

MODELING ASSOCIATIVE

MEMORY IN ROBOTS FOR

PROMOTING SOCIAL BEHAVIOR

Kuiken, J.A. (Jaro)

Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS)

Supervisor: Kamilaris, Andreas, dr.
Critical observer: Epa Ranasinghe, C.M.

2020 – 07 – 13

CREATIVE TECHNOLOGY BACHELOR THESIS

Abstract

The goal of the GP is to create an associative memory model to help social
robots behave more empathetically. To achieve this goal, the way associative
memory works in humans is explored. Existing associative memory models are
explained and discussed. Software frameworks for the few models that have
them are experimented with, to see if they could be used to reach the goal of
the thesis. Eventually, all existing associative memory models are declared un-
suitable for this thesis for differing reason. A decision is made to create a new
conceptual associative memory model from scratch, using various design pro-
cesses. This model is held to certain requirements acquired through different
ideation techniques. After the creation of the model and, a conceptual pseu-
docode implementation is created. Both the model and its implementation are
evaluated through different means and declared suitable for reaching the goal of
this thesis. The long-term goal that this thesis begins to aim at is to eventually
create a social robot that will be put into situations such as supermarkets, air-
ports, museums, public parks, city centers and more. In these places the social
robot can then help or socially interact with people in that place in whichever
way is appropriate for the location.

1

Contents

1 Introduction 4

2 State of the art 6
2.1 Differences between single- and dual-process models 6
2.2 Single-process models . 6

2.2.1 LIDA’s Perceptual Associative Memory (PAM) module . 7
2.2.2 Search of Associative Memory 11
2.2.3 Mnemograms . 13

2.3 Dual-process models . 13
2.3.1 Java-based Associative Memory 14
2.3.2 Dual-Process Signal Detection (DPSD) 15

2.4 Evidence for dual-process models 16

3 Method 18
3.1 Orientation . 18
3.2 Associative memory research . 18
3.3 Experimenting . 19
3.4 Learning bottom-up through scenarios 20

4 Ideation 23
4.1 Role of the memory model . 23
4.2 Origins of existing models . 23
4.3 Single- or dual-process model . 24
4.4 Software frameworks . 25
4.5 Scenarios and model requirements 35
4.6 Combination of different models 37

5 Specification 39
5.1 Requirements . 39
5.2 Design of model . 40

5.2.1 Layout . 40
5.2.2 Item storage in the LTM 41
5.2.3 Associations . 42
5.2.4 Remembering . 43

6 Realisation 44
6.1 Pseudocode . 44
6.2 Scenario application . 48

6.2.1 John and Bob at the park 48

7 Evaluation 53
7.1 Application in scenarios . 53
7.2 Meeting the requirements . 56
7.3 Combined model . 57

7.3.1 A model for empathy . 58

2

7.3.2 Unified model . 60
7.4 Ethical Reflection . 62

7.4.1 Distinction . 62
7.4.2 Misuse of Robot . 62
7.4.3 Technophobia . 63
7.4.4 Playing God . 64
7.4.5 Privacy Issues . 64
7.4.6 Job Loss . 65
7.4.7 Privacy Regulation Agencies 65
7.4.8 Users . 66
7.4.9 Municipalities, Shop Owners and More 66

8 Conclusion 67

Appendices 69

A Model overview table 69

B Scenarios 73

3

1 Introduction

Robots are one of many technological advancements that are likely to define the
future. Similarly to other quickly evolved technologies, such as smartphones
and the internet, adoption of robots is rapidly increasing everywhere. Robot
adoption has already begun in leading countries such as Korea, Germany and
Japan [24], and it is likely to only increase throughout the world. This adoption
of robots comes in many shapes, as there are different types of robots. In a
robotics survey conducted by the United Nations [4], robots were grouped into
three main types: industrial service robots, professional service robots and ser-
vice robots.

A big part of research into anthropomorphism in robots has been about im-
proving the physical resemblance of robots to humans. As a consequence of this
research, robots have swiftly improved in this area. Take for example Sophia
[28], this humanoid has been widely covered by the media. It is one of the
most futuristic examples of a robot with physical human qualities, and visually
resembles a human quite closely. However even though Hanson Robotics, the
makers of Sophia, also incorporated a significant amount of AI features to make
its behaviour more human-like, Sophia is still easily distinguishable from a hu-
man in this aspect. This is because human-like behavioural qualities in robots
are less explored than their physical counterpart. As a social robot needs its
behaviour to be of the same caliber as its physical embodiment [11] (though
this caliber needs to be evaluated per situation), the behavioural side needs to
be explored more.

The client for this paper is the RISE Research Center, located in Cyprus.
RISE wants to create social robots that can be used in many real applications,
such as supermarket clerks, elderly care, city guides, office assistants, recep-
tionists, airport assistants and more. Specifically they want to create more
empathetic social robots, since empathy is a very important aspect for social
interaction with and among humans [3]. Thus, for these social robots to be
effective in the mentioned situations, they need to become more empathetic. To
achieve (part of) the goal of creating more empathetic social robots, two sepa-
rate GP’s were created. This GP will attempt to see how associative memory
can be recreated in a social robot to improve their empathy. While the other
GP, done by S. Slebos will try to model the reasoning of a robot in such a way
that it helps it in executing empathetic actions during its interactions.

Now as was just mentioned, this paper will try to see how associative mem-
ory could be recreated in social robots to improve their empathy. This is be-
cause an important aspect that improves empathetic behaviour in social robots,
is memory [2][15], and specifically associative/recognition memory. Therefore,
from the behavioural side of social robots that needs to be explored more, this
paper will mainly look into the question ‘How can we recreate associative mem-
ory in social robots, to improve their social behaviour?’. Apart from this, also
questions such as ‘How does associative memory work in humans?’, ‘How can
we make robots learn and remember relationships between previously unrelated
entities and concepts?’, ‘How can we make robots store their encounters with

4

entities and concepts, to improve social behavior towards this entity or concept
the next time they encounter it?’ and ‘What efforts exist that try to imitate
perceptual associative memory in robots?’. The paper will also give an attempt
to incorporate a model or a new version of an existing model, into a possible
application.

5

2 State of the art

This paper will incorporate two types of memory, associative and recognition
memory. ”Associative memory is defined as the ability to learn and remember
the relationship between unrelated items such as the name of someone we have
just met or the aroma of a particular perfume” [30]. ”Recognition memory
involves the capacity to remember familiar stimuli when comparing a novel
stimulus with one that is already stored in the memory” [20]. In the context of
this paper, these two types of memory are almost identical. Therefore, in this
paper they will be used interchangeably, according to how they are used in the
articles that will be mentioned.

2.1 Differences between single- and dual-process models

Many research efforts that have created models for associative memory exist,
with the generally accepted way to model associative memory changing through-
out the history of advancements the field has made. And in this field, there has
been an ongoing debate for years about which type of associative memory model
is superior and more strongly supported by empirical evidence. First, it is nec-
essary to discuss the different types of models there are. Broadly speaking,
two types of models exist: Single- and dual-process models. To understand the
difference between these models, two terms need to be defined, familiarity and
recollection. They are defined by Mahoney as such [23]:

Familiarity permits us to identify something as having been seen in
the past (e.g., I know I have seen this key before), but affords no
contextual detail.
Recollection permits us to recognize the item and recall additional
information about the context in which it was originally encountered
(e.g., this is the key that opens the shed behind the house).

Knowing these definitions, the two different types of models can be described
with some examples.

2.2 Single-process models

First off, single-process models. Single-process models account for familiarity,
and assume that if an item is recovered from memory, its contextually related
information is recovered with it. This means that remembering an item and
its contextual information happens in one go. Also if an item is not recovered,
its related information is not recovered either. Many single-process models only
have a threshold system, which usually means that an item is either fully recalled
or not at all. According to prominent researchers in the field [25] however, this is
not a correct depiction of the situation. A more correct depiction would be that
when something is recalled (which means it has reached the threshold), it is not
always fully recollected. Reaching the threshold simply implies that additional
information is recovered, how much is recovered may vary from situation to

6

situation. Since the creation of the field, many research efforts into creating
single-process models of associative memory came to be. Some of these models
will now be discussed.

2.2.1 LIDA’s Perceptual Associative Memory (PAM) module

One of these efforts is the Perceptual Associative Memory (PAM) module of the
LIDA cognitive model [9][29], created by the Cognitive Computing Research
Group led by Stan Franklin, of Memphis University. The goal of the LIDA
model is to provide a control structure for a mind in an autonomous agent.
Within it, they try to integrate as much knowledge about the mind from vari-
ous fields, to make sure it is as accurate as possible. A key concept of this model
is what the creators call the LIDA cognitive cycle. This cognitive cycle can be
defined as “everything that happens in the agents’ control structure, to pro-
duce its next action” and it is the main building block upon which higher-level
cognitive processes such as deliberation, reasoning, problem solving, planning,
imagining, and more are built. One cycle consists of multiple phases, these are
shown in figure 1 below.

Figure 1: The LIDA cognitive cycle phase diagram

As can be seen in the overview of the LIDA cognitive cycle in figure 2, LIDA
has many ‘modules’, each representing a different part of the brain. In this
paper, the focus is on their PAM module, which is also present in figure 2.

7

Figure 2: The LIDA cognitive cycle

To understand the role of the PAM module in the LIDA model, first the start of
the LIDA cognitive cycle should be explained. This is described by the creators
as such:

The LIDA cognitive cycle begins with sensory stimuli, both external
and internal, coming to Sensory Memory where it is represented, and
engages early feature detectors. The resulting content involves both
the Current Situational Model, and Perceptual Associative Mem-
ory. The latter serves as recognition memory, producing a percept
that is made available to the Current Situational Model. Using both
the percept and the incoming content, together with remaining con-
tent which has not yet decayed away, the Current Situational Model
continually updates itself by cueing Perceptual Associative Mem-
ory, Spatial Memory, Transient Episodic Memory and Declarative
Memory, and using the returning local associations.

The forwarding of a percept from the PAM to the Current Situational Model, is
where the actual associating the way humans do it happens. The PAM receives
sensory stimuli from the Sensory Memory, and then by extracting features from
these stimuli, puts out a percept. A percept would in this case be a feeling,
emotion, action, event, concept, category, etc., and these are recognized by
combining certain features of the incoming stimuli, that the PAM then connects
to a percept based on previous encounters with similar stimuli. The CCRG team
has also created a LIDA framework to express the model in terms of software.
They provide exercises along with the framework to help understand the LIDA
model, and to explain how to start developing with the framework itself. The

8

process of going through some of the exercises is described in the next section
below.

Working with the LIDA software framework

The CCRG team incorporated many exercises to help understand the model
better, all divided over different sections. While working through the first few
exercises, they help you get familiarized with the file layout and the GUI of the
framework. Then after the basics, the exercises start to delve into the actual
LIDA model, its modules and how they can be and are implemented in the
framework. In whole, the tutorial runs multiple simulations with a certain au-
tonomous agent containing a partial or full implementation of a mind according
to the LIDA model. These simulations will be putting the agent in specific
situations and giving it input, to see what reaction, and thus also output, it will
give. The situation that a simple LIDA agent is put in in the tutorial, is one
where it has to recognize a blue circle as being blue and a circle, and the same
for a red square. Before running simulations, changes, additions and removals
will have to be made to certain files in the agents’ structure to make it work for a
specific assignment the tutorial gives. This is done through Apache’s NetBeans
IDE, shown in figure 3 below.

Figure 3: LIDA’s software framework opened in Apache’s NetBeans IDE

In figure 3 one can see a file layout and navigator on the left side of the
IDE, and an opened ‘.xml’ file with console on the right side of the IDE. Figure
3 shows the 3rd exercise of the tutorial, which is adding the missing feature
detectors for the colour blue and the shape of a circle to the agents’ ‘.xml’ file.
After that, when running the simulations, the agent should then be able to
respond to the input of a blue circle as well as the input of a red square (which
it already could before ex. 3). After changing the necessary files, the rest is

9

all done by simulation, and the results of these simulations are shown in the
frameworks’ GUI. What the GUI looks like is shown in figure 4 below.

Figure 4: The LIDA software framework’s GUI

This GUI has many different parts, which are used for controlling the sim-
ulation. The box on the top left contains the ‘Environment’. This provides all
the input to the agent, which in this case is either nothing, a blue circle or a
red square. On the bottom is a console which keeps track of what is happening
during each moment in the simulation, and the top right box contains all the dif-
ferent modules of the LIDA module that are initialized in the agents’ structure.
The agent for the 3rd exercise has the modules Environment, Sensory Mem-
ory, PAM, Workspace, Current Situational Model, Attention Module, Global
Workspace, Procedural Memory, Action Selection and Sensory Motor Memory.
These modules are used by the agent for performing the task of recognizing if
the input is nothing, a blue circle or a red square. As one can see in fig. 4, the in-
put coming from the Environment is a blue circle. And when looking at the top
right box, where in this case all the different nodes of the PAM are shown in a
table, judging from the current activation levels of the ‘blue’ and ‘circle’ nodes,
it is clear that the agent recognizes that the input is indeed something blue,
and a circle. This recognition comes from the highlighted code of fig. 3 that
was added as a part of the 3rd exercise. With this highlighted code, 2 feature
detector nodes are added to the PAM module. One is for detecting the shape
of a circle, the other for detecting the colour red. Each node has a base-level
activation, a threshold and a current activation level. The base-level activation
measures how useful a node has been in the past, the current activation level
shows the relevance of a node to the current situation. The current activation
level of the ‘blue’ node would be around 1.0 if the Environment is giving a blue
circle as input to the agent. If the Environment then gives a different input to
the agent, the current activation level of the ‘blue’ node would slowly decay, as
it loses its relevance to the current situation more and more.

10

Perceptual Associative Memory in LIDA

In the LIDA model, PAM is implemented as a slipnet [8], based upon the Copy-
cat paper by Hofstadter and Mitchell [18]. This slipnet has many nodes, and
each node may represent feature detectors, a category, a person, a concept,
an idea, etc. Links connecting these nodes to each other represent relations
between nodes, such as category membership, category inclusion, and spatial,
temporal or causal relations. Autonomous agents sense their environment, us-
ing sensory modalities such as vision, olfaction and audition. Thus autonomous
agents must also have primitive feature detectors, to identify important aspects
of the incoming stimuli. In the LIDA model, these primitive feature detectors
constitute the nodes of the lowest depth in the slipnet. A single primitive fea-
ture detector could for example detect an edge at a specific angle, and multiple
of these detectors could combine to form more complex feature detectors, like
one that could recognize the shape of a letter. Whenever these detectors detect
a feature, they send an activation to nodes and combinations of feature detec-
tors deeper in the slipnet in the form of ‘X is a feature of Y’. This sending of
activation goes deeper and deeper until the slipnet stabilizes. At this point the
nodes and links with current activation levels above the threshold become part
of LIDA’s percept, which gets passed along to the working memory.

As mentioned before, each node has a base-level activation and a current
activation level, but each link between these nodes only has a base-level activa-
tion, which mostly functions as a weight on that link. Base-level activation is
used for perceptual learning, while the current activation level is directly related
to incoming stimuli from the internal or external environment. The current ac-
tivation level decays quickly, say within 2 seconds. The base-level activation
however, is different. Nodes or links with low base-level activations decay quite
rapidly, while those with high base-level activations decay quite slowly, possibly
persisting for decades. Perceptual learning in the LIDA model occurs in two
forms, the strengthening or weakening of the base-level activation of existing
nodes and links, as well as the creation of new nodes and links. Any concept or
relation that is currently in the active part of the mind has the base-level acti-
vation of its corresponding node or link strengthened or weakened as a function
of the arousal of the agent. Whenever a new individual item is perceived, this
results in a new node being created, together with links into it from the feature
detectors of its features. An item being recognized as new happens by means
of some attention codelet, this is a piece of code that pays attention to specific
things that may be occurring. This attention codelet notices multiple features
that are activated in the slipnet, but does not have a common object of which
they are features yet.

2.2.2 Search of Associative Memory

The Search of Associative Memory model [27] (SAM) was created as an im-
provement of an older model called the Atkinson-Shiffrin model. The Atkinson-
Shiffrin model was, among other points, criticized for including the sensory

11

registers as part of the memory, therefore the SAM model improved on this and
some other criticisms as well. The SAM model has a short-term store (STS)
and a long-term store (LTS). Understandably, the STS functions as short-term
memory while the LTS functions as long-term memory. When an entity with
this memory model sees an item and encapsulates data from this item in its
sensory registers, it first stores this data in the STS. However, the STS has a
relatively small capacity. Therefore, each time a new item enters the STS and
it has reached its maximum capacity, this new item will replace an item already
in the STS. The LTS in this model is responsible for storing relationships be-
tween different items and of items to their contexts. The amount of contextual
information an item has is related to how much time that item has spent in the
STS, while the strength of a relationship between two or more items changes
depending on how long these items exist at the same time in the STS.

Figure 5: Simplified diagram of retrieval from an item in the LTS under the
SAM model

Recalling an item from the LTS uses the concepts introduced for its process,
and is depicted in figure 5 above. Each item that is stored in the LTS, has cues
related to that item to help the memory remember that item later on. Whenever
a situation calls for the remembrance of an item, all the cues related to the item
are collected. Using these cues, unconsciously there is determined what area

12

in the LTS will be searched for the item. Then when an item is recalled, an
evaluation will take place to make sure that the recalled item is the one that
was meant to be recovered. If not, the recall process will start over again by
slightly adjusting the cues related to the item wanted to be recalled.

2.2.3 Mnemograms

Another model, that is currently single-process, was created by Bisler [5]. This
memory model proposed by Bisler has three different layers. The ultra short-
term memory (USTM), the short-term memory (STM) and the long-term mem-
ory (LTM). The USTM holds only a few of what the paper calls ‘mnemograms’,
the STM has a slightly larger capacity and the LTM has an even larger ca-
pacity. These mnemograms are containers that can store many different types
of data, and there are many different types. One type of mnemogram that
helps the agent associate through its memory, is the class mnemogram. This is
a mnemogram that describes a group of mnemograms representing a pattern.
Every mnemogram in the memory is linked to others through what they call
associations, relating them to each other through the data they store. There
are many different types of associations and each association has a weight to
indicate its importance. This weight decreases over time, and increases each
time it is used for remembering something in a useful way. New mnemograms
are first stored in the USTM, while older ones are transferred to the STM and
even later to the LTM.

In his paper, Bisler tries to improve the behavioural abilities of an au-
tonomous agent, by giving it a biologically inspired memory. He gives it a
simple version of a brain, certain sensors and a memory. He then simulates a
basic environment where the agent roams free, and has to distinguish between
particles that are food, and particles that are non-edible . At the start of the
simulation, the agent has empty memory registers and has no information about
the particles. Then after roaming around in the simulation a bit, it encounters
different types of particles. Through these encounters, it learns the identifying
features of each particle, and stores this in its memory. After a while the agent
has enough information about each type of particle to start recognizing the type
of a particle when it encounters one. From this moment on, the agent will try
to avoid the particles it recognizes as non-edible and only eat the food particles.

2.3 Dual-process models

Then, onto dual-process models. Dual-process models have a very different
take on how associative memory works. These models propose that recognition
memory incorporates both familiarity and recollection as separate processes
[23]. These two processes usually either work simultaneously, or on demand.
This means that, in contrast to single-process models, it is not only one process
working to find an item or its related information. In these models, familiarity is
usually modelled based on signal detection theory concepts [12]. Which means
that when sensory stimuli are coming in, the process of familiarity will compare

13

these stimuli to signals currently residing in the memory. And if it finds a
(close enough) match, it recalls this item. Recollection on the other hand, is
modelled as a threshold process. Which means that in most dual-process models,
this process is only active if there is enough (usually sensory) information to
conduct a deeper search in the memory than familiarity does. This also means
that if the threshold is not reached, the process of recollection fails. Which
as you can imagine, is a realistic way of modelling memory. As even if we do
remember an item in the memory, we don’t always remember all the contextual
information of that item. The core assumptions of different dual-process models
are often quite similar, however, they still have important differences and still
make conflicting predictions about the functioning and neural substrates of the
underlying processes of recognition memory.

2.3.1 Java-based Associative Memory

The Java-based Associative Memory model [26] (JAM) is a cognitive model of
associative memory designed to understand the way humans hold a conversa-
tion, so that agents can keep a more meaningful conversation with people. In
the JAM model, there are many many nodes with concepts in them. These
nodes are what is currently inside the memory itself, and the concepts in the
nodes are the actual memory items. Each node has many associations with
other nodes, which is what relates different concepts to each other. Each node
also has an activation value, which is the likelihood that the node will currently
be activated. The activation of a node can happen in two ways. The first is an
external stimulus (e.g., you see an item in the memory), which directly activates
the node that contains the item you are seeing. The second is through spreading
activation. Every node that is activated spreads part of its activation to neigh-
bouring nodes that it is associated to, through a formula that is described in the
paper. This spreading activation process is how this model performs association.

14

Figure 6: Different types of stimuli as they would appear in the JAM model

2.3.2 Dual-Process Signal Detection (DPSD)

The paper [31] in which this model is thought of, first describes the different
reasonings behind recognition memory models. It then proceeds to explain why
single-process models might not be a good representation of the way it is repre-
sented in our brains. After this, a dual-process model is proposed, dubbed the
Dual-Process Signal Detection model. According to the DPSD model, items
in the memory have a certain ‘memory strength’. The process of familiarity
can find items with a higher memory strength more easily than ones with a
lower memory strength. This is because items with a higher memory strength
will have a stronger presence in the memory than others. Familiarity is mod-
elled as a signal detection process, while recollection is threshold based. With
a threshold for the recollection process, this means it can fail. If the recollec-
tion process does not reach its threshold, the wanted memory item will not be

15

recovered. While if the recollection process does reach its threshold, additional
contextually related information about the wanted item is recovered. Though
additional information is recovered, this does not mean that all the contextually
related information about the item is recovered. As mentioned before, this was
a common misconception of how associative memory was thought to work in
single-process models.

2.4 Evidence for dual-process models

Generally, single-process models stem from older research, while dual-process
models are more recent. Therefore, it should come as no surprise that the dual-
process models are currently more supported by the literature. Yonelinas, a
prominent researcher in the field, describes this very well in his paper where he
reviews 30 years of related research [32].

First, studies have indicated that familiarity is a faster process than rec-
ollection. In a test of speed, participants were usually able to make accurate
distinctions between studied and non-studied items, which according to the
dual-process theory is the process of familiarity. While under the same con-
ditions, participants struggled with recollecting specific information about said
items at a similar speed, which according to the dual-process theory is what
recollection does [16][17][13]. The fact that the two ways of remembering have
different processing speeds is important, because it shows that they don’t use
the same process of searching for and returning memories.

Second, throughout different papers it is shown that familiarity and rec-
ollection produce different ROC’s. ROC’s are functions that stem from signal
detection theory (SDT). SDT is frequently used to evaluate recognition memory
performance, and ROC functions are one way of measuring this performance.
Memory functionalities that use the same process, should produce very similarly
looking ROC functions. However, the shape of the ROC’s for familiarity and
recollection changed very much across different conditions. ROC’s have been
one of the main points of evaluation for every recognition memory model. So
the fact that these two functionalities showed very different shapes of ROC is
crucial and strongly suggests that there are two different memory processes at
play in recognition memory [10][21].

Third, recollection and familiarity show clearly different electrophysiological
correlates [6][7]. Event related potentials (ERPs) recorded on the scalp during
tests of familiarity and recollection showed a clear distinction between these two
functionalities. Although these results do not show which regions of the brain
are used for associative memory, it is important to recognize that this does show
that there are at least two separate brain processes involved.

Fourth, recollection is more heavily impaired than familiarity by certain
brain injuries. An example of this is that patients with amnesia exhibit signif-
icantly greater memory impairments in the process of recollection than of that
in familiarity [1][19]. This is another crucial result to come out of this field, as
it clearly illustrates that these two functionalities use different regions of the
brain.

16

Based on these four pieces of empirical evidence, most researchers in the
field currently believe that dual-process models have come closest to represent-
ing the way associative memory works in humans. However, this field is still
very much developing, as new insights into the human brain come to light ev-
ery day. Because of this, no definitive conclusions about whether dual-process
models are really an accurate way of representing associative memory can be
drawn. Nonetheless, for now they can be considered as the type of model that
currently best models the way associative memory works in the human brain.

17

3 Method

This GP covers a wide range of topics and areas of research. This is because
to correctly create a model of associative memory that could be used in a so-
cial robot, many different aspects and views on the same subject need to be
combined into one. There are many reasons as to why making a social robot
more empathetic is difficult, and the fact that an interdisciplinary approach is
needed, is one of them. Using an approach that only takes one or two areas of
research into account when making a model for a social robot, is likely to lead
to an end product with many faults in the other areas that could have been
prevented. Thus for this GP to have a realistic end product, it was necessary
to understand the different aspects that could make a robot’s memory function
the way we wanted it to. Which meant that orientation in subjects that were
almost completely outside the scope of the Creative Technology curriculum was
needed. To make sure that the orientation into these topics was going in the
right direction, a regular check-up with the supervisor was used.

3.1 Orientation

As mentioned previously, creating a model of associative memory for a social
robot to improve how empathetic this social robot can be, requires an under-
standing of many different topics. Research into these topics was mostly done
in parallel to each other, but for the sake of clarity they will be described one
by one. First, an understanding of what a social robot is, what it can do and
how they should be improved with the end goal of this project was needed. For
this, general research into robotics, what types of social robots there currently
are [28] and what efforts currently exist to improve them [11] was done. Then,
empathy [2][3] and different topics about the memory of a social robot were
researched. This is mostly where a lot of different fields come together in an
interdisciplinary way. Different fields such as Computer Science, Psychology,
Ethics, Electrical Engineering, and more all play a role in finding the right an-
swers to questions in these areas of research. So to understand these subjects
not only from one perspective, each discipline was researched to some extent.
During this research, answers were sought to questions such as what the mem-
ory of a robot should look like, how it could be based on the way memory works
in humans, how memory can help to create empathy in social robots, which
ways of modelling memory in robots have been created throughout the years,
and more.

3.2 Associative memory research

After the general orientation phase, papers that are more directly related to as-
sociative memory were looked into. Topics such as what is associative memory,
how it works in humans and how (associative) memory can help social robots
become more empathic [15] were researched. Out of this research, the conclusion
came that associative memory is indeed a big factor in improving the empathy

18

of a social robot. Giving a social robot memory, also helps in letting the people
interacting with the robot connect with the robot more easily. It makes sense
that if someone were to interact with a social robot on multiple different occa-
sions and the robot itself never remembers them after an interaction, this would
start to feel weird and does not make these people think that the robot has any
empathy for them. However, if someone interacts with a social robot on multiple
different occasions and the robot does remember them and the previous interac-
tions they have had with this person, this can create a sort of social bond that
is very normal between humans but less so between humans and robots. This is
a big part of why memory is an important aspect that should be incorporated
into robots. A social robot could mention previous interactions they have had
with this person, or just use certain information from them that is then useful
in a new interaction with this person.

This phase in the research is also where all the different associative memory
models were found. At the start, as many models as possible were gathered and
then all given an attempt to understand how they worked. One by one, a sizable
number of models was gathered and generally understood. Each model was usu-
ally quite different from the previous ones that were found. To keep a general
overview of each model, first a table was made with the most important aspects
of each model. This table is shown in Appendix A. This research played the
biggest part in shaping Chapter 2, as this talked about all the different models,
where they come from and what they are capable of. And it also helped during
the Ideation phase, as it helped in shaping many different ideas of how certain
models could be used in the end product. Then when this table was finished,
the next step was to experiment as much as possible with all the models that
had something to experiment with.

3.3 Experimenting

After having a general idea of how many models currently exist, what types
of models there are and what these models are like, it was time to start time
to start thinking about which models would eventually be usable in the final
product of this thesis. After the start of this phase and partially in parallel to
this phase, a list of requirements for the eventually needed models was made.
This list of requirements was then used to see which models were or were not
suitable for being used in the end product. For most models this would be done
by using the understanding there already was of these models, and working past
the requirements one by one checking to see which model meets most or all of
them. Then for the models that had software frameworks, these frameworks
would be experimented with as much as needed until it was clear whether this
framework could be used either fully, partially or not at all in the end product.
As expected, there was no software framework specifically aimed at the goal this
GP tries to reach. Therefore, the goal was to see if one of these frameworks came
close enough to the goal to be able to use it. So these frameworks were explored
step by step to reach an answer to the question if they could be used. The first
step was getting a basic understanding of how the software worked, and what

19

goal it was made for. This was done by exploring some of the more generic
code, and specifically some of the example applications the creators built into
the code. This usually gave a pretty good basic understanding of the framework
and its code. Then after this, it was time to start fiddling with the code, to try
and apply it in more specific situations that our model would eventually have
to be able to function in. If a framework is found that is able to function in one
or more of these situations they were placed in, it would be a strong indicator
that this framework could eventually be used in the end product.

3.4 Learning bottom-up through scenarios

Partially in parallel to experimenting with different frameworks, another method
was used to gain a deeper understanding of what we needed to make/create in
order to achieve our goal. This GP and the GP of S. Slebos both have the
common goal of helping to create more empathetic social robots. So to gain a
deeper understanding of how to do this, a bottom-up approach using scenar-
ios was used together with S. Slebos. The idea was to create many different
scenarios in which the robot we aim to help create could eventually be placed
in. Then, by writing down the different types of interactions it could have and
should be able to have, we gain a better understanding of what our models
should be able to do and how they should be shaped. By not putting any re-
strictions or expectations on our models and first take this approach, we start
the design of our models with an open mind and the chance of overlooking an
important detail in our models is also reduced.

These scenarios were created together with S. Slebos, through a template
which was decided on together. The first template that was created is shown in
figure 7 below.

20

Figure 7: First version of scenario template

This first template however, was believed to have too much information for its
intended application. Also, the Inputs/Outputs cells were fairly similar to the
three information cells. Thus, a second and final version of the template was
created in which the Inputs/Outputs cells were taken out. This version is shown
in figure 8 below.

Figure 8: Second and final version of scenario template

Through this template, many scenarios were created and thought of that a
more empathetic social robot could be placed in. There are however so many
applications in which a social robot can be put to use, that these scenarios had
to come from different domains to get a broader perspective on what associative
memory should be able to help a robot with. These different application domains
are shown in figure 9 below.

21

Figure 9: Different applicatoin domains used for scenarios

Each application domain covers a different kind of interaction a social robot
could have with a person. And for each application domain, many different
scenarios were created. By using the same template for creating these scenar-
ios in different domains, a list of requirements could be obtained of what an
associative memory model should be able to do. This could then be applied to
any existing or possibly new model to check if it meets this list of requirements.
Then if existing models fail to meet the requirements, it can be taken out of the
potential models for the end product. And if all existing models would fail to
meet the requirements, the list could be used to shape a self-made model into
something that does meet them. This way it is possible to make sure the end
product ends up adhering to what is expected of it.

22

4 Ideation

4.1 Role of the memory model

After research into the many necessary topics was concluded, some design de-
cisions needed to be made as the start of the Ideation phase. The biggest of
these decisions was what kind of a role the memory model this GP aims to bring
forward should play in the mind of a social robot. Questions such as ‘Will it
make certain decisions for the robot?’, ‘Should it produce output actions?’ and
‘Does it know how the robot can behave more empathetically?’ come to mind.
After some discussions with A. Kamilaris, the supervisor for this project and
S. Slebos, the decision was made together that two different models would be
made. One from the GP of S. Slebos and one from this GP. S. Slebos will create
a model that receives the current state of an interaction the robot is in, runs
this information through its various modules and based on the outputs from
these modules it decides on an empathetic output action the robot can execute.
Among the various modules in this model, is a memory module. In this memory
module is the associative memory model that this GP aims to create. This lay-
out was eventually decided on together with S. Slebos, and are discussed more
extensively in Chapters 6 and 7. Because this is the layout that was decided
on, many questions that arose about the model of this GP could immediately
be answered.

This model will not make decisions for the robot, it will not produce output
actions nor does it know how the robot can behave more empathetically. All
of this is because memory is not supposed to know and do everything. Just
as it is in almost any system (alive or not), the memory is a small part of a
bigger structure. It is a tool that can and should be used by other parts in the
same structure, but it does not exceed the boundaries of what it is meant to do.
Therefore, this associative memory model will exist purely to be ‘used’ by an-
other model like that of S. Slebos and it can not function independently. It will
also receive input that the robot is currently receiving, but it will only store this
information in such a way that it can be most easily accessed by another model
when needed. It will store all the necessary information, connect memories to
each other in specific ways, remember similar situations that the robot has been
in before and how that relates to the one it is currently one, keep track of all the
possible memories the robot can have, and retrieve them when they are needed.
It can execute many actions within the model itself and the memories it stores,
but outside of the model it has no influence. This means it will play a mostly
passive role in deciding how the robot should behave empathetically. In short, it
will be used as a tool to help reach a decision on a more meaningful empathetic
action that the robot can execute, but the model itself will not decide on this.

4.2 Origins of existing models

As discussed in Chapter 2, multiple associative memory models have already
been created. These models come from varying areas of research such as cogni-

23

tive psychology, neuroscience, cognitive science, computer science, biology and
combinations of these. Because of this, there is immense variation between most
models. Some models are based on the same principles and have certain similar-
ities, this is however the minority. Though these models have many differences
as they come from different fields, there is one thing they all have in common.
They were created as an attempt at modeling how associative memory works in
humans. Now this is a goal that is quite close to the goal of this GP, and these
models are very useful to learn from and experiment with. However, most of
these existing models usually have some problem when checked if they are suit-
able for this GP. They are either outdated and no longer supported by current
literature, never implemented into something that can be experimented with or
are implemented but not with the goal in mind that this GP aims to achieve.
This might pose a problem.

Each of the aforementioned problems with existing models can result in
them not being suitable for the end goal of this GP. For most types of models,
a problem often exists that makes it less suitable. For example, models that
are outdated and thus no longer supported by current literature, such as the
SAM [27] model, incorporate functionalities that are no longer believed to be
how associative memory works in humans. Models that are not implemented
into something to experiment with, such as the Dual-Process Signal Detection19
model, are either mostly or fully theoretical. While they might have incorpo-
rated many state of the art functionalities, they are often too new to have been
applied into something usable. And lastly, models that are implemented but
not with the goal in mind that this GP aims to achieve, such as the LIDA [9]
and the JAM [26] models, have existing software frameworks that can be ex-
perimented with. However, these frameworks are often created for goals that
are quite different from the goal of this GP. This makes it likely that they are
either not suitable from the start or require too big of a change to make them
suitable.

4.3 Single- or dual-process model

As discussed previously in Chapter 2, two main types of models were found.
These are the single- and dual-process models. At the end of the state of the
art, it was shown why dual-process models are believed to be more supported
by current literature in the field. This means that a dual-process model would
be the most ideal candidate for use in the end product of this GP. What was
quickly discovered however, is that as dual-process models are generally newer
and thus more supported by current literature, they often do not have an existing
implementation that can be used. This made it virtually impossible for most of
the dual-process models to be experimented with, which made them not suitable
from the start. While it is unfortunate that most dual-process models are not
suitable, it might not even be needed to have such an accurate depiction of
how associative memory works in humans for the goal of this GP. The goal of
this GP is to create an associative memory model that can be used as a tool
to give a robot more options for empathetic actions it can execute. This is

24

a relatively specific goal, and might not need the most accurate depiction we
currently have of human memory. While it is preferable, as it gives the model
more scalability to at some point exceed the goal of this GP, it might not be
necessary. There are many good purely theoretical models out there, but for
this GP models that have been applied in some way are needed. Thus, if there
are single-process models or slightly older dual-process models that do have an
existing application, these are highly favorable for this GP.

4.4 Software frameworks

This brings us to the two main models that have been applied in such a way
that they could be experimented with and possibly used for the end goal of this
GP. The LIDA PAM module and the JAM model. The PAM module will be
discussed first, as it has already been extensively talked about in Chapter 2.
Throughout the State of the art research phase, the LIDA model is the only
model that was experimented with. Specifically with the software framework
that implemented the PAM module’s functionality. The PAM module from the
LIDA model is the closest that this model came to something that could be
used for this GP, as the name Perceptual Associative Memory also indicates.
Therefore, as soon as the software framework for the PAM module was found,
it was experimented with.

Its creators set up a website [14] almost entirely dedicated to the LIDA
model. On this website are introductions, lectures, papers, tutorials, events,
press coverage and more all related to the LIDA model and its separate modules.
Through this website they allow you access to the framework, and help you learn
how it works through a long tutorial that starts with a very basic form of the
model, and adds more modules one by one to give a thorough understanding of
how it works. This was tremendously helpful, as it gave specific details on what
the PAM module was made to do in the LIDA model and could thus give an idea
if it could be used for this GP. Unfortunately, after working through the tutorial
and having a discussion about it with one of the framework’s co-creators, it was
decided that the PAM module and its framework would not be suitable for the
end goal of this GP. The PAM module ended up falling short, as it was created
only for very simple environments. After the co-creator pointed out that the
PAM module might be too basic for the goal, this was indeed confirmed by
working through the tutorial and noticing the simple environments it was made
for. This meant that it would not be a suitable framework/model.

Then, back to the Ideation phase. As it was now clear that models with
existing implementations were needed, the JAM model was the next best bet. As
was mentioned in the JAM paper [26], a Java software framework existed for the
JAM model. Therefore, the creators of the JAM model were contacted, to see if
they would be interested in sharing their framework and possibly collaborating
with this GP. Thankfully, they were kind enough to share the framework and
help with getting to know the framework enough to work with it independently.
The creators gave access to their GitLab repository, which can be seen in figure
10 below.

25

Figure 10: GitLab repository of CMM/JAM model

The name was slightly altered from JAM to CMM, as it also contained more
general parts than just the JAM code. This was quite a big repository, each
folder contained many different parts and at first it was unsure which belonged
to the JAM model. However after some searching, the right folder was found
and the JAM framework could be installed. The JAM framework in the Eclipse
IDE is shown in figure 11 below.

26

Figure 11: JAM framework in Eclipse IDE

When it was installed, first the general structure of the framework with its many
folders needed to be discovered. After some digging, it was found that three
main folders were used:

• The ‘src’ folder. Which as in almost any other project contains all the
necessary code for the project to function as necessary

• The ‘examples’ folder. Which contains many sub folders, each with its
own set of example applications that specific part of the code could be
used for

• The ‘contrib’ folder. Which similar to other big projects is used for storing
files or software that are needed for the project to function, but might not
actually be maintained by the creators of the project.

The ‘src’ folder was worked through first, through this the basic structure of
the framework was discovered. This made it clear which parts of the framework
relied on what code, and how this influenced what could be used for this GP.
Next was the ‘examples’ folder. This folder was mainly used as a way of learning
how all the separate parts of code in the framework could be used to apply
the JAM model to certain situations. First however, some basics of how the
model works needed to be understood. This was mainly done through the
‘ExampleCNEImport’ class, which can be seen in figure 12 below.

27

Figure 12: JAM framework’s ExampleCNEImport class

What this class shows an example of, and what is the basis of the JAM
model, is how they use the ConceptNet [22] as a knowledge base to help the
model understand interrelations between different words and concepts. Con-
ceptNet is an open source semantic network that is designed to help computers
understand the meanings of words that people use. It originated from an MIT
Media Lab project started in 1999, and has now become one of the most promi-
nent knowledge bases that can be used to help computers understand language
in a more human way. ConceptNet has many parts to it, but quickly summa-
rized it is a massive knowledge graph that contains almost any word that is ever
used and more importantly it contains all the relations between different words
and how often they are used in connection to each other and in what ways.
Through this, computers can input certain words into ConceptNet, and receive
words back that are related to those words in specific ways. It utilizes Con-
ceptNet to receive a list of possible words that might be applicable to certain
words. The JAM model then uses the words it receives from ConceptNet and
extracts the most useful words depending on the context the input words were
in. This is the basic functionality of the JAM model and also the functionality
that might be useful for this GP.

Back to the ExampleCNEImport class, let’s see how it works. The first part
of the class is shown again in figure 13 below.

Figure 13: Beginning of the ExampleCNEImport class

What can be seen here is that it first creates an instance of a knowledge base,
in the code it’s called a ‘Network’. This Network is initialized in a specific
language, which is done by the ‘importKnowledge()’ method. This method

28

imports a ‘de.CNE’ file, which contains all the necessary German (indicated by
the ‘de’, but it could be any supported language) words and their relations to
other words, basically the actual knowledge base. Then when the knowledge
base is imported, the necessary methods are called to get the Network ready for
use.

Figure 14: Input specification

After this as seen in figure 14 above, a certain text file is specified which contains
the textual input that will be given to the model. In the case of this GP, this
could be a sentence that the person who is interacting has said to the robot.
Also, certain variables are initialized for use from this point on. Then as can be
seen in figure 15 below, the input is lemmatized and filtered for use.

Figure 15: Lemmatization and filtering of input

Lemmatization means grouping together the multiple forms of the same
words that exist in the input. If the input would for example have the words
‘become’, ‘becoming’ and ‘became’, these would all be lemmatized to ‘become’,
the most basic form of the words. This is because ConceptNet is only able to
analyze the most basic forms of words. Then after this, all the stopwords that
exist in a certain language, in this case German, are taken out of the input.
This is because ConceptNet is not able to give any extra meaning to the output
using these words, so they might as well be taken out. Then the model performs
many actions on this input, using ConceptNet where needed and some math is
also involved. Lastly, for each word in the input that ConceptNet recognizes,
the JAM model prints out the 20 words that are most likely to be usable in the
same conversation as the word that is being analyzed. An example output is
shown in figure 16 below.

29

Figure 16: Output of ExampleCNEImport class

As can be seen in the figure, each word in the input is analyzed one by one.
First they are transformed into their most basic form, nothing changes in this
example however as they are already in their basic form. Then the word itself
and the top 20 most related words are shown with two values. The right value,
which is the base activation level, indicates how ‘activated’ a word is without
input and the left value, which is the current activation level, is how activated it
is now. The closer these are to zero the more activated a word is. These values
are also relative to how often a word is generally used in language, so words
that are more often used always have both activation levels closer to zero even
if they are not being affected by the input. This is also taken into account when
returning the most related words.

After this ExampleCNEImport class was explored, the most important func-
tions of the model had already been discovered. Importing a knowledge base,
choosing a language, inserting an input file, lemmatizing and filtering of the in-
put file, the actual analysis of the input file and the eventual output the model
creates. A good example of how this part of the model can be used in a certain

30

situation will be given now. Within the framework there is the ‘LmMutator’
class, which aims at analyzing an entire sentence instead of separate words. The
hope is that through this class it is possible to let the model see correlations
between words in a sentence. If this is possible, this model could be suitable for
the goal of this GP. As in that case, it could see correlations between different
things the robot could be sensing, and associate different things to this input
based on the context of the situation and what the robot has stored in its mem-
ory.

Now back to the LmMutator class and the example usage of the model it
can give. It analyzes a sentence, and the hope is that through this it can see
interrelations between different words in that sentence the same way humans
can. A picture of the main() method, which is where most of the functionalities
are seen, is shown in figure 17 below.

Figure 17: Main() method of LmMutator class

As can be seen at the top of the figure, first many files with different file types are
retrieved from their necessary folders and initialized into the ‘LmMutator’. This
LmMutator combines the Network that was talked about earlier with different
necessary components to be able to analyze a sentence. Then, the ‘targets’ are
set. These targets are certain words that will constantly have how active they
are shown each time a new word is analyzed. This can be done to see if a certain
sentence activates a word that would be expected to activate. In this example
sentence the words are in German, but the sentence translates to ‘afternoon
person park rain walking raining storm’. Now from this sentence, a word that
is reasonably expected to activate is ‘umbrella’. Therefore the word umbrella,
which in German is either ‘Regenschirm’ or ‘Schirm’, is put as a target word.
This way the LmMutator class will always show both the activation levels of
these two words. When the sentence is then analyzed, part of the output that
is gotten is shown in figures 18, 19 and 20 below.

31

Figure 18: First example output of LmMutator class

Now as can be seen in figure 18 above, here the word ‘person’ is ‘stimulated’.
This means that it is recognized by the model as being input, and is now being
analyzed. The ‘activation count’ below that is how many other words have
a changed activation because of the stimulated word, for the word ‘person’
this number is quite high as it is a word that can be used with many other
words. Then, the two target words are shown, with their base activation level
their current activation level. As is visible, the current activation level does
not change much from their base activation level, which means that the target
words are not very strongly related to the stimulated word, which in this case
makes sense.

32

Figure 19: Second example output of LmMutator class

The same goes for other words such as ‘park’ when they are stimulated. As
can be seen in figure 19 above, the two different words for umbrella both activate
even less with this word. This is mostly because park is a less often used word.
However when a word such as ‘rain’ is stimulated, we get the output shown in
figure 20 below.

33

Figure 20: Third example output of LmMutator class

Now while the two words may not be at an activation of zero, they changed
quite a lot compared to the last two times when words were stimulated. Indi-
cating that these two words are more strongly related to the stimulated word,
which corresponds to what was expected. This gave confirmation that the model
was indeed working as expected, and is able to associate words in a sentence
to other words in its database. The unfortunate discovery that came after this
however, was that the model was not able to understand interrelations between
different words in the same sentence. By using different example sentences and
target words, it was found that many target words that were expected to be
activated by a certain combination of input words, actually did not. And this
ended up being, because the model is just not capable of understanding interre-
lations between words in the same sentence. This was a discovery that impacted
the suitability of the JAM model in such a massively negative way that it ended
up not being usable for this GP. This also meant that there were no longer any
models with existing software frameworks out there that could be used for this
project. Which in turn meant that a new model had to be created. This is
where the creation of scenarios came in handy.

34

4.5 Scenarios and model requirements

As discussed before in Chapter 3, scenarios were created to analyze what an
associative memory model should consist of, in the context of it helping a robot
to execute more empathetic output action in its interactions with people. The
template for creating these scenarios and the various application domains that
were chosen were shown before. There are two reasons that these application
domains were chosen. The first being that these are application domains in
which a social robot is very likely to eventually be placed in, when they are ad-
vanced enough. Then the second reason they were chosen is that these domains
vary immensely in location, context and types of interactions a social robot can
have. This makes sure that the requirements that come out of these scenarios
satisfy any need that the social robot could have of its associative memory, in all
the possible different domains that it can be placed in. This list of requirements
will be started off with the two main functionalities of a memory model. The
first being that the model should store memories in such a way, that they can be
most easily retrieved and the second is that the model should be able to deliver
memories to other processes in the memory when they are needed. These two
requirements can be assumed as being necessary, as a memory model can not
function without them. Then from these two, new requirements will be added
one by one depending on if a scenario shows that they are necessary for the
model to work in that situation. Multiple scenarios will be discussed to see if
they create new requirements that should be added to the list.

First is a scenario where the robot greets people at the entrance of a super-
market, this is from the ‘Supermarket clerk’ application domain and the scenario
is shown in figure 21 below.

Figure 21: Entrance greeter scenario

As can be seen in this scenario, the robot needs to be able to recognize cus-

35

tomers as they walk in and remember past interactions they have had with
the recognized customers. These are already two requirements that the model
should be able to do, even for the most basic interactions. There are multiple
ways of meeting the first requirement. Facial recognition or voice recognition
are examples, but these both have flaws. People do not always show their face or
speak to the robot. Therefore, the method that was chosen is to store the most
clearly identifying features of a customer. These identifying features would then
be used to create some sort of ID for the customer, which the current input can
be compared to. If the robot would see that customer again after having created
an ID for them in its memory, they would repeat this same process of creating
an ID for the customer and this ID would be compared to the ID that is stored
in the robot’s memory. Then if these ID’s match, the customer is recognized. As
mentioned before, when a customer is recognized past interactions the robot has
had with this customer should be remembered. As there are already multiple
concepts that need to be stored related to the same person, a memory structure
is also needed to keep all these concepts stored somewhere.

This memory structure will store more than these two concepts, as will be
discovered with the next scenario.

Figure 22: In-museum clerk scenario

In the scenario in figure 22 above, the robot should be able to guide travelers to
the store they are looking for or a related store that they would enjoy too. In
the example scenario that is given John asks where the whiskey store is located.
The robot has seen John before as he is a frequent flyer through this airport,
so through remembering John and using the associative function of its mem-

36

ory model the robot remembers that John has a wife and that he usually buys
something for her when he gets back. The robot knows there was previously
a whiskey store here, but that is now replaced with a wine store and through
association it also remembers that John’s wife enjoys wine as well. Therefore
after all this, the robot suggests that John go to the wine store that replaced the
whiskey store he initially wanted to find. By exploring this scenario, it can be
seen that memories should be related to each other and somehow connected, so
they can be found from the memories that relate to it. This is the third concept
that should be stored in the memory structure mentioned earlier. Then, there
should be some process that actually associates from a certain memory to find
other memories that are strongly related to that memory. This is how the robot
found the memory of John’s wife and that she likes wine as well.

These two scenarios were handpicked from a bigger list of scenarios. The
reason these two scenarios were picked is because they allowed for a quick in-
troduction and explanation into the various requirements for the model that
were discovered through the use of all the scenarios. Of course not all of these
requirements were discovered specifically because of these two scenarios, but
they provide a simple way of explaining them. The rest of the scenarios that
were created together with S. Slebos can be seen in Appendix B. These will
however not be discussed here, as the requirements of the memory model of this
GP that were discovered through scenarios have already been introduced and
explained. There are still more functionalities incorporated into the final mem-
ory model that have not been mentioned yet, most of these came from other
already existing models and will be discussed in section 4.6 below.

4.6 Combination of different models

Certain requirements for the memory model were found through placing a hy-
pothetical social robot in different scenarios, to learn what the model should be
able to do. However, the model is not yet complete. Many associative memory
models already exist and from these models is where the last requirements for
the model came from. For example, almost all models that have a clear layout
had two or three different layers of memory. According to most research, three
different layers of memory is most supported by the current literature as to how
it is in humans. Therefore this will also be a requirement for the model that will
be created. Which layer of memory stores what kind of information is mentioned
in the paper about ‘mnemograms’ [5], therefore this memory model will have
a similar layout. Three layers of increasing size, each with its own functions.
There needs to be a central layer of memory that receives data from the current
input and data from the memory of the robot, which is also connected to the
other model which uses this model as a tool. This is also a requirement for
the model. Also as mentioned already, there needs to be some connection be-
tween different memories. This is a concept that returns in almost any existing
associative memory model as well and they are almost always called ‘associa-
tions’. These associations are what connect memories to each other in different
ways, to show the many different relationships memories can have between each

37

other. This is why there should be different types of associations and associa-
tions should have different strengths.

All these different requirements that come out of the different existing mod-
els, were put into a sketch of the model layout and some of its functions during
the Ideation phase. This sketch can be seen in figure 23 below.

Figure 23: Sketch of existing requirements of memory model

In this sketch, the three layers of memory are given certain names based on how
they are most often used in literature. Each layer is already given relatively
thought out functionalities and amount of information it stores. When infor-
mation gets passed on or retrieved from one layer to another is also explained
somewhat, but will be discussed more thoroughly in Chapter 5. In this sketch,
the memory structures that were mentioned before are called ‘concepts’. This
name will be changed later on in Chapter 5. For now however, how the asso-
ciations worked when the model was in this phase will be explained with the
word concept indicating the memory structures. Each concept has its memory
content, which is the actual memory (e.g., a person) that is stored. Between
concepts that are related to each other in some way are associations that point
both ways. This association makes sure that the process that does the associ-
ating in the memory model can find strongly related concepts to a concept that
the process started out from. Each association has a type and a strength. The
type indicates the different kinds of relationships there can be between concepts
and the strength shows how strong this relationship is.

After this the Ideation phase concluded. In the Specification phase, each
requirement will be put in a list and be revisited and thought about more thor-
oughly. In this next phase the final version of the new model that was created
is also presented and explained in more detail.

38

5 Specification

As discussed in the Ideation phase, the associative memory model that will be
presented in this Specification phase is primarily conceptual. Even its imple-
mentation which is shown in the Realisation phase. This is because there were
unfortunately no existing models with software frameworks that were suitable
for the goal of this GP. Therefore, this model will be a tool that is supposed to
be used by another process or model. This model and its conceptual implemen-
tation are also meant as helping hands in a more applied implementation in a
future project

5.1 Requirements

For the model that will be created in this phase, certain requirements were
discovered through different means in the Ideation phase. The requirements of
what the model should be able to do to function optimally will be listed below.
The model should:

• Store memories in such a way that they can be efficiently retrieved

• Deliver memories to another process/model when they are needed

• Recognize things it has seen before

• Remember past interactions it has had with things it recognizes

• Store all information related to one thing in a memory structure

• Make connections between memories that are related to each other

• Find memories that are most strongly related to a certain memory

• Have three layers of memory, each increasing in size

• Have a central layer of memory that executes most of the actions within
the model and is connected to the model that uses this model as a tool

• Have connections between memories with different types and strengths

These requirements vary greatly in importance and functionality, however
meeting all the requirements should be the goal. Only when they are all met,
will the model most likely work as expected in all the different scenarios that
were created. These requirements will now be worked out into its final form and
explained how the different functionalities work in the actual model itself.

39

5.2 Design of model

5.2.1 Layout

There would be three different layers of memory, Sensory Memory (SM), Short-
Term Memory (STM) and Long-Term Memory (LTM). As can be seen in figure
24 below, in this order they have an increasing amount of things they can store.

Figure 24: Layout of the different layers of memory

With the LTM storing by far the most, as this is where an entire lifetime of
memory is stored. There is no real start or end to these three layers of memory,
however they do have a limit as to how much data they can store. The SM
stores what all the senses have been sensing the last couple of seconds. The
SM sends data to the STM if this data is sensed for a longer amount of time,
or if the robot pays attention to it. In the STM, all the latest data from the
last couple of hours is stored, and also all the data that currently needs to
be remembered from the LTM. The STM sends all the data it contains to the
LTM to be remembered, and along with it it tells the LTM how important of a
memory it is, how it relates to other memories, etc. In the LTM, all the memory
from the entire lifetime of the robot is stored.

Many memories that were once stored in the LTM quickly get forgotten, as
they did reach the STM and thus the LTM, but they were not important enough
or not sensed for long enough to remember them. Many other memories however
are still stored in the LTM, and these memories are needed now and then by the
main process in the brain of the robot. In general, whenever the social robot
with this memory model needs to think of or remember something, it will be
retrieved from the LTM to the STM. And when a memory item is retrieved to
the STM, we consider that item to be remembered. Then when an item is in
the STM, it can be accessed and used by the main brain process. This is why
the STM can be seen as the central part of the model, almost like the CPU of
the model. It performs most of the actions, and is the biggest factor in how
the model works. The SM can be seen as a buffer for giving data to the STM,

40

while the LTM is simply a database that the STM uses to make associations
and perform other memory tasks.

5.2.2 Item storage in the LTM

Memories are called ‘memory items’, as these memory items are not just what
memory it contains. Memory items in the LTM are stored in a network. More
specifically, a network that has the characteristics of a weighted directed graph.
In this network, each memory item has different things related to it. First and
foremost it is meant to store its memory content. However, this is not all. Apart
from its memory content, each memory item contains these three key things:

1. An ID, made up of the most basic identifying features of the memory
content, which is used for recognizing something quickly when it is sensed.
The most distinguishing features of an item are combined so that whenever
something is sensed, these ID’s can be compared to whatever is being
sensed to check if something has been sensed before or not.

2. An individual activation level of the item, which indicates how strong the
memory of it is and how long it will still be stored. Activation levels of
all items diminish at the same speed, so items with lower activation levels
will be forgotten more easily. There are three ways the activation level of
an item can increase.

• When an item is sensed. If this happens its activation level increases
immensely temporarily, and is cut down to a lower level when it is
no longer sensed. This lower level however, is still higher than what
the level was before the item was sensed.

• When an item is remembered. In this case a memory item is retrieved
from the LTM to the STM, to be used in a certain thought process or
action involving the retrieved memory item. Any time this happens,
the activation level of the item is increased corresponding to how long
it stayed in the STM.

• When an item is associated. This means two things. It means that
if a memory process is traversing the memory in search for a certain
memory item and that item is eventually found and retrieved to the
STM, its activation level is increased the same way when an item
is directly remembered. The second thing it could mean, is all the
memory items that a memory process traverses past in search for
a specific memory item. All the items that a memory process tra-
verses past in its search, are also given a certain increase in activation
level. However, because these items are only traversed past and not
remembered, this increase in activation is lower.

3. Past ‘encounters’ data entries. Each time that the robot recognizes that
it is sensing a human that it has sensed before, it makes an ‘encounter’
data entry in the human’s corresponding memory item to store that it has

41

encountered that human again. In this ‘encounter’ data entry, it stores
everything about the encounter. It stores what the person looked like,
at what time they were at the location, for how long, with who, what
they were doing, etc. This way, each time that a memory item comes
back to the same place where the robot is, the robot will remember their
past visits as well. Each part of this ‘encounter’ has its own individual
activation level, and this also decays. If something of an ‘encounter’ is not
used, it will most likely be forgotten relatively quickly. While if something
of a certain ‘encounter’ is used, its activation level will be higher again so
that it is stored longer.

4. ‘Associations’ that connect a memory item to other items in the memory.
An association is a link between two items that could be described as a
directed edge, with a weight, (i.e., association) that points from one vertex
(i.e., memory item) to another vertex. These associations indicate that
the two items are connected to each other somehow, and the direction of
the association makes sure that any process that traverses through these
memory items follows the directions that the association is in. These
associations could mean any obvious connection such as ‘These two people
are father and son’, or something as vague as ‘The last time I tasted this
flavour, I was in country X’. Each association also has its own type and
weight. The type indicates in what way the two items are connected to
each other, the weight indicates how strong that connection is and how
long it should remain stored.

5.2.3 Associations

There are an unthinkable amount of different types of connections two mem-
ory items can have with each other. With some connections being stronger
and more important than others. Connections between people because they
are family for example, are important and strong connections that should be
permanently remembered. But a robot will not realise this unless we make sure
it does. Therefore, some types of connections need to be given its importance
beforehand. For the robot that we aim to build, this can be done manually. As
we aim to place the robot in only one or at least a small amount of different sce-
narios. Because of this, manually indicating which types of associations should
be permanent is still doable. This could also be done through its knowledge
base if the robot needs to be applicable in more than one scenario. The robot
has a knowledge base which in that case could tell the process that makes as-
sociations, which connections are generally more important in life than others.
For example, two people being father and son is generally a more important
connection than a smell that you associate to a place that you have been before.
These things that people learn throughout life, can for the robot be taken out
of its knowledge base.

And because there are many different types of connections, we need to some-
how tell the robot which types of connections it can make, and when it should

42

make these. If we wanted the robot to be able to perform in every possible sce-
nario, we would make these types very generalised. However the robot we aim
to create, will most likely be situated in one place most of the time. Therefore,
the connections that it is able to make can be narrowed down to only the ones
that will be used in that specific place. An example of this is given in section
6.2.1, where one scenario is worked out in more detail.

5.2.4 Remembering

Memory items are stored in this network configuration, because items that are
needed together once, will most likely be needed together again. Therefore,
by connecting associated items together, it becomes easier to find the needed
items in the memory through the items they are connected with. The process of
remembering an item starts in the LTM at one or more items that are currently
being sensed. Then from these items they traverse to a specific item in the
memory that is needed in that moment. This traversing is done by following
whatever associations these items have, starting at the associations that have
the highest weight. Because the weight of the associations is also based on how
often certain items are remembered together, it is highly likely that two items
with a higher weight association need to be remembered together again. Then
from each item that the process started at, it starts moving to other items one by
one. It keeps going in the same direction as long as the weight of the association
that it is connected to the next item is higher than any one of weights of the
associations from the starting item. At some point the wanted item is found,
and this memory item is then retrieved to the STM (i.e., remembered).

An example of this could be when someone asks you what the name of your
dog is. In that instance you sense the question, and then from the starting items
‘name’, ‘dog’ and possibly others, your brain traverses through your memory
to find the memory item that contains the answer you are looking for. Then,
whenever the needed item is found and is retrieved to the STM a new association
with a certain type and weight is created from the item that was sensed, to the
item that was remembered. Because apparently there is a connection between
these two items in that direction.

Two memory items can also be associated with each other in both directions.
Then there would need to be two separate associations for each direction, each
most likely with its own type and weight. This is because the opposite version
of an association does not necessarily have the same type or strength. A simple
example of this would be the memory items of your bike and the key that opens
the lock of your bike. When you see the key, you immediately think of the bike
that the key unlocks. However when you see your bike, you could think of going
for a bike ride, your feelings toward the bike, any special moments you have had
with the bike, etc. Among these associations could be the key that opens the
bike, but it would most likely have a very different weight and type than the
association from the key to the bike.

43

6 Realisation

To achieve the goal of this GP, some form of implementation needed to be
made for the newly created memory model. However, a fully implemented
memory model application is very complex and challenging as can be seen by
not many existing models even having one. Because of this, much of the time
from the Realisation phase was first spent on trying to find and understand an
existing software framework that could be used for this GP. Unfortunately this
ended up giving no results and an implementation was still needed. As a full
implementation into code was likely to be too ambitious of a goal, it was decided
to create a conceptual pseudocode implementation of the newly created model.
A goal was set to create a conceptual pseudocode which implemented most, but
hopefully all of the requirements given in the Specification phase.

6.1 Pseudocode

The created pseudocode will now be shown in parts, explaining each class one
by one to give a more thorough understanding. First, the Association class will
be explained.

Figure 25: Association class

The Association class in figure 25 above represents the associations that connect
related memory items to each other. As mentioned before, each association has
a type, a weight, and a direction, each in its own way indicating what sort

44

of relationship the memory items have between each other. There are getters
(methods that retrieve, ‘get’, a specific value of an association) for each variable
the association has and setters for the variables that need them. The direction
an association is in depends on which memory item is initialized in what spot
when an association is created. As mentioned in section 5.2.3, the types of
associations will be chosen manually per situation. Among these different types
certain types should never be forgotten, an example of this would be a family
relationship. In the Association class these types are put into a separate data
structure which gives them the ‘permanentAssociation’ status. Then the next
class is the MemoryItem class.

Figure 26: MemoryItem class

The four concepts that a MemoryItem should store are incorporated into this
class in different ways. Each MemoryItem first gets initialized with an ID that
is created by the SM and an activationLevel of a certain level. Then the associ-
ations and past interactions that a MemoryItem should store are both stored in

45

separate data structures. These data structures are automatically updated when
a new interaction happens or when a new association is created. This is done
through the method which creates a new association and the method that adds
a new encounter to the corresponding data structure. The class has a method
for increasing the activationLevel of the MemoryItem, which would be called if
an item is retrieved to the STM. There is a method for returning the strongest
association an item has, multiple methods related to the ‘permanentItem’ sta-
tus an item can have (which works the same way as the permanentAssociations)
and then there are the usual getters and setters.

Figure 27: SensoryMemory class

Then comes the SensoryMemory class as shown in figure 27 above, the smallest
class. It has two main functions. The first is extracting an ID from the data
structure which contains the current sensory input that is being perceived and
sending this to the STM. The second is deleting any perceived input from the
Sensory Memory that was never used if the max amount of items is exceeded.

46

Figure 28: ShortTermMemory class

Then the second and core layer of memory, the ShortTermMemory class.
The data structure in this class stores the currently needed items from the LTM
and the data received from the SM. Then there are three main functionalities
the class performs. It compares the inputID’s it receives from the SM to the
stored ID’s in the LTM. If the inputID is the same as an ID in the LTM,
the MemoryItem corresponding to this ID is retrieved to the STM. If it is not
the same, a new MemoryItem is created in the LTM with the inputID as its
ID. In both cases a new encounter is made with this MemoryItem. The next
functionality of the class is to loop through all the MemoryItems currently in the
STM and update their activationLevel. Then, the second for loop goes through
all the MemoryItems as well. If there is an existing association between the item
from the first and the item from the second for loop, its weight is increased. If
there is no association between the two items and the model recognizes there
could be one, a new one is created. Lastly if the max amount of items is
exceeded, the least necessary items are sent to the LTM. The last class in the
pseudocode is the LongTermMemory class, which is the layer of memory that
stores almost all of the memories.

47

Figure 29: LongTermMemory class

As can be seen in figure 29 above, the first part of this class is two for loops,
each going through all the different MemoryItems in the data structure that
holds them. For each item that does not have the permanentItem status, first
its activationLevel gets decayed. When the activationLevel of an item becomes
zero, they are removed from the LTM (i.e., forgotten). Then, the weight of
each association (without the permanentAssociation status) that item has with
another item is decayed. When the weight of an association hits zero, it is
removed from the LTM as well. Then there is the associateFromItem method.
This method takes a ‘starting’ MemoryItem as input and returns the top X most
strongly related items to that starting item. As these most strongly associated
items are very likely to be useful in an interaction, this method can be used
to give the robot more options for creating an empathetic output action in its
interaction with someone.

6.2 Scenario application

Now that the general functionalities of the pseudocode has been explained, an
example of how it works will be given in a more detailed scenario.

6.2.1 John and Bob at the park

This scenario was picked from the many different scenarios to be worked out in
more detail. In this scenario, the social robot who is given the name Billy is

48

situated at a park in a city. A father John and his son Bob is who the robot
interacts with in this scenario. It first sees John and his son together in the
park and then John alone the next day. For this specific location the robot is
situated in, a specific list of different association types has been made. These
are the types of associations the robot will pay attention to when. This may
however not be an exhaustive list of associations it would actually need in real
life, as it is merely to give an example of how the pseudocode would work.

Example association types in this scenario:

• Family relationships (eg., John isFatherOf Bob)

• Carrying (eg., John isCarrying a dog)

• Wearing clothes (eg., Bob isWearing a raincoat)

• Type of vehicle (eg., John cameWith a car)

• Type of activity (eg., John isReading a book)

First meeting - John and Bob together

Figure 30: First part of park scenario.

This scenario will now be discussed step by step:

• Billy sees John and Bob for the first time
The information of John and Bob is in the SensoryMemory class. As
the robot is seeing people that aren’t normally there, the input is not null.
The robot extracts two inputID’s, one for John and one for Bob and sends
these to the ShortTermMemory class. From the ShortTermMemory, the

49

two inputID’s are compared to all the IDs the robot currently has in its
LongTermMemory. Because the robot has never seen John or Bob before,
two new MemoryItems are created in the LongTermMemory class, each
with John or Bob’s inputID as the ID of their corresponding MemoryItem.
After these two items are created, a new encounter is stored in both, which
by storing the time and location they were at, indicates that John and Bob
were in the same place at the same time.

• Bob is playing on the swing
When the robot sees that Bob is playing on the swing, Bob’s ID and the
ID of the swing in the park are extracted in the Sensory Memory and
sent to the ShortTermMemory. As the robot has seen them before, their
MemoryItems are retrieved from the LongTermMemory. Then, because
the robot sees these two items interacting with each other, there is an
association created between them.

• John calls Bob ‘son’
When the robot hears this, a new ‘isFatherOf’ association between them
is immediately created indicating they are father and son. When making
this association, it is indicated that this is a family relationship, and is
thus an association that should not be forgotten. This is indicated as the
association being a ‘permanentAssociation’. This status will make sure
this association’s weight will remain constant, while other associations’
weights will decay and eventually be forgotten.

• John and Bob came with a car
Because of this, between the memory items for John, Bob and car there
will now be new ‘cameWith’ associations created. Also, that they came
with a car will be stored in the ‘past encounters’ data structure.

50

Second meeting - Seeing John alone

Figure 31: Second part of park scenario.

• Billy sees John
In the SensoryMemory John’s ID is extracted and sent to the ShortTer-
mMemory. Then from there, this ID is compared to the ID’s of items in
the LongTermMemory. When a match is found, John’s MemoryItem is
retrieved to the ShortTermMemory.

From here on out, most of the actions the robot has to perform are outside
of the scope of actions the associative memory model this GP has created can
make. A model that is however capable of executing the necessary actions, is S.
Slebos’ model. These are actions such as producing output actions and thinking
about which output action to make and they are shown in the list below.

• Produce greeting sentence: “Hey John!”

• John works hard and could be blowing off steam after a work day → He
might appreciate some talking

• Start thinking about a personalized sentence

• Using the related information, Billy realizes John is now here without Bob

• Billy knows that its late on a workday and Bob is a young kid → Bob
most likely in bed

• Personalized sentence found

51

• Produce output sentence: “Too late for Bob to play at the park?”

However for certain actions in this list that S. Slebos’ model needs to execute,
it requires the memories from the model of this GP. Exactly for this reason, that
for almost any scenario both of the models are needed in unison, it was decided
to combine the models into one. This way, the combined model can execute
actions that both separate models could while taking necessary information
from each other to execute these actions as well. The combined model that
was eventually created and S. Slebos’ separate model will be discussed more
extensively in Chapter 7.

52

7 Evaluation

As the model and its implementation are created, they should now be evaluated
through different means. First, the model will be applied in four scenarios
from different application domains to see if it would work in these varying
domains. Then, the requirements shown in Chapter 5 will be held next to the
functionalities of the pseudocode to see if it meets all the requirements in the
list. Lastly, S. Slebos’ model will be quickly introduced and then combined with
this model into a more unified one.

7.1 Application in scenarios

The first scenario the model will be applied in comes from the ‘Supermarket
clerk’ domain.

Figure 32: Recipe assistant scenario

The scenario shown in figure 32 above, is one where the robot helps customers in
the supermarket to pick out a recipe that is suited for them and the ingredients
they already have or want to use that day. Customers can approach the robot
and enter certain ingredients they want to use or already have into the robot’s
terminal. Then, the robot can suggest a recipe based on input the customer
has entered and previous experience the robot has with that customer. In the
example scenario, a customer comes in before dinnertime and asks the robot
what they could make with their leftover rice. The robot first recognizes the
customer and retrieves their corresponding MemoryItem to the STM. It then

53

processes the customer’s request, now with the contextual information in their
MemoryItem. The robot associates from the MemoryItems corresponding to
rice and dinner, and quickly comes upon the MemoryItem that corresponds to
curry and recognizes that this customer especially likes spicy curries for dinner.
It checks the necessary ingredients in most spicy curry recipes to see if there is a
discount on any of them and notices that chicken breasts are on discount. This
information is then sent to the model that produces the output actions, which
means this model has done its task.

The next scenario is one from the ‘Museum guide’ application domain and
is shown in figure 33 below.

Figure 33: In-museum clerk scenario

In this scenario, the robot is situated inside a museum to keep an eye on the mu-
seum while being able to provide interesting information on the current expo’s
to the visitors. The museum’s visitor can come up to the robot to ask a ques-
tion about an artwork when they are interested in knowing more or possibly
do not understand something. This is exactly what happens in the example
scenario. A visitor mentions that he does not understand the artwork in front
of him and asks the robot to explain some more. The robot does not recognize
the customer, but it does recognize the artwork that the visitor is talking about
and retrieves its corresponding MemoryItem. This information is enough for
the model that produces output action to decide on the next actions for the

54

robot, so the information is passed on and this model’s task is complete. This
is a scenario where not many of this model’s functionalities are needed, but it
can still assist the model that produces the output actions.

Another scenario is one from the ‘Airport clerk’ domain, specifically one
where the robot is situated behind an information kiosk in the airport.

Figure 34: Information desk scenario

In the scenario, which can be seen in figure 34 above, travelers can come to
the information kiosk to ask the robot airport related questions. Which is
exactly what a traveler does in the example scenario. The traveler asks the
robot where they can check-in for their flight and shows the robot their ticket.
The robot first recognizes the traveler and retrieves their MemoryItem. From
the past encounters it is noticed that this traveler always has two suitcases
with them, but now only one, this information is stored to be sent to the other
model later on. The robot then identifies which flight they are taking from their
ticket and checks the current flight information that it remembers. It finds the
corresponding flight among the current flight and the gate that it is located. The
model then sends all this information to the model that produces the output
actions.

Then the last scenario that the model will be applied in. This is a scenario
in the ‘City centre’ domain.

55

Figure 35: Hotspot information scenario

In this scenario which can be seen in figure 35 above, the robot is situated at a
tourist hotspot. People can come up to the robot and ask for answers to more
specific questions than the ones that are on general signs. Or it could possibly
even completely replace signs like this. In the example scenario, someone asks
what the most interesting fact is that most people don’t know about the hotspot.
The robot first recognizes the person and retrieves their MemoryItem to the
STM. The model then sees that this person is often interested in the history of
things, which might be good to know for giving an interesting response. This
and other possibly useful information is then sent to the model that produces
an output action.

7.2 Meeting the requirements

Throughout the design process of the model and its implementation, a list of
requirements was created to keep track of what the model should be able to do.
This list will be presented again below, to walk through each point one by one
to show if and how the requirement is met.

• Store memories in such a way that they can be efficiently retrieved
This requirement is mostly met by the LTM. This memory layer stores
all the memories the robot still remembers throughout its lifetime. Each
memory has its own MemoryItem with the four different concepts it stores
and each item is connected to other items by means of associations, which
allow memory retrieval processes to more easily find the item they need.

• Deliver memories to another process/model when they are needed
The model retrieves memories based on current sensory input it receives.

56

Therefore, the memories that are being retrieved are very likely to be
useful in interactions. These memories will be delivered to another pro-
cess/model when this model has finished its processes.

• Recognize things it has seen before
The SM extracts inputID’s based on the current sensory input and then
sends this to the STM. The STM compares the inputID to the ID’s that
are in the LTM and when there is a match something is recognized.

• Remember past interactions it has had with things it recognizes
When something is recognized, the corresponding MemoryItem is retrieved
from the LTM to the STM. In this MemoryItem each encounter the robot
has had with it is stored in the ‘past encounters’ data structure.

• Store all information related to one thing in a memory structure
This requirement is met by the MemoryItem class.

• Make connections between memories that are related to each other
This requirement is met through the Associations that are connected be-
tween MemoryItems.

• Find memories that are most strongly related to a certain memory
The ‘associateFromItem’ method in the LTM class meets this requirement.
With this method, the top X most strongly related items to a specific item
are returned.

• Have three layers of memory, each increasing in size
This is met by the SM, STM and LTM.

• Have a central layer of memory that executes most of the actions within
the model and is connected to the model that uses this model as a tool
As discussed before, the STM is the central layer of memory in this model
and is also the layer of memory that would be connected to other models.
This is shown in an actual model in section 7.3.2.

• Have connections between memories with different types and strengths
The connections are made by the Associations. These each have different
types that are chosen based on what the robot’s task is, weights that
show how strong an association is and even directions that indicate that
an association only works one way.

7.3 Combined model

As mentioned before, this GP is in collaboration with another GP by S. Sle-
bos. In his thesis, he created a model that produces empathetic output actions
in an interaction based on input it receives and multiple different contextual
factors. One of these factors is memory and its many functionalities which are
incorporated into the model of this thesis. To evaluate S. Slebos’ model and the
model of this thesis, it was decided to combine the models into a more unified

57

one. This, as the combined model could perform all the actions needed to help
a social robot become more empathetic in its interactions.

7.3.1 A model for empathy

The model of S. Slebos will now be briefly explained with its two diagrams. In
figure 36 a diagram is shown that has different modules which eventually lead
to an action being executed which is shown in the next diagram. To reach a
decision on which action to execute, first a list of processes need to be completed.
This list is shown below.

1. Input clause

2. Define problem

3. Identify goal

4. Sense environment

5. Understand situation

6. Update states

7. Interpret subject

8. Let ’empathetic module’ update goal

9. Define solution space (sets of actions to reach goal)

10. Resolve possible solutions

(a) Regain information

11. Check for memory

(a) Is memory applicable

(b) Feed with memory

12. Evaluate possible solutions

(a) Best solution

(b) Most empathetic solution

(c) Quick solution

13. Settle on solution

14. Check with empathetic module if this is empathetic

(a) Re-evaluate solutions

(b) Try with parallel actions

58

15. Start actions

16. Solution is in action

17. Keep the loop running and re-evaluate

Figure 36: Diagram to reach a decision on executing an empathetic action

The list is taken from S. Slebos’ thesis and this is also where a more detailed
explanation can be found. Of course a model does not work in this linear way,
but this list provides a simple overview of how the diagram can be used. After
this diagram has reached a decision on what action to execute, the next diagram
which is shown below comes into play.

59

Figure 37: Processes that occur during the execution of an empathetic action

This diagram shows the processes and feedback loop involved in executing
an action. These are, in similar fashion to the previous diagram, shown in a
list.

1. Continuous active feedback

2. Keep track of emotional state

3. Check if goals are reached

(a) Is the default goal reached

(b) Is the emotional goal reached (if not, store in memory and learn from
this)

4. Store events in memory

5. Feedback to solution space

Once again taken from S. Slebos’ thesis where a more detailed explanation can
be found. As in the other diagram, the list is linear which is not how the diagram
works. But it provides a simple overview of what the diagram does.

7.3.2 Unified model

Then as mentioned before, both of S. Slebos’ diagrams will be combined with
the model of this thesis. They work in the same way as briefly explained in the

60

previous section, however now the memory module is given in more detail with
the model of this GP. This should make both memories complete and overcome
the shortcomings they might have had, such as the model of this GP needing
another model to decide on empathetic actions to execute. Both combined
diagrams are shown in figures 38 and 39 below.

Figure 38: Combined diagram for deciding on an empathetic output action

61

Figure 39: Combined diagram for executing an empathetic output action

7.4 Ethical Reflection

This thesis is supposed to be a building block towards a more concrete imple-
mentation of an associative memory model into a social robot. Which means
that this topic should be revisited in the future, to build and improve upon it.
For this reason, certain ethical issues that might become a problem when com-
ing closer to a concrete application will be listed here. These ethical issues are
taken from the final ethics report that was written for the Reflection II course.

7.4.1 Distinction

For some people, keeping a clear distinction between robots and humans is an
important aspect of robots that helps them separate between what beings are
’alive’ and ’not alive’. This is something that has been debated in the robotics
field for a long time now. The other side of this however, is that for social robots
to have meaningful interaction with people, it is exactly the opposite. In that
scenario it should look more like a human, otherwise we don’t see it as a valid
social partner. A solution could be to decide how human to make the social
robot depending on how heavily it will interact with people.

7.4.2 Misuse of Robot

The misuse of any property that is placed in a public place will always pose a
possible problem. Almost anything that’s worth something and is in a public
place, is at risk of destruction, stealing or other misuse. Robots unfortunately
are no different.

62

Hacking

The social robot this GP aims to put in a public space in the future, could be
hacked. There are enough people with malicious intent out there that could
aim at hacking the social robot. This could be for many reasons. Control of
the robot, seeing what it can do, gaining information about the maker, gaining
private information of the people the robot has talked to that might be in its
memory, and more. When the robot is being built, strict considerations need
to be made security wise, to be sure that hacking of the robot is very hard and
thus very unlikely.

Stealing

Stealing of the robot or parts of the robot is also something that should be
considered. It is very likely, that a robot of this caliber would need some powerful
processors, quality design parts or other materials that are worth something.
This means that it is possible for someone to want to steal the robot or some of
its parts. Therefore, the robot should be stationed in such a way that makes it
hard to steal as a whole, possibly even attached to something if it’s task does
not require it to move. To prevent the stealing from separate parts, the most
valuable parts should be protected by some measure like being surrounded by
impenetrable materials or another solution.

Destroying

Destruction of property on public grounds is almost inevitable. One of the worst
things that could happen to a robot that is destroyed on some level, is that it’s
still functional but its safety mechanisms aren’t. This would mean that it could
still move and perform actions, but the mechanisms that were implemented to
prevent the robot from performing any harmful or problematic actions are ren-
dered inactive. This should however be solvable, by safety mechanisms separate
from each other, which can also prevent the robot from certain actions if other
safety mechanisms fail because of destruction. The robot will of course also
have its own cameras to see who is performing the destruction, it could possibly
even be guarded by other cameras around the robot.

7.4.3 Technophobia

Technophobia is a slight problem for any project aiming to advance technology
in what some could consider a futuristic way. Not everyone enjoys technology
moving forward in a high pace, and this is something to think about when
placing a high tech project in a public place. If the social robot would for
example be placed in a supermarket, possibly not all customer would enjoy the
robot being there and could even be scared of it. Especially when these robots
start to actually behave like humans as well, it could be possible that many
people will be scared of them and the technology that created them. As many
people are not yet ready to experience a robot that is very much like us humans.

63

People being scared of technology often leads to the misuse or destruction of this
technology, as they are don’t know what they are dealing with. A solution to
this, is actually easier than it looks. Technophobia often stems from not knowing
enough about the particalur technology the person is afraid of. Therefore, by
educating all the customers in the supermarket example of what the robot is
for, why it is there, how it was made and more, it should become less scary and
more mundane to people.

7.4.4 Playing God

A slightly religious implication to think about, is that you could view this re-
search as playing God. In a way this research is trying to dissect nature, and
recreate it digitally. We are recreating ourselves in 1’s and 0’s and you could
see that as slowly making nature obsolete. Now of course this is taking it to
the extreme, but in the end this could be what it boils down to. At some point
we might not need to reproduce anymore, because we have ourselves to thank
for being able to recreate entities just like us without it. It is unsure if this will
happen, and if this project is even related to that problem, but it is something
to think about.

7.4.5 Privacy Issues

The fact that the robot will interact with people and store almost every inter-
action into its memory, means that some privacy issues will arise.

Data Storage

All the data of these interactions with people will probably be stored in its
physical memory. This means that technically, this information is all in a public
space ’available’ to be stolen or damaged. For unknown reasons, people could
end up wanting to steal or destroy whatever possibly valuable information is
stored in its memory. Because of this, some security measures preventing this
should be installed. The data could be stored in the cloud, or whenever the robot
is being tampered with it could lock its memory somehow. Or its memory could
be encased in something hard to penetrate.

Data Usage

Another privacy issue that could arise, is rightful use of personal data. Through
its interaction with people, it could have some sensitive personal data stored in
its memory. This sensitive personal information should only be used what the
data is meant for, not for unrelated commercial gains, possibly like companies
who like to know more about people to use it for marketing. According to
experts, a likely scenario is that the researchers, creators of the project and
other privacy organisations will follow current privacy guidelines like the GDPR
in the building of social robots.

64

7.4.6 Job Loss

The fear that technologies that automate certain jobs ends up in job loss, has
been around for centuries. Currently many people are worried about how robots
are likely to take over human jobs, as it has already happened in many job
types. The reason people are worried, is because robots are a cheaper and more
stable workforce. Through the improvement of robots, they will get more and
more human-like. The more human-like and better quality these robots are, the
faster they will be put into the field to replace workers that are currently fulfilling
certain job positions. This is almost inevitable and is one of the great challenges
that comes with AI and robotics. By researching the goal of implementing
associative memory into robots to make them more empathic, we come scarily
close to replacing quite some jobs that right now still require humans. This
could be a massive social disruption in the coming years. The moment robots
become more human-like, there are many fields in which these robots could be
put to work. However according to research done by the OECD, the amount of
jobs that will be automated soon by robots, are lower than people fear. There
are jobs that are likely to be automated soon, but this

7.4.7 Privacy Regulation Agencies

For this GP to be successful, during the development and deployment of the
eventual social robot that is the goal, privacy regulation agencies should be quite
heavily involved. The collaboration with these agencies is of utmost importance,
as this robot will most likely gather some amount of personal data from people.
For this to work it is very important that this data is taken care of in an ap-
propriate, rightful and lawful way. If this project approaches privacy regulation
agencies at some point, it is very likely that they are willing to cooperate or at
least assist in any way they can to help make sure that this project will properly
adhere to the privacy laws. It is very important that this will be done, even if
it is not in the early stages of the project. These agencies can do a great deal
of harm to the project if privacy laws are not properly followed. They could
shut the project down entirely, if it turns out that the way data is dealt with is
open to risk. Because implications of not properly adhering to the privacy laws
can be catastrophic to the project, especially nowadays with the GDPR, extra
measures need to be taken to make sure these problems are seriously looked
at. Privacy should not only be a serious issue to work on within the company.
Because if this is done, there is the possibility that everyone will at some point
agree that they have taken proper measures to keep the privacy issue under
control. However, it could very well be that an agency that is meant to keep
track of this does not agree with the general consensus within the company. If
outside opinions are requested too late, the possibility arises of having wasted
a lot of time and money into a product that needs to be drastically changed.

65

7.4.8 Users

There are many factors at play that influence how willing and appreciative the
users are towards a robotic system like the one that this project eventually
aims to create. One of these factors is that the users should be able to trust
the robots and what the robot does with their data. If the users of the robot
do not trust it and what it is doing with their data, then they will be very
reluctant in interacting with it. They will be especially reluctant in interacting
in a way that gives the robot the personal data it so desperately needs to become
more personally sociable. This is because in general, people want to know what
happens to the data that certain systems collect of them. Therefore, the less
transparent that a system is about what it is doing with their data, the harder
people find it to trust that system. The easiest and most obvious way to solve
this, is to be very transparent with the user about what data it uses. It should
show the user what data the robot is sensing, what data from everything that
it senses it is storing, and which of that data is personal. The robot would
most likely have some sort of way that the user can accept that its data is being
used to make the robot more personally sociable. This would be asked to each
new user before they use the service the robot provides them. And if users are
not satisfied with the terms after using the service the robot provides, they can
always indicate that they no longer wish for their data to be stored.

7.4.9 Municipalities, Shop Owners and More

The robot could be placed in various places that are not under the projects
control, which means that there will be an owner of the place the robot is
situated in. To make sure that there is as little resistance as possible, thorough
talks will have to be had with the person or institution responsible for the area
the robot is placed in. This could be a municipality if it is placed in a park, or a
shop owner if its placed in something like a supermarket. By having these talks
with the ones responsible for the area, it can hopefully be avoided that they will
be unhappy with the situation and possibly even work against the project at
some point. The ones responsible for the area should be informed about what
the robot is, what it can and will do, and how it can influence the people in that
area which they are responsible for. By hopefully making sure they know whats
going on, any problems regarding these people or institutions can be avoided.

66

8 Conclusion

The goal of this thesis was to use an existing or create a new associative memory
model to help a social robot behave more empathetically in its interactions with
people. This social robot would be placed in many different associations, which
is why the model should be able to function in more than one specific situa-
tion. In Chapter 2 it was shown that all existing associative memory models are
based on how associative memory works in humans. Also, there are two main
types of associative memory models, single- and dual-process. Among which
the dual-process models are most supported by current literature in the many
fields that this thesis entails.

For the implementation of a model, it was decided to experiment with every
relevant model that had a software framework. This ended up being two dif-
ferent models. Both frameworks were promising in their own ways, but in the
end fell short of being able to reach the goal of this thesis. For this reason, a
new model needed to be created from scratch. To create this new model, first
multiple scenarios from different application domains were created in which the
robot could eventually be situated. These scenarios were used in a bottom-up
approach to learn what the model should be like. Requirements for the model
were created based on these scenarios, literature on associative memory and
existing models. In this phase, it was decided that the model and its implemen-
tation would both be conceptual and the model would be a tool that should be
used by another model. The model would function purely as a memory model,
which meant that another model should decide on how to behave empathetically
using the contextual information the model from this thesis can provide.

After this, the model was slowly built up and created according to the re-
quirements that were made. A layout was created with three layers, each layer
with its own size and many functionalities. For the conceptual implementation,
pseudocode was created from the models layout, functionality and requirements.
The model and its pseudocode was then evaluated through different means.
First, they were applied in four scenarios from differing application domains to
see if they would function in these situations. Then, each of the requirements
that were made earlier on was walked through to make sure the model and
pseudocode both met all the requirements. The model was then combined with
the model S. Slebos created to make a more unified model. Lastly, the model
and the purpose of this thesis was ethically reflected upon.

To finish the conclusion, the main and sub research questions that were cre-
ated at the start of the thesis will be discussed and reflected upon. The main
research question ”How can we recreate associative memory in social robots,
to improve their social behaviour?” was answered through various means. A
conceptual model and implementation was created, which could be improved
and built upon to eventually become the actual associative memory model of a
social robot. Another answer to this question could be in one of the currently
existing models. If they are eventually improved enough to be able to reach the
goal, they can also be used as a way of modeling associative memory for robots.
Lastly, the requirements that were made could also be used to create another

67

model. The sub research question (SRQ) ”How does associative memory work
in humans?” can not be given a definitive answer. However, as aforementioned
the dual-process are currently the closest research has gotten to understand-
ing how associative memory works in humans. The SRQ ”How can we make
robots learn and remember relationships between previously unrelated entities
and concepts?” is answered by the means of the ’associations’ that were created
in the model and pseudocode. Each time a a new relationship is discovered,
this relationship is stored by creating an association between two memories.
The SRQ ”How can we make robots store their encounters with entities and
concepts, to improve social behavior towards this entity or concept the next
time they encounter it?” is answered by means of the ’past encounters’ that are
stored by the model. And lastly the SRQ ”What efforts exist that try to imitate
perceptual associative memory in robots?” is answered by the research that was
done in Chapter 2 and the different models and papers that were created on the
topic.

68

Appendices

A Model overview table

Model
Model
Type

Model
description

Advantages Disadvantages
Impleme
ntation

SAM
Single-
process

Short-term and
long-term store

(STS, LTS).
Sensory input
forwards items
to the STS. If
the STS is full,
this new item

replaces an old
one, the old one

goes to the
LTS. All items

in LTS have
context and

links to other
items in it, that
grow stronger
the longer an

item is in STS.

Although
concepts may
be old, they

are well
defined and
explained.

Concepts are
more easily
translatable
to code than
other models.

Model is
most likely

good enough
for use in
empathic

robots that
perform

slightly more
simple tasks.

Has been
heavily

criticised by
the psychologi-
cal/neurological

field. Only
familiarity is
modelled as a
process, not
according to

current
literature.

Only a
theoretical
psychol-

ogy/neurology
model, has no
implementa-

tion
yet.

Theoretical
experi-
ments

69

Mnemo
grams

Single-
process

(so
far)

Mnemograms
are data units
that can hold
different types

of data and
there are many

types. Ultra
short-term
memory

(USTM) holds
only a few

mnemograms of
current sensory

input,
short-term

memory (STM)
has a larger
capacity and

long-term
memory (LTM)
even larger. An

‘association’
links two

mnemograms
together and

there are many
different types
of associations

(spatial,
temporal,

content related,
etc).

Many kinds
of links
between

items allow
for different
relationships

instead of
just strength

of the
relationship.

Clear
description of
concepts and
functionali-

ties.
Concepts are
more easily
translatable
to code than
other models.

Doesn’t seem
to rely as
heavily on

related
research in the
field. Initially
created for a

specific imple-
mentation,
hasn’t been
explored for
further use

Simulation
in 3D en-
vironment
with agent

70

Java-
based
Asso-
ciative
Mem-
ory

Dual-
process

Cognitive
model of

associative
memory

designed to
understand the

way humans
hold a

conversation, so
that agents can

keep a more
meaningful

conversation
with people.
Nodes, with
concepts and
associations.

Each node has
an activation

value, which is
the likelihood
of the node

getting
activated. This
can happen in
two ways: One

is external
stimulus, which

senses the
concept of the
node in some

way. Another is
through

spreading
activation,

every node that
is activated

spreads part of
this activation

to neighbouring
nodes.

Made to be
implemented
in Java, there
already is a

library.
Specifically
made for

conversation
with people.

Clear
description of
concepts and
functionali-

ties

More a model
for human-like
conversation
and speech

patterns than
a memory
system.

JAM Java
library

71

SDM
Single-
process

SDM is a
content-

addressable
memory

technique, that
allows large

patterns of data
to be stored.

And later
retrieving them

based on
partial matches
with patterns
from current

sensory inputs.

Has been
extensively
researched,
iterated and
implemented
in software.

Some form of
the model

already exists
in certain

robots.

Requires large
storage

capacity due to
its ‘sparse’

nature. Needs
relatively large
search cues to

recover
memories
through

associations,
unlike us
humans.

LIDA
PAM

module,
LIDA
frame-
work,

CMattie

DPSD
Dual-

process

Recollection as
threshold

process and
familiarity as

signal detection
process are

separate
processes that
simultaneously
function as a

memory. If an
item cant be

recovered with
the familiarity

process, a
deeper search
of recollection
that usually
takes longer
will try to
recover the

item.

Recollection
and

familiarity
are separate
and simulta-

neously
working

processes.
Created

according to
the latest
empirical
research.

Vague to no
explanation on

how the
recollection

and familiarity
processes work.

Only a
theoretical
psychol-

ogy/neurology
model, has no
implementa-

tion
yet.

LIDA
PAM

module,
LIDA
frame-
work,

CMattie

72

B Scenarios

73

74

75

76

77

78

79

80

81

82

83

References

[1] J. P. Aggleton, D. McMackin, K. Carpenter, J. Hornak, N. Kapur,
S. Halpin, C. M. Wiles, H. Kamel, P. Brennan, S. Carton, and D. Gaffan.
Differential cognitive effects of colloid cysts in the third ventricle that spare
or compromise the fornix. Brain, 123(4):800–815, 04 2000.

[2] M.I. Ahmad, O. Mubin, S. Shahid, and J. Orlando. Robot’s adaptive emo-
tional feedback sustains children’s social engagement and promotes their
vocabulary learning: a long-term child–robot interaction study. Adaptive
Behavior, 27(4):243–266, 2019.

[3] C Anderson and D. Keltner. The role of empathy in the formation and
maintenance of social bonds. Behavioral and Brain Sciences, 25:21 – 22,
02 2002.

[4] Nomura T. Kanda T. Suzuki T. Bartneck, C. and K. Kennsuke. A cross-
cultural study on attitudes towards robots. 2005.

[5] A. Bisler. An associative memory for autonomous agents. 10 2004.

[6] T. Curran. Brain potentials of recollection and familiarity. Memory &
Cognition, 28(6):923–938, Nov 2000.

[7] E. Düzel, A.P. Yonelinas, G.R. Mangun, H.J. Heinze, and E. Tulving.
Event-related brain potential correlates of two states of conscious aware-
ness in memory. Proceedings of the National Academy of Sciences of the
United States of America, 94(11):5973–5978, May 1997. 9159185[pmid].

[8] S. Franklin. Cognitive robots: perceptual associative memory and learning.
In ROMAN 2005. IEEE International Workshop on Robot and Human
Interactive Communication, pages 427–433, Nashville, TN, USA, 2005.

[9] S. Franklin, T. Madl, S. Strain, U. Faghihi, D. Dong, S. Kugele, J. Snaider,
P. Agrawal, and S. Chen. A lida cognitive model tutorial, April 2016.

[10] M. Glanzer, K. Kim, A. Hilford, and J.K. Adams. Slope of the receiver-
operating characteristic in recognition memory. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 25(2):500–513, 1999.

[11] J. Goetz, S. Kiesler, and A. Powers. Matching robot appearance and be-
havior to tasks to improve human-robot cooperation. In The 12th IEEE
International Workshop on Robot and Human Interactive Communication,
2003. Proceedings. ROMAN 2003., pages 55–60, 2003.

[12] D.M. Green and J.A. Swets. Signal detection theory and psychophysics.
Signal detection theory and psychophysics. John Wiley, Oxford, England,
1966.

84

[13] S.D. Gronlund, M.B. Edwards, and D.D. Ohrt. Comparison of the re-
trieval of item versus spatial position information. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 23(5):1261–1274, 1997.

[14] Cognitive Computing Research Group. Robot density rises globally. http:
//ccrg.cs.memphis.edu/index.html. Accessed: 2020-03-14.

[15] H. Hastie, M.Y. Lim, S.C. Janarthanam, A. Deshmukh, R. Aylett, M.E.
Foster, and L. Hall. I remember you! interaction with memory for an em-
pathic virtual robotic tutor. In Proceedings of the 15th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS 2016),
pages 931–939, United States, May 2016. Association for Computing Ma-
chinery. 15th International Conference on Autonomous Agents and Multi-
agent Systems 2016, AAMAS 2016; Conference date: 09-05-2016 Through
13-05-2016.

[16] D.L. Hintzman and D.A. Caulton. Recognition memory and modality judg-
ments: A comparison of retrieval dynamics. Journal of Memory and Lan-
guage, 37(1):1–23, 1997.

[17] D.L. Hintzman, D.A. Caulton, and D.J. Levitin. Retrieval dynamics in
recognition and list discrimination: Further evidence of separate processes
of familiarity and recall. Memory & Cognition, 26(3):449–462, May 1998.

[18] Douglas R. Hofstadter and Melanie Mitchell. The Copycat project: A model
of mental fluidity and analogy-making., pages 31–112. Advances in connec-
tionist and neural computation theory, Vol. 2. Ablex Publishing, Westport,
CT, US, 1994.

[19] F.A. Huppert and M. Piercy. Recognition memory in amnesic patients:
Effect of temporal context and familiarity of material. Cortex, 12(1):3 –
20, 1976.

[20] L.B. Jahromi. Recognition Memory, pages 2531–2531. Springer New York,
New York, NY, 2013.

[21] Robert Kelley and John T. Wixted. On the nature of associative informa-
tion in recognition memory. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 27(3):701–722, 2001.

[22] MIT Media Lab. Conceptnet. https://conceptnet.io/. Accessed: 2020-
05-9.

[23] Nickel A.E. Mahoney, E.J. and D.E. Hannula. Recognition, pages 37–43.
Elsevier, 2015.

[24] International Federation of Robotics. Robot density rises
globally. https://ifr.org/ifr-press-releases/news/

robot-density-rises-globally. Accessed: 2020-02-24.

85

http://ccrg.cs.memphis.edu/index.html
http://ccrg.cs.memphis.edu/index.html
https://conceptnet.io/
https://ifr.org/ifr-press-releases/news/robot-density-rises-globally
https://ifr.org/ifr-press-releases/news/robot-density-rises-globally

[25] Colleen Parks and Andrew Yonelinas. Moving beyond pure signal-detection
models: Comment on wixted (2007) - postscript. Psychological review,
114:188–202; discussion 203, 02 2007.

[26] R. Pröpper, F. Putze, and T. Schultz. JAM: Java-based Associative Mem-
ory, pages 143–155. 01 2011.

[27] J.G. Raaijmakers and R.M. Shiffrin. Search of associative memory. Psy-
chological Review, 88(2):93–134, 1981.

[28] J. Retto. Sophia, first citizen robot of the world. 11 2017.

[29] J. Snaider, R. McCall, and S. Franklin. The lida framework as a general
tool for agi. pages 133–142, 08 2011.

[30] W.A. Suzuki. Associative learning and the hippocampus. https://https:
//www.apa.org/science/about/psa/2005/02/suzuki/. Accessed: 2020-
04-10.

[31] A.P. Yonelinas. Receiver-operating characteristics in recognition memory:
Evidence for a dual-process model. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 20(6):1341–1354, 1994.

[32] A.P. Yonelinas. The nature of recollection and familiarity: A review of 30
years of research. Journal of Memory and Language, 46(3):441–517, 2002.

86

https://https://www.apa.org/science/about/psa/2005/02/suzuki/
https://https://www.apa.org/science/about/psa/2005/02/suzuki/

