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MANAGEMENT SUMMARY

This report describes the research of ways to improve the maintenance of traffic control
systems at Dynniq Nederland B.V. Dynniq is a company that helps to manage mobility flows
in society through advanced technological solutions. The company sees the need to decrease
their maintenance costs due to an expected decrease in revenue on maintenance contracts.
The aim of this research is to explore what potential value is available in the historical data on
maintenance requests and solutions, which will ultimately lead to a cost reduction. By finding
this potential, we can answer the main question of this research:

”How can historical data on maintenance requests and solutions improve the effectiveness
of any kind of maintenance, making it more future-proof?”

The research was conducted according to the Cross-Industry Standard for Data Mining
(CRISP-DM) methodology, which includes the entire process from communication of the
business problem through data collection and management, data preprocessing, model
building, model evaluation, and model deployment. The main deliverable of the CRISP-DM
methodology is an implementation plan for a designed model that answers the main research
question of the research.

To find out what part of the company’s performance has the best improvement potential, a
performance analysis was executed using the available data set on maintenance requests
and solutions. The outcome of this analysis was an improvement potential on inspecting
unstructured text fields like problem description, cause, and solution to increase the knowledge
on why systems fail, why some of those failures cannot be solved at first attempt, and why
preventive maintenance does not reduce the number of failures per system. This information
can be extracted from the unstructured text fields in the available data set by the use of text
mining. Text mining transforms text into a mathematical form that can be used for calculations.
In this research, we used text mining as an input for the built of a classification model. This
model is based on the way systems can fail, also known as failure modes. The model uses
the transformed text data to predict which class (i.e. failure mode) belongs to the problem
description of a Service Order that should be solved. Service Order is the generic name for a
work order of a malfunction in a system and the associated maintenance activities.

A literature review has been conducted to find appropriate methods for building a text
classification model. Key findings from the literature review are a theory on failure modes
and appropriate algorithms for building a text classification model. The chosen failure
modes electrical failure, software failure, mechanical failure, external damage, human error,
and no problem were based on the theory of Tinga (2013). The classification algorithms
found in literature are an Artificial Neural Network (ANN), a Support Vector Machine (SVM),
and a Decision Tree (DT). These algorithms are chosen for their ease of implementation,
performance potential, and availability in free software packages.

Based on the findings from literature, a classification model was designed. The model
serves as proof of concept to determine whether a text classification model can improve
the knowledge on failure behaviour of the traffic control systems. The model was built and
validated with a data set of 500 Service Orders. These Service Orders were evenly divided
over ten different system types. The system types are systems placed at intersections and
along highways that are produced and maintained by Dynniq. All Service Orders in the data
set were classified in advance to be able to compare the prediction of the model with the
predetermined class label. To determine how well the model performs, the data set was split
into a training and validation set. The training set was used to build the classification model
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and the validation set was run through the model to predict which class labels correspond
to the Service Orders. The performance of the model was measured with an accuracy
score, which can be defined as the percentage of Service Orders from the validation set that
were correctly classified. The model provides a result that is presented as partial match, for
example 60% chance of an electrical failure, 40% chance of a software failure. The higher
the distinction between these class labels, the higher the chance that the best match is the
actual failure mode. To optimize the model, the validation was executed for three different
ways of partitioning the same data set of 500 Service Orders. In the first test, the data was
split per system type in ten evenly divided groups. In the second test, the same data set was
split in two system groups (i.e. highway and intersection systems). The third test had only one
partition, consisting of all system types together.

The evaluation showed that the best performing partition of the data set is on system type,
which means that each system type has its own model. For this partition, the average accuracy
of the ANN (61%) and SVM (61%) models are higher than the DT model (55%). The accuracy
of the ANN and SVM models are similar with a maximum difference of 6% per system type.
As the ANN model is only the simplest form of a neural network, the potential for this type of
model is higher than for an SVM model. From all system types, the highway systems have a
higher accuracy score (DT: 63%, SVM: 66%, and ANN: 65%) than intersection systems (DT:
50%, SVM: 57%, and ANN: 58%). Next to the accuracy scores, the sensitivity of the models
was tested. It was observed that the accuracy score does not significantly increase when the
size of the data set is increased from 50 Service Orders to 75 and 100. What does influence
the accuracy score is the detail of the input data. The more information that is present in the
problem description, the higher the distinction between class labels. Another sensitivity of the
model is the ability to correctly predict the class labels. A large difference is observed in the
accuracy of each class label (electrical failure: 66-77%, software failure: 66-70%, mechanical
failure: 9-36%, external damage: 18-52%, human error: 7-24%, and no problem: 0-15%).
This difference is most likely caused by the high number of electrical and software failures
with respect to the other labels. Therefore, there is more information available for these type
of failures. The label no problem has a low accuracy because this label is by definition not a
type of failure mode.

Given the evaluation of the model, we can conclude that the available data set of maintenance
requests and solutions holds enough information on why systems fail to classify Service Orders
based on types of failure modes. This increases the knowledge on failure behaviour of traffic
control systems as well as the knowledge on the maintenance logs. We can also conclude that
the ANN and SVM algorithms are most suitable to the data set and perform well in reference
to similar studies from literature (Edwards et al., 2008; Wei et al., 2017). ANN has the highest
improvement potential as the current algorithm is only a simple feed forward neural network.
Multiple layered feed forward neural networks and recurrent neural networks should be more
accurate. Even though, the accuracy scores are not high enough for direct implementation.
The sensitivity analysis showed that the model has a large improvement potential on the
quality and detail of the data set and the choice of class labels. Also, the model is limited
on how features (i.e. informative words) are selected and the data set has been classified
by the researcher, who has no experience with the maintenance activities. Based on these
conclusions and limitations, the following steps are recommended before implementation:

• Assess alternative feature selection methods to decrease the number of uninformative
features, creating a group of features with a higher distinctive value.

• Reassess the training and validation set on the aspects quality and detail of the problem
descriptions, size of the data set, and distinction of the class labels.

• Assess alternative stemming algorithms for the Dutch language to increase the
percentage of correctly stemmed words.
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After implementation, it is recommended to extend the research to improve the performance of
the model even more. For this phase, the following steps are recommended:

• Explore alternative text classification algorithms and rate their performance against the
current model. As neural networks have the highest potential, both feed forward neural
networks with multiple hidden layers and recurrent neural networks should be explored.

• Explore the possibility of combining the unstructured text data with structured and
quantitative data for a more accurate or targeted classification method.
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Gain Ratio
Feature selection method that selects features with the
highest informative value.
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Feature selection method that selects features based on
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text.

Traffic Control System
System next to the road that controls traffic flow via
external systems like traffic lights and information signs.

Unstructured data
Textual data with a free form. Often used as a free text
field like description.
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1. INTRODUCTION

We start this thesis by introducing the background of this research. In section 1.1, we will
shortly introduce the company. Then, we continue with the problem description in section 1.2
and the research questions in section 1.3. Next, we discuss the methodology that is used to
guide the research in section 1.4 and we end the chapter in section 1.6 with the outline of the
report.

1.1. COMPANY BACKGROUND

Dynniq helps to manage energy and mobility flows in society through advanced technological
solutions. The mission is to enable people, data and goods to reach their destinations safely,
sustainably, and efficiently. As flow increases, the technology that guides this flow must
increase as well. One way of guiding the flow is the use of traffic control systems. These
systems must be maintained to ensure continuity of flow. Dynniq provides this maintenance
through service contracts. The strategy for maintenance is based on preventive and corrective
maintenance. Preventive maintenance is done every one or two years, depending on the
service contract. Corrective maintenance is done when a failure is reported. Depending on
the service contract, the response time is two, four or eight hours. This maintenance strategy
is found to be both conservative and ineffective. This can be concluded from a high ratio
(56%) of corrective maintenance actions with regard to preventive maintenance. Also, one
general checklist is used as a protocol for all preventive maintenance activities. Improving the
maintenance strategy is key as the service contracts are becoming less valuable due to a
lower selling price of the traffic control systems.

One way of improving the maintenance strategy is by analysing logged data from maintenance
activities on the traffic control systems. These data include information such as the repair
actions that are executed, the location of the systems that are repaired, the date and time
corresponding to the repair and product information corresponding with the repaired system.
Analysing the data would increase the knowledge on the traffic control systems. This
knowledge will be used to improve the maintenance strategy.

1.2. PROBLEM IDENTIFICATION

As Dynniq sees the need to decrease their maintenance costs due to an expected decrease
in revenue, efficient planning in maintenance is necessary. This can either be done by
improving the planning method, which lowers the required capacity and resources needed, or
by improving the execution of maintenance, which can result in less corrective maintenance
activities or the removal of ineffective preventive maintenance activities. In both cases, the
workload will decrease which leads to a decrease in maintenance costs. In this research,
we focus on improving the maintenance strategy. Dynniq sees this as the best option to
decrease maintenance costs. To improve the maintenance strategy, we will look at the failure
behaviour of the traffic control systems. If failure behaviours are known, accurate maintenance
actions can be linked to the traffic control systems. This has an influence on the design of
maintenance actions as well as the use of capacity like labour and materials.

The outcome of the research must be possible to implement in the current maintenance
strategy. Therefore, a set of guidelines for improvement of the maintenance strategy is
desired in the form of an implementation plan. These guidelines can be used to improve
the effectiveness of preventive maintenance actions and increase the ratio of preventive
maintenance actions with respect to corrective maintenance. Such guidelines can be created
with a model that uses the available data from maintenance activities. The model analyses
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the available data and provides information such as why a system has failed. The model must
be available within the company for future assessments and improvements. A new model
increases the probability of making the maintenance strategy more sustainable as it provides
insight into the available data. As a result, the maintenance plan will be more reliable and
resources can be used more efficiently.

1.2.1. CORE PROBLEM

From this situation, we can deduce the core problem. The core problem was given by experts
from the Customer Service Operations department, but has been analysed by the researcher.
We can find the core problem in the problem cluster in Figure 1.1: ”The current maintenance
strategy is expected not to be financially future proof”. The problem cluster also shows us
that the scope of the assignment only partially solves the core problem. With a data analysis,
knowledge on maintenance can be increased but the value of service contracts will still
decrease. Solving the latter is out of scope of this assignment.

Figure 1.1: Problem cluster

1.2.2. SCOPE

The research focusses on an improvement solution based on available data from maintenance
requests and solutions. Only the data on highway systems and intersection systems will
be analysed as these systems are produced and maintained by Dynniq. The maintenance
types are reduced to preventive and corrective maintenance. Other types of maintenance
are executed during the installation of a traffic control system, which is out of the research
scope. Methods from literature will be combined or adapted to solve the research problem.
Improvements regarding planning optimizations are out of scope as well as all financial
aspects. The results of the assignment will be collected in an implementation plan. The
execution of the implementation plan is out of scope.
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1.3. RESEARCH QUESTIONS

Based on the problem cluster, we can outline the research goal, which is written as the main
research question. To answer this question, we must answer several sub-questions which
each comply with a chapter in this report. Taking the core problem and the scope of the
assignment into account, the main research question will be:

”How can historical data on maintenance requests and solutions improve the effectiveness
of any kind of maintenance, making it more future-proof?”

We start the research with an analysis of the company, its maintenance strategy and the data
logs they keep. The logs hold information about why systems have failed and how they are
repaired. The analysis ends with the outline of the improvement potential to which the research
is aimed. In chapter 2 we will answer the first research question.

I. ”What is the current maintenance strategy and what is the improvement potential?”

a. ”What is the definition of the current maintenance strategy?”
b. ”What improvements of the maintenance strategy are desired?”
c. ”What information does the gathered data hold?”
d. ”What is the company’s performance based on the data?”

The analysis of the business and the data set will provide us with an improvement potential.
To make use of this potential, a literature review will be executed to find theoretical foundation
and techniques for modelling towards such potential. In chapter 3 we will answer the second
research question.

II. ”What methods does literature provide for maintenance strategies based on data about
maintenance requests and solutions?”

a. ”What maintenance optimization methods are available for traffic control systems?”
b. ”What maintenance optimization methods are based on data of maintenance requests

and solutions?”
c. ”What methods can increase the knowledge about the failure behaviour of the traffic

control systems?”
d. ”Which parts of the research problem can and cannot be solved with the available

literature?”

With the methods from literature known, we can design a model which will provide answers to
the core problem. To tailor the company’s needs, we must combine methods from literature
with the available data set. In chapter 4 we will answer the third research question.

III. ”How can data be modelled to provide guidelines for optimizing the maintenance
strategy?”

a. ”What techniques can be used to improve the current maintenance strategy?”
b. ”What changes to or combinations of models are chosen as the final model?”
c. ”How can results be summarized in clear and useful guidelines?”
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After building the model, we will evaluate the results. The evaluation includes a conclusion on
whether the created model is suitable for solving the main research question. In chapter 5 we
will answer the fourth research question.

IV. ”How can the results from the data model be used to improve the maintenance strategy?”

a. ”What results does the data model provide?”
b. ”What impact do the results have on the research problem?”

Finally, we will discuss the implementation of the model in the daily work routine. In chapter 6
we will answer the fifth research question.

V. ”How can the data model be implemented in the maintenance strategy?”

a. ”What changes have to be made to implement the data model?”
b. ”What impact do the changes have on the stakeholders?”
c. ”Which steps have to be taken to complete the implementation?”

1.4. METHODOLOGY

We chose the Cross-Industry Standard for Data Mining (CRISP-DM) methodology to structure
the research. CRISP-DM is the most often used methodology for data mining projects,
according to polls from 2007 and 2014 (Piatetsky, 2014). As Larose (2005) states, the
methodology must be seen as an entire process, from communication of the business
problem through data collection and management, data preprocessing, model building, model
evaluation, and finally, model deployment. Even though it is not being updated for the new ’Big
Data’ challenges (Piatetsky, 2014), the methodology is often used as a blueprint for conducting
any data mining or data analysis project (Shearer, 2000). It is built for researches based
on historical data and it is assumed that the reader has little knowledge about the business
objectives and available data (Larose, 2005; Shearer, 2000).

Figure 1.2: Visual representation of the CRISP-DM methodology
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We chose this methodology because the starting point and goal of the research comply with
the starting point and goal of the methodology. Its phases (Figure 1.2) guide the execution of
the research. The six phases, business understanding, data understanding, data preparation,
modelling, evaluation, and deployment, are directly applicable to the research questions that
need answering (Table 1.1). The phases have no static order as data mining is an iterative
process. Shearer (2000) provides clear tasks and outputs for each phase. We have extended
the methodology with an extensive literature review on data preparation and modelling
techniques during the data preparation and modelling phases.

Table 1.1: CRISP-DM phases and corresponding research questions

CRISP-DM phase Research questions

Business
Understanding

I. ”What is the current maintenance strategy and what is the
improvement potential?”

Data Understanding
I. ”What is the current maintenance strategy and what is the
improvement potential?”

Data Preparation
II. ”What methods does literature provide for maintenance strategies
based on data about maintenance requests and solutions?”

Modelling
II. ”What methods does literature provide for maintenance strategies
based on data about maintenance requests and solutions?”

III. ”How can data be modelled to provide guidelines for optimizing
the maintenance strategy?”

Evaluation
IV. ”How can the results from the data model be used to improve
the maintenance strategy?”

Deployment
V. ”How can the data model be implemented in the maintenance
strategy?”

1.5. CONTRIBUTION OF THE RESEARCH

The contribution of this research lies in the type of classification model that is designed. Many
articles are available on the subject of text classification, but less for the Dutch language and
none for maintenance activities on traffic control systems. This research contributes with
a method for the classification of Dutch text data based on failure modes of traffic control
systems.

1.6. OUTLINE

The remainder of this research starts in chapter 2 with an introduction of the company, its
maintenance strategy, and the available data set on maintenance requests and solutions. This
covers the first two phases of CRISP-DM, business understanding and data understanding.
The chapter also provides a performance analysis, which resulted in an improvement potential.
Chapter 3 covers the theoretical background that is required to address the improvement
potential properly. As mentioned in section 1.4, this literature review is an extension to CRISP-
DM. Next, the theoretical background is used in chapter 4 to design a model that transforms
the available data set into an informative form that can be used to answer the main research
question. This covers the data preparation and modelling phases of CRISP-DM. The next
phase is the evaluation phase, which is covered in chapter 5. Here, the results of the model and
the model’s limitations are evaluated. Then, chapter 6 presents the required and recommended
steps for implementation of the model, which complies with the final step of CRISP-DM,
deployment. Finally, chapter 7 covers the conclusions, limitations, and recommendations.
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2. CONTEXT ANALYSIS

In this chapter we will discuss the analysis of the business and the available data set. With
this analysis, we will answer the first research question: ”What is the current maintenance
strategy and what is the improvement potential?”. In section 2.1, we will discuss the Customer
Service Operations department that provides maintenance solutions. Next, we will discuss the
traffic control systems that the company produces and the strategy for maintenance on these
systems. Then, in section 2.2 we go into the definition of the available data before we discuss
the company’s performance in section 2.3. Based on the performance, we will discuss the
improvement potential in section 2.4 and end the chapter with conclusions in section 2.5.

2.1. BUSINESS UNDERSTANDING

To understand the business fully, we will discuss the analysis of the company, the traffic control
systems, and the current maintenance strategy. This knowledge is required to fully understand
the origin of the research problem.

2.1.1. ORGANIZATION

Dynniq Group has three separate divisions: Energy, Parking, and Mobility. The Energy division
is specialised in the design, delivery, and maintenance of electrical and gas infrastructure,
Parking is specialised in innovative parking solutions and Mobility, the main division, is
specialised in a safe and efficient flow of traffic. Dynniq Mobility is run from the main office
at Amersfoort, where Dynniq Mobility NL is located. One of the departments within Dynniq
Mobility NL is known as Customer Service Operations (CS Operations). This department is
responsible for maintenance on the traffic control systems.

Figure 2.1: Organization chart CS Operations

CS Operations’ organization chart (Figure 2.1) consists of Contract Managers, Support
Engineers, Field Engineers, Service Desk, and Administration. The Field Engineers and
Service Desk both have a discipline lead. The Contract Manager is responsible for ensuring
that the service contracts are respected, the Field Engineers execute the maintenance on the
traffic control systems as communicated in the service contracts, the Support Engineer helps
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the Field Engineers with specialist technical support, the Service Desk handles the first line
orders for corrective maintenance work, and Administration draws up the service contracts
and handles the maintenance reports. The hierarchy shown in Figure 2.1 shows to who a
person in the chart must report, the first person upstream. The department has short lines for
daily communication to enable employees to execute their work properly.

2.1.2. TRAFFIC CONTROL SYSTEMS

The systems for which maintenance is required are either produced by Dynniq or third parties.
As mentioned in section 1.2.2, in this research we will focus on the systems produced by
Dynniq. These systems control traffic flows at intersections and information signs along
highways. The intersection systems are known as ’verkeersregelautomaat’ (VRA), which is
the dutch term for traffic light controller. These systems have a system code starting with EC,
which stand for EuroController. The highway systems are known as ’wegkantstation’ (WKS),
which is the dutch term for roadside station. These systems have a system code starting with
OS, which stand for OutStation. For ease of understanding, we will refer to the systems as
intersection system and highway system. Table 2.1 shows the current number of systems
active to date. All systems are constructed such that maintenance can be done quickly.
Electrical modules are used to control a certain feature of the system, for example remote
access. When a problem occurs with the remote access, the full module can be replaced.
Another benefit of the modular system is the option to modify on customer demand before
installation.

The intersection systems control the flow of traffic across an intersection. Dependent systems
are traffic lights and detection loops. Detection loops are electrical wires that run through
the top layer of the road. When the magnetic field between the wires is interrupted by the
presence of a metal object (e.g. car, bike or truck), the traffic control systems know that a
vehicle is present. The more recent systems are interconnected to ensure possibilities like a
green flow throughout a city.

The highway systems control the flow of traffic along a highway, which is mainly done through
information signs. Examples of information are traffic jams, rush hour lanes, and speed
limitations. There is a high number of systems that are interconnected due to the long stretch
of road.

Table 2.1: Traffic Control Systems currently active

Highway System Intersection System

System code Active number System code Active number

EC-1 Confidential OS-0 Confidential

EC-1 iVRI Confidential OS-2 Confidential

EC-2 Confidential OS-3c Confidential

EC-2 Compact Confidential OS-3 Confidential

EC-2 iVRI Confidential OS-3/4 Confidential

EC-2.5 iVRI Confidential OS-4 Confidential

EC-2L Confidential OS-5 Confidential

EC-200D Confidential OS-6 Confidential

EC-2.5 Confidential

Total Confidential Total Confidential
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2.1.3. MAINTENANCE STRATEGY

The maintenance strategy at Dynniq is based on the Information Technology Infrastructure
Library (ITIL). ITIL is a systematic approach to the delivery of quality IT services (van Bon,
2011). It describes the different stages of the service lifecycle: strategy, design, transition,
operation, and continual improvement. In the operational stage, the stage in which the
maintenance activities are executed at Dynniq, ITIL describes the workflow of any occurring
maintenance event. The maintenance activities at Dynniq are split into two main groups:
preventive maintenance (Figure 2.2a) and corrective maintenance (Figure 2.2b).

(a) Preventive maintenance (b) Corrective maintenance

Figure 2.2: Maintenance flow based on ITIL 2011

Preventive maintenance
Preventive maintenance at Dynniq can be defined as a full check of a traffic control system. A
protocol is used which describes which maintenance tasks must be executed. The protocol
has two versions, a full check called ’standard’ and a partial check called ’basic’. The standard
check includes the operation of a traffic control system and the communication with dependent
systems like traffic lights, detection loops and information signs. This type of maintenance can
be done for up to confidential systems per day per Field Engineer. The basic check, which can
be done up to confidential times per day per Field Engineer, excludes all checks regarding
confidential. When the loops, which lie in the top layer of the road, are not functioning properly,
the system will show an error message.

Preventive maintenance is executed once every one or two years, depending on the customer
demand. This and the execution of the maintenance, as can be seen in Figure 2.2a is
prescribed in a service contract. A Senior Field Engineer creates the maintenance planning
two or three months in advance. Inputs for the planning, like due dates and contractual
agreements, come from the Contract Managers. The planning is then communicated to the
customer. When the date is set, a new Service Order Preventive (SOP) is created in the
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Enterprise Resource Planning (ERP) system. An ERP system is a tool used for digital support
of company processes. All information regarding the maintenance activity will be added
to the created SOP. The system provides a work order which prescribes the maintenance
activities to be done. The responsible Field Engineer executes the maintenance activity
and reports back via a maintenance report. When the activity is completed, details from
the maintenance report are added to the SOP, the customer is informed and the order is closed.

Preventive maintenance is mainly planned for traffic control systems at intersections. The
execution of preventive maintenance is confidential, but known to the researcher.

Corrective maintenance
Corrective maintenance at Dynniq can be defined as a reaction to a trigger within a response
time as prescribed in a service contract. This reaction is initiated by the Service Desk. As can
be seen in Figure 2.2b, the trigger is either a traffic control system that shows an error message
or a call received from a customer. Based on the information from the trigger, the Service Desk
discusses the problem with a Field Engineer. When the problem solving method is not clear, a
Support Engineer is requested for technical support. If an action is required, a Service Order
Corrective (SOC) is created in the ERP system. The system reports back what requirements
for maintenance are in the service contract. For instance, the response time can be two, four or
eight hours. When the Field Engineer has executed the maintenance, he reports on the cause
and solution of the problem. The Service Desk processes this information and either finishes
the Service Order or plans a follow up order. When the maintenance activity is completed, the
Service Desk reports back to the customer. If the response time is not met, a penalty is applied.

Alternative maintenance actions
Next to preventive and corrective maintenance, one component is maintained by a different
policy. The highways systems have a backup power source in the form of batteries. The
battery maintenance strategy is confidential, but known to the researcher. When the batteries
are replaced, the system backup ability will be seen as ’as good as new’. This is currently the
only type of maintenance that differs from the standard preventive and corrective workflows.

2.2. DATA UNDERSTANDING

Now that we understand the business, we will analyse what information is gathered in the
available data set. To do so, we briefly discuss the origin of the data set and then describe the
information that the data set holds.

2.2.1. COLLECTION OF DATA

The available data set is a combination of extractions from the ERP system. The data
represents the logs of maintenance requests and solutions. New information is added by
employees from the Service Desk, who handle new and active maintenance activities, also
known as Service Orders (SO). The ERP system can be accessed by all personnel from the
CS Operations department. Dynniq is collecting data since 2010. In 2017, a new version of
the ERP system was put into operation. For this research, we will use all dates from 2011 to
2019. From 2010 and 2020 there is no full year of data available and we will therefore exclude
these data.
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2.2.2. DESCRIPTION OF DATA

To show what information is present in the data set, we must perform a performance analysis.
Before we go into the analysis, we will discuss the description of the most important attributes
in this subsection. The attributes are grouped and the groups are explained. In this phase of
the research, we have excluded undesired attributes from the data set.

Object
A new database entry is started with the selection of the traffic control system that must
be maintained. Such a system is also known as an object. Information about the object
is collected in the Object List, one of the extractions from the ERP system. The Object
List contains the unique object code (e.g. OBJ170000002), the service location code (e.g.
SLC000001), an address or mile marker code (e.g. A009 058.4), and the service contract
number in which the maintenance requirements are collected (e.g. SCN70100038).

Service Order
When a new Service Order is created, the database entry automatically gets a unique code
which represents a maintenance request, for example ’SOC17018000001’. All other attributes
that are relevant to the maintenance request, such as contract and customer information,
timestamps, and maintenance reports are linked to this code. The code provides information
on the maintenance type (e.g. SOC: Service Order Corrective), the department code (e.g.
170), the year which the entry is created (e.g. 2018), and the yearly entry number (Figure 2.3).

Figure 2.3: Service Order Number

Location
Each object has one location, but one location can house multiple objects. Therefore, the
location has a unique code as well (e.g. SLC000001). Relevant information about the location
is linked to this code, such as an address or mile marker code and a description of the location.
A location description shows what type of objects are available at the location.

Problem description, cause, and solution
Three attributes, the problem description, cause, and solution, are directly related to
the maintenance job. These attributes are text fields and entered by the Service Desk
(description) or the Field Engineer (cause and solution). The text fields describe what the
customer observed, how the problem was caused, and how it was solved by the Field Engineer.

Reference point
The changes in the maintenance logs are recorded with reference points. These points are
date- and timestamps. A part of the points are entered manually, which represent the following
moments in time: maintenance request received, order entered in ERP system, start and end
of the maintenance job, and order closed. The other reference points are automatic entries,
which are connected to the order status. This can be Open, In Process, Technically Finished,
Administratively Finished, and Cancelled. When the status changes, the system logs the time.

Spare part
Information on replacement parts is collected in the Service- and Maintenance Entry List,
another extraction from The ERP system. This file collects per Service Order which costs
are linked to what Service Order. This include the 12NC number of a replacement part (e.g.
N9586 149 44200).
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2.3. COMPANY PERFORMANCE

With the business and data set understood, we can continue with the current performance of
the company. The performance is based on an analysis of the available data set. As we have
defined in the problem cluster (section 1.2), there is a lack of knowledge on how maintenance
is executed and what information is in the maintenance logs. Moreover, the current strategy
is not based on actual failure behaviour of the traffic control systems. In this section we will
discuss the performance parameters that provide insight in what part of the maintenance
strategy lacks performance. From the problem cluster, we can deduce a lack of performance
to a lack of knowledge, which therefore must be further researched.

The performance analysis is executed to find an improvement potential which we can focus on
in our literature review in chapter 3. Doing this will direct the problem solving method towards
this potential. We will start with the discussion on a high level, only considering corrective and
preventive maintenance. Next, we will discuss the Service Orders which could not be finished
in one attempt (i.e. one visit to the traffic control system). After that, we will compare the
intersection and highway systems. Finally we discuss the spare parts and make a comparison
between the system groups and maintenance types based on the spare parts.

Preventive and corrective maintenance
As mentioned in section 2.1.3, the company’s maintenance strategy is based on preventive
and corrective maintenance. As preventive maintenance is part of a service contract, it is in
general a profitable maintenance activity. Corrective maintenance on the other hand comes
with penalty fees when contractual agreements are not fulfilled. Therefore, the focus is to
keep all systems running while performing as few corrective actions as possible. Figure
2.4 shows us the number of Service Orders per object per year for corrective (SOC) and
preventive (SOP) maintenance. The number of preventive orders per object has grown from
confidential to confidential order per object per year. An increase of preventive maintenance
actions should decrease the number of corrective maintenance actions. However, the number
of corrective orders has grown slightly as well. When we compare the maintenance types as a
ratio of all maintenance activities, an increase of the ratio of preventive maintenance activities
can be observed (see Figure 2.5).

Figure 2.4: Number of service orders per object per year
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Figure 2.5: Ratio corrective vs. preventive maintenance activities per year

Completion of Service Orders
A part of the Service Orders cannot be solved during the first attempt, for example due to the
lack of a good problem solving approach or limited resources. When that happens, a second
visit will be planned. The performance of Figure 2.6 is confidential, but known to the researcher.

Figure 2.6: Percentage of orders that need two or more visits

The performance of Figures 2.7a and 2.7b is confidential, but known to the researcher.
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(a) Order with two attempts (b) Orders with three or more attempts

Figure 2.7: Percentage of orders that need two or more visits - extended

System groups
Zooming into the system groups (i.e. highway and intersection systems), we see a large
difference when we compare corrective and preventive maintenance as a ratio to all
maintenance activities. In Figure 2.8 we can observe that preventive maintenance for highway
systems is only introduced since 2018, with the exception of 26 activities in 2012. The reason
behind the lack of preventive maintenance lies, according to a Senior Field Engineer, in the
simplicity of older highway systems. Preventive maintenance has therefore been chosen to be
ineffective for these older systems. In Figure 2.9 we observe that for intersection systems, the
ratio has been roughly evenly divided since 2014.

When we look at the number of service orders per object per year (Figure 2.10a & 2.10b),
we can observe an increasing trend for both corrective and preventive maintenance activities
on intersection systems. The number of maintenance activities for highway systems remained
roughly unchanged, with the exception of the introduction of preventive maintenance in 2018.

Figure 2.8: Ratio corrective vs. preventive maintenance activities per year for highway
systems
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Figure 2.9: Ratio corrective vs. preventive maintenance activities per year for intersection
systems

(a) Highway systems (b) Intersection systems

Figure 2.10: Number of service orders per object per year per system group

Replacement parts
When we consider the replacement parts that were needed in the last nine years, we can
observe in Figure 2.11a an increasing trend for both highway and intersection systems. From
Figure 2.11b we can observe that almost all replacements have happened during corrective
maintenance. The total number of replacements have more than doubled since 2011, even
though the number of preventive maintenance orders has increased over the years.
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(a) System group (b) Service Order type

Figure 2.11: Number of replacement parts per object per year

2.4. IMPROVEMENT POTENTIAL

In section 2.3, we discussed several performance parameters related to the problem cluster.
These parameters represent how maintenance on traffic control systems has been executed
since 2011 and what potential for improvement is available. In this section, we will identify
this improvement potential, which we will use as a base for our literature review in chapter 3.
Then, we can direct the problem solving method towards an approach that complies with the
improvement potential.

The performance shows several potential improvements. First of all, we have observed an
increase in preventive maintenance activities in Figures 2.4 and 2.5. Figures 2.10a and 2.10b
show that the increase is present for both highway and intersection systems. As preventive
maintenance is a method to reduce overall maintenance costs, the number of corrective
maintenance actions per object should decrease to ensure profitability. However, for the
intersection systems we observe a slight increase in corrective maintenance actions. This
implies a minimal effectiveness or even a redundancy of the current preventive maintenance
strategy.

For the highway systems, the increase is caused by the introduction of preventive maintenance
in 2018 (Figure 2.8). Since 2018, the number of preventive service orders per object per
year increased from confidential to confidential (Figure 2.10a). When a problem is observed
during preventive maintenance, a second visit is planned as corrective maintenance. In
the case of the highway systems, none of the preventive maintenance activities for highway
systems needed a second visit and there have been zero replacement parts installed during
the first visits. The number of corrective service orders per object per year remained roughly
unchanged, which implies a minimal effectiveness or even a redundancy of the current
preventive maintenance strategy. Insight in what type of corrective maintenance activities
where planned and whether the introduction of preventive maintenance had any influence
on the fluctuating numbers would increase the knowledge on how effective preventive
maintenance is for highway systems and whether other types of preventive maintenance could
be more effective.

Second of all, there has been an average of confidential of orders that could not be finished at
first attempt (Figure 2.6). From 2013 to 2014, the percentage of service orders that needed
at least three visits has decreased from confidential to confidential. This sudden decrease
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is likely due to a change in registration of preventive maintenance orders. When we exclude
2011 till 2013, the average second visit rate is confidential. Since 2017 the second visit
rate has increased from confidential to confidential. A part of the increase is caused by
corrective service orders that require at least three visits. Even though the second visit rate is
unlikely to become zero, insight in why the orders could not be finished (e.g. spare parts not
available or problem description incorrect) would create the opportunity to adapt the corrective
maintenance strategy and prevent the second visit rate to increase more.

Third of all, the number of replacement parts needed per object per year has a increasing
trend (Figure 2.11a). Insight in why those replacement parts were needed would increase the
knowledge on the failure behaviour of the replacement parts.

Based on these insights, we can conclude that the improvement potential that is present
requires a better insight in why problems have occurred and how those problems are solved.
This information is available in the form of unstructured text fields. To extract that information
from those fields, we must conduct a literature review on information retrieval from unstructured
data, also known as text mining. Valuable information to retrieve is (1) which problems are
present and how much do they effect the performance, (2) how are these type of problems
solved, and (3) what characteristics does every problem type have.

2.5. CONCLUSIONS

In this chapter, we learned about the company and her strategy for maintenance on traffic
control systems. We also analysed the available data and discussed the potential of these
data. We end this chapter with a number of conclusions. These conclusions form the input for
the literature review in chapter 3.

The problem cluster we have developed (Figure 1.1) shows a need for more knowledge on
why the traffic control systems fail and how the failures are resolved. Also, there is a lack of
knowledge on the information value within the available maintenance logs. The performance
analysis showed an improvement potential on two aspects that comply with the problem cluster.

The first aspect is the execution of preventive maintenance which is observed to be ineffective.
The ineffectiveness comes from the lack of decrease of corrective maintenance actions per
object, that should be a result of the observed increase of preventive maintenance actions.
Therefore, we can conclude that the current maintenance strategy is not successful. To
assess whether this conclusion holds and if another type of preventive maintenance could
be successful, first we must require more knowledge on why the systems fail, if the failures
could be prevented and how failures could be prevented. This information can be obtained
by assessing the problems that have been described in the maintenance logs for corrective
service orders.

The second aspect is the slight increase of maintenance requests since 2017 that cannot be
solved in one attempt (i.e. the second visit rate). The cause of the new increase is unknown.
To adapt the corrective maintenance strategy such that the second visit rate does not increase
even more, first we must require more knowledge on why problems could not be solved at
first try. This information is also described in the maintenance logs for corrective service orders.

Both aspects describe the same knowledge problem: ”What information is available within
maintenance logs for corrective service orders and how can this information be used for new
service orders?” A solution to this knowledge problem is the introduction of a classification
model. This is a model built with historic data (i.e. the maintenance logs), which can be used
to classify new data based on a classification structure. As a structure we will look at how
systems fail and create distinctive groups based on the failure types. Each group has its own
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characteristics, which provide information on the most suitable problem solving approach.
Given a classification model, new data can be classified. This classification can either be used
as a knowledge input for a Field Engineer or as a first step in solving the problem. In either
way, the goal of such a model is to execute maintenance with a more focused approach. This
should lead to fewer redundant visits to an object and shorter visit times, which both lead to
lower maintenance costs.

To create a classification model, first we will consult literature in chapter 3 to increase
our knowledge on information retrieval from unstructured text fields. Next, we will discuss
techniques to create a classification model with such unstructured data. Finally, we will
combine the knowledge from literature to propose a model in chapter 4.
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3. LITERATURE REVIEW

In chapter 2, we identified the need for a literature review on methods for extraction of
information from unstructured data and transformation of this information to a model. The
model should classify the transformed data. Each class has its own combination of quantitative
parameters like resolution times or number of failures per object per year. The purpose of
such a model is to determine the extend to which information retrieval from unstructured data
can help the Service Desk at Dynniq during the decision-making process on how to solve a
maintenance request. In this chapter we will expand our knowledge by answering the second
research question: ”What methods does literature provide for maintenance strategies based
on data about maintenance requests and solutions?”

Extracting information from data and transforming these data into a model is generally known
as ’data mining’. We will start this chapter in section 3.1 with the introduction to this subject.
Next, in section 3.2 we will focus on a specific field of data mining called text mining. Text
mining is about the extraction of information from unstructured text fields. Then, in section 3.3
we will discuss how these structured data can be used to create a classification model. We will
end the chapter with conclusions in section 3.4.

3.1. DATA MINING

Data mining can be defined as the entire process of applying computer-based methodologies
for discovery of knowledge from data (Kantardzic, 2011; Larose, 2005; Shearer, 2000). The
process includes data cleaning, reduction and preparation steps as well as statistical methods
and algorithms for each type of data mining. Due to the comprehensive concept, data mining is
often used without a complete knowledge of what the outcome of the exercise will be and what
steps need to be taken. Kantardzic (2011) defines data mining as an iterative process in which
progress is defined by discovery, through either automatic or manual methods. In this literature
review, we focus on the methods for (semi-) automatic knowledge discovery from unstructured
data.

3.1.1. DATA MINING ROOTS

Data mining has its roots in multiple disciplines and with the search for new methods in the
core of the data mining philosophy, it has transformed with every new theory or application
that is added to its domain (Kantardzic, 2011). Many frameworks for the application of data
mining have been developed over the years, such as CRISP-DM, the methodology that we
have used to structure this research. Although every method has its own focus, Rogalewicz
and Sika (2016) have defined three main steps which are at the core of any data mining project:
(1) pre-processing, the preparation of raw data such that the data is ready for calculations,
visualizations, and transformations, (2) main-processing, the build of a model based on
calculation and transformations, and (3) post-processing, the evaluation and deployment of
the model.

3.1.2. DATA MINING CONCEPTS

Data mining concepts like classification and clustering are often incorrectly used or mixed up
(Kantardzic, 2011; Shearer, 2000). To address the concepts correctly, we use the concepts
that Shearer (2000) has defined as data mining problems. These concepts describe the level
of detail which is requested from the data mining exercise. Each concept comes with a set of
methods to approach the problem. For this research we follow the five concepts as defined by
(Shearer, 2000).
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Concept 1 - Data description and summarization
At the start of a data mining process, the precise outcome is often unknown. Also, the data is
often incomplete, unclear, or its origin is unknown. Therefore, the first step in understanding
the data is to describe the data and summarize what the value of the data might be. Having
a basic understanding of the how the data can be transformed narrows the scope of the
process. Description and summarization often comes with simple descriptive statistical
and visualization techniques. Often, when data have never been used for optimization of
a company’s processes, this first concept creates enough insight for a board to align their
business goals and create a profitable strategy.

Concept 2 - Segmentation
Segmentation is a concept close to data summarization. Segmentation aims at the separation
of meaningful subgroups within the data. These subgroups can be related more easily
to business questions than a full data set. Segmentation is often a first step towards
classification, but can be used as a single concept, for example when only a part of the data
needs to be visualized. In this research, we have used segmentation to group the data for the
company performance analysis in section 2.3.

Concept 3 - Classification
Classification differs from segmentation in the sense that it assumes that there is a set of
objects characterized by some attributes that belong to different classes. For example, the
attribute number of preventive maintenance orders can be a characteristic for both electric
failures and mechanical failures. With classification, the objective is to build a classification
model. The model can use either manual, semi-automatic or automatic methods. A new data
entry will be assigned to a class via a set of rules. Examples of classification techniques
are: decision trees, rule-based classifiers, support vector machine classifiers, neural network
classifiers and Bayesian classifiers (Aggarwal and Zhai, 2012).

Concept 4 - Prediction
Prediction is very similar to classification. The only difference is that the attributes used
are usually continuous attributes and always have a structured form. Prediction models are
therefore not applicable to text data, which is unstructured. Regression and forecasting are
examples of methods that can be used for prediction (Kantardzic, 2011).

Concept 5 - Dependency Analysis
A dependency analysis, which is also only applicable to continuous attributes, is defined by
models that describe significant dependencies between data items or events. Such an analysis
is based on the combination of predictions from different items and can be used to predict the
value of an item, given information of other items. Dependency analyses are seldom significant
in large data sets due to the many influences that overlay each other. Therefore, the method is
often combined with segmentation to focus the analysis on a smaller data set.

3.1.3. CONCLUSIONS

In this research, we will focus on the concept of classification. Shearer (2000) recommends to
take one step at a time in improving data mining models within a company. Dynniq is currently
not using any models for data mining, but the data is collected such that a proper description
of the data can be made and the data can be easily segmented. Therefore, the next step is
a classification model. Prediction and dependency analysis are concepts for future projects
which involve the use of continuous attributes from the dataset.

In the next section we will look at the data mining field called text mining. Text mining answers
the question on how to extract information from unstructured text data. After the introduction of
text mining, we will dive into classification methods that use text data as an input for the model.
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3.2. TEXT MINING

Text mining is an expertise within the field of data mining (Kantardzic, 2011; Larose, 2005).
Kantardzic (2011) presents text mining as a conceptual framework with two phases: text
refining and knowledge distillation (Figure 3.1). The first step, text refining, transforms
unstructured text in a chosen intermediate form (IF). This IF can for example be the extract
of keywords from the original text. The IF is a cleaned, structured form of the original text
field. The second step, knowledge distillation, deduces patterns or knowledge from an IF. Text
mining on its own results in a cleaned, structured form of the text data, which can be used in
two ways. The first way is to use data for document organization, visualization, and navigation.
The second way is to use data for text-analysis functions like summarization, clustering or
classification. In this research, we will focus on the classification of unstructured data.

Even though knowledge can be distilled from data fields, text mining only looks at the presence
of words. When a word or group of words is present in a text, the text gets a certain value. The
more a word or group of words is present in a text, the stronger the influence of that word or
group of words is on the value of a text. A field close to text mining is called Natural Language
Processing (NLP). NLP comprehends the ability to combine complex linguistical aspects, like
recognizing semantic patterns, relationships and human emotion in both text and speech. So,
where NLP looks at meaning and relationships in text, text mining looks at the presence of
words.

Figure 3.1: Text mining as a framework

Kantardzic (2011) states that studies from 2011 have indicated that 80% of a company’s
information is contained in text documents. And as the most natural form of storing information
is text, text mining is believed to have a commercial potential even higher than that of traditional
data mining with structured data. Recent practical applications of text mining are known from a
wide range of fields such as health care (Sen et al., 2019), maintenance (Edwards et al., 2008;
Wei et al., 2017), online purchasing (Reshmy and Paulraj, 2015), and smart city innovations
(Tan et al., 2015).

In the remainder of this section, we will focus on what Kantardzic (2011) refers to as the two
most commonly used models for text mining applications, the Bag of Words (BoW) model and
the Vector Space Model (VSM).
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3.2.1. BAG OF WORDS MODEL

The first computerized model for text mining was the ’Bag of Words’ (BoW) model developed
by Salton and McGill (1983). The model is assumed to be developed in the early 70’s, but
has not been published until 1983. The BoW model is developed to compare texts such as
documents or sentences. The model counts the number of times each word is present in the
text and adds these numbers to a ’bag’. Beforehand, words are often transformed to the stem
of the word (e.g. ”failed” becomes ”fail”, ”switched” becomes ”switch”), which is the basic form
used as a dictionary entry. When a certain BoW is present in two separate documents, it is
assumed that these documents are of a similar context.

As an example we can use a simple sentence: ”System failed, system is switched off”. We will
use this example more often throughout the report. The example is in English, even though
the data set is in Dutch. We use the English example to improve readability. This sentence
is transformed to a list of words in the stemmed form: (”system”, ”fail”, ”system”, ”is”, ”switch”,
”off”). Then, a BoW is created where the words are counted:

BoW1 : {”system” : 2, ”fail” : 1, ”is” : 1, ”switch” : 1, ”off” : 1}

In a BoW model, the order of words is non-specific, but often the BoWs are being linked to a
full list of words (i.e. a vocabulary) with a specific order. This creates the option to shorten the
lists into a numerical form. Considering only the aforementioned words, the BoW becomes:

BoW1 : {2, 1, 1, 1, 1}

The numerical form of the BoW model can be used to find information such as the number of
times a certain combination of words is used in a multiplicity of documents or sentences.

3.2.2. VECTOR SPACE MODEL

The BoW model was quickly extended by Salton et al. (1975) into the Vector Space Model
(VSM). VSM is based on the BoW model, but considers the use of a continuous scale instead
of the discrete form of a BoW. This provides the option of partial matching (e.g. a document has
a 60% correlation with a predetermined group) and ranking documents on relevance to a target
value (e.g. ranking on correlation). VSM considers documents as vectors in a t-dimensional
space. Each document d consists of a group of terms t. Each term can be a single word or
a group of consecutive words. Terms are created after the text is cleaned from grammatical
mistakes and stop words. Then, usually an occurrence filter is used to ensure the model is
created only with popular terms, which are likely to be used again in new data.

Figure 3.2: Three-dimensional vector space representation
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With Figure 3.2, Salton et al. (1975) proposed a visualisation of a 3-dimensional space, which
considers document vectors (D1, D2, D3) of three different terms (T1, T2, T3). A vector in this
space is defined by the terms and their term weight. The general vector equation is defined as
follows:

vd = [t1,d, t2,d, ..., tT,d] (3.1)

where tt,d is the term weight of term t in document d. The term weight can be: (1) a binary
value indicating only the presence of a term, (2) a term frequency value indicating the number
of times a term is present in the assessed document, or (3) a Term Frequency × Inverse
Document Frequency value (TF×IDF), which is a term weight that considers all documents
assessed as a global parameter and is according to Beel et al. (2016) used in 83 % of text-
based recommender systems. The TF×IDF value is determined as follows:

tt,d = TFt,d × log
|D|

|d′ ∈ D|t ∈ d′|
(3.2)

where TFt,d is the term frequency of term t in document d and log |D|
|d′∈D|t∈d′| is the inverse

document frequency with |D| being the total number of documents and |d′ ∈ D|t ∈ d′| being
the number of documents containing term t. As the number of document containing term
t can never be higher than the total number of documents, the logarithm will be taken over
a value larger or equal to one and therefore can never take a negative value. A high term
weight correlates to a term with a high frequency and a low number of documents that hold
the term. In other words, the term is present often in a few documents, but never present in
the other documents. This creates a highly unique feature of the documents that hold the term.

For example, the first word from the aforementioned example ”System failed, system is
switched off” is ”System”. If this word occurs twice in a document, the Term Frequency is two.
If that word occurs in no other document and we have a total of five documents, the Inverse
Document Frequency becomes log(51) = 0.699. The TF×IDF value becomes 2×0.699 = 1.398.
For the Term Frequency we can also use the relative frequency instead of the absolute value.
Then we compare the occurrence of a word and divide it by the total number of words in the
document.

With this VSM method, document are considered to be similar when the document vectors are
close together in the vector space. Ideally, clear groups are formed within the vector space,
which indicates a clear division between document types.

3.2.3. CONCLUSIONS

Most algorithms used for information retrieval from unstructured text data are either based
on the BoW or the VSM approach. Both methods transform textual data into embedded
solutions. The methods require data that have already been cleaned from linguistical errors
like grammatical mistakes. The outputs of the BoW and VSM approaches are a structured
representation of text and can be used as input for a classification model. Often, the BoW and
VSM approaches are built into the classification algorithm. In the next section, we will discuss
such classification algorithms that we will be using in this research.
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3.3. CLASSIFICATION MODEL

As discussed in section 3.1, the concept that is most suitable to the available dataset is
classification (Shearer, 2000). Aggarwal and Zhai (2012) define the design of a classification
model as a five-step plan: (1) creation of classes, (2) assigning classes to a training (data) set,
(3) designing a model, (4) training the model with the training set, and (5) validating the model
with a validation set. In this research, we will use a supervised learning method to create the
classes of the classification model. In a supervised learning method, the classes are based on
a theoretical structure rather than created by the model itself. In this research we will base the
structure on types of failure, also known as failure modes. The created classes then must be
linked to a training set. This set will be used by the classification algorithm to learn the value of
a class. This step is essential because, as mentioned in section 3.2, words have no meaning
in text mining.

3.3.1. FAILURE MODES

First, we will discuss the theory on failure modes. We will use this theory to create the classes
for the classification model, which we will discuss further in chapter 4. As we concluded in
chapter 2, the available unstructured data is a description of why a system has failed and how
the failure is resolved. In general, a failure occurs when a load on a system is higher than its
load-carrying capacity (Figure 3.3). Tinga (2013) defines a failure as reaching such a state
that the intended function of the part or system can no longer be fulfilled. This does not always
mean a physical failure, like fracture or melting. Tinga (2013) also defines a clear distinction
between a failure mode and a failure mechanism. A failure mode is the manner in which
a system or component functionally fails, a failure mechanism is the physical or chemical
process or mechanism yielding degradation of the component and ultimately leading to the
physical failure.

Next to physical failures, problems are often caused by usage (Figure 3.3, secondary load).
Human errors or wrong procedures can increase the total load to a higher state than the load-
carrying capacity. Failure modes are often used in reliability related analyses like an Failure
Mode Effects and (Criticality) Analysis (FME(C)A) or a Root Cause Analysis (RCA).

Figure 3.3: Schematic representation between load and load-carrying capacity
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Failure mechanisms as such are not described in the available maintenance log, because a
failure mechanism often cannot be observed with a simple investigation. Therefore, we will
look only at the failure modes. Failure modes can have different levels of hierarchy, often
based on the system’s breakdown structure. For example, a car can have the failure mode
’non-working engine’, the engine then can have a failure mode ’broken crankshaft’ and the
crankshaft can have the failure mode ’worn-out linkage’. For this research, we will focus on the
failure modes that we can deduce from the text data using the BoW approach. As mentioned
in chapter 2, new data will be assigned to a class (i.e. a failure mode) and this class has its
own characteristics. In this way the classification model will help a Field Engineer to define a
more focussed problem solving approach.

3.3.2. CLASSIFICATION TECHNIQUES

To design the classification model, we will compare multiple classification methods. The most
commonly known types of classification methods, as described by Aggarwal and Zhai (2012),
are decision trees, rule-based classifiers, support vector machines, neural networks, and
Bayesian classifiers. Decision trees and rule-based classifiers are both based on decision
rules and work best in a hierarchical classification structure (Edwards et al., 2008). These
classifiers are in general hard versions of classifiers. As Aggarwal and Zhai (2012) explain,
in the hard version of the classification problem, a particular label (e.g. electrical failure) is
explicitly assigned to the instance, whereas in the soft version of the classification problem, a
probability value is assigned to the instance (e.g. 60% electrical failure, 40% software failure).
Hard classifiers can become soft when multiple data entries are used. This is the case for text
data with at least two words. For example, the earlier used sentence ”System failed, system
is switched off” could have one word that describes an electrical failure (e.g. ”failed”) and two
others that describe a software failure (e.g. ”switched off”). In this case, the sentence has a
partial match with each of the two classes.

Support vector machines (SVMs), neural networks and Bayesian classifiers are all soft
classifiers. Also, a hierarchical classification structure is not applicable. SVMs and Bayesian
classifiers are easier to implement than neural networks due to the requirement of a smaller
training- and validation set. Neural networks require more training, but have also proven to be
more accurate for text classification purposes (Aggarwal and Zhai, 2012; Wei et al., 2017).

For this research, we have chosen the classifiers based on the following assumptions:
(1) the research is an exploratory research on how to retrieve knowledge from a dataset,
(2) algorithms for the classifiers must be available within a free software solution, and (3)
the classification structure (i.e. the created structure of classes) is based on a theoretical
foundation (section 3.3.1). These assumptions create the need for a conceptual classification
model which proofs whether information is available within the dataset and what the value of
this information is. With this in mind, two types of classifiers, the decision tree and the SVM are
most suitable. We have chosen these classifiers because both have a low threshold for training
new models and the classifiers are build on different methodologies. Decision trees are based
on the BoW model and classify documents one by one according to a consecutive set of
rules. SVM classifiers are based on the VSM and look for a significant difference between
terms in a large group of documents. We add a third classifier, the neural network, because
of its high performance potential. In practice, most classification algorithms are compared
on three parameters: the speed and accuracy of the algorithm and whether the algorithm
is applicable to small data sets (Aggarwal and Zhai, 2012; Kantardzic, 2011). We collected
scores for the defined parameters in Table 3.1 given theory (Kantardzic, 2011) and practical
applications (Aggarwal and Zhai, 2012; Edwards et al., 2008; Sen et al., 2019; Wei et al., 2017).

In the remainder of this chapter we will address the algorithms that we will use in our model
design in chapter 4.
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Table 3.1: Overview of available classifiers for text classification

Document type Speed of the
algorithm

Small training
set applicable

Accuracy of
the algorithm

Decision Tree ++ ++ +

Rule-based ++ ++ +/-

SVM + ++ +

Bayesian + ++ +/-

Neural Network - - +/- ++

Decision tree classifier - C4.5

The decision tree classifier is known as the most widely used logical method for producing
classifiers from data (Kantardzic, 2011; Aggarwal and Zhai, 2012). A decision tree classifier
uses a hierarchical model for supervised learning to find a local optimum through decision
nodes with test functions, also known as test nodes (Figure 3.4). Aggarwal and Zhai (2012)
state that most decision tree algorithms are variations of the ID3, C4.5 and C5 algorithms.
For this research, we will use the C4.5 algorithm, which is the most advanced version that is
available in free software.

Figure 3.4: Decision tree framework

The C4.5 algorithm is developed by Quinlan (1993), who also developed the ID3 algorithm
(Quinlan and Rivest, 1989), the predecessor of C4.5. The main extension of the new algorithm
is the use of the stemmed form of words (e.g. ”failed” becomes ”fail”, ”switched” becomes
”switch”) instead of all word variations. C4.5 uses the concept of normalized information gain
to decide which downstream branch is most suitable to the information, also known as Gain
ratio. The gain is determined by finding the difference in information entropy between the
current node and the possible nodes downstream. Information entropy can be defined as the
degree of disorder in a spatial area. The goal is to find a downstream node with the lowest
possible entropy. Nodes have a high entropy if no or a partial match (i.e. a high disorder) is
present. For instance, when a document that consists of ten terms has a match on three of the
terms in node A and five of the terms in node B, the match with node B is better and therefore
the entropy is lower. The information gain towards node B will be higher as we are looking
for the lowest possible entropy value. An alternative to the information gain is the Gini index.
The Gini index looks for the probability of a sample being misclassified if we randomly pick a
label regarding the distribution in a branch. The two approaches are in fact very similar and
according to Raileanu and Stoffel (2004), they only disagree 2% of the time.
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The root or top of the tree is simply the fact that a failure has occurred. Downstream is a set
of nodes that divide all possible words into groups that belong to a certain high level failure
mode, for example ’electrical failure’ or ’mechanical failure’. Even more downstream the group
’electrical failure’ could be split into groups like ’failed wire’ or ’failed module’. Splitting all
available terms is done by a decision tree learner. The learner uses a training set of which
the classes are known. The learner will then create a decision tree such that each instance
in the training set corresponds with a class. The first node in a subtree that correlates well
enough with a certain class is called a leaf node (see Figure 3.4). This node is the final,
most downstream node of a subtree. The leaf nodes are found by a technique called pruning,
which can be defined as reducing the size of decision trees by removing sections of the tree
that provide little power to the classification of instances (Aggarwal and Zhai, 2012). Pruning
is used to prevent over- or under fitting, which both lead to a difference in class distribution
between data sets. Pruning can be done by holding out a part of the data as a separate
training set. When the class distribution of the training set for pruning does not correspond
with the class distribution of the training set for decision tree building, the leaf node is pruned.

When the steps are executed, the decision tree model must be validated by a validation set.
The validation set is run through the model and each instance is classified. The outcome
is compared to a manual classification of the validation set and a score is determined. The
score is usually the percentage of instances that are assigned to the wrong classes (i.e.
misclassification) or the right classes (i.e. accuracy).

SVM Classifier - Sequential Minimal Optimization

The main principle of SVM classifiers is to determine separators in a multidimensional search
space, which can best separate the different classes (Aggarwal and Zhai, 2012). Each
document forms a data point in the search space. The location of the data point is given
as a vector (recall section 3.2.2). The separators, which are also vectors, form boundaries
between data points which leads to the formation of groups of data points, for example the
circles and crosses in Figure 3.5. Each group corresponds with a class label. Separators are
also known as decision boundaries. An optimal separator has the largest normal distance to
any of the data points in the search space. The advantage of a large normal distance, which
can be seen as a margin around the separator, is that the separator is still valid when small
changes in the data set occur. This increases the feasibility of new data sets into the model. As
an example, in Figure 3.5, three different separators are shown. Separator A has the largest
normal distance to any data point and is therefore the most optimal separator. Separator A can
be optimized by shifting (B) and rotating (C).

Figure 3.5: SVM visualization with separators A, B, and C
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Finding the optimal separator is an optimization problem called a Quadratic Programming (QP)
problem. A commonly used SVM algorithm that solves the QP problem is the Sequential
Minimal Optimization (SMO) algorithm developed by Platt (1999). SMO simplifies the QP
problem to a multiple of two-dimensional problems, such as Figure 3.6. The goal of SMO
is to find the vector that describes the optimal separator. To do so, first we must find the vector
that describes the minimal distance between two data sets of different classes. The optimal
separator is the perpendicular to that vector. A perpendicular of two vectors can be described
as follows:

~w • ~s = ‖~w‖ ‖~s‖ cos 90 deg (3.3)

with ~s being the separator and ~w being the vector that describes the minimal distance between
two data sets of different classes. As cos 90 deg is equal to zero, the equation becomes:

~w • ~s = 0 (3.4)

The vector that describes the minimal distance between two data sets of different classes can
be found by solving the following minimization problem:

min
~w
‖~w‖2 = min

α
‖h+ − h−‖2 = min

α
‖
∑
d∈+

αd~d−
∑
d∈−

αd~d‖2 (3.5)

subject to:

αd ≥ 0 (3.6)∑
d∈+

αd =
∑
d∈−

αd = 1 (3.7)

where ~w is the weight vector that describes the minimal distance between two data sets of
different classes. This can also be described as the distance between data points h+ and
h−. These points are located on the edge of the positive and negative polytopes, respectively.
A polytope is the area in which all data points of a single class are located. A polytope is
always convex, meaning that any two data point in the polytope can be connected with a
straight line without leaving the area. In Figure 3.6, the green area is the positive polytope
and the blue area the negative polytope. Each point in the polytope, for example x1 in the
green area consists of a combination of the corner points of that polytope. So is x1 equal to
1
2d1 +

1
2d2. Furthermore, αd are the Lagrange multipliers, which are used to find the closest

minimal distance and the sum of all Lagrange multipliers are always equal to one. In the
case of x1, we have two Lagrange multiplier, which are both equal to 1

2 . Finally, vector ~d
is the document vector that represents a data entry with term weights for each term in its vector.

The SMO algorithm starts its calculation in the centroid of the polytope. That point has a
relative distance to each corner point, for example 1/3 to each of three corners. This relative
distance is the Lagrange multiplier αd and the corner point is the document vector ~d. Two of
the Lagrange multipliers are chosen at random. The multipliers are changed, holding equality
constraint 3.7 intact. The best possible combination is chosen for which the weight vector ~w is
minimized the most. These values are set and a new pair of multipliers is chosen. When an
optimal separator is found, the algorithm stops. Because of the large number of combinations
for the two multipliers, simple heuristics are often used to find an optimum between α1 and α2

and decrease the calculation time. Keerthi et al. (2001) state that SMO is often much faster and
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has better scaling options than other SVM algorithms. SMO is also much easier to implement
due to the choice of either linear or non-linear separators. Keerthi et al. (2001) have improved
the SMO algorithm by increasing the algorithm’s efficiency even more.

Figure 3.6: SVM visualization with positive polytope (green), negative polytope (blue) and
margin (red)

In some data sets, the data points have so much overlap that the data set is evidently
inseparable. When this occurs, non-linear separators are required. The calculation of these
separators can be simplified by the use of a kernel function. This function is a method of
using linear classifiers to solve a non-linear problem. In other words, the kernel function is
a shortcut to do certain calculations faster which otherwise would involve computations in a
higher dimensional space. Many kernel types are available, each with their own applicability to
mathematical problems.

Figure 3.7: Transformation of a two-dimensional space into a three-dimensional space by use
of a kernel

To illustrate the function of a kernel, we can use Figure 3.7. The Figure shows a simple way to
separate the red squares from the green circles. We just add a third dimension to the dataset.
It is also possible that a fourth, fifth or higher dimension is required to create such a linear
separator. This transformation can be expressed by the following equation:

K(x, y) = φ(x) • φ(y) = φ(x)Tφ(y) (3.8)

where K(x, y) is the kernel and x and y are n-dimensional inputs (i.e. the document vectors). φ
is a n×m dimensional space, with m being the required dimension for separation (e.g. the third
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dimension in Figure 3.7). Normally a function like φ(x)Tφ(y) requires us to first calculate φ(x)
and φ(y) and then calculate the dot product of the functions. This can be simplified by using a
corresponding kernel. As an example, we can take the following two-dimensional vectors:

x = (x1, x2)
T (3.9)

y = (y1, y2)
T (3.10)

Lets say a linear separator is possible in the fourth dimension (i.e. m = 4), then both φ(x) and
φ(y) get four dimensions. Equation 3.8 becomes:

K(x, y) = (x21, x1x2, x2x1, x
2
2)
T (y21, y1y2, y2y1, y

2
2) (3.11)

This equation can be simplified to a two-dimensional form, the kernel, which reaches the same
results:

K(x, y) = (xT y)2 (3.12)

The existence of this simplified form is called the kernel trick. See appendix A for a numerical
example of the calculation. In this research we will use the available kernels in the software
and evaluate the performance of each of these kernels. Performance can be low if a kernel
function is not able to separate all data points correctly.

Neural network - Artificial Neural Network

The third algorithm is a neural network. Neural networks come in many shapes and forms
(van Veen, 2017). For this research we will focus on a simple Artificial Neural Network (ANN).
ANNs are based on the function of the human brain. In the human brain, billions of neurons are
interconnected and form a network. Each neuron holds some information, which is influenced
by all neurons that are connected to this first neuron. A neural network is similar, but often
presented in a form that computers understand. Figure 3.8 shows an input and output layer,
which are the information that is provided by the user and result from the model, respectively.
In between these layers is a hidden layer. Here, the information from the input is translated by
some mathematical functions to a proper output. This form of neural networks are called feed
forward models. This means that information can only go from the input towards the output
(i.e. from left to right).

Figure 3.8: Visualisation of an ANN with one hidden layer
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The transformation of the input values within the hidden layer follows three steps (Figure 3.9).
In the first step, the input values (x1, x2, x3) are multiplied by the assigned weights (w1, w2, w3).
The weights are the values that are altered during the optimization of the model. At the start of
building the model, the weights are chosen at random. This is only done in the first iteration. In
the second step, the multiplications are added (x1w1+x2w2+ ...). At this point, the summation
can be altered by a predetermined bias, which is added to the summation. This is a user
determined value that influences the performance of the model. The bias is often used for
optimization, although the model can work without a bias. It can only be chosen ones, before
the model is built. After summing up the input values, the summation is often changed to a
value between 0 and 1. This third step is called the activation function. The most common
activation function is the sigmoid function, which has the following equation:

sig(t) =
1

1 + e−t
(3.13)

where t is the sum of all weights supporting a neuron in the hidden layer.

Figure 3.9: Visualisation of the calculations in the hidden layer of an ANN

With these three steps, the first iteration of the neural network is finished and we have an
output value. This output value is usually not equal to the actual value that is predetermined
and therefore it must be optimized. The optimization method that is used most often is called
back-propagation. This method is originally developed by Rumelhart and McClelland (1986).
For our research, we will take the back-propagation algorithm as a black box as we cannot
adjust the parameters of this function. A full description of the back-propagation algorithm
used in this research is developed by Riedmiller and Braun (1993) and is called RPROP, which
stand for ’Resilient Propagation’. Back-propagation is a method that looks at the difference
between the output of the model and the predetermined value. The difference is called the
error. When we use this error and inverse the steps from Figure 3.9, we are provided with
the error of the hidden layer and the error of the input value. Knowing these errors, we know
which connections in the neural network provide the highest error. The weights of these
connections are adjusted and the three steps from Figure 3.9 are recalculated. Repeating the
back-propagation method multiple times will decrease the error and increase the accuracy of
the model.

In the case of our research, we are using text data. To be able to do the calculations mentioned,
we use document vectors (recall section 3.2.2) as input values and classes (i.e. failure modes)
as output values. What the hidden layer does is to find appropriate weights such that each
document vector has a certain influence on the outcome. For example, when a sentence has a
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clear description of an electrical failure, the weight from that input sentence towards the output
label ‘electrical failure’ will be high.

3.3.3. CONCLUSIONS

We have proposed three classification algorithms that are applicable to unstructured data
and comply with the assumptions: All algorithms are available in free software solutions and
relatively easy to implement in new models. All algorithms approach the classification issue
differently, which will be compared in the validation of the classification model (chapter 5).

3.4. CONCLUSIONS

In this chapter, we have performed a literature review to answer the second research question:
”What methods does literature provide for maintenance strategies based on data about
maintenance requests and solutions?” We end this chapter with a number of conclusions
regarding the research question. These conclusions form the input for the model design in
chapter 4.

In the literature review, we discussed methods for the extraction of information from
unstructured text fields from maintenance logs and the transformation of that information to a
model. We have learned that the extraction of data, called data mining, can be executed in
five levels of detail. Reflecting those levels of detail on the available data set and the problem
cluster, we can conclude that the concept of classification is most applicable for this research.

The data on which we will classify Service Orders are unstructured text data. The field of data
mining that resolves the extraction of information from unstructured data is called text mining.
We can conclude that most text mining methods are a variation of the Bag of Words (BoW)
or Vector Space Model (VSM) approaches. Given these approaches, we have concluded that
the most applicable classification algorithms are the decision tree algorithm ’C4.5’, which is
based on the BoW model, the SVM algorithm ’Sequential Minimal Optimization (SMO)’, which
is based on the VSM, and the ANN algorithm ’Resilient Propagation’ (RPROP), which is also
based on the VSM. We have chosen two out of three algorithms (C4.5 and SMO) because of
their ease of implementation in newly introduced models, their availability in free software and
the option to use a theoretical foundation for the creation of classes. We added the RPROP
algorithm because of its high performance potential. The theoretical foundation that will be
used is the theory of failure modes. This theory complies with the available text data and is
possible to implement in a hierarchical form.

The literature review has provided the required theory and algorithms to create a classification
model. What the literature review cannot provide is a vocabulary that holds all terms that are
used within the company. Also, an implementation plan is required on how the model can be
used by the company. We will address these queries in the remainder of this research.
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4. MODEL DESIGN

With the theory from the literature review (chapter 3) known, we can discuss the design of our
classification model. In this chapter, we will give answer to the third research question: ”How
can data be modelled to provide guidelines for optimizing the maintenance strategy?”. We start
with a general description of the model in section 4.1 to get a high level understanding of the
model. Next, we will discuss the test and validation sets and the class labels that are assigned
to these sets in section 4.2. Then, we will discuss the model in more detail, starting in section
4.3 with the cleaning of the data set, the selection of terms that will be used in the model, and
transforming the cleaned data into document vectors. Next, in section 4.4 we will explain how
the decision tree, SVM, and ANN algorithms are used to build the text classification model.
After the build of the model, we will discuss the validation of the model in section 4.5 and the
use of the model for new data in section 4.6. We conclude the chapter in section 4.7.

4.1. GENERAL MODEL DESCRIPTION

Each section of this chapter corresponds with a step in the design of the classification model.
The model is designed with the use of Knime Analytics, a data mining tool which is based
on Object Oriented Programming (OOP) and is free to use. The model is designed to use
unstructured text data, transform these data such that it can be used to create a classification
model and verify the model trough a validation set. The output of the model is an accuracy
score, which is the percentage of correctly classified instances. The model consists of two
workflows. In the first workflow (Figures 4.1 and 4.2), the classification models are built and
tested on their accuracy. In the second workflow (Figures 4.3 and 4.4), new data is run through
the models created in workflow A to assign a class to each data entry.

The model is built as a proof of concept, which is the first step towards an automated model
that uses a live connection with the current ERP system Navision. In chapter 6 we will discuss
the required steps towards this fully implemented system.

4.1.1. WORKFLOW A - BUILDING THE CLASSIFICATION MODEL

The first workflow can be split into four steps (Figure 4.1 and 4.2). In the first step (loop
preparation), the unstructured data is read from a CSV file and a list of system types (e.g.
EC-1 or OS-2) is created. The system type corresponding to each data entry is available
in the input file. Then a counter loop is activated, which selects one system type from the
aforementioned list per iteration. Only the data entries that comply with the selected system
type are then run through the loop. The loop will run through steps two (data preparation) and
three (data modelling) and save the created models for each system type separately. These
models can be used later on for new data entries. In the second step (data preparation), the
data is transformed to a form that is readable for the classification algorithms. Here, we clean
the data from grammatical errors and transform them into document vectors (recall section
3.2.2). We also make a selection of terms that are most valuable for the building a classification
model. This step is called feature selection and removes for example stop words (i.e. words
that are used often but have no value) from the text data. The resulting document vectors are
used as input data to create the classification models.
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Figure 4.1: Workflow A - part 1: Building the classification model

The models are built and optimized in step three (data modelling). Here, we partition the data
into a training and validation set, which are used to build and validate the models, respectively.
For testing, a loop is added which can rebuild each model with different random numbers, also
known as seed numbers. The random number is used to randomly partition the data set into
a training and validation set. Performance of the models is tested with the accuracy score.
The model and the accuracy score are saved and the counter loop returns to step two (data
preparation). When the loop is completed, the accuracy results are grouped and visualised in
the fourth step of the workflow (data visualization). One of the visualisations is a scatter plot
with the accuracy scores for all models (three model types SVM, DT, ANN for each system
type). Another visualization is the decision tree view, which shows the decision tree that is built
during each step.

Figure 4.2: Workflow A - part 2: Building the classification model

4.1.2. WORKFLOW B - CLASSIFICATION OF NEW DATA

The second workflow (Figures 4.3 and 4.4) can be split into four steps as well. The first two
steps (loop preparation and data preparation) are similar to the steps from workflow A. Again
a counter loop is started which runs one system type per iteration, but only the system types
present in the new data set are considered. So if only system types EC-1 and OS-2 are present
in the new data set, only two iterations are executed, one for each system type. Then the data
is cleaned and selected the same way as in workflow A.

34



Figure 4.3: Workflow B - part 1: Classification of new data

In step three (data modelling), a dictionary is created. This dictionary holds all terms from
the training, validation, and new data set and is required for the model to classify instances
based on their terms. Recall from section 3.2 that a term can be a word or group of words.
In this model, we only consider single words. The current data set is too small to expand to
groups of words, because groups of words are even more unique than single words and the
chance of terms recurring in new data entries becomes smaller when more unique terms are
used. The workflow then chooses the model that corresponds to the system type of the current
loop iteration and the new data is classified. Finally, in the fourth step (data visualization), the
resulting data set is saved to an excel file for further use in the dashboard (section 4.1.3)

Figure 4.4: Workflow B - part 2: Classification of new data

4.1.3. DASHBOARD

The free version of Knime Analytics does not support the build of a dashboard or report. For
this, we will use Qlik Sense. The output data from workflow B is saved and reopened in the
Qlik Sense environment. Here, the new data is connected to the historic data used in the
performance analysis in chapter 2. The data is connected such that information is shown
based on characteristics of the corresponding system type, object name, or location. Settings
for the level of detail can be chosen and an overview is automatically created. We will elaborate
on this dashboard in chapter 6. A full representation is available in appendix B.

4.2. TRAINING AND VALIDATION SET

The first step in modelling unstructured data is the preparation of the training and validation
sets. In this section, we will first discuss the content of these data and the choices we made
regarding assumptions and concessions for building the models. Next, we will discuss the
labelling of these data with classification labels. The training and validation sets are partitions
of one large data set.
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4.2.1. CONTENT OF THE TRAINING AND VALIDATION SET

As mentioned in the conclusion of chapter 2, the data on which the classification models
are built are unstructured data. In practice, a Field Engineer is presented with a problem,
solves the problem, and then writes a description of the problem, cause, and solution in a
maintenance log. These three text blocks are the core of the training and validation sets. The
sets are extended with a unique number, the Service Order number, to be able to connect
results to the original data entry. In the data set, only corrective service orders (SOCs)
are used because the problem description of preventive service orders (SOPs) is generally
left blank or written as a single expression ’Technical Functional Maintenance’. SOCs that
represent a second or third visit usually have a problem description that is equal to the original
SOC. If this is not the case, the problem description of the last SOC is adapted such that it
holds all available information about the problem. Only the SOCs with a solution are kept in
the data set we only know the actual core problem if the problem has been solved. A second
added parameter is the object name, which describes the type of system that is maintained.
This parameter is added to be able to build separate models for each system type. A full
representation of the input data is shown in Table 4.1.

Table 4.1: Transposed overview of the input data

Service Order No. SOC17018003181

Object Name EC-1 iVRI

Problem Text
iVRI meerdere keren weer uitgevallen, Melding: CPU C ID
= o com fout VRI valt uit op gedoofd, resetten gaat alles op
rood, staat nu op knipperen

Cause Text Connector achterop de PSU is verbrand. Telefonisch
contact gehad met klant

Solution Text Medewerker heeft de PSU vervangen en de installatie
regelt weer.

Class Electrical failure

4.2.2. ASSUMPTIONS AND CONCESSIONS OF THE TRAINING AND VALIDATION SET

The data set is filled with data from 2017 and extended with 2018 or 2019 data if more entries
were required. 2017 is chosen because the performance analysis (section 2.3) showed the
lowest second visit rate in 2017. We can therefore say that 2017 had the most accurate
problem descriptions, assuming that each year the problems were equally difficult and solved
with equal skill. 2018 and 2019 are chosen as extensions instead of for example 2016,
because recent data is more similar to the problem descriptions that are written from this day
forward. Changes in problem descriptions are among others due to change in personnel.
Finally, the data set was filtered such that no empty cells remain and therefore full information
is available.

The data set consists of 500 instances, evenly divided over ten system types (EC-1, EC-2,
etc.). This amount is based on the research from Wei et al. (2017), who use batch sizes of 20
and 50 instances. Other researches (Edwards et al., 2008; Reshmy and Paulraj, 2015; Sen
et al., 2019) prove that a larger data sets result in more accurate models, but we chose this
amount to start with. We will reflect on the size of the data set in chapter 5.

4.2.3. CLASS LABELLING

As mentioned in section 3.3, the classification structure is a list of failure modes that are the
class labels, which can be assigned to data entries. The creation of such a structure is based
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on the variation of words available in the BoW of the training data set and the theory of failure
modes (section 3.3.1). The goal is to create a class division as detailed as possible, without
losing statistical significance on the size of subsets and correlation between the classes. A
high distinction is therefore required. This step is a semi-automatic process which requires
the knowledge of a maintenance expert (i.e. a Field Engineer). Because we are dealing with a
proof of concept and the process of labelling training data is time consuming, the researcher
has labelled the training data. The training data consists of 50 data entries of each of the ten
different system types.

Table 4.2: Overview of possible failure modes used as class labels

Failure mode Description Examples of failures

Electrical failure Failure of electrical components or wires Burned fuse, melted cable sleeve

Mechanical
failure

Failure of mechanical components
Defect push button on VRI, broken
lock

Software failure Error or bug in the software Log error, boot error, bug

External damage Damage caused by an external factor Collision, cable gnawed by animal

Installation fault
/human fault

Fault caused by wrong installation or
repair of the system

Wrong components used, wrong
boot sequence

No failure No failure of the system
Client suspects a failure, but the
system is up and running

The chosen failure modes as shown in Table 4.2 have a high level of distinction. Next to
general failure modes like electrical, mechanical and software failure, the BoW showed
information on installation and/or human failures. Tinga (2013) creates a distinction between
these two failure modes, but the data does not show this distinction well enough. On the
other hand, the two groups together can be distinguished from the other failure types. Another
failure type is external damage, which is caused by an external factor like an animal (e.g. a
mouse who has gnawed through a cable) or a collision. Finally, we added a final option where
no failure is present. This is possible when for example a client’s monitoring system generates
an error, but the traffic control system operates in fact without failure.

4.3. DATA PREPARATION

After completing the test data set, the data was transformed to proper input data on which
a classification model can be built. This transformation includes cleaning the data, selecting
the terms with which are most valuable to build a model on, calculating the term weights and
transforming the text fields into document vectors. These vectors are the input data for building
the classification models.

4.3.1. DATA CLEANING

The data cleaning step uses simple techniques like erasing punctuation, converting all cases
to lower cases and filtering all numbered values from the data (Figure 4.5a). When we recall
the earlier mentioned example ”System failed, system is switched off”, it is transformed to the
form ”system failed system is switched off”.
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(a) Cleaning text data (b) Selecting the most valuable features

Figure 4.5: Cleaning data and selection of the most valuable features

4.3.2. FEATURE SELECTION

After cleaning the data, we filter the words that have no value out of the text fields. This
process is also known as feature selection (Aggarwal and Zhai, 2012). Feature selection
serves two main purposes. First, it makes training and applying a classifier more efficient
by decreasing the size of the effective vocabulary. Second, feature selection often increases
classification accuracy by eliminating irrelevant or noisy features. The goal is to remain with
a small group of features (i.e. terms) that have a high value and are used often. An example
of such a feature is the word ’damage’. This word is almost exclusively used to described the
class label ’external damage’. For this research, we used a stop word filter and a stemming
algorithm (Figure 4.5b). Other selection methods like manual selection and synonym lists can
be added to improve the model’s accuracy, but are left out of this research because of time
restrictions.

For the stop word filter, we used a large filter, which removes words that are used often, but
are unimportant to the meaning of a sentence. We chose a large stop word list, because we
are looking at keywords that represent failure modes. When more sentiment is required in a
model, a smaller stop word list is required that for example does not hold grammatical denials
like ’not’ or ’none’. The used Dutch stop word list, which was not available in the software, is
created by Eikhart (2011) and available in appendix C. After this step, the example sentence
becomes ”system failed system switched off”.

As stemming protocol, we used the Snowball stemming algorithm developed by Porter (2002).
The Dutch version of this algorithm is based on Germanic language rules. This algorithm
searches for common linguistical changes in words, like the use of accents on vowels (e.g.
á, ë or ü) or the use of double letters in plurals (e.g. the Dutch word for bags changes from
’zakken’ to ’zak’). The full algorithm is available in appendix D. The final form of the example
becomes ”system fail system switch off”.

4.3.3. DEFINING TERM WEIGHTS

With the text data cleaned and the proper features selected, we created the term weights
(Figure 4.6). First, the sentences were parsed into single words (i.e. terms) and converted
into a string variable. Next, we calculated the TF×IDF values as term weights using Equation
3.2. As mentioned in section 3.2, term weights determine the placement of instances in
a classification model. The TF×IDF value is used as Kantardzic (2011) states that this is
the most accurate term weight. It considers both the local term frequency in a document
(TF) and the global document frequency compared to the number of documents that contain
the considered term (IDF). The first word from the example, ”system”, occurs twice in the
sentence (i.e. the document), so the Term Frequency is two. If that word occurs in no other
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document and we have a total of five documents, the Inverse Document Frequency becomes
log(51) = 0.699. The TF×IDF value becomes 2 × 0.699 = 1.398. In Figure 4.6, the TF and IFD
values are calculated separately and simply multiplied.

Figure 4.6: Defining term weight TFxIDF

4.3.4. TRANSFORMING DATA TO DOCUMENT VECTORS

The final step of preparing the text data is the conversion of terms into document vectors
(Figure 4.7). The vectors consist of term weights. We have just calculated the term weight of
the term ”system”, which is 1.398. As mentioned earlier, a higher number represents a more
unique term. This must be repeated for each term, creating a list of vectors corresponding with
a set of terms (Table 4.3). In addition, we linked the prepared class labels to the document
vectors and each class label was marked with a colour for future reference. Finally, the
document parameter (i.e. the full text) was removed from the data set as this parameter creates
a distortion in the data modelling step.

Table 4.3: Example of document vectors

system fail switch off etc ...

Vector 1 1.398 etc ... ... ... ...

Vector 2 etc ... ... ... ... ...

etc ... ... ... ... ... ...

Figure 4.7: Creating document vectors
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4.4. CLASSIFICATION ALGORITHMS

Knime Analytics offers complete algorithms for building and validating classification models.
The build of the models is done through a learner node, which uses the document vectors from
the test set as input data. The validation of the models is done through the predictor node,
which uses the document vectors from the validation set and classifies the vectors based on
the model. A scorer node is used to create a confusion matrix and calculate an accuracy score.
In this section, we will successively discuss the decision tree, SVM, and ANN models.

4.4.1. DECISION TREE MODEL - C4.5
The decision tree algorithm we used is the C4.5 algorithm, as is explained in section 3.3. This
is the algorithm on which the decision tree learner node is based. As shown in Figure 4.8, to
train the learner node, first the data is partitioned. We chose a 75/25 percent partition ratio for
the test and validation set, respectively. This ratio has proven to be most reliable in practical
applications (Kantardzic, 2011).

Next, an optimization step is executed to find the optimal parameters of the learner node. Table
4.4 shows the parameters that are changed in the optimization loop. The parameters decide
how the decision tree is built. The first parameter minimum number of records checks in each
node of the tree whether the number of data entries left to split in that node is larger than a
predefined minimum. If that is not the case, the last node becomes the leaf node. The step size
of the values is set to one. The second parameter quality measure looks for either the largest
information gain (Gain ratio) or the lowest chance of misclassification (Gini index). Recall from
section 3.3 that the Gain ratio is determined by the difference in information entropy between
the current node and the possible nodes downstream. Information entropy can be defined
as the degree of disorder in a spatial area. The goal is to find a downstream node with the
lowest possible entropy. The Gini index is the probability of a sample being misclassified if
we randomly pick a label regarding the distribution in a branch. The third parameter pruning
method is used when the decision tree is fully built. This parameter decides whether or not
each branch of the tree holds valuable information. This is done with the Minimal Description
Length (MDL) method. Branches are cut (i.e. pruned) when the information value is low.

Figure 4.8: Building the Decision Tree classification model

The optimization loop uses a brute force method that runs through all possible value
combinations. This is possible due to the low number (56) of combinations, which is the
multiplication of the number of possible values per parameter. The best parameter values
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are saved and the optimal decision tree model is rebuild. The model is also saved as a
Personalized Print Markup Language (PPML) file, which is available for use in the workflow
for new data entries (Workflow B). A PMML file is a generally used file extension for data
models. In parallel, the model is validated with the validation set. Finally the accuracy score
is calculated and the results of all loops (i.e. all system types) are transformed to the required
form of output data. Next to the overall accuracy score, the score per class label is also saved.
This score is called ’recall’. We will use the recall to determine how difficult it is to accurately
classify each failure mode.

Table 4.4: Decision tree tuning parameters

Parameter Values Description

Minimum number
of records

2,...,15
Minimum number of data entries required to
branch a node in the tree

Quality measure
Gain ratio, Gini
index

Measurement method for selecting the best
input feature in each iteration

Pruning method No pruning, MDL
Method for simplifying the decision tree and
preventing over- or underfitting

4.4.2. SVM MODEL - SEQUENTIAL MINIMAL OPTIMIZATION

The SVM algorithm we used is the SMO algorithm, as explained in section 3.3. This is the
algorithm on which the SVM learner node is based. The build of the SVM model is similar
to the decision tree. The only differences are the learner and predictor nodes, which are
now for an SVM model, and the optimization of the SVM learner node. Table 4.5 shows the
parameters that are optimized in this optimization loop. All parameters have a step size of 0.1.

The first and most decisive parameter is the overlapping penalty, also known as the C-
parameters. As explained in section 3.3, the overlapping penalty determines a trade-off
between the linearity of the decision boundaries and the number of misclassified instances.
A high linearity provides a simple model to which many data sets are applicable, but could
resolve in misclassified instances. A high overlapping penalty corresponds with a high linearity.

The second parameter is the type of kernel. The use of a kernel is, as explained in section
3.3, to use linear separators for a non-linear problem. In other words, the kernel function
is a shortcut to do certain calculations faster which otherwise would involve computations in
a higher dimensional space. Knime Analytics support three kernel types. After a series of
tests, the Polynomial kernel proved to be most suitable for our data set. As the name already
explained, this kernel looks for a polynomial function which separates the classes in the search
space. Figure 4.9 shows several forms of the polynomial function.

Figure 4.9: Examples of a polynomial kernel function with different power [d] values
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The equation of the Polynomial kernel is similar to the example kernel (Equation 3.12)
explained in section 3.3:

K(x, y) = (γ(xT y) + b)d (4.1)

where K(x, y) is the kernel and x and y are n-dimensional inputs (i.e. the document vectors).
d is the power, which changes the curvature of the equation. b is the bias, also known as the
offset, which changes the position of the equation. γ is the scaling factor of the equation. x
and y are known values, determined when creating document vectors. Often, the offset b and
scaling factor γ are set to one as tuning just the power d creates a proper separation between
classes. In this research, we have let the optimization loop use a random search method that
chooses up to 500 different value combinations of the overlapping value, power, offset, and
scaling factor (Table 4.5). This is required due to the high number of combinations, which is
the multiplication of the number of possible values per parameter. The ranges of the values are
determined by fixing all but one parameter and observing the influence of the free parameter
on the objective value.

Table 4.5: Support Vector Machine tuning parameters

Parameter Values

Overlapping penalty 1.0, ..., 6.0

Kernel - Polynomial

power 1.0, ..., 3.0

offset 0.1, ..., 2.0

gamma 0.1, ..., 2.0

4.4.3. ANN MODEL - RESILIENT PROPAGATION

The ANN algorithm we used is the RPROP algorithm, as explained in section 3.3. This is the
algorithm on which the ANN learner node is based. The build of the ANN model is just as the
SVM model similar to the decision tree. The only differences are the learner and predictor
nodes, which are now for an ANN model, and the optimization of the ANN learner node. Table
4.6 shows the parameters that are optimized in this optimization loop.

The first parameter is the number of iterations. As explained in section 3.3, a neural network
is iterated to lower the difference between the calculated output value and the actual output
value, also known as the error. The second parameter is the number of neurons in the hidden
layer. Neurons are part of the hidden layer. Each neuron transforms a set of input values to an
influence on the output value. The ranges of the values are determined by fixing one parameter
and observing the influence of the free parameter on the objective value.

Table 4.6: Artificial Neural Network tuning parameters

Parameter Values Step size

Max number of iterations 100, ..., 1000 50

Number of neurons in the hidden layer 10, ..., 100 5
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4.5. MODEL VALIDATION

As described by Law (2015), validation is the process of determining whether a simulation
model is an accurate representation of the system, for the particular objectives of the study. A
simulation model is valid when the accuracy level is higher than a predetermined threshold.
For this research, the accuracy threshold cannot be established as no previous model exists
for the same data set. Therefore, we will not compare the accuracy score with a threshold, but
we will reflect on two studies from literature that are most similar to this research (Edwards
et al., 2008; Wei et al., 2017). Both studies classify text data from malfunction reports.
Edwards et al. (2008) classified on the labels corrective and preventive maintenance. The
constructed decision tree and neural network models had an accuracy of respectively 85% and
83%. The used data set had 842 records. Wei et al. (2017) classified on five failure modes:
mechanical failure, electrical failure, human failure, external environment, and secondary
equipment fault. The proposed model, a Recurring Neural Network (RNN), tested small batch
sizes of 10, 20, and 50 records. The model was able to reach a maximum accuracy of 64%,
which was compared with a threshold value of 50%. We will reflect on these studies with the
accuracy results from our models which consist of a batch size of 50 records per model and
have six failure modes.

In our model, the accuracy score is determined by running a validation set through the model
and scoring the model based on the number of false negative, false positive, true negative,
and true positive classifications. The results are summarized in a confusion matrix and the
accuracy score is calculated as follows:

Accuracy =
Number of true positives

Total number of records in validation set
(4.2)

4.6. NEW DATA CLASSIFICATION

With the classification models built, new data can be classified. As mentioned in section 4.1,
new data runs through workflow B. This workflow is very similar to workflow A. Therefore, in
this section we will only discuss the main differences.

The first difference is the use of a dictionary. To improve the speed of the model we chose to
create a dictionary solely based on the words from the created model and words from the new
data set. The dictionary is a collection of all possible terms. A dictionary is created for each
system type separately and used when the PMML model for this system type is requested.
We can also run larger data sets through the model that are not partitioned on system type,
but for example system group (i.e. highway and intersection systems). Then, the dictionaries
will be larger as well.

The second difference is the use of the predictor node (Figure 4.10). The trained model from
workflow A is called by a PPML reader node. The new data workflow handles each system type
separately and loads the corresponding training model. Then the new data set is classified by
the predictor node and prepared for the data visualization step. Partial classification data is
added to understand how certain a classification is (e.g. 30% of 60%).
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Figure 4.10: New data classification

The third difference is the data visualization. Knime Analytics does not support the build of
a dashboard. Therefore, the result is collected in an Excel file which can be used in the
dashboard made with Qlik Sense. This Excel file holds the parameters Service Order Number,
System Type, Problem Text, Probability class label A, ..., Probability class label F and Assigned
Class.

4.7. CONCLUSIONS

In this chapter, we discussed the design of a classification model, which gives answer to
the third research question: ”How can data be modelled to provide guidelines for optimizing
the maintenance strategy?”. The designed model can be used to assign class labels to
new service orders. The class labels provide information on the possible failure mode. This
information can be used to help a Field Engineer to find a problem solving approach for the
service order.

Next to answering the research question, we can draw some conclusions about the model
based on its design. We made come concessions on the size and quality of the data set and
the way we selected the features. These concessions are made because of time restrictions
and the availability of feature selection methods in Knime Analytics. The concessions will have
a negative influence on the accuracy score, which we will elaborate on in chapter 5.

Also, we excluded the analysis of terms that consist of n-grams like bigram and trigrams. To
include this properly, the test and validation sets for the training model must be extended
significantly because the occurrence of an n-gram decrease when n increases. The added
value of n-grams is unknown, but could be considered as a recommendation.

Finally, the validation of the training model is measured by the accuracy of the classification of
data. The threshold for this accuracy that reflects on how well the model is performing cannot
be objectively determined as there is no known model available that has been used for our
data set. Therefore, the results will be compared to two known studies that are similar to this
research.
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5. MODEL EVALUATION

In this chapter, we will evaluate the designed classification model from chapter 4. Doing so,
we will answer the fourth research question: ”How can the results from the data model be
used to improve the maintenance strategy?”. To answer this question, first, we will evaluate
the model validation results (i.e. the accuracy scores) in section 5.1. Then, in section 5.3 we
will discuss what parts of the model highly influence the accuracy score. Next, in section 5.4
we will discuss the limitations of the model and we will end this chapter with conclusions in
section 5.5.

5.1. MODEL ACCURACY

As mentioned in chapter 4, the performance of the model is defined by the percentage of
correctly classified instances from a validation set based on a model built with a test set. This
is also known as the accuracy score. In this section, first we will discuss the accuracy score
of each system type separately, which is the results of the designed model. Then, we will
compare these results with the same data set, but partitioned on system groups (i.e. highway
and intersection systems) instead of system types. We will repeat this for the data set with all
systems combined. This will give insight in whether the system types are maintained similarly
or not. The goal of this section is to determine which classification algorithm is most accurate,
whether the accuracy score is good, and what the best partition of the data set is.

5.1.1. ACCURACY SCORE - SYSTEM TYPE

We used the full data set consisting of 500 instances as proposed in section 4.2. We
partitioned the data set in ten subsets, defined by the system types (Table 5.1). Each subset
has a different model and therefore a separate accuracy score. The subsets contain data from
2017 which was extended with 2018 and 2019 if the required number of instances (50) was
not reached yet. For each system type a separate SVM, decision tree, and ANN model were
created and validated. Each subset of 50 instances was split into a test and validation set with
a 75/25% partition to 37 and 13 instances, respectively. The partition is done by the method of
stratified sampling, which means the data is split based on the assigned class labels and the
partition ratio. For example, given that ten of the 50 instances are labelled ’electrical failure’,
seven are part of the test set and three are part of the validation set.

Table 5.1: Division of instances - system type partition

Partition Instances Partition Instances

EC-1 50 EC-2.5 iVRI 50

EC-1 iVRI 50 OS-0 50

EC-2 50 OS-2 50

EC-2 iVRi 50 OS-5 50

EC-2.5 50 OS-6 50

To lower the statistical error of the accuracy scores, a total of 40 repeated runs are executed.
This means that each model is build 40 times with a different random number each time. 40
runs is enough to lower the statistical error to less than 5% for each system type. In each run,
the random number (i.e. seed number) for splitting the data set into a test and validation set is
changed. A seed number is a number used to initialize a random number generator. We use
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seed numbers to be able to recreate our results. Each run has an accuracy score of which
we take the average. So, given system type EC-1, 40 runs are executed with seed numbers
1, 2, ..., 40. Each run has an accuracy score (e.g. 50, 55, or 60%) and the average is used
to compare the system types and the classification algorithms with each other. The results
of the runs are collected in Table 5.2. In the lower part of the table, the averages over the
system groups and all systems combined are shown. We will compare these averages with
the results from the second and third test where the data set is partitioned on system groups
and all systems, respectively. The optimal parameters for each model are discussed in section
5.2.

Table 5.2: Accuracy scores per system type for the DT, SVM, and ANN models

System type Accuracy
score DT

Accuracy
score SVM

Accuracy
score ANN

EC-1 53% 58% 58%

EC-1 iVRI 60% 63% 63%

EC-2 39% 58% 62%

EC-2 iVRi 49% 63% 63%

EC-2.5 54% 53% 49%

EC-2.5 iVRI 43% 50% 55%

OS-0 66% 71% 75%

OS-2 68% 69% 68%

OS-5 61% 61% 55%

OS-6 57% 64% 61%

Average Highway systems 63% 66% 65%

Average Intersection systems 50% 57% 58%

Average All systems 55% 61% 61%

We can observe several facts from the results. The first fact is that the ANN and SVM model
have a better average score (61% for both models) over all the system types, followed by the
DT model with 55%. Even though the ranges (i.e. difference between maximum and minimum
scores) of the accuracy scores do fluctuate a lot with 21% for SVM, 26% for ANN, and 29%
for DT, we can observe that the SVM and ANN models perform almost always at least as good
as the DT model. A deviation can be observed for the EC-2.5 and OS-5. The second fact is
that the highway (OS) systems are much easier to predict than the intersection (EC) systems.
The highway systems have an average score of 63, 66, and 65% for the DT, SVM, and ANN
models, respectively. The intersections have a lower average score of 50, 57, and 58% for
the DT, SVM, and ANN models, respectively. The third fact is that the ANN and SVM models
score better than the research from Wei et al. (2017), discussed in section 4.5, which has a
maximum accuracy of 64%. This complies with our expectation as the data sets of our study
and the reference article have the same size and roughly the same number of class labels. To
establish whether the partition on system types provides the best results for this data set, we
will compare the results with two larger partitions, system groups (i.e. highway and intersection
systems) and all systems together.

5.1.2. ACCURACY SCORE - SYSTEM GROUP

For the system groups, we used a partial data set consisting of 400 instances. Of the ten
system types, six are intersection systems and four are highway systems. We used 200

46



instances of each system group, evenly divided over the available system types (Table 5.3)
with a separate score per system group. This creates batch sizes of four times as large as
the test on system types, which should result in a higher accuracy score if the system types in
the groups (e.g. EC-1, ..., EC-2.5 iVRI in the group ’Intersection systems’) have similar failure
modes. In other words, if models on system type level are compatible, they can be combined
to create a larger dataset on system group level.

Table 5.3: Division of instances - system group partition

Partition System types in partition Instances

Intersection
systems

EC-1, EC-1 iVRI, EC-2, EC-2 iVRi, EC-2.5,
EC-2.5 iVRI

200

Highway systems OS-0, OS-2, OS-5, OS-6 200

This data set was run 40 times again. The results are shown in Table 5.4. We can observe
an accuracy score that again shows that the ANN (53%) and SVM (54%) models are more
accurate than the DT model (49%). Also, the accuracy scores are much lower than the
averages taken from the previous test with a partition on system types (Table 5.5). In general,
a larger batch size (i.e. a larger test and validation set) will resolve in a more accurate training
model. In that case, the partition on system groups should have a higher accuracy than the
partition on system types. This is not the case and we can therefore conclude that the division
between system types is too large to combine them as system groups.

Table 5.4: Accuracy scores per system group

System type Accuracy
score DT

Accuracy
score SVM

Accuracy
score ANN

Highway 53% 55% 54%

Intersection 45% 53% 52%

Average All systems 49% 54% 53%

Table 5.5: Comparison table - Averages of accuracy scores per system type

System type Accuracy
score DT

Accuracy
score SVM

Accuracy
score ANN

Highway 63% 66% 65%

Intersection 50% 57% 58%

Average All systems 55% 61% 61%

5.1.3. ACCURACY SCORE - FULL DATA SET

To substantiate our conclusion, we will also look at all systems together. The results, according
to our last conclusion, should result in a lower accuracy score than the test with a partition on
system types. For the test with all data in one group, we used the full data set consisting of 500
instances. All instances are evenly divided over ten system types (Table 5.6) with one accuracy
score for the full data set.
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Table 5.6: Division of instances - full data set

Partition System types in partition Instances

Full data set
EC-1, EC-1 iVRI, EC-2, EC-2 iVRi, EC-2.5,
EC-2.5 iVRI, OS-0, OS-2, OS-5, OS-6

500

This data set is run 40 times again. The results are shown in Table 5.7. We can observe from
this Table that again the SVM model (52%) is more accurate than the DT model (49%), but this
time the performance of the ANN model (50%) is closer to the DT model. Also, the scores are
again lower than the partition on system types (Table 5.8), which confirms the conclusion that
the best partition of the data set is on system types.

Table 5.7: Accuracy scores for all systems

System type Accuracy
score DT

Accuracy
score SVM

Accuracy
score ANN

All systems 49% 52% 50%

Table 5.8: Comparison table - Averages of accuracy scores per system type

System type Accuracy
score SVM

Accuracy
score DT

Accuracy
score ANN

All systems 55% 61% 61%

5.2. OPTIMAL MODEL PARAMETERS

As explained in section 4.4, each model has its own optimal parameters. The optimal
parameters fluctuate between system types but optimal ranges can be observed. Tables 5.9,
5.10, and 5.11 hold the optimal parameters for the DT, SVM, and ANN models, respectively.

Table 5.9: Optimal decision tree tuning parameters

Parameter Optimal values

Minimum number of records 2, 3, or 4

Quality measure Gini index

Pruning method No pruning

Table 5.10: Optimal Support Vector Machine tuning parameters

Parameter Optimal values

Overlapping penalty 1

Kernel - Polynomial

power 2.4

offset 0.7

gamma 1.9
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Table 5.11: Optimal Artificial Neural Network tuning parameters

Parameter Optimal values

Max number of iterations 100, 150, or 200

Number of neurons in the hidden layer 15, 20, or 25

5.3. MODEL SENSITIVITY

During the evaluation of the model, several aspects were observed that influence the model’s
performance. A lower performance is defined as a lower accuracy and lead to a lower reliability
of the model. In this section, we will discuss these aspects. First, we will discuss the size of the
data sets and the quality of the input data. Then, we will discuss which class labels are easiest
to classify and finally we will discuss how more extensive input data influences the reliability of
partial classification.

5.3.1. SIZE OF THE DATA SET

In section 4.5, we discussed two reference articles (Edwards et al., 2008; Wei et al., 2017).
Both the input data and the result from our model comply with the research from Wei et al.
(2017). The reference article used a Recurrent Neural Network (RNN) instead of an ANN,
which is a more complex neural network and should yield a higher accuracy. When we
compare our research to the other article (Edwards et al., 2008), we can observe that our data
set is roughly fifteen times smaller and uses three times as many class labels. The accuracy
score from Edwards et al. (2008) is around 85% for a (unknown) decision tree classifier
and 83% for a (unknown) neural network. The difference in accuracy can be related to the
chance of misclassification, which becomes higher when more class labels are used. Another
difference is that a larger data set holds more examples of failure modes, which results in a
better informed model. Recall from section 3.2.2 that a better informed model has a larger
diversity of the document vectors, which leads to a better separation of the classes in the
spatial area.

To proof whether a larger data set creates a significant increase of the accuracy score, we
extended the data set of three system types (EC-1, EC-2, and OS-0) by 50 instances to 100
instances. We ran the data set through the model for 50, 75, and 100 instances. The resulting
accuracy scores are collected in Figure 5.1. When we look at the trend between data sizes for
each system type, we can observe that the accuracy scores do not significantly increase with
the increase of the size of the data set. Only system type EC-1 shows a steady increase. This
contradicts the hypothesis, which is based on literature (Aggarwal and Zhai, 2012; Larose,
2005), that the accuracy score would increase with the increase of the size of the data set.
A possible explanation for this contradiction is that the model currently has several limitations
that influence the performance. We will look at these limitations in section 5.4. After improving
these limitations, this test on data size should be repeated.

Figure 5.1: Accuracy scores per data set size per system type
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5.3.2. QUALITY OF THE INPUT DATA

Closely related to the size of the data set is the quality of the input data. This quality is
influenced by two human actions. The first action comes from the person who describes
the problem. This is often a client, who has less knowledge about the system than a Field
Engineer. Also, the client has often only partial access to the monitoring systems. This could
results in a wrong observation of the problem or a low detailed description. The second action
comes from the Service Desk employee, who is responsible for assessing the problem and
consulting a Field Engineer when required. The Service Desk employee enters the problem
description in the ERP system. These two human actions are a large factor on the amount
of data and detail of the description. Naturally, a description such as ’System is down’ is not
enough information to separate electrical failures from software failures. To elaborate on this
issue, we will discuss an example of the influence of a detailed problem description on the
result of partial classification in the next section.

5.3.3. PARTIAL CLASSIFICATION

Each instance in a data set is classified by the classification model. This classification can be
partial, as mentioned in section 3.2.2. What we want to observe is the influence of the input
data (i.e. the problem description) on the partial classification. For instance, does the model
provide us with the class label ’software failure’ with a partial match of 25% or 60%. This
influences the confidence we have in the outcome of the model.

To observe this influence, we used an example sentence and extended it step by step. Figure
5.2 shows us six versions of the sentence with the partial matches to four of the six class labels.
The match to the remaining two class labels is zero. We can observe that the smallest sentence
has a highest partial match of 35% with the label ’software failure’. This match changes with
the addition of more information and to an 78% match with the label ’electrical failure’. We can
conclude from this example that the influence of a detailed problem description is high.

Figure 5.2: Influence of problem description detail on partial classification accuracy

5.3.4. CLASS LABEL ACCURACY

Next to the influence of detailed input data on the partial match, the question rises on how well
each label can be predicted. To measure this, we looked at the number of correctly classified
instances per class label, which can also be described as the accuracy per class label. We
used the partition on system types as this partition resulted in the best accuracy scores. Figure
5.3 shows the average percentages of correctly classified instances.
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Figure 5.3: Accuracy scores per class label

We can observe a large difference in the accuracy scores of each class label. The labels
electrical failure and software failure are relatively easy to predict for all models, mechanical
failure and external damage are only moderately easy to predict for the ANN model, and
human error and no problem are very difficult to predict for all models.

To look at the incorrectly classified labels in more detail, we created a confusion matrix (Table
5.12) that shows what percentage of an original class label is predicted by the model as that
same or another class label. For example, 24% of all Service Orders with the class label
electrical failure are classified by the model as a software failure. A full overview per model
type (ANN, SVM, and DT) is available in appendix E. We can observe from Table 5.12 that
both electrical failure and software failure are relatively easy to predict. Mechanical failure,
external damage, and human error all have some distinctive value as they are partially correctly
predicted, but are also often seen as electrical failure or software failure. No problem is almost
impossible to predict correctly.

Table 5.12: Confusion matrix of actual (left) and predicted (top) failure modes

Electrical
failure

Software
failure

Mechanical
failure

External
damage

Human
error

No
problem

Electrical failure 72% 24% 0% 1% 1% 2%

Software failure 26% 69% 0% 1% 1% 2%

Mechanical failure 32% 34% 25% 2% 1% 5%

External damage 36% 24% 1% 34% 0% 5%

Human error 42% 41% 1% 1% 14% 1%

No problem 49% 37% 1% 7% 0% 5%
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The results are partially caused by the large number of Service Orders with the class label
electrical failure or software failure in comparison to the other labels. These types of failure
modes occur more often and the data set therefore holds more information on these labels.
Also, the class labels external damage and human error are hard to predict, because these
types of failures often result in an electrical or software failure. For example, a wire is connected
to the wrong port which creates a shortcut. Then, at first an electrical failure is observed,
which will only be assigned the label human error after further investigation. Finally, the label
no problem is hard to predict, because this event occurs very seldom and is by definition not
a type of failure mode. From the problem descriptions of these events, we can observe the
general opinion that these events are often caused by small drops in the electrical grid which
force the systems to give a non-fatal error and automatically reboot. In general, the class
label accuracy results require a reassessment of the class labels. This should be done in
cooperation with an expert group of at least a Field Engineer, Software Engineer, Hardware
Engineer, and Maintenance Engineer.

5.4. MODEL LIMITATIONS

Next to the sensitivity of the data set, we observed several limitations to the model. The main
limitation is the selection of features. Currently, only a stop word list and stemming algorithm
are used to reduce the number of terms. Additional steps like a synonym list and manual
selection could further decrease the number of terms. A smaller set of terms will result in a
more accurate and faster model.

The second limitation is the stemming algorithm. For our model, we used the Snowball
stemming algorithm by Porter (2002). The algorithm tends to truncate words more often than
it finds the actual stem. For example, the Dutch word for ’making’ has forms like ’maken’ and
’gemaakt’. These two forms are truncated to ’mak’ and ’makt’, while the actual stem is ’maak’.
In the model, these differences become separate terms and therefore get a higher term value
as the terms become more unique. In addition to the error rate, the Snowball stemmer does
not support a tag feature. Such a feature, often called a Part-Of-Speech (POS) tag, can add
a label to a term that tells what type of word it is (e.g. verb, noun, or adjective). This can for
example be useful when only keywords are allowed in a classification model.
The third limitation is the use of free software. This has caused the need for multiple tools that
currently are only linked through CSV files. Also, there is no direct link to the ERP system.
Many human interventions are required to operate the model, which increases the chance of
errors and lowers the user friendliness. We will elaborate on this matter in the implementation
plan (chapter 6).

The fourth limitation is the depth of the class labels. As explained in section 3.3, we have
chosen types of failure modes as class labels and we have chosen a high level. This high level
has as an advantage that distinctions between classes can easily be made. The downside of
that advantage is that an electrical failure can still have many underlying failure modes. An
expert opinion is required to reassess the class labels. The effect of more detailed classes
cannot be measured with the current data set. More detailed classes should result in a higher
accuracy, but only if the selected features are distinctive enough.

The final limitation is the use of only single words as terms. Groups of words, for example
bigrams or trigrams, are more distinctive. Due to the higher distinction, a larger data set is
required. When used properly, groups of words should result in a higher accuracy score.
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5.5. CONCLUSIONS

In this chapter, we discussed the evaluation of the model we designed in chapter 4. This
evaluation gives answer to the fourth research question: ”How can the results from the data
model be used to improve the maintenance strategy?”. We will provide the answer with the
following conclusions.

First of all, the evaluation of the model shows that it is possible to extract information from
text data and use it for improvement of a maintenance strategy. The model is only a proof of
concept, which needs several improvements before it can add real value to the maintenance
activities on a daily basis, but it adds to our knowledge on what information is in the data set
and how we can use that information. This answers several of the questions that lead to our
core research problem.

Furthermore, the evaluation of the accuracy score has shown that the model is most suitable
for a data set partitioned on system types. We can therefore conclude that the system types
show a level of distinction which is too high to combine the data sets. The evaluation has also
shown that the ANN model is more accurate than the SVM and DT models. As an ANN is only
a simple neural network, we can conclude that neural network classifiers are most suitable
to our data set. It also implies that classifiers based on decision rules are less accurate than
classifiers based on a vector space model for our data set.

The observed accuracy scores are in line with the reference articles chosen in section 4.5.
From this, we can conclude that the model performs well. At the same time, we can conclude
from the observation of the influence of the problem description on the partial match that a
detailed problem description highly influences the match percentage. In addition, we have
seen that not all class labels are easy to predict. Especially the classes human error and no
problem showed low accuracy scores. A third influence on the accuracy score that we have
observed is the size of the data set. This complies with our knowledge from literature.

Next to the performance effects, we have observed multiple limitations to the model that
require improvement. These limitations are the use of only a few feature selection tools, a
moderately accurate stemming algorithm, the lack of a connection between the tools and the
ERP system, the level of detail of the class labels, and the use of only single words as terms.
After improvement of these limitations, the model can be implemented and improved, which
we will discuss further in chapter 6.
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6. IMPLEMENTATION

In this chapter, we will discuss the required steps for implementation of the classification
model. This chapter will therefore answer the fifth research question: ”How can the data model
be implemented in the maintenance strategy?”. First, we will discuss the implementation of
the designed classification model in section 6.1 and then the recommendations for further
development of the model in section 6.2.

6.1. IMPLEMENTATION OF THE DESIGNED MODEL

The classification model from chapter 4 is built as a proof of concept. Before implementing
this model in the daily work routine, the model’s performance must be increased by addressing
most of the limitations from section 5.4. Figure 6.1 shows the workflow that should be used
as a guideline for implementation. We will first discuss the required improvement steps and
then the integration of the model with the ERP system. We will end this section with a rough
timeline for the implementation.

Figure 6.1: Workflow for implementation of the current classification model
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6.1.1. ASSESSMENT OF ALTERNATIVE FEATURE SELECTION TOOLS

The first step in improving the model’s performance is the assessment of alternative feature
selection tools. The current classification model assesses the presence of information based
on the available words in a piece of text. The selection of these words is of great importance
to remove words with relatively little information from the text. For example, it is not desirable
that a word like ”it” is assessed as an informative word, because it is clear that this is not
a keyword. The current model still holds many non-informative words. To improve this, an
extension of the selection methods is required. The current model only contains a stop word
list and a stemming algorithm. The stop word list is a list of common words that have no value.
The stemming algorithm ensures that equivalent words are conjugated to the stem of the word.

A first extension is a synonym list. Words like ”failure” and ”fault” can be treated equally.
In addition, a semi-automatic selection of words is necessary. This can be supported by a
dictionary containing subject-specific terms. Such terms are keywords such as abbreviations,
system names and other words that are often used within the company. Furthermore, this
method requires manual filtering of words from the final list to reduce the total number of
keywords. A small selection of keywords with a lot of information that can make a clear
distinction in the classification groups results in an accurate model. Aggarwal and Zhai (2012)
have written a book in which they discuss many feature selection methods. This is a good
starting point for improvement.

6.1.2. REASSESSMENT OF TRAINING AND VALIDATION SETS

The main improvement is the reassessment of the training and validation sets. This
reassessment should be done for three different aspects: (1) the quality and detail of the
problem description, (2) the size of the data set, and (3) the distinction of the class labels.

We recommend to start by improving the quality and detail of the problem descriptions in the
current data set. The data holds many similar problem descriptions and many descriptions
that have little information about the problem. A description like ’system is down’ holds no
information on the type of failure. The more information the data holds, the more information
will be used to build the classification model. This increases the chance that the model will
be able to properly classify new instances. For example, the chance that a new instance will
hold a single word that is in the sentence ”system is down” is lower than the chance when
looking at the sentence ”system is down, lights are flashing, system cannot be monitored”. We
recommend to start improving the problem descriptions of three system types in the current
data set and run the new data sets through the model. Possible improvements are the addition
of words to the problem description to increase clarification, the exclusion of non-informative
words, and the repair of grammatical errors. If the accuracy scores are higher, the hypothesis
that more detail and better quality of the problem description influences the accuracy score is
true. In that case, improve the other system types as well.

The new, more detailed data set will have to be reclassified, but first the class labels should
be reassessed. This is a job for one or more experts, preferably a combination of Field
Engineers and hardware/software developers. From the current selection of labels (electrical
failure, software failure, mechanical failure, human error, external damage, and no problem),
especially the labels human error and no problem were almost never correctly classified. To
address the validity of the labels, the experts should answer questions like whether the current
class labels are valid, whether all labels have a high distinction, and whether any more detail
can be added to the class labels. After choosing the labels, each label should be tested on its
accuracy score to show whether the label can be classified correctly.

The next step is to increase the data size. Even though the sensitivity analysis in section 5.3
did not show a significant difference in the accuracy scores of the data sets with different sizes,
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it is evident that a larger data set holds a larger number of words and therefore has more
information to build a model. The absolute increase of the accuracy score that results from a
larger data set will differ per system type. Therefore, we recommend again to start with three
system types and expand the data with an additional 50 instances. Then run the new data sets
and test what the new accuracy scores are. If an improvement is observed, increase the size
of the data set again with 50 instances. Repeat this until no significant increase of the accuracy
score is observed. When the first increase in size of the data set already does not result in an
increase of the accuracy score, the influence of the size of a data set is redundant for our type
of data. When the best size of the data sets is determined, increase the size of the data sets
for all system types. Now, the full data set is ready for the build of the classification model.

6.1.3. IMPROVEMENT OF THE STEMMING ALGORITHM

A more difficult, but also effective change is the improvement of the stemming algorithm. As
mentioned in section 5.4, the current stemming algorithm Snowball has a high error rate for
the Dutch language. Other stemming algorithms should be assessed. Snowball is the only
Dutch stemming algorithm incorporated in the Knime Analytics software, so a new algorithm
should be scripted and linked to the model. Knime Analytics offers the option to integrate such
scripts from the languages R and Python. When a new algorithm is implemented, it should be
tested on the accuracy score that results from the model.

Possible alternative stemming algorithms that support the Dutch language are analysed by
Jonker (2019). The Snowball, Porter, and Lancaster algorithms are compared to a newly
introduced algorithm called Bag & Tag ’em. A comparison is made based on understemming
and overstemming (Table 6.1). Understemming is when the algorithm is not aggressive enough
(i.e. words that should be stemmed are not stemmed), overstemming is when the algorithm is
too aggressive (i.e. words that should not be stemmed, are stemmed). Table 6.1 shows that
the newly introduced Bag & Tag ’em algorithm works best for understemming and the Porter
algorithm works best for overstemming. On average, the Bag & Tag ’em algorithm has the
highest accuracy score.

Table 6.1: Comparison of stemming algorithms

Algorithm Accuracy on
understemming

Accuracy on
overstemming

Porter 90.66% 97.53%

Lancaster 92.62% 94.82%

Snowball 92.76% 96.98%

Bag & Tag ’em 96.78% 96.90%

6.1.4. INTEGRATION WITH THE CURRENT ERP SYSTEM

After improving the classification model, it must be integrated with the current ERP system.
The main goal of this integration is to ensure the model requires a minimal number of user
intermissions. In addition, it is required that the model runs without errors and has a fast
feedback loop. The main tool used to build the classification model is Knime Analytics. This
tool currently requires several intermissions by the user. To run a new data entry, this entry
must be saved in a CSV file with the parameters Service Order Number, System Type and
Problem Text. Then, the CSV file must be selected in Knime Analytics, workflow B (Figures
4.3 and 4.4). When the correct file is selected, the flow can be started. The output of the
model is a CSV file with the parameters Service Order Number, System Type, Problem
Text, Probability class label A, ..., Probability class label F and Assigned Class. As the free
version of Knime Analytics does not support the use of a dashboard or report, we created
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a (temporary) dashboard in Qlik Sense (Figure 6.2) to show what the final front-end of an
implemented tool could look like.

This dashboard links the output CSV file from Knime Analytics to a full extract from the ERP
system Navision. This full extract is the base file used in section 2.3 to analyse the performance
parameters of the company. The dashboard provides an overview of the classified data linked
to the trends of similar historic data based on the presence of four parameters: System Group,
System Type, Location Name, and Object Number. For example, in Figure 6.2 the location
name V90546 is selected. The dashboard shows all newly classified service orders, the partial
match data, and a set of historic trends belonging to the location name. At the top, we can also
observe that this location holds an intersection system EC-2, which is maintained since 2012,
only holds electrical failures and holds one object. A full overview of the dashboard is available
in appendix B.

Figure 6.2: Truncated overview of dashboard for newly classified data

The number of user intermissions can be significantly reduced with a live connection between
the database from Navision, the classification model in Knime Analytics, and the dashboard
in Qlik Sense. Both Knime Analytics and Qlik Sense support live database connections. To
ensure the model runs without error, a testing and optimization phase are recommended before
and after implementation, respectively. It is also recommended to investigate the possibilities
of creating a dashboard in the ERP system rather than in Qlik Sense. This will reduce the
number of interfaces and speed up the feedback loop.
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6.1.5. TIMELINE

A general timeline is created to give insight in the length of the optimization and integration
phases. Incorporated in the timeline are the main steps discussed in this chapter and several
go/no go moments in which the progress and feasibility of the implementation plan should be
reviewed. This timeline should be reassessed before the execution of each step.

Figure 6.3: Timeline for implementation of the current model

6.2. RECOMMENDATIONS FOR FURTHER DEVELOPMENT

In section 6.1, we discussed changes to the model and the integration with the ERP system
Navision. These steps are the required to implement an accurate model in the daily workload.
However, this model can be further expanded in terms of user-friendliness and performance.
In addition, new functionalities can be added by combining the text data with the structured
and quantitative data from chapter 2. In this section we will discuss the recommendations for
a future model. We start with a description of how the future model should be used. Then, we
will discuss the possible adjustments and extensions.

6.2.1. OVERVIEW FUTURE MODEL

A Service Desk employee takes a new Service Order by telephone. The customer describes
the fault he has observed and the Service Desk employee enters the problem description in
the ERP system. The classification model provides live feedback on possible failure modes.
In addition, all kinds of desired insights in the historical data are displayed for the system type
to which the service order belongs (Figure 6.2). The Service Desk employee determines,
based on the feedback of the dashboard, whether sufficient information is available to plan
maintenance activities. This is not the case and therefore the problem is further analysed
by asking the customer additional questions about possible failure modes. The customer
has noticed a few things when monitoring the system remotely. The Service Desk employee
expands the problem description and the classification model indicates a failure mode with
sufficient certainty. The Service Desk employee reports directly to the customer that a problem
solving approach will be started and plans a maintenance activity for a Field Engineer. The
Field Engineer performs the maintenance activity based on the problem solving approach.
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6.2.2. RESEARCH ON ALTERNATIVE CLASSIFICATION ALGORITHMS

As described in chapter 4, three classification algorithms were compared in the research: a
Decision Tree (DT), a Support Vector Machine (SVM) and an Artificial Neural Network (ANN).
The ANN was observed to be the most accurate algorithm. However, a very simple ANN has
been used, which offers a large improvement potential for researching alternative machine
learning algorithms. Faster algorithms as well as more accurate algorithms are desired. The
book of Aggarwal and Zhai (2012) discusses several algorithms that can be used. This is a
good starting point for the research.

6.2.3. RESEARCH ON COMBINING STRUCTURED, AND UNSTRUCTURED DATA

The current model uses the problem description as input data. This is just one of the many
parameters entered during the registration of a Service Order. It is therefore interesting to
investigate which information the other parameters contain and which information contains
added value for the classification process. For example, if it is already known from a previous
Service Order that a part may fail soon, it may be interesting to weigh it more heavily in the
classification. It would also be an improvement to be able to predict not only the failure mode,
but also which component has most likely failed.

6.2.4. REWRITING THE CLASSIFICATION MODEL IN OOP CODE

After implementation, the current model consists of three separate software packages: the
ERP system (Navision), the text analysis tool (Knime Analytics), and the data visualisation
tool (Qlik Sense). This makes the system prone to errors, for example due to updates in one
of the software packages. The use of multiple tools also does not improve the speed of the
feedback loop of the classification model. It is therefore recommended to rewrite the model
in one of the Object Oriented Programming (OOP) languages (e.g. Python, Java, or Pascal).
These languages are fast, easy to link to ERP systems and databases, and the model can be
fully programmed as desired. In addition, OOP languages can be easily controlled from ERP
systems.
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7. CONCLUSIONS & RECOMMENDATIONS

In this final chapter, we will discuss the conclusions that reflect on the research questions from
chapter 1. We will also discuss the limitations of the research and the designed model and we
will end this chapter with recommendations for further development and implementation of the
designed model.

7.1. CONCLUSIONS

This research is executed to solve the core problem at Dynniq Customer Service Operations:
The maintenance strategy is expected not to be future proof. Underlying problems are the
lack of knowledge on why systems fail and what information is in the maintenance logs that
are created during maintenance activities. To solve this problem, we must answer the main
research question:

”How can historical data on maintenance requests and solutions improve the effectiveness
of any kind of maintenance, making it more future-proof?”

To answer this question, we analysed the performance of the company, found an improvement
potential, executed a literature review to find methods for using the improvement potential, and
designed and built a classification model that provides us with a problem solving approach.
Based on these steps, we can draw the following conclusions that give answer to the main
research question.

• The performance analysis showed that the extraction of information from unstructured
text fields from the data set of maintenance requests and solutions, such as problem
description, cause, and solution, can improve the lack of knowledge on why systems
fail, why some of those failure cannot be solved at first attempt, and why preventive
maintenance does not reduce the number of failures per system.

• The available data set of maintenance requests and solutions holds enough information
on why systems fail in the unstructured text fields to classify Service Orders based on
possible failure modes.

• The Artificial Neural Network (ANN) and Support Vector Machine (SVM) are the most
accurate classifiers for the classification of the available unstructured text data based on
types of failure modes.

• The ANN has the highest improvement potential as the current ANN algorithm can be
extended with multiple hidden layers or replaced by a Recurrent Neural Network (RNN)
which has the ability to repeat or improve calculations in the hidden layers within the
same iteration.

• The failure modes from the ten different system types are too distinctive to combine the
system types for the build of a single classification model. A separate classification model
for each of the ten system types is therefore most accurate.

• Performance of the designed models is with 61% (ANN), 61% (SVM), and 55% (DT)
similar to the reference articles. The ANN and SVM models perform slightly better than
the more complex Recurrent Neural Network (RNN) to which the performance of the
designed models is compared.
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• Performance of the designed models is not high enough for direct implementation in the
daily work routine. Improvements are required for feature selection, quality and detail
of the data set, size of the data set, distinction of the class labels, and the stemming
algorithm.

7.2. LIMITATIONS

During the research, several assumptions and concessions were made because of restrictions
on time, available software, and available data. We will first discuss the most important
limitations to the research and then the most important limitations to the designed classification
model.

7.2.1. LIMITATIONS TO THE RESEARCH

• The research has shown an improvement potential for both preventive and corrective
maintenance, but the approach for designing a classification model only covers problem
descriptions, which are often not present for preventive maintenance activities. This
research therefore only solves a part of the problem cluster that is within the scope of
this research.

• The literature review only includes classification algorithms that are available in free
software packages while potentially more accurate machine learning algorithms are
available for the classification of unstructured text data.

• The chosen class labels are based on a theory with high level failure modes, which do
not provide detailed information on what part of the system has failed.

7.2.2. LIMITATIONS TO THE DESIGNED CLASSIFICATION MODEL

• The model uses feature selection tools which are not aggressive enough and therefore
result in a set of features that still holds many uninformative terms.

• The model is trained and validated with a data set that holds a relatively low number of
instances (500) for text classification algorithms.

• The test and validation set for training and validating the model is checked and classified
by the researcher, who has no experience with executing the maintenance activities.

• The model uses a stemming algorithm that has a relatively high error rate for the Dutch
language and does not incorporate Part-Of-Speech (POS) tagging.

• The model only uses single word features, which have a lower distinctive value than
double or triple word features.

• The model is built with multiple software packages, which makes it prone to errors when
used in the daily work routine and requires many user intermissions to fully run the
classification model.

7.3. RECOMMENDATIONS

Given the conclusions and limitations, we can discuss several recommendations for further
research and improvement of the designed model. We will discuss the most important
recommendations.

• To ensure that the designed classification model provides enough information for
improvement of the maintenance strategy, the model should not be implemented directly,
but first requires several improvements to increase performance and user-friendliness.
The following improvements to the model are recommended.
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– An assessment of alternative feature selection methods should be executed to
decrease the number of uninformative features, which will result in an increase
of the speed and accuracy of the designed classification model. Examples of
unexplored feature selection methods are manual selection, synonym lists, and
mathematical selection methods for quantifying the discrimination level of a feature
through common methods like Gini Index, Information gain, or the χ2-statistic.

– A reassessment of the training and validation set, which is used for training and
validating the classification model, should be executed to improve the data set on
the aspects quality and detail of the problem descriptions, size of the data set, and
distinction of the class labels.

– An assessment of alternative stemming algorithms for the Dutch language is
recommended to increase the percentage of correctly stemmed words.

• Alternative machine learning algorithms like Recurrent Neural Networks (RNNs) are
available for the classification of unstructured text data and it is therefore recommended
to extend the literature review to those algorithms and assess their performance potential
in the designed classification model.

• Quantitative and structured data is available in the data set on maintenance requests
and solutions. These data should be used to combine quantitative and structured
parameters with the unstructured problem description for a more accurate or more
targeted classification method.

• The build of a scripted version of the current classification model is recommended to
increase the speed of the algorithm and improve the flexibility of the model for changes
within the (classification and stemming) algorithms and the integration with the ERP
system.
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A. KERNEL FUNCTION - NUMERICAL EXAMPLE

This appendix is an numerical example of Equations 3.8 to 3.12, which we extend to n = 3 and
m = 9 instead of n = 2 and m = 4. We start with the general formula for a kernel function:

K(x, y) = φ(x) • φ(y) = φ(x)Tφ(y) (A.1)

where K(x, y) is the kernel and x and y are n-dimensional inputs. φ is a n ×m dimensional
space, with m being the required dimension for separation. Normally a function like φ(x)Tφ(y)
requires us to first calculate φ(x) and φ(y) and then calculate the dot product of the functions.
This can be simplified by using a corresponding kernel. For example, we have the following
two vectors:

x = (x1, x2, x3)
T = (1, 2, 3)T (A.2)

y = (y1, y2, y3)
T = (4, 5, 6)T (A.3)

Lets say a linear separator is possible in the ninth dimension (i.e. m = 9). Then, φ(x) and φ(y)
become:

φ(x) = (x21, x1x2, x1x3, x2x1, x
2
2, x2x3, x3x1, x3x2, x

2
3) (A.4)

φ(y) = (y21, y1y2, y1y3, y2y1, y
2
2, y2y3, y3y1, y3y2, y

2
3) (A.5)

Then, we plug in the numbers for x and y.

φ(x) = (1, 2, 3, 2, 4, 6, 3, 6, 9) (A.6)

φ(y) = (16, 20, 24, 20, 25, 30, 24, 30, 36) (A.7)

and Equation A.1 becomes:

K(x, y) = 16 + 40 + 72 + 40 + 100 + 180 + 72 + 180 + 324 = 1024 (A.8)

This equation can be simplified to a two-dimensional form, the kernel, which reaches the same
results:

K(x, y) = (xT y)2 = (4 + 10 + 18)2 = 322 = 1024 (A.9)

69



70



B. DASHBOARD FOR NEWLY CLASSIFIED DATA

Figure B.1: Overview dashboard for newly classified data
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C. STOP WORD LIST
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geheel
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hij
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je
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jullie
kan
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kunnen
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later
liet
liever
like
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maeken

maer
mag
martin
me
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meer
meesten
men
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met
mezelf
mij
mijn
mijnent
mijner
mijzelf
min
minder
misschien
mocht
mochten
moest
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moet
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mogelijk
mogelyk
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my
myn
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niet
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nogal
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D. SNOWBALL STEMMING ALGORITHM
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E. CONFUSION MATRICES CLASS LABELS

Table E.1: Confusion matrix of actual (left) and predicted (top) failure modes for ANN model

Electrical
failure

Software
failure

Mechanical
failure

External
damage

Human
error

No
problem

Electrical failure 73% 18% 1% 2% 2% 4%

Software failure 23% 66% 1% 2% 3% 5%

Mechanical failure 26% 16% 36% 5% 4% 13%

External damage 24% 11% 2% 52% 1% 11%

Human error 40% 31% 2% 1% 24% 2%

No problem 41% 30% 3% 10% 0% 15%

Table E.2: Confusion matrix of actual (left) and predicted (top) failure modes for SVM model

Electrical
failure

Software
failure

Mechanical
failure

External
damage

Human
error

No
problem

Electrical failure 66% 33% 0% 1% 0% 0%

Software failure 28% 70% 0% 1% 0% 0%

Mechanical failure 37% 55% 9% 0% 0% 0%

External damage 43% 37% 0% 17% 0% 3%

Human error 41% 44% 2% 0% 12% 1%

No problem 51% 48% 0% 2% 0% 0%

Table E.3: Confusion matrix of actual (left) and predicted (top) failure modes for DT model

Electrical
failure

Software
failure

Mechanical
failure

External
damage

Human
error

No
problem

Electrical failure 77% 22% 0% 0% 0% 1%

Software failure 28% 70% 0% 0% 0% 1%

Mechanical failure 34% 33% 30% 3% 0% 1%

External damage 41% 26% 0% 32% 0% 1%

Human error 45% 47% 0% 0% 7% 0%

No problem 57% 34% 0% 9% 0% 0%
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