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1. Introduction 
The awareness about increasing anthropogenic climate change has created a strong momentum 
in many countries to devise and adopt energy transition strategies to shift from fossil fuels to 
renewable energy, particularly adopting renewable resources (Mey & Diesendorf, 2018). A 
typical case among these resources is wind energy, which is widely accepted as the fastest 
growing renewable energy source because of its availability, greenness, and cost-efficiency 
(Sherif, Barbir, & Veziroglu, 2005). The kinetic energy from wind is captured by wind turbines, 
which play an integral role in harnessing wind energy. Over the past two decades, new 
installations and investments about wind energy boosted sharply. In 2019, approximately 15.4 
GW of wind power capacity has been installed within European countries, making the total wind 
energy capacity in Europe rise to 205 GW, accounting for 15% of the total consumed electricity 
in Europe in 2019 (WindEurope, 2020). In order to continuously grow the share of wind energy 
in the new energy market, it is critical to keep expanding the wind turbine grid (Stegen & Seel, 
2013). To realize this goal, a large number of new wind turbines need to be designed and installed. 
Therefore, it is essential to pay more attention to the design of wind turbines to shorten the 
construction process, yet without compromising the structural performance. 

 
Wind turbines can either be onshore or offshore, where the former has been utilized for a long 
time in the history, and usage of the latter is rather recent. Although winds are stronger and more 
stable in the offshore areas, onshore wind turbines still dominate the market, because offshore 
wind turbines are relatively more complex and costly to install and maintain (Bilgili, Yasar, & 
Simsek, 2011). Nearly 75% of the newly installed wind turbines in 2019 in Europe were onshore, 
making up 89% of the wind turbine capacity (WindEurope, 2020). The design and construction 
of onshore wind turbines may strike as straightforward and repetitive. However, the design 
process, particularly the foundation design, is complex and intricate comparing to other 
structures, due to the unsteady aerodynamic effects caused by the reaction between the turbulent 
wind and blade sections (Burton, Jenkins, Sharpe, & Bossanyi, 2011)  (Muskulus & Schafhirt, 
2014) (Oswell, Mitchell, Chalmers, & Mackinven, 2010) (Nicholson, 2011). Currently, static 
analysis is still commonly used for the design optimization of wind turbine foundations, which 
focuses on finding optimal solutions using non-linear analysis, under static load cases, 
constraints, and objectives  (Muskulus & Schafhirt, 2014) (Arora, 2012). Considering the 
difficulties of solving non-linear problems, approximation and reduction will be made to simplify 
the problems using computerized numerical methods such as finite element analysis (FEA), 
which can provide more accurate models to approximate the actual behavior of the structure 
(Loubser & Jacobs, 2016). However, although the usage of other computational approaches such 
as parametric design streamlines the process, the design optimization still requires many 
iterations, analysis, and fine-tuning of the design until the best option is generated under the 
constraints and objective functions. Furthermore, because the simulation using FEA is time-
consuming and computationally expensive, it is difficult to run a considerable number of analyses 
to evaluate each design alternative.  

 
For the past few years, due to the expeditious expansion of the wind turbine network,  a wealth 
of data has been generated from the designs of the wind turbine foundations, providing a rich 
database. Potentially, this database can be used to guide new designs towards optimality without 
going through a lengthy optimization process. However, this would require a meta-model that 
can correlate initial input to corresponding output and mathematically approximate the complex 
simulation model, to be conveniently used for rapid optimization. As a popular engineering 
method, meta-modeling can be connected with developing response surface surrogates to 
approximate the original simulation models using data-driven techniques (Razavi, Tolson, & 
Burn, 2012). When applying meta-modeling as the substitution of the original simulation models, 
the less intensive computation, reduced noisy output behavior, and the provision of gradients can 
be expected (Quirante, Javaloyes, & Caballero, 2015). Therefore, ideally, this meta-model can 
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partly or fully replace the FEA process by mimicking the input-output behaviors in the original 
simulation models (Abo-Hamad & Arisha, 2011).   
 
Due to the rapid development of computer technologies, Machine Learning (ML) approaches have 
shown the potential to tackle the aforementioned problem. A machine learning model is 
developed through a self-learning process where the training data is used to investigate and 
identify multi- and non- relationships and patterns between a set of input and the output data, to 
derive results that are more accurate and realistic (Elfaki, Alatawi, & Abushandi, 2014). 
Therefore, a significant time gain is expected by reducing the computational intensity caused by 
the current FEA simulation when the machine learning model can predict a close to optimal 
design more efficiently. Nevertheless, given the fact that conducting the FEA to assess the 
structural performance of wind turbine foundations may obtain several numbers of outcomes, to 
comprehensively portray these structural outcomes, it is essential to ensure the capability of the 
developed machine learning model in predicting multiple outputs. On this premise, this study 
focuses on developing the machine-learning-based mate-model to replace the FEA adopted in the 
optimization process of wind turbine foundations by solving a multi-output regression problem, 
in order to reduce the overall design time without compromising the accuracy. By conducting this 
research, it is expected to provide an opportunity to advance the understanding of how can the 
data-driven meta-modeling techniques be utilized as the substitution of complex simulation 
models, which are typically computationally expensive, in order to streamline the process of 
obtaining the optimal design of wind turbine foundations.  
 
The following contents are organized as follows. In section 2, a literature review will be presented 
to provide insights into the theoretical background of this research. The third section of this 
article is concerned with the proposed method of meta-model development, while section 4 
demonstrates a case study and corresponding results, which can be used to validate the proposed 
method. The conclusion and future work are given in section 5. 

2. Literature review 
 

2.1. Wind turbine foundation design optimization methods 
As the supporting structure, the wind turbine foundation provides both stability and stiffness to 
maintain the corresponding structural requirement. Because of the interaction between the wind 
force and rotor blades, a large moment and lateral loads will be induced and transferred to the 
foundation, creating a strong tendency for the wind turbine to overturn (Nicholson, 2011). The 
design of the wind turbine foundation is, therefore, highly sensitive to this aero-elastic effect, 
leading to extensive nonlinearities. Besides, to have optimized designs for wind turbine 
foundations, which intend to reduce costs while safeguarding structural stability, many variables 
and constraints need to be considered (Muskulus & Schafhirt, 2014). However, the sheer number 
of pertinent parameters and variables significantly render the optimization process a demanding 
task. In addition, other unique characteristics of the wind turbine also challenge the design 
optimization of the wind turbine foundations, including the highly fluctuating and complex 
environment, fatigue damages, specialized analysis models and software, strong system inter-
relation (Muskulus & Schafhirt, 2014). 

 
A lot of experience has been accumulated in the research area of the design optimization of wind 
turbine structures, particularly in computer-aided design optimization. Previous studies on the 
design optimization of wind turbine structures have provided important information on 
formulating the design optimization problem mathematically and rigorously to enable the 
assistance of computer-aided, automatics, and algorithmic approaches to derive the optimal 
solutions (Thiry, Bair, Buldgen, Raboni, & Rigo, 2011).  
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As reviewed by Muskulus and Schafhirt (2014), there are three major widely applied methods 
regarding the design optimization problems of wind turbine structures, namely the static 
analysis, frequency-domain analysis, and time-domain analysis. Among them, the static analysis 
focuses on finding optimal solutions under static loads and requires a large number of iterations 
in general cases. Typically, the objective of conducting this design optimization method is 
minimizing the material usage of the structure by revising parameters representing its geometry 
without compromising its structural performance. In order to solve the optimization problem 
under static loads, the non-linear behavior of the structure must be analyzed, thus arising the 
necessity of using numerical analysis methods such as FEA. Generally, the optimization process 
under static loads is iterative, because a number of convex approximations are required to be 
solved (Muskulus & Schafhirt, 2014). Therefore, considering the potential computing time 
focuses should be paid on expediting the process while advancing the approximation techniques, 
improving reanalysis methods, and enhancing the efficiency of gradients evaluation. As is 
commonly used in offshore wind turbine structures design optimization, the frequency-domain 
analysis can provide good calculating performance in the fatigue assessment by linearizing 
irregular wave loads in the offshore engineering  (Muskulus & Schafhirt, 2014) (Van Der Tempel, 
2006). However, because this optimization method is rather confined to the area of offshore 
engineering, it is out of the scope of this research. Lastly, the time-domain analysis considers the 
integration of designs of different components of a wind turbine in different stages of the design 
process, given the fact that the wind turbine has a tightly coupled system (Vorpahl, Schwarze, 
Fischer, Seidel, & Jonkman, 2013). The biggest advantage of conducting this method is that it takes 
all non-linearities of the wind turbine operations into consideration, therefore, this method can 
ensure the highest accuracy (Van Der Tempel, 2006). However, because of the current simulation 
ratios of less than real-time, applying this optimization method is extremely time-consuming 
(Muskulus & Schafhirt, 2014). 
 

2.2. Meta-model-based design optimization  
Nowadays, the static analysis is still widely used in the design optimization of wind turbine 
structures, particularly in the design optimization of wind turbine foundations (Muskulus & 
Schafhirt, 2014) (Loubser & Jacobs, 2016). As previously mentioned, because the optimization 
process using this method is iterative, in order to reduce the time consumed, it is necessary to 
advance the approximation techniques, improve reanalysis methods, and enhance the efficiency 
of gradients evaluation. However, objective functions are not amenable to be efficiently evaluated 
using analysis methods such as FEA, especially when the structural response is too sensitive to 
changes in the geometry of the structure. Consequently, the inefficiency of FEA hinders the 
applicability of conducting the gradient assessment and invokes the employment of the 
simulation-based design optimization methods, including meta-model-based techniques, 
heuristic methods, and stochastic search (Gosavi, 2010) (Roy R. , 2010) (Spall, 2003).  

 
Among them, meta-model-based (or surrogate-model-based) techniques show the potential to 
solve the prementioned problem regarding the inefficiency of the gradient assessment. Figure 1 
represents how the meta-model interacts with the original simulation model within the 
optimization process, by developing cheaper-to-run surrogates to fully or partly replace the 
original simulation model process using mathematical functions (Abo-Hamad & Arisha, 2011). 
The main objective of adopting the meta-modeling technique in design optimization is to solve 
complex optimization problems under the computational budget limitations. Because these 
techniques use the analytical approach to approximate the solution of the objective function 
rather than estimating the derivatives, they can provide an opportunity to explore the 
optimization space with greatly reduced computational time (Abo-Hamad & Arisha, 2011) 
(Dasari, Cheddad, & Andersson, 2019).  
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Figure 1. The general meta-model-based design optimization framework (Abo-Hamad & Arisha, 

2011) 
 
The meta-modeling can be generally categorized into two broad families, namely the response 
surface surrogates modeling and the lower fidelity modeling (Razavi, Tolson, & Burn, 2012). The 
former is concerned with applying data-driven techniques to approximate the correlations 
between explanatory variables that define the model response. In contrast to the response 
surface modeling, the lower fidelity modeling is a physically-based approximation technique, 
which can be regarded as the simplification of the original model and preserves the main body of 
the modeling process of the original simulation model. In general, the lower fidelity modeling can 
be expected to provide higher emulation to the unexplored input space and better performance 
in extrapolation. However, because the basis of the lower-fidelity modeling is the closeness 
between the lower-fidelity model and the original model, it often leads to the trade-off between 
the accuracy and computational cost (Razavi, Tolson, & Burn, 2012) (Jin, 2011).  
 

2.2.1. Applications of meta-modeling in the AEC industry 
Great attempts have been made to apply meta-modeling to the AEC industry over the past few 
decades to solve engineering problems. One of the research areas, where notable breakthroughs 
have been achieved in adopting the meta-modeling techniques, is geotechnical engineering. Given 
the fact that one of the major focuses of the geotechnical engineering is the study on the soil 
behavior, researchers have attempted to explore the potential of adopting meta-modeling 
techniques in the modeling of the soil behavior. Moayedi et al. (2020) represented a neural-
metaheuristic-based meta-model to predict the soil shear strength, which shows the efficiency of 
modeling the non-linearities of the soil behavior and influential soil parameters. Besides, in terms 
of the area of the foundation design, previous studies have explored the potential of adopting 
neural-network-based meta-models in solving problems of the prediction of foundation capacity, 
especially the prediction of the pile capacity (Moayedi, Mosallanezhad, & Nazir, 2017) (Chan, 
Chow, & Liu, 1995) (Ismail & Jeng , 2011). In addition, numerous studies also indicated how can 
the meta-modeling techniques solve other geotechnical engineering problems with higher 
computational efficiency and better performance, including the subsurface exploration, slope 
stability assessment, and landslides assessment (Samui & Sitharam , 2010) (Li , Khoo , Lyamin , & 
Wang , 2016) (Wu , Zeng , & Fu, 2014).  
 
Another fruitful area of adopting meta-modeling techniques in the AEC industry is the structural 
seismic performance assessment. Bakalis et al. (2017) demonstrated a low-fidelity 3-D surrogate 
model for the seismic performance assessment of liquid storage tanks, which can enable the fast 
static and dynamic assessment by streamlining the nonlinear analysis. Similarly, Mardfekri and 
Gardoni (2013) also discussed a substitution to a refined 3-D model for the offshore wind turbine 
supporting structure using the probabilistic meta-model to reduce the sophistication of the 
original model and the computational cost and examine the seismic fragility. Apart from 
developing and utilizing low fidelity physically-based surrogate models to enhance the 
computational efficiency, investigations also have been made on applying the response surface 
surrogates in the seismic performance assessment. Ghosh et al. (2013) proposed several 
statistical-learning-based meta-modeling methods, including the benchmark meta-model using a 
polynomial regression model, emerging multivariate adaptive regression splines, neural 
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networks, and support vector machines, to approximate the implicit relations between bridge 
design parameters and the bridge component seismic response. This research indicates that the 
significant computational efficiency and the desirable predictive performance regarding the 
seismic response of each component of the bridge can be expected by applying these response 
surface surrogates. 
 

Furthermore, previous studies also show a wide application of the meta-model techniques in 
many other aspects of construction management. Guo et al. (2020) proposed a meta learning-
based façade defects classification framework, using the collected image dataset and the concept 
of deep learning. In this study, the proposed meta learning-based model showed a strong 
capability to deal with the problem of an imbalanced image dataset that will be used as the basis 
of the Façade defects categorization. Besides, in the research area of the building engineering, 
Chen et al. (2019) also represented a meta-model which provides the potential to calibration 
performance of the building energy model, with reduced computational time and better reliability, 
using the Gaussian Process and Multiple Linear Regression to obtain a number of white-box 
simulation results. In addition, Zheng et al. (2020) proposed a machine-learning-based 
topological design approach to expedite the exploration process for shell structures. In this 
research, Zheng et al. utilized the neural network to develop a meta-model for rapid structural 
performance evaluation, which significantly streamlines the geometrical form-finding process. 
Besides, this study also reveals how can designers be provided with information on the effects of 
each design parameter on the final design outputs, by using the machine learning approach. 
 

2.3. Machine learning methods    
One of the most effective and widely applied approaches for developing the meta-model is using 
machine learning methods. Based on training data or past experience, inferences can be made 
using the theory of statistics within the machine learning model (Alpaydin, 2010). Therefore, one 
can expect that by learning the correlations between input variables and output obtained from 
FEA, the machine learning model can provide representation and an algorithmic solution for the 
inferences.  

 
A typical division of machine learning algorithms can be made between supervised learning, 
unsupervised learning, and reinforcement learning, based on the usage of features in the training 
dataset (Kotsiantis, Zaharakis, & Pintelas, 2007). Supervised learning deals with instances with 
both input data and corresponding output data, while unsupervised learning is, by contrast, 
concerned with unlabelled datasets to investigate and characterize underlying structure 
(Kotsiantis, Zaharakis, & Pintelas, 2007) (Worden & Manson, 2007). Comparing to supervised and 
unsupervised learning, reinforcement learning receives information provided by the 
environment, and the agent will make decisions based on the performance of different actions 
(Alpaydin, 2010) (Kotsiantis, Zaharakis, & Pintelas, 2007). Furthermore, as stated by Cherkassky 
and Mulier (2007), problems addressed by supervised learning include classification and 
regression. The former requires the machine learning algorithm to determine the association of 
classes and a set or vector of measured quantities, while the latter refers to building a map 
between continuous input variables and continuous outputs.  
 

2.3.1. Multi-output regression 
The objective of the multi-output regression is simultaneously predicting multiple continuous-
valued output variables. Borchani et al. (2015) described two general methods that can be applied 
to multi-output regression, namely problem transformation methods and algorithm adaption 
methods. Problem transformation methods can be used to convert multi-output regression 
problems into multiple single-output regression problems. However, the main shortcoming of 
conducting these methods is that dependencies between multiple outputs may be neglected, thus 
influencing the eventual predictive performance. Therefore, Spyromitros-Xioufis et al. (2012) 
introduced several extended problem transformation methods to solve the aforementioned 
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problem, including multi-target regressor stacking and regressor chains. Nonetheless, applying 
these problem transformation methods will result in less desirable predictive performance and 
more computational complexity  (Borchani, Varando, Bielza, & Larrañaga, 2015).  
  

2.3.2. Multi-target Regression Trees 
One widely used algorithm adaption method is Multi-target Regression Trees (MTRT), which 
enables the prediction of numerical multi-outputs simultaneously using regression trees (Struyf 
& Džeroski, 2006). A vector will be stocked in each leave within MTRT, which demonstrates a 
prediction for a single output variable (Kocev, Džeroski, White, Newell, & Griffioen, 2009). 
Normally, a top-down induction algorithm will be applied to build a multi-target regression tree. 
The top-down induction algorithm can be regarded as a recursive partitioning algorithm, which 
selects a test for the root node, and splits the training dataset into two subsets (in the case of the 
binary tree): one contains the records from the successful test, while the other contains records 
from failing test. Therefore, a recursive process will be developed. This recursive partitioning 
process will stop when the stopping criteria are satisfied, where the prediction vector is obtained 
and stocked in a leaf.  
 
Besides, the ensemble method can also be used to build a set of models to combine predictions of 
each model and give predictions based on given training instances (Dietterich, 2000) (Kocev, 
Džeroski, White, Newell, & Griffioen, 2009). By ensembling a set of MTRTs, the prediction of 
multiple targets can be obtained by averaging the predictions of its models. This method can 
enhance the predictive performance of using a single MTRT (Kocev, Vens, Struyf, & Džeroski, 
2007).  
 

2.3.2.1. Random Forest 

Random Forest (RF) is a tree-based machine learning algorithm, which ensembles a number of 
independent decision trees {ℎ(𝐱, Θ𝑘), 𝑘 = 1,2, … }, in which every tree will be determined by the 
independently sampled random vector {Θ𝑘} (Breiman, Random Forests, 2001) (Dai, Gu, Zhao, & 
Qin, 2018). Figure 2 represents a typical structure of RF. By using the bootstrap sampling, the 
training set will be split into several subsets and trained in different randomized decision tree 
models, while the final prediction can be obtained by voting (Kocev, Džeroski, White, Newell, & 
Griffioen, 2009). For each node within the decision tree, a random size of the subset will be split 
from the training set and several input features will be randomly chosen from each subset as the 
input to the decision tree. Supposing the size of the subset is 𝐹, then its relation with the number 

of features 𝑀  can be 𝐹 = 1, 𝐹 = √𝑀, 𝐹 = (log2 𝑀) + 1, 𝐹 =
𝑀

2
 , 𝑒𝑡𝑐,.  When 𝐹 = 𝑀 , RF will be 

equivalent to bagging algorithm, which is another ensemble method for MTRS (Kocev, Džeroski, 
White, Newell, & Griffioen, 2009). 

 

 
Figure 2. A typical RF structure (Struyf & Džeroski, 2006) 
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2.3.3. Feedforward Neural Network 
Apart from RF, previous studies also reveal that the application of  Artificial Neural Network 
(ANN) can provide potential to deal with the multi-output regression problems (Du, Li, & Fei, 
2010) (An, Zhao, Wang, Shang, & Zhao, 2013) (Rouss & Charon, 2008).  

 
As a widely adopted machine learning model, ANN is established by imitating the architecture of 
the human brain (Günaydin & Doǧan , 2004). An ANN model can be built from the learning process 
towards the relationships between input and output provided from the training data, and 
recognize the non-linear relationships between the input and output in the hidden layer of the 
ANN architecture (Naik & Kumar, 2013).  
 
Among all the commonly used ANN architectures, the feedforward neural network has been 
adopted broadly in previous studies. Typically, an FFNN consists of multiple nodes and layers 
(Arabasadi, Alizadehsani, Roshanzamir, Moosaei, & Yarifard, 2017). Nodes within the 
architecture of FFNNs can refer to neurons in the human brain, which will be grouped and 
interacted in each layer. Besides, FFNNs can contain a different number of layers. The first layer 
is called the input layer accepting features and input to the network, while the last layer refers to 
the output layer (Arabasadi, Alizadehsani, Roshanzamir, Moosaei, & Yarifard, 2017). In addition, 
there might be several hidden layers located between the input layer and the output layer, as 
shown in Figure 3. 
 
Each node in one layer will be connected to all nodes in the previous layer with a different weight 
that determines the particular activation. The output of each neuron will thus be determined by 
the activation function 𝑓 . A commonly used activation function is rectified linear unit (ReLu), 
where 𝑓(𝑥) = max (0, 𝑥). The advantage of using ReLu is that it can provide faster convergency 
speed and avoid suffering the vanishing gradient problems. In addition, when 𝑓(𝑥) = 𝑥, the linear 
function is applied, which is usually used to build the output layer in the FFNN structure for 
regression problems. Furthermore, the weight which connects every node will be adjusted in 
every iteration based on the backpropagation algorithm, which will be executed in the forward 
phase to propagate signals to generate the prediction in the output layer, as well as the backward 
phase to adjust weights based on errors between the prediction and true values (Oliveira, Barga, 
Lima, & Cornélio, 2010). 
 

When applying FFNN to solving the multi-output regression problems, An et al. (2013) have 
proposed a multi-input-multi-output strategy to use only one FFNN model to predict multiple 
outputs. Figure 3 illustrates the structure and prediction process using the FFNN model.  

 

 
Figure 3. A typical FFNN structure 
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2.4. Genetic algorithm 
The development of the machine learning model requires frequent tuning in terms of learning 
parameters and hyperparameters within the model until obtaining the best predictive 
performance  (Snoek, Larochelle, & Adams, 2012). Among them, learning parameters are internal 
variables that represent the configuration of the model, whose values are estimated or trained 
from the data and normally will be adjusted automatically, such as weights in ANN. By contrast, 
model hyperparameters are external configurations of the machine learning model, whose values 
cannot be estimated and normally define higher concepts within the model, such as the learning 
rate in ANN or the number of estimators in RF. Therefore, it is essential to pay attention to find 
an effective and efficient method for hyperparameters optimization.  

 
Corresponding studies have also shown how the application of heuristic methods can contribute 
to the optimization of hyperparameters with better efficiency and effectiveness in searching 
(near-) optimum solution in a great range of problems and avoiding problems that may occur in 
the traditional optimization algorithms (Engelbrecht, 2005). Metaheuristic methods mainly 
include evolutionary algorithms such as Genetic Algorithms (GA), Artificial Immune Systems 
(AIS), Genetic Programming (GP), or other methods such as Particle Swarm Optimization (PSO). 
Among them, GA is the one of the most fruitful area in being integrated into the machine learning 
model to optimize the hyperparameters (Huang & Wang, 2006) (Oliveira, Barga, Lima, & Cornélio, 
2010) (Bouktif, Fiaz, Ouni, & Serhani, 2018). Furthermore, optimization can also be implemented 
on the input variables involved in the machine learning model by eliminating irrelevant or 
redundant input variables. Olivera et al. (2010) also proposed a GA-based method for 
simultaneously optimize the selection of input features and optimize the setting of learning 
parameters and hyperparameters of three typical types of ML models, including the SVM, ANN, 
ad decision trees.  The result of this research shows that the proposed approach can improve the 
performance of all machine learning models by reducing the amount of feature input set used. 
Therefore, in this study, a GA approach will be adopted to optimize the performance of machine 
learning models. 
 
GA is an approach based on the theory of natural selection to find approximately optimal 
solutions for optimization problems. In GA, a population consisting of a set of individuals will be 
generated, called chromosomes, where different gene fragments will represent a solution to the 
problem. Individuals in the population will be evaluated based on the fitness function and a 
natural selection will be applied to select individuals having better phenotypic characteristics for 
reproduction, while more competitive individuals will be eliminated. Besides, several genetic 
operators are involved in GA to extend the searching space and maintain the diversity of the 
population to be evaluated, including the crossover and mutation (Engelbrecht, 2006). 
Individuals selected after the selection stage will be modified in the stage of reproduction 
employing crossover and mutation to generate new populations, called the offspring. Therefore, 
individuals in the offspring will be evaluated and selected repetitively to generate new offspring 
to start a new iteration, until the stopping criteria are satisfied (Engelbrecht, 2006).  

3. Proposed method 
In this section, the process of the development of the proposed meta-model will be represented. 
Figure 4 shows an overview of the process, where the response surface surrogates modeling was 
applied. Overall, the process will be initiated by establishing a dataset with an array of design 
solutions of wind turbine foundations, which will be used as the input variables in the dataset, as 
well as corresponding structural outcomes obtained from conducting the FEA. Subsequently, the 
established dataset will provide the training set and the testing set, where the former will be used 
for the training process of several machine learning models and the latter will be used to validate 
each model. Besides, in the stage of training machine learning models, the GA-based method was 
applied for the feature selection and the optimization of hyperparameters to obtain the optimal 
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machine learning model configuration. Lastly, the most favorable machine-learning-based meta-
model will be chosen based on the predictive performance evaluated by the applied metrics. 
Details of this proposed developing process will be given in the following sections.   

 
 

 
 
 
 
 
 

       
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. The framework of the meta-model development 
 

3.1. The dataset establishment 
The aim of this stage is to establish the dataset required for the machine learning model 
development. This dataset contains an array of design solutions, which will provide various 
design variables as input features in the developing phase of machine learning models and related 
structural performance of each design as outputs. Because in the actual design process, an 
extensive number of design variables will be involved, it is essential to verify and determine the 
most influential variables. Therefore, based on interviews held with several structural engineers 
with professional wind turbine foundations design experience and expertise in, and a similar 
study conducted by Nicholson (2011), several design variables were selected as shown in Table 
1. In general, only the circular wind turbine foundation with steep slopes was taken into 
consideration in the proposed input data structure, given the fact that the circular shape is the 
most cost-efficient choice which can result in a considerable material saving without 
compromising the structural performance (Loubser & Jacobs, 2016) (Nicholson, 2011).  
 
Therefore, several design variables that can be used to define the geometry of the circular wind 
turbine foundations were selected, including the diameter of the foundation base, the thickness 
of the foundation that can be divided into the height of the slope and the height of the foundation 
at its outer edge. In addition, the reinforcement configuration will also be included represented 
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by the reinforcement ratio of different reinforcement groups. Other design variables include the 
number of anchors that will be used to anchor the turbine, as well as the applied load factor that 
will determine the load transmitted from the tower. 
 
Table 1. Selected design variables in the wind turbine foundation design 

Feature Description 

Base_diameter The diameter of the base of the 
foundation. 

Anchor_count The number of anchors within the 
foundation. 

Vertical_load_factor The load factor which will be applied 
to calculating the vertical load 
transferred from the tower. 

Base_slope_height The height of the slope part of the 
foundation. 

Base_side_height The height of the foundation outer 
edge which is perpendicular to the 
base. 

Top_rad_ratio The reinforcement ratio of the radial 
reinforcement at the top part of the 
foundation. 

Bottom_rad_ratio The reinforcement ratio of the radial 
reinforcement at the bottom part of 
the foundation. 

Top_tan_ratio The reinforcement ratio of the 
tangential reinforcement in the top 
part of the foundation. 

Bottom_tan_ratio The reinforcement ratio of the 
tangential reinforcement in the top 
part of the foundation. 

 
Besides, given the fact that the overturning moment is one of the most decisive load cases applied 
to the wind turbine foundation, it is essential to consider the moment capacity of the foundation 
as the main structural outcome (Muskulus & Schafhirt, 2014) (Nicholson, 2011). Therefore, the 
moment-rotation behavior of the wind turbine foundation was selected as the main structural 
outcome to be predicted, as well as the output included in the dataset, which can be obtained after 
conducting the FEA. Specifically, the moment-rotation behavior of the wind turbine foundation 
can be portrayed by the diagram shown in Figure 5. 
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Figure 5. A typical moment-rotation diagram 

 
The moment-rotation diagram shown in Figure 5 depicts the structural response of the wind 
turbine foundation as the increase in the rotation. The development of the curve will go through 
four main stages. The first stage is the cracking stage, where cracks of the reinforcement will 
occur at Pc. Then, the reinforcement starts yielding at the point Py, when the stress of the 
reinforcement reaches its yield strength. As the applied rotation continues to increase, the 
reinforcement will reach its ultimate strength, where a certain reinforcement group will fail at Pi. 
Lastly, all the reinforcement groups within the wind turbine foundation will fail at Pu, where the 
foundation reaches its ultimate bending moment capacity.  

 
Considering the difficulty in predicting the complete moment-rotation diagram using the machine 
learning method, it is essential to simplify the diagram using four key points that can portray the 
moment-rotation behavior of the foundation, as indicated in Table 2. These structural outcomes 
listed in Table 2 will be obtained using FEA by running simulations based on various design 
solutions.  
 
Table 2. Explanation of key points in the moment-rotation diagram  

Point in the diagram Corresponding outputs Description 

Pc - initial cracking point Initial cracking moment and rotation The point where the reinforcement 
starts cracking. 

Py - initial yield point Initial yield moment and rotation The point where the reinforcement 
starts yielding. 

Pi  - initial failure point Initial failure moment and rotation The point where the reinforcement 
starts reaching the ultimate strain. 

Pu - failure point    Failure moment and rotation The point where all the 
reinforcement groups are failed. 

 

3.2. Machine learning models development 
In this stage of the meta-model developing process, algorithm adaption methods will be used as 
the main regression methods by adapting pattern recognition algorithms that can directly handle 
multi-output data. Machine learning algorithms selected in this stage include RF and the multi-
output FFNN. In addition, several univariate regressions corresponding to every single output 
will also be made in this study, as the performance benchmark. This can will be done by 
developing a machine learning model for each output in the dataset. 
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Besides, a GA-based optimization approach was adopted for the feature selection during the 
model training phase and the optimization of hyperparameters, and the k-fold cross-validation 
method was applied to avoid the overfitting issue.  
 

 
Figure 6. The framework of the proposed GA-based machine learning models developing process 

 
Figure 6 provides an overview of the machine learning developing process, which consists of the 
following steps: 

(1) Splitting the dataset: the dataset established in the previous phase will be split into the 
training subset and the testing subset using the k-fold cross-validation method. 
 

(2) Generating the gene population: a population of genes will be generated consisting of the 
information of feature selection and hyperparameter values, and be converted from 
genotypes into phenotypes. 

 
(3) Model training and the fitness evaluation: both the training subset and the testing subset 

will be modified based on the feature selection results to train and validate machine 
learning models, and the fitness of each individual will be calculated. 

 
(4) Termination criteria assessment: if the stopping criteria are satisfied, the process will stop 

at the current iteration and the optimal features and hyperparameters will be registered, 
otherwise the next generation will be proceeded using genetic operations. 

 
(5) Genetic operations: the new population will be generated after the crossover and 

mutation.  
 

3.2.1. K-fold cross-validation 
Typically, in order to ensure that the machine learning model after training can obtain a desirable 
generalization capability, the dataset will be split into the train set, the validation set, and the test 
set. The train set will be used for training the model, the validation set will be used to evaluate 
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the model obtained after the training process, and if the evaluation is successful, the test will be 
eventually made on the test set to access the generalization ability of the model. However, this 
traditional dataset splitting method is sensitive to the proportions of three sets. Besides, the 
distribution of data within these three sets will also change, which may influence the performance 
of the model obtained. Last but not least, by splitting the original dataset into three sets, the 
number of data involved in the train set will decrease, which will influence the training process. 
 
One widely adopted solution to address this problem is using the k-fold cross-validation to ensure 
the generalization ability of the machine learning model and prevent the overfitting problem, 
without making the model being sensitive to the data distribution. Using this strategy, the original 
dataset will be randomly divided into 𝑘 disjoint folds with the approximately same size. Among 
them, 𝑘 − 1 folds will be used as the training set to enable the self-learning process of the machine 
learning model, while the remaining fold will be used as the test set (Wong, 2015). Then, by 
averaging performance metrics obtained in the process, the final performance of the model can 
be calculated. 
 
Normally, the value of k can be 10 or 5, depending on the size of the original dataset, where the 
higher the value of k is, the longer the computational time will require. Jung (2018) also provided 

an empirical approach to determine the value of k, by setting 𝑘 ≈ log 𝑁 and ensure that 
𝑁

𝑘
> 3𝑑, 

where 𝑁 stands for the size of the original dataset, and 𝑑 stands for the number of input features. 
In this article, the value of k will be determined using this empirical method. 
 

3.2.2. The GA-based model optimization approach 
The optimization of machine learning models will be realized by applying the GA-based approach.  
After obtaining the splitting of the original dataset, a population will be generated based on input 
features involved in this dataset and the type of machine learning algorithm. Subsequently, 
genotypes of each chromosome will be converted to phenotypes, such as the information whether 
a certain feature will be selected or reduced and value for one hyperparameter. Then, based on 
phenotypes from the feature gene fragments, the original dataset will reduce corresponding 
features. Using hyperparameters defined by the chromosome, the training and testing procedures 
will start, and the fitness of each chromosome representing parameters and selected features will 
be evaluated. The whole process will be terminated when the termination criteria are satisfied. 
Otherwise, individuals with better fitness will be selected using the roulette wheel selection 
operator, and generate new solutions using the crossover operator and the mutation operator, 
until the termination criteria are triggered, or the maximum number of generations reach the pre-
defined limit. 
 

3.2.2.1. Chromosome design 

The chromosome in each individual within the population should contain phenotypic 
characteristics about whether a certain feature will be selected or reduced and values of 
hyperparameters of the machine learning algorithm. Therefore, the chromosome will be divided 
into two parts as shown in Figure 7, of which the first part represents phenotypic characteristics 
about input features and the second part represents phenotypic characteristics about 
hyperparameters, using the binary coding system.  
 

 
Figure 7. The gene combination 
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Specifically, each element in the first part of the chromosome represents one certain feature. If 
the value of this element is “0”, it means that the corresponding feature will be reduced. On the 
contrary, if the value is “1”, it means that the corresponding feature will be selected.  
 
In this study, two machine learning algorithms were selected, namely RF and FFNN. From 
previous studies, these two machine learning algorithms have shown the potential to deal with 
multi-output regression problems, with good predictive performance, computational speed, 
scalability, ease of use, and extensibility (An, Zhao, Wang, Shang, & Zhao, 2013) (Borchani, 
Varando, Bielza, & Larrañaga, 2015).  Specifically, RF can provide good performance on working 
with large datasets, and it has the ability to overcome the overfitting problem and outliers (Ali, 
Khan, Ahmad, & Maqsood, 2012) (Roy & Larocque, 2012). Besides, another advantage of RF is its 
interpretability because the feature importance can be generated automatically. In addition, 
FFNN can also provide good performance by automatically adjusting the model complexity based 
on the failure history, and most importantly, the ability to learn and represent both the linear and 
non-linear relationships from the dataset (Hayati & Shirvany, 2007).  
 
Table 3 lists all the hyperparameters which will be optimized using this GA method. Each 
hyperparameter will be linked to a certain fragment within the second part of the chromosome. 
Subsequently, the binary code for each chromosome fragment will be converted to a decimal 
value as the real value of each hyperparameter. 
 
Table 3. Explanation of hyperparameters required to be optimized  

Machine learning algorithm Hyperparameter Description 

RF n_estimators The number of trees in the forest. 

max_depth The maximum depth of each MTRT in the 
forest. 

min_samples_split The minimum number of samples from 
the train set that is required to split an 
internal node. 

min_samples_leaf The minimum number of samples 
required to be at a leaf node. 

FFNN n_layers The number of hidden layers. 

n_nodes The number of nodes within each hidden 
layer. 

epochs The number of training epochs. 

learning_rate The learning rate of the backpropagation 
algorithm. 

batch_size The number of training samples used in 
one iteration. 

 
3.2.2.2. Fitness function 

The fitness function measures the performance of each individual after the evaluation, which can 
also be used as a metric for stopping the iterative process early when a specific value of the fitness 
is achieved (Gao & Lee, 2019). In this article, because the purpose is using a GA-based method to 
find the optimized machine learning model configuration, no specific value for the fitness to be 
achieved will be given. Therefore, the fitness function will only be used for the selection stage of 
the process. Instead, the fitness function will directly reflect the predictive performance of the 
machine learning model. 
 
Several performance evaluation metrics have been introduced by Borchani et al. (2015) for multi-
output regression problems. In this study, the mean squared error (MSE) will be applied in the 
fitness function and also as the metric. According to Urbanek et al. (2015), MSE can be regarded 
as the best fitness function because of its statistical properties. Besides, using MSE as the metric 
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can ensure that trained models with outlier predictions will be eliminated, given the fact that the 
MSE will magnify those huge errors.  
 
Therefore, in the proposed GA-based model optimization approach, the fitness function used for 
the selection stage will be MSE, as indicated in Equation 1, according to Borchani et al. (2015). 
 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑀𝑆𝐸 = ∑
1

𝑁𝑡𝑒𝑠𝑡
∑ (𝑦𝑖

(𝑙)
− ŷ𝑖

(𝑙)
)2𝑁𝑡𝑒𝑠𝑡

𝑙=1
𝑑
𝑖=1                                 (1) 

 
where 𝑑 stands for the number of outputs,  𝑁𝑡𝑒𝑠𝑡 stands for the size of the test dataset, 𝑦𝑖

(𝑙) stands 

for the actual value of the 𝑖th output corresponding to 𝑋(𝑙) in the test dataset, and ŷ𝑖
(𝑙)

 represents 

the predicted value of the 𝑖th output corresponding to 𝑋(𝑙).  
 
However, it is worth noting that the calculation of MSE in the multi-output context may result in 
distinct ranges because the predictive performance of each output is calculated separately. 
Therefore, it is critical to normalize each error value, instead of simply calculating the average 
value. This can be done by normalizing each output before the model training phase. Therefore, 
for every output, the range of potentially calculated MSE will between 0 to 1, while the possible 
MSE for all eight outputs will range from 0 to 8. The smaller the value of MSE is, the more accurate 
prediction can be achieved.  
 

3.2.2.3. Stopping criteria 

Stopping criteria will be used as the mechanism to determine when the optimization process can 
be finished. As indicated in Equation 2, the convergence criterion indicates the change in the value 
of the fitness objective function in the last ten iterations (Querin, Victoria, Gordoa, Ansola, & Martí, 
2017). 
 

𝜀𝑖 =
∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠−∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖

𝑖−4
𝑖−5
𝑖−9

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖
𝑖−4

                                                                                       (2) 

 
where 𝑖 is the current number of the iteration, which should be higher than 10. 
 
Typically, the convergence limit (𝜀𝑙𝑖𝑚 ) should be between 0.001 and 0.01 (Querin, Victoria, 
Gordoa, Ansola, & Martí, 2017). In this study, the value of 𝜀𝑙𝑖𝑚 will be set to 0.01. Therefore, the 
optimization process will end after 10 iterations if 𝜀𝑖  is less than 𝜀𝑙𝑖𝑚. 

4. Case study 
4.1. Dataset 

In this research, a case study was conducted to test the proposed method. The dataset used in this 
research was provided by WindBase, which is a department within the Dutch design company 
ABT with over 25 years of experience in the wind turbine foundation designs, and over 2800 wind 
turbine foundations have been designed and built. In order to ensure the consistency of the data 
structure, this dataset only contains design variables determined and described in section 3, 
where Table 4 indicated the range of each variable. Besides, corresponding outputs were 
obtained by running calculations using FEA with different design solutions.  
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Table 4. Input features from the dataset 
Feature Range 

Base_diameter From12.5 m to 25 m with a step of 
2.5m 

Anchor_count From 60 to 120 with a step of 30 

Vertical_load_factor 0.9 and 1.35 

Base_slope_height From 0 to 2.3125 m 

Base_side_height From 1.5 m to 2.1875 m 

Top_rad_ratio From 0.041% to 0.63%  

Bottom_rad_ratio From 0.041% to 0.63% 

Top_tan_ratio From 0.047% to 0.36% 

Bottom_tan_ratio From 0.09% to 0.71% 

 

4.2. Parameters in the GA process 
Parameters for the GA process have been pre-defined, as indicated in Table 5. 
 
In this case study, the size of the initial population will be set to 50, which means 50 individuals 
will be included as the input of the GA process. Besides, during the crossover stage, the crossover 
rate will be set to 0.8, which represents the possibility of two randomly selected individuals after 
the selection to exchange gene fragments. Furthermore, the possibility of the mutation occurring 
in each offspring generated after the crossover phase will be 0.1.  
 
Table 5. Pre-defined GA parameters  

GA parameter Description Value 

Population size The number of individuals that will 
be evaluated and selected. 

50 

Offspring size The number of individuals which 
will be re-generated after one 
iteration of the proposed GA 
process. 

50 

Crossover rate The probability of two random 
individuals after selection replacing 
their gene fragments.  

0.8 

Mutation rate The possibility of the occurrence of 
mutation. 

0.2 

 

4.3. Results 
As described in section 3.2.2.2, MSE was selected to be the fitness function to evaluate the 
competitiveness of each generated individual. Given the fact that the usage of the MSE can provide 
a physical meaning and is grounded in reasonable probabilistic assumptions, it will also be used 
as the main metric to indicate the model predictive performance. However, MSE cannot 
intuitively indicate how accurate the developed machine learning model can be. Therefore, 
another performance metric named PRED(25) will also be applied in this research, which 
represents the percentage of predictions falling within 25% of the true value (Oliveira, Barga, 
Lima, & Cornélio, 2010). Therefore, the overall predictive performance of multi-output models 
will be determined by MSE and PRED(25). The former can be calculated by summing up the MSE 
obtained on each output as indicated in Equation 1, while the latter will be the average of the 
PRED(25) achieved on each output. Unlike MSE, higher value achieved in PRED(25) means higher 
accuracy of the prediction.  
 
Table 6 indicates the result after testing GA-based machine learning models using this dataset. 
Furthermore, in order to provide a more intuitive representation of results, regression plots for 
each multi-output model were also provided, as shown in Figure 8 and Figure 9 respectively. It is 
worth noting that for the multi-output RF and the multioutput-FFNN, not only the overall 
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predictive performance will be given, but also the performance on each output. Besides, for every 
sing output, two single-output machine learning models were also developed using RF and FFNN 
respectively. The only difference between the multi-output regression models and the single-
output models is that the former can predict 8 outputs, while the latter was developed to predict 
one specific output independently.   
 
Table 6. Results obtained from the case study 

Output  Multi-output RF Single-output RFs Multi-output FFNN Single-output FFNNS 

Overall MSE 0.0169 - 0.0167 - 

 PRED(25) 83.08% - 75.81% - 

Initial cracking rotation MSE 0.0018 0.0018 0.0013 0.0018 

 PRED(25) 77.57% 93.64% 63.89% 87.57% 

Initial cracking moment MSE 0.0013 0.0013 0.0014 0.0013 

 PRED(25) 79.76% 95.07% 70.89% 91.67% 

Initial yield rotation MSE 0.0025 0.0024 0.0026 0.0026 

 PRED(25) 82.18% 92.90% 75.38% 84.75% 

Initial yield moment MSE 0.0014 0.0014 0.0014 0.0016 

 PRED(25) 87.87% 96.52% 87.09% 94.03% 

Initial failure rotation MSE 0.0010 0.0006 0.0007 0.0010 

 PRED(25) 73.39% 95.82% 60.17% 86.65% 

Initial failure moment MSE 0.0014 0.0012 0.0013 0.0014 

 PRED(25) 77.49% 96.84% 63.59% 96.38% 

Failure rotation MSE 0.0062 0.0062 0.0064 0.0100 

 PRED(25) 89.46% 91.41% 88.35% 87.25% 

Failure moment MSE 0.0013 0.0010 0.0011 0.0012 

 PRED(25) 96.96% 97.81% 97.12% 97.51% 

 
Table 7 represents the configuration of obtained optimal multi-output models using these two 
machine learning algorithms. In terms of the feature selection, the two developed models applied 
different feature combinations. For the multi-output RF model, the feature Top_rad_ratio was 
reduced, while there is no feature has been reduced by using the multi-output FFNN model. 
 
 Table 7. Results of the feature selection and optimal model configurations  

Machine learning 
algorithm 

Reduced feature Hyperparameter Value 

RF Base_slope_height n_estimators 856 

 max_depth 86 

 min_samples_leaf 2 

 min_samples_split 3 

FFNN None n_layers 3 

 n_nodes 26-17-31 

 epochs 500 

 learning_rate 0.002 

 batch_size 10 

The structure of the value of hyperparameter n_nodes means there are 12 nodes, 24 nodes, and 11 nodes in the first, 
the second, and the third hidden layer respectively. 

 
From the result, it is clear that using multi-output RF can provide closed predictive performance 
regarding the calculated MSE. However, because the calculated PRED(25) of the multi-output RF 
is considerably higher than the multi-output FFNN, the former can be regarded as the more 
desirable choice that can provide better predictive performance in terms of predicting all eight 
outputs. Besides, in general, while the calculated PRED(25) is higher than 75%, the developed 
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regression model can be regarded as acceptably accurate (Kumar, Ravi, Carr, & Kiran, 2008). 
Therefore, based on these results, using the multi-output RF model will have poor performance 
in predicting the initial failure rotation, while the multi-output FFNN fails to predict the initial 
failure rotation, the initial failure moment, the initial cracking rotation, and the initial cracking 
moment on an acceptable level. 
 

 
 

Figure 8. Regression plots of the multi-output RF model 
 

 
 

Figure 9. Regression plots of the multi-output FFNN model 
 
Furthermore, Figure 10 and Figure 11 indicate the regression plots of each output predicted by 
corresponding single-output models. When comparing the multi-output models with 
corresponding single-output models, the comparison shows that the usage of the latter can 
generally provide improved predictive performance, except the prediction on the failure rotation. 
This finding reveals that it is difficult to use the proposed GA-based optimization approach to find 
the optimal solution regarding the feature selection and hyperparameters configuration to obtain 
accurate predictions on every output simultaneously. Therefore, for the prediction on a single 
output, it is recommended to adopt the single-output machine learning models, where using 
single-output RF models can generally provide better predictive performance on each output. 
However, when it comes to the prediction of these 8 outputs simultaneously, considering the time 
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consumed for developing an array of single-output machine learning models to predict all the 
outputs simultaneously is dramatically longer than only developing one multi-output model, as 
shown in Table 8, the latter should be regarded as the most desirable choice. Besides, considering 
the overall accuracy and the computational time required for the model development, the multi-
output RF model is recommended to be utilized to function as the meta-model as the substitution 
of the FEA. 
 

 
Figure 10. Regression plots of the single-output RF models 

 

 
Figure 11. Regression plots of the single-output FFNN models 

 
Table 8. The average computational time for the development of each machine learning model  

Model Multi-output RF Single-output RFs Multi-output FFNN Single-output FFNNS 

Average computational time 200 min 183 min 455min 415 min 

 

4.4. Model interpretability  
After developing machine learning models in this case study, it is also crucial to obtain a better 
understanding of these models regarding their interpretability, which explains the behavior of 
models in the entire population, especially when these machine learning models are normally 
regarded as “black box” tools. 
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4.4.1. Sensitivity analysis 
One of the most effective methods to investigate the interpretability of models is conducting the 
sensitivity analysis to examine how the influence of each input feature can affect the predictive 
performance of models. In this study, the analysis will be done by using permutations to randomly 
shuffle a single feature value, in which the feature importance can be obtained based on the 
change in the model score (Breiman, 2001). It is worth noting that the feature importance 
obtained using permutation cannot reflect the inherent predictive value of features, but the 
importance of features for a particular model.  
 
In addition, when using RF, it is also possible to adopt another feature importance measurement 
method, called the Mean Decrease Impurity (MDI) or Gini importance, which obtains each feature 
importance by summing the number of splits included in the feature, and weighted by the number 
of samples split (Breiman, 2002). Therefore, the relative impurity-based feature importance was 
also be calculated as the comparison.  
 
Because in the previous section, results show that multi-output RF is the most favorable choice 
with higher predictive performance and less computational time, only the multi-output RF model 
gained from the case study using the GA process was used to conduct this sensitivity analysis. It 
is worth noting that the selected model may reduce several features during the development 
phase due to the feature selection of the GA process.  
 
Besides, based on the results of the case study represented in section 4.3, the predictive 
performance on the initial failure rotation is not on an acceptable level using the obtained optimal 
multi-output RF model, while the prediction on the failure rotation cannot be improved by using 
the corresponding single-output RF model either. Therefore, one can conclude that these two 
outputs can be regarded as the most difficult outputs to be predicted. In order to further 
investigate how features contribute to the prediction of these two outputs, extra sensitivity 
analyses were made on obtained optimal single-output RF models that predict the failure rotation 
and the initial rotation respectively. 
 

4.4.2. Results of the model interpretation 
Figure 12 shows the results of this permutation-based sensitivity analysis on the optimal multi-
output RF model. In total, eight features have been selected in the optimized multi-output models 
after the GA-based feature selection process. The feature Base_slope_height has been reduced 
from the model training phase. 
 
In addition, the impurity-based feature importance is indicated in Figure 13. The results of the 
impurity-based feature importance match the results obtained from the sensitivity analysis. 
Therefore, for this optimized multi-output RF model, Base_diameter, Base_side_height, and 
Bottom_tan_ratio are the most important features that will be more decisive in influencing the 
moment-rotation behavior of wind turbine foundations, while Anchor_counts has the least 
importance.  
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Figure 12. The feature importance obtained from the sensitivity analysis on the multi-output RF 

model 
 

 

 
Figure 13. The relative impurity-based feature importance on the multi-output RF model 

 
Besides, Figure 14 and Figure 15 show the permutation-based feature importance of two single-
output RF models, which predict the failure rotation and the initial failure rotation respectively. 
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Figure 14. The permutation-based feature importance of the single-output RF model which 

predicts the failure rotation 
 

 
Figure 15. The permutation-based feature importance of the single-output RF model which 

predicts the initial failure rotation 
 
Based on the result provided in section 4.3, neither the multi-output RF model nor the 
corresponding single-output RF model can predict the failure rotation very accurately. From the 
result shown in Figure 14, in contrast to the multi-output RF model, the feature Base_slope_height 
was not removed from the feature selection process of the single-output RF model for predicting 
the failure rotation. Instead, this feature has a considerable effect on the failure rotation, which is 
not in line with the result indicated in Figure 12 and Figure 13. Therefore, the multi-output RF 
cannot make full use of the inferences provided by the decisive features shown in Figure 14, 
which leads to the poor predictive performance on the failure rotation. Furthermore, another 
possible reason could be the fact that the size of the currently used dataset is not sufficiently large. 
Consequently, neither the multi-output RF model nor the single-output RF model can realize a 
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better performance prediction on the failure rotation because the current dataset cannot provide 
enough information about how these important features influence the failure rotation. 
 
Besides, Figure 15 also indicates that different input features are decisive in the learning phase 
for predicting the initial failure rotation, comparing to the multi-output RF model. Therefore, the 
reason why the multi-output RF model cannot achieve good predictive performance on the initial 
failure rotation is that different input features are decisive in determining this output, while the 
developed multi-output RF model relies on other features and neglect the effects of input features 
shown in Figure 15 on the initial failure rotation.  

5. Discussion 
As demonstrated in section 2.2.1, prior studies have noted the importance and potential of using 
the metal-modeling techniques in solving engineering problems in the AEC industry during the 
past few decades, yet very little was found in the literature on investigating how can meta-
modeling techniques can be adapted to the field of the wind turbine foundation design. On this 
premise, the main contribution of conducting the presented study is providing an opportunity to 
determine how and to which extent can the meta-model be used to streamline the wind turbine 
design process to obtain the optimal design solution, by providing surrogates to replace the FEA 
in the traditional static method.  
 
Based on results represented in section 4.3, this study found that the developed multi-output RF 
model was recognized as the most favorable choice, considering the computational speed and 
accuracy. This finding differs from that of Kayri et al. (2017) who found that the neural network 
can be regarded as the best option for solving big and complex data mining problems by 
comparing RF and the neural network, but it is broadly consistent with the earlier study 
conducted by Oliveira et al. (2012), in which RF was examined to have better performance than 
the neural network.  
 
In addition, the model interpretation shows that the diameter of the foundation base, the 
reinforcement ratio of the tangential reinforcement at the bottom, and the thickness of the 
foundation side are the most decisive design variables in predicting all the outputs, while the 
number of anchors contributes the least.  
 
Surprisingly, using single-output machine learning models can generally provide an improved 
prediction on every single output. Therefore, by developing 8 different single-output models to 
independently predict the moment-rotation behavior of the wind turbine foundation. This finding 
is contrary to that of Borchani et al. (2015) who stated that using this single-output method 
cannot obtain the most desirable predictive outcome, because it may neglect the dependencies 
between outputs. A possible explanation to this finding might be that the currently used dataset 
is not sufficiently large to provide enough inferences regarding correlations between selected 
features and these 8 outputs. Comparing to the single-output machine learning models, which are 
developed to predict only one single target, the multi-output models require more information 
on how these features are correlated to the outputs, especially when this correlation is non-linear. 
Therefore, by further extending the dataset, it is possible to enhance the performance of the multi-
output machine learning models. 
 
Furthermore, although each single-output model can provide better accuracy, thus having the 
potential to conduct the problem transformation methods to solve this multi-output regression 
problem, it is still recommended to apply the multi-output machine learning models to predict all 
the outputs simultaneously, given the fact that developing 8 different single-output models is 
more time-consuming compared to generating one multi-output development model, as shown 
in Table 8. 
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Overall, the proposed method in this study can provide a significant time gain by reducing the 
computational time required from conducting the FEA in the static design optimization process 
of wind turbine foundations. Besides, by developing the machine-learning-based meta-models, it 
can also offer the designers a better understanding regarding the importance of each design 
variable and how a certain design variable influences the moment-rotation behavior of the wind 
turbine foundation. Last but not least, by applying this data-driven method in the wind turbine 
foundation design process, it will encourage the industry to establish a standard and consistent 
data structure as the basis for the data mining, because this study provided new insight about 
how the usage of the historical data regarding the wind turbine foundation design can benefit the 
design optimization process. 

6. Conclusion and future work 
The aim of the study is to investigate how and to which extent can the machine-learning based-
model be developed and utilized as the substitution of the FEA, which hinders the design 
optimization process of the wind turbine foundations. In order to do that, a meta-model 
developing process was proposed, mainly including the dataset establishment and the machine 
learning models development.  
 
In this study, two multi-output machine learning algorithms were selected, namely the multi-
output RF and multi-output FFNN, and optimized by using the proposed GA method to determine 
the best model configuration, as well as the best combination of input features. In order to test 
and evaluate their predictive performance, a case study was conducted using the dataset 
provided by a Dutch design company named ABT. In general, the multi-output RF model shows 
better performance compared to other developed models, regarding the accuracy and 
computational time. 
 
However, because currently only a limited number of design variables were considered in this 
research as input features, further study is required to evaluate this method in a broader dataset. 
This would require a big and more comprehensive database to store all variables that need to be 
considered, as well as a consistent data structure. Besides, given the fact that the performance of 
using this GA-based method may be influenced by values of GA parameters, including the size of 
the population and offspring, the crossover rate, the mutation rate, and the stopping criteria, it is 
essential to determine the best configuration of the combination of these GA parameters. 
Potentially, this can be done by conducting a sensitivity analysis. Last but not least, currently, only 
the moment-rotation behavior of wind turbine foundations are considered as the output, it is also 
necessary to generate the proposed method to predict more outputs which can portray the more 
comprehensive structural performance of wind turbine foundations.  
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