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Summary

Robotic systems require controllers capable of handling not only the complexity of the robotic
system itself, but also of its physical interactions with the surrounding environment. The dy-
namics of physical interactions can be complex and difficult to assess for a control system. Be-
cause physical interactions are almost exclusively characterised by energy exchange, integrat-
ing energy awareness into robotic control systems benefits their assessment of complex phys-
ical interactions.

RaM is working towards fully enabling energy awareness in control systems. The first step to-
wards this objective was taken with the enablement of energy awareness at the loop-control
layer. The next step is to integrate energy awareness at the sequence-control layer, which is
the aim of the project discussed in this thesis. This thesis presents the architectural design and
conceptual implementation of an energy-aware sequence-control layer that is to form the basis
for future work on energy awareness at the sequence-control layer and higher control layers.

First, existing sequence-control implementations are analysed to determine connection points
for energy awareness. From this analysis, it is concluded that the integration of energy aware-
ness at the sequence-control layer can lead to the improvement of system-level properties, but
does require accurate sensor and actuator calibrations, collocation of control signals, and ac-
curate energy-tank budgets. Next, equations involved in calculating interaction energies are
analysed, yielding 8 equations containing 4 physical variables: generalised force (effort), gen-
eralised momentum, generalised velocity (flow), and generalised displacement. To commu-
nicate energies and these 4 variables in a physics-conformal manner, two novel interfaces are
proposed: an energy interface and a control interface, respectively.

To demonstrate energy awareness of the sequence-control layer, 5 typical fault scenarios that
would each require a different correction approach from the sequence controller are analysed:
I. Unexpected Obstacle, II. Sensor or Actuator Failure, III. Incorrect Target Specifications, IV.
Incorrect Target Pose, and V. Communication Delay or Loss. Based on the analyses, a list of pri-
oritised design- and implementation requirements is composed. By satisfying these require-
ments, an energy-aware sequence-control layer or any of its components can be developed
and connected to other entities that satisfy the same requirements.

Fulfilling all design requirements, an architectural design of the energy-aware sequence-
control layer is presented, consisting of 3 components and 2 interfaces: a setpoint generator,
energy estimator, passivity layer, and the above-mentioned energy- and control interfaces. The
setpoint generator assesses the control system’s energetic state and adjusts the generation of its
amplitude-continuous setpoint commands accordingly. The energy estimator provides model-
based energy budgets to the passivity layer’s energy tank. The passivity layer establishes a pass-
ive connection between the sequence-control layer and the loop-control layer. All communic-
ations between the 3 components are established by the 2 interfaces.

An energy-aware sequence controller is implemented in simulation to serve as a proof of
concept for the architecture design. Fault scenario I, Unexpected Obstacle, is implemented
using a virtual wall. Correspondingly, an energy-based collision-detection algorithm has been
integrated in the setpoint generator. By conducting and evaluating 4 experiments of differ-
ent conditional settings, it is shown that energy awareness is successfully integrated in the
sequence-control layer and enables collision detection and reaction within 30 ms.

The work presented in this thesis forms an architectural basis for energy-aware sequence con-
trol on a road towards more autonomous and safer robotic systems. Future work should focus
on expanding energy assessment to cover a broader range of physical interactions and on test-
ing the system outside of simulation—on a physical robot.
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1 Introduction

1.1 Context

Robotic applications that deal with physical interactions require controllers capable of hand-
ling not only the complexity of the robotic system itself, but also of its interactions with the sur-
rounding environment. In practise, such controllers are typically applied in situations where
the robot’s environment is known beforehand, e.g. in a robotic application along a fixed pro-
duction line. In situations where the environment is unknown, designing a controller cap-
able of handling the dynamics of that environment becomes significantly more difficult. In
such a case, robot control is often assisted by human steering, because humans live in the
physical world and are adapted to its dynamics. Conversion of steering commands—often in
Cartesian space—to control commands in joint space is performed by a loop controller that dir-
ectly controls the robot’s actuators. This scenario of human-assisted robot control is illustrated
in Figure 1.1.

Environment
Loop

Controller

steering
command signal

physical
action

actuation
command signal

state
feedback signal

measured
feedback signal

physical
reaction

Figure 1.1: A robotic control system based on human steering.

A field in robotics where this situation particularly occurs is (haptic) telemanipulation. In
telemanipulation systems, a master sends commands through a communication channel to
a slave. The slave follows the master’s commands while interacting with some remote environ-
ment. We speak of haptic telemanipulation if a human operator is receiving haptic feedback at
the master side. Unlike robotic applications along fixed production lines, applications of haptic
telemanipulation are often characterised by complex physical dynamics, an unknown environ-
ment, and/or high risk manipulations. Fields of application include surgery, nuclear decom-
missioning, waste management, and manufacturing, like in the work by Rahal et al. (2019) on
improving the control autonomy of human-assisted robotic cutting systems.

Control systems are increasingly becoming more autonomous. This development can be
prominently observed through the advances being made in autonomous vehicles, which are
transitioning away from being human-controlled systems. Since there is also still a depend-
ency on human steering in robotics, new paradigms are needed to improve the autonomy of
robotic control systems. To this end, Brodskiy (2014) took an energy-based approach. A key
concept behind the use of energy in control is that physical interactions are almost exclus-
ively characterised by energy exchange (Folkertsma and Stramigioli, 2017), allowing an energy-
aware controller to assess physical interactions. Energy awareness means to plan and perform
actions taking into account a system’s energetic state. The research by Brodskiy (2014) shows
that enabling energy awareness in robotic control is a means to improve system-level properties,
such as autonomy, but also performance, fault tolerance, and safety.

Control systems can be divided into multiple control layers, with each layer serving a differ-
ent purpose, such as the left two blocks in Figure 1.1. A generally-applicable diagram rep-
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2 Integrating Energy Awareness into Sequence Control

resentation of layered control was presented by Bezemer (2013) and is shown in Figure 1.2.
The diagram shows the possible layers in a control system and an indicative distribution of
timing guarantees. The Loop Controller in Figure 1.1 corresponds to the Loop Control layer
in Figure 1.2. The human operator in Figure 1.1 fulfils the functionality of higher control layers
in Figure 1.2, i.e. ‘Sequence Control’, ‘Supervisory Control & Interaction’, and ‘User Interface’.
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Figure 1.2: A general software-architecture representation for layered embedded control systems
(Bezemer, 2013).

1.2 Problem Statement

Since energy awareness can improve system-level properties, it can be beneficial to enable en-
ergy awareness for the full control stack shown in Figure 1.2. The University of Twente’s Robot-
ics and Mechatronics (RaM) research group1 has been working on integrating energy aware-
ness into the loop-control layer. Continuing along this path, the next steps towards full energy
awareness in robotic control are about integrating energy awareness into higher control layers,
starting with the sequence-control layer.

1.3 Project Goals

The main goal of this project is to take the next step in energy-aware robotics; namely,

enabling energy awareness at the sequence-control layer.

This goal has been divided into the following subgoals:

• Identifying how energy awareness can be enabled and harnessed at the sequence-control
layer.

• Defining design and implementation requirements for energy-aware sequence control.
• Designing and implementing the architecture of an energy-aware sequence-control

layer.
• Demonstrating improved system-level properties through energy awareness.

By achieving these goals, the project forms an architectural basis for energy awareness at the
sequence-control layer. Figure 1.3 illustrates the addition of an energy-aware sequence con-
troller to the example of human-assisted robotic control. Herein, on top of receiving energetic
feedback, the human operator is enabled to focus more on higher-level control operations,
making the control system better equipped to handle physical interactions of higher complex-
ity. In essence, the aspired contribution of this project is to provide a generic solution on im-
proving properties (such as autonomy, stability and safety) of any control system that deals with
physical interactions, including—but not limited to—human-assisted robotic control systems.

1RaM website: https://www.ram.eemcs.utwente.nl/
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Figure 1.3: A robotic control system in which an energy-aware sequence controller steers the loop
controller, thereby allowing a human operator to put more focus on higher-level tasks (compared
to Figure 1.1).

1.4 Approach

The approach for reaching the project goals starts by exploring available information. Topics
hereof are: good design practises for robotic control systems, the concept of layered control,
energy-based concepts of physics, and previous work on the just-mentioned topics in relation
to sequence control. This exploration of background information is covered by Chapter 2.

Following up on the background exploration, a list of sequence control example projects is
analysed for common structures, possible connection points to energy awareness, and system
properties to be improved. These analyses of other projects are concluded by a list of pros
and cons on integrating energy awareness into the sequence-control layer. Because this thesis
focusses on control systems that deal with physical interactions, an analysis is performed to
define a physics-conformal control interface. Furthermore, for the communication of energy
data, an analysis to define an energy interface is performed. As modern controllers are di-
gital, discrete-time equations (compliant to the control- and energy interfaces) are analysed for
the computation of energy exchanges. As a final part of the analyses, use cases for the imple-
mentation of energy-aware sequence control are analysed. The project analyses are presented
in Chapter 3 and concluded by a list of prioritised requirements for designing and implement-
ing an energy-aware sequence-control layer.

Conform to the design and implementation requirements, the architecture of an energy-aware
sequence-control layer is designed, followed by a conceptual implementation serving as a
proof of concept of that design. The design is physics-conformal and good practises in design
are applied. The design and implementation are treated in Chapter 4. Using the design’s
conceptual implementation, experiments are performed to evaluate energy awareness of the
implemented sequence-control layer and its effects on system-level properties, as presented
in Chapter 5. Finally, Chapter 6 concludes the project on the basis of the project goals and lists
recommendations for future work.

Robotics and Mechatronics Eddo Hobert



4 Integrating Energy Awareness into Sequence Control

2 Background

This chapter presents background information on the project’s goal of enabling energy aware-
ness at the sequence-control layer. First, good practises in design of robotic control software
are treated. Following the good practises in design, the basics behind the different types of
control layers and how they cooperate are detailed. Then, concepts related to energy exchange
during physical interactions are explained together with possible connections to the control
layers. Finally, these topics come together in a section about related work on energy awareness
in the layered control stack.

2.1 Good Practises in Design

The list of potential applications for robotics seems endless. Robotics is often applied with
custom hardware and/or software. Since custom solutions typically come at higher time, mon-
etary, and repair costs than commercial off-the-shelf (COTS) solutions, it makes sense to look
for better approaches on working through the seemingly endless list of potential applications.
Good practises in design are needed for a more structured and future-proof approach. One
possible approach is to apply Component-Based Software Development (CBSD), as was done
in the robotics works by Bezemer (2013); Brodskiy (2014); Tadele (2014). In CBSD, systems are
composed from reusable components comprising a trade-off between COTS and custom de-
velopment (Brugali and Scandurra, 2009). Reusable components in CBSD have the following
five essential characteristics (Sommerville, 2016):

Composable components communicate data through publicly available interfaces.

Deployable components are self-contained and can operate individually.

Documented components are fully explained in written text.

Independent components are composable and deployable without external dependencies.

Standardised components conform to a standard model or architecture.

CBSD facilitates an efficient workflow, because it prevents engineers from having to spend time
on developing software components that may already exist (reinventing the wheel). An addi-
tional benefit is that when a component is being reused, the amount of engineers with know-
ledge about that component grows, which adds to the accessibility and maintainability of that
component. Ideally, a CBSD component should be compliant to all possible systems. How-
ever, naturally, there is a limit to the extend of compliance of components due to differences in
interfaces, e.g. specialistic systems using a proprietary interface or existing systems using an
outdated configuration. Therefore, CBSD is about finding the best trade-off between being too
specific (less reusable) and too generic (less valuable):

“The highest-quality component will never be reused if the function it offers is
useless. The most needed component will never be reused if it is unreliable, slow,
hard to understand. The highest-quality and most needed component will never
be reused if the interface is not compatible.”

— Brugali and Scandurra (2009)

An important topic in CBSD is separation of concerns, in which a system is separated on the
basis of specific functional distinctions (concerns). Applying separation of concerns in the de-
velopment of control software adds to the reusability of a system and allows work on the system
to be focussed at one specific system functionality at a time. A set of five concerns (5Cs) for the
robotics domain was presented by Bruyninckx et al. (2013), as shown in Figure 2.1.
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Figure 2.1: Separation of five concerns (5Cs) (Bruyninckx et al., 2013).

2.2 Control in Layers

The concept of separating a control system in layers was introduced in Section 1.1 along-
side Figure 1.2. Because of its modular nature, layered control can be applied in conformity
with the good practises in design described in Section 2.1.

Layered control systems, or Distributed Control Systems (DCSs), comprise a hier-
archy of controllers that split the control system into several sections of responsibility
(Greeff and Ranjan, 2004; Bolton, 2015). DCSs are integrated systems based on the concept
of decentralisation and ensure a high degree of reliability, which is why they are typically used
where significant amounts of control and a high degree of fault tolerance and redundancy are
required (Greeff and Ranjan, 2004).

The general architecture representation for layered control systems in Figure 1.2 only considers
the software side of a control system. A complete control system also includes Input/Out-
put Hardware and a system to be controlled, called the Plant. This is shown in Figure 2.2, as
presented by Bezemer (2013)1. Note that the Embedded Control Software section in Figure 2.2
is a copy of Figure 1.2. Even though this thesis focusses on the sequence-control layer, during
development of any control layer in software, it is important to keep in mind the full control
system including I/O Hardware and the Plant.
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Figure 2.2: A complete general system-architecture representation for layered embedded control sys-
tems (Bezemer, 2013).

Control systems have timing requirements depending on execution criticality. These can be
either non-, soft-, or hard real-time requirements. At lower control layers, e.g. loop control,
precise time intervals are critical for reliable performance, in which case hard real-time is re-
quired. If some slack in timing precision, for instance at higher control layers, does not affect
reliability and safety, then soft real-time or even non real-time can be sufficient.

1In fact, this figure has been used within the RaM group for years and was originally inspired by Bennett (1988).
An early version can be found in the work by Groothuis et al. (2009), after which an upgraded version was presented
by Broenink et al. (2010). Based on that, the current version in Figure 2.2 by Bezemer (2013) contains an update on
how the real-time guarantees are distributed over the different control layers.
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6 Integrating Energy Awareness into Sequence Control

Each of the control layers presented in Figure 2.2 performs control actions under different con-
siderations of the controlled system. The higher the control layer, the the higher the abstraction
from the continuous-time physical world. Below follows a description of each of the embedded
control software layers and how they cooperate.

Safety Layer oversees all control layers and checks their inputs and outputs for unwanted sig-
nals. Its purpose is to prevent the propagation of unintended control component beha-
viours.

User Interface is the highest control layer. It communicates information to the user, takes and
processes inputs from the user, and passes the user’s commands on to the supervisory
control & interaction layer.

Supervisory Control & Interaction deals with complex algorithms such as path planning, im-
age processing, or environment mapping. Tasks are calculated and commanded to the
sequence-control layer for execution. State feedback, containing information about the
control system, is returned to the user interface as feedback for the user. Interaction takes
place through the processing of sensor data or user inputs, but also through communic-
ation with other (cyber-physical) systems.

Sequence Control is the main topic of this thesis. Like the User Interface and Supervisory
Control & Interaction layers, sequence control is considered a form of higher-level con-
trol. The sequence-control layer is often implemented as a finite state machine and typ-
ically deals with longer running tasks than loop control, e.g. trajectory planning. Tasks
are commanded by the supervisory-control layer. Based on these tasks, the sequence-
control layer calculates setpoints for loop control to follow. Besides setpoints, commands
can also be sent to loop control in the form of changes to control parameters. State feed-
back is returned to the supervisory control & interaction layer and comprises control
information of the sequence-control layer, but possibly also of the loop-control layer an-
d/or the plant. In turn, sequence control receives feedback from loop control and may
also receive sensor data (e.g. from cameras, lasers, IMUs, GPSes, etc.). Sequence control
components can require either soft- or hard real-time. If missed deadlines do not jeop-
ardise task execution, soft real-time is sufficient. If they may lead to critical failures, hard
real-time is required.

Loop Control is responsible for controlling the plant (a continuous-time dynamic system).
The loop-control layer receives setpoint commands from the sequence-control layer and
measured sensor feedback from the measuring & actuation layer. It calculates actuation
commands based on these setpoints and measurements. The actuation commands are
sent to the plant’s actuators (via the measuring & actuation layer). State feedback is sent
to the sequence-control layer and can be in the form of actuation commands and/or
state information obtained from the plant.

Measuring & Actuation provides an interface between the control software and the system
hardware by filtering and scaling incoming and outgoing signals before passing them
through. Outside of the embedded control software, it is connected to digital-to-
analogue (D/A) and analogue-to-digital (A/D) converters, connecting the discrete-time
control stack to the continuous-time plant.

Following the descriptions listed above, an illustration of the propagation of command and
feedback signals from the user-interface layer to the measuring & actuation layer is shown
in Figure 2.3.

Eddo Hobert University of Twente
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Figure 2.3: Command and feedback signals between adjacent control layers in the control stack
of Figure 2.2.

2.3 Principles of Energy Exchange

This section treats how the observation stated in Section 1.1, that “interactions are almost ex-
clusively characterised by energy exchange” (Folkertsma and Stramigioli, 2017), relates to the
development of an energy-aware sequence-control layer. Relevant background information
comprises the quantities involved with physical interactions, basic energy calculations, and
power ports. Because this is important—yet basic—information, it is presented in Appendix A.

2.4 Related Work

Previous work has been done on robotic control systems that follow good practises in design,
control in layers, and energy exchange principles presented in Sections 2.1 to 2.3. Such work,
related to the project goal of enabling energy awareness at the sequence-control layer, is de-
scribed here.

Franken (2011) worked on port- and energy-based control of haptic telemanipulation systems.
Control stability was achieved through a passivity layer. Passivity layers function like a safety
layer that enforces system passivity—an energy-based measure of stability. Passivity was first
defined by Willems (1972) and dictates that the energy in a system is always less than or equal
to the initial energy in that system. Hence, a passive system is either dissipative or lossless,
such as mass-spring-damper systems. An important property of passivity is that any power-
conserving interconnection of passive subsystems forms a new system that is again passive
(Willems, 1972).

In fact, robot passivity is a necessary condition for system stability during interaction between
a robot and an unknown environment, but does not guarantee stability if that environment
is active (Folkertsma and Stramigioli, 2017). Activity is the opposite of passivity, i.e. a system
of increasing energy2. In case of interaction with an active environment, sufficient damping
should be added to achieve system passivity (Groothuis et al., 2018). Brodskiy (2014) applied
a passivity layer in the context of the control stack of Figure 2.2 and evaluated the potential
benefits of energy-awareness. He concluded that energy-based concepts offer an effective ap-
proach to analyse system performance and that system performance can be greatly enhanced
if a control strategy incorporates information about energy states.

In order to provide the passivity layer’s energy tank with sufficient energy, Brodskiy (2014) used
an energy estimation component to determine energy budgets sufficient for task execution. Ac-
cording to Groothuis et al. (2018), “energy budget allocations for generic tasks and movements
can only usefully be done for finite time windows... It makes sense to consider the energy re-
quirements during each time step and providing an energy budget suitable for that time step”.

2Universally speaking, any physical system is passive by the first law of thermodynamics, but may seem active be-
cause we restrict ourselves to certain time- and spatial bounds (Stramigioli, 2001). For example, a battery-powered
system can appear active as the battery performs like a constant voltage source, but this is a time-bounded state
since batteries store only a finite amount of energy.
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8 Integrating Energy Awareness into Sequence Control

Accordingly, the energy estimation block by Brodskiy (2014) determined energy budgets per
time step by running a simultaneous simulation of the controlled system dynamics. He found
that incorrect estimation of the energy budgets results in a negative impact on system perform-
ance by the passivity layer.

Passivity layers have also been applied by RaM in a contribution to RobMoSys. RobMoSys3 is
an effort on establishing an open, multi-domain, modular and sustainable software ecosystem
for the European robotics community with the aim of improving accessibility and efficiency
in robotics development. RaM has been contributing to RobMoSys by working on integrat-
ing energy awareness into the loop-control layer to guarantee passivity and enhance safety for
the plant and its surroundings. Work has been done on designing and implementing energy
guards, which function as local passivity layers, to encompass each loop-control component.

The next aim of RaM is to extend energy awareness from the loop-control level to the system
level by integrating it into the complete motion control stack. The purpose thereof being to
1) provide information on fault detection and fault handling to the supervisory and sequence
control levels, and 2) to determine system-wide energetic properties for ensuring that not only
local, but also global passivity and stability are achieved. The plan is to communicate energy
data of the loop-control energy guards via an all-overseeing ‘energy supervisor’ layer to the
sequence-control layer. The energy supervisor should ultimately function like an energy-based
safety layer in the control stack; communicating and re-assigning energies to and from each
control layer. These developments are in line with the goals of the project treated in this thesis.
Though development of an energy supervisor is not in the scope of this project, it may later be
connected to the work produced in this project.

3RobMoSys web page on passive control: https://robmosys.eu/wiki/community:intrinsically-passive-control:start
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3 Analysis

This chapter focusses on the project’s subgoal of “defining design and implementation require-
ments for energy-aware sequence control”, stated in Section 1.3. A list of six projects that make
use of sequence control is analysed for common sequence control structures and connection
points to energy awareness. The results thereof are used to analyse interface requirements
and propose two interfaces: a control interface, and an energy interface. Following the two
interfaces is an analysis on energy exchange computations. Furthermore, possible use cases
for evaluating energy awareness of the sequence-control layer are analysed to identify imple-
mentation requirements. This chapter is concluded by a list of design requirements and a list
of implementation requirements.

3.1 Connection Points for Energy Awareness in Sequence Control

In order to determine requirements for designing and implementing an energy-aware
sequence-control layer, additional information is needed to verify how sequence control-
lers are applied in practise. Therefore, six projects that made use of sequence control are
analysed below. Their control signals are identified for comparison to the definitions of layered
control in Section 2.2. Furthermore, because Sections 1.1 and 2.4 suggest that implementing
energy awareness can result into an improvement of system-level properties, system-level
properties of each project are evaluated to determine how energy awareness could have been
beneficial in those projects. The results of these evaluations can be used as a comparison to the
system-level properties of the energy-aware sequence-control layer developed in this work.

System-level properties are properties at the system level, i.e. of the full control system
(shown in Figure 2.2) consisting of embedded control software, input/output hardware, and
the plant. Properties mentioned in Sections 1.1 and 2.4 are passivity, stability, fault tolerance,
safety, performance, and autonomy. System-level properties—rather than sequence-control
level properties—are considered, because it is not just the sequence-control layer, but the full
system that should have satisfactory properties. Consider, for example, the property of per-
formance. One could develop a sequence controller that performs with a satisfactory speed.
However, if this speed is too fast for the loop controller or plant to keep up, the system as a
whole will not perform satisfactorily. Therefore, instead of locally, it is ultimately more import-
ant to consider properties globally, i.e. at the system level.

Other more relevant system properties can be thought of, e.g. robustness, resilience, versatility,
predictability, etc. Alami et al. (2006) narrowed their evaluation of developments in the field
of physical human-robot interaction (pHRI)—a field related to the project discussed in this
thesis—down to three main properties:

• Safety

• Dependability (availability, reliability, integrity, maintainability)

• Performance (speed, accuracy)

To analyse projects on an equal basis, these three properties also are used for the analyses of
the six projects below. The analyses per project are structured as follows:

#. [Project name]. [Purpose of the system].

(a) Measuring. [The sensors / measurement signals that were used.]

(b) Actuation. [The actuators / control-command signals that were used.]

(c) Notes. [Relevant notes specific to the project, e.g. notable design choices or prob-
lems that occurred.]
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(d) Improving System-Level Properties by Implementing Energy Awareness.

• Safety. [Evaluation of the system’s safety property and how energy awareness
could have been beneficial. Note that, since passivity is an energy-based meas-
ure of stability, a passive system is a stable system. Stability, in turn, contributes
to safety. Also note that safety can be regarded a subproperty of dependability,
but is considered separately here.]

• Dependability. [Evaluation of the system’s dependability property and how
energy awareness could have been beneficial. Note that this considers sub-
properties availability, reliability, integrity, and maintainability, if applicable.
Also note that dependability overlaps the robustness property, which entails
availability, reliability, and maintainability as well (Alami et al., 2006).]

• Performance. [Evaluation of the system’s performance property and how en-
ergy awareness could have been beneficial. Note that this considers speed and
accuracy, but also versatility, for example.]

To be able to extract useful information about the potential consequences of integrating en-
ergy awareness into sequence control, the main criteria for the selected projects is that they
make use of sequence controllers that are not already energy-aware. Furthermore, to extract
information that is widely applicable, the control systems of the projects have been selected to
differ in size and shape, number of joints, type of actuation, and/or type of physical-interaction
application.

Correspondingly, the following projects (in reverse chronological order) have been se-
lected: 1) a human-inspired robot hand (Delgado et al., 2017), 2) a pipe inspection ro-
bot; PIRATE (Morales, 2016), 3) a soft landing pneumatic drive (Pfeffer et al., 2016), 4) an
autonomous ATV (Bardaro et al., 2014), 5) a humanoid robot; TUlip (Lootsma, 2008), and 6) an
exoskeleton (Kawamoto and Sankai, 2004). No more than these six projects have been selected,
because they are expected to yield sufficient information. The analyses of the six projects are
listed below:

1. Robot Hand. Delgado et al. (2017) extracted object deformation properties with a
human-inspired robot hand1 for tactile measurements and used those determined prop-
erties for manipulating the object. A task planner (sequence controller) was used to con-
trol positions and forces.

(a) Measuring. 18 resistive force/pressure sensors distributed over the palm and fin-
gers of the robot hand. Position data of the joints is available. A Kinect is used to
localise the object that is to be grasped.

(b) Actuation. 5 articulated fingers and 20 Degrees of Freedom (DOFs). All joints can
be moved by the 20 motors in the hand base2.

(c) Notes. The research aimed “to imitate the behavior of human beings, in which the
applied forces by the fingers are changed when the human estimates the rigidity of
a body and when the fingers react to unexpected movements of the object to keep
the contact points” (Delgado et al., 2017). Force and displacement data are used
separately in the control algorithm.

(d) Improving System-Level Properties by Integrating Energy Awareness.

• Safety. By not keeping track of energy exchange, passivity can be broken. This
could result in unstable and unsafe behaviour, especially since the system in-
teracts with unknown objects. An energy-aware sequence controller can en-

1Shadow Dexterous Hand web page: http://www.shadowrobot.com/products/dexterous-hand/
2Technical specification: https://www.shadowrobot.com/wp-content/uploads/shadow_dexterous_hand_

technical_specification_E_20190221.pdf .
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force passivity and thereby stability, leading to a safer handling of unknown
objects.

• Dependability. The authors mention that support from a vision system would
be needed to reliably recognise more complex deformable objects such as
cloths. Reliability against these unknown objects may be improved through
energy-awareness. Energy-aware control would merge the force and displace-
ment data (which were used separately) to determine energy exchange. This
may make it possible to increase controller sensitivity, which would also be an
improvement in performance.

• Performance. Furthermore, vision systems perform relatively slow. An
energy-aware control approach is faster and would lead to higher responsive-
ness. Additionally, given that interactions are almost exclusively characterised
by energy exchange (Folkertsma and Stramigioli, 2017), an energy-aware se-
quence controller could improve the assessment of physical interactions. This
can be used to improve the system’s performance on its aim of imitating human
behaviour.

2. PIRATE. Morales (2016) used sequence control to control a pipe inspection robot (PIR-
ATE) consisting of 8 links and 7 joints performing tasks such as clamping, moving around
a corner, and driving inside pipes with a diameter slightly larger than the robot itself.

(a) Measuring. Sequence control receives feedback from joint encoders (angles and
efforts) and an IMU sensor.

(b) Actuation. The systems contains 2 motors for clamping, 2 motors for camera pan
and tilt, 1 motor for rotation, and 6 drive motors (1 for each wheel).

(c) Notes. The control mode can be either torque, velocity, or position. Even though
both torque and angular-position feedback are available, only the angular position
is used because of unreliable torque measurements. Regardless, a combination of
torque commands and angular-position feedback could have been used to estimate
energy exchange.

(d) Improving System-Level Properties by Integrating Energy Awareness.

• Safety. Communication delays may occur between the robot in the pipe and
the remote human operator. Communication delays can lead to instability,
which may harm the robot (Brodskiy, 2014). Energy-aware control can enforce
passivity (and therefore stability) and make the system more safe by preventing
such harms from taking place. This would also improve robustness.

• Dependability. If torque control would be used, the commanded torques
could be compared to the measured torques to filter out incorrect measure-
ments, but the commanded torques could also directly be used to calculate
energy exchanges. With energy exchange data, incorrect measurements could
also be detected and filtered out. Detecting and filtering out incorrect data at-
tributes to dependability in the form of reliability.

• Performance. The clamping torque is estimated based on a pre-defined fixed
pipe diameter. This is a static approach that does not allow for pipe dimension
variations. By keeping a fixed potential energy, an energy-aware sequence con-
troller could adapt to any pipe dimension that fits the robot without requiring
pre-knowledge, improving its performance by making the system more versat-
ile.

3. Pneumatic Drive. Pfeffer et al. (2016) used a linear pneumatic drive with combined po-
sition feed-forward and pressure feedback in sequence control to achieve soft landing.
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(a) Measuring. Pressure sensors and low quality short range position sensors. The
position sensors have a limited range and can only measure near the start and end
of the trajectory, resulting in a measurement gap.

(b) Actuation. One linear pneumatic drive.

(c) Notes. The aim is to achieve soft landing despite the limitation on available po-
sition sensor data. This was achieved by using a control strategy that combines
position feed-forward and pressure feedback. A measurement gap is similar to a
temporary communication loss in the sense that they both result in a data gap over
a certain time interval.

(d) Improving System-Level Properties by Integrating Energy Awareness.

• Safety & Dependability. According to Brodskiy (2014), energy-aware control
is robust against time delays and can ensure passivity also during a commu-
nication loss. This may be extended to robustness against a data gaps as well.
Robustness relates to reliability (and, hence, dependability) and passivity is a
measure of stability, affecting safety.

• Performance. Energy-budget estimations, such as in Brodskiy (2014), could
be used to predict the required amount of energy for the task to achieve soft
landing. This may improve the computation speed and the accuracy of the
system.

4. Autonomous ATV. Bardaro et al. (2014) developed a control architecture comprising a
planner (supervisory control), trajectory follower (sequence control) and low-level con-
trol system (loop control) to create an autonomous All-Terrain Vehicle (ATV).

(a) Measuring. GPS, IMU, Magnetometer, Odometer.

(b) Actuation. 3 servo motors used for steering, throttle and braking.

(c) Notes. System stability was compromised due to the Robot Operating System (ROS)
software introducing delays in the trajectory control loop. A pose predictor was
introduced by the authors to resolve the issue.

(d) Improving System-Level Properties by Integrating Energy Awareness.

• Safety & Dependability. Energy awareness could be used to ensure passiv-
ity and, hence, stability and safety. This can improve robustness (and therefore
dependability) against the communication delays that were experienced, as in-
dicated by Brodskiy (2014).

• Performance. An energy-aware controller could implement minimum energy
control to extend the system’s longevity on a single battery charge.

5. TUlip. Lootsma (2008) worked on a humanoid robot (TUlip) that stands up—i.e. moves
from a prone position to an upright position—using a state machine sequence controller
that changes the setpoints and parameters of 12 PID controllers.

(a) Measuring. The sequence controller receives joint-position feedback. The loop
controller receives joint position- and velocity feedback.

(b) Actuation. There are 12 motorised joints. The PID loop controllers calculate the
motor-torque commands as a function of the measured joint positions and velocit-
ies.

(c) Notes. There was an issue in which “the C-code generated from the model of the
body generates errors as soon as actuation of the joints becomes too large. These
errors occur because parts of the model are based on the timing of zero-crossings”
(Lootsma, 2008). Several fixes were attempted, but all failed. Commanded torque
and measured (angular) velocity data could be used to determine energy exchange
and enable energy awareness.
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(d) Improving System-Level Properties by Integrating Energy Awareness.

• Safety & Dependability. An energy-aware sequence controller can guarantee
passivity, limit the total amount of energy, and distribute the available energy
over the actuators. Errors that originate from assigning excessive energies to
the actuators could thereby be prevented, which would improve both reliability
and safety.

• Performance. Energy-aware control could allow the system to assess physical
interactions. This can be beneficial in adding functionalities to the system be-
sides standing up, which would improve versatility of the system.

6. Exoskeleton. Kawamoto and Sankai (2004) implemented a finite state machine for the
sequence-control level of an exoskeleton meant to physically assist a human during
walking.

(a) Measuring. Rotary encoders at the hip and knee joints, pressure sensors for force
measurements at the front and back of the sole of each shoe, and an EMG sensor
on both upper legs.

(b) Actuation. Torque-controlled actuators at the hip and knee joints. The loop con-
troller calculates torque as a function of the hip or knee angular position, velocity,
and/or acceleration (differing per actuator) obtained by the rotary encoders.

(c) Notes. The state-machine sequence controller only uses feedback from the force
sensors in the shoes and the system only functions when the human is walking, i.e.
not when standing still or performing movements other than walking. Commanded
effort and measured flow or generalised-displacement data is available at the joints
and could have been used to determine energy exchange and enable energy aware-
ness.

(d) Improving System-Level Properties by Integrating Energy Awareness.

• Safety. Safety is paramount under human-robot interaction. Since sys-
tem stability influences safety and since passivity is a necessary condi-
tion for robot stability during interaction with an unknown environment
(Folkertsma and Stramigioli, 2017), the exoskeleton system should function
passively. This requires energy-aware control. Additionally, energy aware-
ness could allow for the setting of power- and energy limits to ensure safe
human-robot interaction, like in the work by Tadele (2014).

• Dependability & Performance. Actuator torques that are a function of the
joint angular velocity and acceleration are equal to zero in situations without
movement, even when this is not desired, e.g. when keeping a foot still in the
air. This could be solved with a more complex control algorithm, which would
improve performance at the cost of maintainability and possibly integrity. In-
stead, implementing energy awareness could be a more dependable and ver-
satile solution. An energy-aware controller can assess both static and dynamic
situations through potential- and kinetic energies, respectively, and command
adequate assistance. Though, this also could go at the cost of requiring more
complex control (lower maintainability and possibly integrity) as well, possibly
requiring additional computational resources.

In line with Section 2.2, sequence controllers in the examples above typically send setpoints
to a loop controller. This is based on some form of trajectory planning or task execution with
feedback coming from various types of possible sensors. In turn, the loop controller typically
outputs a generalised force—i.e. effort—command based on a generalised displacement (or
sometimes generalised velocity—i.e flow) input feedback.

Robotics and Mechatronics Eddo Hobert



14 Integrating Energy Awareness into Sequence Control

The command and feedback data can be used to calculate energy exchange (Section 2.3) for the
enablement of energy-aware control, but that does require accurate sensor and actuator calib-
rations. The amount of mechanical energy in a robot is always less than the energy outputted
by a controller, because some of the output energy gets converted into thermal energy through
friction. This is passive and, thus, safe behaviour. However, passivity cannot be guaranteed
if sensors or actuators are not accurately calibrated, because the amount of energy exchange
calculated by the controller is then also inaccurate. This can lead to active behaviour with a
controller injecting energy where none is needed. For the same reasons, collocation of the ac-
tuation commands and measurement feedback data—typically achieved through collocation
of actuators and sensors—is also required, as mentioned in Section 2.3. Even more, inaccurate
calibrations and non-collocation result in unreliable system performance.

Passive system behaviour cannot be guaranteed with collocations and accurate calibrations
only, though. A proven method of enforcing system passivity is through the use of passivity lay-
ers, described in Section 2.4. Reusing proven concepts, like passivity layers, is a good practise
in design (Section 2.1) and can therefore also be applied in this project. When using passivity
layers, caution should be taken with regards to energy-budget estimations, because incorrect
estimations negatively impact system performance (Brodskiy, 2014).

Summarising, the integration of energy awareness at the sequence control layer can be charac-
terised by the following pros and cons:

Pros
• Allows physics-conformal control.

• Improved assessment of physical inter-
actions.

• Improvement of system-level proper-
ties, for example and among others:

– Passivity

– Stability

– Safety

– Dependability

– Robustness

– Autonomy

– Performance

Cons
• The control algorithm may become

more complex.

– Additional computational re-
sources may be needed.

• [effort or generalised momentum] and
[flow or generalised displacement] data
must be available to calculate energy ex-
change.

• Accurate sensor and actuator
calibrations—alongside collocation
(Section 2.3)—are required to reliably
calculate energy exchange and guaran-
tee passivity.

• System performance depends on ad-
equate energy budgeting for the passiv-
ity layer.

3.2 Energy-based Interfaces

Following good practises in design (Section 2.1), data communication within the energy-aware
sequence-control layer should be generic and standardised to allow for composable design.
To achieve this, two interfaces are explored in this section: a control interface and an energy
interface.

3.2.1 Control Interface

Following Section A.2, Section C.1 briefly explains a control system consisting of a sequence-
control layer, loop-control layer and plant on the basis of bond-graph principles. Bond-graph
principles are relevant for the loop-control layer, because its energy-exchange concern is fo-
cussed on closely resembling real-world physics due to its close connection to the physical
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plant. An energy-aware sequence-control layer is also concerned with energy exchange, but
primarily for using its data to adjust the control strategy. Hence, both control layers are
concerned with energy exchange, but for different purposes. This is in line with the notion
in Section 2.2 that higher control layers handle higher abstractions from the physical world.

Ultimately, bond-graph entities, such as power ports and power bonds, should be excluded
from sequence-control design because of the following three reasons:

1. Sequence control receives its tasks from the supervisory-control layer. These tasks may
not be power-continuous and can be more abstract from the physical world than the
quantities listed in Table A.1. Even though a task may, for example, be a generalised-
displacement setpoint, it could also discretely be “move forward”. Such a task cannot be
sent through a power bond.

2. Similarly, sequence control may receive sensor data that could, for example, come from
cameras, lasers, IMUs, GPSes, etc. As a result, the sequence-control layer does not strictly
represent an impedance or admittance within the control system, because it can receive
multiple inputs that are not necessarily related to physical energy exchange. It can still
resemble impedance or admittance functionality to loop control, though, by communic-
ating the appropriate power-conjugated effort-flow pair.

3. Generalised momenta (p) and generalised displacements (q) can also be used to determ-
ine energy exchange. However, they are not compatible to bond-graph notation, which
only considers generalised forces (efforts, e) and generalised velocities (flows, f ).

Hence, bond-graph principles are too restrictive and should therefore not be used in the design
of a sequence-control layer, unless bond graphs are required for interfacing with the loop-
control layer. Instead, an alternative sequence-control interface is needed with which energy
exchange can be calculated.

An observation that can be made from Sections 2.2 and 3.1 is that all control layers share com-
mon basic principles on interfacing. Namely, that any two control entities interfacing with each
other share an input/output connection over which a command or feedback signal can be sent.
Notice that ‘command’ and ‘feedback’ are generic terms that include any sort of transmitted
control signal. Typically, at least 1 command and at least 1 feedback signal are communicated.
This is illustrated in Figure 3.1. These principles are important to identify as they form the basis
of control interfaces. They also exemplify the semantics of ‘command’ and ‘feedback’ used in
this project to distinguish between control signals.

Entity A Entity B Input

Output

Legend

Command

Feedback

Figure 3.1: Control signals can be of type ‘command’ (e.g. actuation torques) or of type ‘feedback’ (e.g.
measured velocities). A control signal that is an output of entity A, is an input of entity B, and vice versa.

Since energy exchange can be calculated with Equation A.2 using the four physical variables
shown in Tables A.1 and A.2, the interface should be able to communicate these four variables.
If either e or p together with either f or q are known, are collocated (Section 3.1), and are be-
longing to the same physical domain, then energy exchange can be computed by a control sys-
tem. Therefore, the control interface of an energy-aware sequence-control layer should consist
of command/feedback type signals of which one signal type can transmit a time-dependent
e-p pair or a time-dependent f -q pair. The difference between this proposed control interface
and bond graphs is illustrated in Table 3.1, which shows the 8 possible combinations of phys-
ical variables with which energy exchange can be calculated. Computing energy exchanges
from these combinations is treated in Section 3.3.
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Table 3.1: Possible combinations of physical variables in a bond graph compared to the proposed con-
trol interface for energy-aware sequence control.

Bond Graph
Proposed

Control Interface

# Command Feedback Command Feedback

1. e f e f
2. e q
3. p f
4. p q
5. f e f e
6. f p
7. q e
8. q p

3.2.2 Energy Interface

The control interface proposed in Section 3.2.1 would be sufficient for developing a non-
energy-aware sequence controller. However, for the development of a sequence controller
that is energy-aware, the control interface on its own does not suffice. An additional in-
terface is needed to provide an energy-communication standard for the sequence-control
layer, that is, an energy interface is needed. Whilst defining this interface, good practises in
design (Section 2.1) are kept in mind. In order to be generically compliant to other (past and
future) work, the energy interface should incorporate energy variables that are commonly used
in robotic applications. Below follows an analysis that identifies such energy variables.

Franken (2011) and Brodskiy (2014) worked on energy in robotics (described in Section 2.4) and
made use of ‘Energy Transfer’ within their systems to transfer energies to, from, and between
the energy tanks of passivity layers. An example of one such energy transfer is the supply of
energy budgets to energy tanks. In Section 1.1 it is stated that “energy awareness means to
plan and perform actions taking into account a system’s energetic state”. The energy-tank level
is a state variable of passivity layers and can be used to base the planning and performing of
control actions on. Therefore, it should be possible to communicate the energy-tank level from
a passivity layer to other control components. Hence, the first two variables that should be
incorporated in the energy interface for an energy-aware sequence-control layer are (1) Etransfer

and (2) Etank. These two energy variables are mainly used for passive control; they are virtual
energies that exist inside the controller.

There exist more energy variables to be considered in a control strategy. Since energy is of-
ten split up in a kinetic and a potential component, these are added as generic variables to
the energy interface; (3) Ekinetic and (4) Epotential. The kinetic energy in a robotic control sys-
tem corresponds to robot-mass movement. The potential energy in a robotic system relates to
potential energy in the actuators and gravity:

• Passive loop controllers at RaM often model a virtual spring ‘attached’ between the ro-
bot’s end effector (e.g. a gripper) and a setpoint (desired end-effector position and orient-
ation) to determine actuator torques. The potential energy contained within an elastic
element (such as a virtual spring) could contain useful information to take into account
by a controller deciding on a control action. Hence, another variable for the energy in-
terface is: (5) Eelastic.
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• Furthermore, robot controllers often apply active gravity compensation. To allow the
possibility of including gravitational-energy information in a control strategy, energy
variable (6) Egravitational is added to the energy interface.

Finally, to also allow the communication of a sum of energies, (7) Etotal is added to the energy
interface. These 7 energy variables are expected to provide sufficient energy-communication
possibilities between components in any energy-aware sequence control layer. Figure 3.2 il-
lustrates an example of the 7 identified energy variables in a robotic control systems. Be aware
that these energy classifications are intended to contain specific information to be used in a
control strategy and that, in real-world physics, energy does not stick to such classifications.

Gravity
Compensator

Virtual SpringPassivity Layer

Etank Eelastic Egravitational

Controller Robot

Ekinetic

Epotential

Etotal,control Etotal,robot

ΔEtransfer

Figure 3.2: Energy classifications in a robotic control system that can be useful in the control strategy of
an energy-aware sequence controller.

Unlike signals in the control interface proposed in Section 3.2.2, energies are not commanded
or fed back. Instead, energy signals are scalars that are simply communicated or—depending
on their sign—added or subtracted. Hence, besides an input/output configuration, further dis-
tinction of signal types (e.g. ‘command’ and ‘feedback’) is not needed for an energy interface.
Summarising, the energy interface of an energy-aware sequence-control layer should at least
incorporate the 7 identified scalar energy variables listed in Table 3.2.

Table 3.2: Proposed energy interface consisting of 7 energy variables to be used in an energy-aware
sequence-control layer.

#
Proposed
Energy Interface Description

1. Etransfer energy transferred between energetic components
2. Etank passivity layer’s energy-tank level
3. Ekinetic kinetic energy
4. Epotential potential energy
5. Eelastic energy in an elastic element (e.g. a virtual spring)
6. Egravitational energy due to gravity
7. Etotal sum of energies in a (sub)system or component

Note that, out of the 7 energy classifications, all except the first (Etransfer) relate to an entity’s
energetic state. Hence, Etransfer can be used for the transmission of energies that are to be added
or subtracted, for example supplying energy budgets to a passivity layer’s energy tank. The
other energy variables can be used to transmit information about an energy state, for example
updating a controller about the energy contained by a virtual spring using Eelastic.

3.3 Computing Energy Exchange

Modern controllers are digital and require discrete-time equations for the computation of en-
ergy exchanges. To compute energies from physical interactions, the corresponding equations
need to be compliant to the control interface of Section 3.2.1. Inserting the physical-variable
combinations of Table 3.1 into Equation A.2 and using the time-dependent relations shown in
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the tetrahedron of state in Figure A.1 yields four possible combinations to calculate energy flow
with3:

dE

dt
= e> · f ⇒ dE = e> · f ·dt (3.1)

= e> · dq

dt
·dt = e> ·dq (3.2)

= dp>

dt
· f ·dt = dp> · f (3.3)

= dp>

dt
· dq

dt
·dt = dp> ·dq · 1

dt
. (3.4)

A digital controller updates its signals at fixed time intervals. Consider the current sample time
of a controller to be tk . The previous sample time is tk−1 and the next (future) sample time is
tk+1. During a sample interval (in between two subsequent sample times), the discrete-time
controller is idle and no new data is obtained. Hence, the command signal outputted by a
digital controller is constant during a sample interval. This is not the case for the sampled
feedback signal, which is variable as illustrated in Figure 3.3.

commandk-1
commandk

commandk+1commandk-2

feedbackk-1 feedbackk

tk-1 tk tk+1

feedbackk+1

Figure 3.3: During sample intervals, a digital controller’s command signal is constant whereas the
sampled feedback signal varies.

Figure 3.3 shows that, throughout the latest sample interval, [tk−1, tk ], the value of the com-
mand signal, commandk−1, is known to the digital controller, but that this is not the case for
the varying feedback signal, whose intermediate value(s) would have to be estimated. A direct
consequence is that Equations 3.1 to 3.4 are rewritten into 8 (rather than 4) discrete-time equa-
tions for a digital controller to compute the amount of exchanged energy, ∆Ek , during sample
interval [tk−1, tk ]. These 8 discrete-time equations correspond to the 8 command/feedback
combinations listed in Table 3.1 and can be represented as follows:

∆Ek = Ek −Ek−1 =





ek−1
> · 1

2

(
fk + fk−1

) ·∆tk command: e, feedback: f

1

2
(ek +ek−1)> · fk−1 ·∆tk command: f , feedback: e

ek−1
> · (qk −qk−1

)
command: e, feedback: q

ek
> · (qk −qk−1

)
command: q , feedback: e

(
pk −pk−1

)> · fk command: p , feedback: f
(
pk −pk−1

)> · fk−1 command: f , feedback: p

(
pk −pk−1

)> · (qk −qk−1
) · 1

∆tk
command: p , feedback: q

(
pk −pk−1

)> · (qk −qk−1
) · 1

∆tk
command: q , feedback: p

. (3.5)

3Note that these four equations implicitly assume linearity if interval dt is not infinitesimal.
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Herein, the time duration between current sample time tk and previous sample time tk−1 is
represented by∆tk = tk − tk−1 and (for the reason explained above) in the [command, feedback]
combinations of [e, f ] and [ f ,e] an average value of the feedback signal is taken. Equation 3.5
can be sufficiently accurate for digital controllers that use short sample intervals. However,
if higher accuracy is needed (as could be the case for systems with longer sample intervals),
higher order approximations of the feedback signal during a sample interval could be applied.

Equation 3.5 implies time-discreteness, but not amplitude-discreteness of the sampled com-
mand and feedback signals. Figure 3.3 shows that the feedback signal is assumed amplitude-
continuous. Amplitude continuity should also hold for the command signal, because if it would
be amplitude-discrete, Equation 3.5 would result in the computation of amplitude-discrete en-
ergy exchanges—which would not be physics-conformal. Hence, the command signal output-
ted by an energy-aware controller can be discrete in time, but must be continuous in amplitude.

3.3.1 An Exception for Screw Theory

Equation 3.5 can be used to compute energy exchanges from any of the variables listed
in Tables A.1 and A.2. In order to yield accurate and correct computations, these variables must
(as stated above) be collocated and belonging to the same domain. However, from Table A.2
it can be seen that there exists one exception to which Equation 3.5 cannot be applied. This
exception occurs for the screw theory domain, where the generalised displacement (q) is an
H-matrix of size 4×4 whereas the generalised force (e), generalised momentum (p), and gen-
eralised velocity ( f ) are of size 6×1. Hence, the problem is an impossible product between a
matrix and a vector of mismatching dimensions. A solution is to calculate a twist matrix from
the H-matrix, extract a twist vector, and use that twist vector in Equation 3.5 instead.

Equations that follow below consider H-matrices and twists of the robot’s end-effector frame
(Ψee) with respect to and expressed in the inertial origin frame (Ψ0). The placement of these
frames on a robot is illustrated in Figure 3.4.

y
x

z
y

x

z

Ψ0

Ψee

Figure 3.4: Illustrative placement of the inertial origin frameΨ0 and robot end-effector frameΨee.

Since H ee
0 = (

H 0
ee

)−1
, a twist matrix T̃ 0,0

ee ∈R4×4 can be calculated from H-matrix H 0
ee ∈R4×4 us-

ing Equation A.1:

T̃ 0,0
ee = Ḣ 0

ee ·H ee
0 . (3.6)

The time derivative of H 0
ee between sample times tk and tk−1 can be computed as follows:

Ḣ 0
ee(tk ) = H 0

ee(tk )−H 0
ee(tk−1)

∆tk
. (3.7)

A twist matrix T̃ 0,0
ee (tk ) in sample interval [tk−1, tk ] can be estimated using Equations 3.6 and 3.7

and the average value of H ee
0 in that interval:

T̃ 0,0
ee (tk ) = H 0

ee(tk )−H 0
ee(tk−1)

∆tk
· H ee

0 (tk−1)+H ee
0 (tk )

2
. (3.8)

From Equations 3.8, B.1 and B.2, it can be seen that twist vector T 0,0
ee ∈R6×1 is directly extract-

able from twist matrix T̃ 0,0
ee ∈R4×4. Thus, instead of H-matrix H 0

ee as a generalised displacement
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(q), twist vector T 0,0
ee can be used as a flow ( f ) in Equation 3.5. If a more accurate estimation

of T̃ 0,0
ee (tk ) in sample interval [tk−1, tk ] is needed, higher order approximations could be used

for Equation 3.7 and the average of H ee
0 in Equation 3.8.

3.4 Use Cases for Evaluating Energy Awareness

To allow the integration of energy awareness into a sequence controller to be evaluated, suit-
able evaluation scenarios are needed. From Section 3.1 it can be observed that there exist many
scenarios in which energy awareness in sequence control could be useful. Section 1.1 states the
example of a robotic manipulator that physically interacts with an unknown environment. Un-
expected physical interactions can become the cause of a fault in a robotic system. Such a fault
can activate an error, which can propagate into a failure, which can cause another fault, etc.
This fault propagation process was presented by Avizienis et al. (2004) as shown in Figure 3.5.

. . . fault error failure fault . . .activation propagation causation

Figure 3.5: Fault propagation process (Avizienis et al., 2004).

Figure 3.5 shows a process that is to be prevented. An energy-aware sequence controller should
be able to detect a wide range of faults and errors by assessing the energetic state of the sys-
tem. After fault or error detection, it should plan and execute a correction approach in order to
prevent any further failures. Carlson et al. (2004) identified the following physical failure clas-
sifications: Effector, Sensor, Control system, Power, and Communications. An energy-aware
sequence controller may be able to correct faults and errors in these fields, except for the field
of Power as this lies beyond the controller’s reach. The remaining fault classifications can be
extended to fault scenarios. The following generic fault scenarios, each of which requires a
different correction approach, are proposed:

I. Effector: an unexpected effector (e.g. obstacle) along the trajectory towards the target.

II. Sensor: a sensor or actuator failure.

III. Control system: incorrect target specifications (e.g. dimensions and/or weight).

IV. Control system: an incorrect target pose (position and/or orientation).

V. Communication: communication delay or loss.

These fault-scenarios can be used as use cases in which an energy-aware sequence con-
troller uses energy information to find a suitable correction approach. The proposed fault-
scenario use cases and examples of corresponding robot correction approaches are illustrated
in Figure 3.6. The presented use cases are generic in the sense that they can be adapted to
various situations; the robotic manipulator can be replaced by any other robot and the target
object can be replaced by another task. Figure 3.6b presents four main sequences for each fault
scenario:

1. Interval [t0–t1]: approaching the target object.

2. Interval [t1–t2]: fault occurrence, detection, assessment, and approach correction.

3. Interval [t2–t3]: executing the task; moving the target object from A to B.

4. Interval [t3–t4]: returning to home pose.

Note that the second sequence (fault occurrence, detection, assessment, and approach cor-
rection) does not take place under normal operations, as illustrated by the reference scenario
in Figure 3.6a. Any of the fault-scenario use cases presented in Figure 3.6 may be used to evalu-
ate energy awareness of a controller with, by letting the controller plan and execute a correction
approach based on energy information in the system.
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(a) Reference scenario without faults.
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(b) Five fault scenarios.

Figure 3.6: Fault scenarios with a robotic manipulator tasked to move a target object from location
A to location B. Each scenario requires a different correction approach to prevent system failure and
successfully execute the task.

3.5 Requirements for Design and Implementation

From the information in Chapter 2 and the analyses in this chapter, requirements for the
design and implementation of an energy-aware sequence-control architecture have been es-
tablished. The requirements are prioritised following the MoSCoW (Must, Should, Could, Will
not) criteria. Prioritisation is based on the following question: “is this requirement necessary
in energy-aware sequence control?”
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3.5.1 Design Requirements

The design of an energy-aware sequence-control layer ...

1) ... should be based on good practises in design (Section 2.1).

2) ... should incorporate a connection point for task commands coming from the
supervisory-control layer (Section 2.2).

3) ... could incorporate a connection point for sensor data coming from the plant
(Section 2.2).

4) ... must receive state feedback from the loop-control layer (Section 2.2).

5) ... must send amplitude-continuous setpoint commands, that are adjusted based on en-
ergy feedback, to the loop-control layer (Sections 2.2, 3.1 and 3.3).

6) ... must be passive (Sections 2.4 and 3.1).

a) ... should incorporate a passivity layer (Section 3.1).
i) ... could reuse (reusing is a good practise in design—Section 2.1) the design of

a passivity layer from some previous work (Section 3.1).

b) ... should incorporate accurate energy-budget estimations (Section 2.4).

7) ... must incorporate a control interface consisting of command and feedback inputs and
outputs (illustrated in Figure 3.1) that can communicate the four physical variables as
indicated in Table 3.1 (Section 3.2.1).

a) ... should not (!) make use of bond graphs, except possibly for connecting to the
loop-control layer (Section 3.2.1).

i) ... should incorporate both impedance and admittance functionality if bond
graphs are used (Section 3.2.1).

8) ... must incorporate an energy interface for standardised communication of energy data
as indicated by Table 3.2 (Section 3.2.2).

a) ... should be compliant to the plan within RaM to eventually add an energy super-
visor (Section 2.4).

3.5.2 Implementation Requirements

Note: all design requirements listed in Section 3.5.1 also apply to the implementation.

The implementation of an energy-aware sequence-control layer ...

1) ... must provide real-time guarantees and operate in hard- and/or soft real-time
(Section 2.2).

2) ... could be compared to other implementations of sequence control, such as those ana-
lysed in Section 3.1, on the basis of system-level properties like safety, dependability and
performance (Section 3.1).

3) ... should show improved system-level properties due to energy awareness (Section 3.1).

4) ... must use sensors and actuators that are accurately calibrated (Section 3.1).

5) ... must use collocated (both in time and positioning) actuation commands and meas-
urement feedback data (Section 3.1).

6) ... should be able to demonstrate its energy awareness (Section 3.4).

a) ... could include any of the use cases presented in Figure 3.6 to demonstrate energy
awareness (Section 3.4).
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4 Design and Implementation

This chapter treats the project’s subgoal of “designing and implementing the architecture of
an energy-aware sequence-control layer”, stated in Section 1.3. The architecture design and
subsequent conceptual implementation have been based on the design and implementation
requirements listed in Section 3.5.

4.1 Design of an Energy-aware Sequence-Control Architecture

The architecture design is to form a basis for energy-aware sequence control by providing a
systematic approach on taking into account the system’s energetic state in the control strategy.
The design comprises a network of components and subcomponents, which, for clarity and
understandability, is presented in steps of increasing detail.

4.1.1 Interface Designs

Before presenting the components that make up the Sequence-Control layer, the interface
designs are explained. The interfaces cover the 5Cs-concern of Communication between con-
trol entities (Design Requirement 1).

Figure 4.1 shows signal notations used in all design diagrams that follow in the remainder of
this chapter. The arrows are colour coded to distinguish between the different types of signals.
The red and blue arrows represent command- and feedback signals, respectively, and belong to
the control interface (Design Requirement 7). The green arrows represent energy signals and
belong to the energy interface (Design Requirement 8). The gray arrows represent other signals
for which it is not in this project’s scope to define an interface. These ‘other’ signals can contain
any unspecified data, such as implementation-dependent state feedback data.

Interfacing
Entity

command signal

energy signal

Legend

feedback signal

signal_E2

signal_E1

signal_F2
signal_C2signal_C1

signal_F1

= [Etransfer, Etank, Ekinetic, Epotential, Eelastic, Egravitational, Etotal]

= [ecmd, pcmd, fcmd, qcmd]
= [ek, pk, fk, qk]

 

signal_O1

other signal = a task OR control state OR parameters OR camera data OR etc.

signal_O2

Figure 4.1: Design interpretation of interface signals. The command, feedback and energy arrows rep-
resent vector signals that contain multiple variables. The ‘other’ signals can contain any data. Names
accompanying an arrow (e.g. signal_C1, signal_F1, signal_O1, signal_E1, etc.) are merely a label to dis-
tinguish the signal with, not its contents. The layout of signals in this diagram serves as an example.

The command (red) and feedback (blue) signals transmit arrays consisting of physical vari-
ables e, p , f , and q that can contain any of the quantities listed in Tables A.1 and A.2
(Design Requirement 7). The control interface does not restrict using multiple variables con-
currently, that is, a control signal (command or feedback) transmits all of the e, p , f , and
q variables at once and one, multiple, or all of them can be filled in. The reason for
this design choice is to establish an interface that is implementation-agnostic (in line with
Design Requirement 1). If, for example, the interface would be used in a control system par-
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tially consisting of torque-controlled actuators and partially of position-controlled actuators,
this control interface would allow such combinations to be commanded. It is left up to the de-
veloper to determine which signals to make use of and to make sure those signals comply to
the rest of the system.

The energy signals (green) correspond to the energy interface and transmits an array of the vari-
ables listed in Table 3.2 (Design Requirement 8). As with the control interface, the energy inter-
face also does not restrict using multiple variables concurrently, i.e. the energy signal enables
any of the listed energy variables to be filled in. Hence, also here it is left up to the developer to
decide which variables to make use of.

Design diagrams can also contain signal labels; a name accompanying a signal. The sole pur-
pose of these labels is to distinguish and refer to specific signals, e.g. ‘signal_E1’ in Figure 4.1.
This means that an energy label called ‘tank’, for example, would merely refer to that specific
signal (an array of variables). It would not (!) be referring to the specific scalar variable Etank

contained within that vector. The colour of a signal (not its name/label) indicates the interface
a signal belongs to and, hence, what its contents are.

4.1.2 Top View of the Layered Control System

Using the interface design of Section 4.1.1, a top view of the full control-system design is
presented in Figure 4.2. It shows all of the main control layers and their interconnections in
line with the control-system representations of Figures 2.2 and 2.3.

Supervisory
Control

Loop
Control Robot

Sequence
Control

Energy Supervisor

Embedded
Control
Software

User
Interface

command

energy

Legend

feedback

other

Figure 4.2: Design top view of Sequence Control within the layered control system.

Following Design Requirement 8a and using the energy interface, each layer communicates
energy information with an Energy Supervisor. For example, Sequence Control receives en-
ergy information of Loop Control, not directly from the Loop Control layer itself, but via the
Energy Supervisor. Using the control interface, Sequence Control communicates a command
signal and a feedback signal with Loop Control (Design Requirement 4) and receives an addi-
tional feedback signal from Loop Control that contains state feedback of the Robot1 (which
Loop Control obtains from its communication with the Robot).

The signals between the User Interface, Supervisory Control and Sequence Control
(Design Requirement 2), and the signals between Loop Control and the Robot, are classified as
‘other’ signals, because they are implementation-dependent and their specific definition is not
in the scope of this project. The ‘other’ signal from the Robot to Sequence Control generically
represents any sensor data (Design Requirement 3).

1In accordance with Section 3.4 and Figures 1.3 and 2.2, the Plant is considered to consist of a Robot (and its
physical Environment).
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4.1.3 Detailed Design of the Energy-aware Sequence-Control Layer

A step of increasing detail following the design’s top view shown in Figure 4.2, is to show the
main components inside the Sequence-Control layer and omit any layers that are not directly
connected (i.e. the User Interface). This is shown in Figure C.2. Next, Figure 4.3 presents the
Sequence-Control layer design in detail, leaving out all external entities and showing all relev-
ant signal names.

Sequence Control

Setpoint
Generator

Passivity
Layer

Embedded
Control
Software

setpointpastask

state loopstate

robotstate

sensors

setpoint

loopstate,est

robotstate,est

loopenergetic tank

budget

Energy
Estimator

setpoint

command

energy

Legend

feedback

other

Figure 4.3: Detailed design of the Sequence-Control layer leaving out external entities and including
signal names.

Applying component-based design (in line with Design Requirement 1), the designed
Sequence-Control layer incorporates three main components in order to fulfil the remain-
ing design requirements:

• a Setpoint Generator to satisfy Design Requirement 5,

• an Energy Estimator to satisfy Design Requirement 6b,

• and a Passivity Layer to satisfy Design Requirement 6a.

These three control components define the Sequence-Control layer’s core functionality, cov-
ering its 5Cs-concern of Computation. With the Setpoint Generator, Energy Estimator and
Passivity Layer, and the interface signals interconnecting them, Figure 4.3 also addresses the
5Cs-concern of Composition of the Sequence-Control layer (Design Requirement 1).

The Setpoint Generator calculates setpoints based on unspecified commands coming from the
Supervisory-Control layer and feedback signals coming from the Energy Supervisor, Energy Es-
timator, Passivity Layer, Loop Control, and the Robot. The Energy Estimator provides energy
budgets to the Passivity Layer’s energy tank and also forwards the setpoint. The Passivity Layer
provides a passive connection to Loop Control. The three components communicate the fol-
lowing input and output signals:
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• Command signals (using the control interface):

– setpoint contains the setpoint generated by the Setpoint Generator and is sent to
the Energy Estimator. The Energy Estimator forwards this exact same signal to the
Passivity Layer. setpoint is intended to control/steer the Loop Controller.

– setpointpas is a possibly attenuated version of the original setpoint signal intended
to enforce passivity of the sequence-control layer. setpointpas is outputted by the
Passivity Layer to the Loop-Control layer.

• Feedback signals (using the control interface):

– loopstate contains physical variables of the Loop-Control layer and is transmitted
from the Loop-Control layer to both the Passivity Layer and the Setpoint Generator.

– robotstate contains physical variables of the Robot and is transmitted from the Loop-
Control layer to the Energy Estimator and Setpoint Generator. The Loop-Control
layer obtains robotstate from its power-continuous connection with the Robot.

– loopstate,est and robotstate,est are model-based estimations of loopstate and robotstate,
respectively, and are provided by the Energy Estimator (explained in Section 4.1.5)
to the Setpoint Generator.

• Energy signals (using the energy interface):

– loopenergetic contains the Loop-Control layer’s energetic state communicated via the
Energy Supervisor to the Setpoint Generator.

– budget contains an energy budget estimated by the Energy Estimator for the Passiv-
ity Layer’s energy tank.

– tank contains the energy state of the Passivity Layer’s energy tank (recall
from Section 4.1.1 that an energy-interface signal always comprises the full ar-
ray of energy variables). tank is outputted by the Passivity Layer to the Setpoint
Generator and to the Energy Supervisor.

• Other signals:

– task and state represent control signals between the Setpoint Generator and
Supervisory-Control layer.

– sensors is a feedback signal from the Robot to the Setpoint Generator that can con-
tain any sensor data, possibly from multiple sensors (e.g. from cameras, lasers,
IMUs, GPSes, etc.).

In the detailed design shown in Figure 4.3 and other design diagrams that follow in the re-
mainder of this chapter, necessary signals—those that make up the bare minimum for imple-
menting an energy-aware Sequence-Control layer—are highlighted by larger arrows with bold
font names2. The other signals are of varying importance, but not considered absolutely ne-
cessary in the implementation of an energy-aware Sequence-Control layer. This distinction
between necessary and unnecessary signals provides a guide (for developers) on which signals
to focus on. It is important to take note that the designs shown in this chapter do not restrict
the addition of new signals in future work, as long as they comply to the interfaces presented
in Section 4.1.1.

Below follow explanations on component functionalities and on all signals, including explan-
ations on why certain signals are deemed necessary and others are not. First, the Setpoint
Generator and its signals are described in Section 4.1.4, followed by the Energy Estimator
in Section 4.1.5, and then the Passivity Layer in Section 4.1.6.

2Not to be confused with bold-font notations of (mathematical) symbols used to indicate vectors and matrices.
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4.1.4 Setpoint Generator Design

The Setpoint Generator’s design is to satisfy Design Requirement 5. In Section 1.1, it is stated
that “energy awareness means to plan and perform actions taking into account a system’s en-
ergetic state”. Accordingly, the Setpoint Generator is designed to output setpoints taking into
account the system’s energetic state by assessing the input energy signals tank and loopenergetic.
The setpoints outputted by the Setpoint Generator are to steer the Loop Controller to a certain
target. This target is communicated via the task signal coming from the Supervisory Controller.
It is the Setpoint Generator’s responsibility to output setpoints that make the Loop Controller
reach its targets, that is, it should output the setpoints along a feasible trajectory towards the
target. This is illustrated in Figure 4.4.

current state

t r a j e c t o r y

target statesetpoint

Figure 4.4: The Setpoint Generator commands setpoints along a trajectory to steer the Loop Controller
from its current state towards a target state.

From the description above, two main operations can be distinguished for the Setpoint Gen-
erator: energy assessment and trajectory planning. These two operations are included in the
Setpoint Generator design in the form of the Energy Assessing and Trajectory Planning blocks,
as shown in Figure 4.5. The designed Setpoint Generator provides energy-guided control; it as-
sesses energy states of the control system and adapts its trajectory planning and setpoint gener-
ation accordingly. Important to keep in mind is that subsequent setpoints must be amplitude-
continuous (Design Requirement 5) and contained by at least one of the four physical variables
e, p , f , and q .

Sequence Control

Trajectory
Planning

Setpoint Generator

Energy
Assessing

setpoint

task

tankloopenergetic

state

assessment

robotstate

sensors

loopstate,est

robotstate,est

command

energy

Legend

feedback

other

loopstate

Figure 4.5: Setpoint Generator design consisting of an Energy Assessing block and a Trajectory Planning
block.

The Energy Assessing block is used to assess energy states within the control system. To this
end, it receives energy signals loopenergetic and tank, assesses them, and forwards the assess-
ment result (assessment) to the Trajectory Planning block. Depending on implementation, the
Energy Assessing block can perform, for example, energy tank monitoring, fault and error de-
tections (as described in Section 3.4), or detection and identification of physical interactions.

The Trajectory Planning block receives and processes all of the non-energy feedback signals
and, based on these inputs, plans a trajectory and outputs setpoints along it. Situations may
occur in which the Trajectory Planning block, through the Energy Assessment block, finds that
problems occur along a certain trajectory. The Trajectory Planning block should then be able
to divert onto an alternative trajectory in a new attempt to reach the target.
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Necessary Implementation Signals

The Sequence-Control layer’s commanded output, setpoint, is deemed necessary for the imple-
mentation of energy-aware sequence control following Design Requirement 5. Another signal
deemed necessary is the assessment signal, because energy-aware trajectory planning is not
achieved without it.

Under the assumption that a Loop Controller will reach its commanded setpoints, it is pos-
sible to develop a Setpoint Generator that generates setpoints regardless of control-feedback
signals. Therefore, the control-feedback signals to the Setpoint Generator (loopstate, robotstate,
loopstate,est, and robotstate,est) are not deemed absolutely necessary for implementing energy-
aware Sequence Control. Despite not being absolutely necessary by design, the state signals
loopstate, and robotstate can be important feedback signals to base setpoint generation on, de-
pending on implementation. The estimated signals loopstate,est and robotstate,est are supple-
mentary feedback signals that have simply been added because they exist in the Energy Estim-
ator. They may be implemented if desired.

Two energy signals are available to achieve energy awareness with: loopenergetic and tank. The
bare minimum to achieve energy awareness in the Sequence-Control layer is to implement
only one of these two signals. tank contains the state of the Passivity Layer’s energy tank and
is available by definition of the Sequence-Control layer’s design. loopenergetic contains the en-
ergetic state of the loop controller, but may not be available depending on the loop controller’s
implementation. Because at least one of the two energy-feedback signals is required to enable
energy awareness and availability can be guaranteed for tank and not for loopenergetic, tank is
deemed necessary and loopenergetic is not. This also attributes to the independence property of
the Sequence-Control layer (Design Requirement 1). Nevertheless, loopenergetic is considered
an important feedback signal for assessing system energy properties closer related to the phys-
ical world and should be implemented if possible.

Other signals sensors, task and state are not deemed necessary in the implementation of
energy-aware Sequence Control. The sensors feedback signal (not to be confused with feed-
back from the Robot to Loop-Control) is not necessary, because it is an optional signal that can
be implemented in case sensor data is available. The signals task and state from and to the
Supervisory-Control layer are unnecessary, because the Sequence-Control layer is designed to
be independently functional (in accordance with Design Requirement 1), i.e. it can be imple-
mented in a control system without higher control layers. Note that from the Supervisory-
Control layer’s perspective (if it would be present in the implementation), the task signal is
necessary and the state signal may be necessary, depending on feedback requirements.

4.1.5 Energy Estimator Design

The Energy Estimator is inspired from the energy estimation block by Brodskiy (2014). Accord-
ingly, it consists of real-time models of the Loop-Control layer, the Robot, and the Environment
to determine model-based energy budgets for the Passivity Layer’s energy tank. These energy
budgets are an estimation of the amount of energy that the Loop-Control layer will require
for the commanded setpoint signal. The energy estimator by Brodskiy (2014) obtained energy
budgets from the amount of energy consumed (or extracted) by the Model of Robot. However,
since the sequence-control layer commands a loop controller rather than a robot, the energy
estimator here obtains its energy budgets from the amount of energy that the Model of Loop
Control consumes to reach its setpoint. Note that this energy consumption also includes the
amount of energy consumed by the Model of Robot and the Model of Environment. Figure 4.6
shows this in more detail.

Calculated energy budgets are sent to the Passivity Layer through energy-signal budget. Along-
side budget, the Energy Estimator forwards necessary signal setpoint to the Passivity Layer. It

Eddo Hobert University of Twente



CHAPTER 4. DESIGN AND IMPLEMENTATION 29
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Figure 4.6: Energy Estimator design inspired by Brodskiy (2014) and consisting of a Model of Loop Con-
trol block, a Model of Robot block, a Model of Environment block, and an Energy Sampling block.

is important that budget and setpoint are two matching signals, i.e. that the energy budget has
been estimated for that specific setpoint. This is why both should be sent at the same time
by the Energy Estimator to the Passivity Layer. This means that if the Energy Estimator takes
some time to estimate an Energy Budget and in the meantime a new setpoint has arrived, the
Energy Estimator should wait with outputting the previous setpoint until its corresponding en-
ergy budget is ready. The Energy Estimator must not adjust setpoint, because the designed
purpose is to only use setpoint as input and forward it together with a matching budget signal.

Figure 4.6 shows where the Energy Estimator’s output feedback signals loopstate,est and
robotstate,est (mentioned in Section 4.1.4) originate from. They are produced by the Model
of Loop Control and Model of Robot blocks, respectively. Note that if the Loop-Control layer’s
source code is available, the Loop-Control layer can be accurately modelled by the Model
of Loop Control block. Accurate modelling is important, because Brodskiy (2014) identified
that inaccurate energy-budget estimations have a negative impact on system performance.
Therefore, when implementing an Energy Estimator, during any trade-off involving accur-
acy, the importance of accurate budget estimations (and, hence, accurate models) for system
performance should be kept in mind (Design Requirement 6b). To this end, as models are in-
advertently imperfect, Model of Robot receives control-feedback signal robotstate to counteract
dynamic discrepancies between it and the real-world robot, i.e. to keep the Model of Robot
synchronised with the physical robot.

Necessary Implementation Signals

Besides the necessary control-command signal, setpoint, the Energy Estimator receives
synchronisation-signal robotstate, as explained above. Since an Energy Estimator could be
developed without considering synchronisation, robotstate is not deemed absolutely necessary
in the implementation of energy-aware sequence control.

Based on signals setpoint and loopstate,est, the Energy Sampling block calculates an energy
budget for the Passivity Layer’s energy tank. Energy budgets are computed with Equation 3.5
and sent via energy-signal budget. This signal is deemed necessary, because the Passivity Layer
cannot function without energy being provided to its energy tank. Since budget is necessary
and depends on signals setpoint and loopstate,est, it is necessary to send the latter two signals to
the Energy Sampling block in the implementation of an energy-aware Sequence-Control layer.
However, despite being necessary internally, loopstate,est is not necessary as an output signal of
the Energy Estimator, as explained in Section 4.1.4.

Robotics and Mechatronics Eddo Hobert



30 Integrating Energy Awareness into Sequence Control

Because the Model of Loop Control’s output, loopstate,est, is a necessary signal to the Energy
Sampling block and the behaviour of the Model of Loop Control depends on the behaviour of
the Model of Robot, the interaction between these two blocks is also necessary. Hence, the
signals loopstate,est and robotstate,est in between the Model of Loop Control and Model of Ro-
bot blocks are necessary in the implementation of energy-aware sequence control. It is pos-
sible to develop a Model of Robot without considering its environment, i.e. without a Model of
Environment. Therefore, the signals robotstate,est and envstate,est are not considered absolutely
necessary in the implementation of energy-aware sequence control.

4.1.6 Passivity Layer Design

Like the Energy Estimator presented in Section 4.1.5, the Passivity Layer is also inspired by the
work of Brodskiy (2014) (Design Requirement 6ai). The Passivity Layer consists of an Energy
Tank block, a Passive Zero-Order Hold (ZOH) block, and an Energy Sampling block, as shown
in Figure 4.7. Brodskiy (2014) also included an Energy Transfer block in the Passivity Layer
design, but since its only purpose here would be to add energy budgets to the energy tank, this
functionality is included in the Energy Tank block. Encouraging reuse in the implementation
(Design Requirement 1); the same Energy Sampling block can be implemented in the Passivity
Layer of Figure 4.7 and the Energy Estimator of Figure 4.6.

loopstate

Sequence Control

Energy
Sampling

Passivity Layer

Energy
Tank

Passive
ZOH

setpointpassetpoint

tank

sampled

budget

command

energy

Legend

feedback

Figure 4.7: Passivity Layer design inspired by Brodskiy (2014), consisting of a Passive Zero-Order Hold
(ZOH) block, an Energy Sampling block, and an Energy Tank block.

The Passivity Layer enforces passivity of the Sequence-Control layer by making sure the energy-
tank level remains positive. This is achieved by the Passive ZOH block, which modulates the
setpoint signal if need be. It estimates the amount of energy required for the upcoming sample
interval [tk , tk+1] (see Figure 3.3) and, if this energy estimate exceeds the current energy-tank
level, attenuates the setpoint accordingly.

The energy-tank level estimated3 for the next sample time (E∗
tank,k+1) is calculated as a function

of the current energy-tank level (Etank,k ) and the estimated amount of energy required by the
Loop-Control layer during the upcoming sample interval (∆E∗

req,k+1):

E∗
tank,k+1 = Etank,k −∆E∗

req,k+1 . (4.1)

This is a ‘pessimistic’ energy tank estimation as it excludes energy-budget supply, i.e. assumes
a worst-case energy budget of 0 J. Using a pessimistic approach reduces the chance of breaking

3An asterisk (*) is used to mark variables that are estimated.
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passivity due to uncertainty in the value estimation of∆E∗
req,k+1. By taking Equation 3.5 and us-

ing a sample interval of [tk , tk+1] instead of [tk−1, tk ], the estimated required energy exchange,
∆E∗

req,k+1, can be estimated with physical-variable estimations (e∗
k+1, p∗

k+1, f ∗
k+1, or q∗

k+1). Es-
timation of physical variables is left up to the developer and could, for example, be based on a
first-, or higher-order approximation.

Equation 4.1 shows that estimated energy-tank level, E∗
tank,k+1, is lower than Etank,k if the energy

estimated to be required by the Loop Control layer, ∆E∗
req,k+1, has a positive value. It is import-

ant to note that Equation 3.5 does not exclude the possibility of ∆E∗
req,k+1 having a negative

value. This would occur when the command and feedback variables are of opposing signs. In
such a case, the Loop-Control layer would return energy into the Passivity Layer’s energy tank,
leading to an increase—rather than a decrease—of Etank in Equation 4.1.

Depending on the amount of energy that is estimated to remain in the the energy tank,
E∗

tank,k+1, the Passive ZOH block either outputs the original setpoint command, setpoint, or
an an attenuated version of it, setpointatt:

setpointpas,k =
{

setpointk E∗
tank,k+1 ≥ 0

setpointatt,k E∗
tank,k+1 < 0

. (4.2)

The attenuated setpoint command, setpointatt, is defined by Equation B.4 in such a way
that Equation 4.1 results in E∗

tank,k+1 = 0 if Etank,k > 0 or in E∗
tank,k+1 = Etank,k if Etank,k ≤ 0.

The Energy Sampling block calculates the real exchanged energy by sampling the control
signals setpointpas and loopstate using Equation 3.5. It writes the sampled energy to the En-
ergy Tank block through energy-signal sampled. The Energy Tank block calculates the energy
tank’s level by adding the energy budget provided by energy-signal budget and subtracting the
sampled energy provided by sampled.

Necessary Implementation Signals

As is explained in Sections 4.1.4 and 4.1.5, the signals setpoint and budget are necessary for
the implementation of an energy-aware Sequence-Control layer. Since budget is directly de-
pendent on energy-signal sampled, sampled is necessary as well. Also treated in Section 4.1.4
is energy-signal tank, which contains the energetic state of the energy tank. It is sent to the
Setpoint Generator and to the Energy Supervisor. As explained in Section 4.1.4, the branch of
tank that is sent to the Setpoint Generator is a necessary signal. On the other hand, the branch
of tank that is sent to the Energy Supervisor is not necessarily implemented in energy-aware
Sequence Control, because Sequence Control itself can function without this output signal.
However, given that tank is the only energy output from the Sequence-Control layer to the En-
ergy Supervisor and the Energy Supervisor is to supervise all control layers, tank is a necessary
signal if an Energy Supervisor is implemented.

The Passivity Layer communicates two more signals: command-signal setpointpas (written to
the Loop-Control layer) and state-feedback signal loopstate (read from the Loop-Control layer).
Both are considered necessary in implementing energy-aware Sequence Control, because the
Passivity Layer uses them to calculate the amount of energy it exchanges with the Loop-Control
layer with. Both signals are used to satisfy Design Requirement 6 and setpointpas is also used to
satisfy Design Requirement 5.
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4.2 Conceptual Implementation of an Energy-aware Sequence-Control Layer

In line with the implementation requirements posed in Section 3.5.2, this section presents
a conceptual implementation of the energy-aware sequence-control layer design presen-
ted in Section 4.1. The implementation serves a proof of concept. It is intended to form
a basis on implementing energy-aware sequence control rather than being a fully finished
implementation with extensive functionalities. Throughout the implementation, good pro-
gramming practises presented by Deitel and Deitel (2017) have been followed to comply to
Design Requirement 1.

This section starts by explaining the loop controller and robot that have been implemented and
the implications they pose on the sequence-control implementation. Then, forming the basis
of the sequence-control implementation, an explanation on the implemented control- and en-
ergy interfaces is given. Hereafter, the overall functionality of the sequence-control layer is
described, followed by detailed explanations on the implemented setpoint generator, energy
estimator, and passivity layer components.

4.2.1 Loop Control and Robot

Implementation Requirement 3 specifies that “the implementation of an energy-aware
sequence-control layer should show improved system-level properties resulting from en-
ergy awareness”. System-level properties, according to Section 3.1, “are properties at the
system level, i.e. of the full control system (shown in Figure 2.2) consisting of embedded
control software, input/output hardware, and the plant”. Therefore, the implementation of a
sequence-control layer needs to be connected to a loop-control layer and plant (robot plus
environment). Hence, a loop controller and robot are required to connect the sequence-
control layer to. Since their development is out of this project’s scope, they should be reused
(Design Requirement 1) from another project.

Development of an energy-aware loop-control layer by RaM in the RobMoSys project (men-
tioned in Section 2.4) has not yet fully finished, so that specific loop controller is unavailable.
Recently, Lazar (2019) developed a loop-control layer for haptic telemanipulation of a robotic
arm. The setup comprises a real-world master robot-arm in open space and a slave robot-arm
with a virtual wall in a simulation environment. Because this robotic setup can be used in fu-
ture work of RaM and the code and documentation are readily available, it is taken as a starting
point for the project treated in this thesis.

Ideally, a physical real-world robot and environment would be implemented. However, due to
current government restrictions intended to limit the spread of COVID-194, access to physical
robots at the university’s labs is denied. Therefore, the robot is implemented in simulation.
Hence, the robot-arm simulation and according slave loop controller by Lazar (2019) are used
in this project. By using a robot-arm simulation, Implementation Requirements 4 and 5 are
satisfied.

Because the loop controller was implemented in C++ and connected to the robot with ROS5

middleware, and the robot was simulated in Gazebo6, the same software is used in this project.
Hence, the sequence-control layer is written in C++. Note that ROS does not provide real-time
guarantees, so Implementation Requirement 1 is not satisfied. This should, however, not result
in problems, because the loop controller (which has more strict real-time requirements than
sequence control) and robot already proved to form a working system with ROS in the project
of Lazar (2019). On the plus side, ROS is a widely used and supported framework in robotic
applications, in line with Design Requirement 1.

4World Health Organisation web page on COVID-19: https://www.who.int/health-topics/coronavirus/
5ROS website: https://www.ros.org/
6Gazebo website: http://gazebosim.org/
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The robot consists of a simulated KUKA LWR 4+ robotic arm in an open space simulation en-
vironment including a virtual wall. This corresponds to fault scenario I, Unexpected Obstacle,
presented in Figure 3.6. As this scenario is readily available, it is reused in this project to satisfy
Design Requirement 5a. The robot itself stands on a base and a side view of the setup is shown
in Figure 4.8.

Wall

Base

Open space

End effector

Figure 4.8: Side view of the simulated KUKA LWR 4+ robotic arm and its environment.

The loop controller controls the robot through a virtual spring attached between the setpoint
and the robot’s end-effector as illustrated in Figure D.1. The implemented loop controller can
output an end-effector wrench vector or a joint-forces vector, either way corresponding to a
generalised force (effort, e) type output. As input, the loop controller takes an H-matrix that
describes the setpoint (sp) for the robot end-effector pose (position plus orientation) with re-
spect to the robot’s inertial reference frame, H 0

sp. The implication is that the sequence-control
implementation should output this H-matrix to the loop controller. The loop controller used
in this project does not contain energy guards or passivity layers and is not energy-aware. This
is kept as is, because loop-control development is not in the scope of this project. Passivity and
energy awareness are thus solely left up to the sequence controller.

In order to integrate energy awareness, the loop controller has been adapted to send potential-
and kinetic energy to the sequence controller. The potential energy corresponds to the elastic
energy contained by the virtual spring. The kinetic energy corresponds to the robot’s kinetic
energy. Diverting from the top-level design shown in Figure 4.2, but conform to the interface
design presented in Section 4.1.1, these energies are sent directly from the loop-control layer to
the sequence-control layer. This is done, because an energy supervisor—which should perform
the task of energy transmissions and distributions between control layers—has not yet been
developed. Hence, the implementation in this project does not contain, but allows adaptation
to, an energy supervisor (Design Requirement 8a).

4.2.2 Interfaces

At the basis of the energy-aware sequence control implementation stand the control interface
and the energy interface presented in Sections 3.2 and 4.1.1. They have been implemented as
abstract classes and are used to communicate signals between components. A UML class dia-
gram representation of how these interfaces have been implemented is shown in Figure 4.9.
The ‘Sequence Controller’ top class in Figure 4.9 has been implemented to cover the 5Cs-
concern of coordination (Design Requirement 1) over the sequence-control components, i.e.
coordinate their life cycles and execution sequences. In accordance with the sequence-control
layer’s detailed design shown in Figure 4.3, each sequence-control component establishes both
the control interface and the energy interface. Information on the private (-) port variables and
the protected (#) and public (+) port functions shown in Figure 4.9 is given in Section D.2.

All getter functions have been applied such that they retrieve a port variable’s value and then
reset that value to zero (except for H-matrices, which are reset to identity), like leaving an empty
mailbox after getting the mail. This is a safety feature for communication losses and prevents a
port variable’s value from repeatedly being read while not being updated. The interface warns
the user when a component reads an empty port variable.
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Figure 4.9: UML class diagram describing the implemented interfaces. Port variables are private (-) and
functions are either public (+) or protected (#).

Control Interface

Figure 4.10 illustrates how the implemented control interface functions by showing an ex-
ample component that incorporates the control interface. An explanation on the interpretation
of Figure 4.10 through a practical example is given in Section D.2.1.
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# getInputCommand()

# setOutputFeedback() # getInputFeedback()

# setOutputCommand()+ setInputCommand()

+ getOutputFeedback()

+ getOutputCommand()

+ setInputFeedback()
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 - inputCommand - outputCommand

- inputFeedback

<<Interface>>
Control

Component

Figure 4.10: Illustration of the functionalities that the control interface provides to a component. The
interface provides pre-defined functions to communicate any of the four variables of state (which can
contain any of the quantities listed in Tables A.1 and A.2) between components. It provides 4 public (+)
port functions, 4 protected (#) port functions, and 4 private (-) port variables.

For enabling signals to contain the four physical variables (e, p , f , and q), a signal type
called ControlSignal has been defined as shown in Listing 4.1. The subtypes eType,
pType, fType, and qType—that ControlSignal consists of—are defined in Listing D.1 and
provide specific vector and matrix types for the physical quantities listed in Tables A.1 and A.2.
This is to facilitate a physics-conformal connection of components. The port variables
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shown in Figure 4.10 are of type ControlSignal, the get-functions return a signal of
type ControlSignal, and the set-function only accept an argument that is of type
ControlSignal.

Listing 4.1: Definition of the control-signal type belonging to the control interface written in C++ . The
control-signal type is based on the four physical variable type definitions in Listing D.1.

1 // Control signal comprising the four physical variables
2 struct ControlSignal {
3 eType e;
4 pType p;
5 fType f;
6 qType q;
7 };

In line with the interface design explanation in Section 4.1.1, the control interface allows for the
use of any and multiple of the physical variables (e, p , f , and q) without validity checks. There-
fore, a developer requires basic understanding of the physics concepts explained in Section 2.3
to make correct and physics-conformal use of the control interface.

Energy Interface

The principles of private port variables with public and protected port getters and setters, that
have been described above for the control interface, also apply to the energy interface illus-
trated in Figure 4.11.

A
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# getInputEnergy() # setOutputEnergy()+ setInputEnergy() + getOutputEnergy()

 - inputEnergy

<<Interface>>
Energy

Component
 - outputEnergy

Figure 4.11: Illustration of the functionalities that the energy interface provides to a component. The
interface provides pre-defined functions to communicate the seven energy variables show in Table 3.2
between components. It provides 2 public (+) port functions, 2 protected (#) port functions, and 2
private (-) port variables.

A main difference between the control interface and the energy interface is the type of signal
being communicated. Whereas the control interface allows the transmission of physical quant-
ities in the form of vectors/matrices, the energy interface interface allows the transmission of
multiple scalar energy values as shown in Listing 4.2.
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Listing 4.2: Definition of the energy-signal type belonging to the energy interface written in C++. The
energy-signal type contains the energies listed in Table 3.2.

1 // Energy signal comprising 7 energy variables
2 struct EnergySignal {
3 double Etransfer{ 0.0 };
4 double Etank{ 0.0 };
5 double Ekinetic{ 0.0 };
6 double Epotential{ 0.0 };
7 double Eelastic{ 0.0 };
8 double Egravtitational{ 0.0 };
9 double Etotal{ 0.0 };

10 };

4.2.3 Top-level Implementation of the Sequence-control Layer

Using the interfaces described in Section 4.2.2, the signals shown in Figure 4.12 have been im-
plemented. These signals are in line with the necessary/unnecessary signal explanations given
in Section 4.1. Since the implementation serves only as a proof of concept, the components
have been implemented in a basic form and many of the unnecessary signals have not been
included. Regarding unnecessary signals that have been included, the task signal has been in-
cluded to satisfy Design Requirement 2 and the robotstate signal has been included to support
a specific energy estimator implementation (explained in Section 4.2.6).
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Embedded
Control
Software

setpointpas
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robotstate

setpoint

loopenergetic

tank

budget

Energy
Estimator
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energy

Legend

feedback

other

Supervisory
Control

Figure 4.12: Implemented signals of Figure 4.3. Signal task contains a target H-matrix (H 0
target) and sig-

nal setpoint contains a setpoint H-matrix (H 0
sp).

In Section 4.2.1, it is stated that “as input, the loop controller takes an H-matrix that describes
the setpoint (sp) for the robot end-effector pose (position plus orientation) with respect to the
robot’s inertial reference frame, H 0

sp”. The implication of this is that signal setpointpas needs to
contain this H-matrix. Therefore, the setpoints produced in the sequence-control layer have
been implemented in the form of H-matrices (i.e. generalised displacements that fall under
qType in Listing 4.1).

To illustrate the implemented transmission sequence of the signals in Figure 4.12, a sequence
diagram is shown in Figure 4.13. The sequence of interactions loops at a fixed frequency. Note
that the control sequence needs to loop, because the signals are interdependent, i.e. the com-
mand and feedback signals used in one control iteration are needed to calculate those in the
next iteration.
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Figure 4.13: Sequence diagram showing the order in which the implemented interactions of Figure 4.12
take place during each control cycle. The cycle loops at a fixed frequency for as long the simulation is
active.

Below follow explanations on the specific implementations of each of the components;
supervisory controller (Section 4.2.4), setpoint generator (Section 4.2.5), energy estimator
(Section 4.2.6), and passivity layer (Section 4.2.7).

4.2.4 Supervisory Controller

As can be seen from Figures 4.12 and 4.13, the implementation also includes a supervisory con-
troller that writes a command signal, task, to the setpoint generator and receives a feedback
signal, robotstate, from the loop controller. In line with the implementation of the sequence-
control layer, the supervisory controller’s output signal, task, has also been implemented to
contain an H-matrix. This H-matrix describes a target pose of the robot’s end effector with re-
spect to the robot’s inertial reference frame (H 0

target). In turn, the setpoint generator’s output

signal, setpoint, contains a setpoint (sp) H-matrix, H 0
sp, placed on a trajectory towards H 0

target.
An example configuration of body-fixed and commanded frames is given in Figure 4.14.
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Figure 4.14: Extension of Figure D.1: illustrative placement of the inertial origin frame Ψ0, robot end-
effector frame Ψee, setpoint frame Ψsp, and the target frame Ψtarget. A virtual spring modelled by the
loop controller connects the robot end effector to the setpoint commanded by the sequence controller.
The setpoint is placed on a trajectory towards the target commanded by the supervisory controller.

The supervisory controller has been implemented in line with Design Requirement 2. Because
development of a supervisory controller has no priority in this project, it has been implemen-
ted as a simple state machine that switches its output between two task targets, as shown
in Figure 4.15a. It reads and assesses the robotstate signal to see if the robot has reached a target
before switching to the other target. The two targets are placed on either side of the virtual wall
to obtain fault scenario I: Unexpected Obstacle on the path between the two targets, as shown
in Figure 4.15b. For ease of implementation and demonstration, the targets only changes posi-
tion along the x-axis. Orientation is kept unchanged. Numerical details are given in Section D.3.
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Target
B

B reached

A reached

Target
A

(a) State machine describing the supervisory con-
troller’s output state.

AB

(b) Simulation top view of targets A and B outputted
by the supervisory controller.

Figure 4.15: The supervisory controller’s output switches between targets A and B. When the robot
reaches a target, the supervisory controller switches its output from one target to the other.

4.2.5 Setpoint Generator

The main operations performed in each sequence-control component are presented in flow-
charts. The flowcharts are looped together to indicate that execution of the sequence-control
layer is repetitive. Connectors are used to link individual flowcharts to one another. Note: the
flowcharts and component descriptions that follow below assume knowledge of design choices
that are explained in Section 4.1.

The first flowchart is shown in Figure 4.16 and represents the start of the simulation. It serves
as an initialisation and is executed only once. A boolean called obstacle (used in Figure 4.17)
is initialised to false and a boolean called budgetGen (used in Figure 4.19) is read as in-
put from the user. budgetGen stands for simulation type ‘budget generation’ (explained
in Section 4.2.6) and is the only available user input, covering the 5Cs-concern of Configura-
tion (Design Requirement 1).

Start Initialise
obstacle = false

Read
budgetGen S

Figure 4.16: Flowchart 1/5: start of the simulation. Connector ‘S’ links to the setpoint generator flow-
chart in Figure 4.17.

As indicated by the sequence diagram in Figure 4.13, the first active sequence-control compon-
ent is the setpoint generator. The implementation of this component is in line with its design
shown in Figure 4.5 and the implemented signals shown in Figure 4.12. The main functionalit-
ies of this component are illustrated by the flowchart in Figure 4.17.
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Figure 4.17: Flowchart 2/5: setpoint generator main functionalities. Connector ‘E’ links to the energy
estimator flowchart in Figure 4.19.

The implemented setpoint generator outputs setpoints that move towards the received tar-
get in a straight line trajectory. Because fault scenario I: Unexpected Obstacle is implemen-
ted (Section 4.2.1, Implementation Requirement 6a), the setpoint generator has been imple-
mented with obstacle detection functionality. Obstacle detection is performed by comparing
the loop-control feedback energies to a list of conditions that are encapsulated by the ‘Eloop

> Eloop,th’ statement in Figure 4.17 (where ‘th’ stands for threshold). If the setpoint generator
detects an obstacle, it sends a warning to the user and performs an alternative trajectory in an
attempt to move around the obstacle. This process is illustrated in Figure 4.18. The implemen-
ted alternative trajectory consists of three stages:

x1. Moving backwards 2/3rd of the way towards the starting position of the original trajectory
while maintaining an amplitude-continuous signal (Design Requirement 5). Since the
robot has already traversed this path prior to the collision, it should be possible to move
back the same way. 2/3rd of the way back is taken as an estimate, assuming that the robot
has cleared the obstacle with sufficient distance to be moving around again.

x2. Moving towards the base of the robot, to 2/3rd of the initial configuration height. Since
the robot is mounted to a base, it is expected that the robot can move towards it. Of
course, there are situations imaginable where there is another obstacle in between, but
this project’s implementation only serves as a simple proof of concept. 2/3rd of the height
is taken, because completely moving to the initial configuration—in which the robot arm
stretches out straight up—would unnecessarily consume more energy.

x3. Attempting to reach the target again by moving from the position at the base towards the
target.
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Figure 4.18: Top view of the implemented collision correction approach. When a collision is detected
the following correction is attempted: x1) move 2/3rd of the way back to A, x2) move to the base, x3)
move to the target (B).

Upon reaching any trajectory (sub)target, the setpoint generator briefly waits before moving
its setpoints towards the next target. The reason for this is to have the robot—which lags be-
hind the setpoint—more closely reach the (sub)target. Since the supervisory controller’s com-
manded targets only change positions, the setpoint generator in this project has also been im-
plemented for translational setpoints. It uses the xyz-coordinates of a commanded H-matrix
and disregards rotations.

Under normal circumstances, the setpoint generator outputs its H-matrix setpoints at a pre-
set speed (which, given a fixed loop frequency, equates to a pre-set distance between sub-
sequent setpoints). However, when the passivity layer’s energy-tank level gets below a certain
threshold, the setpoint generator lowers the setpoint speed proportionally to the energy-tank
level (the lower the energy-tank level, the lower the setpoint speed). This is done, because
from Equation A.3 it can be seen that a lower setpoint speed (corresponding to a lower velo-
city/flow) reduces the amount of energy extracted from the sequence controller, thereby coun-
teracting full depletion of the energy tank. Note that this is a redundant measure if the energy
estimator provides fully accurate energy budgets to the passivity layer’s energy tank.

A safety feature implemented in the setpoint generator is that it sets the setpoint speed to zero
if it detects a communication loss with the loop controller. A communication loss is assumed if
all of loop control’s feedback signals are exactly equal to those during the previous control iter-
ation. Note that safety features such as this one need to be included by the software developer
as they are not enforced by the control architecture itself.

4.2.6 Energy Estimator

From the sequence diagram in Figure 4.13, it can be seen that the energy estimator is act-
ive after the setpoint generator. Even though Brodskiy (2014) presented an energy estimator
design, no readily available energy estimator implementation for the given robot has been
found. Therefore, a new energy estimator implementation needed to be developed. The en-
ergy estimator component has been implemented in line with the implemented signals shown
in Figure 4.12 and in line with—but with an alternative take on—its design shown in Figure 4.6.

In Section 4.1.5 it is stated that “when implementing an energy estimator, during any trade-
off involving accuracy, the importance of accurate budget estimations (and, hence, accurate
models) for system performance should be kept in mind (Design Requirement 6b)”. However,
the implementation of this project serves as a basic proof of concept for the overall sequence-
control layer. Therefore, it is not in the scope of this project to develop highly-accurate com-
ponent models for the energy estimator. Nevertheless, energy-budget estimations of sufficient
accuracy are needed to mitigate the negative effect of inaccurate energy-budgets on system
performance, i.e. to not compromise Implementation Requirement 3.
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One alternative possibility would be to run a reference simulation parallel to the normal sim-
ulation, i.e. a ‘perfect world’ reference simulation—without virtual wall—for the energy estim-
ator to extract energy data from. This approach has been attempted, but implementing two
parallel simulations in Gazebo that exchange information with each other through ROS was
found to be a challenging task infeasible within the scope of this project. Instead, a solution
that makes use of two serial simulations has been implemented (execution instructions are
given in Appendix E):

1. The budget-generation simulation establishes energy budgets that are needed during
the normal simulation. The budget-generation simulation comprises a perfect-world
reference simulation (i.e. without virtual wall) with unlimited available energy. Each
control iteration, the amount of energy extracted from the passivity layer by the loop
controller is written on a new row in a log file, logE. The logged energy values serve as en-
ergy budgets in the normal simulation. The H-matrix describing the robot’s end-effector
pose with respect to the inertial frame (contained by the robotstate signal) is also written
to a log file (in CSV-format), logH. The logged H-matrices are used for comparison to the
robot’s H-matrix during the normal simulation.

2. The normal simulation represents the realistic non-perfect world and can include the
virtual wall. It runs the ‘normal’ scenario in which the energy estimator provides en-
ergy budgets to the passivity layer that it reads from logE. To determine which specific
energy budget to extract from logE, the robot’s real pose (H-matrix) is compared to the
H-matrices in logH. The row index of the best-matching H-matrix is then taken as the
same row index in logE to read the energy budget from.

H-matrix matching is used to determine the most suitable energy budget during the normal
simulation, because this approach allows the provision of energy budgets based on the ac-
tual state of the robot. This is a dynamic approach, unlike energy-budget provisions based
on simulation time would be. If the setpoint generator would decide to output an alternat-
ive trajectory, energy estimation based on H-matrix matching will continue functioning (albeit
less accurately). More detailed explanations on the implemented H-matrix matching is given
in Section D.4.

The serial simulation approach is an alternative take on the energy estimator design
in Section 4.1.5 in the sense that it does not strictly consist of a Model of Loop Control,
Model of Robot, Model of Environment, and Energy Sampling blocks. It can be seen as running
an energy-sampled simulation consisting of those model blocks and storing the results in a
lookup table so that the lookup table itself represents the design in Section 4.1.5. This approach
is sufficient here, because it serves the project’s proof-of-concept purpose while complying to
the interfaces in the main architecture design of Figure 4.3. Nevertheless, future work should
more closely follow the energy-estimator design shown in Figure 4.6 and actually implement
computational component models.

The main functionalities of the energy estimator implemented in this project are illustrated by
the flowchart in Figure 4.19.

The variable Eestimated in the flowchart has been implemented as follows:

Eestimated = Erow +Eaverage

2
, (4.3)

in which Erow represents the energy value extracted from the best-matching row in logE and
Eaverage represents the average over all energies in logE. This equation effectively adds a con-
stant component (Eaverage) to the estimated energy budget without altering the total energy-
budget provision over a complete simulation (i.e. without compromising passivity). This has
been implemented, because it was empirically found to result in less passivity-layer triggers for
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Figure 4.19: Flowchart 3/5: energy estimator main operations. Connector ‘P’ links to the passivity layer
flowchart in Figure 4.20.

multiple types of trajectories. Eaverage corresponds to the average energy consumed by the loop
controller during a complete budget-generation simulation. Assuming that, during a budget-
generation simulation, the subsystem comprising of the loop controller, robot, and environ-
ment is passive (passive systems, by definition, do not generate energy), Eaverage, by definition,
has a positive value.

As indicated by the flowchart: if Eestimated < Emin, then Ebudget = Emin. Hence, a minimum
energy budget, Emin, has been implemented. For this project, it has been empirically set to a
relatively low value of 0.01 J. The purpose of Emin is twofold:

1) It prevents the energy budget from becoming negative so that the energy estimator can-
not extract energy from the passivity layer (the energy estimator’s purpose is to provide
energy, not consume it). The reason that energy values in logE can be negative is that
the robot can return energy into the controller when forces and velocities are in oppos-
ite direction. This can occur during deceleration, or during counteraction of movements
imposed by an active environment.

2) It prevents the energy budget from being equal to zero so that situations of stagnation
cannot occur. The reason that stagnation may occur when energy budgets of zero Joule
are allowed, is that it then becomes possible to have situations in which the energy
tank runs out of energy, the robot comes to a halt, and energy budgets of zero Joule are
provided. The result is then effectively a deadlock in which the robot cannot move due
to an empty energy tank, the energy tank waits for new energy budgets, and the energy
budgets are zero for as long as that position is maintained. Forcing a low, but non-zero,
energy budget removes the possibility of that deadlock.

The flowchart also indicates that the energy budget is set to zero if the setpoint velocity equals
zero: Ebudget = 0 if vsetpoint == 0. This is because the loop controller’s energy consumption,
by definition (Equation A.3), equals zero when the setpoint velocity is zero. Hence, no energy
budget should be needed in that case. This situation can, for example, occur if the setpoint gen-
erator incorporates moments of zero setpoint velocity during the performance of an alternative
(correction) trajectory, as is the case in this project.
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4.2.7 Passivity Layer

The sequence diagram of Figure 4.13 shows that the passivity layer is the last active sequence-
control component. The passivity layer has been implemented in line with its design shown
in Figure 4.7 and the implemented signals shown in Figure 4.12. Like its design, the passiv-
ity layer’s core functionality implementation has been inspired from available passivity layers
within the RaM research group (in line with Design Requirement 6ai). The main functionalities
of this component are illustrated by the flowchart in Figure 4.20.
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Figure 4.20: Flowchart 4/5: passivity layer main operations. Connector ‘X’ links to the simulation end
in Figure 4.21.

The passivity layer has been made compatible to the control- and energy interfaces described
in Sections 4.1.1 and 4.2.2. In line with the design presented in Section 4.1.6, Equation 3.5
is used to calculate energy exchanges and the setpoint is passively modulated follow-
ing Equation 4.2. The estimated required energy exchange in Equations 4.1 and B.4 is cal-
culated via estimation of the 4 physical variables (e∗

k+1, p∗
k+1, f ∗

k+1, or q∗
k+1). Estimation of

these variables is implemented as a first-order approximation, i.e. assuming that the rate of
change at sample time tk is equal at sample time tk+1:

x∗
k+1 = xk +

dxk

dtk
·dt∗k+1

= xk +
xk −xk−1

tk − tk−1
·dt∗k+1 .

(4.4)

dt∗k+1 = t∗k+1− tk represents the expected time difference between time samples k and k +1, i.e.
the period of the control frequency. x is used as a generic placeholder for any variable.

The passivity layer is implemented such that it accepts any of the combinations listed
in Table 3.1 in the form of variables from the mechanical domain listed in Table A.1 and from
screw theory listed in Table A.2. If multiple of such variables are provided, the implemented
passivity layer autonomously decides which ones to make use of. It sends warnings to the
user if incompatible combinations are used, for example an H-matrix command signal together
with a twist-feedback signal. This feature helps ensuring physics-conformity of the sequence-
control layer. Unlike the setpoint generator and energy estimator (which only function with
H-matrices), the implemented passivity layer is implementation-agnostic. It can be inserted in
any sequence-control system that satisfies the design requirements of Section 3.5.1.
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Figure 4.21 shows the flowchart that marks the end of a simulation iteration. This flowchart
connects back to the setpoint generator flowchart (Figure 4.17) for as long as the simulation
runs. The simulation terminates when the user commands it to.

End
Read

terminate
terminate ? true

X

S

false

Wait to satisfy
loop frequency

Figure 4.21: Flowchart 5/5: end of the simulation. Connector ‘S’ links to the setpoint generator flowchart
in Figure 4.17.

4.3 Conclusion

This chapter describes the design of an energy-aware sequence-control layer and its con-
ceptual implementation on the basis of the design and implementation requirements posed
in Section 3.5. The design serves as a architectural guide for the implementation of energy-
aware sequence control components. The implementation described in this chapter is concep-
tual and serves a proof of concept. It is a take on how the design could be implemented. The
sequence-control layer design and implementation consist of two interfaces and three com-
ponents: the control interface, the energy interface, the setpoint generator, the energy estim-
ator, and the passivity layer. The combination of these defines the full energy-aware sequence-
control layer’s functionality.

The setpoint generator outputs amplitude-continuous setpoint commands based on input
tasks from the supervisory-control layer and energy feedback. The energy estimator provides
energy budgets to the passivity layer’s energy tank. The passivity layer enforces a passive con-
nection between the sequence-control layer and the loop-control layer. The control signals
and energy signals are communicated using the control interface and the energy interface, re-
spectively. The system has been implemented in simulation and uses a virtual wall to achieve
Fault scenario I: Unexpected Obstacle (presented in Section 3.4).

The design requirements of Section 3.5.1 have all been satisfied. This does not hold true for
the implementation requirements of Section 3.5.2 as Implementation Requirement 1 has not
been satisfied due to ROS being non real-time. Yet, this should not result in problems, be-
cause the loop controller (which has more strict real-time requirements than sequence control)
and robot already proved to form a working system with ROS in the project of Lazar (2019).
Implementation Requirements 4, 5, and 6, on the other hand, have been satisfied and the
remaining implementation requirements, Implementation Requirements 2 and 3, are treated
in Chapter 5. Despite that not all implementation requirements are satisfied in this chapter, it
does indicate that the project’s subgoal of “designing and implementing the architecture of an
energy-aware sequence-control layer”, stated in Section 1.3, has been fulfilled.
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5 Evaluation

This chapter treats the project’s subgoal of “demonstrating improved system-level properties
through energy awareness”, stated in Section 1.3. Four different experiments on non-energy-
aware and energy-aware sequence control are treated. With the results of these experiments,
the design and implementation of the energy-aware sequence-control architecture presented
in Chapter 4 are evaluated on the basis of the system-level properties of safety, dependability,
and performance, following Implementation Requirements 2, 3 and 6.

5.1 Experiments

The experiments that have been conducted in this project serve a common purpose of demon-
strating system-level properties, such as energy awareness, of the sequence-control imple-
mentation (Implementation Requirements 3 and 6). Four experiments have been conducted,
each with the same duration and the same x-position targets (targets A and B, explained
in Section 4.2.4). The differences between the four experiments are in the form of simulation
types (i.e. ‘normal’ and ‘budget generation’, explained in Section 4.2.6), and environmental and
energy-budget conditions, as explained below:

1. Using a single energy budget – without wall
In the first experiment, the passivity layer’s energy tank starts at an initial level of 75 J. The
simulation runs without a virtual wall and the energy estimator does not output energy
budgets. 75 J has empirically been chosen as a starting level, because it leads to insightful
data where the energy tank runs out of energy before reaching target B. The objective of
this experiment is to evaluate the setpoint generator’s functionality of energy tank-based
velocity reduction (described in Section 4.2.5) and to verify system passivity.
Experiment details:

• Type: normal simulation
• Energy budgets: 75 J provided only once, at the start of the simulation
• Virtual wall: no

2. Finding energy budgets – without wall
The second experiment performs the budget-generation simulation explained
in Section 4.2.6. The unlimited available energy and absence of the virtual wall prevents
energy-guided decisions from being made, i.e. this experiments equates to non-energy-
aware sequence control. The simulation is used to establish the energy budgets that the
energy estimator outputs during a normal simulation. The energy budgets are obtained
from the amount of energy consumed by the loop controller at each control cycle. This
experiment also serves as a reference scenario to compare with the other experiments.
Experiment details:

• Type: budget-generation simulation
• Energy budgets: are measured and written to a log file
• Virtual wall: no

3. Using energy budgets – without wall
The third experiment performs a normal simulation, i.e. the energy estimator uses the
energy budgets obtained during the second experiment. The use of energy budgets
means that a limited amount of energy is available, which is the only difference between
this experiment and the second experiment. The purpose of this experiment is to show
the effect that enabling energy awareness has on system-level properties.
Experiment details:

• Type: normal simulation
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• Energy budgets: read from the log file and outputted by the energy estimator
• Virtual wall: no

4. Using energy budgets – with wall
The fourth and final simulation comprises a normal simulation that includes the virtual
wall, corresponding to fault scenario I: Unexpected Obstacle. The purpose of this exper-
iment is to fulfil Implementation Requirements 3 and 6 and demonstrate the sequence
controller’s energy awareness and other improved system-level properties.
Experiment details:

• Type: normal simulation
• Energy budgets: read from the log file and outputted by the energy estimator
• Virtual wall: yes

In all experiments, the setpoint generator’s standard setpoint motion speed is set to 0.75 m/s.
Experiments 2, 3 and 4 each run for a duration of 7.56 seconds (set equal to the time it takes to
reach target B in experiment 4) to allow for easy comparison between the three experiments.
In all experiments, the loop controller runs at a frequency of 1 kHz and the sequence controller
at 100 Hz (performance limitations of the host computer do not allow a higher control fre-
quency). A list of hardware and software materials that have been used in the experiments is
given in Appendix F. The results of the experiments are presented in Section 5.2.

5.2 Results

This section presents the data resulting from the four experiments described in Section 5.1.
For each experiment, a figure consisting of four subfigures is shown. The left side of each figure
presents position data and the right side of each figure presents energy data. Subfigures (a)
present xy-position data, that is, a top view of the setpoint and robot positions (contained by
signals setpoint and robotstate, respectively, in Figure 4.12). Note that, thus, the presented set-
point data is of the setpoint generator’s output—not the passivity layer’s. Because the targets
change only along the x-axis, subfigures (b) present the x-position data of subfigure (a) versus
time. Subfigures (c) present energy exchange data versus time—consisting of provided and
consumed energy levels, energy-tank levels, loop-control energy levels, and energy budgets.
The total energy provided by the energy estimator to the passivity layer equals the sum of
provided energy budgets (contained by signal budget in Figure 4.12),

Eprovided,k =
k∑

i=1
∆Ebudget,i , (5.1)

and the total consumed energy equals the sum of energy exchanges between the loop controller
and the passivity layer,

Econsumed,k =
k∑

i=1
∆Econsumed,i , (5.2)

with ∆Econsumed,i defined by Equation 3.5 and calculated from H-matrix commands and
wrench feedbacks (contained by signals setpointpas and loopstate, respectively, in Figure 4.12).
The loop-control energy level shown in subfigures (c) equals the sum of kinetic and potential
energy, both of which are contained by the signal loopenergetic in Figure 4.12:

Eloop,k = Ekinetic,k +Epotential,k . (5.3)
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Subfigures (d) present energy-state data consisting of the energy-tank level (also shown in sub-
figure (c)) and the potential- and kinetic energies from the loop-control layer (whose sum is
calculated with Equation 5.3 and shown in subfigure (c)).

5.2.1 Experiment 1: Using a Single Energy Budget – Without Wall

AB

(a) Top view of the setpoint and robot end-effector pos-
itions. Both start at the robot’s base. Targets A and B are
set by the supervisory controller.

(c) Energy exchange time series. The bottom left and
right plots zoom in on the top and bottom sections of
the data, respectively. ‘provided’ represents the starting
energy of 75 J. ‘tank’ represents the energy-tank level.
‘consumed’ represents the amount of energy extracted
from the energy tank by the loop controller. ‘loop’ rep-
resents the sum of potential and kinetic energy available
at the loop-control layer.

(b) Time series of the setpoint and robot end-effector x-
position. ‘energy unaware setpoint’ represents what the
setpoint would have been in case of non-energy-aware
setpoint generation (such as in Figure 5.2b).

(d) System energetic states time series. ‘tank’ represents
the energy-tank level (equal in Figure 5.1c). ‘potential’
and ‘kinetic’ represent the potential and kinetic energies
available at the loop-control layer, respectively.

Figure 5.1: Position and energy data of the first experiment, which uses a starting energy-tank level of
75 J without further energy budgets and where the virtual wall is absent.

Figures 5.1a and 5.1b shows that the setpoint ends at x =−0.4159 m and the robot’s end effector
ends at x = −0.4155 m. Thus, the setpoint (and, hence, also the robot) does not reach target
B. From Figure 5.1b it can be seen that this is due to the setpoint generator’s output setpoint
gradually approaching zero velocity. From Figure 5.1c it can be seen that the setpoint velocity
reduction occurs concurrently with energy tank depletion. It can also be observed that the
consumed energy approaches—but does not exceed—the 75 J that was provided to the energy
tank. Figure 5.1d shows a decrease in all energetic states as time progresses.
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5.2.2 Experiment 2: Finding Energy Budgets – Without Wall

AB

(a) Top view of the setpoint and robot end-effector po-
sitions.

(c) Energy exchange time series. The top graph
shows the the total consumed energy alongside the
loop controller’s total energy (which equals the sum
of the two energies shown in Figure 5.2d). The bot-
tom graph shows the obtained energy budgets, i.e.
the difference signal of ‘consumed’ in the top graph
(Ebudget,k = Econsumed,k −Econsumed,k−1).

A

B

A

B

(b) Time series of the setpoint and robot end-effector
x-position. Targets A and B correspond to those
in Figure 5.2a. The setpoint corresponds to the energy
unaware setpoint shown in Figure 5.1b.

(d) Time series of the potential and kinetic energies
available at the loop controller.

Figure 5.2: Position and energy data of the second experiment, which involves an energy-unbounded
(equivalent to non-energy-aware) simulation without virtual wall and is used to obtain energy budgets
for the energy estimator.

Figure 5.2a shows that the setpoint and robot move unobstructed between targets A and B,
which can also be observed from Figure 5.2b. Figure 5.2b shows that the setpoint moves at
a constant velocity of the specified 0.75 m/s between targets A and B, except for the starting
movement from the origin to target A, which takes place at a lower x-velocity. Figure 5.2b also
shows that the setpoint reaches targets A and B at x = 0.548 m and x =−0.547 m, respectively,
i.e. not precisely at 0.55 m and −0.55 m specified in Section 4.2.3. Figure 5.2c shows that the
loop controller consumes a total of 171.3 J over 7.56 seconds. It also shows that the sampled
energy budget—immediately after a moment in which the setpoint velocity equals zero (e.g.
at t = 3.46 s)—can be briefly negative. Figure 5.2d shows that the potential energy becomes
relatively large at the start of the simulation, i.e. when the robot is being displaced from its
inert starting configuration.
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5.2.3 Experiment 3: Using Energy Budgets – Without Wall

AB

(a) Top view of the setpoint and robot end-effector po-
sitions.

(c) Energy exchange time series. The top graph shows
the total energy provided by the energy estimator and the
total energy consumed by the loop controller together
with the energy-tank level and the loop controller’s total
energetic state. The bottom graph shows the energy
budgets outputted by the energy estimator.

A

B

A

(b) Time series of the setpoint and robot end-effector x-
position.

(d) System energetic states time series. ‘tank’ corres-
ponds to its equal in Figure 5.3c.

Figure 5.3: Position and energy data of the third experiment, which covers a normal simulation without
virtual wall. This experiment is equivalent to the second experiment shown in Figure 5.2, except that
in this experiment the energy estimator provides energy budgets that have been obtained during the
second experiment.

Figure 5.3a shows that the setpoint and robot move unobstructed between targets A and B. It
appears as if the simulation ends at approximately the same position as in the second exper-
iment shown in Figure 5.2a. However, Figure 5.3b shows that the setpoint moves slower than
in Figure 5.2b, particularly at the start of the simulation. It shows that the setpoint ends at
x =−0.1062 m along a trajectory from target A to target B, equivalent to a delay of 1.4 seconds
compared to the second experiment shown in Figure 5.2b. Figure 5.3c shows that a total of 134
J is provided by the energy estimator and a total of 130.3 J is consumed by the loop controller.
It also shows that the provided energy-budget time series is similar in shape to the obtained
energy budgets shown in Figure 5.2c, but with differences most notable at the start of the sim-
ulation. Figure 5.3d shows similar energetic states as in Figure 5.2d, but significantly lower at
the start of the simulation.
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5.2.4 Experiment 4: Using Energy Budgets – With Wall

AB

collision

(a) Top view of the setpoint and robot end-effector po-
sitions. The robot end-effector position at which the
robot collides with the wall is marked. The simula-
tion ends after the setpoint reaches target B for the first
time. This plot corresponds to the simulation screen-
shots shown in Figure 4.18.

(c) Energy exchange time series. The top graph shows the
total energy provided by the energy estimator and con-
sumed by the loop controller together with the energy-
tank level and the loop controller’s total energetic state.
The bottom graph shows the energy budgets outputted
by the energy estimator.

A
B

(b) Time series of the setpoint and robot end-effector x-
position. The time instance of the wall collision is indic-
ated. The bottom graph zooms in at that time instance
and indicates the time at which the setpoint generator
detects the collision.

(d) Time series of the system’s energetic states. The time
instance of the wall collision is indicated. The bottom
graph zooms in at that time instance and indicates the
time at which the setpoint generator detects the colli-
sion.

Figure 5.4: Position and energy data of the fourth experiment, which covers a normal simulation in-
cluding the virtual wall, that is, fault scenario I: Unexpected Obstacle. The graphs correspond to the
simulation screenshots in Figure 4.18.

Figure 5.4a shows the three stages of the alternative trajectory described in Section 4.2.5. It also
shows that the robot’s end effector has a distance of about 0.1 m to the wall when the robot hits
it. Figure 5.4b shows that the collision occurs at t = 3.18 s (sample index 319) and is detected
at t = 3.21 s (sample index 322). Hence, the setpoint generator detected the collision after 3
time samples, corresponding to 30 ms. Figure 5.4c shows that a total of 132.8 J is provided by
the energy estimator and a total of 131.9 J is consumed by the loop controller. Furthermore, it
shows that, after the collision, the energy-tank level (equal to the difference between provided
and consumed energy) rises above average until approximately t = 4 s. Figure 5.4c also shows
that the provided energy budgets, up until the collision, are near equal to those of the third ex-
periment shown in Figure 5.3c. Figure 5.4d shows that the potential energy gradually increases
after the collision while the kinetic energy experiences a more rapid decline. It also shows that
the tank and potential energies experience a turn in rate of change one time sample after the
collision detection.
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5.3 Discussion

This section discusses the design and implementation of the energy-aware sequence control-
ler by evaluating them at the hand of the experiment results presented in Section 5.2. First,
each of the three sequence-control components (setpoint generator, energy estimator, and
passivity layer) is treated, followed by the three system-level properties that have also been
used in Section 3.1 to analyse other implementations of sequence control with.

5.3.1 Sequence-Control Components

This section evaluates to what extend the setpoint generator, energy estimator, and passivity
layer have achieved their functionalities described in Section 4.2.

Setpoint Generator

In Section 4.2.5, it is claimed that the setpoint generator outputs setpoints in straight line tra-
jectories between targets, adapts the setpoint velocity when the energy-tank level reaches low
values, and performs collision detection and correction. Figures 5.1a, 5.2a, 5.3a and 5.4a con-
firm the straight line trajectories. Figure 5.1 shows that the setpoint velocity indeed reduces as
a function of energy tank depletion, thereby maintaining passivity (the amount of consumed
energy never exceeds the amount of provided energy) and preventing the passivity layer from
triggering—which, according to Brodskiy (2014), would otherwise negatively impact system
performance. This already shows that the implemented sequence controller is energy-aware.

In Section 5.2.1 of experiment 1, it is noted that the robot (at x = −0.4155 m) does not fully
reach the setpoint (at x =−0.4159 m) in Figures 5.1a and 5.1b. This is because the combination
of virtual damping and a low (and decreasing) virtual-spring force in the loop controller inhibits
robot movement.

In Section 5.2.2 of experiment 2, it is noted that Figure 5.2b shows that the setpoint motion
speed at the start of the simulation is lower than the the specified 0.75 m/s. This is because
the setpoint also has a y- and z-component when moving from the initial position to target
A, whereas Figure 5.2b only considers the x-axis. The Euclidean setpoint velocity is in fact
0.75 m/s between targets throughout experiment 2. Also noted for Figure 5.2b, is that tar-
gets A and B are at x = 0.548 m and x = −0.547 m, respectively, instead of precisely at 0.55 m
and −0.55 m specified in Section 4.2.4. This is because the setpoint generator assumes having
reached a target as soon as the distance between the target and the setpoint is less than the step
size in between subsequent setpoints.

In Section 4.2.4 it is explained that the supervisory controller checks if the robot has reached
a target before switching to the next target. However, since higher control levels should deal
with higher abstractions from the physical world, in future implementations of energy-aware
sequence control, assessment of the robot state should be performed by the setpoint generator
instead. The setpoint generator can then write feedback to the supervisory-control layer on the
progress of task execution.

From Figure 5.4d of experiment 4, it can be seen that the kinetic and potential energies react
quicker and more distinguishably to a collision than the energy-tank level (which experiences
a more gradual decline). Be aware that the sudden increase of the energy-tank level at t =
3.22 s is not an effect of the collision, but of the change in setpoint direction (explained below
for the energy estimator). This marks the importance of using loop-control feedback energies
rather than the energy-tank level for the assessment of physical interactions. As a result, the
setpoint generator takes 3 time samples—equivalent to 30 ms (since the sequence controller
runs at 100 Hz)—to detect a collision and start performing its correction sequence. In future
implementations for which the speed of physical interaction assessments is critical, as could
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be the case for collision detection, such functionalities may need to be implemented under a
faster update frequency, or (for the same effect) possibly at the loop-control layer.

Figure 5.4d also shows that, after the collision, the potential and kinetic energies experience a
change in opposite direction. This shows the importance of assessing these energies separately
rather than their sum. Be aware that the kinetic energy experiences a more rapid change than
the potential energy only because the robot hits the wall perpendicularly. How each energy type
responds to a physical interaction differs per situation. Therefore, the results in Figure 5.4d only
tell that, depending on robot velocity, kinetic energy is a more discernible indicator of collisions
that occur perpendicularly than potential energy is.

The architecture design is implementation-agnostic as it allows the use of any of the four
physical variables listed in Tables A.1 and A.2, out of which the setpoint generator imple-
mentation has been made functional with H-matrices. Since the setpoint generator imple-
mentation uses H-matrices and only considers xyz-coordinates and disregards rotations, it
is not implementation-agnostic. The setpoint generator design, however, is implementation-
agnostic as it allows for any implementation of the setpoint generator that satisfies the design
and implementation requirements of Section 3.5. In Section 4.1.3 it is stated that the setpoint
generator is to satisfy Design Requirement 5, which specifies that it must send setpoint com-
mands based on energy feedback. This has been achieved in the implementation, as shown in
this chapter.

Energy Estimator

In Section 4.2.6 it is stated that the energy estimator provides energy budgets of 0 J when the
setpoint velocity is zero and otherwise applies Equation 4.3 while keeping a minimum energy
budget of 0.01 J. The minimum energy budget is to prevent negative energy budgets and the
possibility of a deadlock in which the setpoint generator, energy estimator, passivity layer, and
robot are all waiting for each other to move. Note should be taken that this deadlock is specific
to the implementation in this project. Its presence may not exist in implementations where
the setpoint generator does not adjust the setpoint velocity based on energy-tank feedback,
or where the energy estimator does not output energy budgets on the basis of robot position
and orientation feedback. Still, it is advisable to consider the risk of such deadlocks during the
design and implementation phases in future work.

Additionally, the deadlock prevention measure of forcing a minimum energy budget is a sub-
optimal solution that, depending on the type of implementation, can potentially lead to
non-passive behaviour. Instead, an energy estimator could include (potentially complex) al-
gorithms that predict a deadlock and prevent it from taking place.

Figures 5.3c and 5.4c support that, indeed, no negative energy budgets are outputted. These
figures also show periods during which the provided energy budget has a constant value of
0.096 J, most notably at the start of the simulation and right before and after periods of 0 J.
The average energy value in the energy-budget log file is Eaverage = 0.192 J, the energy budgets
of 0.096 J result from Equation 4.3 for Elinenumber = 0 J. It makes sense that this happens right
before and after periods of 0 J energy budgets, because these occur near the target positions
where the setpoint velocity equals zero.

However, the period of multiple 0.096 J energy budgets at the start of the simulation should
not be taking place. It is the result of insufficient starting energy combined with a low setpoint
velocity caused by the initial empty energy tank. This then leads to slower robot movement and
a different robot rotation compared to the budget-generation simulation of experiment 2. Due
to the different robot movement, H-matrix row-index detection stays at row-index 1 (of 0 J) at
the start of the simulation longer than it should be. A cause of the problem is the lower energy-
budget amplitude resulting from Equation 4.3, which makes it inherently impossible to have
experiments 3 and 4 achieve the same results as in experiment 2. A possible solution to the lack
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of energy at the start of the simulation could be to provide packets of multiple energy budgets
in advance instead of providing a single energy budget for each upcoming iteration separately.

Figure 5.2c of the budget-generation experiment (experiment 2) shows three sections of neg-
ative sampled energy budgets with peak values of −0.201, −0.207, and −0.190 J, respectively.
These negative energy values indicate a transfer of energy from the robot into the energy tank.
This is caused by opposite directions of the setpoint velocity and the robot’s generalised forces
(Equation A.2). The result is that Elinenumber of Equation 4.3 obtains these negative values when
the energy budgets are being read from the log file. Given that Eaverage = 0.192 J, this then yields
Eestimated < Emin = 0.01 J for all three negative peaks. When this happens, the energy estimator
should output Emin = 0.01 J instead of Eestimated. Figure 5.3 of experiment 3 indeed shows that
between t = 4.47 s and t = 4.64 s, the minimum energy value of Emin = 0.01 J is outputted.

In Section 5.2.3 on experiment 3, it is mentioned that the energy estimator provided a total of
134 J over the 7.56 s simulation. This should have been equal to the total energy consumed dur-
ing experiment 2 in Section 5.2.2 (i.e. 171.3 J), were it not that the robot in experiment 3 covered
less distance in the same amount of time. The amount of energy consumed during experi-
ment 2 for that same distance is 140.6 J and was achieved at t = 6.16 s. Hence, experiment 3 took
6.6 J less energy to cover the same distance while taking 1.4 s more time. This indicates that,
for a normal simulation (experiment 3) under the same conditions as the budget-generation
simulation (experiment 2), the total energy outputted by the energy estimator over a certain
path—rather than over the same amount of time—is close to what it should be (within 5% in
this case). This makes sense, because the energy estimator provides energy budgets based on
the robot’s pose regardless of time.

From Figure 5.4c of experiment 4, it can be seen that, following the collision, the energy-tank
level increases above average. When the setpoint generator detects the collision and reverses
the setpoint’s direction, the virtual spring (temporarily) relaxes, allowing potential energy to
flow back into the energy tank. During this relaxation time—in which no (or less) additional en-
ergy is needed—the energy estimator continues providing energy budgets based on the robot’s
position. This results in an offset in the energy-tank level. The only reason that the energy-tank
level offset is later depleted from the energy tank, is because the alternative trajectory requires
more energy per time step than the energy estimator is outputting. Hence, the implemented
energy estimator does not provide adequate energy budgets following a collision and during
an alternative trajectory.

The slower the setpoint generator is at detecting a collision, the higher the energy-tank level
offset becomes. Depending on how high the offset is and how much additional energy is re-
quired for the alternative trajectory, the energy tank’s offset may not be fully depleted. In such
a case, each wall collision would further increase the energy tank’s offset. Other scenarios that
can lead to an increasing offset in the energy tank are when the control system interacts with an
active environment or with another (physical) system. These interactions can lead to a transfer
of energy into the sequence controller’s energy tank, raising its level.

Since it is the energy estimator’s responsibility to ensure that adequate energy is present in the
energy tank for system task performance, future implementations could make use of an energy-
tank feedback signal from the passivity layer to the energy estimator. The energy estimator
may then adjust its energy-budget provision based on the amount of energy present in the
passivity layer’s energy tank. This could prevent any excessive energy build-up in the energy
tank, potentially preventing unsafe high-energy actions.

In Section 4.1.3 it is stated that the designed energy estimator is to satisfy Design Requirement 6b,
i.e. it should output accurate energy-budget estimations. This chapter has shown that the im-
plemented energy estimator does not produce fully accurate energy-budget estimations, but
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is sufficient in demonstrating energy awareness of the designed and implemented sequence-
control layer.

Additionally, in future implementations that include an energy supervisor or higher control
layers, energy estimation may be removed from the sequence-control architecture. Energy
budgets do need to be provided to the passivity layer, but this may also be done through the
energy supervisor. Energy estimation can then be conducted at higher control levels such as
the supervisory-control layer or perhaps by the energy supervisor itself.

Passivity Layer

Because the setpoint generator applies setpoint-speed reduction based on the energy-tank
level, it has successfully prevented the passivity layer from triggering during any of the exper-
iments. Since the passivity layer’s implementation is based on proven concepts, no additional
data results are given to show its performance. The passivity layer has been tested for this pro-
ject, though, and it is functional.

Figures 5.1c, 5.3c and 5.4c, show passive behaviour, because the total consumed energy does
not exceed the total provided energy or, equivalently, the energy-tank level does not become
negative. Passivity, in these cases, is maintained by the setpoint generator reducing the set-
point velocity as a function of the energy-tank level. This functionality effectively prevents the
passivity layer from taking control over the setpoint command, keeping control at the setpoint
generator. The setpoint generator here can be seen as a first measure to softly aid passivity
while the passivity layer is a second measure that brute-forces passivity if the setpoint gen-
erator fails to do so. Hence, the implementation uses two separate functionalities that aid to
maintain system passivity.

In Section 4.2.7 it is claimed that the implemented passivity layer can calculate energy ex-
changes with Equation 3.5 from any of the combinations listed in Table 3.1 in the form of vari-
ables from the mechanical domain listed in Table A.1 and from screw theory listed in Table A.2.
However, the passivity layer has only been tested with H-matrix command signals and wrench-
feedback signals. Other signal combinations are yet to be tested. In Section 4.1.3 it is stated
that the passivity layer is to satisfy Design Requirement 6a of incorporating a (possibly reused)
passivity layer. This requirement has been satisfied.

5.3.2 System-Level Properties

This section covers Implementation Requirement 2, that is, this project’s implemented energy-
aware sequence-control layer is compared to the six projects listed in Section 3.1 on the basis
of system-level properties safety, dependability and performance.

Safety

Sequence-control implementations analyses in Section 3.1 mention that passivity leads to sta-
bility and thus safety, also when handling an unknown environment. In this project, there have
indeed been no stability issues. Safety has also been improved, because Figure 5.1 shows that
the robot will gradually stop moving as the energy tank deprives from energy. Furthermore,
Figure 5.4c shows that a break of passivity and unsafe behaviour have not been at risk follow-
ing the collision with the unknown obstacle because of timely detection and reaction.

For the PIRATE, Pneumatic Drive, and Autonomous ATV sequence-control implementations
that are analysed in Section 3.1, it is stated that energy-aware control can ensure passivity
during communication delays and thereby ensure stability and safety. The effects of commu-
nication delays have not been tested in this project. Though, the passivity layer does use the
real control update interval (dtreal = tcurrent − tprevious) instead of the pre-specified update time
(dtspecified = fspecified

−1) when calculating energy consumptions, so passivity should be kept
with communication delays.
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Dependability

For the Robot Hand project analysed in Section 3.1, it is mentioned that energy awareness
could improve reliability for handling unknown objects. Experiment 4 shown in Figure 5.4
gives an example scenario in which energy awareness indeed provides a reliable response for
handling an unknown object. The response is reliable in the sense that there have been zero
instances of false negatives in the setpoint generator’s obstacle detection. False positives can
occur, though, as discussed below for the system-level property of performance.

For the Exoskeleton implementation of sequence control that is analysed in Section 3.1, it is
mentioned that dependability can be improved as an energy-aware controller can assess both
static and dynamic situations through potential- and kinetic energies. This has also been
shown in experiment 4, where the combination of potential- and kinetic energy fed back from
the loop controller was used by the setpoint generator to successfully detect the collision.

Performance

Brodskiy (2014) stated that inaccurate energy-budget estimations negatively impact system
performance. Figure 5.3b shows that the robot in experiment 3 covers less distance than
in Figure 5.2b of experiment 2. Hence, enabling energy awareness resulted in a negative ef-
fect on the system’s speed. As explained above, this is indeed the result of inaccurate energy-
budget provisions by the energy estimator, thus confirming the statement by Brodskiy (2014)
that inaccurate energy-budget estimations negatively impact system performance.

For the PIRATE, TUlip, and Exoskeleton sequence-control implementations that are analysed
in Section 3.1, it is mentioned that energy-aware sequence control can improve system ver-
satility. This has been demonstrated with experiment 4 in Figure 5.4, showing that energy-
awareness can be used to perform collision detection within 30 ms. In future work, the energy
assessing block in Figure 4.5 can be implemented such that it assesses a wide range of physical
interactions on the basis of energy data, for example the fault scenarios presented in Figure 3.6.

A significantly disruptive factor experienced during development of the sequence controller
has been hick-ups in the simulation, resulting in a worsening of ROS’ non real-timeness (signi-
ficantly inconsistent sample times) and incorrect discrete amplitudes of variables propagating
through the entire control system (i.e. apparent in variables of the robot, loop controller, and
sequence controller). For the budget-generation simulation, the hick-ups result in the logging
of incorrect energy-budgets. For the setpoint generator, the hick-ups can lead to false posit-
ives in the collision detection algorithm. For the passivity layer, the hick-ups result in incorrect
energy sampling (and, hence, incorrect energy-tank levels). This all has a negative impact on
system safety, dependability and performance.

Even though hick-ups may occur in animation, in a fully simulated system these should not
have affected the values of variables. This indicates that there may be flaws in how the simula-
tion engines of ROS and Gazebo resolve their timing issues. It has been found that using ‘best
performance’ mode on the host computer (as stated in Appendix F) results in more reliable
simulations. This way, the simulations in Section 5.2 have been obtained without hick-ups.
Note that a limitation on computing performance has been the use of a virtual machine to run
Ubuntu on (Appendix F). To further reduce the computational load, it could also help to run
the simulation without an animation, log the data to a file, and replay the animation afterwards.

Since all experiments have been performed in simulation, no real-world data has been ob-
tained. System-level properties may deviate in practise, because of real-world uncertainties
like friction and vibrations. The collision detection feature and energy-budget estimation, for
example, have not been tested for robustness against these uncertainties and may perform dif-
ferently in practise. Future implementations will have to be tested on a physical robot to yield
results that give better insight in real-world performance of energy-aware sequence control.
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6 Conclusions and Recommendations

6.1 Conclusions

The project presented in this thesis has focussed on integrating energy awareness into the
sequence-control layer of the control stack shown in Figure 2.2. In Section 1.3, the project’s
main goal and its four subgoals are presented. Each of these goals is separately concluded
upon below, starting with the subgoals leading up to the main goal.

The project’s first subgoal,

identifying how energy awareness can be enabled and harnessed at the sequence-control layer,

has been achieved. To enable energy awareness, two physics-conformal interfaces for the
communication of data within an energy-aware sequence-control layer have been proposed.
In Section 3.2.1, a control interface is presented that incorporates each of the four physical
variables: generalised force (effort), generalised momentum, generalised velocity (flow), and
generalised displacement. Alongside the control interface, an energy interface that allows for
the communication of 7 different energy variables is presented in Section 3.2.2. Using these
interfaces, energy awareness—the planning and performing of actions taking into account a
system’s energetic state (Section 1.1)—can be enabled.

In Section 3.1 it is found that energy awareness at the sequence-control layer can lead to im-
provement of system-level properties, but does require accurate sensor and actuator calibra-
tions, collocation of the control signals, and accurate energy budgets for the passivity layer’s
energy tank. To the end of harnessing energy awareness, Section 3.4 presents 5 fault scenarios
in which energy awareness could be used to improve fault handling by a robotic control system.
Out of these scenarios, one that consists of an unexpected obstacle has been implemented in
this project. Experiment 4 in Chapter 5 successfully proves that energy awareness can be har-
nessed to perform obstacle-collision detection.

The project’s second subgoal,

defining design and implementation requirements for energy-aware sequence control,

is achieved with a list of MoSCoW-prioritised requirements presented in Section 3.5. The re-
quirements are based on background concepts of robot control and energy-related physics de-
scribed in Chapter 2 and the analyses of energy awareness in Chapter 3. By satisfying the design
and implementation requirements, an energy-aware sequence-control layer or any of its com-
ponents can be developed and connected to elements that satisfy the same requirements.

The project’s third subgoal,

designing and implementing the architecture of an energy-aware sequence-control layer,

is achieved in Chapter 4, in which a an implementation-agnostic design and conceptual
implementation are presented based on the design and implementation requirements lis-
ted in Section 3.5. The design in Section 4.1 presents the architecture for an energy-aware
sequence-control layer consisting of a control interface, energy interface, setpoint generator,
energy estimator, and passivity layer. Future implementations of an energy-aware sequence-
control layer or its component can be based on this architecture design. As a proof of concept,
the design has conceptually been implemented in simulation as presented in Section 4.2.

The two interfaces provide a physics-conformal and energy-based means of communicating
control and energy signals between components that interact with and within the sequence-
control layer. The setpoint generator enables energy-aware control for the sequence-control
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layer by assessing energetic states of the control system and adjusting the output setpoint tra-
jectory accordingly. The energy estimator provides model-based energy budgets to the passiv-
ity layer’s energy tank. The energy budgets correspond to amount of energy that the loop-
control layer is expected to extract from the passivity layer for controlling the robot. It is im-
portant for the energy budgets to be accurately estimated, because they can otherwise have a
significant negative effect on system performance, as is demonstrated by experiments 3 and 4
in Chapter 5. The passivity layer acts as a passivity safeguard that provides a passive connection
between the sequence-control layer and the loop-control layer.

The project’s fourth subgoal,

demonstrating improved system-level properties through energy awareness,

is achieved in Chapter 5, in which four experiments and their results are presented and evalu-
ated. System-level properties of safety, dependability and performance have been evaluated in
comparison to six other projects that implemented non-energy-aware sequence control and
are each analysed in Section 3.1. It has been demonstrated that the energy-aware setpoint
generator can be used to aid in maintaining system passivity, thereby reducing the chance of
passivity-layer triggers. This benefits system performance as the passivity layer does not take
over setpoint control from the setpoint generator. Since the system has been implemented in
simulation, it is unknown how similar the system-level properties are for an implementation
on a real-world system. Real-world uncertainties like friction and vibrations, for example, may
affect the accuracy of energy-budget estimations and the performance of the setpoint gener-
ator’s energy assessment. The effects of a real-world implementation are to be evaluated in
future work.

The main goal of this project, as stated in Section 1.3, has been to take the next step in energy-
aware robotics; namely,

enabling energy awareness at the sequence-control layer.

As can be concluded from the achievement of each of the four subgoals, the main goal of this
project has been achieved with a full design, implementation, and evaluation of a sequence-
control layer that is energy aware. By achieving all of its goals, the project presented in this
thesis has taken the next step towards fully energy-aware robotics. It provides an architectural
basis of energy-aware sequence control for further development of energy awareness at higher
control layers in physically interacting robotic control systems.

6.2 Recommendations

Since, in this project, the energy-aware sequence controller’s design has been implemented to
serve only as a proof of concept, most of the recommendations for future work are focussed
on the implementation. The recommendations are MoSCoW (Must, Should, Could, Will not)
prioritised and grouped under the control system in general (Section 6.2.1), the setpoint gener-
ator (Section 6.2.2), the energy estimator (Section 6.2.3), and the passivity layer (Section 6.2.4).
Note that any future work on the energy-aware sequence-control layer should be based on the
architecture design presented in Section 4.1. As stated in Section 4.1.3, the energy-aware se-
quence control design presented in this thesis does not restrict future additions of new signals,
as long as compliance to the control- and energy interfaces is maintained.

6.2.1 Control System

• Must
Future work on the energy-aware sequence-control layer must be implemented on real-
world robots and evaluated accordingly.
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• Should
In line with the plans of RaM described in Section 2.4, and included in the design
of Section 4.1, future projects should implement an energy supervisor for the commu-
nication of energetic system data and the distribution of energies between control layers.

6.2.2 Setpoint Generator

• Should
Future work on the setpoint generator should include functionality expansions of the
energy assessing block such that it can assess a broader range of physical interactions.

• Should
The setpoint generator should receive robotstate, check if targets are reached, and feed
back the sequence-control layer’s control state to the supervisory-control layer. This is
contrary to the the implemented sequence-control layer shown in Figure 4.12, in which
the supervisory-control layer receives feedback-signal robotstate to determine if targets
are reached.

• Could
In future work, the assessment of energy data could be implemented at a higher (possibly
different from the rest of sequence control) control frequency. Future work would have
to point out if this frequency should be equal to the loop-control layer’s frequency. This
is because, for certain physical interactions (such as collisions), the speed of assessment
and reaction can be critical from the perspective of system-level properties like safety.

• Could
Future design and implementation could feed back the attenuated setpoint from the
passivity layer to the setpoint generator as shown in Figure C.3, so that the setpoint gen-
erator is aware of the actual output to the loop controller and can synchronise its set-
point/trajectory state accordingly.

6.2.3 Energy Estimator

• Must
Future energy-estimator implementations must be model-based. It is important for sys-
tem performance that the energy estimator produces accurate energy budgets. Con-
sequently, the models need to be sufficiently accurate too.

• Should
Future implementations should make use of an energy-tank feedback signal to the en-
ergy estimator as shown in Figure C.3 (branching off from signal tank in Figure 4.3). The
energy estimator can then adjust its energy-budget provision based on the energy-tank
level. This is needed to prevent uncontrolled energy build-up in the energy tank.

• Could
Future implementations could make use of algorithms that—by checking if the setpoint
generator, energy estimator and passivity layer are all waiting for each other—predict
and/or detect deadlocks and counteract them by adjusting the energy-budget supply.
This could replace the potentially non-passive approach of forcing a minimum energy
budget to prevent passivity-induced deadlocks used in this thesis.

6.2.4 Passivity Layer

• Should
The passivity layer implementation in this project has only been tested for H-matrix
commands with wrench feedback signals. In future implementations, the passivity layer
should be tested for other input combinations as well.
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A Basic Principles of Energy Exchange

The following corresponds to Section 2.3.

A.1 Quantities of Physical Interaction

Robotic systems use sensors to measure physical interactions. Depending on the type of sensor,
quantities such as those listed in Table A.1 can be measured.

Table A.1: Quantities per physical domain (and screw theory) classified under four physical variables:
flow, effort, generalised displacement, and generalised momentum (Breedveld, 1982)

physical flow effort generalised generalised
domain displacement momentum

f e q = ∫
f dt p = ∫

e dt

mechanical velocity force displacement momentum
translation

v [ms−1] F [N] x [m] p [Ns]

mechanical angular torque angular angular
rotation velocity displacement momentum

ω [rad.s−1] τ [Nm] θ [rad] b [Nms]

electromagnetic current voltage charge magnetic flux
linkage

i [A] u [V] q [As] λ [Vs]

hydraulic volume flow pressure volume momentum
in a flow tube

ϕ [m3s−1] p [Nm−2] V [m3] Γ [Nm−2s]

The quantities listed in Table A.1 are classified as a generalised velocity or flow ( f ), generalised
force or effort (e), generalised displacement (q), or generalised momentum (p). These four
physical variables are called the variables of state and can be used to describe the energetic con-
dition of any physical state-determined system (Paynter, 1961). Their interrelations are shown
in Figure A.1, in which the variables are written in vector/matrix notation. Vectors are used in
multi-DOF robotics to contain multiple quantities of the same type. Consider a 4-DOF robot
with a displacement sensor at each joint. For this robot, the generalised-displacement vector
equals q = [q1, q2, q3, q4]>. In the remainder of this thesis, the variables of state are considered
for multi-DOF robotics, thus in vector form ( f , e, q , and p).

A common method when working on robot kinematics is to apply screw theory, in which
translational and rotational motions are combined to describe the dynamics of rigid body
systems. In screw theory, the equivalents of generalised velocity, force, displacement,
and moment, are the twist vector (T ∈R6×1), wrench vector (W ∈R6×1), homogeneous-
transformation matrix (or H-matrix in short, H ∈R4×4), and momenta (N ∈R6×1), respect-
ively (Stramigioli and Bruyninckx, 2001). Since the twist vector is of dimension 6×1 and the
H-matrix is of dimension 4×4, the relation q = ∫

f dt does not hold true here. Instead, the
time-dependent relation is

T̃ j , j
i = Ḣ j

i H i
j , (A.1)
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Figure A.1: The tetrahedron of state by Paynter (1961) describing the relations between the four phys-
ical variables; flow ( f ), effort (e), generalised displacement (q) and generalised momentum (p). The
dynamic (time-dependent) interactions are embodied by the q- f and p-e relations. The remaining
characteristic static relations are defined by inertance (I ), resistance (R) and capacitance (C ).

and describes the twist matrix (T̃ j , j
i ∈R4×4) of a body i with respect to a body j , expressed in

the coordinate frame of body j . The variables that make up the corresponding twist vector

(T j , j
i ∈R6×1) can directly be extracted from this twist matrix. Additional information on screw

theory can be found in the work by Stramigioli and Bruyninckx (2001). Table A.2 is added as a
screw theory extension of Table A.1.

Table A.2: Quantities of screw theory (Stramigioli and Bruyninckx, 2001) classified under the variables
of state: flow, effort, generalised displacement, and generalised momentum.

domain flow effort generalised generalised
displacement momentum

f e q p = ∫
e dt

screw twist wrench H-matrix momenta
theory

T ∈R6×1 W ∈R6×1 H ∈R4×4 N ∈R6×1

A.2 Energy-based Information Exchange

An effort does not exist without a flow and vice versa; effort and flow are power conjug-
ated (Breedveld, 1985). The flow rate of energy (dE/dt ), or instantaneous exchange power (P ),
can be calculated from the product of power-conjugated effort and flow:

d

dt
E = P

= e> · f .
(A.2)

The amount of energy (E) exchanged during a physical interaction is equal to the integration
of energy flow, or power, over time:

E =
∫ (

d

dt
E

)
dt

=
∫

(P ) dt

=
∫ (

e> · f
)

dt .

(A.3)
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Based on Equation A.3 (and Figure A.1), if a pair of power-conjugated effort (or generalised mo-
mentum) and flow (or generalised displacement) is known, the amount of energy exchanged
over a certain time interval can be calculated. In practise, using a power-conjugated effort-flow
pair implies the use of collocated control (Duindam et al., 2009), i.e. the actuation and meas-
urement quantities need to be collocated.

In order to integrate energy awareness into the sequence-control layer, information exchange
in and around the control system should be energy-related. This can be achieved by applying a
port-based design. “In systems theory, the interconnection of two systems can be modeled by
a bi-directional information (signals) exchange, which is termed a port. The energy exchange
between these two systems will be a function of these signals in the port” (Brodskiy, 2014). Ports
that convey a collocated pair of power-conjugated effort and flow are called power ports. Power
ports can be connected using power bonds—from bond-graph theory by Paynter (1961). Both
power ports and power bonds are power-continuous; they do not consume energy. Figure A.2
shows a generic example representation in which some entity (Entity 1) transfers power via its
power port (A) through a power bond to the power port (B) of another entity (Entity 2). The
entities can be systems, subsystems, digital components, physical components, etcetera, and
can contain multiple power ports.

power bond

BEntity 1 A Entity 2

power ports

Figure A.2: Two entities with their power ports connected through a power bond.

Given that the design of the sequence-control level should follow an energy-based approach
and given that power ports combined with power bonds facilitate lossless energy-flow inter-
connections, power ports and power bonds can be used to interconnect (sub)systems in and
around the sequence-control layer. This does imply that each power connection in the system
would require a known effort and flow.

Consider the plant (see Figure 2.2), its actuators receive a command signal coming from the
loop-control layer and its sensors return a feedback signal to the loop-control layer. In order
to be compliant to the power-bond connections, the command and feedback signals should
comprise a power-conjugated effort-flow pair. Entities that receive a flow input and return a
power-conjugated effort output resemble an impedance (Z );

Z = e

f
⇒ e = f Z , (A.4)

whereas entities that receive an effort input and return a power-conjugated flow output re-
semble an admittance (Y );

Y = Z −1 = f

e
⇒ f = eY , (A.5)

as shown in block diagram form in Figure A.3.

f Z e

Ye f

Figure A.3: Block diagram on the effort and flow relations of impedance (Z ) and admittance (Y ).
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An impedance output can serve as an admittance input and vice versa. Impedances and admit-
tances can be used to describe a control layer’s conversion of the conjugated power variables.
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B Equations

B.1 Twist Matrices and Vectors

The following corresponds to Section 3.3.1.

In general form, the twist matrix (T̃ ∈R4×4) and twist vector (T ∈R6×1) are defined as fol-
lows (Stramigioli and Bruyninckx, 2001):

T̃ =
[
ω̃ v
0 0

]
, T =

[
v
ω

]
, (B.1)

and consist of an angular velocity in tilde form (ω̃ ∈R3×3), an angular-velocity vector (ω ∈R3×1)
and a translational-velocity vector (v ∈R3×1). The angular velocity in tilde and vector form (ω̃
andω, respectively) consist of the same elements:

ω̃=



0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 , ω=



ω1

ω2

ω3


 . (B.2)

Equations B.1 and B.2 indicate that a twist vector (T ∈R6×1) can directly be extracted from a
twist matrix (T̃ ∈R4×4) and vice versa.

B.2 Setpoint Attenuation by the Passivity Layer

The following corresponds to Section 4.1.6.

Equation 4.2 can be expanded as follows:

setpointpas,k =




epas,k

ppas,k

fpas,k

qpas,k


=





setpointk = [
ek , pk , fk , qk

]> E∗
tank,k+1 ≥ 0

setpointatt,k = [
eatt,k , patt,k , fatt,k , qatt,k

]> E∗
tank,k+1 < 0

. (B.3)

It is important to note that, to output one setpoint command to the loop controller,
in Equation B.3 only one of the command variables (epas,k , ppas,k , fpas,k , or qpas,k ) should
be used (i.e. the others should be set to zero and/or not be updated). The attenuated setpoint
command (setpointatt) used in Equation 4.2 (or Equation B.3) is defined such that Equation 4.1
results in E∗

tank,k+1 = 0 if Etank,k > 0 or in E∗
tank,k+1 = Etank,k if Etank,k ≤ 0:

setpointatt,k =




eatt,k

patt,k

fatt,k

qatt,k


=





[
0, ppas,k−1,0, qpas,k−1

]> Etank,k ≤ 0




ek ·
Etank,k

∆E∗
req,k+1

ppas,k−1 +
(
pk −ppas,k−1

) · Etank,k

∆E∗
req,k+1

fk ·
Etank,k

∆E∗
req,k+1

qpas,k−1 +
(
qk −qpas,k−1

) · Etank,k

∆E∗
req,k+1




Etank,k > 0

. (B.4)
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Below follows the derivation of Equation B.4. Be aware that the derivations make use
of Equation 3.5 in which setpointatt represents a command signal.

1. Derivation of eatt,k (also holds for fatt,k ):

(a) If Etank,k ≤ 0:
The energy tank cannot be drained any further, i.e. Equation 4.1 shows that
the energy requirement for upcoming sample interval [tk , tk+1] should equal
∆Ereq,k+1 = 0. Inserting in Equation 3.5 yields:

∆Ereq,k+1 = ek
> · 1

2

(
fk+1 + fk

) ·∆tk+1 = 0, (B.5)

and
∆Ereq,k+1 = ek

> · (qk+1 −qk
)= 0. (B.6)

Solving for the estimated required energy, ∆E∗
req,k+1, and the attenuated setpoint

signal, eatt,k :

eatt,k
> · 1

2

(
f ∗

k+1 + fk
) ·∆t∗k+1 = 0

eatt,k = 0
, (B.7)

and

eatt,k
> · (q∗

k+1 −qk
)= 0

eatt,k = 0.
(B.8)

(b) If Etank,k > 0:
No more than the available energy can be drained from the energy tank,
i.e. Equation 4.1 shows that the energy requirement for upcoming sample interval
[tk , tk+1] should equal ∆Ereq,k+1 = Etank,k . Again, inserting in Equation 3.5 and
solving for the estimated required energy, ∆E∗

req,k+1, and the attenuated setpoint
signal, eatt,k :

eatt,k
> · 1

2

(
f ∗

k+1 + fk
) ·∆t∗k+1 = Etank,k

eatt,k
> = Etank,k

1
2

(
f ∗

k+1 + fk
) ·∆t∗k+1

eatt,k
> = ek

>

ek
> · Etank,k

1
2

(
f ∗

k+1 + fk
) ·∆t∗k+1

eatt,k
> = ek

> · Etank,k

∆E∗
req,k+1

eatt,k = ek ·
Etank,k

∆E∗
req,k+1

,

(B.9)
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and, equivalently,

eatt,k
> · (q∗

k+1 −qk
)= Etank,k

eatt,k
> = Etank,k

q∗
k+1 −qk

eatt,k
> = ek

>

ek
> · Etank,k

q∗
k+1 −qk

eatt,k
> = ek

> · Etank,k

∆E∗
req,k+1

eatt,k = ek ·
Etank,k

∆E∗
req,k+1

.

(B.10)

2. Derivation of patt,k (also holds for qatt,k ):

(a) If Etank,k ≤ 0:
The energy tank cannot be drained any further, i.e. Equation 4.1 shows that
the energy requirement for upcoming sample interval [tk , tk+1] should equal
∆Ereq,k+1 = 0. Inserting in Equation 3.5 yields:

∆Ereq,k+1 =
(
pk+1 −pk

)> · fk+1 = 0, (B.11)

and

∆Ereq,k+1 =
(
pk+1 −pk

)> · (qk+1 −qk
) · 1

∆tk+1
= 0. (B.12)

This is problematic, because we are working with the current setpoint value, pk ,
but Equations B.11 and B.12 also depend on pk+1, whose value is yet unknown and
also depends on pk . A predicted value p∗

k+1 is needed. The predicted setpoint
change during sample interval [tk , tk+1] can be defined as

∆p∗
k+1 = p∗

k+1 −pk . (B.13)

A first-order approximation can be used (if needed, a higher order approximation
could be used) by estimating that the next setpoint change, ∆p∗

k+1, will be equal to
the previous one, i.e. ∆p∗

k+1 = ∆pk = pk −ppas,k−1. The estimated required energy
then becomes

∆E∗
req,k+1 =

(
pk −ppas,k−1

)> · f ∗
k+1 = 0, (B.14)

and

∆E∗
req,k+1 =

(
pk −ppas,k−1

)> · (q∗
k+1 −qk

) · 1

∆tk+1
= 0. (B.15)

Solving for the attenuated setpoint signal, patt,k :

(
patt,k −ppas,k−1

)> · f ∗
k+1 = 0

patt,k = ppas,k−1 ,
(B.16)

and, equivalently,

(
patt,k −ppas,k−1

)> · (qk+1 −qk
) · 1

∆tk+1
= 0

patt,k = ppas,k−1 .
(B.17)
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(b) If Etank,k > 0:
No more than the available energy can be drained from the energy tank,
i.e. Equation 4.1 shows that the upcoming energy requirements should equal
∆Ereq,k+1 = Etank,k . Again, inserting in Equation 3.5, predicting ∆p∗

k+1 = ∆pk , and
solving for the attenuated setpoint signal, patt,k :

(
patt,k −ppas,k−1

)> · f ∗
k+1 = Etank,k

patt,k
> = ppas,k−1

>+ Etank,k

f ∗
k+1

patt,k
> = ppas,k−1

>+
(
pk −ppas,k−1

)>
(
pk −ppas,k−1

)> · Etank,k

f ∗
k+1

patt,k
> = ppas,k−1

>+ (
pk −ppas,k−1

)> · Etank,k

∆E∗
req,k+1

patt,k = ppas,k−1 +
(
pk −ppas,k−1

) · Etank,k

∆E∗
req,k+1

,

(B.18)

and, equivalently,

(
patt,k −ppas,k−1

)> · (q∗
k+1 −qk

) · 1

∆tk+1
= Etank,k

patt,k
> = ppas,k−1

>+ Etank,k(
q∗

k+1 −qk
) · 1
∆tk+1

patt,k
> = ppas,k−1

>

+
(
pk −ppas,k−1

)>
(
pk −ppas,k−1

)> · Etank,k(
q∗

k+1 −qk
) · 1
∆tk+1

patt,k
> = ppas,k−1

>+ (
pk −ppas,k−1

)> · Etank,k

∆E∗
req,k+1

patt,k = ppas,k−1 +
(
pk −ppas,k−1

) · Etank,k

∆E∗
req,k+1

.

(B.19)
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C Models

C.1 Impedance and Admittance Control

The following corresponds to Section 3.2.1.

Like in the examples of Section 3.1, a robot’s actuators are often effort (torque or force) con-
trolled and its sensors often measure flows (velocities or positions—from which velocities can
be calculated). Hence, it is often the case that the robot’s flow changes based on input efforts,
i.e. that the robot (plant) resembles an admittance (see Section A.2). Consequently, the loop
controller connected to the plant should receive flow input signals and return effort output
signals, i.e. resemble an impedance. Then, the sequence controller commanding the loop con-
troller should receive effort input signals and return flow output signals, i.e. resemble an admit-
tance. This scenario, in which a loop controller calculates an effort command (eloop) based on
the difference between a commanded sequence-control flow ( fsequence) and a feedback plant
flow ( fplant), is shown in Figure C.1 in block diagram and equivalent bond-graph representa-
tions.

Impedance
Z = e / f

Admittance
Y = f / e

fsequence eloop fplantAdmittance
Y = f / e

-

+

Loop Control PlantSequence Control

(a) Block diagram of control layers resembling an impedance or admittance.

0Sequence
Control

Loop
Control

Plant

(b) Bond-graph equivalent of Figure C.1a.

Figure C.1: Equivalent block-diagram and bond-graph representations of a system consisting of power-
connected sequence control admittance, loop-control impedance, and plant admittance.

In accordance with Figure C.1, the loop-control layer developed by RaM for RobMoSys (de-
scribed in Section 2.4) does resemble an impedance connected to an admittance plant.
To connect a sequence controller to this impedance loop-control layer, a straightforward
method would be to develop an energy-aware sequence-control layer that resembles an ad-
mittance and also uses a power port-based interface. However, following the good practises
in design (Section 2.1), for a sequence-control layer to be modular, compliant, and extensible,
it should not be limited to resembling admittance functionality only. Rather, an energy-aware
sequence-control layer would have to be developed such that it, depending on the system it is
implemented in, can function either as impedance or admittance.
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C.2 Design Layout

The following corresponds to Section 4.1.

Figure 4.2 shows the sequence-control layer design’s top view and Figure 4.3 shows the design’s
detailed architecture. A step in between these two design figures, is the design shown
in Figure C.2, which presents the global component and signal layout.

Supervisory
Control

Sequence Control

Loop
Control Robot

Setpoint
Generator

Energy
Estimator

Passivity
Layer

Energy Supervisor

Embedded
Control
Software

command

energy

Legend

feedback

other

Figure C.2: Layout of the Sequence-Control layer design.

C.3 Recommendations – Additional Signals

The following corresponds to Section 6.2.

Two new signals are recommended in Section 6.2. The first recommended new signal is to feed
back the passivity layer’s output command, setpointpas, to the setpoint generator (recommen-
ded in Section 6.2.2). The second recommended new signal is to feed back the passivity layer’s
energy output—the energy-tank level contained by signal tank—to the energy estimator (re-
commended in Section 6.2.3). Both are illustrated in Figure C.3.

Sequence Control

Setpoint
Generator

Passivity
Layer

Embedded
Control
Software

setpointpas

tank

Energy
Estimator

energy

Legend
feedback

Figure C.3: Recommended additional signals described in Section 6.2.
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D Implementation Details

D.1 Loop Control

The following corresponds to Section 4.2.1.

y

x

z

y
x

z
y

x

z

Ψ0

Ψee Ψsp

Figure D.1: Extension of Figure 3.4: illustrative placement of the inertial origin frame Ψ0, robot end-
effector frameΨee, and the setpoint frameΨsp. A virtual spring modelled by the loop controller connects
the robot end effector to the setpoint commanded by the sequence controller.

D.2 Interfaces

The following corresponds to Section 4.2.2.

The implemented interfaces described in Section 4.2.2 and shown in the UML class diagram
of Figure 4.9 provide port variables that are private (-) and port functions that are either pro-
tected (#) or public (+). Since the port variables are private to the interfaces, they are not directly
accessible to components that incorporate an interface, i.e. the setpoint generator has no dir-
ect access to the ‘inputCommand’ variable, for example. Instead, the port variables can only
be indirectly accessed through ‘getters’ and ‘setters’ (get- and set-functions, respectively). The
setters can be used to modify the value of a port variable. The getters can be used to retrieve the
value of a port variable. The purpose hereof is to ensure correct handling of the communicated
variables and prevent corruption due to (unintentional) misuse.

Public port functions are globally accessible for communication with external components.
For example, the setpoint generator can access the public setter ‘setInputCommand()’ of the
energy estimator. Protected port functions are only accessible to the component itself for in-
ternal usage. For example, the protected getter ‘getInputCommand()’ belonging to the energy
estimator is accessible for the energy estimator itself, but not for the setpoint generator (which
can only access its own ‘getInputCommand()’ function).

D.2.1 Control Interface

Based on Figure 4.10, consider the following example: the setpoint generator needs to transmit
a setpoint command (sp) to the energy estimator. This is possible, because both components
incorporate the control interface. There are two possible methods to transmit sp from the
setpoint generator to the energy estimator:

1. Consider that the setpoint generator has a pointer to the energy estimator:
ptrEnergyEst. The setpoint generator can write sp to the energy estimator by execut-
ing the following: ptrEnergyEst->setInputCommand(sp). Hereafter, port variable
inputCommand at the energy estimator contains the value of sp. Now, for the energy
estimator’s algorithm to access the setpoint and store it in a local variable, e.g. spInput,
it can call the following: spInput = this->getInputCommand(). The this-pointer
can also be omitted; it is merely included to clarify that the getInputCommand()

function is called locally.

2. Consider that the energy estimator has a pointer to the setpoint generator:
ptrSetpointGen. The setpoint generator can make sp available at its output by
executing the following: this->setOutputCommand(sp). Hereafter, the energy estim-
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ator can read sp from the setpoint generator and store it in a local variable, e.g. spInput,
by executing the following: spInput = ptrSetpointGen->getOutputCommand().

Both of these two methods are used in the implementation, depending on which component
has a pointer to another component. The setpoint generator, energy estimator, and passivity
layer have been implemented hierarchically. The setpoint generator has a pointer to both the
energy estimator and the passivity layer, the energy estimator has a pointer to the passivity
layer, and the passivity layer has no pointers.

The control-signal type defined in Listing 4.1 is based on the four physical-variable type defin-
itions in Listing D.1 below, which cover the physical quantities listed in Tables A.1 and A.2.

Listing D.1: Control-interface type definitions written in C++ of the four variables of state consist-
ing of physical quantities listed in Tables A.1 and A.2. Note that force, momentum, velocity and
displacement do not have a pre-determined size, because their sizes depends on the (unknown)
amount of robot joints.

1 // Generalised force (effort)
2 struct eType {
3 Matrix6x1 wrench{ Matrix6x1::Zero() };
4 Eigen::VectorXd force{ Matrix2x1::Zero() };
5 };
6

7 // Generalised momentum
8 struct pType {
9 Eigen::VectorXd momentum{ Matrix2x1::Zero() };

10 };
11

12 // Generalised velocity (flow)
13 struct fType {
14 Matrix6x1 twist{ Matrix6x1::Zero() };
15 Eigen::VectorXd velocity{ Matrix2x1::Zero() };
16 };
17

18 // Generalised displacement
19 struct qType {
20 Matrix4x4 Hmatrix{ Matrix4x4::Identity() };
21 Eigen::VectorXd displacement{ Matrix2x1::Zero() };
22 };

In Listing D.1, the Matrix2x1, Matrix6x1 and Matrix4x4 represent a 2×1 vector, 6×1 vector
and 4×4 square matrix, respectively. These are defined using the Eigen1 package as
typedef Eigen::Matrix<double,2,1> Matrix2x1,
typedef Eigen::Matrix<double,6,1> Matrix6x1 and
typedef Eigen::Matrix<double,4,4> Matrix4x4, respectively. TheMatrix2x1 is used
to provide at least some initialisation to the vectors whose size depend on the amount of robot
joints.

D.3 Supervisory Controller

The following corresponds to Section 4.2.4.

The implemented supervisory controller switches its output task between two targets of differ-
ent x-position, A and B, in the form of an H-matrix. The robot arm has a length of 1.1976 m
in fully extended upright position. The robot’s bottom section has a height of approximately

1Eigen website: http://eigen.tuxfamily.org/
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0.4 m, leaving about 1.1976−0.4 ≈ 0.8 m of the robot’s body that can be extended into the xy-
plane. Targets A and B are set at xyz-coordinates of [0.55,0.55,0.4] m and [−0.55,0.55,0.4] m,
respectively. Hence, both targets are at a Euclidean xy-distance of 0.7778 m from the origin,
falling within the robot’s reach.

D.4 Energy Estimator

The following corresponds to Section 4.2.6.

To find the best-matching H-matrix, the energy estimator applies a weighting function. It
checks which of the 16 elements in the 4x4 setpoint H-matrix are being updated and assigns
a weight to the updated elements. Hence, in this project, the energy estimator assigns a weight
to the x-coordinate when comparing the robot’s real H-matrix to the budget-generation H-
matrices in logH. This way, if the robot would experience different rotations during traject-
ory performance, the energy estimator keeps providing its budgets mainly based on the robot’s
x-axis position.

The energy estimator does not check all of the rows in logH for every control iteration. Consider,
for example, that during a control iteration it is found that the best-matching H-matrix is at
row-index 50. Then, at the next control iteration only a certain range of H-matrices around
that row index is checked, e.g. rows 30 to 70. This is a more efficient approach than checking
every single row in logH. It is also a valid approach, because the simulated robot represents a
physical system that cannot make instantaneous (discrete) jumps in pose. One would expect
that, without a virtual wall, both simulations are exactly the same. However, because ROS is
non real-time, simulations that are repeated in exactly the same conditions do not have the
same outcome (due to time-dependencies of components). Therefore, a range of rows needs
to be checked, because H-matrices in logH are close to, but different from the H-matrices in the
normal simulation.

The approach of checking H-matrices only for a certain range of rows in logH does bring for-
ward a new problem. Because the budget-generation and normal simulations are not exactly
the same, local minima can emerge when searching for the best-matching H-matrix in logH. If
the range of rows that are being checked is not large enough to cover the valley in which a local
minimum lies, the energy estimator gets stuck at that local minimum. This issue has been over-
come by applying a moving average (low-pass) filter over the H-matrices in logH at the start of
the normal simulation (to smooth out local minima) and by using a line-number range of (em-
pirically determined) sufficient size. However, in case the energy estimator does get stuck, it
also keeps track of how many iterations it has been at the same row index. If it has remained at
the same row index for a certain percentage of the total amount of rows, it will jump forward
that percentage of rows in a attempt to recover row-index detection.
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E Instructions

The following corresponds to Section 4.2.6.

As described in Section 4.2.6, two types of simulation have been implemented: a normal simu-
lation and a budget-generation simulation. They can be ran as follows:

• To run the normal simulation (including the virtual wall), execute the following1:
$ roslaunch sequence_control esca_demo.launch

to remove the virtual wall, add wall:=false

• To run the budget-generation simulation, execute the following:
$ roslaunch sequence_control esca_demo.launch budgetGeneration:=true

Entering ctrl+c terminates a simulation.

For this serial simulation approach to work, the budget-generation simulation needs to run
prior to the normal simulation (if energy budgets have not already been logged). The budget-
generation simulation only needs to run once. The normal simulation can be executed as many
times as desired. To obtain accurate energy budgets, there should be no developer-defined
differences between both simulations other than the virtual wall (i.e. no differences in targets
provided by the supervisory controller, for example). Otherwise, the energy-budget estimation
based on H-matrix comparison will not function accurately.

Note: the system’s C++ code has been extensively documented in Doxygen. Refer to this docu-
mentation for specific details (e.g. parameter tuning) of the system’s implementation.

1All programming files in this project have been marked by the prefix ‘esca’, which stands for Energy-aware
Sequence-Control Architecture. This prefix is intended to easily distinguish files related to this project among files
of other projects.
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F Setup

The following corresponds to Section 5.1.

The setup used for the experiments described in Section 5.1 is:

• Hardware: Lenovo ThinkPad P1 Gen 2 (20QUS), i7-9750H @ 2.60 GHz, 16 GB RAM, Win-
dows 10.
Note: ‘best performance’ mode is needed to extract proper simulation data.

• Virtual machine software: Oracle VM VirtualBox1 v6.1.2.
Settings:

– Ubuntu2 16.04.
Note: the simulation is not yet functional on newer Ubuntu versions.

– 6 CPUs.

– 11.262 GB memory.

– 128 MB video memory.

– 30 GB storage.
Note: 30 GB storage has been used, but (at least) 40 GB storage is recommendable for
future work.

• Middleware: ROS3 Kinetic Kame.
Note: this project’s implementation may not be directly compatible with newer ROS ver-
sions, because the implementation has been built on the work by Lazar (2019), which con-
tains dependencies that are not compatible with newer ROS versions.

• Simulator: Gazebo4 7.16.

1Oracle VM VirtualBox website: https://www.virtualbox.org/
2Ubuntu website: https://ubuntu.com/
3ROS website: https://www.ros.org/
4Gazebo website: http://gazebosim.org/
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