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1. Introduction

The History department of the University of Nijmegen
has started a joint-research initiative with the Data Sci-
ence group of the University of Twente in order to inves-
tigate an image collection of ancient face statues using
computer vision techniques. Although some statues are
in a perfect condition, some statues suffer from damages
on face attributes, as observed in Figure 1. Therefore, one
possible use case is to restore the damages, so that the im-
age collection can still be showcased in a digital gallery.

Image restoration is one of the most active areas of
research in computer vision domain. It is typically an
ill-posed inverse problem where the restored image can-
didate is produced by approximating the original form
of the degraded image. Image restoration tasks can
be further specialized into image denoising [16], super-
resolution [6], and inpainting [34]. The damaged face
statues restoration task can be considered as an image in-
painting task which aims to fill missing regions of an im-
age with pixels which are fit semantically. In this case, the
damaged area can be marked as target regions to be in-
painted.

Researchers have proposed various approaches to
tackle image inpainting problems. Generally, they fall
into two categories, i.e., traditional algorithms and deep
learning-based generative models.

Some traditional algorithms look for similar spatial
patterns in the image in order to fill the missing regions
[19, 35, 3]. This approach works well in texture synthesis
and object removal where after the removal, the missing
regions need to be blended into a repetitive background
(e.g. grass, wall of bricks, and fence). However, these ap-
proaches suffer when the inpainting region is large and
belongs to a rather complex scene, i.e. body parts or hu-
man face.

Figure 1. Damaged statues along with their annotated damage
regions. As observed, the damaged regions are mostly located
on the face attributes within certain radius.

On the other hand, deep generative models, i.e., Vari-
ational Auto Encoder (VAE) [9] and Generative Adversar-
ial Network (GAN) [34, 25], are able to capture non-linear
representations of complicated scenes by relying on Con-
volutional Neural Network (CNN). Coupled with proper
network architectures and objective functions, they are
able to generate more semantic-aware inpainting regions.
GAN-based solution, especially, has become the state of
the art for image inpainting task.

In this thesis, research on how to tackle the face stat-
ues inpainting problem by utilizing a GAN-based model
is carried out. In addition, a comparative study with one
of the conventional algorithms will also be conducted.

The proposed GAN model follows the architecture
of existing GAN inpainting models which comprises an
encoder-decoder network as the generator and a classi-
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fier as the discriminator. For the conventional algorithm
a PCA face reconstruction approach [42], which has been
proposed by Wang et al., is implemented as a contender.
Due to the limited number of available face statue images,
data augmentation strategies will be discussed further.

All in all, by the end of my thesis project, the following
research questions will have been answered:

1. What kind of damages do the face statues suffer
from?

2. How to construct a dataset for training the generative
models?

3. How to design a recursive PCA approach for solving
the image inpainting problem?

4. How to train a GAN model for solving the image in-
painting problem?

- Which loss functions are the most contributive
towards the outcome?

5. How to evaluate the inpainting results?

- How does the recursive PCA perform com-
pared to the GAN model in restoring the missing at-
tributes of the face statues?

The rest of this thesis will be structured as follows. The
literature study results are discussed in Section 2, then the
methodology and experiments will be elaborated in Sec-
tion 3 and Section 4 respectively. Meanwhile, experiment
results will be displayed in Section 5 and further discussed
in Section 6. Finally, the conclusion would be presented
in Section 7.

2. Related Work

2.1. Image Inpainting

In the early period, the proposed image inpainting so-
lutions were based on diffusion using partial differen-
tial equations (PDEs), introduced by Bertalmio et al. [4],
which propagates image geometric information from the
missing regions’ border [2, 41] inward. The particular ap-
proach was able to fill in small holes but fails to fill tex-
tured regions.

Exemplar-based method then emerged to recover the
missing region by doing sampling on other image patches
that best match its surrounding. The proposed solu-
tions are usually based on Markov Random Fields (MRF)
[19, 35, 37] and nearest-neighbor algorithm [3, 10]. Al-
though this approach certainly helps on producing real-
istic textures, it is unable to inpaint unique scenes, i.e.,
body parts, human faces, and occluded objects.

Another strategy is to rely on external references as
guidance to fill the missing regions. In face occlusion re-
moval case, Mo et al. [31] retrieve the closest image patch

obtained from a database by measuring the similarity be-
tween the target’s surrounding pixels and the references.
Lee et al. [22] use a similar approach, but average patch is
used instead.

Face images have similar structural patterns, therefore
they can be modeled as a linear combination of lower-
dimensional components, represented by eigenvectors.
Thus, many Principal Component Analysis (PCA) recon-
struction methods were also proposed [42, 33, 32, 43].
PCA approach recovers the missing regions by iteratively
retrieving pixel candidates of the missing regions from the
face space. The authors claimed to produce natural re-
constructed human faces. Since the face statues resem-
ble human faces and the observed damages on the face
statues are comparable to the missing regions in [42], this
algorithm might work on the face statues inpainting task
too. Most of the reconstructed faces of these approaches
look natural, but still lack contextual alignment, such as
gender, race, and ethnicity.

2.2. Deep Generative Models

The superior performance of deep learning in im-
age processing and computer vision tasks has an im-
pact on the insurgence of deep generative models. While
traditional approaches typically craft features manually
through some rule-based methods or certain algorithms,
deep learning-based models are capable of learning non-
linear features from the training data which are extracted
by using Convolutional Neural Networks (CNN) [21].
However, prior to CNN architecture, early deep learning
adoption in image restoration task uses fully connected
Multi Layer Perceptrons (MLPs) [5, 38].

Encoder-decoder architecture is one of the CNN archi-
tecture variant that is used for solving the image inpaint-
ing problem. It contains sequences of convolution layers
to encode input images to latent representation, then fol-
lowed by sequences of de-convolution layers to upsam-
ple the representation back into an image. Mao et al. [30]
demonstrates an auto-encoder architecture to solve the
image inpainting problem along with several other im-
age restoration tasks with Mean Squared Error (MSE) as
the reconstruction loss to be minimized between the de-
graded image and its ground-truth. Unfortunately, the
inpainting results of an auto-encoder tend to be blurry
because the typically used MSE loss smoothens the in-
painted region by computing the mean of the ground-
truth pixels.

Generative Adversarial Networks (GAN) [8] defines a
new paradigm for generating images. GAN uses two net-
works, called the generator and the discriminator. Its
training objective can be considered as a mini-max game,
where the generator needs to generate fake realistic im-
ages out of a known prior distribution to fool the discrim-
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inator, while the discriminator needs to distinguish be-
tween the real and the generated fake images. The ob-
jective function is called the adversarial loss. Since GAN
was first introduced, many proposed image processing
and computer vision tasks are based on the GAN frame-
work. The mage inpainting task is no exception. Pathak et
al. [34] is one of the first that proposes a combination of
an auto-encoder architecture and the adversarial loss for
image inpainting. Different with the original GAN frame-
work, the generator of a GAN inpainting model produces
an inpainted image Ii np conditioned on a degraded im-
age Ideg . The inclusion of the adversarial loss is the key to
get more photo-realistic image inpainting results.

The subsequently proposed improvements revolve
around designing better adversarial loss [1, 29, 46] and
better network architectures [18], adding more optimiza-
tion objectives [23, 14], and also devising new GAN train-
ing strategies [17, 39]. Wasserstein-GAN (WGAN) archi-
tecture, introduced by Arjovsky et al. [1], minimizes Earth
Mover (EM) distance between probability distribution of
the real data and the generated data, thus leading to
a more stable training and more meaningful loss met-
ric. Progressive-GAN [17]employs a curriculum learning
strategy [39] where a GAN model is trained on multiple
stages of the image generation task with increasing diffi-
culty, starting from generating low to high resolution im-
ages. Moreover, as the training stage progresses, the pa-
rameters and layers are also increased incrementally.

To solve an image inpainting problem, Yu et al. and
Song et al. train GAN in two stages, first they train a coarse
GAN to inpaint a rough inpainting estimation, followed
by a refined GAN which enhances the inpainting quality
[44, 40]. Iizuka et al and Li et al. use two adversarial losses
[14, 25], local and global loss, to evaluate the generated in-
painted patches and the whole image consistency respec-
tively. Li et al. pre-fill the inpainting target with captured
symmetry of the input image [24]. Meanwhile, Li et al.
add a segmentation loss function [25] to enforce position
awareness of the generated face attributes.

Regardless of existing sophisticated GAN architectures,
this thesis project adopts relatively simpler GAN archi-
tectures, i.e the original Minimax GAN as well as the
Wasserstein-GAN (WGAN). Additionally, the classical re-
cursive PCA algorithm performs adequately in face in-
painting tasks, therefore this method will act as a baseline
comparison.

3. Methodology

In this face statue inpainting task, the damages are
represented by some missing regions. One way to train
the inpainting models is by first constructing a dataset
of ‘normal - missing region’ face statue pairs. Ideally, a
dataset of ‘normal - damaged’ pairs is even more desir-

able, but, unfortunately, such pairs are non-existent in the
dataset. Therefore, the damages are simulated on the nor-
mal statues instead. The damage simulation is elaborated
in this section. Moreover, two approaches for solving the
face statue inpainting task, GAN and recursive PCA recon-
struction algorithm, will also be discussed further.

Figure 2. Face landmarks detected by using pre-trained MTCNN
model. Then, the statue images were cropped and centered with
respect to the proportion between the face landmarks and the
image borders.

3.1. Simulating damages through binary masks

The damages are simulated by applying artificial bi-
nary masks on the normal statue images, such that, for
each unique normal statue there are multiple damaged
versions of the statue. This approach may also be consid-
ered as a data augmentation step. The simulated damages
need to look as similar as possible to the real damaged
face statues, therefore, the structural form of the dam-
ages follows an observation on the existing damaged face
statues. Originally, three types of damages are identified,
i.e. missing face attributes, eroded textures, and hollow re-
gions. Based on visual inspection, most of the damaged
statues possess some missing face attributes, hence, the
developed solution will only tackle this damage type to
limit the scope of this thesis. Some of the damaged stat-
ues are showcased in Figure 1.
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Figure 3. There are three major mask groups, i.e., mouth masks, nose masks, and eye masks. The masks are augmented by considering
different mask sizes, position with respect to the attributes’ centroids, as well as rotations.

Figure 4. Binary masks data augmentation includes: a.) mask
centroid translations b.) mask rotations (0◦, −20◦, 20◦) c.) mask
scaling. In a.), the square number 1 represents the initial mask
centroid coodinates, meanwhile the grey squares are the mask
position after being translated. In b.) and c.), the initial masks
are represented by the first squares, whereas the subsequent
squares represent the transformed masks.

Localization of the face attributes and face alginment
are necessary prior to simulating the missing face at-
tributes damage. In this case, face landmark detection is
performed on the normal face statues by utilizing a pre-
trained MTCNN [45]. The MTCNN model is able to detect
5 face landmarks’ coordinates (left eye, right eye, nose, left
mouth corner, and right mouth corner) and the inferred
face landmark coordinates are observed to have sufficient
quality. Based on the obtained coordinates, the face stat-
ues are aligned, cropped, and centered with respect to the
proportion between the coordinates and the image bor-
ders. The localization results are displayed in Figure 2.

The face landmarks are assigned into 3 major groups,
i.e, eyes, nose, and mouth. Each landmark group will then
have its own unique binary mask shape which is relatively
able to fully cover the corresponding face attributes. The

eye and mouth landmark groups have similarly rectangu-
lar binary masks, except the mouth masks have slightly
thinner width to match the lips’ width proportion. Mean-
while, the nose masks have an isosceles triangle shape.
The dataset is augmented further by varying the masks’
properties, i.e., the mask positions with respect to the face
attributes centroids, mask sizes, and also rotations. The
resulting binary masks are showcased in Figure 3, whereas
the augmentation lists are depicted in Figure 4.

3.2. Recursive PCA

PCA reconstruction algorithm learns linear represen-
tation of face structures in the training data, thus, no
‘damaged - normal’ face statue pairs are required. The
binary masks are only utilized during inference phase on
the test set.

PCA reconstruction of a face statue image follows a
classical PCA face reconstruction formula [42].

xtr ai n = mtr ai n +
K∑

i=1
yi vi (1)

Given a train image of N x N pixels, x corresponds
to the unrolled N 2-dimensional vector of the image and
mtr ai n denotes the mean face of the training set. Mean-
while, v corresponds to the K selected eigenfaces and y
are the coefficients for the linear combination of v .

Analytically, the coefficient vector ytest of an unseen
face statue image xtest can be obtained by applying Equa-
tion 2.

ytest = vT
tr ai n · (xtest −mtr ai n) (2)

Then the new reconstructed image x
′
test is retrieved by

applying Equation 3 on the test image xtest .
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x
′
test = mtr ai n +

K∑
i=1

ytest ,i vtr ai n,i (3)

However, in face statue inpainting problem only a por-
tion of the image marked by the binary mask M needs to
be reconstructed. Therefore, Equation 3 can be refined
further.

x
′
test = M ◦x

′
test + (1−M)◦xtest (4)

Then, the inpainting process of image xtest is repeated
by applying Equation 2-4 again iteratively. Therefore, all
of the equations can be written with respect to a time-step
t , where the original unrolled test image is represented by
x t at t = 0.

y t = vT
tr ai n · (x t −mtr ai n)

x t+1 = mtr ai n +
K∑

i=1
y t

i vtr ai n,i

x t+1 = M ◦x t+1 + (1−M)◦x t

(5)

The iteration stops when the maximum absolute dif-
ference between coefficient vector y t+1 and y t reaches
certain threshold ε.

max(‖y t+1 − y t‖) < ε (6)

3.3. Utilizing GAN for face statue inpainting

3.3.1 Minimax GAN

The original GAN [8] employs simultaneous optimization
of two networks, namely the generator and the discrimi-
nator. This optimization objective is also called the adver-
sarial loss and it can be illustrated in Equation 7.

Lad v (G ,D, X , Z ) = min
G

max
D

Ex∼pd at a (x)[log(D(x))]+
Ez∼pZ (z)[log(1−D(G(z)))]

(7)

The generator G tries to generate fake images from a
distribution of noise pz as realistic as possible to fool the
discriminator, at the same time the discriminator D tries
to distinguish the real images sampled from ground-truth
distribution pd at a and fake images induced by the gen-
erator G(z) as well as possible. The model training goes
on by optimizing a minimax objective function until Nash
Equilibrium has been reached.

Moreover, the adversarial loss, which the Minimax
GAN is optimizing on, reaches a global minimum when
the Jensen-Shannon divergence (JSD) is minimized [8].
The adversarial loss is at its minimum if and only if pg =
pd at a . That means, the generator is able to generate sam-
ples identical to the distribution pd at a . In this case, the

global minimum is equal to − log(4) when JSD reaches 0
as interpreted from Equation 8.

minLad v (G ,D) =− log(4)+2.JSD(pd at a ||pg ) (8)

Discriminator. Discriminator is a key component in
the GAN framework. Some believe, the optimization of
JSD which is approximated through an adversarial train-
ing is actually prominent to the success of the GAN frame-
work [13]. Here, the adversarial training involves an ad-
versarial loss and it is directly minimized by training the
discriminator. In Equation 7, Ex∼pd at a (x)[log(D(x))] opti-
mizes how the discriminator is able to discern the real
data, therefore the value of D(x) should be close to 1.
Meanwhile, Ez∼pZ (z)[log(1−D(G(z)))] optimizes how the
discriminator is able to penalize fake samples induced by
the generator, thus the optimized D(G(z)) should be close
to 0. Note that the real data is labeled as 1, while the fake
data is labeled as 0.

In an image inpainted task, the real data is equivalent
with the ground-truth images Ig t , whereas the generated
samples are the inpainted images constructed from a col-
lection of masked face statues (1−M)◦ Ig t instead of ran-
dom noise z. Here, M is a binary mask where the in-
painted target pixels are denoted by 1. Thus, this leads to
an image inpainting adversarial loss described in Equa-
tion 9.

LDad v (G ,D, Ig t , M) = min
G

max
D

Ei∼pd at a (Ig t )[log(D(i ))]+
Ei∼pd at a (Ig t )[log(1−D(G((1−M)◦ i )))]

(9)
Generator. From generator standpoint, the generator

G is trained to produce an inpainted image as realistic
as possible given an input image Ig t and a binary mask
M . The adversarial loss is then also applicable for the
generator. In contrast with the discriminator’s adversarial
loss, the generator’s adversarial objective is to minimize
Ez∼pZ (z)[log(1 − D(G(z)))] by getting D(G(z)) as close as
possible to 1. Hence, the inpainting generator’s adversar-
ial objective is to minimize Equation 10.

LGad v (G ,D, Ig t , M) = Ei∼pd at a (Ig t )[log(1−D(G((1−M)◦ i )))]
(10)

3.3.2 Wassterstein-GAN

Wassterstein-GAN (WGAN) was introduced by Arjovsky et
al. to overcome the original GAN’s training instability [1].
WGAN’s core idea revolves around minimizing the Earth
Mover (EM) distance between probability distributions of
real data pd at a and generated data pg . EM distance mea-
sures the distance between two probability distributions
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Figure 5. The proposed GAN architecture. Masked input images are fed into an encoder-decoder network with U-Net architecture to
generate inpainted images. Then, only portion of the target regions are cropped and then merged with the previously masked inputs.
A discriminator with PatchGAN network architecture is utilized to evaluate the final outputs.

and it represents the most optimum cost to move "piles"
of distribution from one distribution to another and vice
versa.

They have argued that Earth Mover (EM) distance
provides a smoother optimization metric compared to
Jensen-Shannon divergence (JSD) of GAN [1]. Consider
a case where there is no support between pd at a and pg

and the distance between the two distributions is param-
eterized by θ. During the optimization, the JSD will con-
stantly output log 2 no matter how far or close the two
distributions are, thus it is not providing meaningful gra-
dients. On the other hand, as the EM distance decreases,
the value will linearly follow θ. Given this fact, WGAN is
claimed to have better training stability compared to the
original GAN.

In image inpainting case, the goal of WGAN is to maxi-
mize a critic loss:

Lcr i t i c = max
‖ f ‖L≤1

Ex∼pd at a [ f (x)]−Ex∼pθ
[ f (x)] (11)

This critic loss is the objective function of the dis-
criminator which is originated from the transformed EM
distance estimate under 1-Lipschitz continuity [1]. The
transformation is necessary due to the intractability of
joined probability distribution γ(pd at a , pθ). Here, pθ rep-
resents the parameter distribution of the inpainting gen-
erator gθ((1−M)∗ Ig t ).

LG =−Ei∼pIg t
[ f (gθ((1−M)∗ i ))] (12)

The generator, on the other hand, is optimized by min-
imizing Equation 12 and in the end, the optimized EM
distance should be close to 0. Later, the WGAN architec-
ture will be compared with the original Minimax GAN in
the face statue inpainting use case.

3.4. Generator’s objective functions

The sequence of generating inpainted images is as fol-
lows. The ground-truth images Ig t are multiplied by bi-
nary masks M resulting to some masked images Im in or-
der to simulate damages. The masked images Im are then
fed into the generator G to produce reconstructed images
Iout = G(Im). Since only the inpainted regions are de-
sired, the non-masked regions of Iout are directly substi-
tuted by the ground-truths Ig t , such that the final outputs
Icomp = (1−M)◦ Ig t +M ◦ Iout are obtained.

Apart from the adversarial loss, additional objective
functions are also typically employed to the generator
in order to infer higher fidelity results. Note that, even
though only the final outputs Icomp are considered in the
end, some of the objective functions optimize both Iout

and Icomp . This way, the optimizations happen locally on
the inpainted region as well as globally on the whole im-
age. The followings are some objective functions which
have been previously proven useful for image inpainting
tasks [24, 26, 23, 44].

Reconstruction Loss. The generator typically uses an
auto-encoder architecture. The auto-encoder learns to
compress the masked face statues into latent representa-
tion then complete the missing pixels while reconstruct-
ing the latent representation back to an output image
Icomp . Naturally, an L2 reconstruction loss (Equation 13)
is employed additionally to evaluate the inpainted im-
ages. L2 reconstruction is used generally in any image re-
construction tasks [citation], even on non GAN approach
[citation]. NM symbolizes the number of pixels being in-
painted into masked regions of Icomp . While NI repre-
sents the total number of pixels of the full image. The de-
nominator is useful to illustrate the reconstruction differ-
ences only at the affected pixels.
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Lr econ = ‖Icomp − Ig t‖2

NM
+ ‖Iout − Ig t‖2

NI
(13)

Content Loss. It was first introduced by Gatys et al. for
neural style transfer GAN [7]. For the image inpainting
case, the purpose of this loss function (Equation 14) is to
reconstruct low level representations of images by mini-
mizing the difference between the ground-truths and the
inpainted results in feature space. Hence, it may enforce
content similarity between the two images. Addition-
ally, the content loss can also be considered as an iden-
tity preserving metric [12]. According to previous studies
[25, 26], it improves fidelity of the generated results. Con-
cretly, this is achievable by utilizing a pre-trained VGG-
19 model to calculate feature maps of each input in a
set of K layers. In particular, they are the first ReLu ac-
tivation outputs ψk (.) of the first 5 convolutional blocks
(relu1_1,relu2_1,relu3_1,relu4_1,relu5_1).

Lcontent =
K∑

k=1

‖ψk (Icomp )−ψk (Ig t )‖1

Nψk (Ig t )
+

K∑
k=1

‖ψk (Iout )−ψk (Ig t )‖1

Nψk (Ig t )

(14)

Style Loss. Besides content loss, Gatys et al. [7]. also
introduced style loss. This loss function promotes style
similarity across generated images by minimizing the dif-
ference of feature maps distribution between the ground-
truths and generated images. The distribution of feature
maps is computed by utilizing feature maps autocorre-
lation (Gram matrix) on both images. Additionally, the
Gram matrix is nothing more than the dot product of fea-
ture maps on each layer for the ground-truths and the in-
painted results as detailed in Equation 15. Here, Ck , Wk ,
and Hk act as normaliizing coefficents and they represent
the number of channels, width, and height of the k-th fea-
ture maps respectively. In image inpainting use case [26],
along with content loss, style loss helps removing artifacts
on the inpainted regions.

Lst yle =
K∑

k=1

‖ψk (Icomp )Tψk (Icomp )−ψk (Ig t )Tψk (Ig t )‖1

Ck .Wk .Hk
+

K∑
k=1

‖ψk (Iout )Tψk (Iout )−ψk (Ig t )Tψk (Ig t )‖1

Ck .Wk .Hk
(15)

Face Parsing Loss. In order to obtain properly posi-
tioned and shaped inpainted face attributes, a face pars-
ing loss is adopted. Given face attribute segmentation
outputs of the ground-truth images as well as the in-
painted results, weighted cross-entropy loss between the
ground-truth’s segments and inferred segments of the
inpainted image is computed and averaged across the

number of segmented pixels. The utilized weights are
[0.1,1,0.7,0.7] where each weight corresponds to a seg-
ment label [background,eye,nose,mouth]. The weights
are necessary to reduce the dominance of some face at-
tributes which caused a class imbalance problem. The
face attribute segmentation model is trained separately
and will be described further in section 4. The generated
segments samples are as displayed in Figure 6.

Figure 6. Generated face attribute segments for ground-truth
images

Lpar si ng =−
C∑

i=0
yi log(si ) (16)

The loss function in Equation 16 is a typical multi-
categorical cross-entropy loss where C represents the
number of segment classes (which is equal to 3), yi rep-
resents the current true pixel label (it will equal to 1 if the
current pixel has a true label Ci ). And lastly, si represents
the sigmoid score of the segmentation model.

Total-Variation Loss. Total-variation loss [28] ensures
smoothness of boundaries between the inpainted regions
and the ground-truth region. Here, W and H denote the
width and the height of the one-dilated masked region re-
spectively. Specifically, one-dilated mask region means a
dilation morphological operation of a 3x3 structural ele-
ment is applied once on the binary masks. Only one op-
eration is applied because the smoothness is only desired
near the inpainted regions’ border.

LT V =
W∑

i=0

H∑
j=0

‖Icomp (i +1, j )− Icomp (i , j )‖1+

W∑
i=0

H∑
j=0

‖Icomp (i , j +1)− Icomp (i , j )‖1

(17)
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Finally, the generator’s total optimization objective is
illustrated on Equation 18, where there are 5 λs as the hy-
perparameter coefficients that will be fine tuned. The full
proposed GAN architecture can be visualized on Figure 5.

LGtot al = Lad v +λ1Lr econ +λ2Lcontent+
λ3Lst yle +λ4LT V +λ5Lpar si ng

(18)

3.5. Evaluating face statue inpainting models

Apart from visual observation, several quantitave met-
rics will also be utilized to reflect the face statue inpaint-
ing quality.

L2 Reconstruction Loss. One of the generator objec-
tive is to minimize the L2 distance between ground-truth
images Ig t and inpainted images Icomp . Therefore, the
reconstruction loss will be observed during training and
testing phase. The L2 distance will be an evaluation met-
ric to justify how well the generator can reconstruct the
missing regions as close as possible to the ground-truths.

FID score. Image inpainting is an ill-posed problem,
meaning, there are multiple outcome variations that don’t
necessarily need to be identical with the ground-truths.
Frechlet Inception Distance (FID) score, as introduced by
[11], is able to evaluate the high level structure of GAN
generated images without evaluating pixel distances with
respect to their ground-truths. Instead, FID picks up
feature maps distribution differences by utilizing a pre-
trained InceptionV3 model. In addition, FID is able to tol-
erate different styles of the inpaintings while penalizing
distortion on the inpainted regions, such as blur and arti-
facts, thus, this metric is useful to evaluate the inpainted
face statues.

Ablation Study Ablation study is conducted to com-
pare the contribution of the GAN optimization objectives
to the inpainting results quality. Typical execution of ab-
lation study is aligned with the curriculum training pro-
cedure. In a curriculum strategy, one loss function is op-
timized one at a time as the model is progressively fine-
tuned from one objective function to the other. Therefore,
the ablation study will inspect the FID scores at each stage
of the curriculum training.

4. Experiments

4.1. Statue Identity Split

The face statue dataset is retrieved from the History
Department of the University of Nijmegen. Originally,
the dataset is designed for Roman Emperor classifica-
tion, however, it is ignored in this thesis and the roman
emperor statues are merged with the non-emperor ones.
There are no available ground-truths on the damaged face
statues, meaning, the ‘normal - damaged’ image pairs
don’t exist. Therefore, only the normal face statues are

utilized for constructing the train and test set in the next
preprocessing stage. Manual cherry-picking is involved
to separate normal and damaged face statues. And finally,
the normal face statues are split into train and test set with
80%:20% proportion.

4.2. Dataset Preprocessing

Face Crop. Most of the face statues have sizes more
than 700 pixels and they are not squares, therefore first,
they are cropped and resized based on their face land-
marks. A pre-trained MTCNN model is utilized to obtain
face landmarks of the face statues. As a result, a set of 5
face landmarks coordinates (left eye, right eye, nose, left
mouth corner, and right mouth cirner) is produced for
each MTCNN inference. The face crop is determined by
performing a standard face alignment based on the land-
marks as well as computing two equal paddings to com-
pensate the image width. The final outcome would be 128
x 128 face images. The specific image dimension is cho-
sen to limit the required resources for training the face in-
painting models.

Damage Simulation. As mentioned in Section 3.1, this
thesis is limited to recover only missing face attributes
type of damage. Therefore, the simulated damages are
based on face attributes. The damage simulation is ap-
plied on the face crops and for each input image Ig t , the
simulation produces additional two sets of images, the bi-
nary masks M and the masked input images (1−M)◦ Ig t .

Overall, the dataset split amount per damage simula-
tion type is broken down in Table 1. The total amount of
the training set is 12000 statue-mask pairs, whereas the
test set has 2250 statue-mask pairs.

Damage simulation Dataset split Number

Eye region Train 4000
Test 750

Nose region Train 4000
Test 750

Mouth region Train 4000
Test 750

Table 1. Dataset split

4.3. Training a recursive PCA model

A recursive PCA model will act as a baseline compari-
son to the GAN model. Later, the inpainting outcomes of
the two models will be compared quantitatively and qual-
itatively.

First, eigenfaces vtr ai n are obtained by applying Singu-
lar Value Decomposition on the 147 training ground-truth
images. Second, the mean face mtr ai n is computed by
averaging the training images. Third, the inpainted face
statue is produced by iteratively reconstructing each test
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image xtest and also specifying threshold ε = 0.01. And
finally, parameter K is set to 1 after tuning it. The pa-
rameter K symbolizes percentile of the used eigenfaces.
Note that, the eigenfaces are already sorted descendingly
by the singular values.

4.4. Training GAN

The GAN training occurs on a single TITAN X 12GB
GPU machine located in the CTIT cluster at the Univer-
sity of Twente. There are two GAN frameworks being
trained and each of them has a slightly different train-
ing approach. Network architecture-wise, both frame-
works’ generators utilize a U-Net architecture [36] which
is renowned in generating segments for biomedical im-
ages. Meanwhile the discriminators adopt a PatchGAN
architecture [15]. Each GAN training has 250 epochs long.

Minimax GAN. In general, the Minimax GAN training
consists of discriminator updates and generator updates.
During the discriminator updates, the ground-truth im-
ages Ig t are mapped with label 1, while inpainted images
Iout are generated by the generator, then the final inpaint-
ing outputs Icomp are mapped with label 0. Inversely, the
generator is updated by mapping the final inpainting out-
puts Icomp to label 1. Due to the binary objectives, Mini-
max GAN’s discriminator needs to output a sigmoid score.
In the end, each network update is followed by a back-
propagation on respective adversarial loss function. Min-
imax GAN’s generator and discriminator are optimized by
an Adam optimizer with default hyperparameter values:
learning rate 0.001, β1 0.9, β2 0.999.

WGAN. On the contrary, WGAN training is a bit trick-
ier. First, the discriminator outputs a critic loss as an ap-
proximation of the EM distance. The EM distance is ob-
tained by feeding the discriminator outputs of real images
Ig t and inpainted images Icomp to Equation 11. Since the
discriminator uses a critic loss, the discriminator doesn’t
deal with cross-entropy between real and fake data any-
more. Consequently, the discriminator doesn’t output
sigmoid score anymore. This is achieved by removing the
sigmoid operation at the end of the discriminator forward
propagation. Moreover, to satisfy 1-Lipschitz continuity,
the discriminator outputs are clamped between -0.01 and
0.01. In the mean time, the generator is trained by feeding
the output of real images to Equation 12.

At the beginning of training iteration, WGAN training
focuses on converging the discriminator. Therefore for
the first 25 epochs, the generator is only updated once ev-
ery epoch, while the discriminator is updated each itera-
tion. Afterwards, the generator update frequency is set to
be equal with the discriminator’s. WGAN’s generator and
discriminator are optimized by RMSProp with learning
rate 0.00005 following the original implementation [1].

All of the training iterations employ a curriculum strat-

egy [24] where each optimization objective is tackled once
at a time while freezing the others. The training order
starts by optimizing reconstruction loss, then followed by
content loss, style loss, face parsing loss, and finally regu-
larized by total-variation loss.

In addition, the hyperparameter lambdas are set to the
following settings, λ1 = 1, λ2 = 0.01, λ3 = 0.1, λ4 = 1, and
λ5 = 0.1. These values are obtained by doing observations
on the inpaintings in multiple trials.

4.5. Training a face segmentation model

The segmentation model is trained by following [27]. It
is trained on a human face dataset, namely Helen dataset
[20] and the dataset is split into a typical 80%:20% split.
The network architecture is an encoder-decoder network
with a U-Net architecture, following the inpainting gener-
ator mentioned in the previous section. The model opti-
mizes a categorical cross-entropy loss between the pixel
classes and target segment labels. It is the exact same loss
function used as the face parsing loss explained in Section
3.4.

During training, the segmentation model only consid-
ers less segment labels, i.e. eye, nose, and mouth seg-
ments, since only these three face attributes are neces-
sary to recover in the inpainting task. The segmentation
model is trained in 100 epochs and it achieves 80.42% pre-
cision and 83.88% recall on test set (excluding the back-
ground class). Thus, it is deemed sufficient to generate
the ground-truth’s segments on the face statues.

4.6. Evaluation

The evaluation is focused on examining the proposed
models as well as the dataset construction strategies with
respect to the three types of statue damages. The afore-
mentioned quantitative metrics, i.e. L2 reconstruction
loss and FID scores, will be reported based on the evalua-
tion against the test set for both the GAN and PCA-based
models. However, the ablation study is only applicable for
the GAN-based models.

5. Results

Here, the performance of Minimax GAN, WGAN, and
recursive PCA models are displayed. Firstly, both GAN
models are trained using the adversarial loss and recon-
struction loss. And secondly, they are trained using the
adversarial loss as well as the full list of generator objec-
tive functions mentioned in Section 3.4.

Quantitative Evaluation. As seen in Table 2, the FID
scores and the L2 reconstruction loss suggest that the
GAN-based models clearly outperform the recursive PCA
model. However, overall, the FID scores of the Mini-
max GAN, WGAN, and recursive PCA do not differ much.
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Figure 7. a.) Evaluation metrics on test set: FID and L2 reconstruction loss. b.) Gradient flow on Minimax GAN and WGAN c.) GAN’s
adversarial function minimizes JSD between real and inpainted image distribution, while WGAN’s adversarial function minimizes EM
distance between real and inpainted image distribution

Model Loss functions Images optimized on FID L2 reconstruction loss Best epoch

Minimax GAN Adv+L2 Icomp 5.566 0.0280 Epoch 15
Minimax GAN Adv+L2+Content+Style+TV+FP Icomp 6.44 0.0277 Epoch 55
Minimax GAN Adv+L2+Content+Style+TV+FP Iout + Icomp 5.97 0.0272 Epoch 35
WGAN Adv+L2 Icomp 6.015 0.0276 Epoch 110
WGAN Adv+L2+Content+Style+TV+FP Icomp 6.51 0.0320 Epoch 190
WGAN Adv+L2+Content+Style+TV+FP Iout + Icomp 6.089 0.0271 Epoch 155

Recursive PCA - - 6.7 0.0514 -

Table 2. A list of evaluation results. Both the FID scores and L2 reconstruction loss are obtained from the test set. The abbreviations of
the loss functions correspond to the followings. Adv: adversarial loss, L2: L2 reconstruction loss, Cont: content loss, Style: style loss,
TV: total-variation loss, FP: face parsing loss

When considering only the GAN-based models, Minimax
GANs perform the best at generating inpaintings com-
pared to WGAN on either combination of loss functions.
In addition, optimizing the loss functions on both Iout

and Icomp helps to improve the FID score as well as the
L2 reconstruction loss on models trained on the full loss
functions.

When the loss functions are assessed individually, Ta-
ble 3 suggests that the L2 reconstruction loss has the most
impact on the inpaintings fidelity, followed by the style
loss.

Next, as observed in Figure 7a, Minimax GANs tend to
converge early and then begin to overfit around epoch 30-
50. This fact is also supported by Figure 7b, where the
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Figure 8. Inpainting results induced by the generative models that have the best test FID score during their entire training. Here, full
loss represents all of the generator objective functions elaborated on section 3.

Loss functions FID

L2 6.015
Style 5.75
Content 37.56
Total-variation 51.88
Face parsing 35.60

Table 3. The result of an ablation study where multiple WGAN
models are trained using only adversarial loss and each of the
listed loss functions. L2 loss and style loss emerge as the most
contributive loss functions towards inpaintings’ fidelity.

gradient flow of the Minimax GAN is way more fluctua-
tive and has an up-trend. Furthermore, the observed JSD
estimate in Figure 7c doesn’t tell any meaningful correla-
tion with the inpainting results as it looks pretty stagnant
with some minor fluctuations.

The WGAN is observed to have more stable gradients
overtime compared to the Minimax GAN. Moreover, the

estimated EM distance observed in Figure 7c correlates
with the quality of the inpainting results as the epoch in-
creases. Also, the most performing WGANs exist at much
later epochs.

On the gradient flow figures, the color shades from
dark to light represent the layer position in the generator
from top to bottom. Note that, the gradient flows on the
displayed figure belong to the models trained using only
L2 reconstruction loss, but the other variants also possess
similar gradient flow.

Qualitative Evaluation. The inpainting results are
hardly distinguishable by visual observation. In a glance,
most of the inpainted regions look well-restored and they
blend well with the rest area of the images. But, when
zoomed, the inpainted regions are noticeably blurry. Also,
they have some subtle differences in a detailed level.

By looking at Figure 8, the recursive PCA model clearly
leaves more artifacts and blurriness on the inpaintings
compared to the GAN variants. But, there is no clear
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Iter. Baseline Target FID Best

1 L2 Content 5.65 Epoch 1
1 L2 Content+TV 5.65 Epoch 40
1 L2 Style 5.65 Epoch 1
1 L2 Style+TV 5.64 Epoch 45
1 L2 Face parsing 5.57 Epoch 1
2 Style+TV Face parsing 5.72 Epoch 1
2 Style+TV Content 5.67 Epoch 1
2 Face parsing Style+TV 5.6 Epoch 10
2 Face parsing Content+TV 5.72 Epoch 5

Table 4. Curriculum strategy implementation results. The base-
line represents models trained solely on the loss function while
target represents the additional loss functions to optimize at the
respective curriculum iteration. Note that, on the second itera-
tion, the L2 loss is also included as a baseline.

winner on the GAN variants each of them seem to excel
at certain face statues. For example, the Minimax GAN
trained with only L2 reconstruction loss inpaints the lips
of statue images on the fourth and the sixth row best com-
pared to the others as they have less artifacts and bluri-
ness. However, referring to the same rows, the GAN vari-
ants trained on the full loss seem to share more identical
attributes of the ground-truths. The reconstructed nose
size by the models trained on the full loss are also more
identical with the ground truths. Moving on to the next
examples, the inpainted images on the first and third row
are pretty much similar. Meanwhile, the inpainted eye on
images of the second row generated by the Minimax GAN
trained with the full loss is slightly more detail. This qual-
itative evaluation is highly subjective and the judgment
solely depends on personal taste.

Curriculum Strategy. Even though FID scores of
the models trained with curriculum strategy surpass the
models trained normally, most of them overfit as the FID
scores stop decreasing after less than 10 epochs. Sum-
mary on the curriculum strategy implementation is pro-
vided in Table 4.

6. Discussion

WGAN has relatively more stable gradients accross the
training epochs compared to Minimax GAN’s as observed
on Figure 7c. The WGAN’s gradients only have minor fluc-
tuation, meanwhile the Minimax GAN’s gradients fluctu-
ate more heavily and the uppermost and bottom-most
gradients tend to increase rapidly. Uppermost layer han-
dles the image input, whereas the bottom-most generates
the final output. This implies that the generator learns
the most from compressing the input images and gener-
ating final inpainting results in each respective layer. This
observation is also aligned with the claimed behavior of

WGAN by Arjovsky et al. regarding how EM distance is a
better optimization objective compared to JSD estimate.
This has already been discussed in Section 3.3.2. The
stable gradients lead to higher quality results for WGAN
on later epochs as the best epochs of WGAN in Table 2
are significantly greater than the best epochs of Minimax
GAN. Nevertheless, this doesn’t really matter as the GAN
training can be stopped by considering FID value stag-
nancy after certain amount of epochs. Concretely, the
Minimax GAN’s FID score reaches the lowest value at early
epochs and starts to show an overfitting behavior over-
time. Here, the FID score can be utilized as an indication
of early stopping mechanism.

Curriculum strategy doesn’t provide value since the
baseline loss has produced a good result on this exper-
iment. Hence, adding more training epochs on subse-
quent curriculum iterations tend to overfit the models.
Nonetheless, more challenging inpainting tasks such as
larger masked regions may prove the strategy useful.

Visually, inpainting results induced by the recursive
PCA model, as a simpler model, are not that far compared
to the GAN variants. Specifically, for less complex face at-
tribute i.e. nose, the generated inpaintings may be suffi-
cient. On the other hand, the inpainting results induced
by the GAN variants have their own strong points on cer-
tain images. However, the reconstructed face attributes
of the models trained on the full loss function tend to
match the identity of the ground truth images better. This
is influenced by the style, content, and face parsing loss.
While the total-variation loss helps reducing artifacts.

Although the final inpainting results correspond to the
complemented images Icomp , optimizing the full loss on
the direct output images Iout additionally helps to im-
prove the FID scores of models trained on the full loss.
Spefically, the style, content, and face parsing loss are ex-
pected to learn more information from Iout rather than
Icomp as the training progresses.

Lower FID scores don’t strictly correspond to better in-
paintings. One reason behind this turn of event could be
due to the small area of inpainting regions. In the liter-
atures [24, 26], the regions are relatively larger and they
cover multiple face attributes. In that case, most likely
the GAN variants trained on the full loss will excel more
significantly. However, the WGAN framework can be con-
sidered best when gradient flow stability is acknowledged.
Future study on the correlation between the FID scores,
size of inpainting regions, and inpainting results could ex-
plore this matter further.

7. Conclusion

In this thesis, investigation of a face statue restora-
tion task using image inpainting methods is carried out.
Specifically, a deep generative model, GAN, is examined
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along with a classical reconstruction algorithm, namely
recursive PCA.

By visual observation, the real damaged face statues
suffer from three types of damages, i.e. missing face at-
tributes, eroded textures, and hollow regions. However, the
damaged statues suffer from missing face attributes the
most.

The training dataset needs to be in ’normal-damaged‘
in pairs. In order to overcome the limited amount of
normal face statues, binary-mask augmentation is per-
formed such that there are multiple ‘normal-damaged’
image pairs across three face attributes, i.e eye, nose, and
mouth for each statue identity.

Recursive PCA approach aims to recover the damaged
regions by iteratively projecting the masked images to the
eigenspace obtained from SVD of the training data. The
iteration concludes when there is not much difference ob-
served on the restored masked regions.

Minimax GAN and WGAN models are trained to re-
construct the masked images as close as possible to the
ground-truths. Based on FID score alone, Minimax GAN
trained on L2 reconstruction loss is the most performant
model. But, when gradient stability and identity matching
are also considered, WGAN with the full loss is the most
preferred GAN variant. Specifically, adding a combination
of style, content, and total-variational loss helps main-
taining the identity of the reconstructed images. Further-
more, when assessed individually, L2 and style loss are the
most contributive objective functions.

L2 loss and FID score are feasible to evaluate the in-
painting result. But, FID score can’t be utilized as a strict
measure in deterimining the best quality inpaintings. In-
stead, it can be utilized as an early stopping mechanism
when training the GAN-based models. In the end, visual
observation is necessary to judge the final outcomes.

In comparison with recursive PCA as a simpler model,
even though it generates acceptable inpaintings for less
complex attribute, i.e. nose, overall, recursive PCA model
generates inpaintings with the least fidelity. More artifacts
and bluriness are found on the inpainting results of the
recursive PCA model compared to the GAN variants.
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