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Abstract

The main motivation for this project is to find a nonhamiltonian graph
with toughness at least 9

4 . This would improve the lower bound on t0 in
the following conjecture by Chvátal: there exists a real number t0 such that
every t0-tough graph is hamiltonian [Chv73]. Secondly, we aim to research
the open question whether the known nonhamiltonian 2-tough graph on 42
vertices is the smallest nonhamiltonian 2-tough graph [BBV00]. A third
motivation is to analyse chordal graphs similarly. Every 10-tough chordal
graph is hamiltonian [KK17], and there exist nonhamiltonian chordal graphs
with toughness 7

4 − ε for arbitrarily small real ε > 0 [BBV00].
In contrast to the purely graph theoretical approach of the referenced

papers, our approach is mainly algorithmic. However, it is based on the
same construction that is used to construct nonhamiltonian graphs with
toughness 9

4 − ε for arbitrarily small real ε > 0 [BBV00], which can also be
applied to chordal graphs. We apply this known construction on all possible
nonisomorphic graphs up to a certain number of vertices, by designing
and implementing an algorithm that can determine the hamiltonicity and
toughness of the constructed graph. We also design and implement an
evolutionary algorithm, with the same aim to generate suitable graphs to
construct nonhamiltonian graphs with a high toughness. Our research aims
to optimise the performance of these two algorithms.

We conclude that there is no graph H of order n ≤ 11 such that this
construction results in a nonhamiltonian graph G with toughness τ ≥ 9

4 .
Similarly, we conclude that there is no chordal graph H of order n ≤ 13 such
that this construction results in a nonhamiltonian chordal graph G with
toughness τ ≥ 7

4 . This construction can neither be used to produce a smaller
2-tough nonhamiltonian graph than the known graph on 42 vertices, nor to
produce a smaller nonhamiltonian chordal graph with toughness 7

4 − ε for
arbitrarily small ε > 0, by respectively applying the construction to graphs up
to order 11 and 13. We have found that the field of evolutionary algorithms
is well-suited to be applied to this problem, as the evolutionary algorithm
enabled us to analyse larger graphs than an enumeration algorithm could
ever handle on existing hardware. Based on the results of our evolutionary
algorithm, we conjecture that there is no graph H of order n ≤ 16 such that
the aforementioned construction results in a nonhamiltonian graph G with
toughness τ ≥ 9

4 .
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Chapter 1

Introduction

Graph theory is a branch of mathematics that is focused on modelling and
analysing problems that can be described by graphs. Graphs consist of two
sets, namely a set of vertices representing certain objects, and a set of edges
representing the relationships between pairs of objects. As an example, the
graph of a world map could consist of vertices that represent the countries
on the map and edges that indicate which of the pairs of countries share a
border. But, a graph can also consist of vertices representing different types
of objects, for instance jobs and machines, where the edges indicate which
jobs can be processed on which machines. These two examples demonstrate
the wide applicability of graphs. These applications range from mathematical
scheduling problems to social networks to biological networks. Some examples
where graphs are used in the field of computer science are search engines,
network security and product recommendation.

The terminology in graph theory is inspired by the visual representation
of graphs. A graph can easily be depicted by drawing the vertices as little
circles and the edges as lines or curves between the circles that represent
the corresponding vertices. This graphical representation is what makes
graphs easy to understand, and this can make even very difficult problems
conceptually simple. An example of a graph is shown in Figure 1.1. Note
that the formal definition of a graph is presented in Chapter 2.

To variate on the opening application of a world map, it is also possible
to analyse the infrastructure within a country. The vertices would be cities,
where two cities are joined by an edge whenever there is a direct road between
them. Graphs can be extended by putting weights on the edges of the graph.
These would, in this case, denote the distance (i.e., the length of the direct
road) between two cities. An important problem defined on such graphs is
the travelling salesman problem. It states the following question: “What is
the shortest route that visits each city exactly once, and returns to the initial
city afterwards?”. If there are no weights on the edges, this optimisation
problem reduces to the decision problem whether such a cycle exists. These
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Figure 1.1: A nonhamiltonian graph with a toughness of 2
3 .

cycles are named Hamilton cycles, and hence this problem is known as the
Hamilton cycle problem. The graph from Figure 1.1 is an example of a graph
that does not contain a Hamilton cycle.

Many necessary and sufficient conditions regarding the existence of
Hamilton cycles have been studied. In this research, we focus on those
related to a graph’s toughness. The relatively new concept of toughness was
introduced in the 1970s by Chvátal as a measure to indicate how tightly
various pieces of a graph hold together. Toughness is relatable to the con-
nectivity of a graph. A graph G is t-tough if it cannot be split into k
different connected components by the removal of fewer than t · k vertices.
The toughness τ(G) of a graph G is the maximum value of t for which G is
t-tough. The example graph of Figure 1.1 can be split into three components
by the removal of two vertices; thus, the toughness is at most 2

3 . It is rather
easy to check that there does not exist a cut which can lower this ratio, thus
the toughness is exactly 2

3 .
In the paper where toughness has been introduced, Chvátal formulated

Conjecture 1.1. A graph is said to be hamiltonian if it contains a Hamilton
cycle. Chvátal proved that t0 should be larger than 3

2 .

Conjecture 1.1 ([Chv73]). There exists a real number t0 such that every
t0-tough graph is hamiltonian.

The conjecture that every t-tough graph with t > 3
2 is hamiltonian has

been disproven by Thomassen [Ber78]. More research on this conjecture
is discussed in Chapter 2, where we also discuss different graph classes for
which the conjecture holds. It has been proven that the conjecture can only
be true if t0 ≥ 9

4 , by providing a nonhamiltonian graph with toughness 9
4 − ε

for arbitrarily small real ε > 0 [BBV00].
In this research, we will try to disprove this conjecture for t0 ≥ 9

4 , using
the same method to construct a tough nonhamiltonian graph as used in
[BBV00]. Secondly, the similar conjecture on chordal graphs stated in
Conjecture 1.2 will be analysed. A graph is chordal if every cycle of length
greater than three has a chord. A chord is an edge which is not part of the
cycle but joins two vertices of the cycle. Chordal graphs are generalisations
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of trees, and many problems that are NP-hard to solve for general graphs
are polynomially solvable for chordal graphs.
Conjecture 1.2. There exists a real number t1 such that every t1-tough
chordal graph is hamiltonian.

It has been shown that there exist nonhamiltonian chordal graphs with
toughness 7

4 − ε for arbitrarily small real ε > 0 [BBV00]. It has also been
proven that Conjecture 1.2 is true by showing that every 18-tough chordal
graph is hamiltonian [Che+98]. This has been improved by proving that
every 10-tough chordal graph is hamiltonian [KK17]. There is still a large
gap between t1 ≥ 7

4 and t1 ≤ 10. We conjecture that t1 in Conjecture 1.2 is
closer to 7

4 than to 10, but this research aims to increase the lower bound of
7
4 .

Both nonhamiltonian tough graphs found by Bauer, Broersma and Veld-
man, the general one and the chordal one, have been found by developing a
construction that applies a graph operation on a small graph H in order to
produce a new graph G. In order for G to be nonhamiltonian, the smaller
graph H should satisfy the following property: “there exist two vertices u
and v in H, such that there does not exist a Hamilton path from u to v”.

A Hamilton path is a path that starts in u and terminates in v, and visits
each vertex exactly once. If this property is satisfied, the toughness of G can
be determined based on the choice of u and v. Both checking the existence
of a Hamilton path and determining the toughness are NP-hard problems,
with the former being NP-complete.

The resulting graph has been found by applying this construction to
various small graphs by hand. Ever since, there has been the question
whether applying this construction on a different graph could provide a
better result, i.e. a nonhamiltonian graph with toughness at least 9

4 . This
task to apply the construction on multiple graphs lends itself very well to be
automated. In this research, we have designed and implemented algorithms
to do so.

1.1 Problem statement and approach

The main motivation for this project is to find a nonhamiltonian graph
with toughness at least 9

4 . This would improve the lower bound of t0 in
Conjecture 1.1. Alternatively, we may find different nonhamiltonian graphs
with toughness 9

4 − ε for arbitrarily small ε > 0 than the one already known.
This would perhaps also answer an open question whether the nonhamiltonian
2-tough graph on 42 vertices constructed by Bauer, Broersma and Veldman
[BBV00] is the smallest nonhamiltonian 2-tough graph. A second motivation
is to analyse chordal graphs in a similar manner. Recall that it is known
that 7

4 ≤ t1 ≤ 10 for Conjecture 1.2. Our method could increase this lower
bound of 7

4 .
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As it is not sure whether graphs that satisfy these criteria even exist, our
first research objective is to apply the known construction on all possible
nonisomorphic graphs up to a certain number of vertices. This will provide
information whether more research on this construction would be useful or
not. This objective will be approached by designing and implementing an
algorithm which can efficiently enumerate over all nonisomorphic graphs of
a specific order and determine which nonhamiltonian graph has the highest
toughness, after applying the construction used in [BBV00]. The algorithm
will be named the enumeration algorithm hereafter.

A second research objective is to design and implement an evolution-
ary algorithm, that can generate a tough nonhamiltonian graph using the
aforementioned construction. An evolutionary algorithm is an optimisation
technique that can alter a random initial graph in order to produce a de-
sired graph after many iterations. This objective has been added during
the research, in order to analyse larger graphs compared to those that the
enumeration algorithm can handle.

The goal is to make both algorithms as fast as possible, in order to
analyse more graphs. The enumeration algorithm provides the most reliable
information, as it can give certainty whether applying the construction on
any graph on n vertices could provide a nonhamiltonian graph with toughness
above a fixed value t. By using an evolutionary algorithm, it is possible to
test larger graphs for which the set of all nonisomorphic graphs could not
even be generated. The set of nonisomorphic graphs of order n grows quickly.
There are, for example, 11,117 nonisomorphic connected graphs of order 8,
over a billion of order 11, and over fifty trillion of order 13. Generating all
these nonisomorphic graphs of order thirteen would take months. Using our
enumeration algorithm, enumerating over all nonisomorphic graphs is hardly
feasible for graphs containing more than 12 vertices. Both the enumeration
algorithm and the evolutionary algorithm can be verified by being able to
return the known class of nonhamiltonian graphs with toughness 9

4 − ε for
arbitrarily small ε > 0.

In Chapter 2, an introduction to graph theory is given, including relevant
concepts and terminology. Afterwards, the literature that is relevant to our
research is summarised. In Chapter 3, a similar introduction to evolutionary
algorithms and its corresponding relevant literature is given. Chapter 4
contains the design and implementation of our algorithms. In Chapter 5, we
present the results obtained by these algorithms. Finally, these results are
discussed in Chapter 6, together with the possibilities for future research.
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Chapter 2

Graph theory

In Chapter 1 a short explanation of graph theory has been given. In this
section we shall explain it in a more formal way. This section starts with
the definition of a graph, followed by common terminology and concepts.
Whenever a new definition is given, it is highlighted in italics. In Sec-
tion 2.1, Hamilton cycles are introduced in combination with some research
on sufficient conditions for the existence of Hamilton cycles. In Section 2.2,
the concept of toughness is introduced in combination with its relation to
hamiltonicity. Finally, in Section 2.3 an important result on the sufficiency of
toughness for hamiltonicity is explained. We refer to the textbook by Bondy
and Murty [BM08] for an extensive introduction to graph theory.

A graph G = (V,E) is an ordered pair of respectively a set of vertices
and a set of edges, together with an incidence function that associates two
vertices of G with each edge of G. These two vertices are called the ends
of an edge. The order of a graph is the number of vertices in the graph.
Example 2.1 shows a graph G corresponding to the graphical representation
of Figure 1.1. Note that the vertices are labelled clockwise starting from the
left, and v7 corresponds to the central vertex in Figure 1.1.

Example 2.1. G = (V,E) where

V ={v1, v2, v3, v4, v5, v6, v7}
E ={e1, e2, e3, e4, e5, e6, e7, e8}

and the incidence function ψG is defined by:

ψG(e1) ={v1, v2} ψG(e2) = {v2, v3} ψG(e3) = {v3, v4} ψG(e4) = {v4, v5}
ψG(e5) ={v5, v6} ψG(e6) = {v1, v6} ψG(e7) = {v1, v7} ψG(e8) = {v4, v7}.

A loop is an edge with identical ends. A link is an edge with distinct
ends. If two links have the same pair of ends, these links are parallel edges.
A simple graph is a graph that does not contain loops or parallel edges. If
this condition is not satisfied, the graph is a multigraph. There are other

5



variants of graphs, such as directed graphs. In a directed graph the incidence
function associates each edge with two vertices, a tail vertex and a head
vertex, such that each edge has a direction. Another variant is a weighted
graph, where each edge is assigned a weight in the form of a number. This
weight could for example represent a cost or a length.

A graph is finite if both the vertex set and the edge set are finite. In
this thesis it is assumed that all graphs are simple and finite, thus in the
remainder of this text, the term graph will refer to a simple finite graph.
When restricted to simple graphs, it is possible to simplify the definition of
a graph by omitting the incidence function. This is shown in Definition 2.2.
The complete graph Kn refers to the graph of order n containing all n·(n−1)

2
possible edges.
Definition 2.2. A simple graph G is an ordered pair (V,E), where V is a
set of vertices and E is a set of two-element subsets of V .

Using this definition, the edge set of Example 2.1 can be represented as

E = {{v1, v2}, {v2, v3}, {v3, v4}, {v4, v5}, {v5, v6}, {v1, v6}, {v1, v7}, {v4, v7}}.

Although this is more convenient than the definition used in Example 2.1,
it is still not as clear as it could be. As suggested by the name, graphs
can be represented graphically. Each vertex is depicted as a dot, and each
edge is depicted as a line in between the two dots representing its ends. It
is common to refer to a graphical representation of a graph as the graph
itself, hence the dots and lines are also called the vertices and the edges. In
the upcoming paragraphs, we present common terminology and concepts of
graph theory that are used in this thesis.

Degree The ends of an edge are incident with the edge itself. Two vertices
are adjacent if there exists an edge that is incident to both vertices. Distinct
vertices are neighbours when these are adjacent. The degree of a vertex v in
G refers to the number of edges of G incident with v. The degree of a vertex
v is denoted by d(v), and δ(G) is the minimum degree taken over all vertices
in a graph G. The maximum degree is denoted by ∆(G).

Isomorphism A graph can have multiple graphical representations, but it
is also possible for different graphs to have the same graphical representation.
In this case the only difference between these graphs are the labels of the
vertices. Such graphs are said to be isomorphic. Two graphs G and H
are isomorphic if there exists a bijection f : V (G) → V (H) such that any
u, v ∈ V (G) are adjacent in G if and only if f(u) and f(v) are adjacent in
H. Note that a bijection is a mapping that maps each element from one set
to exactly one element of another set, and each element of the second set is
also paired with exactly one element of the first set. An automorphism is an
isomorphism of a graph to itself.
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Subgraphs Let F and G be two graphs. Then F is a subgraph of G if
V (F ) ⊆ V (G) and E(F ) ⊆ E(G). These subgraphs can be obtained by edge
deletion and vertex deletion. Edge deletion is the removal of a specific edge e
from E(G), and the obtained graph is denoted by G\e. Vertex deletion is the
removal of a vertex v and all edges incident with v, and the obtained graph
is denoted by G − v. F is a spanning subgraph of G if it can be obtained
from G by edge deletions (possibly none). F is an induced subgraph of G if
it can be obtained from G by vertex deletions (possibly none). An induced
subgraph obtained by removing a set of vertices X ⊆ V (G) is denoted as
G−X. An induced subgraph obtained by keeping a set of vertices Y ⊆ V (G)
and removing all vertices of V (G) \ Y from G is denoted by G[Y ].

Walks, trails, paths, and cycles A walk W is a sequence v0e1v1 . . . ekvk
whose terms are alternately vertices and edges, such that vi−1 and vi are the
ends of ei for 1 ≤ i ≤ k. This walk W is referred to as a (v0, vk)-walk. v0 is
the initial vertex, vk is the terminal vertex, and v1, . . . , vk are the internal
vertices. The length of the walk is the number of edges in the walk (k). Since
we only consider simple graphs, a walk can be specified by only the vertices:
v0v1 . . . vk. A trail is a walk whose edges are distinct. A path is a trail in
which all the vertices are distinct. A walk is closed if the initial vertex and
the terminal vertex are the same. A cycle is a closed trail that has a positive
length and whose initial and internal vertices are all distinct.

Two vertices u and v in G are connected if there exists a (u, v)−path
in G. Note that the existence of an (u, v)-walk guarantees the existence of
an (u, v)-path. Connection is an equivalence relation on V, which means
that it is reflexive, symmetric, and transitive. A consequence of being an
equivalence relation is that there exists a partition of V into nonempty subsets
V1, V2, . . . , Vω, such that u and v are connected if and only if both u and v
belong to the same subset Vi. The induced subgraphs G[V1], G[V2], . . . , G[Vω]
are the components of G. The number of components of a graph G is denoted
by ω(G). If ω(G) = 1, G is connected. Otherwise, G is disconnected.

Chordal graphs A chord of a cycle C in a graph G is an edge in E(G) \
E(C) both of whose ends lie on C. It is thus an edge that is not part of
the cycle, but joins two vertices of the cycle. A graph is chordal if every
cycle of length greater than three has a chord. An equivalent definition is
that the graph contains no induced cycle of length four or more. An induced
cycle is an induced subgraph consisting of exactly one cycle. An example of
a chordal graph is shown in Figure 2.1.

Chordal graphs are generalisations of trees, and many problems that are
NP-hard to solve for general graphs are polynomially solvable for chordal
graphs, like the vertex colouring problem. Chordal graphs are also generalisa-
tions of interval graphs that appear naturally in scheduling applications: each
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Figure 2.1: An example of a chordal graph.

vertex represents an interval on the real line, and two vertices are adjacent
whenever the corresponding intervals intersect.

Like trees and interval graphs, a chordal graph G admits a so-called
elimination scheme: if G has at least two vertices, then G contain a vertex v
such that

(i) N(v) induces a complete graph in G (i.e. N(v) is a clique in G), and

(ii) G− v is again a chordal graph.

In a tree, v can be chosen as a vertex with degree 1; in an interval graph,
v can be chosen as the interval with the leftmost starting point on the real
line. The nice thing is that applying this recursively, one obtains a sequence
of vertices v1, v2, . . . , vn such that for every vi (i < n), the subgraph Gi of
G induced by {vi+1, . . . , vn} is a chordal graph, and the neighbours of vi in
Gi form a clique. As an example, using the reverse ordering, one can obtain
an optimal vertex colouring in polynomial time, by choosing the smallest
eligible colour for the newly added vertex from the set of colours {1, 2, . . . , k}
in each step.

2.1 Hamilton cycles

Hamilton cycles are named after William Hamilton, who first described
them in his Icosian game [BM08]. The game is played along the vertices
and edges of a dodecahedron graph, i.e. a graph on 20 vertices in which
each vertex has degree 3. A dodecahedron is a three-dimensional shape
with twelve flat polygonal faces and straight edges. An illustration of a
(regular) dodecahedron is shown in Figure 2.2a. Each edge along this shape
corresponds to an edge in the dodecahedron graph, which is illustrated in
Figure 2.2b. The first player constructs a path along 5 vertices and the other
has to extend this path into a Hamilton cycle. A Hamilton cycle is a cycle
containing every vertex of a graph. A graph G containing a Hamilton cycle is
called hamiltonian. Similarly, a Hamilton path is a path that contains every
vertex of a graph, and a graph containing such a path is called traceable.

8



(a) A regular dodecahedron [Wik20]. (b) The dodecahedron graph [Com20].

Figure 2.2: Illustration of a dodecahedron and its corresponding graph.

The decision problem whether a graph contains a Hamilton cycle is NP-
complete. Decision problems that are in the set NP have a solution that can
be verified in polynomial time. A problem is NP-hard if all decision problems
in the set NP can be transformed into it in polynomial time. Finally, a
problem is NP-complete if it is both in NP and NP-hard. Hamiltonicity was
one of the original 21 NP-complete problems proven to be reducible from
the Boolean satisfiability problem, which was the first NP-complete problem
[Kar72]. The set of problems that can be solved in polynomial time is called
P. It is still an important open problem in computer science whether P and
NP are distinct sets. As of now, no one has thus found a polynomial-time
algorithm for any of the NP-complete problems and it is reasonable to believe
that these do not exist.

Note that the problems whether a graph contains a Hamilton cycle and
whether a graph contains a Hamilton path have the same complexity, as
there are reductions from one problem to the other and vice versa. Given
the decision problem whether there exists a Hamilton path in a graph G,
one can construct a graph H by adding a single vertex v to G and by adding
edges from v to all vertices in G. The existence of a Hamilton path in G
now follows from the existence of a Hamilton cycle in H. Now G is traceable
if and only if H is hamiltonian. So if the Hamilton problem is in P, then the
traceability problem is also in P. If the second problem is in NP-complete,
the first is also. For the other direction, the given problem is whether G is
hamiltonian. The graph H is defined by adding a vertex v and making it a
copy of a vertex u ∈ G by adding the edges {v, w}|{u,w} ∈ E(G), and by
adding two more vertices s, t and joining them to respectively u and v. If G
has a Hamilton cycle, then there clearly exists a Hamilton path from s to t
in H. G is hamiltonian if and only if H is traceable, and it follows that the
two decision problems are both NP-complete.

9



Hamiltonicity has been the subject of a lot of research, both in developing
faster algorithms to check hamiltonicity by a computer and by devising
necessary conditions and sufficient conditions. Our research is focused on a
sufficient condition for hamiltonicity based on the graph’s toughness. Below
we will discuss some relevant necessary conditions and sufficient conditions for
hamiltonicity. The motivation for doing this is two-fold. Firstly, it helps in
placing this research in perspective by showing related work on hamiltonicity.
Secondly, some of these theorems could be used in our own research. For this
purpose we are particularly interested in conditions that are easy to check
by a computer (in terms of algorithmic complexity), such as degree-based
conditions.

Two well known classic results are the degree-based sufficient conditions
by Dirac (Theorem 2.3) and Ore (Theorem 2.4). The latter is a generalisation
of the former and therefore more often applicable, but it is harder to check.
All the following results can be found in the dissertation ‘On Hamiltonian
Connected Graphs’ [Wil73]. Both Theorem 2.3 and Theorem 2.4 can be
derived from Theorem 2.5, which is an even more general condition based on
the degrees of all vertices.

Theorem 2.3 (Dirac). Let G be a graph of order n (n ≥ 3). If δ(G) ≥ n
2 ,

then G is hamiltonian.

Theorem 2.4 (Ore). Let G be a graph of order n (n ≥ 3). If d(u)+d(v) ≥ n
for every pair u, v of distinct nonadjacent vertices of G, then G is hamiltonian.

Theorem 2.5 (Posa). Let G be a graph of order n (n ≥ 3). If for all
1 ≤ j < n

2 , the number of vertices of degree not exceeding j is less than j,
then G is hamiltonian.

The latter theorem can also be defined on the degree sequence of a
graph. A degree sequence d = (d1, d2, . . . , dn) of a graph G is a nondecreasing
sequence of the vertex degrees of all vertices in G. Note that other texts
may define it as a nonincreasing sequence, which is not applicable on the
theorems below. Theorem 2.6 gives an even weaker sufficient condition. The
final degree-based sufficient condition presented here is Theorem 2.7, which
is the best possible generalisation of the theorems of Dirac, Pósa, and Bondy
[Chv72].

Theorem 2.6 (Bondy). Let G be a graph of order n (n ≥ 3). If the degree
sequence of G satisfies: di ≤ i and dj ≤ j, where i 6= j, implies di + dj ≥ n,
then G is hamiltonian.

Theorem 2.7 (Chvátal [Chv72]). Let G be a graph of order n (n ≥ 3). If
the degree sequence of G satisfies: dk ≤ k < n

2 implies dn−k ≥ n− k, then G
is hamiltonian.
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Another useful necessary and sufficient condition for a graph to be
hamiltonian is based on a graph’s closure. The k-closure of a graph G is
obtained by recursively joining pairs of nonadjacent vertices u and v with
d(u) + d(v) ≥ k by an edge, until no more edges can be added. Note that the
degrees are updated whenever an edge is added, and that the order in which
edges are added has no effect on the final result. The closure of a graph of
order n refers to the n-closure. The theorem shown in Theorem 2.9, known
as the Bondy-Chvátal theorem, now shows how the closure of a graph can
be used to check the hamiltonicity, for example using Corollary 2.10. The
proof of this theorem makes use of the following result by Ore.

Theorem 2.8 (Ore). Let G be a graph with n vertices and u, v be distinct
nonadjacent vertices of G with d(u) + d(v) ≥ n. Then G is hamiltonian if
and only if G+ (u, v) is hamiltonian.

Theorem 2.9 (Bondy-Chvátal). A graph is hamiltonian if and only if its
closure is hamiltonian.

Corollary 2.10. Let G be a graph on n ≥ 3 vertices. If G has a complete
n-closure (meaning the n-closure is Kn), then G is hamiltonian.

Our construction for creating a nonhamiltonian graph G is based on
the duplication of a smaller graph H (see Section 2.3). The absence of a
Hamilton cycle in the produced graph G relies on the nonexistence of a
Hamilton path between two vertices u and v in H. It is also useful for our
research to look at graphs where such a path does not exist for any pair of
vertices u and v.

A graph is hamiltonian-connected if there exists a Hamilton path from u
to v for every pair of distinct vertices u, v in G. For most of the discussed
sufficient conditions for being hamiltonian, there are similar conditions for the
sufficiency of being hamiltonian-connected. Below some of these are listed.
We list the easy to compute equivalents of Dirac and Ore’s degree-based
conditions, and a sufficient condition on the number of edges of the graph.

Theorem 2.11 (Dirac). Let G be a graph of order n (n ≥ 3). If δ(G) ≥ n+1
2 ,

then G is hamiltonian-connected.

Theorem 2.12 (Ore). Let G be a graph of order n (n ≥ 3). If d(u)+d(v) ≥
n + 1 for every pair u, v of distinct nonadjacent vertices of G, then G is
hamiltonian-connected.

Theorem 2.13 (Ore). Let G be a graph of order n (n ≥ 3). If G has k
edges such that k ≥

(n−1
2
)

+ 3, then G is hamiltonian-connected.

The least restrictive sufficient condition is again based on the closure of the
graph.
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Theorem 2.14. Let G be a graph on n vertices, and let u and v be distinct
nonadjacent vertices of G with d(u) + d(v) ≥ n+ 1. Then G is hamiltonian-
connected if and only if G+ (u, v) is hamiltonian-connected.

Theorem 2.15. Let G be a graph on n vertices. If G has a complete
(n+ 1)-closure, then G is hamiltonian-connected.

Other important necessary conditions and sufficient conditions for hamilton-
icity are based on the toughness of a graph. These are shown in the next
section, after the definition of toughness has been presented.

2.2 Toughness

The concept of toughness is originally introduced by Chvátal. According to
Chvátal, “It measures in a simple way how tightly various pieces of a graph
hold together” [Chv73]. It is related to the connectivity of a graph and is
defined using the following definition. Recall that ω(G) denotes the number
of components of a graph G.

Definition 2.16 (t-tough). A graph G is t-tough (t ∈ R, t ≥ 0) if |S| ≥
t · ω(G− S) for every subset S of V (G) with ω(G− S) > 1.

So a t-tough graph G cannot be split into k different connected compon-
ents by the removal of fewer than t · k vertices. By setting k to 2, the more
commonly known definition of connectivity is implied. Namely that every
t-tough graph is d2te-connected. The toughness of a graph G, denoted by
τ(G), is the maximum value of t for which G is t-tough. Since the above
definition cannot be applied to complete graphs, we need a separate definition.
The toughness of complete graphs is defined to be infinite: τ(Kn) =∞ for
every n. A graph is disconnected if and only if its toughness is zero. The
following useful property is easy to check.

If G is a spanning subgraph of H, then τ(G) ≤ τ(H).

The paper where toughness was introduced by Chvátal is centred around
the importance of toughness for the existence of Hamilton cycles [Chv73].
The observation that a cycle graph Cn (that consists of a single cycle on
n ≥ 3 vertices) is 1-tough in combination with the above property, leads to
the following result.

Theorem 2.17. Every hamiltonian graph is 1-tough.

The converse of Theorem 2.17 does not hold, as is shown by the graph in
Figure 2.3. It is easy to check that this graph is 1-tough, by checking all cut
sets and the number of components that result from their removal. The lack
of a Hamilton cycle can be concluded from the common neighbour of the

12
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Figure 2.3: A 1-tough nonhamiltonian graph.

three vertices with degree 2: this prevents that these four vertices together
end up in a cycle. This raises the question whether a stricter condition on
the toughness could guarantee the existence of a Hamilton cycle. In [Chv73],
Chvátal put up the following conjecture.

Conjecture 2.18. There exists a real number t0 such that every t0-tough
graph is hamiltonian.

As he devised a nonhamiltonian graph with toughness 3
2 himself, he also

added the following conjecture.

Conjecture 2.19. Every t-tough graph with t > 3
2 is hamiltonian.

In 1978 Thomassen proved that there exist infinitely many nonhamiltonian
graphs G with τ(G) > 3

2 [Ber78]. This led to the new conjecture that every
2-tough graph is hamiltonian. If this conjecture were true, it would imply
the following theorem and conjectures [BBV00].

Theorem 2.20 (Fleischner 1974). The square of every 2-connected graph
is hamiltonian.

Conjecture 2.21 (Matthews & Sumner 1984). Every 4-connected claw-free
graph is hamiltonian.

Conjecture 2.22 (Thomassen 1986). Every 4-connected line graph is
hamiltonian.

This turned out not to be the case, as the conjecture that every 2-tough
graph is hamiltonian has been disproved by Bauer, Broersma and Veldman
[BBV00]. This has been achieved by showing that there exist (9

4 − ε)-
tough graphs for arbitrarily small ε > 0 without a Hamilton path. The
counterexample to the conjecture that every 2-tough graph is hamiltonian
has been created by a construction based on the duplication of a smaller graph.
As this construction seems promising to construct other nonhamiltonian
graphs with a higher toughness, it is further explained in Section 2.3.
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Since Chvátal introduced toughness, it has been subject to a lot of
research. Most of this research was focused on several conjectures published
by Chvátal, mainly relating toughness conditions to the existence of cycle
structures [BBS06]. Conjecture 2.18 is still an open question, which is the
motivation for this project. As with hamiltonicity, calculating a graph’s
toughness is NP-hard. The decision problem whether a graph is t-tough
is co-NP-complete for every fixed positive rational t [BHS90]. A recent
overview of Chvátal’s conjecture and related problems can be found in a
survey by Broersma [Bro15]. Many other results regarding toughness have
been collected in a survey by Bauer, Broersma and Schmeichel [BBS06]. The
survey lists theorems related to toughness and circumference, toughness and
factors, the toughness of special graph classes, the computational complexity
of toughness, and plenty of other results. As the survey is very extensive,
we shall only discuss a few noteworthy results. An interesting result is that
Conjecture 2.18 is true for the class of graphs having δ(G) ≥ ε · n for any
fixed ε > 0. This is a consequence of the following theorem.

Theorem 2.23. Let G be a t-tough graph on n ≥ 3 vertices with δ > n
t+1−1.

Then G is hamiltonian.

2.2.1 Other graph classes

For many other graph classes, it has also been proven that Conjecture 2.18
holds. For example, every t0-tough planar graph is hamiltonian if t0 > 3

2 . A
graph is planar if it can be drawn in a plane such that its edges intersect
only at their ends. This result for planar graphs is best possible in the
sense that there exist nonhamiltonian planar graphs with toughness 3

2 . For
claw-free graphs, it is known that the conjecture is true for t0 = 7

2 . A graph is
claw-free if it does not have the complete bipartite graph K1,3 as an induced
subgraph. Another graph class consists of the chordal graphs, which are
those graphs that do not contain an induced cycle of length four or more. For
chordal graphs, it is known that Conjecture 2.18 is true, but the best possible
result is not yet known. In 1997 it was proven that every 18-tough chordal
graph is hamiltonian [Che+98]. This result has been improved recently,
by proving that every 10-tough chordal graph is hamiltonian [KK17]. The
paper introducing nonhamiltonian graphs with toughness approaching 9

4 also
applied their construction to chordal graphs, as this construction preserves
the property of being chordal. They have shown that there exist (7

4−ε)-tough
chordal graphs for arbitrarily small ε > 0 without a Hamilton path [BBV00].
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2.3 Constructing tough nonhamiltonian graphs

As the construction method by Bauer, Broersma and Veldman is essential
for our results, it is explained here. For the sake of completeness, we also
repeat the proof from [BBV00] as it is rather short and very insightful.

Let H be a graph and x, y two vertices of H. The graph G(H,x, y, `,m)
(`,m ∈ N) is defined as follows. The graph H is copied m times. These copies
are called H1, . . . ,Hm, and xi, yi refer to the vertices in Hi corresponding
to x, y in H (i = 1, . . . ,m). Fm is the graph obtained by taking the disjoint
union of H1, . . . ,Hm, and by adding an edge between each pair of vertices
in the set {x1, . . . , xm, y1, . . . , ym}. The graph G is the join of Fm and K`

(the complete graph of order `). The following theorem now shows how to
use this construction to build a nonhamiltonian graph.

Theorem 2.24. Let H be a graph and x, y two vertices of H that are not
connected by a Hamilton path of H. If m ≥ 2`+ 3, then G(H,x, y, `,m) is
nontraceable.

Proof. This theorem is proven using a proof by contradiction. Assume that
G(H,x, y, `,m) contains a Hamilton path P . The intersection of P and Fm
consists of a collection P of at most ` + 1 disjoint paths, which together
contain all vertices in Fm. As m ≥ 2`+ 3 = 2(`+ 1) + 1, there is a subgraph
Hi0 in Fm such that no end vertex of a path in P lies in Hi0 . As Hi0 is a
copy of H, there cannot be a Hamilton path in Hi0 from xi0 to yi0 . The
intersection of P with Hi0 covers all vertices of Hi0 and must start in xi0
or yi0 and end in the other, as these are the only vertices connected with
other copies of H. This contradicts with the statement that there cannot be
a Hamilton path in Hi0 from xi0 to yi0 .

As G is nontraceable, it is clearly also nonhamiltonian. In order to
prove that G is nonhamiltonian it is sufficient if m ≥ 2`+ 1, as is shown in
Theorem 2.25. The proof is very similar to that of Theorem 2.24.

Theorem 2.25. Let H be a graph and x, y two vertices of H that are not
connected by a Hamilton path of H. If m ≥ 2`+ 1, then G(H,x, y, `,m) is
nonhamiltonian.

This construction is then applied to the graphs shown in Figure 2.4.
Figure 2.4a shows the graph L, such that τ(G(L, u, v, `,m)) = 9

4 − ε for
arbitrarily small ε > 0, if ` and m = 2`+ 1 are sufficiently large. This is a
consequence of the following theorem (again from [BBV00]), where L refers
to the graph from Figure 2.4a, by choosing sufficiently large ` and m.

Theorem 2.26. For ` ≥ 2 and m ≥ 1,

τ(G(L, u, v, `,m)) = `+ 4m
2m+ 1
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Figure 2.4: Two graphs used to construct tough nonhamiltonian graphs.

Figure 2.4b shows the chordal graph M . A similar result shows that
τ(G(M,p, q, `,m)) = `+3m

2m+1 if ` ≥ 2. As a consequence, τ(G(M,p, q, `,m)) =
7
4 − ε for arbitrarily small ε > 0, if ` and m = 2`+ 1 are sufficiently large.
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Chapter 3

Evolutionary algorithms

An evolutionary algorithm is an optimisation technique inspired by biological
evolution. An evolutionary algorithm is based around a population of
individuals. These individuals can reproduce themselves to generate offspring.
This can be achieved by either mutation or crossover and recombination.
Thereafter, a selection procedure is used to reduce the size of the population,
based on the fitness of an individual. As the process of evolution is abstracted
away, it may not do a good job at describing evolution in nature, but the
resemblance to it can be seen by the jargon that is used. This group
of algorithms could be effective in the domain of graph theory, as the
evolutionary operators can be applied directly on the graphs. This direct
encoding may make it possible to perform more meaningful operations, as
opposed to a grammatical encoding.

Historically, the field of evolutionary algorithms can be divided into three
paradigms [Jon06]. The first is evolutionary programming; it is based on a
population of a fixed size where each parent produces exactly one offspring.
The second paradigm is called evolution strategies, where a popular strategy
is the (1 + λ) model. This approach uses a single parent that produces λ
offspring. Afterwards, the fittest individual among the offspring as well as
the single parent is chosen as the new parent for the next generation. The
final paradigm is genetic algorithms, which has more focus on application-
independent algorithms. Individuals are always represented as a fixed-length
binary string, such that all algorithms could use the same type of mutation
and crossover. Even though these paradigms have been studied separately,
they are instances of the same abstract evolutionary algorithm. This unified
view on evolutionary algorithms will be explained below, based on the theory
in the textbook by Jong [Jon06].
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3.1 Algorithm design

All evolutionary algorithms are based on a population of size m that evolves
in each iteration of the algorithm. During an iteration, the current population
reproduces itself and produces n offspring. A selection procedure is used to
reduce the population from m+ n to m individuals. In order to apply an
evolutionary algorithm, one should have a method to represent an individual
and a fitness measure to quantify how good an individual functions as a
solution to the problem being solved. In order to design an algorithm, one
also has to decide how to select the parents, how to select the survivors,
and how to generate the offspring. For all three aspects, one should also
determine the number of individuals that are being selected or generated in
each step. We shall go over each element of the evolutionary algorithm and
discuss the different options one has in designing an algorithm.

A method for representing individuals. An important choice in design-
ing an evolutionary algorithm is in the encoding of the problem. It is common
to use an indirect encoding, simply because the problem’s solution does not
permit evolutionary operators to be applied to it. This difference between
the actual solution and its representation is named the genotype-phenotype
distinction, where the former is the representation and the latter the actual
solution. A classic genotypic representation is a binary string. An alternative
approach is to ignore the distinction between the genotype and phenotype,
and to use a direct encoding.

A disadvantage of an indirect encoding is that the variation at the
genotype level may not correlate with the variation at the phenotype level,
which introduces a bias into the algorithm. This bias is not present when
a direct encoding is being used. As mentioned before, the possibility of
direct encoding on graphs is what motivated this research on evolutionary
algorithms. The disadvantage is that reproductive operators are now problem-
specific. Thus there are no general solutions regarding the applicability of
an operator and its corresponding parameters.

A parent population of size m. Increasing the population size will
improve the possibility for parallel search. Having a larger population size
will increase the likelihood that the global optima will be explored, and hence
serves as a mechanism for reducing the variance due to convergence to local
optima. One downfall of evolution strategies, which generally have small
populations, is the risk of getting stuck at a local optimum. As evolutionary
algorithms are stochastic, and the result will be different each time, it is
hard to determine what population size is needed to have a sufficiently low
variance. This partly depends on the number of local optima in the fitness
landscape.
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An offspring population of size n. An important trade-off in designing
an evolutionary algorithm is the balance between exploitation and exploration.
If n is relatively high, the current population is quickly replaced, and new
regions will be explored quickly. If there are few offspring instead, the parent
population will continue its current search for a longer time. Having high
exploration could result in a quicker convergence, at the risk of having a
population of individuals that are stuck in a local optimum.

Selection methods to decide which parents reproduce and which
offspring survives. There are multiple ways to decide which parents
reproduce or which offspring survives. At least one of these should be based
on a fitness function that evaluates how good an individual is in solving the
original problem. Selection methods can be either deterministic or stochastic.
The evolutionary programming algorithms have a deterministic approach for
parent selection, as each individual produces exactly one offspring. Genetic
algorithms have a stochastic selection procedure, where parents are chosen
according to a fitness-based probability distribution. Such fitness-based
selection methods can take multiple forms. Common selection methods are
truncation selection, linear ranking, uniform selection, fitness-proportional
selection, and tournament selection.

Truncation selection always chooses the fittest individuals. Linear ranking
uses a probability distribution where the more fit individuals have a higher
probability of being selected, whilst the uniform selection does not take
fitness into account and gives each individual an equal probability of being
selected. Tournament selection picks k candidates uniformly and selects the
fittest individual among those k as the winner. Finally, fitness-proportional
selection is somewhat similar to the linear ranking as more fit individuals
have a higher probability of being chosen. However, instead of using a linear
distribution it makes use of a dynamic distribution based on the current
fitness of the individual compared to the total fitness of all individuals. This
distribution thus gets more uniform, as the population converges.

As with the other design decisions in building an evolutionary algorithm,
there is a trade-off between exploitation and exploration. Having an elitist
selection scheme where only the fittest individuals are selected, the algorithm
may quickly converge to a local optimum. It is therefore common that
either the parent selection or the survival selection uses a uniform selection
method. In deciding which offspring survives, the selection methods can
again be categorised in two groups. The first group consists of the non-
overlapping generation models, where all parents die after reproduction. The
alternative model is the overlapping generation model, where the parents
compete with their offspring for survival. Having overlapping models will
increase the exploitation of the current search space, resulting in early
convergence. On the other hand, the non-overlapping-generation models
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Algorithm parent selection survival selection
Evolutionary programming uniform truncation
Evolution strategies uniform truncation
Genetic algorithms fitness-proportional uniform

Table 3.1: An overview of the selection methods in evolutionary programming,
evolution strategies, and genetic algorithms.

have the disadvantage that it is quite possible to lose some of the fittest
individuals from the population, especially using stochastic selection. An
overview of the selection methods used in the three discussed paradigms is
shown in Table 3.1.

A set of reproductive operators In order to produce offspring, parents
can reproduce in multiple ways. One method to reproduce is by mutation,
where a single parent clones itself and modifies one or more genes in a
stochastic way. When using a fixed-length array with length L of real-valued
numbers as genotypic representation, a common mutation method is the
Gaussian mutation operator. This operator performs a mutation using a
normal distribution with mean 0. It mutates on average 1 gene, according
to the given standard deviation. As we use a direct encoding, we have to
restrict ourselves to operators that can be applied directly on graphs. Some
obvious mutations are the addition of a new edge, the removal of an edge, the
addition of a vertex, and the removal of a vertex. An alternative mutation is
edge contraction, where an edge e is removed, and its adjacent vertices are
merged. Another mutation can be obtained by ‘moving’ an edge such that it
stays incident to one vertex whilst changing the other end of the edge to a
new vertex. Other mutations are also possible, as there are more possibilities
for the merging and splitting of vertices.

Another method to produce offspring is by recombination, where two
parents are partially cloned and then combined to form a new individual.
When evolutionary algorithms use a fixed-length array of numbers, which is
a standard encoding for optimisation problems, this combination could be
done quite easily using 1-point crossover. In this case, the first part of the
array is taken from the first parent, and the second part is taken from the
second parent using a randomly selected crossover point. This method can
be improved by taking multiple crossover points, such that multiple segments
are copied alternately from each parent. Even the amount of crossover
points can be made stochastic, to avoid the so-called distance bias where
the distance between genes in the array influences the probability of them
being inherited together. Like the mutation operator, the implementation
is very different when using a direct graph encoding. Compared to linking
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two partial arrays together, the recombination of different graphs is far from
trivial.

In [SPC04], two different crossover techniques are compared. The first one
is the Globus crossover, named after the author [Glo+00], which is an operator
that divides each parent into disjoint connected subgraphs. Afterwards, two
connected subgraphs from two different parents are merged together to create
a new graph. The Globus crossover operator is “representative of the best
work in this area” of fragmentation and recombination operators [SPC04].
The graph is decomposed by an edge cut, such that the graph is split into two
components that together form a spanning subgraph of the original graph.
An edge cut of a connected graph is a set of edges whose removal disconnects
the graph. The division of a parent into two connected subgraphs is shown
in Algorithm 3.1.

Algorithm 3.1 Split a graph into two components
1: initialise an empty set S
2: choose a random edge e
3: while S is not an edge cut do
4: find the shortest path between the vertices incident with e
5: remove a random edge in this shortest path from the graph
6: add the removed edge to S

In order to merge two components from two different parents, one com-
ponent is chosen from each parent at random. The combination of this
component together with the edge cut that is used to split the original graph
is called a fragment. The algorithm to merge these components is shown in
Algorithm 3.2. Note that the largest fragment refers to the fragment, whose
(randomly selected) component contains the most vertices. The smaller
fragment refers to the fragment corresponding to the (randomly selected)
component from the other parent.

Algorithm 3.2 Merge two fragments
1: for each broken edge e from the largest fragment’s edge cut do
2: if the other fragment has broken edges in its edge cut then
3: merge e with a random broken edge from the smaller fragment
4: else
5: if a random coin flip turns head then
6: attach e to a random node in the smaller fragment
7: else
8: discard the broken edge e

Both algorithms are designed in such a way to reduce the bias towards
selecting certain vertices or edges. Nevertheless, the Globus operator does
have has a bias to split graphs into two components, such that one component
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contains more vertices than the other. This is a consequence of the fact that
the edges that are incident with the initially chosen edge e have a greater
probability of breaking than any other edges in the graph. As the path is
disconnected by removing a random edge in the path (line 5 of Algorithm 3.1),
the algorithm also tends to destroy the structure of fragments more than
necessary in order to split the graph into two components. According to
[Glo+00], it can be expected that fit parents reproduce very unfit children,
due to the very destructive nature of the crossover operator.

An alternative crossover mechanism is the GraphX crossover. This
operator tries to perform the same point crossover technique as used on
fixed-length arrays of numbers, by using the adjacency matrix of a graph.
Note that this research uses directed graphs and that this operator would not
preserve the symmetry of the adjacency matrix that is present in undirected
graphs without modifying the algorithm. On graphs of equal order, it uses
a 2-point crossover based on two randomly selected points. When applied
to graphs of a different order, all-zero columns and rows are added to the
smaller matrix in order to obtain symmetric square matrices of the same
dimension.

The values of the adjacency matrix in between the two crossover points
are then swapped, such that two offspring are produced. After the swapping,
the dimension of the adjacency matrix for the smaller graph is restored by
removing the same columns and rows that were added (possibly containing
nonzero entries).

These two crossover mechanisms are compared in the paper that intro-
duces the GraphX operator [SPC04], but in our opinion, it is hard to draw
meaningful conclusions due to the setup of the experiment. The goal is
to evolve towards a predefined target graph, but isomorphism is not taken
into account. This gives the GraphX operator an advantage, as it performs
operations on the representation instead of the graph structure itself. Even
though the GraphX operator clearly outperforms the Globus operator on
this problem, there is little evidence that it would work well on other prob-
lems. There has not been much research on this topic ever since, and the
mentioned paper [SPC04] is quite old and has never been actually published.
The method thus does not seem very impactful, and relying solely on the
mutation operator seems more promising. This approach of reproduction
using only the mutation operator is also successfully used in the field of
Cartesian genetic programming. As this method partly inspired our approach,
it will be explained in the following section.
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3.2 Cartesian genetic programming

A related subject in evolutionary algorithms that has been popular recently
is the field of Cartesian genetic programming. Genetic programming refers
to the set of evolutionary algorithms that are applied to computer programs,
such that the programs evolve over time. Classical genetic programming uses
trees to represent the program [Koz93]. The mutation operator can simply
change a node in the tree, but even an effective crossover operator can be
implemented easily by selecting two nodes and swapping them, including their
subtrees. An advantage of this crossover technique is that it succeeds well
in preserving the sub-structures that are present. A drawback of tree-based
genetic programming is the occurrence of bloat. Bloat is the phenomenon
where a solution becomes increasingly larger, whilst there is no significant
increase in its fitness. A solution is thus bloated when it is unnecessarily
complicated.

Cartesian genetic programming is a variant to genetic programming that
uses directed acyclic graphs as representation. This enables the reuse of
nodes, which significantly reduces the amount of bloat [SL07]. What makes
Cartesian genetic programming interesting is the lack of a crossover operation,
as it only makes use of a mutation operator. Due to its representation, it
is particularly well suited for problems with multiple inputs and outputs
and has been applied successfully in a variety of domains ranging from robot
controllers, to real-value optimisation problems, digital circuits, and plenty
more [MR19]. Cartesian genetic programming has been well studied, and
many variants exist.

Multiple crossover techniques have been tried, and even though some of
them look promising there is not yet a crossover operation that is widely
accepted into Cartesian genetic programming. Whilst the graphs in our
research are neither directed nor acyclic, the fact that no such operator exists
for these directed acyclic graphs strengthens our belief that the crossover
operator will not be very effective on our problem.
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Chapter 4

Method

Section 4.1 looks at the generation of nonisomorphic graphs and explains a
very compact data format to store graphs. Section 4.2 covers the efficiency
of different options to represent a graph on a computer. In Section 4.3
and Section 4.4, we respectively look at the algorithms required to find a
Hamilton cycle and to determine the toughness of a graph. Section 4.5 shows
the design of our enumeration algorithm by presenting a basic algorithm
and discussing various improvements to increase the speed. Section 4.6
presents the final version of the enumeration algorithm, where we discuss
the implementation. In Section 4.7, the evolutionary algorithm is presented.
Section 4.8 discusses how to verify the results.

4.1 Nonisomorphic graph generation

In order to implement an enumeration algorithm, a set of graphs to enumerate
over is required. This set should not include isomorphic graphs, as this
would lead to duplicate calculations. Disconnected graphs can also be
disregarded, as these have a toughness of zero. The set of graphs should
contain all connected nonisomorphic graphs of a certain order n. The number
of nonisomorphic connected graphs of order 1 ≤ n ≤ 14 is shown in Table 4.1.
The table also shows the number of connected chordal graphs, as these will
be analysed separately.

Up to now, there is no polynomial algorithm to solve the decision problem
that asks whether two graphs are isomorphic. The complexity of this problem
is open and one of the most prominent open problems within graph theory
and computational complexity. This makes the task of calculating all noniso-
morphic graphs of a certain order challenging. An exact and reasonably fast
algorithm is presented in [McK98], where it has also been proven that all
possible graphs are generated using this method. Note that the presented
algorithm does have an exponential time complexity.
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n connected graphs
1 1
2 1
3 2
4 6
5 21
6 112
7 853
8 11,117
9 261,080
10 11,716,571
11 1,006,700,565
12 164,059,830,476
13 50,335,907,869,219
14 29,003,487,462,848,061

n chordal graphs
1 1
2 1
3 2
4 5
5 15
6 58
7 272
8 1,614
9 11,911
10 109,539
11 1,247,691
12 17,566,431
13 305,310,547
14 6,558,690,953

Table 4.1: Respectively the number of connected graphs [Inc20a] and con-
nected chordal graphs with n vertices [Inc20b].

This algorithm is implemented as part of the Gtools suite included in
Nauty [MP14], which is a program that computes automorphism groups of
graphs. The program that implements this is named Geng. Geng provides
the option to only generate graphs that satisfy specific properties, such as
being connected, being chordal, or having a minimum or maximum degree.
The output of Geng for some common classes of graphs can be downloaded
from the personal website of Brendan McKay [McK20a]. The number of
connected graphs from Table 4.1 is available for n ≤ 11, and the number of
connected chordal graphs is available for n ≤ 13. Alternatively, we could
make use of the house of graphs database [Bri+13]. This website lists many
classes of graphs and also provides a database of interesting graphs.

4.1.1 Graph6 format

Geng returns a set of graphs that are stored in the graph6 format, which is
a very compact format to store graphs [McK20b]. It achieves this compact
form by encoding the graph in ASCII characters. It only consists of bytes
whose value lie in the range from 63 to 126. In our explanation of this format,
it is assumed that a graph has at most 62 vertices. The encoding works as
follows.

The first character encodes the order n of the graph. It is encoded as
the byte n+ 63. For the example graph seen in Figure 4.1, this would have
the value 68. The remaining characters encode half of the adjacency matrix
(see Section 4.2 for a definition) of the graph. The upper triangle of the
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Figure 4.1: A path graph to illustrate the graph6 format.

adjacency matrix of a graph is written as a bit vector. This upper triangle is
traversed column by column, as described by the following order.

(0, 1), (0, 2), (1, 2), (0, 3), (1, 3), (2, 3), . . . , (n− 1, n)

For our example, the bit vector would be 1010010001. This bit vector is
padded with zeros on the right if needed, such that its length becomes a
multiple of 6. It is then split across groups of 6 bits each. Our example would
then be denoted as 101001 000100. Finally, these groups are interpreted as
binary numbers and increased by 63. For our example, this would lead to
104 67. Combined with the order of the graph, Figure 4.1 can be denoted by
the bytes 68 104 67, corresponding with the ASCII characters “DhC”.

4.2 Graph representations

A graph G of order n can be represented in multiple ways. One possibility
is to use an edge list, similar to the formal definition of simple graphs
(Definition 2.2). This is a single list containing all the edges of a graph. It is
straightforward to implement and requires relatively little space, but testing
whether an edge exists or finding the neighbours of a vertex is not time
efficient. Two common representations to store graphs on a computer are
adjacency matrices and adjacency lists.

An adjacency matrix is the n×n matrix Ag := (auv), where auv is defined
as follows.

auv =
{

1 if (u, v) ∈ E(G)
0 otherwise

.

The main benefit of an adjacency matrix is constant time access to test
whether two vertices are adjacent. A disadvantage is that the neighbours of
a vertex cannot be listed efficiently, but require linear time in the number of
vertices of a graph. Note that only half of the adjacency matrix has to be
stored for undirected graphs, as the matrix is symmetric.

An alternative is to use an adjacency list. For each vertex v of a graph, the
neighbours N(v) can be contained in a list. The list containing all these lists
is called the adjacency list: (N(v) : v ∈ V ). As an example, the adjacency
list for the graph of Figure 4.2 would be [[2, 3], [1, 3], [1, 2], [1]]. It has the
main benefit that it can list all neighbours of a graph in a time proportional
to the degree of the vertices. It has the disadvantage that testing whether
two vertices are adjacent also takes time proportional to the degree of the
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Figure 4.2: An example to explain the adjacency list.

vertices. Our implementation makes use of an adjacency list, the motivation
for doing so is presented in Section 4.6.1.

4.3 Hamilton cycle algorithm

Two different algorithms for finding Hamilton cycles or paths will be dis-
cussed here. These two approaches are based on backtracking and dynamic
programming. We shall focus on the algorithms for finding Hamilton paths
instead of cycles, as these are used in our final algorithm. These can easily
be modified into similar algorithms for Hamilton cycles (see Section 2.1).
There are many heuristics related to finding Hamilton paths in very large
graphs, but most available literature is not relevant in our scenario. Since
finding a Hamilton path is NP-hard, a polynomial algorithm most likely does
not exist. The algorithm with the lowest time complexity has complexity
O(1.657|V |). This has been proven in [Bjö10], and it provided the first su-
perpolynomial improvement since 1962 to the exponential complexity of the
dynamic programming solution developed independently by Bellman [Bel62]
and Held and Karp [HK61]. Multiple other algorithms to find Hamilton
cycles and variations on the above-mentioned algorithms are described in
the thesis ‘Finding Hamiltonian cycles: algorithms, graphs and performance’
[Van98].

Backtracking The backtracking algorithm for finding a Hamilton path
is shown as pseudocode in Algorithm 4.1. Note that the path variable
is initially an empty vector. The backtracking algorithm has complexity
O(|V |!). Ideally, the graph is stored by an adjacency list such that the for
loop can be performed efficiently. Possible improvements in the speed of the
algorithm can be achieved by changing the order of the adjacent vertices
that are analysed (line 6), for example, based on the degree. Both the above-
mentioned thesis [Van98] and the thesis ‘A Fast Algorithm For Finding
Hamilton Cycles’ [Cha08], suggest many heuristic-based improvements to
the backtracking algorithm. We believe that these heuristics would not help
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Algorithm 4.1 Backtracking Hamilton path
1: function Hamilton path(graph, vstart, vend, path)
2: path.push back(vstart) . add to the current path
3: if vstart = vend and length(path) = order(graph) then
4: return true
5: else
6: for all vertices w adjacent to vstart do
7: if w is not in the current path then
8: if Hamilton path(graph, w, vend, path) then
9: return true

10: path.pop back() . remove the last element from the path
11: return false

much on the very small graphs we analyse, but an extensive comparison of
performance has not been made.

Dynamic programming Alternatively, one could use an algorithm based
on dynamic programming. This has time complexity O(|V |2 · 2|V |). The
advantage is that it enables the reuse of computations. This is especially
beneficial if the algorithm is called multiple times on the same graph (between
different vertices), which is exactly what we are doing in our enumeration
algorithm (see Section 4.5). It works as follows.

Consider the problem of finding a Hamilton path in G from vstart towards
vend (both vertices in G). In order to use dynamic programming on this
problem, we need to have a property that can be defined recursively. This is
the following property: for a given set S ⊆ V (G) and a vertex v ∈ S, there
exists a path from vstart which goes through all vertices of S and ends at v.
We call this property p and define it recursively as follows.

Definition 4.1. p[S][v] = ∃u ∈ S : p[S − {v}][u] ∧ (u, v) ∈ E(G).

So a path exists for a combination of S and v if and only if v has an
adjacent vertex u such that a path exists through S−{v} ending at u. There
is a Hamilton path from vstart towards vend if p[V (G)][vend] is true.

Comparison The dynamic programming solution has the benefit that it
can reuse computations and that it does not have a factorial time complexity.
The backtracking algorithm has the benefit that it has a very good best-case
performance. If it is, for example, applied to a complete graph, it will
terminate on the first path being tried. The dynamic programming solution
does not have this benefit. If that algorithm is applied to a complete graph
Kn, it has to calculate p[S][v] for all possible S ⊆ V (Kn) before terminating.
This difference in performance is valid to a lesser extent for other dense
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graphs. Both algorithms have been implemented, and timing results can be
found in Section 5.4. Our implementations showed that for small graphs,
the backtracking algorithm performed better than the alternative. This
backtracking algorithm is used both in our enumeration algorithm and the
evolutionary algorithm.

4.4 Toughness algorithm

In Section 2.3 it has been explained how to construct a tough nonhamiltonian
graph G, based on a smaller graph H, in which u and v are chosen such that
there is no Hamilton path in H between u and v. Let Hi denote the copies
of H in G for i = 1, 2, . . . , 2`+ 1, and let K denote the complete graph on
` vertices in G, so with V (K) = V (G) \ (V (H1) ∪ V (H2) ∪ . . . ∪ V (H2`+1)).
We assume that ` is large. Let S be a cut set of G for which τ(G) = |S|

ω(G−S) .
In order to determine the toughness of this constructed graph G, based

on only the small graph H, it would be desirable that the cut set S can be
chosen such that the vertices of S in each copy Hi all correspond to the same
set of vertices in H. To show that this is indeed possible, we claim that the
following holds.
Theorem 4.2. We can choose S in such a way that V (Hi) ∩ S corresponds
to the same subset T ⊂ V (H) for all i = 1, 2, . . . , 2`+ 1.
Proof. First of all, it is obvious that V (K) ⊂ S, since S is a cut set and all
vertices of K are adjacent to all other vertices of G, so they have to be part
of the cut set. Since G− V (K) consists of one component, S contains a cut
set of G− V (K). Let Si = V (Hi) ∩ S, and let ui and vi denote the vertices
of Hi that correspond to u and v of H. Then Hi contributes ω(Hi − Si)
components to ω(G− S) if both ui and vi belong to Si, and ω(Hi − Si)− 1
components to ω(G− S) if at least one of ui and vi does not belong to Si.
We call these contributions of Hi − Si to ω(G− S) the private components
of Hi − Si, and denote their number by ωi. All non-private components, if
any, end up in one component of G− S, because all remaining vertices ui
and vi in G− S are mutually adjacent by the construction of G. Since every
cut set of G gives an upper bound on τ(G), and the minimum of these upper
bounds is reached by taking the cut set S, we have that

τ(G) = min `+∑2`+1
i=1 |Si|

(1+)∑2`+1
i=1 ωi

,

where the minimum is taken over all possible combinations of cut sets Si of
Hi, and in which the additional +1 only applies if at least one of the Si does
not contain both ui and vi.

Let s denote the average of |Si| taken over all cut sets Si, so

s =
∑2`+1
i=1 |Si|
2`+ 1 .
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Similarly, let ω denote the average of ωi taken over all ωi, so

ω =
∑2`+1
i=1 ωi

2`+ 1 .

With this notation, from the above it follows that

τ(G) = min `+ (2`+ 1)s
(1+)(2`+ 1)ω = min

1 + (2 + 1
` )s

(1
`+)(2 + 1

` )ω
.

If we take ` large enough, we can get this expression arbitrarily close (from
below) to

1 + 2s
2ω .

If there is a cut set Si ⊂ V (Hi) with |Si| = s and ωi = ω for some i ∈
{1, 2, . . . , 2`+1}, then we can clearly choose all Si corresponding to the same
cut set T ⊂ V (H), and there is nothing to prove.

Next assume that this is not the case. Consider all Si and ωi. By
definition,

|S1|+ |S2|+ . . .+ |S2`+1| = (2`+ 1)s
and

ω1 + ω2 + . . .+ ω2`+1 = (2`+ 1)ω.
We also have that

1 + 2s
2ω <

1 + 2si
2ωi

,

since otherwise choosing Si for every Hi would contradict the assumption on
the choice of S. Using the latter inequality, we get

ωi(1 + 2s) < ω(1 + 2si),

and summing over all i = 1, 2, . . . , 2`+ 1, this yields

(1 + 2s)(2`+ 1)ω < ω(2`+ 1)(1 + 2s),

a clear contradiction. This completes the proof of this theorem.

It follows from the above proof that we can assume that there is a cut
set Si ⊂ V (Hi) such that |Si| = s and ωi = ω for some i ∈ {1, 2, . . . , 2`+ 1}.
It has also been shown that the toughness can be approached from below by

1 + 2s
2ω .

Let SH be the vertices in H corresponding to the vertices in Si and let
ω′(H − SH) be the number of components in H − SH not containing u or v.
The toughness of G is now equal to

1 + 2|SH |
2ω′(H − SH) − ε
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for arbitrarily small ε > 0, by taking ` sufficiently large. Our algorithm
approximates it as follows.

τ(G) ≈ 1 + 2|SH |
2ω′(H − SH) (4.1)

Our goal is to write a reasonably fast exact algorithm that can calculate
the toughness using Equation (4.1) for all possible nonisormorphic graphs of a
certain order. A straightforward program to do so without any optimisations
is described by the pseudocode in Algorithm 4.2. Note that the graphs G and
H do not have the same meaning as above, but that in the below pseudocode
G is the (small) input graph.

Algorithm 4.2 Toughness calculation
Require: vertices are labelled as 1, 2, . . . , |V (G)| and u, v ∈ V (G)

1: function get toughness(G, u, v)
2: P ← get subsets(|V (G)|)
3: for all S ∈ P do
4: H ← subgraph(G,S) . induced subgraph G[S]
5: nc ← connected components(H,u, v)
6: . count components excluding those containing u or v
7: if nc > 0 then
8:

T ← min(T, 1 + 2 · (|V (G)| − |V (H)|)
2 · nc

)

9: return T

The functions that are being used in this algorithm are listed below.

• subgraph: It should take a graph and a set of vertices in this graph as
parameters and return the subgraph induced by this set of vertices.

• get subsets: This should take a parameter n and return the powerset
of {1, 2, . . . , n}. The powerset is the set containing all 2|V | possible
subsets of a set V . It is therefore required that the vertices are labelled
as 1, 2, . . . , |V (G)|.

• connected components. It should take a graph and two vertices u, v
in the graph as input, and return the number of components excluding
those containing u or v. This has complexity O(|V |+ |E|).
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4.5 Algorithm design

In order to implement an algorithm that can apply the construction from
Section 2.3, the algorithm for the Hamilton path and the algorithm that
determines the toughness need to be combined into a single algorithm.
A simple algorithm that does this is shown in Algorithm 4.3. It returns
whether a graph H can be used to construct a nonhamiltonian graph G
with toughness above 2. A second algorithm should then loop over all
nonisomorphic graphs of a certain order generated by Geng (see Section 4.1)
and apply basic algorithm to each graph. As Algorithm 4.3 is not very
efficient, we will discuss many possible improvements to this algorithm in
the following subsections.

Algorithm 4.3 Basic algorithm
1: function basic algorithm(G)
2: for all u, v ∈ V (G) : u 6= v do
3: h← Hamilton path(G, u, v)
4: if not h then
5: t← get toughness(G, u, v)
6: if t ≥ 2 then
7: return true
8: return false

Before looking at possible optimisations, the worst-case time complexity
of Algorithm 4.3 is analysed. The for loop (line 2) iterates over |V |·(|V |−1)

2
possible pairs: O(|V |2). The toughness calculation (Algorithm 4.2) iterates
over at most 2|V | subsets. For each subset, calculating the number of
components has the highest time complexity, namely O(|V | + |E|). The
complexity of Algorithm 4.2 is thus O(2|V | · (|V | + |E|)). Checking the
existence of a Hamilton path using backtracking has complexity O(|V |!). A
factorial function quickly grows larger than the exponential function with
base 2 (for n ≥ 4, n! > 2n), and the constant time factor |V |+ |E| does not
change this. So the Hamilton path algorithm has the dominating complexity,
making O(|V |2 · |V |!) the worst-case time complexity of Algorithm 4.3.

We have analysed the efficiency of the following optimisations in multiple
ways. For some optimisations a theoretical argument suffices, because they
do not add any new computations and reduce the existing amount of required
computations. For other optimisations, this is less trivial. One approach to
analyse this is by benchmarking, either by solving all graphs of a specific
order or by analysing a smaller set of larger graphs. Another option is
to use a profiler that can provide dynamic program analysis by measuring
performance whilst running the code. This could create a call graph, showing
how many times each subroutine has been called, or keep track how much
time is spent in each subroutine.
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4.5.1 Toughness algorithm termination

The first improvement is based on the fact that we are not interested in the
actual toughness, but only whether it is higher than a fixed value t0. For
Algorithm 4.3 this value is set to two (t0 = 2). It may be more efficient
to set this value to 9

4 , but we are also interested in the structure of other
graphs with toughness τ ≥ 2. By altering the toughness calculation, the
algorithm is a lot more efficient on graphs with low toughness. After line 8
in Algorithm 4.2, we can insert the following code to terminate as soon as
possible.

if T < 2 then
return T

Note that this enables the algorithm to return an incorrect toughness if the
toughness is below two, but for our usage in Algorithm 4.3 this would not
matter.

4.5.2 Cut size in the toughness algorithm

The second improvement is also based on the fact that it only matters
whether the toughness is higher than a fixed value t0. For the remaining part
of this thesis, the term cut refers to a set S ⊆ V (G) used to calculate the
toughness. The term cut size refers to the number of vertices of S. Recall
from Section 4.4 that the toughness can be approximated by

τ(G) ≈ 1 + 2|SH |
2ω′(H − SH) .

Recall that this approximation is approached from below, thus in order to
test whenever τ(G) < t0, a cut S ⊆ V (G) should satisfy the property:

1 + 2 · |S|
2 · ω′ < t0.

This yields a formula to calculate what size of S can produce an upper bound
on the toughness that is below t0. As Algorithm 4.3 uses t0 = 2, this value
will be used from now on for the sake of simplicity. The previous formula is
equivalent to:

|S| < t0 · ω′ −
1
2 . (4.2)

Since |S| and ω′ are both integer values, the possible cut size |S| required to
check whether τ(G) < 2 satisfies

|S| ≤ 2 · ω′ − 1. (4.3)

So only sets S of odd size have to be considered, as is shown by Theorem 4.3.
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graph order |S| to analyse
4 or less 1
5,6, or 7 1 and 3
8,9, or 10 1,3, and 5
11,12, or 13 1,3,5, and 7

Table 4.2: Cut sizes required to test whether the toughness is below 2.

Theorem 4.3. Here we assume the above notation. τ(G) < 2 if and only if
min

S⊆V (H):|S|=2k+1(k∈N)
(1 + 2 · |S|

2 · ω′ ) < 2.

Proof. ( =⇒ ) Assume τ(G) < 2. Then there exists a set S ⊆ V (H) such
that 1+2·|S|

2·ω′ < 2. If |S| = 2k + 1 (k ∈ N), the result follows. If |S| = 2k
(k ∈ N), then any set T such that |T | = |S|+1 and T ⊇ S satisfies 1+2·|S|

2·ω′ < 2,
as a consequence of Equation (4.3).

(⇐= ) This follows directly from the definition of toughness.

Certain cut sizes |S| cannot produce a toughness below two, simply
because there are not enough vertices in G − S remaining to have the
required number of components not containing u or v. By combining this
observation, with Theorem 4.3, the cut sizes that have to be iterated over in
our algorithm are shown in Table 4.2.

Note that Equation (4.2) allows a more generalised theorem than The-
orem 4.3. The only cuts S ⊆ V (G) that need to be considered in order to
test whether τ < t0 should satisfy that |S| = limε→0+bt0 ·k− 1

2 − εc for k ∈ N.
This generalisation can, for example, be used to apply this optimisation to
chordal graphs.

4.5.3 Cut ordering in the toughness algorithm

Another improvement to Algorithm 4.2 can be made by iterating over the
powerset in a different order. Using empirical evidence, we have concluded
that it is most efficient to start with the largest cuts. For the remaining cut
sizes, the algorithm iterates over them in decreasing order. It has also been
tested whether all cuts of a certain size could be iterated over in a more
efficient order. A random order did not perform better than a lexicographical
order. Minor improvements have been obtained by applying different orders,
but in order to avoid overfitting, we have decided not to use this modification.

4.5.4 Even fewer cuts in the toughness algorithm

This improvement is an extension to Section 4.5.2, but it only works for
graphs of a certain order. Assume a graph of order n = 3k − 1 (k ∈ N). As
a consequence of the previous improvement, the cuts of size 2k − 1 are the
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first to be analysed. Using a cut S of size 2k − 1, one has to find k distinct
components that do not contain u and v. Since there are only k vertices left,
u and v must be included in the cut S. This reduces the number of possible
cuts of this size from

(3k−1
k

)
to
(3k−3

k

)
.

As an example: for a graph of order 8 one has to find 3 disconnected
vertices with a cut of size 5. This reduces the possibilities for this remaining
set from

(8
3
)

= 56 to
(6

3
)

= 20. For graphs of order 11 one has to find 4
disconnected vertices with a cut of size 7, this leads to a reduction from(11

4
)

= 330 to
(9

4
)

= 126.
More generally, the relative reduction in the amount of sets is given by

the following formula: (3k−3
k

)(3k−1
k

) = (2k − 1)(2k − 2)
(3k − 1)(3k − 2)

This reduction in the number of cuts can be implemented by passing u
and v as an argument to the get subsets function. Note that this cut size
is tried first, because it can often be concluded that the toughness is below
2, by using cuts of this size.

4.5.5 Reuse of cuts within a graph

All calculations are repeated for each possible pair of vertices u, v in a graph.
When a cut S contains both u and v and yields a toughness below 2, this
cut also results in a toughness below 2 for other pairs of vertices u′, v′ ∈ S.
When either u or v is not in the cut, the set may still be reusable if the
graph has a relatively low toughness. The algorithm can thus be improved
by keeping track of a set containing successful cuts. These cuts should then
be tried before all other possible cuts returned by get subsets.

4.5.6 Reuse of cuts across different graphs

The set of nonisomorphic graphs of a certain order that serve as input to
Algorithm 4.3 are generated by Geng (see Section 4.1). Geng creates all
nonisomorphic graphs of a certain order by iteratively adding edges. Due to
the particular generation method being used, successively generated graphs
are relatively similar. Inspired by the previous optimisation, it is also possible
to reuse cuts of the previous graph. This could be implemented by creating
a hashset that uses a pair of vertices as key and stores the final cut of the
previous graph as value. The final cut is the cut that yields a toughness below
2 and terminates the algorithm (by the optimisation from Section 4.5.1).
These last two optimisations on the reuse of cuts are relatively simple, but
are very useful optimisations due to the fact that they are often applicable.

35



4.5.7 Reuse of the Hamilton path

Inspired by the reuse of cuts discussed in the previous optimisation, it is also
useful to reuse Hamilton paths that have been found for the previous graph.
This could be implemented similarly by creating a hashset. It uses a pair
of vertices as key and stores a Hamilton path between this pair of vertices
as value, if such a path has been found. For the next graph, it is checked
whether this Hamilton path is still a valid path in the graph (i.e. each edge
of the path is actually in the graph).

4.5.8 Preprocessing

If a graph is dense enough, there may exist a Hamilton path from u to v for
every pair of distinct vertices u, v in G. As explained in Section 2.1, such a
graph is called hamiltonian-connected. If a graph is hamiltonian-connected,
it does not have to be analysed by our algorithm as it clearly cannot contain
a solution. The densest graphs require most of the time in running our
algorithm, so a significant improvement can be made if these can be skipped
by an easy to calculate sufficient condition for hamiltonian-connectedness.
Multiple conditions are presented in Section 2.1, the least restrictive one
being the following.

Theorem 4.4. Let G be a graph on n vertices. If G has a complete (n+ 1)-
closure, then G is hamiltonian-connected.

It would be possible to use an even easier to compute degree-based
sufficiency condition before calculating the closure. For the small graphs, this
could only result in a minor improvement, as the calculation of the closure
is already quite fast. An obvious algorithm to compute the k-closure takes
O(n4) time, by cycling through a list of nonexistent edges to see whether the
degree sum is at least k. A more efficient algorithm calculates the closure
of a graph in a time proportional to the output. We have implemented this
algorithm, which is presented in [Spi04]. It works as follows.

Let G be a graph of order n and let Gc be a graph that will eventually
be the k-closure of G. Let Q be the set of all nonexistent edges (x, y) of
G, such that d(x) + d(y) ≥ k. For each possible vertex degree i (from 0 to
n− 1), a list is maintained containing all vertices of degree i in Gc. The set
Q represents the edges that will be added to Gc. While Q is nonempty, the
following steps are repeated.

1. Let x, y be a pair of vertices from Q.
2. Let dx be the degree of x, and let dy be the degree of y.
3. Remove x, y from Q and add it as an edge to Gc.
4. Move x from list dx to list dx + 1.
5. If dx + 1 ≤ k, then add (x, z) to Q if (x, z) is not an edge of G for each

vertex z in list k − dx − 1.
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6. Move y from list dy to list dy + 1.
7. If dy + 1 ≤ k, then add (y, z) to Q if (y, z) is not an edge of G for each

vertex z in list k − dy − 1.

4.5.9 Order hamiltonicity and toughness

In Algorithm 4.3 the existence of a Hamilton path between u and v is
determined before the toughness of the graph is calculated. This order could
also be reversed. This would clearly be beneficial if deciding whether τ < 2 is
faster than determining the nonexistence of a Hamilton path. A third option
would be to place the hamiltonicity check half-way the toughness check, e.g.
after checking the toughness using the maximal cut size (successful most of
the time) and before switching to smaller cuts.

These options have been tested in combination with all other optimisa-
tions, and we have found that it is ideal to start with testing the successful
cuts described in Section 4.5.5 and Section 4.5.6, followed by checking the
nonexistence of a Hamilton path (also using the reuse from Section 4.5.7),
and finally calculating the toughness.

This has been deduced empirically, and it is clearly not ideal for every
graph. As mentioned in Section 4.5.6, the input graphs are analysed in a
certain order. Generally, the first graphs being generated are rather sparse
and the final graphs are quite dense. By using all previous optimisations,
the sparse graphs are analysed very quickly due to the low toughness of
those graphs and the reuse of cuts. If a graph is very dense, it can be
skipped by making use of our preprocessing algorithm from Section 4.5.8.
The toughness algorithm requires more time for dense graphs, as these have
a higher toughness, and it is harder to show that a toughness is below two. If
the toughness is at least two, the algorithm only terminates after all possible
cuts. The empirical observation on the ideal order could be explained by
the fact that most of the time is spent on relatively dense graphs. For these
graphs, the toughness algorithm is very time-consuming.

4.6 Enumeration algorithm

Our final algorithm is thus a variation on Algorithm 4.3, incorporating the
optimisations presented in Sections 4.5.5 to 4.5.9. In order to calculate
the toughness, it makes use of a variation on Algorithm 4.2, such that the
optimisations presented in Sections 4.5.1 to 4.5.4 are integrated. In order
to do so, Algorithm 4.2 is modified such that the collection of possible cuts
P , is passed as a parameter to the function get toughness. In order to
analyse chordal graphs, the algorithm can be modified to test whether the
toughness is at least 7

4 . The optimisations that depend on testing whether
the toughness is below two also require some modifications. A link to our
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implementation can be found in Appendix A, where we shortly explain the
structure of our code.

4.6.1 Implementation

Our algorithm has first been implemented in Python. Python is suitable for
fast prototyping, both by the nature of the language (resulting in relatively
small code size) and the availability of feature-rich graph libraries. These
libraries include Networkx [HSS08], Graph-tool [Pei14], and Igraph [CN06].
After comparing these, we have chosen to use the Networkx library, as it
had all the features required for implementing the algorithm and can read a
graph described by the graph6 format.

For our final algorithm, another programming language has been used to
optimise the performance. The following algorithms need to be optimised.

• Counting the number of components.

• Checking the presence of a Hamilton path between two vertices.

• Creating an induced subgraph, such that the algorithm to count the
components can be executed on this induced subgraph.

Given these requirements, we have chosen to use the C++ Boost Graph
Library [SLL02] (available at [Boo20]) to implement our algorithm. The
Boost Graph Library (BGL) is a generic library, which means (among others)
that the provided algorithms are data-structure independent. This has the
benefit that we can choose a data structure that is optimal for the algorithms
being used. Secondly, C++ is known to be among the fastest general-purpose
programming languages, so the language is not a restrictive factor.

For both counting the number of components and checking the presence
of a Hamilton path by Algorithm 4.1, it is required to iterate over the
neighbours of a vertex. The graphs are therefore stored using adjacency lists.
The adjacency list in BGL consists of a VertexList and an OutEdgeList.
As BGL is data-structure independent, it is possible to change the data-
structure of these two lists depending on which functionality should perform
optimal. Possible data structure are lists, vectors, or sets (all from the C++
Standard Template Library). For iterating over the neighbours of a vertex,
the data type of OutEdgeList is important. This operation is constant time
for all types, but there is a significant constant factor time difference between
the various types [Boo20]. The speed of this operation in order from fastest
to slowest is vector, linked list, and set. For this reason, the OutEdgeList is
stored as a vector. The type of the VertexList does not matter much, as
no vertices are added or removed during our algorithm. It is implemented as
a vector, to reduce space overhead [Boo20].
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Components By profiling our implementation, it can be observed that
most of the time is spent on counting the number of components, in order to
determine the toughness. The time complexity for counting the number of
components is O(V +E). The Boost Graph Library provides an algorithm to
count the number of components, based on performing a depth-first search.
Recall that the goal is to count the components not containing two vertices
u and v. The algorithm in BGL that counts the number of components
stores the component of each vertex, such that the components containing
u and/or v can be subtracted afterwards. This has been implemented by
checking whether u and/or v are in the cut S, and whether u and v are part
of the same component.

Hamilton path The Boost Graph Library does not contain an algorithm
that can find a Hamilton path. As mentioned in Section 4.3, both a backtrack-
ing algorithm and a dynamic programming algorithm have been implemented.
The backtracking algorithm (Algorithm 4.1) can be implemented efficiently
by storing the graph as an adjacency list. For the dynamic programming
algorithm, it is more efficient to store the graph as an adjacency matrix. In
order to implement the dynamic programming solution from Section 4.3, we
iterate over all subsets in bitwise order. The recursive property p[S][v] is
stored in a hashmap (C++ unordered map). The hash function takes a pair
of two numbers as key, where the first number is a bitwise representation of
the set S and the second number is the vertex v. The backtracking algorithm
performed better than the alternative, so this implementation is used in our
final algorithm (see Section 5.4).

Induced subgraph The Boost Graph Library supports a so-called filtered
graph, which is exactly what is needed to perform algorithms on an induced
subgraph. A predicate function determines which vertices and edges should
show up in the filtered graph. For an induced subgraph, only the vertices
are restricted. Thus a predicate function should return true if a vertex is
in the filtered graph and false if it is not. By using a vector of Booleans
containing whether each vertex is in the induced subgraph, the predicate
function can apply the filtered graph in constant time. The filtered graph
does not create a copy of the original graph, but instead uses a reference to
the original graph.

4.6.2 Parallelisation

The code has been run on the DSI computing lab on the University of Twente
[Twe20]. The optimisations from Section 4.5.6 and Section 4.5.7 have the
disadvantage that they make parallelisation a bit more complex, as one
cannot simply distribute all graphs separately as isolated jobs over all cores.
This can be solved by distributing chunks of graphs (e.g. jobs consisting of
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500.000 graphs). As there is no data exchange between the different chunks,
our task can easily be distributed across different machines. This computing
cluster makes use of the workload manager Slurm [YJG03].

4.7 Evolutionary algorithm

The approach of iterating over all possible nonisomorphic graphs is only
feasible for relatively small graphs, as the amount of graphs increases rapidly,
as shown in Table 4.1. It is unlikely that we can improve the algorithm to
make it multiple orders of magnitude faster, which is required to analyse all
graphs of order 12. An alternative approach for finding tough nonhamiltonian
graphs is by analysing random graphs instead. Merely generating graphs
randomly and analysing those would be a lot less efficient than iterating
over nonisomorphic graphs, due to the chance of generating duplicate or
isomorphic graphs. On the other hand, it would make it possible to test
larger graphs for which the set of all nonisomorphic graphs could not even
be generated. The downside is that it would be hard to draw a meaningful
conclusion if the algorithm does not find a sufficiently tough nonhamiltonian
graph. As explained in Chapter 3, a good alternative would be to use an
evolutionary algorithm instead.

The first choice in the design process of an evolutionary algorithm is in
the definition of the fitness function. A natural choice for the fitness function
is the graph’s toughness, after applying the construction from Section 2.3.
The fitness function should also incorporate the existence of a Hamilton path
between two vertices u and v. The existence of such a path should result in
a low fitness, as it is not a solution to the problem. Note that the vertices u
and v are fixed, contrary to the enumeration algorithm. This leads to the
fitness function f described by Equation (4.4).

f(G) =
{
τ(G), if there exists no Hamilton path from u to v
0, otherwise

(4.4)

The toughness function τ is the same as in the enumeration algorithm. A
drawback of this fitness function is that it is computationally expensive. It
has an exponential time complexity, and some optimisations of the toughness
algorithm explained in Section 4.5 are not applicable anymore. On the other
hand, Section 4.5.6 explains an effective optimisation based on the analysis
of similar graphs, that could be even more effective in a mutation-based
evolutionary algorithm. This would be the case if every mutated graph is
very similar to the previous graph, and our mutations are chosen in such a
way that this is the case. This effective calculation of the toughness is part
of the motivation for using a mutation-based evolutionary algorithm in the
first place.
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The second design choice is on the reproductive operators. The crossover
operator on two individuals has not yet proven itself in evolutionary al-
gorithms with direct graph encodings, nor in Cartesian genetic programming
(see Chapter 3). We have thus chosen not to use crossover, and rely solely
on the mutation operator. Multiple mutation operators have been listed in
Chapter 3, but we have decided only to use the following two. One of these
is selected using a uniform distribution.

• Add a random edge

• Remove a random edge

We have chosen not to include mutations that change the order of the graph.
This choice is motivated by three reasons. Firstly, having a constant number
of vertices provides multiple benefits regarding implementation efficiency.
One major advantage is that it enables the reuse of a cut as described in
Section 4.5.6. Secondly, allowing the addition of new vertices could easily
lead towards a graph for which the fitness function would be unfeasible to
calculate. Finally, applying the evolutionary algorithm on graphs of a fixed
order enables us to compare the results to our enumeration algorithm easily.
This comparison can be made in terms of the results, as well as in the running
time. It would be possible to add other mutation operators, that do not
change the order of the graph. There is, however, no clear benefit to do so.
An advantage of this small set of mutation operators is that for half of the
mutations, there is no need to check whether there exists a Hamilton path in
the mutated graph. If there is no Hamilton path from u to v in the original
graph, it is clear that this still holds after removing an edge.

Without a crossover operator, there is not much need for a large popu-
lation and a single-survivor algorithm is a natural choice [APS18]. Single
survivor algorithms mostly fall in the evolutionary strategy paradigm. In
this paradigm, there is a distinction between the (1 + λ) model and the (1,
λ) model. The former is an overlapping generation model, where the parent
competes against its offspring, and the fittest individual survives. The latter
is a non-overlapping generation model, where the parent is disregarded, and
the fittest offspring survives. We have opted to use the (1 + λ) evolutionary
strategy algorithm, in order to guarantee fitness monotonicity. This increases
the selection pressure, by making the algorithm more exploitative, such that
the convergence is more rapid. In case of a tie between the parent and its
fittest offspring, we have chosen to select the offspring. Given the discrete
fitness landscape of graph toughness in combination with our limited amount
of mutation operators, multiple mutations have to be performed in order to
increase the toughness of a graph. Note that the fitness landscape consists of
all evaluations of a fitness function for all possible solutions. Favouring the
offspring is also a common choice when using graphs as indirect encodings,
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as this is known to have a positive influence on the performance of Cartesian
genetic programming [APS18].

In a well-designed evolutionary algorithm, there should be a balance
between exploitation and exploration. Commonly, the selection method
is mostly responsible for the exploitation, whilst the primary source of
exploration is the variation in reproduction [Jon06]. Based on our choice
of a non-overlapping generational model and a single-survivor population
with an elitist selection method, we have designed a rather exploitative
algorithm. This is partly compensated by the fact that our reproduction
method is relatively explorative, due to the lack of a crossover operator.
Convergence towards a local optimum is usually the biggest downside of
having an exploitative algorithm. Another disadvantage of an exploitative
algorithm is that convergence may take very long, as the mutations only
explore solutions that are nearby in the fitness landscape. Both of these
disadvantages will be analysed and discussed in Section 5.2.

The (1 + λ) algorithm is also used by Cartesian genetic programming
[MR19], and our overall approach is similar to this research [APS18], which
applies an evolutionary algorithm to graph programming.

A disadvantage of using a single-survivor algorithm is the lack of par-
allel search, strongly increasing the variance between different runs of the
algorithm. This does not seem to be a problem, as we can still run the
algorithm in parallel. Instead of doing the parallelism within the algorithm,
this can give us some more information on the fitness landscape. It enables
us to analyse how often the algorithm converges prematurely towards a local
optimum, and at what fitness values these local optima exist.

The final choice is in deciding how many offspring to generate, i.e. the
value of λ in the (1 + λ) model. In the reviewed literature, we found that
four is a common choice, and we have therefore decided to implement a
(1 + 4)-ES model. It is also a standard model in the (graph-based) field of
Cartesian Genetic Programming [MR19].

4.7.1 Implementation

The evolutionary algorithm is also implemented in the Boost Graph Lib-
rary, partly reusing the functionality from the enumeration algorithm. Our
algorithm can be described by the pseudocode shown in Algorithm 4.4. It
makes use of the following functions.

• exact toughness: this can be implemented using Algorithm 4.2. It is
similar to the function used in the enumeration algorithm but without
some optimisations. The difference is that in the evolutionary algorithm,
it is not sufficient to decide whether the toughness is below two.

• random graph takes a parameter n and returns a random graph of
order n. It makes use of the G(n, p) model to study random graphs
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Algorithm 4.4 (1+4)-ES model
1: function Evolve(n,m)
2: G← random graph(n) . generate graph of order n
3: u← 0
4: v ← n− 1
5: t← exact toughness(G, u, v)
6: for i← 1 to m do . m generations
7: for j ← 1 to 4 do . four offspring
8: Hj ←Mutate(G)
9: if not Hamilton path(G, u, v) then

10: tj ← exact toughness(G, u, v)
11: else
12: tj ← 0
13: if max({t1, t2, t3, t4}) ≥ t then
14: G← Hk (k ∈ {1, 2, 3, 4}) such that tk = max({t1, t2, t3, t4})
15: t← τ(G)

[Gil59]. It creates a graph of order n, where each possible edge is
chosen to be included in the graph with probability p. We have chosen
to use p = 1

2 , such that all possible spanning subgraph G of Kn are
equally probable to be generated. The function should also mark two
vertices of G as u and v.

• Mutate takes a graph G as a parameter and returns a mutated graph
H. This mutated graph is created by either adding an edge or removing
an edge. Both mutation operators have an equal probability of being
selected. If an edge is added, each disjoint pair of vertices u, v has an
equal probability of being selected, and the edge {u, v} will be added
to the graph. This has been implemented by selecting random pairs of
vertices, until a nonadjacent pair has been found. If an edge is removed,
each edge e ∈ E(G) has en equal probability of being removed. This
has also been implemented by selecting random pairs of vertices, but
this time until an adjacent pair has been found.

• Hamilton path: this algorithm is exactly the same as for the enumer-
ation algorithm, and described in Algorithm 4.1.
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In order to optimise the implementation of Algorithm 4.4, we have made use
of the following ideas.

Termination of the toughness The toughness t0 of the current indi-
vidual can be passed as an argument to exact toughness. The function
exact toughness can terminate as soon as it finds a toughness lower than
t0, as our algorithm will never select an offspring that has a lower toughness
than the parent.

Initial population The function random graph may very well generate
a graph G having a fitness value of zero. This could be because the graph
is disconnected, or because there exists a Hamilton path between the two
labelled vertices u and v. Due to the definition of the fitness function, it
may take many generations before the individual has a nonzero fitness. A
disadvantage of the fitness function is that it does not provide feedback on
whether a mutation is useful in order to reach a positive fitness eventually.
Until a positive fitness is reached, each mutation is equally fit as the original
graph by having a fitness of zero. This disadvantage can be avoided by
generating random graphs until a random graph is generated that has a
nonzero fitness. This individual is used as the initial population.

Reuse of a cut S The toughness function exact toughness has to calcu-
late the toughness of very similar graphs. A similar optimisation as described
in Section 4.5.6 can be applied to the evolutionary algorithm. Recall that the
toughness is calculated by the following formula, which is an approximation
of the actual toughness neglecting the small real ε > 0.

τ(G) = min
S⊆V (G)

(1 + 2 · |S|
2 · ω′ )

During the calculation of the toughness of a graph G, one should remember
a set S ⊆ V (G) such that

τ(G) = 1 + 2 · |S|
2 · ω′

In order to calculate the toughness of a mutation H, this set S can then be
tried first. If this yields an upper bound on the toughness of H that is lower
than the toughness of G, the algorithm can terminate.

Existence of a Hamilton path Whenever a graph G reproduces itself, it
cannot contain a Hamilton path between the labelled vertices u and v (by the
aforementioned optimisation on the initial population). If a mutated graph
H is created by removing an edge e from G, it is clear that there cannot be
a Hamilton path from u to v in the mutated graph H. The existence of a

44



Hamilton path should thus only be checked if an edge is added, not if one is
deleted. Note that if such a Hamilton path exists in H, it must contain this
newly added edge. This latter observation has not been used to improve the
implementation, due to the relatively small improvement it could provide.

Biased algorithm Finally, we present a possible improvement that is not
included in our final algorithm, but it will be discussed in the results (in
Section 5.2). It is possible to determine the next possible fitness value that
is required to obtain a strictly higher fitness than the current individual has.
For a graph G with two vertices u and v in G, the set of possible toughness
values is restricted by the possible number of components not containing
either u or v. Instead of calculating all these possible fractions, we analysed
successful runs of our algorithm for graphs of order 8, and looked which
fitness values those runs obtained during the run. It is common for our
algorithm to go from τ ≈ 3

2 , towards τ ≈ 7
4 , towards τ ≈ 11

6 , and finally
towards τ ≈ 9

4 . We can apply the optimisations of the enumeration algorithm
presented in Section 4.5.1 and Section 4.5.2, using the next toughness value in
this sequence as the required minimal toughness value that offspring should
satisfy. A consequence of these optimisations is that the algorithm does not
compute the actual toughness anymore. Even though fitness monotonicity is
guaranteed by our (1+4)-ES model, it is not guaranteed that the toughness
actually increases.

The second disadvantage of this method is that it introduces a bias into
our algorithm to favour certain graphs. The mutations that lead to graphs
satisfying this predefined sequence of fitness values are favoured. This biased
algorithm is very successful in finding the global optimum for graphs of order
8; hence it is included in our report. This can be explained by the fact that
there is no toughness monotonicity, as the exact toughness is not calculated.
It is thus possible to escape a local optimum in the fitness landscape. We do
think that this bias is undesired if the goal is to find nonhamiltonian graphs
with toughness ≥ 9

4 , and that our obtained results are stronger, if this bias
is not present in the algorithm. For larger graphs, the optimisation is also
not as efficient due to the possible decrease in toughness.
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4.8 Verification

Whilst we cannot be sure that our implementation is correct, some effort has
been made to verify it. Firstly, the graph used to construct a nonhamiltonian
graph having toughness 9

4 − ε (Figure 2.4a from Section 2.3) is an expected
result when running the code on graphs of order 8. Secondly, the chordal
graph leading to a nonhamiltonian chordal graph having toughness 7

4 − ε
(Figure 2.4b) is an expected result when running the code on chordal graphs
of order 6. Thirdly, Algorithm 4.3 has been implemented both in Python
using the Networkx library and in C++ using the Boost Graph Library.
This makes it possible to compare the results and check if they coincide.
Fourthly, checking the existence of Hamilton paths is implemented by two
separate algorithms in C++. The results of these implementations have
been compared. Finally, it is possible to compare the results from our
enumeration algorithm to those of our evolutionary algorithm. These results
from both our algorithms, presented in Chapter 5, strengthen our belief that
the implementation is correct. Note that if a result has been found by one
of our algorithms, both the toughness and hamiltonicity can be proven by
hand.
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Chapter 5

Results

In Section 5.1 and Section 5.2, we present the results of respectively our
enumeration algorithm and our evolutionary algorithm. In Section 5.3, we
shortly discuss the efficiency of the preprocessing optimisation presented in
Section 4.5.8. Section 5.4 contains a comparison between the two different
implementations of the Hamilton path algorithm.

Note that some results presented here are not the direct output of our
C++ code, as they have been processed afterwards. In order to visualise
the output of our algorithms, there are multiple options. Our algorithms
return the solutions in the graph6 format. An online tool to visualise this
format can be found at this website [TOT20]. Alternatively, both the Boost
Graph Library in C++ and the Networkx framework in Python provide the
functionality to export a graph to the dot format.

5.1 Enumeration algorithm

All 1,006,700,565 nonisomorphic connected graphs up to order 11 have
been analysed by our enumeration algorithm. Recall that our algorithm
only checks whether the toughness is above two. In order to provide more
information, the output of the algorithm is analysed by a Python script.
This script calculates the exact toughness and provides a cut S that leads
to this toughness. An overview of the output of our enumeration algorithm
can be seen in Table 5.1. It shows the number of nonisomorphic graphs H
that can be used to construct a nonhamiltonian graph G having toughness
τ(G) > 2. Unfortunately, the enumeration algorithm did not provide a
tougher nonhamiltonian graph than the one already known. Neither did it
find a graph that could provide a smaller nonhamiltonian 2-tough graph,
than the one already known on 42 vertices. Given that our implementation
is correct, it does show that the graph shown in Figure 2.4a is the smallest
graph H leading to a nonhamiltonian graph G with toughness 9

4 − ε for
arbitrarily small ε > 0, by using the construction described in Section 2.3.
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order n of H τ(G) ≈ 9
4 τ(G) ≈ 13

6 runtime
< 7 0 0 0.1 s
8 2 0 0.7 s
9 2 2 45s
10 6 16 2h 32m
11 18 158 unknown1

Table 5.1: Results of the enumeration algorithm: the number of nonisor-
morphic graphs H that can be used to construct a nonhamiltonian graph G
having toughness τ(G) > 2.

Secondly, it shows that finding a small input graph H of order n ≤ 11 that
can be used to construct a nonhamiltonian graph with toughness at least 9

4
is not possible, and that the research to find such a graph by hand does not
have to be continued. The above experimental results might indicate that
the following conjecture is true.

Conjecture 5.1. Every 2-tough graph of order n ≤ 41 is hamiltonian.

Note that the algorithm can return the same graph multiple times, if
there are multiple pairs of vertices u and v for which the construction from
Section 2.3 works. Due to the symmetry of the graph presented in Figure 2.4a,
there are two possible pairs of vertices to which the construction can be
applied. These duplicate graphs are counted only once in Table 5.1. The
runtime is an estimate, that is obtained by running the algorithm on Linux
with an Intel Core i7-8750H processor. It may be feasible to check all
nonisomorphic graphs of order 12 (roughly 164 billion) given enough time
and resources. Note that the set of nonisomorphic input graphs, which can
be generated using Geng, would require around 2 TB of space. Motivated by
the lack of solutions returned by the algorithm for n ≤ 11, we have chosen to
spend our time and resources in developing and improving the evolutionary
algorithm instead.

The other graphs that have been found by the enumeration algorithm
that can be used to construct a nonhamiltonian graph having τ ≈ 9

4 are
all variations of the two known graphs shown in Figure 5.1a. These two
graphs can be modified by replacing either one or both of the vertices x and
y by a complete graph; all vertices of which have the same set of additional
neighbours N(x) or N(y), respectively. This is illustrated by the graphs
shown on the left in Figure 5.1b and Figure 5.1c.

1This has not been run with the final version of our algorithm, and it has been run in
parallel on a different machine.
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(a) The only two graphs of order 8 returned by the enumeration algorithm.
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(b) Two graphs of order 9 returned by the enumeration algorithm. The left one
leads to τ ≈ 9

4 , the right one leads to τ ≈ 13
6 (by removing the red vertices).
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(c) Three out of the six graphs of order 10 leading to τ ≈ 9
4 .

Figure 5.1: The output of our enumeration algorithm.
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Figure 5.2: Chordal graph leading to τ ≈ 7
4 .

Some of the edges in H could be removed, depending on the order of the
complete graphs replacing x or y. This results in many variants on both
graphs shown in Figure 5.1a, that can be used to construct a nonhamiltonian
graph having τ ≈ 9

4 . By removing more edges, it is possible to construct a
nonhamiltonian graph having τ ≈ 13

6 . Half of the output for graphs of order
9 is shown in Figure 5.1b; the other half consists of similar graphs, where u
and v are joined by an edge. In the graph on the right in Figure 5.1b, it can
be seen that the removal of the edge between u and v results in τ ≈ 13

6 , as
the graph can be split into three vertices not containing u or v, by removing
the six red vertices. For the graphs of order 10 and 11, only those resulting
in τ ≈ 9

4 are presented here. Again, only those where u and v are not joined
by an edge are shown. The graphs of order 10 are shown in Figure 5.1c and
those of order 11 are appended in Appendix B.

5.1.1 Chordal graphs

By analysing chordal graphs, we found that there is no chordal graph H of
order n ≤ 13, such that the construction described in Section 2.3 results in a
nonhamiltonian chordal graph G with toughness at least 7

4 . Secondly, the
graph shown in Figure 2.4b is the smallest chordal graph H leading to a
nonhamiltonian chordal graph G with toughness 7

4 − ε for arbitrarily small
ε > 0, by using the construction described in Section 2.3. We did find the
expected graph of order 6 that is similar to the graph shown in Figure 2.4b,
obtained by joining the two vertices u and v such that there does not exist a
Hamilton path from u to v.

The output of our code applied to chordal graphs is shown in Table 5.2.
It shows the number of nonisomorphic graphs that can be used to construct
a nonhamiltonian graph with toughness 7

4 − ε for arbitrarily small ε > 0 for
graphs up to order n = 13. There exist infinitely many chordal graphs that
can be used to construct a nonhamiltonian chordal graph G with toughness
7
4 − ε for arbitrarily small ε > 0, by using the aforementioned method for
general graphs that replaces a single vertex by a complete subgraph.
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order n of H < 5 6 7 8 9 10 11 12 13
τ(G) ≈ 7

4 0 2 7 25 118 597 671 32,035 68,350

Table 5.2: Results of the enumeration algorithm applied to chordal graphs.

Given that there exists a real number t0 such that every t0-tough chordal
graph is hamiltonian (see Section 2.2), our research might indicate that
Conjecture 5.2 is true.

Conjecture 5.2. Every 7
4 -tough chordal graph is hamiltonian.

5.2 Evolutionary algorithm

Section 5.2.1 contains an overview of our experiments. In Section 5.2.2, we
discuss the convergence of our algorithm. In Section 5.2.3, we show that it
is possible for our algorithm to get stuck in a local optimum. Finally, in
Section 5.2.4, we shortly discuss the modified algorithm that has a bias to
avoid these local optima.

For the sake of illustration, we have included a visualisation of an example
run of our evolutionary algorithm in Appendix C. Note that this run is rather
successful by converging to the global optimum in only 61 iterations. From
these 61 iterations, we have removed those iterations where the parent is
selected as the survivor for the next generation. The remaining 36 iterations
are shown, where the addition of an edge is shown in green, and the removal
of an edge is shown in red as a dotted line.

5.2.1 Experiments

If a graph H of order n exists that will lead to a nonhamiltonian graph of
toughness τ ≥ 9

4 , there will also be a graph H ′ of order m > n that has this
property. If there is a toughness determining cut set S of H that splits off a
single vertex as a component of H − S, this graph H ′ can be constructed
by replacing this single vertex v ∈ H by a complete graph Kl as described
in Section 5.1. If there is not a single vertex that can be split off, a more
general construction can be used. Consider the smallest component C of
H − S, then H ′ can be constructed by adding a complete graph K, and
all edges between each vertex of K and each vertex of C as well as all the
neighbours of C in S.

This has the useful consequence that we do not have to run our algorithm
for graphs of every order, but that we can run it for graphs that are so
large that it is only just feasible to terminate the algorithm. The output of
some sample runs of our evolutionary algorithm is shown in Table 5.3. We
included the runs of order 8 and 11 in this report, to compare the results
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n τ ≈ 3
2 τ ≈ 7

4 τ ≈ 13
8 τ ≈ 11

6 τ ≈ 13
6 τ ≈ 9

4

8 #graphs 0 10,322 0 0 0 8349
nonisomorphic 0 86 0 0 0 2

11 #graphs 0 903 2 1 39 666
nonisomorphic 0 894 2 1 12 17

16 #graphs 24 46 0 0 1 13
nonisomorphic 24 46 0 0 1 13

Table 5.3: Results of the evolutionary algorithm.

to those of the enumeration algorithm. Graphs of order 16 are close to the
limit of what our evolutionary algorithm can handle. A second motivation to
select these graphs, is that 16 is a power of 2. This might enable the graph
to have nice symmetry, inspired by the existent solution of order 8. The
algorithm has also run for graphs of respectively order 20 and 24, but these
runs have not terminated. They both ran for over seven days, on all cores
of respectively the m610 and r930 cluster of the DSI computing lab on the
University of Twente [Twe20].

Note that the sample runs presented here do not aim to provide an
extensive analysis of the performance of our algorithm. As an important
motivation for this research has been to find a nonhamiltonian graph with
toughness at least 9

4 , our resources have mostly been spent in trying to
achieve this goal instead. For example, by trying to run the algorithm for
(unfeasibly) large graphs for an extended amount of time. The results in
Table 5.3 have been obtained by running the algorithm on the r930 partition
of the DSI computing lab on the University of Twente [Twe20], where the
algorithm can run 192 instances in parallel. It is named caserta on the web
page that is cited above; this page contains an overview of the hardware.
Other executions have mostly run on the older m610 partition, that has 160
cores. The algorithm ran 15:47:27 hours for order 8, 18:27:49 hours for order
11, and 72:45:48 hours for order 16. Note that the algorithm found 17 out of
the possible 18 graphs of order 11 that have been found by our enumeration
algorithm.

All these results have been obtained by running the evolutionary algorithm
for 100,000 iterations. For graphs of order n ≤ 11, the algorithm can
terminate once τ ≈ 9

4 , as a result of our enumeration algorithm. This is
not desirable for larger graphs, as the algorithm should be able to return
graphs having a toughness above this bound. For graphs of order n ≤ 11, a
consequence of this termination is that graphs with a higher toughness are
returned faster than the other graphs. To a lesser extent, this is also true
for larger graphs. For the graphs of order 16 shown in Table 5.3, the first
two graphs returned by the algorithm were returned after roughly 6 hours.
These two graphs terminate with τ ≈ 9

4 , and this toughness is obtained after
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respectively 6940 and 5457 iterations.
For the remaining iterations, the algorithm loops over the same set of

possible mutations, which happens relatively fast. It is hard to determine
when to terminate an evolutionary algorithm, as it may be possible that
either a local or a global optimum has been reached early on, but this is
hard to check. An approach to improve the algorithm by detecting local
optima is given in the discussion. Note that for small graphs, the algorithm
performs a lot better by performing less than 100,000 iterations, as will be
explained in the following section.

5.2.2 The convergence of the algorithm

Our algorithm can return the iteration where the final toughness value has
been reached. For the runs described in Table 5.3, we have analysed these
iterations. The results are shown in Figure 5.3. The runs are categorised by
the final toughness value, each represented by a different colour. Note that
the horizontal axis differs between the three figures.

It can be seen that the algorithm nearly always terminates within 3200
runs for graph of order 8 (Figure 5.3a). It is highly probable that for all
of these runs, the algorithm reached a local optimum. An example of such
a local optimum is shown in Section 5.2.3. The algorithm would clearly
be more efficient for order 8 if it is modified to make fewer than 100,000
iterations. A similar result is obtained for graphs of order 11 in Figure 5.3b,
where the number of runs of each bar is increased by a factor ten. Here it
would also be more efficient to terminate the algorithm earlier. For graphs of
order 16, it can be seen in Figure 5.3c that a significant fraction of the runs
never obtains a toughness higher than 3

2 . This is probably a consequence
of the huge number of possible mutations, and not because the algorithm is
stuck in a local optimum. For many cases, the initial graph has τ ≈ 3

2 and
no improvement has been made. The data shown in Figure 5.3c is probably
not of sufficient high quantity to make more observations on the fitness
landscape.
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(a) Graphs of order 8.

(b) Graphs of order 11.

(c) Graphs of order 16.

Figure 5.3: Convergence of the evolutionary algorithm. The horizontal axis
shows the number of iterations required to converge. The vertical axis shows
the number of runs. Blue represents the number of runs terminating with
τ ≈ 9

4 , red represents the runs terminating with τ ≈ 7
4 , green represents the

runs terminating with τ ≈ 3
2 , and yellow represents the remaining runs.
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Figure 5.4: A local optimum in the fitness landscape.

5.2.3 Local optima

Let G be the nonhamiltonian graph constructed by the graph H illustrated
in Figure 5.4. The graph H is a local optimum in the fitness landscape
and τ(G) ≈ 7

4 . In order to reach a global optimum, it would be required
to first remove an edge e ∈ E(H), such that the resulting graph G′ has
τ(G′) ≈ 3

2 . This is impossible, as our evolutionary algorithm guarantees
fitness monotonicity. Note that the vertices usually labelled as u and v, such
that no Hamilton path between u and v exists, are now labelled as v0 and
v3 in Figure 5.4. In the following paragraphs, we demonstrate that this is
indeed a local optimum.

The first observation is that the only edges that can still be added to
H by our algorithm are {v0, v2}, {v0, v3}, {v0, v4}, {v0, v5}, and {v0, v6}. By
careful analysis, it can be seen that the addition of any other edge would
lead to the existence of a Hamilton path from v0 to v3.

The second observation is that the removal of the edges listed below
would lead to a toughness τ < 7

4 . We also list the cut S ⊆ V (H) that can
be used to obtain this toughness. In the below text ω′ refers to the number
of components in H − S not containing v0 or v3.

• For H − {v0, v1}, the cut S = {v2} leads to ω′ = 1.

• For H − {v1, v2}, the cut S = {v0} leads to ω′ = 1.

• For H − {v0, v7}, the cut S = {v4} leads to ω′ = 1.

• For H − {v2, v3}, the cut S = {v0, v4} leads to ω′ = 2.

• For H − {v3, v4}, the cut S = {v0, v2} leads to ω′ = 2.

• For H − {v2, v4}, the cut S = {v0, v3} leads to ω′ = 2.

• For H − {v5, v6}, the cut S = {v0, v2, v4, v7} leads to ω′ = 3.

• For H − {v5, v7}, the cut S = {v0, v2, v4, v6} leads to ω′ = 3.

• For H − {v6, v7}, the cut S = {v0, v2, v4, v5} leads to ω′ = 3.
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Only one edge can be removed by our evolutionary algorithm, and it
must be in the set of edges: {{v4,5 }, {v4,6 }, {v4,7 }}. If a second edge is
removed, the toughness would be below 7

4 : for H − {{v4, v5}, {v4, v6}}, the
cut S = {v0, v2, v3, v7} leads to ω′ = 3. The choice for these two edges can
be made without loss of generality. The third observation is that by the
removal of either of these three edges, there are still no more new edges that
can be added without introducing a Hamilton path from v0 to v3.

If v0 is joined to every other vertex, all the above results still hold, except
that it would be possible to remove the edge {v0, v7}. In order to remove
{v0, v7}, v0 should be joined to either v5 or v6. Both graphs obtained by
replacing the edge {v0, v7} in H, by either {v0, v5} or {v0, v6} are isomorphic
to H, thus for these graphs all above observations would still hold.

The algorithm will therefore continue with adding and removing edges
from {{v0, v2}, {v0, v3}, {v0, v4}, {v0, v5}, {v0, v6}, {v0, v7}, {v4, v5}, {v4, v6},
{v4, v7}}, without removing two edges from {{v4, v5}, {v4, v6}, {v4, v7}} and
without removing all edges from {{v0, v5}, {v0, v6}, {v0, v7}}.

5.2.4 Biased algorithm

As explained in Section 4.7.1, we have also developed a modification based on
some observations on graphs of order 8. This modification introduces a bias
to mutate towards certain graphs. For graphs of order 8, this modification
makes the algorithm a lot more efficient. For large graphs, however, this bias
is undesired. The motivation for developing the algorithm is to construct
nonhamiltonian graphs with toughness at least 9

4 . If the algorithm has a bias
towards the already known graphs of τ ≈ 9

4 , it may always converge to these
optima and never find a higher global optimum if it would exist. We have
therefore decided not to include this modification in our final algorithm, but
to illustrate the improvement, we show the results for graphs of order 8 in
Table 5.4. These results are produced in only 21 minutes, using the same
hardware as in the experiments from Table 5.3.

This improvement in speed can at least partly be explained by the fact
that our algorithm terminates only after 100,000 iterations, or when τ ≈ 9

4 .
If it can always converge towards this global optimum, it will be a lot faster.
This convergence towards the global optimum has been achieved by the
fact that the modified algorithm can escape local optima, as explained in
Section 4.7.1. In order to achieve similar improvements, without introducing

n=8 τ ≈ 7
4 τ ≈ 9

4

total graphs 3 39,211
nonisomorphic graphs 3 2

Table 5.4: Results of the evolutionary algorithm with bias.
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bias and by still guaranteeing toughness monotonicity, we think it would be
better to develop a method to detect local optima such that the algorithm
can terminate. Suggestions to do so will be presented in the discussion.

5.3 Complete closures

The efficiency of the preprocessing optimisation presented in Section 4.5.8,
has also been analysed by counting the number of graphs that have a complete
(n + 1)-closure. The results are shown in Table 5.5. The algorithm takes
around 150 minutes to analyse all nonisomorphic graphs of order 11, on Linux
with an Intel Core i7-8750H processor. For these graphs, it can exclude over
43 per cent of the graphs. Recall that our enumeration algorithm spends
more time on relatively dense graphs, thus the improvement is (a lot) more
than 43 per cent of the time. To illustrate how these number compare to
the sufficiency for being hamiltonian (Corollary 2.10), the number of graphs
having a complete n-closure are shown in Table 5.6.

order n complete (n+ 1)-closure incomplete (n+ 1)-closure
5 3 18
6 11 101
7 104 749
8 1706 9411
9 58,373 202,707
10 3,778,688 7,937,883
11 437,315,425 569,385,140

Table 5.5: The number of connected nonisomorphic graphs having respectively
a complete, and an incomplete (n+ 1)-closure.

order n complete (n)-closure incomplete (n)-closure
5 7 14
6 45 67
7 352 501
8 5540 5577
9 157,016 104,064
10 8,298,805 3,417,766
11 802,944,311 203,756,254

Table 5.6: The number of connected nonisomorphic graphs having respectively
a complete, and an incomplete (n)-closure.
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Order n Number of pairs Backtracking Dynamic programming
7 9370 0.07s 0.28s
8 136,275 1.4s 10s
9 3,039,927 3m26 8m52

Table 5.7: A timing analysis of two implementations of the Hamiltonian path
algorithm. The algorithms return the number of pairs of distinct vertices u
and v, such that there does not exist a path from u to v.

5.4 Hamilton path algorithm

A comparison of the efficiency between the two different Hamilton path
algorithms presented in Section 4.3 can be found in Table 5.7. The runtime
has been obtained using the same hardware as in the previous section. It
has been tested on all nonisomorphic graphs of order 7, 8, and 9. For each
graph G, the existence of a Hamilton path is checked between every two
distinct vertices u and v in G. The algorithm counts all these different pairs.
In our enumeration algorithm, this is not the case due to the optimisations
presented in Section 4.5. In our enumeration algorithm the reuse of solutions
would be less applicable than it would be in the comparison of Table 5.7,
favouring the backtracking algorithm even more. It has also been tested on
a subset of the nonisomorphic graphs of order 11, for which the backtracking
algorithm was still faster. Given the time complexity of both algorithms,
it is to be expected that the dynamic programming algorithm is faster on
larger graphs, but we conclude that it is not useful in our approach. Note
that the implementation of the dynamic programming solution makes use
of an adjacency matrix, as this is more efficient to test the existence of a
specific edge.
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Chapter 6

Conclusions and discussion

We have designed and implemented both an enumeration algorithm and an
evolutionary algorithm, with the aim to find suitable graphs to construct
nonhamiltonian graphs with a high toughness. Both algorithms have been
verified by being able to return the known class of nonhamiltonian graphs with
toughness 9

4 − ε for arbitrarily small ε > 0. The enumeration algorithm has
also been verified by being able to return the known class of nonhamiltonian
chordal graphs with toughness 7

4 − ε for arbitrarily small ε > 0. Our belief
that the implementation is correct has been motivated in Section 4.8. The
main argument is that we have two completely different algorithms, of which
one has two different implementations; all three return similar results. These
results coincide with the two aforementioned classes of graphs.

The motivation for this project has been threefold. Firstly, to find a
nonhamiltonian graph with toughness at least 9

4 . Secondly, to find a non-
hamiltonian chordal graph with toughness at least 7

4 . The final motivation
is to find a nonhamiltonian 2-tough graph on less than 42 vertices. Unfor-
tunately, we have not found a graph satisfying any of these criteria. Given
that our implementation is correct and contrary to our earlier beliefs, we can
conclude the following results.

• There is no graph H of order n ≤ 11 such that the construction
described in Section 2.3 results in a nonhamiltonian graph G with
toughness τ ≥ 9

4 .

• There is no chordal graph H of order n ≤ 13 such that the construction
described in Section 2.3 results in a nonhamiltonian chordal graph G
with toughness τ ≥ 7

4 .

• The graph found by Bauer, Broersma and Veldman [BBV00], as shown
in Figure 2.4a is the smallest graph H leading to a 2-tough nonhamilto-
nian graph G, by using the construction described in Section 2.3. The
only other graph H ′ of order 8 satisfying this property can be obtained
by joining u and v by an edge.
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• Similarly, the graph shown in Figure 2.4b is the smallest chordal graph
H leading to a nonhamiltonian chordal graph G with toughness 7

4 − ε
for arbitrarily small ε > 0, by using the construction described in
Section 2.3. The only other graph of order 6 satisfying this property
can be obtained by joining u and v by an edge.

Based on the results of our evolutionary algorithm, we conjecture that
there is no graph H of order n ≤ 16 such that the aforementioned construction
results in a nonhamiltonian graph G with toughness τ ≥ 9

4 .
We have also shown that there exist infinitely many graphs that can

be used to construct a nonhamiltonian graph G with toughness 9
4 − ε for

arbitrarily small ε > 0. Similarly, there exist infinitely many chordal graphs
that can be used to construct a nonhamiltonian chordal graph G with
toughness 7

4 − ε for arbitrarily small ε > 0.

6.1 Enumeration algorithm

Our current enumeration algorithm contains many optimisations that make
the algorithm multiple orders of magnitude faster than a more straightforward
implementation. It is reasonable to believe that the algorithm can still be
improved. Given sufficient resources, it may already be possible to analyse
graphs of order twelve. For larger graphs, the rapid increase in the number
of nonisomorphic graphs would make this approach unfeasible. Instead of
improving the algorithm, it may thus be more useful to reduce the input set.

This could be done by incorporating the preprocessing algorithm from
Section 4.5.8 into the non-isomorphic graph generation tool Geng. In order
to generate all graphs, Geng traverses through a forest of objects. Given this
preprocessing algorithm, it may be possible to prune whilst generating the
graphs and skip certain branches of graphs in this forest completely. This can
be combined with an easier to compute degree-based sufficient condition for
hamiltonian-connectedness. This approach would reduce the space required
to store all graphs, as well as save time by writing and reading fewer graphs.
If it is indeed possible to skip several branches of graphs in the generation
process, it will save significantly more time.

Even though our input consists of nonisomorphic graphs, it is possible
that our algorithm performs duplicate calculations. Our algorithm loops
over all pairs of vertices; thus, if a graph contains a nontrivial automorphism,
the same calculation is performed twice. Note that an automorphism is
nontrivial if it is not the identity mapping. These automorphisms are not
easy to obtain, but perhaps this could be done more efficiently during the
generation of the nonisomorphic graphs. In order to generate these graphs,
each graph is described by a canonical form such that isomorphic graphs
have the same canonical form. This canonical form may also be useful to
determine automorphisms. The problem of duplicate calculations could

60



be avoided, by generating only those graphs that are nonisomorphic with
labelled vertices u and v. This has the disadvantage that more graphs will
be created.

In order to reduce this set of generated graphs, it is possible to impose
the restriction that only those graphs are generated where there does not
exist a Hamilton path from u to v. This could probably be done similarly as
in [GMZ20], which is explained in more detail in the thesis [Mee18]. Their
research explains the design and implementation of a tool to generate k-
hamiltonian graphs (graphs with exactly k Hamilton cycles), inspired by the
isomorphism checking algorithm used in Nauty (from Section 4.1) that is
based on the canonical construction path method by McKay [McK98].

We expect that at least some of the suggestions mentioned above would
improve our algorithm. However, it is not sure whether it will provide
enough improvement to analyse larger graphs than our current enumeration
algorithm can handle. As we believe that an evolutionary algorithm could
be more efficient, the above suggestions have not been researched.

6.2 Evolutionary algorithm

We have found that the field of evolutionary algorithms is well-suited to be
applied to our problem. The evolutionary algorithm enabled us to analyse
larger graphs than an enumeration algorithm could ever handle on existing
hardware. It could analyse graphs of order 16, for which there are over
63 × 1021 different nonisomorphic connected graphs. For the generated
graphs up to order 16, all returned graphs that can lead to a constructed
nonhamiltonian graph with toughness 9

4 − ε for arbitrarily small ε > 0 are
variants of the known graph of order 8 (Figure 2.4a). As our algorithm
has been designed to have as little bias as possible, we conjecture that this
toughness value is the best possible result for graphs up to order 16.

We have made multiple design choices that influence our obtained results.
Firstly, we have chosen to use a direct graph encoding. This enables us
to perform meaningful mutation operations, which greatly improves the
performance based on the possible optimisations presented in Algorithm 4.4.
Secondly, we have defined a fitness function f . A disadvantage of our fitness
function is that it returns a value of zero for many graphs. Therefore, it does
not provide feedback on whether a mutation is useful in order to eventually
reach a positive fitness value. This has been resolved by generating graphs
until a graph has a positive fitness value. An alternative would be to modify
the fitness function for disconnected graphs and for graphs containing a
Hamilton path between the two labelled vertices u and v. A third design
choice has been made by choosing only two mutation-based reproductive
operators. Alternatively, one could include operators that enable the addition
and removal of vertices. In our work, these are not included, both to improve
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efficiency and to avoid a fitness function that is unfeasible to calculate. These
two extra mutation operators could be added to our model, by limiting
the number of vertices a graph can have. This modification could enable
the bottom-up building of larger graphs. A second alternative to the set
of reproductive operators would be to include a crossover operation. The
operators presented in Chapter 3 do not seem suitable, but a crossover
operator might prove itself in the future. One option to devise a meaningful
crossover operation is to utilise historical markings, where the historical
origin of each gene is marked by an innovation number [SM02]. This could
enable meaningful crossover without expensive topological analysis. It might
be beneficial to combine this with the bottom-up building of larger graphs,
by modifying the reproductive operators.

We have used a (1+4)-ES model. Our original motivation for doing
so was to guarantee fitness monotonicity, but it also enabled us to apply
some optimisations in the toughness calculation. If it is to be replaced by
a non-overlapping generational (1, 4)-ES model, the exact toughness values
of all offspring have to be calculated. This is not the case for the (1+4)-ES
model, as the toughness calculation of an individual can terminate when it
is lower than the toughness of its parent. One restrictive property of our
algorithm is that it can get stuck in a local optimum, as a consequence of the
fitness monotonicity. This has been illustrated by the local optimum having
toughness 7

4 − ε for arbitrarily small ε > 0 presented in Section 5.2.3. The
(1,4)-ES model does have the advantage that it cannot get stuck in a local
optimum, due to the lack of fitness monotonicity. We do believe, however,
that the (1 + 4)-ES model has been the right choice, as fitness monotonicity
is very useful for convergence in larger graphs.

Finally, it could be useful to analyse the (1 +λ) model for different values
of λ. Clearly, this single survivor model should also be modified if the set of
reproductive operations would be changed to include crossover.

6.3 Future work

In the previous two sections, we have discussed possible modifications to
our approach. This already leads to possibilities for future research. In
this section, we will discuss what directions for future research seem most
promising.

As explained in Section 6.1, is it possible to improve the enumeration
approach by incorporating the preprocessing algorithm into Geng. If it is
possible to skip branches of graphs during the generation of nonisomorphic
graphs, this could provide a significant time improvement. Alternatively, it
may be possible to obtain improvements by developing a tool that generates
all nonisomorphic graphs with labelled vertices u and v, such that there does
not exist a Hamilton path from u to v. We expect, however, that it would
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not provide many new results, as there is still a very rapid increase in the
number of nonisomorphic graphs of order n (see Table 4.1).

We believe that an improved version of the enumeration algorithm would
not be able to analyse graphs of the same order as the evolutionary algorithm.
It could, however, give more certainty than the evolutionary algorithm, as
there is no stochastic method involved. Nevertheless, we expect that research
on the evolutionary algorithm is most promising. If the goal is to find all
graphs of order n in the class of nonhamiltonian graphs with toughness
9
4 − ε for arbitrarily small ε > 0, the evolutionary algorithm could easily be
modified to do so. Instead of returning one graph having toughness 9

4 − ε, it
could keep mutating and return similar graphs.

One option for future research is to extend the evolutionary algorithm
for chordal graphs. This could be done by implementing an algorithm to
check whether a graph is chordal, such as the linear time algorithm presented
in [TY84]. Alternatively, for chordal graphs it may be possible to build a
solution bottom-up, by changing the set of reproductive operators, and using
the elimination scheme of chordal graphs explained in Chapter 2.

Another possibility for future research would be to improve the evolution-
ary algorithm. This could be done by revising some design choices discussed
in Section 6.2. By developing a method to benchmark different algorithms,
it would be possible to compare these different design choices.

Another improvement to our algorithm can be made by detecting local
optima. This would enable the algorithm to terminate earlier, without the
risk of terminating too soon. We have considered multiple options to detect
a local optimum, but could not yet decide the ideal implementation. Firstly,
one could compare whether an individual is isomorphic to a graph of which
it has been proven that it is a local optimum, such as the one presented in
Section 5.2.3. This has the disadvantage that there may be many local optima
that need to be compared. Secondly, one may be able to devise an algorithm
that can detect whether a graph is a local optimum based on the possible
set of mutations. This could be implemented by doing a similar analysis, as
is shown in Section 5.2.3. Either of these options could then be executed
after, for example, every thousand iterations of the algorithm. Finally, it
is possible to analyse the recent mutations. If a clear pattern of repetition
appears, it may be assumed that an optimum has been reached. This has the
disadvantage of providing false positives, where a run is terminated whilst it
is not actually in a local optimum.

Alternatively, the evolutionary algorithm could be enhanced by improving
the current implementation of certain functions. Some improvements can be
made to our Hamilton path algorithm. For example, by using the observation
that a Hamilton path should include the edge that is added by the previous
mutation, as explained in Section 4.7. The algorithm may also be improved
by incorporating certain heuristics to modify the backtracking, as explained
in Section 4.3. Alternatively, one could devise an algorithm based on the
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dynamic programming solution for finding Hamilton paths (from Section 4.3),
that modifies only those sets that could have been changed by the addition
or removal of a specific edge. As the same edges are added and removed
quite often, it may then be fruitful to cache the results of this dynamic
programming function.

Recall that most time is spent in calculating the toughness, thus improving
the current implementation of the toughness function would be more useful
than improving the efficiency of the Hamilton path algorithm. An interesting
optimisation would be to examine how certain calculations of the parent
graph can be reused to calculate the toughness of the offspring. If this
approach is taken, it may also be useful to analyse the biased algorithm from
Section 5.2.4 in more detail.

Finally, it would be useful to obtain more theoretical results on the
construction of nonhamiltonian tough graphs. In particular, to devise other
constructions to build a tough nonhamiltonian graph G based on a smaller
graph H, similar to the one explained in Section 2.3. If such a construction
could be devised, it may be the most promising approach for future research.
All research provided in this thesis together with the aforementioned sugges-
ted research could then be applied to different constructions. The reuse of
our work would be very straightforward if formulas to calculate the toughness
similar to those presented in Section 4.4 could be devised for alternative
constructions.
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Gaël Varoquaux, Travis Vaught and Jarrod Millman. Pasadena,
CA USA, 2008, pp. 11–15.
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Appendix A

Code

Our C++ implementation is open source and available on GitHub.

https://github.com/Timkemp1/tough-nonhamiltonian-graphs

The Graph class contains functionality used by both the enumeration and
the evolutionary algorithm. Both the EnumerationGraph class and the
EvolutionGraph class inherit from the Graph class. The enumeration al-
gorithm can be run by the static EnumerationAlgorithm::read file func-
tion. The input data required to run the code can be downloaded from the
web page in [McK20a]. The evolutionary algorithm can be run by instantiat-
ing the EvolutionaryAlgorithm class. Examples to illustrate how to run
our code are shown in main.cpp. The code is also available on Zenodo.

https://doi.org/10.5281/zenodo.3974274
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Appendix B

Output enumeration
algorithm

The output of the enumeration algorithm for graphs of order 11 is shown in
Figure B.1 and Figure B.2. Note that only half of the graphs are presented
here, the other half consists of similar graphs where the vertices u and v are
joined by an edge.
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Figure B.1: Four out of the eighteen graphs of order 11 leading to τ ≈ 9
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Appendix C

Example run

Table C.1: An example run of the evolutionary algorithm. A newly added
edge is shown in green, and a removed edge is shown in red as a dotted line.
Iterations where the parent is selected as the survivor are omitted.
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Table C.1 – Continued from previous page
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Table C.1 – Continued from previous page
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