trained
and evaluated on the 64 x 64 data-set.

6.3 Evaluation

As stated in the introduction, the goal of this research is to improve the sim-
ilarity between the morph and the input identities as measured by a facial
recognition system. The performance will be measured using the MMPMR(1)
over a selection of pairs in the test-set. As specified in [§], the images of a sub-
ject used to create a morph should not be used for the evaluation of the same
morph. The face_recognition[I4] library is used as the facial recognition sys-
tem for evaluation. The euclidean distance between the FRS embeddings of
2 images is used as a dissimilarity metric. Two images with a euclidean dis-
tance lower than 0.6 are considered to be the same person, 7 = 0.6. All face
encodings are computed using the option num_jitters = 1.0. According to
the face_recognition documentation|[I4] increasing this value makes the fa-
cial recognition system more accurate, but the jittering process also introduces
randomness in the results which is undesirable.

6.3.1 Input and Reference Image Selection

For each identity in both the validation and test set, a pair of input and reference
image are picked. The input image is used as input for the morphing process and
is denoted as x,,. The reference image is used for comparison when computing
the MMPMR as well as all the other results. It is denoted z'*f. An identity in
the test or validation set may have up to 6 images of that identity linked to it.
For each image the FRS embedding is computed using the face_recognition
library. All possible pairs of images for this identity are tried and the first pair
with a euclidean distance less than 0.4 is picked. This is done to ensure that the
reference image actually looks like the input person. This measure is aimed to
ensure that the chosen pair does actually look like the same person. Since there
are duplicate images in CelebA, a pair with a distance of 0 is not considered in
this process. Identities that do not have any pair that fits the requirements are
filtered out.

6.3.2 Pair Selection

Every identity in the validation and test now has an z,, and ', In this section

the selection of pairs of identities will be discussed. The pairs of identities used
to compute the MMPMR are chosen such that they are close together. This is
similar to what was done in the MorGAN paper. If one were to use a morphing
attack, the idea is that they would be able to select someone else who already
looks like them in order to ease the morphing process.
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Generation of these pairs is done as follows. As long as there are enough
identities that are not yet used in a pair, a random identity is picked from the set
of unused identities. For all other unused identities the distance to this identity
is computed. The distance is defined as the euclidean distance between the input
images. The closest pair is then added to the set of pairs and removed from the
set of unused pairs. The picking algorithm continues like this until there are no
more pairs left to form. Any pair with a euclidean distance that is not smaller
than one will be discarded to ensure that the difference between 2 identities
does not become too large. The choice for this value is admittedly arbitrary
and was chosen because it works. There might be more optimal choices for this
threshold.

6.3.3 Reported Metrics

In this section all metrics reported in the results section will be explained.
During testing 2 is taken to be the mean of the output distribution of G, as
opposed to being sampled. This is done to achieve consistent results.

| dist(E"", z"f) = 0.675

ol

Figure 6: A schematic of the reconstruction distance calculation for one per-
son. Subscript n has been kept out for readability. G, and G, are the generator
networks from a trained model. The reconstruction distance is computed using
an FRS and is used for the reconstruction rate and the mean reconstruction
distance over the validation and test sets.

F.recon
x

To measure the reconstruction performance of the models, two metrics are
used. For both metrics the reconstruction distance dist(#7¢°°" %) is used.
dist denotes the euclidean distance between the FRS encoding of both input
images. In Figure [6] the reconstruction process is shown. The first metric used
for model evaluation is the reconstruction rate (RR):

N
1
Reconstruction rate = N Z {dist(i:fco”, zreh) < 0.6}

n
n

Where N is the amount of images in the validation or test set. The subscript n
denotes the n-th pair of (z,2**) from the validation or test set. The reconstruc-
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tion rate measures the fraction of reconstructed images that looks enough like a
reference image according to the facial recognition system. This metric can be
used to evaluate whether the model manages to correctly reproduce the identity
of the given person. For further evaluation of the reconstruction performance
the mean reconstruction distance (MRD) is also computed.

N
1
Reconstruction distance = N Z {dist(fzecon, xff)}

n

For morphing there are also two metrics that are used to evaluate the per-
formance of the model. The first metric used is the MMPMR. In order to stay
consistent with the notation used above, the notation used here is different than
the notation used in the MMPMR equation in the background section. xf,‘ffl
indicates the reference image of the Ist subject of morph m and Z™m°™P" repre-
sents the generated morph image for morph m. The equation for MMPMR has

already been discussed, but for clarity it is expressed once more in this notation:

M
1
MMPMR = - - > { max <dist(:zm°rph, atel)), dist(zmePh, mf,‘fo)) < 0.6}

m=1

In Figure [7] a diagram can be found that shows what is being measured. Ad-

2 34

= 7

smorph | dist(7morPh gtet) = 0.694

1

T2

3

Figure 7: A schematic of the morph distance calculation for a single morph.
The subscript m has been left out for readability as all images in this diagram
belong to the same m. G, and G, are the generator networks from a trained
model. The reconstruction distance is computed using an FRS and is used for
the MMPMR and the mean morph distance over the validation and test sets.

ditionally the mean morphing distance (MMD) is also denoted in the results.
This is simply the mean distance between all morphs and all of their respective
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reference images:

Mean morph distance =

M=

1
T {0.5- (dz’st(jg;mph, aret) ) +dist(EmeP, x;‘ifz)> }

m=1

6.4 Implementation

This section contains the most important details concerning the actual imple-

mentation and design choices of the baseline and the proposed ideas. Everything

is implemented in the Python programming language using the PyTorch[15]

deep learning library. The code is available at https://github.com/Gerryflap/
master_thesis.

6.4.1 Implementation differences wrt. the MorGAN and ALI paper

Implementing MorGAN using the details presented in the MorGAN[2] and
ALI[I0] papers resulted in an implementation that would diverge before 123
epochs were reached. An example can be found in Figure[8] Additionally, some
parts of the ALI and MorGAN paper did not seem to align with the provided
code. In this section, the known differences between both papers and the imple-
mentation used for this thesis will be highlighted. Most of these improvements
are inspired by an existing ALI implementation in PyTorch[I6].

Figure 8: An example of divergence in earlier versions of the MorGAN imple-
mentation. On the left is the G, output for a random z after the 29th epoch, on
the right after the 30th epoch for the same z.

Limiting the Number Of Discriminator Updates The divergence prob-
lem seems to be caused by D either becoming too strong or by D overfitting on
the real images, which yields a useless training signal to G, and G,. ALI and
MorGAN utilize a non-saturating GAN loss which should still provide useful
gradients when D becomes too strong, but in this case it appears that this does
not solve the problem. A simple way to stop this from happening is to stop
updating D when it gets too far ahead. This trick proves to be very effective
in this instance and is therefore used in all algorithms described in this paper.
To be more precise, the step 0p < 0p — Vg, Lean.p in Algorithm |I| is only
performed when Lgan.g < 3.5. G, and G, are always updated.

Dropout Another difference with the ALI paper is the application of dropout.
In the official code for ALI, dropout is applied to the D(z) part of the discrimi-
nator as well (JI7] experiments/ali_celeba.py line 127). In the paper this is
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not the case. For all thesis experiments, dropout is applied as it is done in the
ALI code instead of the way it is done in the paper. See Table [f] for network
layout including dropout.

Biases Although not noted in the ALI or MorGAN paper, ALI and probably
also MorGAN use a so-called untied bias before the output activation function
of G,. This effectively means a bias of dimensions (3,64, 64) is added to the
output of the last layer. This bias is initialized such that the sigmoid of that
bias outputs a “mean face”. In the thesis implementation this is implemented as
the mean image of the first batch. Applying this trick seems to speed up initial
training.

MorGAN Reconstruction Loss The reconstruction loss was changed in
scale compared to the equation in the MorGAN paper. In MorGAN;, the re-
construction loss is the sum of absolute differences between pixel values, which
is then divided by the width and height of the image. In the paper it is not
described what is done with the batch dimension and the channel dimension.
For all implementations in this thesis, the reconstruction loss is also divided by
the batch dimension and the channel dimension. This makes it equal to the
mean absolute error. Given the batch size (65) and the number of channels (3)
this could be a scale change of 65 -3 = 195 times smaller.

Improved Hyperparameters Since the implementation for this thesis most
likely differs from the implementation used for MorGAN, tuning the hyperpa-
rameters might yield better performance. A number of preliminary experiments
were conducted and some hyperparameters were changed. The dropout rate was
decreased from 0.2 to 0.03 and the latent space dimension was increased from
256 to 512. When not listed, « is set to 0.3 as in MorGAN. The results for the
improved hyperparameters are listed in the results section.

6.4.2 Dis; reconstruction loss implementation

The Dis;loss implementation in this paper deviates from the one used in VAE/GANJ3].
This difference exists to better match the default loss structure of MorGAN.

As stated in the global approach section, Dis;(x) is computed by computing
the output activations of layer [ in the discriminator for image z. The output
tensor Dis; () is of the shape (N, C, H, W) with N being the batch size, C being
the number of output channels of the [-th layer of D, H being the height of the
output in pixels and W being the width. During training, L econ iS computed
in the following way when the Dis;version of the reconstruction loss is used:
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f S S S S (D@~ Disrecon)nen)
recon NxCxHxW

or shorter
‘Crecon = MSE(DISZ (x)u DiSl(jrecon))

where MSE stands for Mean Squared Error. In the hyperparameter overview
(Table @, the choice of [ for all experiments conducted in this paper can be
found. This [ is chosen to be after the same amount of downsamples as the
choice of [ in VAE/GAN. Further experiments regarding the choice of [ could
be interesting, but have not been performed here.

6.4.3 MorGAN with Morph loss

The morph loss was introduced in the global approach section as a possible ad-
dition to MorGAN that would improve morphing performance. Unless specified
otherwise, this morph loss uses the Dis;-based feature-wise distance which is
discussed in detail in the section above. Based on the description of the morph
loss up until now there are many possible ways of implementing it. The imple-
mentation below was chosen based on what seemed the most sensible, as it was
impossible to evaluate many different possible implementations on top of the
number of experiments already performed for this thesis.

As stated before, the morph loss is based on the distance between Dis;(z1)
and Dis;(Zmorph) and between Dis;(z2) and Disj(@morph). Similarly to the
Dis;reconstruction loss the distance metric chosen for this is the mean squared
error (MSE). Now there are two losses that are to be minimized, the dis-
tance between Dis;(z1) and Dis;(Zmorpn) and the distance between Dis;(z2) and
Dis;(#morph)- The morph loss is defined as the mean of these 2 distances. The
mean is chosen over the max of the two distances here because the max only
provides information about the largest distance, which results in throwing away
the other distance. Since the max might continuously switch during training, it
could lead to a more unstable training process. These are all hypotheses that
are not further evaluated, it is possible that further research proves these as-
sumptions wrong. The equation below shows the full morph loss as described
above.

morph_loss(21, 2, Zmorph) =
0.5 - MSE (Dis; (Zmorpn ), Disi (1)) + 0.5 - MSE(Dis; (Zmorph ), Disy (22))

In order to compute the morph loss, the images Tmorpn, 1, and z2 are
required. The x used in the normal MorGAN algorithm is used as z;. 2 is then
picked to be a random image from the dataset belonging to a different identity.
Next £; ~ G.(z1) and 25 ~ G,(x2) are computed and the mean of these two
latent vectors is taken to get Zmorpn. This finally results in Zmorph = Gz (Zmorph)-
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In Algorithm [2] a more formal description of the extended algorithm can be
found.

The morph loss is weighted by aumorpn, similar to o for the MorGAN recon-
struction loss. The evaluated models with morph loss are trained with both «
and amorph equal to 3. By default the weights of both G, and G, are updated
using the morph loss gradients. Additionally configurations with the morph loss
only applied to G, and G, are also trained and listed in the results section.

6.4.4 Gradient Descent on zmorph

As specified in the global approach section, this idea attempts to increase mor-
phing and reconstruction performance of already trained models by optimizing
the morphs and reconstructions instead of the model weights. This is done by
optimizing the latent vectors to minimize the reconstruction loss (for £; and 29)
or morph loss (for Znorpn). In this section the details of this experiment are
discussed.

Given are the input images x; and xo, as well as trained G,, G, and D
networks. For clarity, 7 and xo are the input images for the two persons
of whom a morph is to be made. Similar to the normal morphing method,
21 ~ G.(21), 22 ~ G, (x2) and Znorph = 21322 are computed. These vec-
tors are used as a starting point for further optimization. Z.,.pn is trained to
minimize morphiloss(:rl,xg,Gx(émorph)). 21 and Z9 are trained to minimize

recon_ loss (acl , Gy (21)) and recon_ loss (xg , Gy (22)) respectively.

Training of these latent vectors is done in batches of 32 morphs at a time.
Each batch is optimized for 500 training steps using the Adam optimizer with
a learning rate of 0.01 and the default beta values for PyTorch (0.9 and 0.999).
For both reconstruction loss and morph loss the Dis; variant of the loss is used.
The weights of the models are frozen and only the latent vectors are optimized.
The evaluation of this method is done over the entire test set, which takes nearly
an hour on an NVIDIA GTX 1060 6GB under these parameters. Hyperparam-
eters were chosen by running experiments on the validation set.

6.4.5 Morph network

The morph network is introduced in the global approach section as a possible
method of increasing morphing performance. In Figure [J] a schematic is shown
of the morphing process when using this morphing network. There are many
possibilities to consider for this morph network. It can be trained during or after
the training of the other networks, it can have many different architectures, nor-
malization can be used but might not work well, multiple regularization losses
might be necessary to control it, and the list goes on. Exploration of all these
possible options can be a whole thesis on its own, so for this experiment a num-
ber of choices have been made to reduce the search space.
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Figure 9: A schematic of the morph generation process when using a mor-
phing network. “Morph net” denotes the morphing network. The concatenate
operation concatenates the two n-dimensional latent vectors together to form
one 2n-dimensional vector.

The chosen network architecture for the morph network is a simple feed-
forward neural network with two hidden layers. The first and second layer have
1024 outputs. The last layer has 512 output neurons to match the latent size
used for this experiment. A full description of the architecture can be found in
Table [7] in the Appendix.

The morphing network evaluated in the results section is trained together
with the other networks in a similar way as the MorGAN with morph loss al-
gorithm. Instead to generating a morph by taking the mean latent vector, the
morphing network is used. In order to improve stability a number of additions
and changes are made to the training algorithm, losses and hyperparameters.

The first addition is a pre-training phase where the morphing network is
trained to output the mean of the two latent vectors. This is done by sam-
pling pairs of latent vectors z; and z5 from a standard normal distribution. The
model is then trained to output % using a MSE loss function. This is done
for 50,000 batches of 64 pairs of latent vectors. Parameters are optimized using
the Adam optimizer and a learning rate of 0.0001.

When the normal morph loss is used, the morphing network learns to output
either Z; or 2 all the time. In order to solve this problem, a redefined morph

loss is used. The redefined morph loss is defined as

morph_loss_ . (21,2, Zmorph) =

max (MSE(Disl(aEmorph), Dis; (1)), MSE (Dis; (Zmorph ), Dis; (x2))>
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This way, the morph loss is always equal to the highest of the two reconstruc-
tion losses. Whenever the morph is biased towards one input it will always be
pulled towards the other input again. During the morphing network experiment
an « and ouerph Of 3.0 are used. The morph loss is not applied to G in this
experiment to improve stability.

A further step to improve stability is the addition of the morph consistency
loss. This loss is added to ensure that morphing any z ~ p(z) with itself will
also yield itself as output. This loss is computed by sampling this z ~ p(z),
computing a morph between this z and itself using the morphing network and
then computing the MSE between this output and the z used as an input. This
loss is added to the other losses without any further scaling (a scaling factor of 1).

During preliminary experiments the morphing network would output latent
vectors with way too large values in it for a small percentage of the morphs. The
inputs for which this happened were not constant and often changed from epoch
to epoch. The large values cause the output morph images to consist solely of
noise. In order to fix this, an extra loss was added to constrain the output latent
vector. The goal of this loss is to ensure that the L2 norm of the output latent
vector is smaller or equal to the maximal L2 norm of the two input vectors,
||Zmorph |2 < max(||21]|2, ||22]|2). Due to a programming error in the code used
for the results, this was implemented as ||Zmorpn|l2 < max(||21]|2, [|21]|2) which
becomes ||Zmorph||2 < ||Z1]]2- Due to time constraints this error was not resolved.
The loss is implemented as ReLU(||2morph||2 — ||21]|2)>. The Rectified Linear
Unit (ReLU) activation function is defined as ReLU(z) = max(0,z) and is
thus 0 when the input is smaller than 0 and otherwise equal to the input. By
using the ReLLU activation function, this loss only has a nonzero gradient when
| Zmorph||2 is larger than ||Z1]|o. This ensures that ||Zmorph||2 is not minimized
when the constraint is not violated. In order to achieve its purpose, the loss had
to be scaled with a scaling factor of 10. Therefore the final loss term becomes
10 - ReLU(||Zmorph |2 — ||21]]2)? . After applying this loss, the extreme values in
the output latent vectors disappeared.

7 Results

7.1 Improved Hyperparameters

This section shows the results for MorGAN and MorGAN with the improved
hyperparameters for this implementation (called MorGAN+) that were intro-
duced in section In MorGAN+ the latent dimension is increased from 256
to 512 and dropout is decreased from 0.2 to 0.03. Table [1] lists the results for
these to models.

In Figure[I0]the distributions of FRS distances can be found for these models.
This figure shows the distribution of FRS encoding distances between multiple
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sets of image pairs. In blue the distribution of distances between genuine pairs x
with 2*f are shown. The green plot shows the distribution of distances between
the generated morphs Zmerpn and their respective reference images x{Cf and x§°f.
In orange the mated impostor distance distribution is shown. This denotes the
distance between two reference images from the same morphing pair in the test
set (2%°f and 2%f) Finally, the red plot show this distribution between pairs
of ™! images that are not specifically chosen to look like each other (random
impostor). There are two impostor graphs because of the evaluation method
used. Pairs of persons are made such that they already look like each other and
then these pairs are used for morphing. Therefore it is useful to know how the

distances between these chosen pairs are distributed.

In many cases the morph distances in these density plots are on average larger
than the mated morph distances. This indicates that the reference images are
actually closer to each other than they are to the morph. In the ideal case this
distance would actually be half the distance between mated impostors, since that
would indicate that the morph sits right in-between the two reference images.

Model MMPMR | RR | MMD | MRD
MorGAN 0.032 0.082 | 0.719 0.720
MorGAN+ || 0.071 0.145 | 0.693 0.695

Table 1: Results for MorGAN and MorGAN+. The table lists Mated Morph
Presentation Match Rate (MMPMR), Reconstruction Rate (RR), Mean Morph
Distance (MMD), and Mean Reconstruction Distance (MRD)

mated impostor mated impostor
—— morph
—— random impostor —— random impostor
— genuine — genuine

—— morph

0.0 0.2 0.4 0.6 0.8 1.0 12 0.0 0.2 0.4 0.6 0.8 1.0 12
FRS encoding euclidean distance FRS encoding euclidean distance

(a) MorGAN (b) MorGAN+

Figure 10: Distribution of FRS encoding distances for morphs compared to
genuine, mated impostor and random impostor for MorGAN with normal hy-
perparameters and MorGAN with improved hyperparameters.
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Figure 11: Morph inputs and generated morphs by the MorGAN (1) and Mor-
GAN+ (2) models respectively. Morph inputs x1 and xo are displayed left and
right of the morphs. The morphs are displayed in-order in the middle with every
column being a different model.

7.2 Results for Dis; Loss and Increasing o

Table 2] the results are shown for models with pixel-wise or Dis; reconstruction
loss for various values of a. In Figure [I2] the distribution of FRS distances for
all configurations can be found.

Model Dis; | o MMPMR | RR | MMD | MRD
MorGAN+ | x 0.3 0.071 0.145 | 0.693 0.695
MorGAN+ | v 0.3 0.080 0.215 | 0.669 0.664
MorGAN+ | x 3.0 0.141 0.264 | 0.654 0.651
MorGAN+ | v 3.0 0.151 0.349 | 0.646 0.634
MorGAN+ | x 30.0 || 0.151 0.465 | 0.631 0.607
MorGAN+ | v 30.0 || 0.315 0.677 | 0.599 0.564

Table 2: Results for various models with either pizel-wise or Dis; reconstruc-
tion loss and varying values for reconstruction loss factor o
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(b) MorGAN+ with Dis
loss, « = 0.3
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(f) MorGAN+, Dis; , a = 30

Figure 12: FRS encoding distance comparison for the different reconstruction

loss configurations
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Figure 13: Morph inputs and generated morphs by MorGAN+ (1), MorGAN+
Dis; (2), MorGAN+ o =3 (3), MorGAN+ Dis; a =3 (4), MorGAN+ o = 30
(5), and MorGAN+ Dis; o = 30 (6) models. Morph inputs x1 and xo are
displayed left and right of the morphs. The morphs are displayed in-order in the
middle with every column being a different model.
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7.3 Morph Loss Results

In Table [3| a comparison can be found between different morph loss configura-
tions. All models are trained with Dis; reconstruction loss and o« = 3 and use
the MorGAN+ hyperparameters.

Qmorph | ML MMPMR | RR | MMD | MRD
0.0 Neither || 0.151 0.349 | 0.646 0.634
3.0 Both 0.090 0.230 | 0.664 0.655
3.0 G, 0.103 0.281 | 0.653 0.644
3.0 Gy 0.125 0.315 | 0.650 0.634

Table 3: Results for the Dis;

morph loss. The ML column lists which networks
were trained using the morph loss.
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Figure 14: FRS encoding distance comparison for the different morph loss

configurations
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Figure 15: Morph inputs and generated morphs by models trained without
morph loss (1), with morph loss (2) with morph loss only on G, (3), and with
morph loss only on Gy (4). Morph inputs 1 and x4 are displayed left and right
of the morphs. The morphs are displayed in-order in the middle with every
column being a different model.
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7.4 Gradient Descent on Z,orph

In this section the results are listed for the gradient descent on latent vectors
experiments. For these experiments Znorpn as well as 2; and Z3 are optimized
for the entire train set. In Table [d] the results for these experiments and for the
original models are listed. The original models are the Dis; models evaluated in
Section The respective o values used during training of the models are also
listed in the table. These a values are only used during training of these models
and are not used when optimizing the latent vectors for these experiments.

Using GD | « MMPMR | RR | MMD | MRD
X 0.3 0.080 0.215 | 0.669 0.664
v 0.3 0.148 0.542 | 0.633 0.594
X 3.0 0.151 0.349 | 0.646 0.634
v 3.0 0.232 0.674 | 0.619 0.566
X 30.0 || 0.315 0.677 | 0.599 0.564
v 30.0 || 0.344 0.897 | 0.591 0.515

Table 4: Results for the gradient descent on latent vectors experiments. The
“Using GD” column denotes whether the latent vectors have been optimized using

gradient descent
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Figure 16: FRS encoding distance comparison for the different models without
and with gradient descent on the latent vectors.
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1 (1a) (1b) (23) (2b) (3a) (3b) 2
Figure 17: Morph inputs and generated morphs by models trained with a = 0.3
(1), « =3 (2) and o = 30 (3) Dis; reconstruction loss without (a) and with (b)
gradient descent on the latent vectors after training. Morph inputs ©1 and xs

are displayed left and right of the morphs. The morphs are displayed in-order
in the middle with every column being a different model.
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7.5 Morph Network

This section contains results for the morphing network. The results are for the
same trained G, and G, networks, the weights are exactly the same in both
evaluations. The only difference is that either the morphing network or linear
interpolation (the default MorGAN morphing method) is used for morphing
%21 and Z9. This is also reflected in the results for the reconstruction rate and
mean reconstruction distance where the morphing method has no influence and
therefore the results are the same.

Morphing Method | MMPMR | RR | MMD | MRD
Linear interpolation 0.141 0.294 | 0.642 0.637
Morph Network 0.132 0.294 | 0.655 0.637

Table 5: Results for the morphing network experiments

mated impostor mated impostor
—— morph 8 —— morph
—— random impostor —— random impostor
—— genuine —— genuine

Density

IS

0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.8 1.0 12
FRS encoding euclidean distance FRS encoding euclidean distance

(a) Linear interpolation (b) Using the morphing network

Figure 18: FRS encoding distance comparison for the same model when using
the morphing network and when using the linear interpolation method used in
MorGAN
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Figure 19: Morph inputs and generated morphs by the model trained with
morphing network. (1) shows morphs with the normal linear morphing method
and (2) with the morphing network for the same model. Morph inputs x1 and
xo are displayed left and right of the morphs.

8 Discussion

This section will discuss the results presented in the section above as well as the
limitations of this research.

8.1 Improved Hyperparameters

The improved hyperparameters do yield a substantial boost in both morphing
and reconstruction performance. Additionally the images generated by the im-
proved hyperparameter model seem less noisy and seem to match better with
the input images in Figure although this is very subjective. One of the
improvements to the hyperparameters is a greatly reduced dropout rate (0.2
to 0.03). Dropout was added to regularize D and to stop sudden training col-
lapse, but this is not as important anymore since the implementation used for
all experiments in this report uses an extra regularization that only updates D
when the G GAN loss is below a certain threshold. When dropout is lowered,
D will become better at detecting fake images and thus the threshold will be
reached more often. Therefore D is still prevented from becoming too strong,
but simply by another regularization technique.

In [I8] the authors also encountered problems with instability and experi-
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mented with different regularization strategies to stabilize training. After ini-
tially experimenting with gradient penalties they note that “ Repeating this ex-
periment with various strengths of Orthogonal Regularization, DropQOut, and L2,
reveals similar behaviors for these regularization strategies: with high enough
penalties on D, training stability can be achieved, but at a substantial cost to
performance”. Note that these experiments were done with a normal GAN al-
gorithm and not with ALI or MorGAN. Still the results for reduced dropout on
MorGAN do line up with their results, a lower dropout rate improves overall
quality.

Attempts to remove all regularization on ALI or MorGAN result in collapse
before training has converged. Finding out why this happens is not in the scope
of this thesis, but the hypothesis is that this happens because the ALI and Mor-
GAN discriminator has many more parameters due to it receiving both = and
z as inputs. Therefore it is easier for D to overfit on the dataset and the game
between G and D is also less balanced.

The improved hyperparameters also included a larger latent space size.
While this might also have led to the improved performance, it is likely that the
reduced dropout rate is responsible for the majority of the improvements. In
separate experiments done on 28 x 28 CelebA images during the initial hyper-
parameter search, reduced dropout rates had the same improving effect without
changing the latent space. Still it is impossible to deduce from these results
which improvement had the most effect and as such, no conclusion on the indi-
vidual effects of these changes will be made.

8.2 Results for Dis; Loss and Increasing «

Looking at Table [2] and Figure [[2 a number of observations can be made. The
first observation is that a higher « value, which is the factor that scales the
reconstruction loss, results in better morphing and reconstruction performance.
This shows that the morphing performance is at least partially tied to the recon-
struction performance. This makes sense, since a model that cannot retain the
identity of a person reliably will probably also not fare well on the harder task
of generating a morph that retains two identities. This result also shows that
the latent space is laid out in such a way that the mean between 2 latent vectors
often does result in a face that has properties of both inputs. This result can
also mean that many of the other ideas might not improve much since the main
bottleneck to better morphing performance is the reconstruction performance.
The other experiments shed further light on this.

A second observation that can be made is that models trained with a Dis;-
based reconstruction loss perform better in both MMPMR and RR for the same
value of o than models trained with a pixel-based loss. This does not necessarily
show that the Dis;-based loss is better. Since the pixel-based loss is based on the
absolute difference between color values of pixels (always between 0-1) and the
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Dis;-based loss on the squared error between activations of convolutional layers
(output of leaky ReLU, unbounded), these two losses cannot be compared di-
rectly for the same « value as their actual influence can be different. Generally
the Dis;-based loss seems to be larger than the pixel-based loss and thus has a
larger influence on the trained model. This most likely explains the difference
between the models for a = 0.3 and o = 3.0.

The Dis; reconstruction loss does show a major improvement over the pixel-
based loss when a = 30. The MMPMR and RR for the Dis; model are signifi-
cantly higher than the metrics for the pixel model. The Dis;-based loss appears
to be better aligned with the ultimate objective of generating reconstructions
that look like the same person rather than generating exactly the same image
on a pixel level. It is important to note that because G, and G, barely improve
wrt. the GAN loss, D is not updated often.

Because the GAN loss is overpowered by the reconstruction loss when a =
30, the flaws of the reconstruction loss are not corrected. For the pixel-based
loss this can be seen in Figure [13| where in column (5) the images appear soft
and less detailed when looked at from up close. Details in the hair and in the
background become a blur and facial features often also lose a lot of detail. The
Dis;-based loss has its own flaws as well. In the 4th morph from the top in
column (6) of the same figure one can see a repetitive pattern in the hairline
which appears way less natural than all samples from models with o < 30. In
many other images produced by the o = 30 Dis; model, weird noise artefacts
can be seen as well. Although it is not objectively measurable, these images
do appear more sharp and realistic and finding these artefacts is harder than
spotting the blurriness of the pixel-based model. The suspicion is that a model
could easily be trained to spot these artefacts and that its use for generating
face morphs might be limited.

Overall the o parameter becomes a trade-off between image realism and
reconstruction performance. For many of the following experiments o = 3
and the Dis;-based loss are chosen since this configuration provides a balance
between MMPMR and image quality.

8.3 Morph loss results

Table [3] and Figure [I4] show a comparison between models trained with various
configurations of the proposed Dis; morph loss. From these results it becomes
clear that the morph loss does not improve morphing performance but instead
reduces both the reconstruction and the morphing performance of the models.

In order to further investigate this reduced performance, two models were
trained with the morph loss only used to train either G, or G,. From the results
it appears that the effects of the morph loss on G, have a bigger negative ef-
fect on performance. That being said, neither of the configurations manages to
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improve over the baseline of no morph loss and the differences between morph
loss on G, and G, are small enough that they may not be significant.

As discussed in the discussion of the previous experiment, the latent space
of these models already appears organized in such a way that the reconstruc-
tion and morphing performance are tied closely together. The reconstruction
performance of the models appears to be the bottleneck for morphing perfor-
mance and the morph loss only appears to add more “confusion” to the training
process instead of improving the morphing performance. In the next sections
more experiments with the morph loss in different settings will be discussed.

8.4 Gradient Descent on Z,,,pn

In Table [4 and Figure the results for optimizing the output latent vectors
of already trained models for a specific morph can be found. As mentioned be-
fore, this morphing method is significantly slower than just generating a morph
using the models. This extra time investment does appear to yield a signifi-
cant improvements in both morphing and reconstruction performance. For all
models the reconstruction rate increases dramatically when reconstructions are
optimized using the Dis; reconstruction loss. Contrary to the results in the
previous section, the morph loss does also manage to greatly improve morphing
performance when used to optimize latent vectors. There does appear to be a
case of diminishing returns for the morphing performance, as the improvement
for the a = 30 is significantly less than for the other two models.

If one can simply optimize a latent vector like this, do we actually need G,?
Based on preliminary research done on these models it appears that starting
with a randomly initialized latent vector leads to getting stuck in local optima.
G, is therefore necessary to generate a good starting point for latent vector
optimization. It also appears that G, is far from perfect, since its outputs can
be significantly improved.

Interestingly, when looking at Figure [I7 one can observe that this further
optimization for a Dis; based loss does not appear to lead to visible noise arte-
facts in the models with a lower «, but does lead to stronger artefacts in some
images for & = 30 (for instance in the 3rd image from the bottom). A possible
reason for this is that the morphs are constrained to the output space of G,. If
these artefacts are non-existent in the output space of G, it is simply impos-
sible to output images that contain them. Another possible explanation could
be that D, which is used to compute Dis; for the losses, is trained better for
a = 0.3 and a = 3 since it less limited by the GAN loss threshold. This could
mean that the convolutional filters are more “refined” and are not as sensitive
to these noisy artefacts.
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It would be interesting to measure whether trade-off between image qual-
ity and morphing/reconstruction performance is also present here. Given the
design of the discriminator in MorGAN/ALI, this cannot easily be done with
the discriminator as it outputs whether x or z is fake. It is not possible to get
an output for only x and simply feeding in the optimized z with the generated
morph will likely result in z being identified as fake since it is not constrained
in any way during optimization. Something like the Fréchet Inception Distance
(FID) [19] could be used to evaluate the quality before and after optimization,
but this is beyond the scope of this work.

8.5 Morph Network

Given the significant performance benefits of optimizing Zmerpn for already
trained models, there might be a possible benefit in training a neural network
to generate more optimal morphs. Therefore the morphing network introduced
earlier has the possibility to add something to the morphing performance. Un-
fortunately, as can be seen in Table [5] it does not. The morphing network was
trained together with G, G, and D for the full 123 epochs but is outperformed
by simply using that same G, and G, and morphing the normal way. This is
after adding multiple regularization steps to improve the performance of this
morphing network.

There are multiple possible reasons as to why the performance is bad. The
network might not have enough capacity to learn a good operation. Addition-
ally the network also has to keep a good performance across the entire latent
space. It might also be that, as discussed in earlier sections, the latent space
is already shaped such that taking the mean of two latent vectors is close to
optimal. The results presented here do not cover all options and as such it can-
not be concluded that the idea of a trained morphing method like the morphing
network can never work.

8.6 Limitations
8.6.1 Implementation Difference with MorGAN

A limitation to the results of this thesis is that the MorGAN implementation
most likely differs from the official implementation used for the results in the
MorGAN paper. Using the code for ALI[I7] gave insight into a lot of the imple-
mentation details, but obviously did not include the MorGAN-specific parts. A
lot of effort was put into mimicking the details and behaviours described in ALI
and MorGAN as close as possible, but tricks like the D limiting regularization
remained necessary to stop divergence. The results for the default MorGAN im-
plementation used in this paper are not necessarily representative of the actual
MorGAN performance.
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8.6.2 Significance of the Results

Since all results are acquired by training a single model and computing the re-
sults only once it is not known exactly how statistically significant the results
are. The result generation script has been tweaked multiple times in order to
make it consistent and to fix any small bugs that were still left in. Throughout
many runs on the validation set as well as some on the test set, all results that
are discussed in the discussion section and conclusion have remained consistent
although the exact numbers did sometimes vary. This is, of course, no replace-
ment for actual significance testing and the reader should be aware that this
approach has been taken.

9 Conclusion

Four possible improvements to the MorGAN algorithm are introduced and eval-
uated in the sections above. The first possible improvement, using a Dis;-based
reconstruction loss, does not necessarily improve morphing performance by it-
self. However, as the value for the reconstruction loss factor « is raised to 30,
both morphing performance and reconstruction performance are significantly
better for models trained with the Dis;-based reconstruction loss for this value
of a. This result also shows that the morphing performance is tied to the re-
construction performance and that therefore the morphing performance can be
greatly improved by simply improving the reconstruction performance. By us-
ing the Dis;-based loss and o = 30.0, the MMPMR increased from 0.071 for
MorGAN with a = 0.3 and 0.151 for MorGAN with « = 30.0 to an MMPMR
of 0.315.

The second possible improvement is the addition of the morph loss. This
added loss is aimed at improving the morphing performance, but is shown to
instead reduce both morphing and reconstruction performance. The chosen im-
plementation of the morph loss is therefore not able to improve the quality of
generated morphs.

Further optimization of the morphs and reconstructions generated by fully
trained models is introduced as the next possible improvement. The results
show that this method is very effective at increasing both morphing and recon-
struction performance. This method does, however, slow down the morphing
process considerably. This could mean that generating a dataset of morphs us-
ing an already trained model becomes a matter of hours rather than minutes.
The best performing model (« = 30.0, Dis;) improved from an MMPMR, of
0.315 to an MMPMR of 0.344 using this further optimization technique, while
models trained with a lower « showed larger gains in performance.

A final possible improvement that is introduced is the so-called morphing
network. This network replaces the default MorGAN morphing method of lin-
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early interpolating between latent vectors. Training of the morphing network
proves to be hard to stabilize and requires multiple auxiliary regularization
losses. Even with these added steps, the morphing network fails to improve over
the baseline morphing method. Therefore the conclusion is that this method in
its current form is unable to improve the morphing performance of MorGAN.

10 Future Work

In this section some possibilities for future work are listed.

10.1 Using an FRS-based Morph Loss

A possible way to improve the results listed in this thesis is to use a trained
facial recognition system to compute the “distance” between a morph and its
inputs instead of Dis; activations. Combined with the max-based morph loss
used for the morphing network, this would result in almost directly optimizing
the MMPMR. Some exploratory experiments were performed with this idea,
but it turned out to be too hard to get right given the time-frame for the thesis.
An FRS-based morph or reconstruction loss will likely have similar problems as
the Dis;-based loss with noisy artefacts when pushed to 0. Therefore it could be
interesting to apply the loss with a threshold. Only when the loss is higher than
a certain distance, its gradient will be non-zero. This might force the generated
morphs to look like their inputs while also giving the GAN loss some “space” to
work with.

10.2 Using More Stable Training Methods

ALI and MorGAN use a fairly normal GAN training objective. This has led to
problems with training collapse. The current state of the art in GAN research
often uses gradient penalties like R1 regularization [20] or Wasserstein GANs
with a gradient penalty (WGAN-GP)[2I]. These methods are more stable and
allow for way deeper networks with residual layers or skip-connections like used
in StyleGAN2 [22]. Some early experiments with both WGAN-GP and Rl
regularization were performed, but the design of the ALI discriminator made
implementing these gradient penalties a non-trivial exercise. Nevertheless these
early experiments showed a lot of promising results. A possible simplification
could be to split the discriminator up in a D, and D, and have them only be
responsible for the realism of generated & and Z samples rather than also using
D to train the reconstruction performance. This would then be solely handled
by the Dis; reconstruction loss.

In |23] the authors introduce a new technique that trains networks similar

to G, and G, using a novel GAN-based model with R1 regularization. This
paper uses a StyleGAN[24] generator as well as a style-based encoder network.
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Their method achieves high-resolution (1024 x 1024 pixels) face generation and
reconstruction. Unfortunately it appears (visually) that the technique does not
have a high reconstruction rate. This technique could be further extended with
a Dis; or FRS based reconstruction loss to improve reconstruction performance
and make it suitable for morphing.

10.3 Using an End-to-End Morphing Network

A final suggestion for possible research is something that might sound quite
trivial. Instead of training a whole autoencoder-like setup with a stochastic
latent vector, one could instead train an entire network to take 2 input images
and generate a morph. Without the bottleneck of a latent vector, this model
could be easier to train and could deliver way more optimal results. The model
could utilize a design with skip-connections like U-net [25], but then modified
to take 2 input images instead of one. This setup might suffer from similar
problems that also plagued the morphing network, but ultimately it might result
in better morphs at the cost of not being able to generate any images from the
model. This all-in-one morphing network could be trained by applying a GAN
loss to safeguard realism and a morph loss to assess morphing quality.

References

[1] Matteo Ferrara, Annalisa Franco, and Davide Maltoni. The magic pass-
port. IJCB 2014 - 2014 IEEE/IAPR International Joint Conference on
Biometrics, 12 2014.

[2] Andreas Braun Naser Damer, Alexandra Mosegui Saladié and Arjan Kui-
jper. Morgan: Recognition vulnerability and attack detectability of face
morphing attacks created by generative adversarial network.

[3] Anders Boesen Lindbo Larsen, Sgren Kaae Sgnderby, and Ole Winther.
Autoencoding beyond pixels using a learned similarity metric. CoRR,
abs/1512.09300, 2015.

[4] Sumit Saha. A comprehensive guide to convolutional neural
networks the eli5 way. https://towardsdatascience.com/
a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53.

[5] Divyanshu Mishra. Transposed convolution de-
mystified. https://towardsdatascience.com/
transposed-convolution-demystified-84ca8lb4baba.

[6] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning
face attributes in the wild. In Proceedings of International Conference on

Computer Vision (ICCV), December 2015.

43


https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/transposed-convolution-demystified-84ca81b4baba
https://towardsdatascience.com/transposed-convolution-demystified-84ca81b4baba

7]

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

Tan J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gener-
ative adversarial networks. 2014.

U. Scherhag, A. Nautsch, C. Rathgeb, M. Gomez-Barrero, R. N. J. Veld-
huis, L. Spreeuwers, M. Schils, D. Maltoni, P. Grother, S. Marcel, R. Brei-
thaupt, R. Ramachandra, and C. Busch. Biometric systems under morph-
ing attacks: Assessment of morphing techniques and vulnerability report-

ing. In 2017 International Conference of the Biometrics Special Interest
Group (BIOSIG), pages 1-7, Sep. 2017.

Satya Mallick. Face morph using opencv — c++ / python. https://www.
learnopencv.com/face-morph-using-opencv-cpp-python/|

Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro,
Alex Lamb, Martin Arjovsky, and Aaron Courville. Adversarially learned
inference, 2016.

Jeff Donahue, Philipp Kriahenbiihl, and Trevor Darrell. Adversarial feature
learning. CoRR, abs/1605.09782, 2016.

Davis E. King. Dlib-ml: A machine learning toolkit. Journal of Machine
Learning Research, 10:1755-1758, 2009.

Dlib shape predictor 5 face landmarks download. http://d1lib.net/
files/shape_predictor_b6_face_landmarks.dat.bz2.

Adam Geitgey. The face_recognition python package. https://
face-recognition.readthedocs.io/|

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative
style, high-performance deep learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances
in Neural Information Processing Systems 32, pages 8024-8035. Curran
Associates, Inc., 2019.

9310gaurav. Pytorch implementation of ali. https://github.com/
9310gaurav/ali-pytorch/.

Ali official implementation. https://github.com/IshmaelBelghazi/ALI\

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN
training for high fidelity natural image synthesis. CoRR, abs/1809.11096,
2018.

44


https://www.learnopencv.com/face-morph-using-opencv-cpp-python/
https://www.learnopencv.com/face-morph-using-opencv-cpp-python/
http://dlib.net/files/shape_predictor_5_face_landmarks.dat.bz2
http://dlib.net/files/shape_predictor_5_face_landmarks.dat.bz2
https://face-recognition.readthedocs.io/
https://face-recognition.readthedocs.io/
https://github.com/9310gaurav/ali-pytorch/
https://github.com/9310gaurav/ali-pytorch/
https://github.com/IshmaelBelghazi/ALI

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler,
Giinter Klambauer, and Sepp Hochreiter. Gans trained by a two time-scale
update rule converge to a nash equilibrium. CoRR, abs/1706.08500, 2017.

Lars M. Mescheder. On the convergence properties of GAN training. CoRR,
abs/1801.04406, 2018.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin,
and Aaron C. Courville. Improved training of wasserstein gans. CoRR,
abs/1704.00028, 2017.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen,
and Timo Aila. Analyzing and improving the image quality of stylegan. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8110-8119, 2020.

Stanislav Pidhorskyi, Donald A Adjeroh, and Gianfranco Doretto. Adver-
sarial latent autoencoders. In Proceedings of the IEEE/CVE Conference
on Computer Vision and Pattern Recognition, pages 14104-14113, 2020.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator archi-
tecture for generative adversarial networks. CoRR, abs/1812.04948, 2018.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolu-
tional networks for biomedical image segmentation. CoRR, abs/1505.04597,
2015.

45



Appendices

A Algorithms in pseudo-code

Algorithm 2: MorGAN with morph loss algorithmic training proce-
dure. Note that sampling of x5 is not described in full detail.

0q,0p < randomly initialize network parameters

repeat
:C(l) 20 ( . T
REEEERE A ~ q LE) // Sample M images from the data distribution
O . . enes
9y Xy T Q JZ) // Sample M images of a different identity
Z(l), .. .,Z(M) Np(z) // Sample M vectors from a Normal distribution
ZAJY) — Gz(l‘g ) ga=1,.... M // Compute (. generation for xi
ZA’S) — Gz(xél)),i =1,..., M // Compute (. generation for za
) NOINO!
~ + s
ZI(T’LI)Orph « 4 T% =1, , M // Compute Zuorph
#0) GZ(Z(J)),j =1,....,.M // Compute G, generation
:ﬁgé)con — Gm(iy)),i =1,..., M // Compute reconstructed x
- (i) NGOG -
Jimorph «— Gr(zmorph)’ 1= 1, ey M // Compute Zmorph
p((;) — D(l’(i), ﬁ(i)),i =1,...,M // Compute Discriminator predictions

pl(jj) <~ D(i'(‘])’z(‘]))ﬂj = ]‘5 M ')M
// Compute discriminator loss

M i M j
Loanp  —15 S log(pl)) — & M log(1 - o)
// Compute generator loss

Loanc & — XM log(1 - py) — & oM log(ps)

£r600n — recon_loss(xl, j1recon)
Emorph — InOI‘ph_lOSS(.Tl, X2, :Cmorph)
ﬁsyn — EGAN—G + aﬁpixcl + alnorpllﬁnlorph
if Lgan.g < 3.5 then
0p < 0p — Vg, LcaN-D
end if
0 < 0c — Vo, Lsyn
until convergence

B Hyperparameters

46



Operation Kernel Strides Feature maps BN?7 Dropout Nonlinearity
G.(x) — 3 x 64 x 64 input
Convolution 2x2 1x1 64 vV 0.0 Leaky ReLU
Convolution 7x7  2x2 128 vV 0.0 Leaky ReLU
Convolution 5 x5  2x2 256 vV 0.0 Leaky ReLU
Convolution 7x7  2x2 256 vV 0.0 Leaky ReLU
Convolution 4x4 1x1 512 Vv 0.0 Leaky ReLU
Convolution 1 x 1 1x1 512 X 0.0 Linear
Gz(z) — 256 x 1 x 1 input
Transposed convolution 4 x 4 1x1 512 vV 0.0 Leaky ReLU
Transposed convolution 7 x 7 2x2 256 vV 0.0 Leaky ReLU
Transposed convolution 5 x 5 2x2 256 v 0.0 Leaky ReLU
Transposed convolution 7 x 7 2x2 128 vV 0.0 Leaky ReLLU
Transposed convolution 2 x 2 1x1 64 vV 0.0 Leaky ReLLU
Convolution 1 x1 1x1 3 X 0.0 Sigmoid
D(x) — 3 x 64 x 64 input
Convolution 2 x 2 1x1 64 X 0.2 Leaky ReLU
Convolution 7x7  2x2 128 v 0.2 Leaky ReLU
Convolution 5 x5 2x2 256 vV 0.2 Leaky ReLU
Convolution 7x7  2x2 256 vV 0.2 Leaky ReLU
The ouput of the layer above is used as Disj(x)
Convolution 4x4  1x1 512 v 0.2 Leaky ReLU
D(z) =512 x 1 x 1 input
Convolution 1 x 1 1x1 1024 X 0.2 Leaky ReLU
Convolution 1 x 1 1x1 1024 X 0.2 Leaky ReLU
D(z,z) — 1536 x 1 x 1 input
Concatenate D(x) and D(z) along the channel azis
Convolution 1 x 1 1x1 2048 X 0.2 Leaky ReLU
Convolution 1 x 1 1x1 2048 X 0.2 Leaky ReLU
Convolution 1 x 1 1x1 1 X 0.2 Sigmoid
Optimizer Adam (a = 107%, 3; = 0.5)
Batch size 100
Epochs 123

Leaky ReLU slope
Weight, bias initialization

0.02

Isotropic gaussian (= 0, o = 0.01), Constant(0)

Table 6:
the table from ALI[I0]

CelebA model hyperparameters (unsupervised). Modified version of



Operation Output neurons BN? Dropout Nonlinearity

Concatenate two latent vectors of size 512 together into one vector of size 1024
Morphing Network — 1024 input

Fully Connected Layer 1024 X 0.0 Leaky ReLLU
Fully Connected Layer 1024 X 0.0 Leaky ReLU
Fully Connected Layer 512 X 0.0 Linear

Table 7: Morphing network architecture
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