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Abstract

In this thesis, we present a solver for direct numerical simulation (DNS) of two-phase Taylor-
Couette (TC) flow. It is an extension of the TBFsolver; a highly scalable and efficient solver
for dispersed gas-liquid channel flow (Cifani et al., 2018). We describe the thorough adaptation of
the numerical methods to cylindrical coordinates, required for TC flow. The two-phase system is
solved in the one-fluid formulation. We employ the fully conservative finite difference scheme for
incompressible flow developed by (Morinishi et al., 2004) as well as a variable coefficient Poisson
equation solver (Cifani, 2019). Advection of the bubble interface is carried out using a geometric
volume-of-fluid (VOF) approach in the computational domain. The generalized height-function
method (GHF) was adopted for the curvature computations. The surface tension force is modelled
using the continuous-surface-force method (CSF).

By simulating carefully selected test cases described in literature, we observed close agreement with
the reference results. Moreover, the computational performance of the VOF method achieved with
the existing TBFsolver could be retained at a high level. Furthermore, by suitably varying the
curvature of the domain, we observe convergence to results obtained previously on a rectangular
domain. Simulations of single-phase TC flow measuring the torque on the cylinders near the critical
Reynolds number show an agreement within 0.05% with literature data. At a higher Reynolds
number (Re), the torque is determined via the angular velocity flux and shows agreement within
5% with literature data.

The computational capabilities of the extended computational platform are illustrated by a sim-
ulation of 120 highly deformable bubbles at Re = 5 · 103 and We = 8. Starting from developed
single-phase flow, we inject bubbles into the flow arranged initially in a regular pattern. We observe
transient strong migration of bubbles to the inner cylinder due to the large scale plumes present in
the single-phase flow. After some time the flow has developed more fully and this plume structure
is disrupted by the bubbles. This is clearly expressed by the PDF of the bubble locations. Mea-
surements of the torque based on shear stress at the walls show no conclusive results yet on drag
reduction as longer simulation time is required. The development of this code facilitates future
research into drag reduction and flow structuring in two-phase flows at high fluid density ratios
and high bubble deformability.
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1 Introduction

1.1 Drag reduction in multiphase flows

Frictional energy drains have long been a major issue in fluid transport, which is ubiquitous in naval
transportation, process technology, transportation of liquified natural gas and other industries.
Historically, many ideas have been proposed to reduce this energy drain, both passive and active.
Examples of passive methods are the addition of roughness and structures to the surface and
shaping a surface to maintain laminar flow in the downstream direction as much as possible (Sanders
et al., 2006). Active methods include introducing transverse wall oscillations or even electro-kinetic
forcing of the near-wall flow for unsteady energy addition. In the middle ground of these techniques
lies the injection of a second phase into the flow to reduce skin friction.

The idea of introducing gas bubbles to fluid flow in order to reduce drag has been around for
at least a century. Latorre reports that patents on using air lubrication to reduce the drag on
ship hulls were filed as early as 1880 (Latorre, 1997). Early implementations of this idea focused
mostly on the addition of polymers to flows, which showed promising results in turbulent pipe flow
(Virk, 1975). During the last four decades, however, many theoretical, numerical and experimental
studies have been performed on the lubricating effect of air bubbles in liquid flows, which show
promising results in reducing the frictional energy loss in various flow configurations (Madavan
et al., 1984; Sanders et al., 2006; Ceccio, 2010; Van Gils et al., 2013; Verschoof et al., 2016).

The magnitude of drag reduction or of reduction of the driving force in two-phase flows compared
to single-phase flows can be quite substantial. It is shown that adding dispersed bubbles at a gas
volume concentration of just 4% can lead to drag reduction of up to 40% in Taylor-Couette flows
(Van Gils et al., 2013). Early work on water tunnels even shows an 80% reduction in skin friction at
high Reynolds numbers (Madavan et al., 1984). The relevance of this research to naval applications
was shown by Kodama et al., as they observed a skin friction reduction of up to 40% under realistic
conditions for ships (Kodama et al., 2000). These results show the significance of this research area
to the naval industry, as drag reduction can lead to a significant decrease in the fuel consumption
for ships. Also in many other application areas, the reduction of skin friction can improve the
performance of key processes, e.g., in the transport of chemicals in industrial equipment.

Much research on the mechanism behind drag reduction is focussed on the study of Taylor-Couette
(TC) flow, the flow between two concentric cylinders. This flow configuration has several advan-
tages over many other systems. Firstly, it is a closed flow system which allows us to derive exact
global balances. The flow is usually driven by the externally controlled rotation of the cylinders,
which enables the measurement of the external energy input via the torque on these cylinders. Sec-
ondly, statistically stationary states can be achieved in the Taylor-Couette system, which allows an
easier evaluation of the energy balances (van den Berg et al., 2005). There are also more practical
considerations, such as the relatively simple geometry and implementation of boundary conditions
in TC flow (Spandan et al., 2016).

Despite all research efforts in the past few decades, there is still no solid understanding of the
physical mechanisms behind this drag reduction in turbulent flows (Grossmann et al., 2016; Lohse,
2018). Various theories have been proposed to explain the origin of this effect. Among these
mechanisms, bubble compressibility and deformability are shown to influence the amount of drag
reduction for small bubbles (Lo et al., 2006; van den Berg et al., 2005).

Recently, it has been established that bubble size (Verschoof et al., 2016) plays an important role
in the realisation of drag reduction. This indicates the important role of bubble deformability
in hindering the exchange of angular momentum between the boundary layer and bulk in TC
flow (Spandan et al., 2017a). In light of these findings, multiple different physical effects have
been shown to contribute to drag reduction with the use of fully resolved numerical simulations
(Spandan et al., 2018). In two-phase TC flow, bubbles weaken the large-scale structures that are
responsible for momentum transport. Compared to single-phase flow, turbulence near the inner
cylinder is enhanced, while it is attenuated in the bulk. Furthermore, the intensity of dissipative
structures decreases with increasing bubble deformability, affirming its relevance to drag reduction.
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1.2 VOF methods for two-phase flows

The importance of deformability of finite-sized bubbles calls for the employment of direct numerical
simulations (DNS) of two-phase flows, as it uniquely enables us to resolve to flow up to the smallest
physical scales of the system (Pope, 2000). This section provides a short description of the choice
of DNS method for this research.

Two-phase flows are a broad category of systems in which two different fluid phases, or fluid and
solid phases, are simultaneously present (Prosperetti and Tryggvason, 2007). An example of this is
a liquid carrier flow that transports gas bubbles; the topic of this thesis. A comprehensive overview
of DNS methods is provided in (Tryggvason et al., 2013).

Most models use the so-called one-fluid approach, where the whole flow field is simulated by solving
a single set of equations (Prosperetti and Tryggvason, 2007). The differences in material properties
and interface phenomena are accounted for by introducing the appropriate surface terms. A further
distinction can be made between interface tracking and interface capturing methods (Mirjalili et al.,
2017). In the first instance, the fluid is simulated in an Eulerian framework, whereas the interface
is tracked using Lagrangian markers. In the latter method, the distinction between phases is made
using an indicator function on the grid cells. Several choices of transporting this indicator function
are found in literature, such as the volume of fluid (VOF) method (Popinet, 2009) and the level-set
method (Sussman and Puckett, 2000). In this research, a VOF method is implemented for reasons
listed below.

Even though the VOF method can be used in general two-phase flows, the following description is
based on the current setup with dispersed gas bubbles in a fluid. In the VOF method, an indicator
function is constructed that takes the value of 1 whenever the considered location is inside the gas
phase, and 0 when inside the fluid phase. The value of the indicator function for a fluid particle is
assumed not to change, which leads to the advection equation for the indicator function.

In this research, we utilize the VOF method developed and implemented by (Cifani et al., 2018),
which is in part based on earlier research by (Popinet, 2009). In this method, the indicator function
is used to perform a geometrical interface reconstruction based on piece-wise linear interface cal-
culation (PLIC) (Puckett et al., 1997). The subsequent advection fluxes can be calculated based
on geometrical considerations of the local velocity field. The method does not guarantee exact
conservation of mass, leading to an error in the volume fraction advection. However, in most cases,
this error is small compared to other sources of errors such as discretisation errors, and the method
has been shown to converge to second-order accuracy with grid refinement (Rider and Kothe, 1998;
Scardovelli and Zaleski, 2000).

One of the biggest challenges for this method is the computation of surface tension. This relies
on the accurate determination of the curvature field describing details of the bubble interfaces.
Numerically, a key method is to approximate the curvature using derivatives of the indicator
function. This is done using the Generalized Height Function (GHF) method. Height-function
methods usually perform well in terms of accuracy, convergence and conservation properties, but
are prone to perform less well at a low spatial resolution of the interface (Popinet, 2018). The GHF
method employs a parabolic reconstruction of the interface for the calculation of curvature when
the standard height-function fails at low resolution. This hybrid method improves the performance
at a low resolution of the interface and high curvature (Popinet, 2009). The resulting method is
shown to be both accurate and robust, with limited additional computational costs, but at the
expense of a significant increase in code complexity.

A complete DNS solver for turbulent two-phase channel flow that implements the GHF method
was developed by Cifani (Cifani et al., 2018). This code, called the TBFsolver, was used to
simulate O(104) bubbles in turbulent flow, which showed excellent parallel performance with linear
scaling up to ≈ 18000 computational cores. Its computational performance, coupled with the
accuracy and robustness of the employed numerical methods, makes the TBFsolver a viable tool
in researching the mechanisms behind drag reduction. In this work, we adopted this solver as the
point of departure for the extension to cylindrical coordinates, capable of simulation of turbulent
TC flow.
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1.3 Goal and structure of this thesis

In this study, we aim to extend and employ the TBFsolver for the study of drag reduction in
TC flow. The accuracy and robustness of the TBFsolver at high curvature enables the study of
highly deformable bubbles. The main challenge in this research is the extension of the method to
the cylindrical geometry of TC flow. The code will then be used to study the energy balance of
bubble-laden TC flow, which can provide insight into the physical mechanisms behind the observed
drag reduction. Moreover, as we adhere to first principles throughout, the results can also serve as
a point of reference for other methods and simplified models.

The thesis is structured into two parts. In the first part, we focus exclusively on the numerical
methods for simulating the carrier fluid, which results in a solver for single-phase in TC flow. In
section 2, the TBFsolver is introduced is more detail, and the adaptation of the single-phase
solver to the cylindrical geometry is discussed. In the second part of the thesis, we discuss the
implementation of the complete two-phase solver for TC flow. Section 3 describes the VOF method
in more detail and shows its implementation in cylindrical coordinates. In section 4, several test
cases are described to test the code performance. Next, the energy balance in bubble-laden Taylor-
Couette flow is analysed in section 5.

The main conclusions are summarised in section 6, where we also give an overview of possible
future research topics. The reader is referred to appendix B for a list of dimensionless numbers
and variables.
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Part I

Single phase Taylor-Couette flow



2 SINGLE PHASE TAYLOR-COUETTE FLOW 8

2 Single phase Taylor-Couette flow

In this chapter, the adaptation part of the TBFsolver that deals with single phase flow to the
cylindrical geometry is described.

The chapter is organised as follows. In section 2.1, the mathematical formulation of the problem
is given, along with some important properties of TC flow. The numerical methods that are to
be implemented in the flow solver are shown in 2.2, which concludes with an overview of all the
necessary modifications to the original code. Section 2.3 describes the simulations that are used for
validation of the code. Finally, in section 2.4 the results for the single-phase solver are summarised.

2.1 Problem description

Taylor-Couette (TC) flow is the flow between two concentric and independently rotating cylinders.
The flow can exhibit a large variety of states, from laminar to turbulent states, including states
with co-existence of laminar and turbulent regions (Andereck et al., 1986). This, and the fact that
it is a closed system, contributes to TC flow being one of the most studied objects of physics of
fluid (Ostilla-Mónico et al., 2014).

One of the first rigorous analyses on the system was done by Taylor (Taylor, 1923), who studied the
transition from laminar Couette flow to a laminar flow state consisting of pairs of counter-rotating
vortices, which is now referred to as Taylor-vortex motion. This transition has also been studied
extensively by linear stability analysis (Drazin and Reid, 2004).

Experiments by (Wendt, 1933) found power laws relating the torque on the inner cylinder to the
velocity of that cylinder. This scaling behaviour has since become the main focus for many studies,
both experimental (Lathrop et al., 1992; Echeverry, 2014) and numerical (Bilson and Bremhorst,
2007; Dong, 2008).

2.1.1 Description of Taylor-Couette flow

The geometry for the flow is shown in figure 1. The domain is bounded radially by two co-axial
cylinders with radius ri and ro respectively for the inner and outer walls. These wall can rotate at
an externally controlled angular velocity ωi and ωo respectively. The geometric parameters of the
TC domain are the ratio of the cylinder radii η given by:

η =
ri
ro
, (1)

and the ratio Γ of the axial extent of the cylinders and the gap width between the cylinders given
by:

Γ =
Lz
d
, (2)

where d ≡ ro−ri is the gap size. The walls can be modelled using no-slip conditions, meaning that
the fluid is co-moving with the walls. In experimental studies, the domain is generally bounded
in the axial direction by fixed or rotating end plates. It was shown that this can have significant
impact on the stability of the flow in the laminar regime (Coles and Atta, 1966). For this reason,
many numerical studies use periodic boundary conditions in the axial direction. It was shown that
an accurate value of the torque can be obtained using periodic boundary conditions, even at small
aspect ratios (Brauckmann and Eckhardt, 2013; Ostilla-Mónico et al., 2015).

TC flow is usually characterised by the dimensionless parameters Re (Reynolds number) and Ta
(Taylor number), based on the geometrical parameters, the cylinder velocities and the kinematic
viscosity ν of the fluid. For TC flow, two Reynolds numbers can be defined, based on the velocity
of the inner and outer walls respectively:
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Figure 1: Domain for the Taylor-Couette flow.

Rei/o =
ωi/ori/od

ν
. (3)

In this study, only Rei will be used, as the outer cylinder will be stationary during all simulations.
The Taylor number characterises the ratio between the inertial forces due to rotation and the viscous
forces. The definition of the Taylor number may differ between different studies, depending on the
specific goal of a study. We define it as follows:

Ta =
r6
ad

2

r2
or

2
i ν

2
(ωo − ωi)2 =

r4
a

r2
or

2
i

(
ra(ωo − ωi)d

ν

)2

, (4)

where ra = 1
2 (ri + ro) is the arithmetic mean radius. Here,

r4a
r2or

2
i

is a measure for the curvature

of the domain, while the second factor in equation 4 relates the mid-gap inertial forces to the
viscous forces. This definition will be useful in the evaluation of the energy balance of the system
(Eckhardt et al., 2007).

2.1.2 Torque balance

In TC flow, the fluid motion is driven by a rotation of the inner and outer cylinder. Typically, the
cylinders have no-slip walls and are rotated at an externally controlled constant angular velocity.
This causes the fluid to exert a torque T on the cylinders, based on the fluid shear stress at the
wall. At the inner wall, the torque Ti is given by:

Ti = ri

∫
A

τrθdA = ri(2πri)Lz 〈τrθ〉A , (5)

where Ti is the torque, ri the radius of the inner cylinder, Lz is the height of the system, τrθ
= µ

(
∂uθ
∂r + 1

r
∂ur
∂θ −

uθ
r

)
is the shear stress at the wall and 〈. . .〉A represents an average over the

(θ, z)-plane. The torque on the outer cylinder is defined similarly. The torque can be expressed in
the non-dimensional quantity:

G =
T

2πLzρν2
, (6)
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where ρ is the fluid mass density. When the angular velocities of the inner and outer wall differ,
angular momentum is transported from one wall to the other. In a statistically stationary flow, the
torque on the inner and outer cylinder wall must be equal and of opposite sign, which results in a
balance equation for torque, since Ti = −To must be satisfied. Eckhardt, Grossmann and Lohse
(Eckhardt et al., 2007) showed that this torque balance can be generalised. They showed that in
developed flow, there must be a constant flux of angular momentum through the domain from one
wall to the other. This angular momentum flux Jω is defined by:

Jω = r3

[
〈urω〉A,t − ν

∂

∂r
〈ω〉A,t

]
, (7)

where ω = uθ/r is the angular velocity, 〈. . .〉A,t =
∫
dz
Lz

∫
dθ
Lθ

∫
dt
Ts

(. . .) for some time-averaging
period Ts and ν is the dynamic viscosity of the fluid.

The angular momentum flux consists of two parts. The first term represents the convective trans-
port of angular velocity, while the second term represents molecular transport, which is proportional
to the kinematic viscosity of the fluid. In a statistically stationary flow, Jω is independent of the
radius r. At the wall, the convective term of equation (7) is zero due to the boundary condition on
ur, so we recover the torque on the wall up to a factor 2πLzρ, resulting in the following relations
between torque and angular momentum flux:

T = 2πLzρJ
ω, G = ν−2Jω. (8)

The angular momentum flux is very similar to its counterpart in the thermally driven Rayleigh-
Bénard convection. In that case the flow is driven by the convection that is induced by a tem-
perature difference between the top and bottom wall in a rectangular domain. This results in a
constant heat flux Jθ from the hot to the cold end of the domain, given by:

Jω = 〈uzθ〉A,t − κ
∂

∂z
〈θ〉A,t , (9)

where the temperature θ is transported along the wall-normal direction instead of the angular
velocity ω. Using this analogy, we can define a Nusselt number for Taylor-Couette flow, which
relates to the transport of angular momentum. We define the Nusselt number Nuω using the
analytical solution for the angular velocity flux in the case of laminar Couette flow:

Nuω =
Jω

Jω0
, (10)

where Jω0 is the angular momentum flux in the case of laminar Couette flow. In that case, the
velocity profile is given by:

u = uθ(r)θ̂ = Ar +
B

r
, where A =

ωo − η2ωi
1− η2

, B =
(ωi − ωo)r2

i

1− η2
, (11)

where ωi and ωo are the fixed angular velocities of the inner and outer wall respectively and η is
the cylinder radius ratio (equation 1). This profile has the following angular momentum flux:

Jω0 = 2νB = 2ν
(ωo − ωi)r2

i

1− η2
= −ν 2

η(1 + η)
r3
i

(
ωi − ωo

d

)
. (12)

This generalises the torque balance to the conservation of angular momentum flux, since we require
Nuω to be independent of the radial coordinate.
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2.1.3 Energy balance

Exploiting the similarity between Taylor-Couette flow and Rayleigh-Bénard convection, we can
define an analogue to the Prandtl number for TC flow. In RB convection, the Prandtl number
represents the ratio between momentum diffusivity and thermal diffusivity. In a similar fashion we
can define a quasi-Prandtl number Φ based on the geometry of the domain by (Eckhardt et al.,
2007):

Φ =
r4
a

r2
i r

2
o

=

(
1 + η

2
√
η

)4

. (13)

In Rayleigh-Bénard convection, the flow is driven by the temperature difference between two plates.
This driving is captured in the Rayleigh number Ra. In Taylor-Couette flow, the flow is driven by
the relative angular velocity of the two walls and the centrifugal pseudo-forces due to the curvature
of the domain. This is captured by the Taylor number Ta, as defined in equation 4, which can also
be written in terms of the quasi-Prandtl number and the average angular velocity gradient as:

Ta = Φ
d4r2

a

ν2

(
ωi − ωo

d

)2

. (14)

One of the aspects of Taylor-Couette flow that makes it an interesting object for study, is the fact
that it is a closed system. This means that an exact balance relation can be found between the
driving forces and the energy dissipation, expressing the conservation of energy. In a statistially
stationary flow, the global energy balance is given by: (Eckhardt et al., 2007)

εu − εu,0 =
ν3

d4
Φ−2Ta(Nuω − 1). (15)

Here εu is the volume-averaged energy dissipation rate, given by the following expression (Pope,
2000):

εu ≡ 2ν 〈sijsij〉V,t = ν

〈
∂ui
∂xj

∂ui
∂xj

+
∂ui
∂xj

∂uj
∂xi

〉
V,t

, (16)

where sij are the components of the strain rate tensor S = 1
2

(
∇u +∇uT

)
and 〈. . .〉V,t expresses

an average over the entire domain and over time.

For laminar Couette flow, the energy dissipation rate εu,0 is analytically given by:

εu,0 = ν
r2
i r

2
o

r2
a

(
ωi − ωo

d

)2

=
ν3

d4
TaΦ. (17)

Since the right and left hand sides of expression (15) can be calculated independently from the
velocity field, we can define a quantity to measure the accuracy with which this identity is approx-
imated numerically. In line with (Ostilla et al., 2013), we define the quantity ∆ε as:

∆ε =
ν3d−4Φ−2Ta(Nuω − 1) + εu,0 − εu

εu
. (18)

The quantity ∆ε describes the imbalance between energy input and energy dissipation in the
system. Following the energy balance from expression (15), ∆ε is analytically equal to zero due to
energy conservation, but numerically it can deviate from the exact solution.

A summary of the formal relation between Taylor-Couette flow and Rayleigh-Bénard convection is
shown in table 1.
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Rayleigh-Bénard convection Taylor-Couette flow

Conserved quantity J = 〈uzΘ〉A,t − κ
∂
∂z 〈Θ〉A,t Jω = r3

[
〈urω〉A,t − ν

∂
∂r 〈ω〉

]
Nusselt number Nu = J

J0
, Nuω = Jω

Jω0
,

J0 = κ∆
L Jω0 = −ν 2

η(1+η)r
3
i

(
ωi−ωo
d

)
Prandtl number Pr = ν

κ Φ =
(

1+η
2
√
η

)4

Driving parameter Ra = βg∆L3

κν Ta = Φ
d4r2a
ν2

(
ωi−ωo
d

)2
Energy balance εu − εu,0 = ν3

L4RaPr
−2(Nu − 1), εu − εu,0 = ν3

d4TaΦ−2(Nuω − 1),

εu,0 = 0 εu,0 =
r2i r

2
o

r2a
ν
(
ωi−ωo
d

)2
Table 1: Relation between Rayleigh-Bénard and Taylor-Couette flow, as developed by (Eckhardt et al.,
2007). In RB flow, the temperature difference is given by ∆, with the distance between the plates given
by L. The flow is driven by the Rayleigh number, where β is the thermal expansion coefficient, g the
gravitional acceleration and κ the thermal diffusivity.

2.2 Numerical methods

As described in the introduction, the goal of this research is to adapt the TBFsolver by Cifani
(Cifani et al., 2018) from a Cartesian geometry to a cylindrical geometry. This section focusses on
the numerical methods that are used to solve the equations governing single-phase flow between
two concentric cylinders and its implementation in the current TBFsolver.

The section is organised as follows. In subsection 2.2.1, the governing equations are presented,
along with the general approach that will be used to solve the equations. The discretisations for
the relevant equations are given in subsection 2.2.2. Subsection 2.2.4 gives an overview of the
structure of the TBFsolver and describes the implementation of the numerical methods.

2.2.1 Mathematical formulation

The flow is simulated by solving the Navier-Stokes equation along with the incompressibility con-
dition on the whole domain. The equations for a viscous, incompressible fluid can be written in
conservative form as (Cifani et al., 2018):

ρ

[
∂u

∂t
+∇ · (uu)

]
= −∇p+ ρg +∇ · (2µS) + f (19a)

∇ · u = 0. (19b)

Here, u = (uθ, ur, uz) is the velocity field, p the pressure, t the time, ρ the fluid mass-density and
µ the fluid viscosity. S is the strain rate tensor given by S = 1

2

(
∇u +∇uT

)
, g is the gravitational

acceleration and f is the sum of other external forces.

Time-marching algorithm

At high Reynolds numbers, it is often practical to employ a fractional time-marching algorithm
such as the third-order Runge-Kutta method with implicit treatment of the viscous terms, which
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reduces the restriction on the time step ∆t compared to fully explicit methods. In two-phase flows,
surface tension is added to the momentum equation. It can be shown that this term leads to the
most severe restriction on the time step compared to the viscous and convective terms (Cifani
et al., 2018). Since the aim of this research is to eventually extend this TC flow solver to a two-
phase solver, the viscous and convective terms will be treated fully explicitly using the second
order Adams-Bashfort scheme (AB2) (Wesseling, 2001). The AB2 scheme for solving a differential
equation dy

dt = f(y, t) is given by:

yn+1 = yn +
∆t

2
(3f(yn, tn)− f(yn−1, tn−1)), (20)

where yn is the numerical solution at time tn and ∆t is the time step size. Since the two-phase
problem will be modelled using the one-fluid formulation (Prosperetti and Tryggvason, 2007), it is
important to develop a method for solving the Navier-Stokes equation with variable coefficients,
as the density and viscosity will be highly non-uniform. We will therefore generalise the method
to non-uniform and time-dependent density and viscosity fields.

At stage n of the discrete time marching, at time tn, we start by calculation a provisional velocity
u∗ given by:

u∗ − un

∆t
+ γn(Cn − V n)un − ξn(Cn−1 − V n−1)un−1 = αn

[
− Gpn

ρn+1/2
+

ĝ

Fr2

]
, (21)

where ∆t ≡ tn+1 − tn is the time step, γn = 3/2 and ξn = −1/2 are the AB2 coefficients,
αn ≡ γn + ξn, Cn is the discrete operator u · ∇, V n is the discrete viscosity operator 1

ρn∇ · (2µ
n∇)

and G is the discrete gradient operator ∇.

If we write the pressure at the next time level as pn+1 = pn + φ, the continuity equation for u∗

requires the solution of the following discrete Poisson equation:

D

(
1

ρn+1/2
Gφ

)
= D

(
u∗

αn∆t

)
, (22)

where D is the discrete divergence operator (∇·)

The solution of this equation allows us to correct the velocity and pressure fields according to:

un+1 = u∗ − αn∆t

(
1

ρn+1/2
Gφ

)
(23)

pn+1 = pn + φ (24)

By construction, the velocity at time level tn+1 is divergence-free, and the method remains second
order accurate in time (Lee et al., 2001). For generality, we describe the numerical methods taking
into account differences in the material properties so that the description is readily applicable to
two-phase flow which will be discussed in the next chapter.

Spatial discretisation

The fields are discretised in cylindrical coordinates given by x = (θ, r, z), where θ is the azimuthal
direction, r is the radial direction and z is the axial direction. The flow field is solved in a cylindrical
annular section, i.e. a section of the region between two cylinders that are both coaxial with the
coordinate system.

Since the goal is to simulate wall-bounded turbulent Taylor-Couette flow, a natural choice is to
have uniform grid spacing in the azimuthal and axial directions. In order to accurately resolve the
turbulent structures near the wall, we use a non-uniform grid in the radial direction as described
in (Vreman, 2014) in order to better resolve the turbulent boundary layer. This stretched grid
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is smooth in the entire domain, with a smaller grid spacing near the walls. We employ periodic
boundary conditions in the axial direction in order to reduce the effect of end plates in the axial
direction (Ostilla-Mónico et al., 2014).

The fields are stored in a staggered arrangement. The vector fields (e.g. velocity and velocity flux)
are stored on the respective cell faces, while the scalar fields (e.g. pressure, viscosity and density)
are stored at the cell centers. This ensures a strong coupling between velocity and pressure, as well
as an easier energy-conserving discretisation (Harlow and Welch, 1965; Meier et al., 1999). The
grid configuration is shown schematically in figure 2.

Figure 2: One grid cell in a staggered grid arrangement. Scalar quantities are defined at the cell centers
( ), while the θ-, r- and z-components of vector quantities are defined at the respective face centers (#,
N, �).

The following notation is used for discrete quantities:

φi,j,k =φ(θi, rj , zk) (25a)

∆θi = θi+ 1
2
− θi− 1

2
, i = 0,

1

2
, 1,

3

2
, . . . , nθ (25b)

∆rj = rj+ 1
2
− rj− 1

2
, j = 0,

1

2
, 1,

3

2
, . . . , nr (25c)

∆zk = zk+ 1
2
− zk− 1

2
, k = 0,

1

2
, 1,

3

2
, . . . , nz (25d)

2.2.2 Discretisation of convective and diffusive terms

In cylindrical coordinates, the incompressible Navier-Stokes equations (19a) along with the conti-
nuity equation are given by:
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ρ

[
∂uθ
∂t

+
1

r

∂(uθuθ)

∂θ
+
∂(ruruθ)

∂r
+
∂(uzuθ)

∂z
+
uruθ
r

]
= −1

r

∂p

∂θ
+

1

r

∂τθθ
∂θ

+
∂τθr
∂r

+
∂τθz
∂z

+ 2
τθr
r

+ fθ,

(26a)

ρ

[
∂ur
∂t

+
1

r

∂(uθur)

∂θ
+
∂(rurur)

∂r
+
∂(uzur)

∂z
− uθuθ

r

]
= −∂p

∂r
+

1

r

∂τθr
∂θ

+
∂τrr
∂r

+
∂τrz
∂z

+
(τrr − τθθ)

r
+ fr,

(26b)

ρ

[
∂uz
∂t

+
1

r

∂(uθuz)

∂θ
+
∂(ruruz)

∂r
+
∂(uzuz)

∂z

]
= −∂p

∂z
+

1

r

∂τθz
∂θ

+
∂τrz
∂r

+
∂τzz
∂z

+
τrz
r

+ fz.

(26c)

1

r

∂(rur)

∂r
+

1

r

∂uθ
∂θ

+
∂uz
∂z

= 0 (26d)

Here, uθ, ur and uz are the velocity components in cylindrical coordinates, fθ, fr and fθ are the
body forces, ρ is the density of the fluid and p is the pressure. The viscous stress tensor components
τij , (i, j = θ, r, z) are given by:

τθθ = 2µ

(
1

r

∂uθ
∂θ

+
ur
r

)
, (27a)

τrr = 2µ

(
∂ur
∂r

)
, (27b)

τzz = 2µ

(
∂uz
∂z

)
, (27c)

τθr = τrθ =µ

(
∂uθ
∂r

+
1

r

∂ur
∂θ
− uθ

r

)
, (27d)

τθz = τzθ =µ

(
∂uθ
∂z

+
1

r

∂uz
∂θ

)
, (27e)

τrz = τzr =µ

(
∂ur
∂z

+
∂uz
∂r

)
, (27f)

where µ is the viscosity of the fluid. For the discretisation of equations 26a-26c, we employ the
scheme developped by (Morinishi et al., 2004), which is a fully conservative method. This method
is developed for cylindrical coordinates, where the grid can be non uniform in each direction. The
discretisations are shown in the following sections.

Convective terms
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The convective terms, given by ∇ · (uu), are discretised in the following way:

(∇ · (uu))θ →
{

1

r

δ

δθ

[
(uθ)

θ
(uθ)

θ
]

+
1

r

δ

δr

[
r (ur)

θ
(uθ)

r
]

+
δ

δz

[
(uz)

θ
(uθ)

z
]}

+
1

r

(
(uθ)

θ
(ur)

r
)θ
,

(28a)

(∇ · (uu))r →
1

(r∆r)
r

{
δ

δθ

[
(∆ruθ)

r
(ur)

θ
]

+
δ

δr

[
(rur)

r
(ur)

r
]

+
δ

δz

[
(r∆ruz)

r
(ur)

z
]}

− 1

(r∆r)
r

(
∆r(uθ)

θ
(uθ)

θ
)r
,

(28b)

(∇ · (uu))z →
{

1

r

δ

δθ

[
(uθ)

z
(uz)

θ
]

+
1

r

δ

δr

[
r (ur)

z
(uz)

r
]

+
δ

δz

[
(uz)

z
(uz)

z
]}

. (28c)

The discretisation is very similar to its Cartesian counterpart, with the addition of the terms in
blue. These terms arise from the curvature of the domain, which follow directly form the ∇-
operator in cylindrical coordinates. In the equations above, we use a second order approximation
of the derivative using the notation δ

δx . In the θ-direction, it is defined as the following:

δφ

δθ

∣∣∣∣
i,j,k

=
φi+1/2,j,k − φi−1/2,j,k

θi+1/2 − θi−1/2
, (29)

and similar definitions are used for the derivatives in the r- and z-directions. Since the convective
terms are calculated at the face centers of the grid, the discrete derivatives require the velocity at
the cell centers and edges. These are calculated using a second order symmetric interpolation in
computational space, denoted by the (. . .)

x
operation. In the θ-direction, the interpolation of a

quantity φ at (θ, r, z) = (θi, rj , zk) is given as follows:

(φ)
θ
∣∣∣
i,j,k

=
1

2

(
φi−1/2,j,k + φi+1/2,j,k

)
. (30)

This method of discretisation of the convective terms in the Navier-Stokes equations is fully energy
conservative and second order accurate in space (Morinishi et al., 2004).

Diffusive terms

Substituting the stress tensor components from equations (27a-27f) into the Navier Stokes equations
(equations (26a-26c)) gives the following expressions for the viscous terms:

(∇ · 2µS)θ =
1

r

∂

∂θ

[
2µ

(
1

r

∂uθ
∂θ

+
ur
r

)]
+

1

r

∂

∂r

[
µ

(
∂ur
∂θ

+ r
∂uθ
∂r
− uθ

)]
+

∂

∂z

[
µ

(
∂uθ
∂z

+
1

r

∂uz
∂θ

)]
+

1

r

[
µ

(
1

r

∂ur
∂θ

+
∂uθ
∂r
− uθ

r

)]
,

(31a)

(∇ · 2µS)r =
1

r

∂

∂θ

[
µ

(
1

r

∂ur
∂θ

+
∂uθ
∂r
− uθ

r

)]
+

2

r

∂

∂r

[
rµ
∂ur
∂r

]
+

∂

∂z

[
µ

(
∂ur
∂z

+
∂uz
∂r

)]
− 2µ

[
1

r2

∂uθ
∂θ

+
ur
r2

]
,

(31b)

(∇ · 2µS)z =
1

r

∂

∂θ

[
µ

(
∂uθ
∂z

+
1

r

∂uz
∂θ

)]
+

1

r

∂

∂r

[
rµ

(
∂ur
∂z

+
∂uz
∂r

)]
+

2
∂

∂z

[
µ
∂uz
∂z

]
.

(31c)
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These expressions are very similar to their Cartesian counterparts. The only major difference is the
addition of the terms in blue, which arise due to the curvature of the coordinate directions. The
viscous terms are discretised according to the scheme developped by (Morinishi et al., 2004), and
adapted by (Desjardins et al., 2008). The latter is implemented1 and shown below for completeness:

(∇ · 2µS)θ →
1

r

δ

δθ

[
2µ

(
1

r

δuθ
δθ

+
1

r
(ur)

r
)]

+
1

r

δ

δr

[
rµr

θ
(
δuθ
δr

+
1

r

δur
δθ
− 1

r
(uθ)

r
)]

+
δ

δz

[
µz

θ
(
δuθ
δz

+
1

r

δuz
δθ

)]
+

1

r

[
µr
θ
(
δuθ
δr

+
1

r

δur
δθ
− 1

r
(uθ)

r
)]r

,

(32a)

(∇ · 2µS)r →
1

r

δ

δθ

[
µr
θ
(

1

r

δur
δθ

+
δuθ
δr
− 1

r
(uθ)

r
)]

+
1

r

δ

δr

[
2rµ

δur
δr

]
+

δ

δz

[
µz

r
(
δur
δz

+
δuz
δr

)]
− 1

r

[
2µ

(
1

r

δuθ
δθ

+
1

r
(ur)

r
)]r

,

(32b)

(∇ · 2µS)z →
1

r

δ

δθ

[
µz

θ
(

1

r

δuz
δθ

+
δuθ
δz

)]
+

1

r

δ

δr

[
rµz

r
(
δuz
δr

+
δur
δz

)]
+

δ

δz

[
2µ
δuz
δz

]
.

(32c)

Note that all the geometrical terms (in blue) tend to zero inversely proportional the local radius
of curvature of the coordinate system, so we recover the Cartesian discretisation in the limit of
vanishing curvature.

2.2.3 Fast Poisson solver

The next important part of the solver is the solution method for the Poisson equation (22). Since
the domain is periodic in two directions, a natural choice is to utilize a 2D Fourier-based solver.
However, this method requires a constant coeffient on the left-hand side of equation (22) while
in the case of two-phase flow, the density may be highly non-uniform (Dodd and Ferrante, 2014).
Following the ideas from Dong and Shen (Dong and Shen, 2012), the pressure gradient is split into
two terms in order to create a constant-coefficient Poisson equation:

1

ρn+1
∇pn+1 =

1

ρ0
∇pn+1 +

(
1

ρn+1
− 1

ρ0

)
∇p̂, (33)

where ρ0 is a chosen constant reference mass density and the pressure gradient ∇p̂ is a suitable
approximation of ∇pn+1. Substituting this expression into equation (22) leads to the modified
Poisson equation:

∇2pn+1 = ∇ ·
[(

1− ρ0

ρn+ 1
2

)
∇p̂
]

+∇ ·
(
ρ0

u∗

∆t

)
. (34)

This modified pressure equation allows for the use of a Fast-Poisson solver. It is worth mentioning
that particular care has to be taken in the computation of the pressure gradients in the presence
of the jump due to surface tension. Here we follow the strategy developed in Cifani (2019), where
the pressure gradient operator is combined with a corresponding volume fraction gradient at the
interface. This allows to retain a grid convergent solution at high density ratios.

Since the domain is periodic the θ- and z-directions, we can transform equation (34) as follows:

(
1

r

∂

∂r

(
r
∂

∂r

)
− k2

θ

r2
− k2

z

)
F(φ) = F(s), (35)

1A small typo appeared in (Desjardins et al., 2008) on the last line of equation 57 in that paper, where the term
β directly after [ should be omitted.
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where F is the 2D Fourier transform operator in the (x, z)-plane, and s is the source term given
by the right-hand side of equation (34).

The discrete wave numbers k are given by (van der Poel et al., 2015):

k2
x,i =

2

(∆x)2

[
1− cos

(
2π(i− 1)

Nx

)]
, i = 1, . . . , Nx (36)

for x = θ, z. By discretising the term 1
r
∂
∂r

(
r ∂∂r
)

using a second-order approximation, equation
(35) is reduced to a system of linear equations that can be solved using a tridiagonal matrix solver.
The following discretisation is implemented:

1

r

∂

∂r

(
r
∂

∂r

)
Fj →

1

rj

1

∆rj

(
rj+ 1

2

Fj+1 − Fj
∆rj+ 1

2

− rj− 1
2

Fj − Fj−1

∆rj− 1
2

)
(37a)

= amFj−1 + (−am − ap)Fj + apFj+1, (37b)

where am =
r
j− 1

2

rj
1

∆rj∆rj− 1
2

and ap =
r
j+1

2

rj
1

∆rj∆rj+1
2

.

The transformed Poisson equation (equation (35)) can now be written as the linear system of
equations Aφ = b for every pair (i, k). The matrix A is constructed using the coefficients given by
equation (37b) and the wave numbers from equation (36):

Am,n =


ap if n = m+ 1

−ap − am −
k2x,i
r2n
− k2

z,k if n = m

am if n = m− 1

0 otherwise

, m, n = 1, . . . , Ny. (38)

The system of equations is solved using an LU decomposition. After transforming the solution of
equation (35) back to the computational space using an inverse 2D Fourier transformation, the
velocity can be made divergence free using:

un+1 = u∗ − α∆t

(
Gpn+1

ρ0
+Gp̂

(
1

ρ
− 1

ρ0

))
. (39)

2.2.4 Implementation in TBFsolver

The TBFsolver is a Fortran-based code developed by Paolo Cifani. It is designed as a highly
scalable solver for turbulent two-phase flow. However, there is an option to simulate single-phase
flow. Since the modifications only regard the single-phase solver, we continue with this version of
the TBFsolver. The general structure of the code is shown in algorithm 1. The structure for the
modified TBFsolver is identical to the original solver. However, the relevant subroutines have been
modified to account for cylindrical coordinates.

Before the start of the time marching loop, all the fields and structures are initialized. Depending on
the settings in the specification files, the fields are either read from an input folder, or initialized
to a specified value. After initialization, the time loop is started. At each time step, the time
marching is executed. Additionally, the time step size can be updated based on the CFL-condition
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Algorithm 1 TBFsolver - main

1: Initialize grid, fields and data types
2: while t < T do
3: Update time
4: Calculate provisional velocity (equation 21)
5: Calculate body forces
6: Solve momentum equation
7: Solve Poisson equation (equation 22)
8: Make velocity divergence free (equation 23)
9: Update pressure (equation 24)

10: Output statistics
11: end while

and the time restriction given by the viscous term. These conditions are given by:

(∆t)convective ≤ CFL

[
max
i,j,k

(
ur(θi, rj , zk)

∆rj
+
uθ(θi, rj , zk)

rj∆θi
+
uz(θi, rj , zk)

∆zk

)]−1

(40a)

(∆t)viscous ≤
1

6ν

(
min
i,j,k

(
min{rj∆θi,∆rj ,∆zk}

))2

, (40b)

where the maximum allowed CFL number CFL can be set as a parameter. At the end of the
time step, important statistics can be calculated and exported, such as the torque and the Nusselt
number, as well as average velocity profiles.

Implementation of Navier-Stokes equations

The main changes in the code are made in the subroutines for the momentum and pressure equa-
tions. The calculation of the provisional velocity u∗ from equation 21 is done using the operators
in cylindrical coordinates. For the convection terms, the discretisation from equations 28a-28c are
used. Compared to the original code, this meant introducing an occasional factor r or r−1, as well
as the addition of the terms in blue. For example, for the grid cell with indices (i, j, k), the term in
blue in equation 28a is defined on the cell face in the θ-direction at (i+ 1

2 , j, k), and is written as:

1

2rj

[
uθ
i+ 3

2 ,j,k
+ uθ

i+ 1
2 ,j,k

2

ur
i+1,j+ 1

2 ,k
+ ur

i+1,j− 1
2 ,k

2
+
uθ
i+ 1

2 ,j,k
+ uθ

i− 1
2 ,j,k

2

ur
i,j+ 1

2 ,k
+ ur

i,j− 1
2 ,k

2

]
, (41)

where the abbreviation ui,j,k = u(θi, rj , zk) has been used. Other terms are discretised following
the same principles.

In the original TBFsolver, it was possible to select different discretisation schemes for the convective
terms, namely central differencing, upwind differencing and QUICK. This is still possible in the
θ- and z-directions, since the grid is uniform in these directions. However, in the radial direction,
only the energy conserving scheme is implemented.

The Poisson solver requires less modification. Besides the modification of the gradient and di-
vergence operators, only the coefficients for the tri-diagonal matrix solver have to be adjusted.
Since the Poisson equation has constant coeffiencts, these can be pre-calculated at the start of the
simulation, and therefore induce no further computational costs.

Calculation of angular momentum flux

An extra routine is added to the statistics module in order to calculate Jω. Since the angular
momentum flux (equation 7) is closely related to the torque on the walls, and the calculation
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requires the radial derivative of the azimuthal velocity, it seems natural to define the quantity
numerically on the cell edges in these directions. The discretisation is therefore chosen as:

(Jω)j+ 1
2

= r3
j+ 1

2

〈(ur)
θ

i,j+ 1
2 ,k

(uθ
r

)r
i,j+ 1

2 ,k

〉
A,t

− νθ
r

i,j+ 1
2 ,k

〈(
δ
(
uθ
r

)
δr

)
i,j+ 1

2 ,k

〉
A,t

 . (42)

However, it is also possible to define this quantity on the cell centres, which is where the average
velocity profiles are defined. This means that Jω can be calculated a posteriori from the velocity
profiles, using:

(̂uθ)j =
〈

(uθ)
θ

i,j,k

〉
A,t

(43a)

(̂uruθ)j =
〈
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θ

i,j,k

〉
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(43b)

(Jω)j = r3
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rj
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(̂uθ)j+1

rj+1
− (̂uθ)j−1

rj−1

rj+1 − rj−1

 (43c)

These two methods will be compared later on in the next section.

Next to these large changes, many minor changes have been made in order to simulate in cylindrical
coordinates. These changes include:

• change all occurences of discrete gradient operator;

• change all occurences of discrete divergence operator.

• offset of radial coordinates by ri;

• change in volume of grid cells;

• addition of laminar Couette flow to initial condition options;

• addition of body forces in z-direction for gravity;

All of the above mentioned changes to the code do not change the structure of the solver. It is
therefore to be expected that the solver will show a similar scalability with respect to the number
of computational cores. The discretisation of the viscous and convective terms of the momentum
equation require a larger amount of terms to be calculated. At large Reynolds numbers, most
computational time is however spent on the Poisson equation, which is expected to have similar
performance to the Cartesian solver. For all remaining discretisation schemes, the size of the
computational stencil is the same size as in the original code, so a similar scalability is to be
expected.

2.3 Torque measurements in low Re flows

Several test cases have been considered in order to asses the validity of the new Taylor-Couette
flow solver. The first test cases consist of several laminar flow cases that have analytical solutions
available for comparison. In the second set of test cases TC flow is simulated at Reynolds numbers
near the transition from laminar flow to Taylor-vortex flow in order to verify the energy balance in
a non-trivial flow field. Finally the convergence of the numerical results with respect to grid size
is investigated in the case of Taylor-vortex flow at a Reynolds number of Re = 1120.
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2.3.1 Constant velocity fields

The first step in validating the new Taylor-Couette flow solver is to simulate flows with analytical
solutions for the velocity field. Three of such cases are selected in order to verify the solver along the
three coordinate directions. Firstly, the flow is initialized with zero velocity, and non-moving walls.
Secondly, solid body rotation is simulated, where both walls move at the same angular velocity,
which is stable at low Reynolds numbers. Thirdly, a constant velocity in the axial direction is
initialized. The results are given below.

Zero velocity field

For the first test, we adopt a domain with η = 1/2 and Γ = 2. The flow is simulated on a grid
with resolution (128 × 64 × 64). The grid is uniform in the azimuthal and axial direction, and
non-uniform in the radial direction. The velocity and pressure fields are initialised at a uniform
value of zero, with homogeneous boundary conditions. The viscosity is set to µ = 1/50, which sets
the maximum time step for the viscous term to dt ≈ 1.3 · 10−4.

After simulating the flow for approximately 50,000 time steps, the velocity field is evaluated. The
magnitude of the velocity was still equal to zero up to machine precision. This validation indicates
that there are no unwanted source terms in the code.

Solid body rotation at low Re

The third test is to examine the stability of solid body rotation of the fluid. Using the same domain
and grid sizes as in the previous test cases, we set the velocity of the inner wall to Vi = 1 and the
velocity of the outer wall to Vo = 2, which gives both walls the same angular velocity. The velocity
field is initialized to zero in the axial and radial directions, and in the azimuthal direction to:

uθ(r) = r, 1 ≤ r ≤ 2. (44)

The viscosity is set to µ = 1/50, for which the flow should remain laminar. The flow is simulated
for one full rotation.

After one rotation, the velocity in the axial direction remained zero. In the radial direction, velocity
fluctuations of O(10−16) developed. Similarly sized deviations from the laminar profile developed
in the azimuthal direction.

Homogeneous axial flow

In order to verify the stability of the axial velocity component, the flow is initialized with a nonzero
uniform velocity U in the axial direction. In order for the flow to remain stationary, we set the
fluid velocity at the boundary to U ẑ. This can be seen as solid body translation in the z-direction.

Using the same grid and parameters as in the previous test case, the flow is simulated for 6 seconds
approximately 50,000 time steps at uz = 1, after which the velocity field is compared with the
analytical solution.

The velocity in the azimuthal and radial directions have remained equal to zero up to machine
precision. In the axial direction, the velocity is still equal to uz = 1 up to machine precision.

2.3.2 Validation at low Reynolds number

The second step in validating the new TC solver is to compare it with the torque measurements
from (Pirrò and Quadrio, 2008). This procedure is also used in (Ostilla et al., 2013). The goal
of the test is to find the correct Nusselt number scaling with Reynolds number near the critical
Reynolds number, which is the point where the transition from laminar flow to Taylor-vortex flow
occurs. We use a stationary outer cylinder, and a fixed non-zero velocity of the inner cylinder. For
the current geometry, where η = 0.5, the critical Reynolds number is Rec ≈ 68.2 (Fasel and Booz,
1984).

The comparison is done using measurements of Nuω(r) at different low values of Rei near the
critical Reynolds number. Similar to (Pirrò and Quadrio, 2008) and (Ostilla et al., 2013), the
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aspect ratio is set to Γ = 2, the ratio of the radii to η = 1/2, and a rotational symmetry of
order four is assumed to limit the size of the simulations. The flow is simulated at a resolution of
(Nθ × Nr × Nz) = (32 × 64 × 64), with uniform grid spacing along the θ- and z-directions, and
hyperbolic-tangent-type clustering along the radial direction. The domain is decomposed into two
parts along the θ-direction and four along the z-direction, using a total of eight MPI processes.

For all the low-Re simulations, the initial velocity field is set to laminar Couette flow with an
added disturbance of O(10−12). The development of Taylor vortices is accelerated by starting at
a lower viscosity, and gradually lowering it to the set value. The flow is then simulated for about
100 rotations of the inner cylinder in order to reach a statistically stationary flow. After reaching
that state, the relevant statistics are calculated using a time-average of around eight rotations.

The results for the Nusselt numbers are shown in table 2. The values from the present study
agree with previous results up to at least three digits. The values recorded in table 2 correspond
to the average values of the Nuω(r) profiles, given by Nuω = 〈Nuω(r)〉r. The values for ∆ε are
also reported in the table. This discrepancy in the energy balance is larger at increasing Reynolds
number, but remains below the requirement ∆ε < 1% for numerical convergence (Ostilla et al.,
2013).

Rei Nuω ∆ε Nuω Nuω Nuω
(present study) (Ostilla et al., 2013) (Pirrò and Quadrio, 2008) (Fasel and Booz, 1984)

60 1.0000 1.12 · 10−4 1.0005 1.0000 1.0000
68 1.0000 1.12 · 10−4 1.0006 1.0000 1.0000
70 1.0240 1.94 · 10−4 1.0235 1.0237 1.0238
75 1.0840 3.94 · 10−4 1.0835 1.0833 1.0834
80 1.1371 5.66 · 10−4 1.1375 1.1371 1.1372

Table 2: Comparison of Nuω at low Rei and Reo = 0.

In figure 3, the Nuω(r) profiles are shown, normalised by their average values. It shows that there
is a slight variation in Nuω(r), however, these variations are limited to approximately 0.01%. The
profiles for Re = 60 and Re = 68, corresponding to laminar TC flow, collapse onto the same curve.
This indicates that there is a very small error in the simulation which causes the Nusselt number
to fluctuate around the analytical solution of Nuω(r) = 1 for the laminar cases.

Figure 3: Variation in Nusselt number as function of radial distance at different values of Rei. The Nusselt
numbers are normalized by their average values.

For all cases, the flow was initialized by introducing Taylor vortices, and then letting the flow
develop for some time. In the case with Re = 68, the flow was not yet developed after 100
rotations, as the flow is very close to the instability, but the normalised variations as a function of
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the radial coordinate in Nuω(r) were still an order of magnitude higher than for the other cases.
After around 100 more rotations however, the Nuω(r) had collapsed to the Re = 60 case, indicating
that the flow has sufficiently converged to laminar Couette flow.

The calculation of Nu is based on a time averaging over a sufficiently long period. In figure 4 the
results for Nuω are shown using different time periods for the time averaging. The convergence
rate can be calculated using Richardson extrapolation, from which it follows that Nuω converges
proportional to the inverse of the time averaging length. This is a higher rate than the expected
convergence proportional to

√
N for a sequence of N samples, which might be caused by the fact

that we consider a laminar Taylor-vortex flow.

Remarkably, by averaging only over half the time that it takes the inner cylinder to complete a full
rotation, the result is already within 0.01% of its value after 10 rotations of time-averaging.

Figure 4: Dependence of Nuω on the length of the time averaging for the Re = 80 test case. The horizontal
axis shows the number of rotations of the inner cylinder during the time averaging process.

2.3.3 Resolution tests

The next step in the validation of the code is to compare the results at different grid resolutions.
For this test, the value of ∆ε will be used to determine the degree to which a the simulation has
converged, following the approach from (Ostilla et al., 2013). We simulate a flow at a Reynolds
number of Rei = 1120 and a stationary outer cylinder. The domain size is set to η = 5/7 and
Γ = 2π to create a case identical to the case reported in (Ostilla et al., 2013).

For this large gap geometry, i.e., small value of η, the wavelength of a Taylor-vortex pair is around
λ ≈ 1.09d (Chouippe et al., 2014). This means that three Taylor-vortex pairs can form over the
axial extent of the domain. However, depending on the initial conditions, it is also possible for
four vortex pairs with a smaller wavelength to develop in this domain (Ostilla-Mónico et al., 2015).
The actual size and number of the vortices has a large influence on the Nusselt number as shown
extensively in (Brauckmann and Eckhardt, 2013). They showed that an extra vortex pair can
increase the torque by around 20% at low Taylor numbers.

In order to force the emergence of only three vortex pairs, the flow is initialized as laminar Taylor-
Couette flow, with an added sinusoidal disturbance of order O(10−2) with a wavelength of 2

3π in
the z-direction.

For the grid resolution test, four different grid sizes are used, as shown in table 3. After initiali-
sation, the flow is simulated for around 60 rotations in order for the flow to develop. The Nusselt
number is calculated using a time-average of around 6 rotations.

Using this approach, the results for grids A and B were as expected, with three Taylor-vortex pairs
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developing and small fluctuations in the Nuω(r) profile. However, despite the initial condition, four
Taylor-vortex pairs emerged in cases C and D, as is shown in figure 6. This led to overestimations
of Nuω of about 6%, consistent with the results from (Ostilla et al., 2013). In order to generate
three Taylor-vortex pairs, the developed flow state from case B was used as an initial condition for
cases C∗ and D∗, after which the flow was simulated for approximately 20 rotations of the inner
cylinder. The final results for the Nusselt numbers are shown in table 3.

Case nθ × nr × nz Nuω ∆ε Nuω ∆ε

(present study) (Ostilla et al., 2013)
A 128× 64× 64 5.0915 0.0467
B 192× 96× 96 4.7576 0.0232 4.83540 0.0949
C∗ 256× 128× 128 4.7329 0.0146 4.46000 0.0174
D∗ 384× 192× 192 4.7122 0.0072 4.47765 0.0065

Table 3: Resolution test at η = 5/7, Γ = 2π and Lx = 2π, where Re = 1120. The star attached to the case
name indicates that a different initial condition is used.

Similar to the results from (Ostilla et al., 2013), a coarse grid results in an overestimation of the
Nusselt number. Table 3 also shows ∆ε, calculated from equation 18. This quantity is analytically
equal to zero, and checks the relative difference between energy transport (via Nuω) and energy
dissipation (via εu). This value is positive for all cases, further indicating an overestimation of
Nuω. However, both Nuω and ∆ε show convergence with grid resolution.

As mentioned in the previous section, two methods can be used for calculating the Nusselt number.
The first method is to calculate the angular momentum flux at the cell corners (equation 42), and
the second method calculates this quantity a posteriori from the average velocity profiles (equation
43c). Even though the choice of discretisation has hardly any influence on the value of Nuω, the
first method shows significantly less dependence on r. This is shown in figure 5, where the profiles
of Nuω(r) are shown for the four test cases, using both formulations. The results show that the
radial dependence of Nuω(r) is approximately one order of magnitude lower when using method 1
compared to using method 2.

Figure 5: Radial dependence of Nuω(r) at different grid resolutions. Results are shown for method 1 (using
equation 42, shown as solid lines) and for method 2 (using equation 43c, shown as dotted lines).

According to (Ostilla et al., 2013), case C and D represent fully resolved flows. However, for these
cases there is still a discrepancy in Nuω of approximately 5% with the present study. This might
be attributed to the different numerical method used, since Ostilla uses the discretisation given
by (Verzicco and Orlandi, 1996). However, the main difference between the two methods is the
difference in initial conditions. It might be the case that the flow in cases C∗ and D∗ are not
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strictly stationary, but in a transition between a flow state with 3 and 4 vortex pairs respectively.
A longer simulation time for these cases might give insight into this development, which is subject
of further study.

(a) (b)

Figure 6: Cross-section of the domain in the (r, z)-plane. The color indicates the magnitude of the 2D
velocity field, while the arrows give the magnitude and local direction of the velocity field. (a) Shows
the velocity field for case C after 60 rotation using laminar TC flow with sinusoidal disturbance as initial
condition. (b) Shows the velocity field of case C after 20 rotations using the developed flow from case B
as initial condition.

2.4 Conclusion

In this chapter, an extension has been made to the TBFsolver, which makes it possible to simulate
single-phase flows in cylindrical coordinates. The Navier-Stokes equations are solved using the
fully conservative scheme developed by Morinishi (Morinishi et al., 2004) for the convective and
diffusive fluxes. The pressure is solved using the original spectral method, with modifications to
the wavenumbers and to the coefficients of the transformed Poisson equation.

As a first validation step, the flow solver is tested for rigid body flow between two concentric
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cylinders at a low Reynolds number, as well as solid body rotation. In all test cases, the resulting
velocity field was equal to the analytical solutions up to machine precision.

Secondly, the flow solver was tested for Taylor-Couette flow near the critical Reynolds number,
which is defined as the transition between laminar Couette flow, and Taylor-Vortex flow. At several
values of the inner cylinder Reynolds number near the critical point (with a stationary outer
cylinder), the angular momentum flux was measured, expressed in the non-dimensional Nusselt
number. This study shows an agreement in this quantity with previous literature up to around
0.05%.

The Nusselt number is based on the time-averaged velocity field. For the Rei = 80 case, the
convergence of the Nusselt number with respect to the length of time averaging was investigated.
It was found that the Nusselt number converges linearly proportional to the inverse of the time-
averaging length, and a sufficient convergence using a time averaging window of one revolution of
the inner cylinder.

At a higher Reynolds number, the spatial convergence was investigated. With a stationary outer
cylinder, and an inner cylinder Reynolds number of Rei = 1120, the Taylor-vortex motion was
simulated at four different grid sizes. It was shown that calculating the angular momentum flux at
the cell corners decreases its radial dependence by approximately an order of magnitude compared
to an a posteriori calculation from the cell-centered average velocity fields. At larger grid sizes, both
the radial dependence of the angular momentum flux and the discrepancy in the energy balance
decrease. However, the Nusselt number does not seem to converge to the value reported Ostilla et
al (Ostilla et al., 2013), with a 5% difference at the largest grid size. Further investigation must
be done into this discrepancy. The difference in Nusselt number might be attributed to a gradual
transition between a flow state with 3 and 4 vortex pairs respectively. Another test for the new
TC flow solver would be to investigate the scalability of the code, as we expect the code to perform
similar to the original code, that is, linear scaling up to O(104) computational cores.

The framework of the developed flow solver is general enough to allow for the simulation of single-
and two-phase flows, with necessary changes only at the level of the input parameters. Compared
to the single-phase flow, the addition of a gas phase only requires an interface reconstruction
and advection method, and the addition of surface tension. As illustrated above, the Poisson
equation solver is, in fact, already suited for inhomogeneous density and viscosity fields. Currently,
the TBFsolver is equipped with a VOF module, combined with the Generalized Height Function
method for Cartesian systems. The next step in the development of the code will be to map
these methods to the cylindrical geometry such that two-phase TC flow can be simulated with the
TBFsolver.
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Part II

Two-phase Taylor-Couette flow
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3 Numerical methods

The next part of this thesis is dedicated to the extension of the code from the previous part to
two-phase flows. In this section, we introduce the methods for simulating bubbles in a cylindrical
domain. In section 3.1, the governing equations are introduced. An outline of the numerical
implementation is given in section 3.2. In section 3.3 the interface reconstruction and advection
method is described. Finally, the numerical method for calculating surface tension is shown in
section 3.4.

3.1 Mathematical model

The two-phase flow consists of two fluids that can have different intrinsic parameters such as mass
density and dynamic viscosity. Due to surface tension between the two fluids, a sharp interface
between the two emerges. The system is modelled using the one-fluid formulation, which means
that both fluids are simulated using one set of equations. For the simulation of this flow, the
non-dimensional incompressible Navier-Stokes equations are used:

∇ · u = 0 (45a)

ρ

[
∂u

∂t
+∇ · (uu)

]
= −∇p+

1

Fr2 ρĝ +
1

Re
∇ · (2µD) +

1

We
σκnδ(n). (45b)

Here, u = (uθ, ur, uz) is the velocity field, ρ is the fluid mass density, µ is the dynamic viscosity, D is
the deformation tensor, σ is the surface tension coefficient for the fluid interface, κ is the curvature
of the interface, n is the unit normal to the interface and δ(n) is the Dirac delta function, with n
being the local coordinate to the interface in the direction of n. This localizes the surface tension
at the fluid interface. In the current setup for TC flow, gravity points down in the axial direction.
Furthermore, Fr is the Froude number, Re is the Reynolds number and We is the Weber number.

Note that these equations describe one fluid with highly non-homogeneous intrinsic parameters. In
both phases individually, density and viscosity are assumed to be constant in time. The distribution
of the phases is given by the indicator function f(r, t). This function f is equal to zero if (r, t) lies
in one phase, and is equal to one if it is in the other. Therefore, f acts as a Heaviside function.

In this study, we simulate dispersed bubbles in a carrier fluid, so the two phases will be referred to
as the carrier phase, characterized by material properties (ρf , µf ), and gas phase, characterized by
(ρb, µb). The indicator function f is defined to equal 1 inside a bubble, and 0 outside the bubble.
This allows us to define the density and viscosity fields in the following way:

ρ(r, t) = f(r, t)ρg + (1− f(r, t))ρl (46)

µ(r, t) = f(r, t)µg + (1− f(r, t))µl, (47)

where ρg, ρl and µg, µl are the mass density and dynamic viscosity of the dispersed phase and the
carrier phase respectively.

The value of the indicator function at a specific location represents the phase of the fluid particle
at that location. Since we assume that no phase transitions take place and that the two phases are
immiscible, the value of f should remain constant for each fluid particle. Furthermore, in order
to simulate meaningful interactions between bubbles, we employ the multiple-marker formulation
(Coyajee and Boersma, 2009). An individual indicator function fi is assigned to each bubble.
This prevents automatic numerical coalescence when bubbles approach within one grid cell of each
other (Cifani et al., 2018). In a simulation with N bubbles, this leads to the following advection
equations:

∂fi
∂t

+ u · ∇fi = 0, i = 1, . . . , N (48)
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From these individual indicator functions we can reconstruct the common volume fraction field f
as:

f = max
i=1,...,N

fi (49)

which ensures 0 ≤ f ≤ 1. Similarly, since surface tension forces are derived from the indicator
function, we can calculate the total surface tension field from the contributions of the individual
bubbles as:

fσ =

N∑
i=1

σκiniδ(ni) (50)

In the next section, the numerical methods are described for solving this set of governing equations
for bubble-laden flow.

3.2 Numerical methods for two-phase flow

Since we employ a one-fluid formulation, the governing equations for two-phase flow are similar
to those of single-phase flow as described in section 2.2.1. However, two-phase flow requires us to
include a surface tension term in the Navier-Stokes equations. In the TBFsolver, time-marching
is carried out using a fractional-step method. For reasons that are discussed later in this section,
we employ the second-order Adams-Bashfort scheme (AB2) for the diffusion and convection terms
in equation 45b, while the Crank-Nicolson scheme is used for surface tension. This implies that
every time step consists of only one stage.

This problem setting is very similar to the single-phase problem described in the previous chapters
of this thesis. The added challenge is to compute the surface tension field as described by the last
term in equation 45b. This requires the calculation of the curvature field as well as the position of
the interface.

At every time step n, the goal is to solve the governing equations on tn+1 given the full state at
tn. At the start of the time step, the advection of the indicator function is carried out, which
requires the solution of the N advection equations (48). This is a computationally increasingly
expensive procedure as the number of bubbles N increases. However, since the support of each of
the functions fi is localized to the interface of the bubble, each advection equation needs only be
solved on a subdomain containing the bubble interface as equations 48 reduce to fni = fn+1

i away
from the interface. Therefore, each indicator function fi is discretized only on a box surrounding
the bubble that is co-moving with the bubble. More details on this can be found in (Cifani et al.,
2018).

After finding fn+1, a provisional velocity field u∗ can be calculated similar to the single-phase
method from equation 21, adding the surface tension term:

u∗ − un

∆t
+

3

2
(Cn − V n)un − 1

2
(Cn−1 − V n−1)un−1 = − Gpn

ρn+1/2
+

ĝ

Fr2 +

(
κnδ(n)

ρWe

)n+ 1
2

, (51)

where ∆t ≡ tn+1 − tn is the time step, Cn is the discrete convection operator u · ∇, V n is the
discrete diffusion operator 1

ρn∇ · (2µn∇), G is the discrete gradient operator ∇ and ĝ is the

direction of gravity. The surface tension term and the mass density ρn+ 1
2 are calculated using a

linear interpolation between fn and fn+1 according to the Crank-Nicolson scheme. Note that the
AB2 scheme is used for the time stepping of the convective and diffusive terms. The velocity at
time (n+ 1) can be found by imposing the incompressibility condition on the provisional velocity.
This method has been described in section 2.2.3.
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Due to the cylindrical geometry of the problem at hand, the domain is discretised on a structured
grid in cylindrical coordinates. Since the TC flow is a type of wall-bounded flow, it is natural to
employ uniform grid spacing along the streamwise and axial directions. Along the radial coordinate,
the grid spacing is refined near the walls using a hyperbolic-tangent-type clustering.

In section 2.2.4, the time step restrictions due to the explicit treatment of the convective and
diffusive terms were discussed. The presence of surface tension introduces another physical time
into the system (Brackbill et al., 1992). This time scale is based on the wave velocity of capillary
waves which leads to a CFL condition, as the advection algorithm is only shown to be accurate for
CFL numbers approximately up to 1. The time step restriction due to capillary waves is given by:

(∆t)capillary =

√
d3ρ

4πσ
, (52)

where d is the smallest grid cell size. For high Reynolds numbers, this is the most restricting
limitation on the numerical procedure. This observation leads to the choice of the AB2 scheme
rather than a multi-staged time-marching procedure. Since the time step is dictated by the capillary
waves instead of the convective and diffusive terms, the computational cost of a multi-stage method
no longer outweighs its enlarged numerical stability region.

The full procedure for solving the two-phase flow is shown in the pseudo-algorithm below.

Algorithm 2 Outline of two-phase TC flow solver

1: Initialize grid, fields and data types
2: Calculate initial VOF field f based on initial bubble distribution
3: Construct blocks around each bubble
4: while t < T do
5: for all blocks do
6: Solve VOF field advection equation
7: Compute curvature
8: Compute surface tension
9: end for

10: Construct global VOF field and surface tension
11: Update material properties
12: Compute surface tension
13: Calculate provisional velocity u∗

14: Solve Poisson equation
15: Update velocity and pressure
16: end while

Compared to the single-phase flow, we are tasked with several extra steps in the numerical al-
gorithm. Firstly, we have to solve the advection equations 48 in order to provide us with fn+ 1

2 .
Secondly, the surface tension term in equation 51 must be approximated. The next two sections
detail these two challenges. The advection algorithm is described in section 3.3. Next, the method
for calculating the surface tension force is described in section 3.4.

3.3 Interface reconstruction and advection

On a rectangular domain, the advection equation (48) can be solved by using a geometrical VOF
scheme. In this method, the interface between the fluids is first approximated using pre-defined
shapes. Based on this shape, the flux of the interface can be calculated which advects the interface.

The TBFsolver employs the most widely used geometrical VOF method, the piecewise linear
interface calculation (PLIC). In this method, we can approximate the interface in a grid cell by

n · x = α, (53)
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where x is the position vector in the grid cell, n is the normal vector to the interface and α is
a parameter related to the intersection points of the interface with the coordinate axes. This
equation describes a 3D linear surface, which divides the interface into two regions, associated
with the two fluids respectively. The parameter α is chosen such that the volume of these regions
matches the known gas volume fraction in that cell. This leads to an algebraic procedure, detailed
in (Scardovelli and Zaleski, 2000).

Once the equation for the plane is known, the flux can be evaluated. This method is illustrated in
figure 7. During a time ∆t, the shaded area inside the dashed lines will advect to the neighbouring
grid cell due to the fluid velocity at the interface. The advected volume can be found algebraically
from the equations for the plane. In the figure, the shaded area represents the flux (uf)i+1/2,j .

Figure 7: Illustration of geometrical flux in 2D. The shaded area represents the area occupied by one phase
in cell (i, j). During a time ∆t, the shaded area inside the dashed line will advect to cell (i+ 1, j) by the
velocity at the interface ui+1/2,j . Figure taken from (Cifani et al., 2016).

The full 3D advection is carried out by the split-operator method proposed by (Puckett et al., 1997).
With this method, advection is performed sequentially in the three directions. A combination of
correction terms and a permutation of the order in which the advection directions are chosen lead
to a minimal error in the conservation of mass.

The goal is now to employ the VOF-PLIC method in the case of cylindrical grid cells. The
geometrical method hinges on the fact that there is an algebraic relation between the equation
for a planar interface, and the volume it cuts a grid cell into. It is clear that we cannot use this
method to reconstruct the interface with planes in the physical space, where we have cylindrical
cells.

We can follow the approach from (Wang et al., 2012), which suggests reconstructing the interface on
the computational domain. Since we use a structured grid in cylindrical coordinates, computational
cells are in fact rectangular. Similar to the Cartesian method, we can reconstruct the interface in
each grid cell. The challenge remains to calculate the flux of the indicator function based on the
interface flux in the computational space.

By definition, we can write the divergence operator as follows:

∇ · (uf) = lim
∆V→0

1

∆V

∮
S

(uf) · ndS, (54)

for any control volume V that is bounded by the surface S. We denote the volume fraction flux
uf as q. A discrete approximation of equation 54 in cylindrical coordinates reads:

1

rj∆θi∆rj∆zk
(∆Fθ + ∆Fr + ∆Fz) , (55)
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where the fluxes ∆Fθ, ∆Fr and ∆Fz are given by:

∆Fθ = qθ(θi+ 1
2
, rj , zk)∆rj∆zk − qθ(θi− 1

2
, rj , zk)∆rj∆zk (56a)

∆Fr = qr(θi, rj+ 1
2
, zk)rj+ 1

2
∆θi∆zk − qr(θi, rj− 1

2
, zk)rj− 1

2
∆θi∆zk (56b)

∆Fz = qz(θi, rj , zk+ 1
2
)rj∆θi∆rj − qz(θi, rj , zk− 1

2
)rj∆θi∆rj (56c)

Taking the limit ∆V → 0 in equation 55 gives the well known divergence formula in cylindrical
coordinates:

∇ · q =
1

r

∂rqr
∂r

+
1

r

∂qθ
∂θ

+
∂qz
∂z

(57)

Equations 55-56 allow us to translate the volume fraction flux in computational space (qθ, qr, qz)
to physical space. The full 3D discretisation of the advection equation using the split-operator
method now reads:

f∗ = fn −∆t
1

r

∂(uθf
n)

∂θ
+ ∆tf∗

∂uθ
∂θ

(58a)

f∗∗ = f∗ −∆t
1

r

∂(rurf
∗)

∂r
+ ∆tf∗∗

1

r

∂(rur)

∂r
(58b)

f∗∗∗ = f∗∗ −∆t
∂(uzf)

∂z
+ ∆tf∗∗∗

∂uz
∂z

(58c)

fn+1 = f∗∗∗ −∆t

(
f∗

1

r

∂uθ
∂θ

+ f∗∗
1

r

∂(rur)

∂r
+ f∗∗∗

∂uz
∂z

)
(58d)

where f∗, f∗∗ and f∗∗∗ represent the volume fraction field after each advection step in one direction,
and in the last step fn+1 is calculated by subtracting the correction terms. This scheme does not
guarantee the conservation of mass, as each intermediate advection step can cause f to go below
zero or exceed one (Rider and Kothe, 1998). In practice, this error has not turned out to be an
issue, as it is small compared to other sources (Popinet, 2009).

3.4 Curvature and surface tension

In the TBFsolver, surface tension is modelled using the continuum-surface-force (CSF) approach
(Brackbill et al., 1992). It uses an approximation to the delta function in the surface tension term
of equation 45b:

σκδ(n) ≈ σκ∇f, (59)

which allows us to determine the surface tension using the volume fraction field f .

Analytically, the mean curvature κ of the interface is given by:

κ = −∇ · n (60)

We will now introduce the height-function (HF) method to calculate the normal of the interface
from the volume fraction field. We define a height function h which describes the local interface
position with respect to some coordinate. For example, when the normal to the interface points
mainly in the vertical direction z, we can define the interface as the surface:
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z = h(r, θ), (61)

where h describes the position of the interface on the (θ, r)-plane. Numerically, the height function
can be approximated by evaluating the volume fractions in the grid cells along the z-direction. The
total volume in such a column is the sum of the volume fractions. We find the height function as
the height of a column with the same total volume. This procedure is illustrated in figure 8.

Figure 8: Illustration of the HF method to find a local approximate the position of the interface, adapted
from (Popinet, 2009). The height function is calculated around the highlighted grid cell. In case (a) and
(b) an adaptive stencil size is used to determine the height function, indicated by the dashed lines. For
highly curved surfaces (c), the HF method can fail.

Let us define the surface of the fluid interface on the coordinate system (x1, x2, x3). Without loss
of generality, we can locally represent the surface using a height function along the x3 axis. The
surface is then defined as:

x3 − h(x1, x2) = 0 (62)

The height function in a column along the x3-direction is calculated as follows:

h((x1)i, (x2)j) ≈ hi,j =

k+N∑
l=k−N

fi,j,l · (∆x3)l, (63)

where 2N + 1 is the stencil size around the interface. In practice however, the summation is done
iteratively starting at the center cell l = 0, and then moving up and down the column until an
empty (fi,j,k = 0) or full (fi,j,k = 1) cell is encountered; that is, when the next cell is a not part
of the interface. This procedure is shown in figure 8b, where the stencil extends to grid cells that
satisfy f = 1 or f = 0. Using the HF at several grid points, we can calculate the normal vector n
to the interface using the local gradient of the height function following the procedure developed
in (Brackbill et al., 1992):

n =
[
− ∂h
∂x1

− ∂h
∂x2

1
]T

(64)
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We can find an expression for the mean curvature by substituting this into equation 60. The mean
curvature is given by:

κ = −∇ · n = −∇ ·
(
∇(x3 − h(x1, x2))

|∇(x3 − h(x1, x2))|

)
(65)

Using the quotient rule, we find:

κ =
|∇x3 −∇h(x1, x2)| (∇ · (∇h−∇x3))−∇ (|∇x3 −∇h(x1, x2)|) · (∇h−∇x3)

|∇x3 −∇h(x1, x2)|2
(66)

In curvilinear orthogonal coordinates, the unit vectors are orthogonal, so we can write ∇φ =∑
i

1
di

∂φ
∂xi

êi for a scalar field φ, where di are the Lamé coefficients. In the case of cylindrical
coordinates, we have dθ = r and dr = dz = 1, while for Cartesian coordinates, dx = dy = dz = 1.

Furthermore, we use the notation ∂φ
∂xi

= φxi . Substituting these expression gives:

κ =

√
1
d23

+ |∇h|2 (∇2h−∇2x3)−∇
(√

1
d23

+ |∇h|2
)
· (∇h−∇x3)

1
d23

+ |∇h|2
(67a)

=

(
1
d23

+ |∇h|2
)

(∇2h−∇2x3)− 1
2∇
(

1
d23

+ |∇h|2
)
·
(
∇h− 1

d3
ê3

)
(

1
d23

+ |∇h|2
)3/2

, (67b)

where we use the following identities for general orthogonal coordinate systems:

|∇h|2 =
1

d2
1

(hx1
)2 +

1

d2
2

(hx2
)2 (68a)

∇2h =
1

d1d2d3

[(
d2d3

d1
hx1

)
x1

+

(
d1d3

d2
hx2

)
x2

+

(
d1d2

d3
hx3

)
x3

]
(68b)

In Cartesian coordinates, the expression for the mean curvature simplifies significantly. Substitut-
ing d1 = d2 = d3 = 1, we find the following equations:

κ =
h11(1 + h2

2) + h22(1 + h2
1)− 2h1h2h12

(1 + h2
1 + h2

2)3/2
. (69)

Due to the symmetry of the coordinate systems, this expression is valid for height functions along
all three directions (Evrard et al., 2020).

When we evaluate the mean curvature for the cylindrical coordinate system, we find three expres-
sions, since the equation depends on the direction along which the height function is defined. The
expressions are shown below:

κθ=h(r,z) =
hrr
(

1
r2 + h2

z

)
+ hzz

(
1
r2 + h2

r

)
− 2hrhzhrz + hr

r

(
2
r2 + h2

r + h2
z

)(
1
r2 + h2

r + h2
z

)3/2 , (70a)

κr=h(θ,z) =
hφφ(1 + h2

z) + hzz(1 + h2
φ)− 2hφhzhφz − 1

r (1 + 2h2
φ + h2

z)

(1 + h2
φ + h2

z)
3/2

, (70b)

κz=h(θ,r) =
hφφ(1 + h2

r) + hrr(1 + h2
φ)− 2hφhrhφr + hr

r (1 + 2h2
φ + h2

r)

(1 + h2
φ + h2

r)
3/2

, (70c)



3 NUMERICAL METHODS 35

where we have introduced the short-hand notation hθ = rhφ, hθ,r = rhφ,r and hθθ = r2hφφ. The
derivation can be found in appendix A. The expressions above are used to calculate the curvature
at a grid cell on the interface. The derivatives of the height function are calculated using central
difference formulas.

The standard height function method allows a relatively simple implementation compared to other
higher-order methods such as parabolic fitting (PROST) (Renardy and Renardy, 2002). However,
as seen in figure 8c, the standard height function method can fail to find a valid height along a
column when the interface is highly curved. In cases where the height function method fails, Popinet
has suggested implementing a hierarchical structure that allows us to fall back to a higher-order
method, which leads to the generalised height function method (GHF) (Popinet, 2009).

The TBFsolver employs PROST in cases where the standard HF method fails. In this case,
the valid heights from the HF method are collected. As long as there are at least six valid inter-
face positions, a paraboloid can be fitted to the interface positions using a minimization function
(Renardy and Renardy, 2002). The curvature of a paraboloid can be calculated directly from
the coefficients of its equation in Cartesian coordinates. Therefore, we construct the paraboloid
using the interface positions in Cartesian coordinates, which can be calculated using coordinate
transform on the numerical height function.

The GHF method is studied extensively in (Cifani et al., 2018). It is shown that for well-resolved
bubbles with 15 to 20 grid points per diameter, the standard HF method fails in only approximately
2% of the interface cells, in which cases the computationally more expensive PROST method is
employed. In the next section, the accuracy and stability of the GHF method in cylindrical
coordinates are tested.
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4 Single bubble dynamics

In this section, the numerical methods described in section 3 are tested using several test cases.
These cases are split into two groups. The first set of tests cover the VOF advection algorithm by
analyzing bubbles transport on an imposed velocity field. In the second group of cases, we simulate
the full dynamics of the two-phase flow by studying a single bubble rising in an initially stationary
flow due to buoyancy.

4.1 Pure advection test cases

We verify the advection algorithm by analysing the advection of a spherical bubble on an assumed
velocity field. In all these cases, the velocity field is chosen such that the advected body will return
to its initial shape after some fixed time T , which allows us to define the numerical error that is
introduced by the advection algorithm. Similar to the existing literature, we define three error
measures that can be evaluated at any time tn during the simulation:

E1(tn) =
∑
i

∣∣fi(tn)− f i(tn)
∣∣Vi (71a)

E2(tn) =

∑
i

∣∣fi(tn)− f i(tn)
∣∣∑

i f i(tn)
(71b)

E3(tn) =

∑
i(fi(tn)− f i(tn))∑

i f i(tn)
(71c)

where the summation is over all grid cells, and Vi is the physical volume represented by grid cell i.
In these definitions, f(tn) is the numerical volume fraction field at time level tn, and f(tn) is the
exact solution at time level tn.

4.1.1 Solid body rotation

In the first test case, we study solid body rotation of a bubble. The case is sketched in figure
9. The domain consists of two concentric cylinders with radii (Ri, Ro) = (Ri, Ri + 1). A bubble
with diameter db = 0.6 is initialized, centered at (θ, r, z) = (0, Ri + 1

2 , 0), and is subjected tot he
following velocity field:

Figure 9: Sketch for solid body rotation (chapter 2.1)

u(r, t) = uθ(r, t)θ̂ =
r

Ro
cos(πt) 0 ≤ t ≤ 1 (72)
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We set the time step to a fixed value during the simulation, which is determined by the maximum
CFL number. In order to guarantee numerical stability for the advection scheme wet the CFL
number to 0.1. This gives a maximum time step of ∆t = 0.1RoLθnθ

, where Lθ is the angular size of
the domain in the azimuthal direction, and nθ is the number of grid points along this direction.

The geometry of this test can be characterized by the ratio of between the inner and outer cylinder
radius η = Ri/Ro = Ri/(Ri+1), which represents the curvature of the domain. In the limit η → 1,
we obtain a Cartesian grid. The bubble is simulated at four different values of η, and additionally,
we perform the test in the original Cartesian TBFsolver.

A summary of the parameters in each simulation is shown in table 4. In each case, the domain
size in the r- and z-directions are Lr = Lz = 1, while the angle Lθ depends on the cylinder radii.
It is chosen such that the arc length along the outer cylinder is 2. The grid points are uniformly
spaced along each direction. The cases are named An such that Ro = 2n. The case A∞ refers to
the simulation in the original Cartesian formulation of the TBFsolver. Additionally, we perform
grid refinement on case A1.

Case Ri η (nθ × nr × nz) [θmin, θmax] ∆t (·10−3)

A1 1 1
2 (64× 32× 32) [− 1

4 ,
3
4 ] 3.125

A2 3 3
4 (64× 32× 32) [− 1

8 ,
3
8 ] 3.125

A3 7 7
8 (64× 32× 32) [− 1

16 ,
3
16 ] 3.125

A4 15 15
16 (64× 32× 32) [− 1

32 ,
3
32 ] 3.125

A∞ - 1 (64× 32× 32) [xmin, xmax] = [− 1
2 ,

3
2 ] 3.125

A1,b 1 1
2 (128× 64× 64) [− 1

4 ,
3
4 ] 1.563

A1,c 1 1
2 (256× 128× 128) [− 1

4 ,
3
4 ] 0.781

Table 4: Description of test cases for solid body rotation.

During the simulations, the error values are tracked over time. The reference field f(tn) are
calculated by constructing a volume of fluid field based on a spherical bubble centred at the exact
solution for the centre of the bubble.

The results of the simulations with varying η are shown in figure 10. This figure shows an increasing
error E2(t). Looking at the results for cases A1, A2, A3 and A4, we note that the results converge
to the result on a Cartesian grid A∞ as expected.

A
1

A
2

A
3

A
4

A

Figure 10: Results of error E2(t) for cases A1, A2, A3, A4 and the Cartesian result A10.
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It is interesting to note that the error in the volume fraction field is smaller for the cases with
higher curvature. A possible explanation is that the velocity of the centre of the bubble is lower
for the cases with a smaller Ri, since velocity increases linearly with distance to the origin, and is
equal to cos(πt) at the outer wall in all cases. With an overall lower velocity, we find a lower error
in these cases.

The results for the error E1 are qualitatively the same as E2 since they are very similar. The
error E3 measures the relative mass loss during the advection. For all test cases, this error is
E3(t) < 10−9, which emerges from the initial numerical approximation of the indicator function.
This indicates that mass is preserved up to a large precision. Note however that the advection
algorithm does not guarantee exact mass conservation.

Using multiple grid refinements, we can study the convergence of the advection algorithm. Figure
11 shows the result for η = 1/2 at three different grid sizes as mentioned in table 4. At a constant
CFL number, the time step is also decreased proportionally to the grid size. However, despite a
smaller time step and smaller grid size, the results only show linear convergence with the grid cell
length. Theoretically, we expect linear convergence with time as well as at least linear convergence
in space.

A
1

A
1,b

A
1,c

Figure 11: Time-evolution of error E2 at η = 1/2 for different grid sizes as described in table 4.

The error is dominated by the error in the time-stepping method. This is shown in figure 12,
where the case A1 has been simulated at different CFL numbers, which give different time steps.
As expected, it shows linear convergence, with only a slower convergence at a CFL number of
0.025. This indicates that the errors in figure 11 are also dominated by the time-stepping error.

As shown by these test cases, the error in the volume fraction field is around 1% for bubbles with
20 grid cells across at a CFL number of 0.1. However, the main cause for the error is the explicit
Euler time-stepping method for the velocity field. Furthermore, the results for the cylindrical cases
converge to the results for the Cartesian case when considering a smaller curvature of the domain.

4.1.2 Radial translation

As a second test case, we impose a divergence-free velocity field in the radial direction, given by:

u(r, t) = ur(r, t)r̂ =
Ri
2r

cos(πt) 0 ≤ t ≤ 1 (73)

This velocity field can be interpreted as the flow originating from a source at the line r = 0. The
velocity at the inner cylinder is equal to u = 1/2. We initialize a bubble with diameter 0.3 at
(θ, r, z) = (0, Ri + 0.25, 0). Similar to the previous cases, the domain is bounded by concentric



4 SINGLE BUBBLE DYNAMICS 39

CFL=0.4

CFL=0.2

CFL=0.1

CFL=0.05

CFL=0.025

Figure 12: Time-evolution of error E2 for case A1 at varying CFL numbers.

cylinders with radii Ri and Ro = Ri + 1. Furthermore Lz = 1/2 and Lθ depends on the value of
Ri such that the arc length along the outer wall is 1. Again, we include results from the original
TBFsolver, denoted by case B∞. The different test cases are shown in table 5.

Case ri η (nθ × nr × nz) [θmin, θmax] dt (·10−3)

B1 1 1
2 (64× 64× 32) [− 1

4 ,
1
4 ] 3.125

B2 3 1
2 (64× 64× 32) [− 1

8 ,
1
8 ] 3.125

B3 7 1
2 (64× 64× 32) [− 1

16 ,
1
16 ] 3.125

B4 15 1
2 (64× 64× 32) [− 1

32 ,
1
32 ] 3.125

B∞ - 1 (32× 64× 32) [xmin, xmax] = [− 1
4 ,

1
4 ] 3.125

B2 1 1
2 (128× 128× 64) [− 1

4 ,
1
4 ] 1.563

B2 1 1
2 (256× 256× 128) [− 1

4 ,
1
4 ] 0.781

Table 5: Description of test cases for radial translation.

For these simulations, there is no reference volume fraction field at all time steps. Instead, we can
only calculate the error at t = T . The velocity has a component cos(πt), which causes the bubble
to return exactly to its initial position. A snapshot of case B1 at t = 0.3 is shown in figure 13 as
an illustration of the bubble deformation. The bubble is compressed in the radial direction due
to the decreasing velocity in this direction. The results for E2(T ) as a function of the curvature
η are shown in figure 14. We see a clear convergence of the error to that of the Cartesian grid
when we increase the distance to the origin. Since the advection velocity is twice as low as in
the previous test case, we observe an overall lower error, since the error in the velocity due to the
explicit time-stepping is also lower.

4.1.3 Laminar Couette flow

In order to further analyze the behaviour of deformable bubbles, we impose laminar circular Couette
flow, which is given by

u = uθ(r)θ̂ = Ar +
B

r
, where A =

ωo − η2ωi
1− η2

, B =
(ωi − ωo)r2

i

1− η2
, (74)
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Figure 13: Snapshot of case B1 at t = 0.3. The bubble is deformed by the imposed velocity field.

Figure 14: Error E2(T ) for test cases B1, B2, B3, B4 and the Cartesian solver B∞.

For the next cases, we take ωo = −ωi = cos
(
πt
T

)
/ro, where t is the time, which represents counter-

rotating cylinders. such that it returns to its initial position at t = T .

We initialize a bubble with diameter 0.6 at (θ, r, z) = (0, Ri + 1
2 , 0). The CFL number is fixed at

0.2, which restricts the time step to ∆t = 0.2 · RiLθnθ
. Similar to the first advection test, we set

Lz = 1 and Lθ such that the arc length along the outer cylinder is 3. The distance between the
cylinder walls is Lr = 1.

A snapshot of the solution for case C1 at t = 0.25 is shown in figure 15. The blue line indicates the
level set f = 0.5 in the plane z = 0. This is an approximation to the cross-section of the bubble
in this plane. The bubble is sheared by the motion of the two cylinder walls, and reversed to its
initial position after t = T = 1.

The error in the volume fraction field E2(T ) is shown in figure 16. As before, the error converges
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Case ri η (nθ × nr × nz) [θmin, θmax] dt (·10−3)

C1 1 1
2 (96× 32× 32) [− 3

4 ,
3
4 ] 3.125

C2 3 1
2 (96× 32× 32) [− 3

8 ,
3
8 ] 3.125

C3 7 1
2 (96× 32× 32) [− 3

16 ,
3
16 ] 3.125

C4 15 1
2 (96× 32× 32) [− 3

32 ,
3
32 ] 3.125

C∞ - 1 (96× 32× 32) [xmin, xmax] = [− 3
2 ,

3
2 ] 3.125

C2 1 1
2 (192× 64× 64) [− 3

4 ,
3
4 ] 1.563

C2 1 1
2 (384× 128× 128) [− 3

4 ,
3
4 ] 0.781

Table 6: Description of test cases for laminar Couette flow.

Figure 15: Snapshot of case C1 at t = 0.25.

approximately to the result on the original solver on a Cartesian domain as η approaches 1. How-
ever, the error is now higher for the domains with higher curvature. The reason for this is that the
bubble experiences the largest deformations on these grids, as illustrated by the bubble in figure 15
in the bottom left corner, whereas deformations in previous test cases were very relatively small.
The error is also higher in absolute terms for this test case compared to test cases B. This is partly
because of the higher CFL number in these cases, and partly due to the large deformations.
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Figure 16: Error E2(T ) for test cases C1, C2, C3, C4 and the Cartesian solver C∞.

4.2 Single rising bubble

The previous test cases showed the performance of the interface advection algorithm on an imposed
velocity. In this section, we study the performance of the fully coupled two-phase problem by
introducing surface tension. We follow the full algorithm as described in chapter 3.

We study the behaviour of a 3D bubble in an initially stationary fluid with buoyancy. This
benchmark is described in detail in (Hysing et al., 2009), and there is reference data available from
several different methods (Klostermann et al., 2013; Zainali et al., 2013; Adelsberger et al., 2014;
Zhang et al., 2015; Cifani et al., 2016). The aim is to reproduce the first 3D rising bubble test case
described in the benchmark.

The rising bubble dynamics are characterized by the Eötvös number and the Reynolds number:

Eö =
g∆ρd2

e

σ
, Re =

ρlU∞de
µl

(75)

where U∞ is the terminal velocity of the bubble, ρl and µl the mass density and the dynamic
viscosity of the liquid phase. The effective diameter de is defined as the diameter of a spherical
bubble with the same volume as the actual bubble.

Following (Hysing et al., 2009), these parameters are set to Eö= 10, Re = 35, with a density and
viscosity ratio of ρb/ρl = µb/µl = 1/10. A spherical bubble with diameter 0.5 is initialized in a
domain of dimensions Lx ×Ly ×Lz = 1× 1× 2, with gravity pointing in the negative z-direction.
Figure 17 shows the initial condition for the 3D rising bubble case.

In this benchmark, the domain is bounded by non-slip walls in all directions. These boundary
conditions cannot be reproduced in our current numerical setup in cylindrical coordinates, as the
Poisson equation solver requires two periodic directions (θ and z) and one direction (r) with von
Neumann conditions on the pressure. We will therefore first investigate the effect of periodic
boundary conditions on the flow.

First, we perform the rising bubble benchmark case using the original TBFsolver in a rectangular
domain with solid walls on all sides. The domain uniformly discretized using a 64× 64× 128 grid.
The relevant parameters are shown in table 7. The same parameter values are used in (Zhang
et al., 2015).

In order to compare the results with reference data (Adelsberger et al., 2014), we define the rising
velocity of the bubble as follows:



4 SINGLE BUBBLE DYNAMICS 43

0.25

4R

4R

8
R

2R

2R 2R
Figure 17: Initial configuration for the 3D rising bubble case in a rectangular domain.

ρl ρg µl µg g σ

103 102 10 1 0.98 24.5

Table 7: Simulation parameters for the 3D rising bubble case.

ububble =

∑
i fi(uz)iVi∑

i fiVi
, (76)

where the summation is over all grid cells i, with fi the volume fraction in cell i, (uz)i is the vertical
velocity at the cell center and Vi is the volume of cell i. Additionally, we denote the maximum
extension of the bubble in each coordinate direction as the diameter db(t) = [dx(t), dy(t), dz(t)],
where dn(t) is given by the maximum distance between interface positions along direction n for
the whole bubble interface.

The final shape of the bubble is shown in figure 18. The bubbles start as spheres with a diameter
of 0.5, and is gradually compressed in the vertical direction, which causes the bubble to expand
symmetrically in the horizontal directions. The final shape is near an ellipsoid, which is consistent
with the position of the point (Re,Eö)= (35, 10) in the Grace diagram (Grace, 1973).

Figure 19 shows the results for this case compared with results from (Adelsberger et al., 2014). On
the left graph, the initial vertical acceleration of the bubble is shown, which gradually settles to its
terminal velocity. The right graph shows the different components of db(t). The upper branch of
the graph represents the horizontal directions, while the lower branch represents the z-direction.
The results for the bubble diameter agree within 1% with the reference data, which corresponds
to a distance of less than one grid cell. Better accuracy might therefor be achieved using grid
refinements.

Next, we investigate the effect of periodic boundary conditions instead of non-slip walls on the
bubble dynamics. Similar to the cylindrical setup, we set the boundary conditions in the x-
and z-directions to be periodic, while non-slip walls are maintained in the y-direction. All other
parameters are fixed at the same values.

The results for this comparison are shown in figure 20. The simulation with the modified boundary
conditions is shown in blue, while the previous results are shown in red. With two periodic boundary
conditions, the rising velocity of the bubble is greater as shown in the left graph, since the vertical
velocity is no longer restricted by the non-slip walls. This effect was also shown in (Zhang et al.,



4 SINGLE BUBBLE DYNAMICS 44

Figure 18: Isosurface f = 0.5 of 3D rising bubble at t = 3.

TBFsolver

NaSt3D

TBFsolver

NaSt3D

Figure 19: Single rising bubble in rectangular domain with solid walls. Left: rise velocity in z-direction.
Right: bubble diameter in the x- and y-direction (upper branch) and z-direction (lower branch). Results
from the TBFsolver are compared to data from (Adelsberger et al., 2014) (NaSt3D).

2015), where the domain size was increased in order to remove the influence of the boundary
conditions.

Zhang et al. also showed that removing boundary effects in the horizontal directions lead to a larger
bubble deformation, as the bubble can more freely expand in the horizontal directions. This effect
is also seen in the right graph of figure 20. Compared to the non-slip wall boundary condition, the
bubble expands significantly more in the horizontal x-direction with periodic boundaries. In the
y-direction, the boundary conditions are the same, and the bubble size in this direction remains
the same.

Next, the results for the rising bubble in a rectangular domain will be used as a reference for a
rising bubble in cylindrical coordinates. Similar to previous tests, the rising bubble case will be
simulated in cylindrical domains with different values of the curvature η = Ri/Ro = Ri/(Ri + 1).
The domain spans an angle of Lθ = 1/Ro, such that the arc length along the outer cylinder is 1.

Figure 21 shows the results for the cylindrical cases, as well as the results for the Cartesian domain,
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Non-slip

Periodic

Non-slip

Periodic

Figure 20: Single rising bubble in rectangular domain with solid walls (red) and two periodic directions
(blue). Left: rise velocity in z-direction. Right: bubble diameter in the x-direction (dotted line), y-direction
(dashed line) and z-direction (dash-dotted line).

Figure 21: Single rising bubble in cylindrical domains at different values of η. The results for a single
rising bubble in a rectangular domain is denoted by η = 1. Left: rise velocity in z-direction. Right: bubble
diameter in the vertical direction (bottom branch), wall-normal direction (middle branch) and horizontal
periodic direction (top branch).

denoted by η = 1. The left plot shows a consistent rising velocity of the bubble for the different
cases. The inset shows the final rising velocity. There is no clear convergence visible for η → 1,
however, the results are within 1% from the Cartesian case.

The graph on the right of figure 21 shows the diameter of the bubble. The diameter is split into
three branches, corresponding to the x-, y- and z−directions from top to bottom. There are slight
variations in bubble diameter for the different cases. This can be expected since the shape of the
domain is dependent on η. The inset of figure 21 shows convergence of the bubble diameter for
η →∞.

In conclusion, these results show that we can accurately model the dynamics of a rising bubble
in a cylindrical. By reducing the curvature of the cylindrical domain, we find with results in a
rectangular domain for the rise velocity and bubble diameter within 1%.
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5 Drag reduction in Taylor-Couette flow

The numerical methods derived in the previous sections can be used to investigate the behaviour
of bubbles in Taylor-Couette flow and determine the influence on the overall drag. We start in
subsection 5.1 with a definition of the drag reduction. In subsection 5.2, we detail the parameters
that are used in the simulations. Finally, the results are discussed in subsection 5.3.

5.1 Definition of drag reduction

Drag reduction in TC flow can be defined in terms of the torque on the cylinders (Sugiyama et al.,
2008):

DR = 100× T0 − Tα
T0

, (77)

where T0 and Tα are the torques on the cylinders obtained, respectively, at 0 and α volume fraction
of the dispersed bubbly gas phase. Drag reduction hence measures the torque alteration due to
the presence of a gas volume fraction α compared to single-phase flow as a percentage.

The torque on the cylinder wall is computed from the shear stress of the fluid at the wall as shown
in section 2.1.2. Here we take Tα = 〈(Ti,α + To,α)/2〉t as the average of the torques on the inner
and outer walls at volume fraction α, averaged over time. We recall that

T i,α = 2πr2
iLz 〈τrθ〉Ai,α , (78)

where 〈. . .〉Ai,α indicates an average over the surface of the inner cylinder. A similar relation holds
for the torque on the outer wall.

5.2 Setup of the numerical experiments

In this section, we describe the setup for the numerical simulation of two-phase TC flow. Two
geometrical parameters describe the flow domain, i.e., the cylinder radius ratio η = Ri/Ro and the
aspect ratio Γ = Lz/d, where Ri and R0 are the radii of the inner and outer cylinder respectively,
Lz is the vertical height of the cylinders and d ≡ Ro − Ri is the gap width. In these simulations
we set η = 10/11 and Lz = 2, as was also adopted in (Spandan et al., 2018).

The flow is driven by rotation of the inner cylinder, while the outer cylinder remains stationary.
The flow is therefore characterized by the inner cylinder Reynolds number Rei = Ud/ν, where U
is the fixed velocity of the inner cylinder, and ν is the kinematic viscosity of the carrier fluid.

Similar to (Spandan et al., 2018), we will study the flow dynamics at Rei = 5× 103. The focus of
this study is to understand the effect of the addition of bubbles on the global energy dissipation in
the flow. The deformability of bubbles also influences DR, next to α. It is controlled by the Weber
number, which relates inertial forces to surface tension forces. It is defined as We = ρfU

2dp/σ,
where ρf is the density of the carrier fluid, dp is the bubble diameter and σ is the surface tension
between the gas and the carrier fluid. In this study, we consider bubbles at We = 8.

We simulate the flow at a grid resolution of Nθ×Nr×Nz = 768×192×384. The grid is uniformly
spaced in the azimuthal and axial direction and follows a hyperbolic tangent-type profile in the
radial direction. We initialize 120 bubbles with a diameter of db = 0.1d, which corresponds to a
global gas volume fraction of α ≈ 0.8%. Initially, the bubbles are resolved with approximately
15-20 grid points in each direction, which indicates that the bubble shape is well resolved with the
GHF method according to experience gathered in (Popinet, 2009; Cifani et al., 2018).

The influence of gravity is measured by the Froude number. For two-phase flows, this is defined
as Fr =

√
ρ̃U2/((ρ̃− 1)gRi), where ρ̃ = ρf/ρb is the density ratio of the two bubbles. The Froude

number is set to Fr = 0.64. The density ratio of the carrier fluid to the bubbles is set to 20. This is
smaller than in most physical experiments, but provides numerical stability that is sometimes lost
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at realistic density ratios of 1000. The viscosity ratio is similarly set to µ̃ = µf/µb = 20. With this
setup, the bubble size in comparison to the Kolmogorov scale ηK is approximately dp/ηK ∼ 14.

The simulation is carried out in two steps. First, we initialize laminar Couette flow in the domain
and allow the single-phase system to develop fully. As described before, we consider the simulation
to be developed into a statistically stationary state after sufficiently many flow-through times. A
flow-through time is defined as the typical time it takes a fluid particle to traverse the domain in
the streamwise direction, which in this simulation is determined by the rotational velocity of the
inner wall and the azimuthal extent of the domain. Here, we use 500 flow-through times for this
phase. Subsequently, we determine time-averaged properties and take a time-averaging window
long enough so that the relative variation of Nuω is less than 1% along the radial direction.
From this simulation, we determine the torque T0 on the cylinders in single-phase TC flow. Next,
following (Spandan et al., 2018) we initialize a regular grid of 120 bubbles into the flow and let the
flow develop further. After the flow has reached a statistically stationary state, we again measure
the torque Tα on the cylinder from a sufficiently long time-average. Other statistics that will be
gathered are the radial distribution of bubbles, energy dissipation and average velocity profiles.

5.3 Results

To set up a bubble-laden flow simulation, we first create a reference by simulating single-phase TC
flow at Rei = 5 × 103. Starting from laminar Couette flow, the flow develops into a statistically
stationary state. The flow is simulated for approximately 500 flow-through times, based on the
velocity of the inner cylinder and the size of the domain. An instantaneous snapshot of the
magnitude of the velocity field is shown in figure 22. The flow is dominated by a large scale
plume that is ejected from the inner cylinder and extends radially to the outer cylinder. This flow
organization confirms earlier observations in Spandan et al. (2018).

In single-phase TC, the torque is directly related to the Nusselt number Nuω, which is a measure
for the angular velocity transport. The relation between the torque and the Nusselt number was
discussed in section 2.1.3, and is repeated below for convenience:

Nuω =
Jω

Jω0
, where Jω =

T

2πLzρ
, Jω0 = −ν 2

η(1 + η)

r2
i

d
(79)

Figure 23 shows the Nusselt number as a function of the radial position between the cylinders. As
expected, angular velocity transport is constant throughout the domain. From figure 23 we find
Nuω = 8.38, which is close to the results quoted in (Spandan et al., 2018).

Next, we initialize a grid of 120 bubbles in the domain, motivated by Spandan et al. (2018).
Initially, the bubbles are roughly equidistant from each other. The bubbles are placed in the
developed velocity field of single-phase TC flow. Based on the bubble positions, the indicator
function f is constructed, from which the initial density and viscosity field can be determined. The
velocity of the fluid inside the bubbles is set equal to that in single-phase flow.

As discussed before, the presence of capillary waves in two-phase flows adds another restriction
to the time step. At high Reynolds numbers, this severely restricts the time step compared to
that of single-phase flow. Since the time step restriction is inversely proportional to the surface
tension, we decided to initially simulate highly deformable bubbles for which the surface tension is
less restrictive for the time step. In this simulation, we therefore set We = ρfU

2dp/σ = 8, which
leads to a maximum time step based on capillary waves of:

(∆t)capillary =

√
d3ρ

4πσ
≈ 2× 10−4, (80)

which is approximately ten times lower than the required time step for single-phase flow. Given
the rather tight restriction (80), the total simulated time that we can report here corresponds to
50 flow-through times. In terms of computational effort, the VOF algorithm accounts for at most
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Figure 22: Instantaneous snapshot of the magnitude of the velocity field in single-phase TC flow. Red
colour indicates a high velocity, blue color indicates a low velocity.

Figure 23: Non-dimensionalized angular momentum transport profile for the singe phase TC flow.

30% of the total computational time, indicating that the solution of the Poisson equation is still
the most resource-intensive task.

An instantaneous snapshot of the developed flow with bubbles is shown in figure 24. The colour
indicates the magnitude of the velocity field. Compared to the single-phase flow, we see a clear
weakening of the plume ejected from the inner cylinder. Additionally, the plume no longer protrudes
through the bulk to the outer cylinder.

The break-up of large scale plumes in two-phase Taylor-Couette flow is often attributed to the ac-
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Figure 24: Instantaneous snapshot of the magnitude of the velocity field in two-phase TC flow. Red colour
indicates a high velocity, blue color indicates a low velocity. The color range is the same as in figure 22.
The isosurfaces f = 0.5 are in grey, which show the bubbles. Clustering of bubbles near the inner wall is
clearly appreciated from the top-view shown on the right.

cumulation of bubbles near the inner cylinder (Spandan et al., 2017b). In figure 25, the probability
distribution function of the radial position of the bubbles is shown. The PDF is calculated using
a time averaging of two flow-through times. Initially, the bubbles quickly accumulate near the
inner cylinder. After some time has passed, more bubbles migrate away from the inner cylinder.
This behaviour was also noted in (Sugiyama et al., 2008) during the transition to a statistically
stationary flow. At first, bubbles are drawn toward the vortical structures that are present in
single-phase TC flow. This is clearly visible in experiments at slightly lower Reynolds numbers,
where bubble strongly accumulate near the inner cylinder (Murai et al., 2005).

Figure 25: Probability distribution function of the radial coordinates of the gas phase. PDFs are based on
averages over 2 flow-through times, taken after 18 (blue) and 48 (red) flow-through times.
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Once the bubbles have accumulated near the inner cylinder, their axial (vertical) movement disrupts
the vortex structure in the flow. This allows the bubbles to also move away from the inner cylinder,
which can be seen in figure 25. Shortly after injecting the bubbles in the flow, most bubbles
accumulate on the inner cylinder. After 30 more flow-through times, most bubbles tend to remain
close to the inner cylinder around (r − ri)/d = 0.1, corresponding to the initial diameter of the
bubbles. There is less accumulation at the inner wall after the initial transient has passed. We
observe a ‘plateau’ in the PDF between (r − ri)/d = 0.2 and 0.8 and a gradual decrease toward 0
as we approach the outer wall.

We can now compare the velocity fields of single-phase flow and bubble-laden flow to find the
change in torque. We can directly evaluate the torque on the inner and outer cylinder, by cal-
culating the shear stress on these boundaries. The torque can be non-dimensionalized using the
Nusselt number as before (equation 79). Figure 26 shows the calculated torque on both cylinders.
Conservation of angular momentum states that, averaged over time, both torques must be equal
in a statistically stationary state. In the figure, we can observe an oscillating behaviour with a
period of approximately 2.5 flow-through times. This is on the same time-scale as the period of
the vortical structure in single-phase TC flow, which indicates that the flow is still developing and
has not yet reached a stationary state. We do observe a decreasing magnitude of the difference
between Ti and To. The time-averaging over the period available to us indicates a value Nuω which
is 1.5% higher than in the single-phase flow.

Longer simulations are required to accurately determine the possible drag reduction for this flow.
Currently, the torque shows oscillations in time of more than 10%, which is much higher than the
expected drag reduction. Moreover, although deformability is beneficial for drag reduction, it is
not clear whether this also holds for high values of We as adopted here. In a fully developed flow,
we can accurately determine the convergence of the torque and compare this to the single-phase
flow result to determine drag reduction.

Figure 26: Non-dimensionalized torque on the inner (red) and outer (outer) cylinder evaluated on instanta-
neous velocity fields. For single-phase flow Nuω ≈ 8.4. As a reference, the Nusselt number for single-phase
flow (SP) is shown.
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6 Conclusions and outlook

6.1 Main findings and achievements

The motivation for this study was to understand the physical mechanisms behind drag reduction
in two-phase TC flow through direct numerical simulation. In this research, an important step
toward this long-term goal was made by creating a new code for the simulation of bubble-laden TC
flow. The new simulation platform is a further development of the code TBFsolver developed
by Cifani (Cifani et al., 2018). This code for channel flow has been adapted thoroughly to the
cylindrical geometry of TC flow and constitutes a highly parallel algorithm for such simulations.
Extensive validation against analytical findings or by comparison with reported results in literature
has been presented to enhance confidence in the code. Moreover, a first full-scale simulation of
turbulent multi-phase TC flow has been illustrated, underlining the potential of the new approach.

In section 2, we focused on adapting the numerical methods for single-phase flow to be able to
treat flow in cylindrical coordinates. The Navier-Stokes equations for single-phase flow are solved
using the fully conservative method developed by (Morinishi et al., 2004). Additionally, we solve
the Poisson equation for pressure using the spectral method based on the research by (van der Poel
et al., 2015) and further developed for variable-density flows (Cifani et al., 2018; Cifani, 2019). The
method has been adapted to cylindrical coordinates by modifying the Fourier transformed Poisson
equations.

The code has been tested for in various scenarios. First, we have shown that laminar Couette can
be simulated precisely, with the resulting velocity field equal to the exact solution up to machine
precision. Secondly, we measured the increase in torque near the transition from laminar Couette
flow to Taylor-vortex flow. The results are found to agree with results from literature within
0.05%. Next, we simulated TC flow at a higher Reynolds number and determined the angular
velocity flux. Its value is shown to be independent of the radial position between the cylinders,
which shows convergence to a statistically stationary flow. From the angular velocity transport, we
found the Nusselt number for TC flow. The results show an agreement with literature within 5%
Ostilla et al. (2013). However, further grid refinement shows no clear convergence to the literature
data hinting at the possibility of a small systematic error between the codes. In fact, the precise
model reported in Ostilla et al. (2013) is not identical to our problem, which may account for the
slight differences.

Section 3 contains an account of the extension of the VOF method from the TBFsolver to
cylindrical coordinates. We have retained the main interface reconstruction methods. The interface
is reconstructed as linear surfaces on the computational domain. The geometrical flux following
from the advection of the interface is subsequently transformed to cylindrical coordinates.

The surface tension force is calculated from the curvature of the interface. We have derived the
equations which relate the curvature to the interface position. The interface position is determined
using the generalized height function method. Most of the structure of the TBFsolver has been
kept intact, so the computational performance on a cylindrical domain is similar to that of the
original code showing linear parallel speed-up for problems running on tens of thousands of CPUs.

The performance of the new code has been tested in section 4. Firstly, the advection algorithm
for a single bubble has been tested by studying the bubble shape on an imposed velocity field.
By comparing the final shape of the bubble to the analytical solution, it has been shown that
the advection algorithm converges linearly with time. By varying the curvature of the domain,
we found that the advection algorithm has a similar performance compared to test cases on a
rectangular domain using the original TBFsolver.

The algorithm for calculating surface tension is tested using a single rising bubble in an initially
quiescent flow. We compared the bubble shape and its eventual rise velocity to results from the
original TBFsolver. We found that the bubble rise velocity and diameter are within 1% of the
values obtained on a rectangular grid.

After testing and validation of the new code, a simulation of 120 bubbles in TC flow at Rei = 5×103

is performed, which is described in section 5. Initially, we simulated the flow without the presence
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of any bubbles, from which the torque on the cylinders is calculated. We observe close agreement
to literature data. Subsequently, 120 bubbles were added to the flow and the torque was studied
during the transition to statistically stationary two-phase flow.

A limiting factor during the simulations was the strict limit on the time step due to capillary
waves. By introducing bubbles in the flow, the time step had to be severely reduced. This reduced
time-step size has a marked influence on the simulated flow-time that could be amassed. Results
up to this point show that large scale structures in the flow are broken up by the rising bubbles.
Similar to results from experiments, we see that bubbles concentrate near the inner cylinder, which
causes a break-up of the large plumes in TC flow that are responsible for angular momentum
transport. After a transitional phase, bubbles migrate on average to a peaked distribution near
the wall, which shows simultaneously a clear ‘shoulder’ toward the bulk of the flow, and the bubble
distribution becomes qualitatively similar to experimental results.

As of yet, the drag reduction in TC flow due to the addition of bubbles could not be accurately
determined, as more time is needed for the flow to develop into a statistically stationary state.
Current results at high Weber numbers, implying high deformability, are suggestive that the drag
reduction will not be significantly higher than results from literature at lower Weber numbers.
Longer simulations might give more insight into the effect of bubble deformability on drag reduction
when simulations are repeated also at different We. The basis for such research has been laid in
the newly developed TBFsolver, which is the main result achieved in this study.

6.2 Future developments

In this study, an extension to the TBFsolver has been developed for studying two-phase Taylor-
Couette flow problems. The TBFsolver can be used to simulate two-phase systems at relatively
large volume fractions and with relatively high bubble deformability.

Now that all parts of the numerical method have been carefully tested and validated, the code is
ready to be used for various flow studies on bubble-laden TC flow. The excellent performance of the
GHF method for highly deformed bubbles enables us to investigate the Weber number dependence
of drag reduction. By performing multiple simulations such as described in section 5 at different
Weber numbers, we can investigate the importance of bubble deformability on drag reduction.
In order to achieve lower simulation times, an extension of the time-stepping method to implicit
time-integration for the surface tension terms may be fruitful.

Using the new code, we can look more closely at the mechanisms behind drag reduction by analyzing
the kinetic energy dissipation rate in the flow. This may lead to more insight into the effect of
bubbles on the intensity of the dissipating structures in two-phase TC flow.

Currently, the multi-marker formulation prevents the coalescence and break-up of bubbles. How-
ever, in a real system, interactions between bubbles or between a bubble and a wall may lead to
coalescence or breakup. This leads to a distribution of sizes of bubbles, which may affect the flow
structures. In order to account for this, a method might be implemented to determine whether
coalescence or breakup occurs, after which marker functions are merged, or a new marker function
is added. This will be particularly important at higher bubble volume fractions, when interactions
occur more frequently.
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Appendices

A: Derivation of curvature equations

In this appendix, we present a derivation of equations 70 from the equation for a general orthogonal
coordinate system (67). We will derive the three equations separately based on the direction along
which the surface is defined.

Let us first define the surface in cylindrical coordinates as z = h(θ, r). Thus, the Lamé coefficients
are gives as d1 = r, d2 = 1 and d3 = 1. Throughout these derivations, we will use the short-hand
notation hθ = rhφ, hθ,r = rhφ,r and hθθ = r2hφφ. The curvature is then given by:

κ =

(
1 + |∇h|2

)
(∇2h−∇2z)− 1

2∇
(
1 + |∇h|2

)
· (∇h− êz)

(1 + |∇h|2)
3/2

=
(1 + h2

r + h2
φ)
(
hrr + hr

r + hφφ
)
− 1

2

(
2(hrrhr + hrφhφ − h2

φ/r)hr + 2(hrφhr + hφφhφ)hφ

)
(1 + h2

r + h2
φ)3/2

=
hrr(1 + h2

φ) + hφφ(1 + h2
r)− 2hrhφhrφ + hr

r (1 + h2
r + 2h2

φ)

(1 + h2
r + h2

φ)3/2

As a check, we can calculate the curvature for a sphere of radius R, for which the mean curvature
should equal −2/R everywhere on the sphere. The surface is given as z = h(θ, r) =

√
R2 − r2.

The derivatives of the height function are given as: hr = −r/
√
R2 − r2, hrr = −R2/(R2 − r2)3/2,

hθ = hθθ = hrθ = 0. This gives for the curvature:

κ =
−R2/

√
R2 − r2 + −1√

R2−r2

(
1 + r2

R2−r2

)
(1 + r2/(R2 − r2))3/2

= − 2

R
(81)

Secondly, we can define the surface in cylindrical coordinates along the radial direction as r =
h(θ, z), which implies d1 = r and d2 = d3 = 1. Substituting these into equation 67, we find the
following expression for the curvature:

κ =

(
1 + |∇h|2

)
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3/2

Lastly, we define the interface along the azimuthal direction as θ = h(r, z). Using the Lamé
coefficients d1 = d2 = 1 and d3 = r we similarly find the curvature:
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Summarizing, we have derived the expressions for curvature based on height functions along the
three directions θ, r and z, which are:
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B: List of symbols

A list of variables and non-dimensional numbers are given below. Units are given in terms of mass
M , length L and time T

Non-dimensional quantities

Symbol Description

Eö Eötvos number

Fr Froude number

G Dimensionless torque

Nu Nusselt number

Nuω Angular velocity-based Nusselt number

Pr Prandtl number in convective flow

Ra Rayleigh number

Rei, Reo Reynolds number based on inner and outer cylinder velocities respectively

Ta Taylor number

We Weber number

Φ Quasi-Prandtl number for TC flow

Γ Aspect ratio of domain, Γ = Lz/Ly

η Ratio of cylinder radii, η = Ro/Ri

∆ε Relative error in energy balance

Greek symbols

Symbol Description Units

αn Sum of Adams-Bashfort coefficients, αn = γn + ξn

γn First Adams-Bashfort coefficient

εu Volume-averaged energy dissipation rate L2T−3

εu,0 Volume-averaged energy dissipation rate in purely diffusive flow L2T−3

θ Azimuthal coordinate or direction

κ Mean curvature LL−1

µ Dynamic liquid phase viscosity ML−1T−1

ν Kinematic viscosity L2T−1

ξn Second Adams-Bashfort coefficient

ρ Liquid phase mass density ML−3

σ Surface tension MT−2

τw Wall normal stress ML−1T−2

φ Pressure correction term ML−1T−2

ω Angular velocity of the fluid T−1

ωi, ωo Angular velocity of inner and outer cylinder resp. T−1
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Latin symbols

Symbol Description Units

Cn Discrete convection operator u · ∇ at time step n

D Discrete divergence operator

d Distance between inner and outer cylinder, d ≡ ro − ri L

f VOF indicator function

G Discrete gradient operator

g Gravitational acceleration LT−2

h Height function L

Jω Angular velocity flux L4T−2

Jω0 Angular velocity flux for laminar Couette flow L4T−2

kθ, kz Modified wave numbers for transformed Poisson equation L−1

Lθ, Lr, Lz Domain size in the respective directions L

n Normal vector of interface

n Time level index

p Fluid pressure ML−1T−2

ri, ro Radius of inner and outer cylinder respectively L

ra Arithmetic mean of cylinder radii L

r Radial coordinate or direction L

s Source term for the Poisson equation ML−3T−2

S Strain rate tensor, S = 1
2 (∇u +∇uT ) T−1

t Time T

u Velocity vector with components u = (uθ, ur, uz) LT−1

u∗ Provisional velocity during time marching algorithm LT−1

V n Discrete viscosity operator ∇ · (2µS) at time step n
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