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Abstract

In this research we investigate how to find local clusters in large networks
based on three measures: conductance, number of triangles and transitivity.
We introduce adaptations of the HyperBall algorithm [10], based on the
idea of HyperLogLog counters [15] to find these measures. First of all, we
find the conductance of ball subgraphs using the HyperBall algorithm. We
also introduce a method to locally count triangles in large networks, where
we find the triangle count of ball subgraphs around every node simultane-
ously. This is useful to identify where in a graph high densities of triangles
can be found. Moreover, we introduce a method to find the ball subgraph
transitivity in large networks and find clustered groups of nodes in these
networks. Lastly, we show methods of extending the HyperBall algorithm
to find these three measures in directed, weighted or temporal graphs. The
three measures (conductance, number of triangles and transitivity) iden-
tify clusters in graphs themselves, but also turn out to be good seed sets
for exact community detection algorithms as PageRank-Nibble. We tested
the new algorithms on synthetic graphs generated using the LFR model [23]
and real-life graphs. The generated graphs behave different than the real-life
large networks, and in both kinds of networks the three introduced measures
are promising to find clusters.

Keywords: HyperLogLog, Approximate counting, Conductance, Ball sub-
graphs, Triangles, Clusters, Community detection, Transitivity
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1 | Problem statement

“Networks are everywhere, from the internet, to social networks, and the genetic networks
that determine our biological existence.” – Albert-László Barabási

1.1 Introduction

Network science is a topic that has interested scientists for decades: everyone wants to uncover
the hidden structures in networks around us to learn more about large networks in order to predict
and control phenomena in these networks. Recent developments show this very well: when knowing
more about virus spreading in large networks, pandemics can be detected earlier or hotspots can be
identified. A lot of progress has already been made in finding interesting properties of networks, but
since networks are growing and growing and becoming a larger part of people’s lives, this topic keeps
bringing up new questions.

In the last couple of years, community detection has gradually become one of the most popular topics
in network science. For a lot of disciplines it is useful to find communities: a set of nodes with similar
properties. For example, finding communities can be interesting to find similar products in a web shop
or to find groups of people on social media. A way to find those communities is by finding clustered
groups of nodes: groups of nodes that have a lot of connections within that group in comparison
to the outside of that group. One of the challenges in finding these clusters is how to measure the
quality, for which many different measures are developed.

Figure 1.1: Example of a graph with clusters
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CHAPTER 1. PROBLEM STATEMENT

A measure that is commonly used to measure the quality of clusters in a graph is the conductance of
a cluster. The conductance gives a ratio of how many edges there are connected to nodes outside the
cluster relative to edges connected with nodes inside the cluster. Since conductance is based on the
min-cut[39] of a graph, finding clusters using conductance is called a cut-based method. According
to Schaeffer [34], using conductance as a measure to find communities is one of the most useful and
important cut-based methods that exist. Finding the conductance of ball subgraphs Sr(v): graphs
that are generated by the nodes within radius r of node v, can be useful on its own to find clustered
balls around a node, but the minimal conductance ball can also be used as a seed set for other more
time- and memory-consuming algorithms such as PageRank Nibble [4] or the Multi Walker Chain
model [8].

Another measure that can be used to find a clustered group of nodes in a graph is the number of
triangles in that subgraph. A triangle in a graph is the most clustered subgraph consisting of three
nodes, since there cannot be more than three edges between three nodes. In social graphs, there is
an abundance of triangles since it is likely that friends of your friends are also your friends. Moreover,
finding triangles on itself already has interesting applications in for example biological networks [40],
spam detection [7] or link recommendations [41]. Finding clustered sets can be done by directly
counting the number of triangles in a graph, or by finding the transitivity of a (sub)graph, which
is the ratio of triangles versus wedges in a graph and therefore tells us how clustered this graph is
(Figure 1.2).

1

2 3

1

2 3

Triangle Wedge

Figure 1.2: Example of a triangle and a wedge. It can be noticed that a triangle consists of three
wedges.

Finding these clusters is not a trivial task when looking at the size of the graphs: scientists want to
find clusters in graphs that are becoming larger and larger, which makes it impossible to store graphs
in a reasonable amount of memory and to find these clusters in a reasonable amount of time. Since
this makes it impossible to count the number of nodes, edges or triangles in an exact way, we need
to process these large networks in a different way and resort to approximate counting. Instead of
deterministically finding all properties in a graph, it is possible to make an approximation in less time
and with less memory.

An example of approximate counting is given in [15], where cardinalities in large streams of data are
found using HyperLogLog counters. The goal of these HyperLogLog counters is to probabilistically
count the number of distinct elements in large streams of data, such as the number of unique visitors
on a web page or the number of different genomes in biological data. Since these counters give
an accurate estimate of large cardinalities, and moreover are memory-efficient, these HyperLogLog
counters are proven to be very useful.

A couple years later, Boldi and Vigna [9] found out that these HyperLogLog counters could also be
used to find centrality measures in large graphs. They adapted the HyperLogLog algorithm into the
HyperBall algorithm, which counts the number of nodes in a ball subgraph Sr(v) for every node v and
every radius r. Last year, a bachelor’s thesis about HyperBall expanded the idea of counting nodes
in a ball subgraph to counting edges in a ball subgraph, which was introduced as the HyperEdgeball
algorithm [19].
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CHAPTER 1. PROBLEM STATEMENT

In this thesis, we find clustered subgraphs using the method of HyperLogLog counters in three ways:
by taking the conductance of a subgraph as a measure for good communities and by looking into the
number of triangles and wedges in order to find clustered ball subgraphs around a node based on the
number of triangles or based on the transitivity.

1.2 Contribution

The contribution of this work is divided into three categories. First of all, we introduce new appli-
cations of the HyperBall algorithm in order to count triangles and wedges which makes it possible
to find the transitivity in ball subgraphs. We introduce the out-edgeball of a node, which consists
of all edges in an undirected graph as directed edges out of a node, in order to be able to use the
HyperBall algorithm to estimate conductance as stated in Theorem 2 and Theorem 3. We also find
error bounds for the triangle, transitivity and conductance estimator by using Chebyshev’s inequality
and Vysochanskij-Petunin’s inequality.

Moreover, by using the HyperBall algorithm to find the conductance and transitivity or to count the
number of triangles in a graph, we can find these three measures in all ball subgraphs around all
nodes in a graph at the same time, which also shows us where high densities of nodes and edges are
located.

The last contribution of this thesis is that we show that the nodes that have a small conductance in
their corresponding ball subgraphs, a large number of triangles or a high transitivity, are promising
seed sets for algorithms as PageRank-Nibble and the Multi Walker Chain model in order to easily find
communities in large networks. These seed sets work better than using a group of high-degree nodes
or a random set of nodes as seed sets.

1.3 Notation and definitions

In this thesis, we will use the following notation: let G = (V,E) be a graph with n = |V | nodes
and m = |E| edges. Moreover, we define the neighbourhood N(v) of node v as the set of all nodes
incident to node v.

Definition 1 (Nodeball). The nodeball Br(v) consists of every node in a ball of radius r around node
v. Let B0(v) = {v}, and for r > 1:

Br(v) =
⋃

w:{v,w}∈E

Br−1(v) ∪Br−1(w).

Definition 2 (Edgeball). The edgeball E0(v) consists of every edge incident to node v. Then, for
r > 1:

Er(v) =
⋃

w:{v,w}∈E

Er−1(v) ∪ Er−1(w).

Definition 3 (Triangle ball). The triangle ball ∆0(v) consists of every triangle that contains node v.
Then, for r > 1:

∆r(v) =
⋃

w:{v,w}∈E

∆r−1(w) ∪∆r(v).

Definition 4 (Ball subgraph). The ball subgraph Sr(v) with center node v and radius r is a subgraph
of G induced by the nodes in Br(v).

These definitions are depicted in Figure 1.3. In Table A.1 in the appendix, we made an overview of
the notation that we have used throughout this thesis.
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CHAPTER 1. PROBLEM STATEMENT
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Figure 1.3: Example of a nodeball, edgeball, triangle ball and ball subgraph around node 1 in an
undirected graph

1.4 Structure of thesis

The structure of this thesis is as follows. In Chapter 2 we introduce a method of counting nodes and
edges in large graphs using HyperLogLog counters. We explain the idea behind these HyperLogLog
counters, we introduce the HyperBall and HyperEdgeball algorithms and show the error bounds of
the cardinality estimate in Theorem 1. In Chapter 3, we look into clustering by using conductance.
We elaborate on two algorithms that use conductance as a measure for community detection and
we introduce and prove two theorems that help us express conductance in terms of cardinalities that
we can find with the HyperBall algorithm. We introduce a new initialisation for the HyperBall and
HyperEdgeball algorithms in order to find an estimate for the conductance and we find the error
bounds of this estimator. Then, in Chapter 4, we focus on finding clusters using triangle counting
and we discuss several algorithms for exact and approximate triangle counting. We introduce another
adaptation of the HyperBall algorithm that finds an estimate for the number of triangles in ball
subgraphs and we again discuss error bounds of this estimator. In this chapter we also introduce a
way of finding transitivity using the HyperBall algorithm. Chapter 5 is about the implementation of
the algorithms and the numerical results. We show the error bounds of the estimators for conductance,
number of triangles, transitivity and we compare these results to the numerical results found using
real life graphs. Lastly, in Chapter 6, we elaborate on the main findings of this research and we reflect
on the research.
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2 | Approximate probabilistic
counting in graphs

In this chapter we explain how we can count the number of nodes and edges in a graph using
HyperLogLog counters and we give in introduction of the HyperLogLog counters and the HyperBall
and HyperEdgeball algorithm. The HyperBall algorithm, introduced in [10], gives an estimate of
the size of the nodeball Br(v). Similarly, the HyperEdgeball algorithm which was introduced by [19]
estimates the size of the edgeball Er(v). These algorithms use HyperLogLog counters to estimate the
number of distinct elements in this node- or edgeball. In the following sections, we explain how these
HyperLogLog counters work, we give the error bounds of the estimated cardinality and we discuss
how the HyperBall and HyperEdgeball algorithm work in more detail.

2.1 HyperLogLog

The HyperLogLog algorithm is a probabilistic counting technique that estimates the cardinality of a
large dataset by using HyperLogLog counters. A big advantage of this algorithm is that it drastically
reduces the memory that is needed to count the cardinality of large datasets and therefore is very useful
for these datasets where it is impossible to calculate the cardinality of a set deterministically.

The HyperLogLog algorithm uses a hash function h : D → {0, 1}∞ which assigns every element of
the dataset a binary string. The hash function is defined in such a way that it can be assumed that
every bit of the hashed value is independent and has a probability of 1/2 of occurring [15]. This
observation is important since this gives us the chance to use the principle of bit-pattern observables:
a certain bit-pattern at for example the beginning of the binary string has a certain probability of
happening and if we see that certain pattern, we can give an estimate of the cardinality of the observed
set.

The pseudocode of the HyperLogLog algorithm is given in Algorithm 1. The input of this algorithm is
a multiset M of data items: a stream of elements that are read in order of occurrence. The algorithm
initialises an empty counter with p = 2b registers, where every register corresponds to an entry of the
counter. The more registers we use, the more precise the cardinality estimate will be.
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CHAPTER 2. APPROXIMATE PROBABILISTIC COUNTING IN GRAPHS

Algorithm 1 The HyperLogLog algorithm as described in [15], which approximates the cardinality of
a data stream.
1: Let hb(x) be the first b bits of the hashed value of element x
2: Let hb(x) be the other part of the hashed value of element x
3: Let ρ(hb(x)) be the position of the leftmost 1-bit (ρ(001 · · · ) = 3).
4:

5: initialise a collection of p = 2b registers, M [1], . . . ,M [p], to−∞.
6:

7: function Add(M :counter, x: item)
8: i← hb(x)
9: M [i]← max{M [i], ρ(hb(x))}

10: end function
11:

12: function Size(M : counter)

13: Z ←
(∑p−1

j=0 2−M [j]
)−1

14: E ← αpp
2Z

15: return E
16: end function
17:

18: for each x ∈M do
19: Add(M,x)
20: end for
21:

22: return Size(M)

The HyperLogLog algorithm approximates the size E of the multiset M by using the following
formula:

E :=
αpp

2∑p
j=1 2−M [j]

, with αp :=

(
p

∫ ∞
0

(
log2

(2 + u

1 + u

))p
du

)−1

(2.1)

The expectation and variance of this estimator are given in Theorem 1 of [15]:

Theorem 1. Let the algorithm Hyperloglog be applied to an ideal multiset of (unknown) cardi-
nality n, using p ≥ 3 registers, and let E be the resulting cardinality estimate.

(i) The estimate E is asymptotically almost unbiased in the sense that, as n→∞,

1

n
E(E) = 1 + δ1(n) + o(1), where |δ1(n)| < 5 · 10−5 as soon as p ≥ 24.

(ii) The standard error defined as 1
n

√
Var(E) satisfies as n→∞,

1

n

√
Var(E) =

βp√
p

+ δ2(n) + o(1), where |δ2(n)| < 5 · 10−4 as soon as p ≥ 24,

the constants βp being bounded, with β16 = 1.106, β32 = 1.070, β64 = 1.054, β128 = 1.046,

and β∞ =
√

3 log(2)− 1 ≈ 1.03896.

In (2.1), αp is a constant that will correct the bias in the estimation. Since this algorithm is designed
for large datasets, the algorithm does not work well for smaller datasets. When having smaller
datasets, not all registers will be filled and therefore some registers still have the value −∞ after
execution of the algorithm. This will give large errors for small datasets. Moreover, for extremely
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CHAPTER 2. APPROXIMATE PROBABILISTIC COUNTING IN GRAPHS

large datasets hash collisions become more and more likely which will also badly influence the quality
of the estimation. To counteract for these facts the authors of [15] propose a slightly changed
algorithm, described in Algorithm 2.

Algorithm 2 The improved HyperLogLog algorithm as described in [15], with bias correction for
small and very large cardinalities.

1: Let hb(x) be the first b bits of the hashed value of element x
2: Let hb(x) be the other part of the hashed value of element x
3: Let ρ(hb(x)) be the position of the leftmost 1-bit (ρ(001 · · · ) = 3).
4:

5: initialise a collection of p = 2b registers, M [1], . . . ,M [p], to 0.
6:

7: function Add(M :counter, x: item)
8: i← hb(x)
9: M [i]← max{M [i], ρ(hb(x))}

10: end function
11:

12: function Size(M : counter)

13: Z ←
(∑p−1

j=0 2−M [j]
)−1

14: E ← αpp
2Z

15: return E
16: end function
17:

18: function LinearCounting(p, V )
19: return p log(p/V )
20: end function
21:

22: for each x ∈M do . start of the algorithm
23: Add(M,x)
24: end for
25:

26: E := Size(M)
27: if E ≤ 5/2p then
28: let V be the number of registers equal to 0
29: if V 6= 0 then
30: E∗ := LinearCounting(p, V ) . small range corrections
31: else
32: E∗ := E
33: end if
34: else if E ≤ 1

32232 then
35: E∗ := E . intermediate range - no correction
36: else
37: E∗ := −232 log(1− E/232) . large range correction
38: end if
39:

40: return E∗

In this version, the counters are initialised to zero instead of −∞ in line 5. Moreover, for small
datasets, LinearCounting [44] is used and for large datasets the probability for a hash collision
is taken into account. With LinearCounting, instead of using all registers of the HyperLogLog
counter, only the nonzero registers are taken into account to find the cardinality of the set, since it is
not likely that all registers of the counter are visited when the cardinality of the set is small.
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CHAPTER 2. APPROXIMATE PROBABILISTIC COUNTING IN GRAPHS

2.2 HyperBall

In 2013, Boldi and Vigna introduced the HyperBall algorithm [10]. This algorithm estimates the size
of the ball around a node by using HyperLogLog counters [15]. The algorithm is an adaptation of
the HyperANF algorithm [9], what is based on the fact that the nodeball around node v with radius
r Br(v) can be found iteratively (Definition 1 ).

Algorithm 3 The HyperBall algorithm as described in [10], which returns an estimation of the ball
cardinality for each node. The functions Add and Size of Algorithm 2 are used.

1: c[−], an array of n HyperLogLog counters
2:

3: function Union(M : counter, N : counter)
4: for each i < p do
5: M [i]← max{M [i], N [i]}
6: end for
7: end function
8:

9: for each v ∈ V do . Initialisation
10: Add(c[v], v)
11: end for
12:

13: r ← 0
14: repeat
15: for each v ∈ V do
16: a← c[v]
17: for each w ∈ N(v) do
18: a→ Union(c[w], a)
19: end for
20: write 〈v, a〉 to disk, which estimates |Br+1(v)|
21: end for
22: update the array c[−] with the new 〈v, a〉 pairs
23: r ← r + 1
24: until no counter changes its value

The HyperBall algorithm uses one HyperLogLog counter per node and for each iteration, the counters
of the neighbours of this node are added to the node’s own counter. After each iteration r, the size
of this counter is calculated, which equals |B̂r+1(v)|.

10



CHAPTER 2. APPROXIMATE PROBABILISTIC COUNTING IN GRAPHS

2.3 HyperEdgeball

Instead of counting nodes, it is also possible to count the edges around a node. This adaptation of
HyperBall is called HyperEdgeball [19], which gives an approximation of the number of edges around

a node after r iterations: |Êr+1(v)|. The only thing that changes in the algorithm is the initialisation
phase (Algorithm 3, lines 9 - 11), since we are now counting edges instead of nodes.

Algorithm 4 The initialisation for the HyperEdgeball algorithm as described in [19], which returns
an estimation of the edgeball cardinality |Er(v)| for each node after running the HyperBall algorithm.
Note: when we use directed graphs, we can use directed edges instead of undirected ones.

1: c[−], an array of n HyperLogLog counters
2:

3: for each v ∈ V do . Initialisation
4: for each e ∈ {{v, w} ∈ E} do
5: Add(c[v], w)
6: end for
7: write 〈v, c[v]〉 to disk, which estimates |E0(v)|
8: end for

2.4 Directed, weighted and temporal graphs

The HyperBall algorithm can easily be extended in order to work with directed or weighted graphs.
For directed graphs, a node or edge can be added to the node counter or edge counter when this
node or edge is reachable by an edge in the directed graph. This does not change the algorithm, as
the underlying idea stays the same.

As described in [10], the HyperBall algorithm can also work for weighted graphs. However, we can
only use integer weights. For every node with weight w we make w replicas of that node. When
iterating over nodes and its neighbours, every replica of this nodes gets added to the counter. This
means that we treat every replica as a new node or edge. Important in this case is that for every
replica, a different hash is used, so it will usually be stored in a different register in the HyperLogLog
counter. The same will work for weighted edges, since then we make replica’s of edges. When using
this method for weighted graphs, we need to keep the number of registers in a HyperLogLog counter
in mind since adding weights to nodes or edges means that we count more nodes or edges which
results in higher cardinalities.

In [5] a method for counting nodes in temporal graphs is introduced. In this method, the authors
transform the temporal graph to an event graph, where an event is a group of nodes that is available
at a certain time. There is a directed link between two events if there is a link between two nodes in
these two events. By using this algorithm, which is based on HyperLogLog counters, it is possible to
find the number of nodes available at certain time spans.
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3 | Conductance

In this chapter, we look into the problem of finding clusters using conductance. We introduce two
theorems that make it possible to find the conductance of a ball subgraph by using the HyperEdgeball
algorithm. Moreover, we extend the HyperEdgeball algorithm in order to estimate the conductance
of a ball subgraph and we discuss the error bounds of this estimator.

3.1 Community detection

A community in a graph is a group of nodes that is very clustered. As said before, finding these
communities can be very useful to for example recommend similar articles to customers in a web shop
or to identify social groups in large social networks. However, the quality of a cluster can be defined
in many ways, which can give us different communities based on the measure that we use. There are
a lot of different measures that can be used to qualify these communities, for example the distance
between nodes in a cluster, the adjacency of nodes in a cluster, the connectivity of a cluster, the
density of a cluster or the cut size, as described in [34]. This survey defines the minimal conductance
set, found by calculating the conductance of a subgraph, as ‘the most important cut-based measure
in the context of clustering’.

Definition 5 (Conductance). For a graph G = (V,E) with n = |V | and m = |E|, the conductance
of a subgraph S ⊂ G is:

φ(S) =
|δ(S)|

min (vol(S), 2m− vol(S))
,

where δ(S) = {{x, y} ∈ E|x ∈ S, y /∈ S} and the volume of S is the sum of the degrees of the nodes
in subgraph S.

3.1.1 Conductance-based local clustering methods

In this section we discuss two algorithms that try to find communities by using minimal conductance
as a measure. These algorithms are classified as local graph clustering methods, which means that
the clusters are found by starting from a single node in the graph. Contrary to global graph clustering,
this costs less memory since only a small part of the graph is explored at once. Since methods for
global graph clustering use the information of the whole graph to find all clusters in that graph at
once, this is unfeasible for large graphs. There are many more local graph clustering algorithms [34],
but we chose the PageRank-Nibble algorithm and the Multi Walker Chain Model since these are two
commonly used methods that use seed sets to find minimal conductance sets.

PageRank-Nibble

Andersen, Chung and Lang presented an algorithm for local graph partitioning by using PageRank
vectors [4] which they called PageRank-Nibble, based on Nibble from [38]. The general idea is

12



CHAPTER 3. CONDUCTANCE

to find communities by starting in a node and finding a set of nodes containing this node that has
low conductance by using PageRank vectors. They use a starting vector s consisting of zeros except
for a 1 on the index of the starting node, also called seed, and then solve the linear system

prα(s) = αs+ (1− α)prα(s)W,

where α ∈ (0, 1] is the teleport probability and W = 1
2 (I+D−1A) is the lazy random walk transition

matrix as defined in [4]. When having found the PageRank vectors of the seed node, they add the
node to the minimal conductance set in order of importance in the PageRank vector until the minimal
conductance set is found.

However, it is not possible to find the PageRank vector in an exact way in a reasonable amount of time,
and therefore an approximation of the PageRank vector is made by using another PageRank vector
prα(s−r), where r is nonnegative and r(v) ≤ εd(v) for every v ∈ V (ε-approximate PageRank vector,
introduced by [21]). They compute this vector r and p = prα(s− r) by the ApproximatePR(s, α, ε)-
algorithm, where they start with p = 0 and r = s and look at all the vectors one by one and put
some probability from r to p whenever r(v) ≥ εd(v). This approximate algorithm is used since this
has a running time of O

(
1
εα

)
and a smaller upper bound for the support of p in comparison to the

exact PageRank algorithm.

The PageRank-Nibble algorithm gives the best community around a seed node, so in order to find
all communities in a graph, all nodes need to be tested separately in the PageRank-Nibble algorithm.
Therefore, it is useful to pre-select promising nodes that are likely to be in the center of a community.
For the PageRank-Nibble algorithm, random starting nodes are used until all communities are found.
Another method of selecting starting nodes (seeds) is described in [16], where the authors discovered
that in graphs with a large global clustering coefficient and a heavy-tailed degree distribution, the
vertex neighbourhoods with good conductance scores are a good seed set for the PageRank-Nibble
algorithm. Since most large social networks satisfy those two conditions, finding the conductance of
ball subgraphs of radius 1, the vertex neighbourhood, could be enough to find communities in these
graphs.

Multi Walker Chain model

Bian, Ni et al. also presented a local graph partitioning algorithm, the Multi Walker Chain model
(MWC, [8]) which is based on PageRank-Nibble. Instead of only 1 starting node they use k walkers.
These walkers all influence each other. The numerical experiments in [8] show that the MWC model
performed better based on the F-score and the variation of the F-score as defined in [8]. A reason for
this improvement of the F-score is that the walker has less chance of going outside the community
(Figure 1 and 2 of [8]) since it gets averaged by multiple walkers. In each iteration τ , all walkers

walk one step and after the iteration the node visiting probability vector of the walkers x
(τ)
k gets

updated: {
x0
k = 1 for the query node

x
(τ)
k = αP tx

(τ)
k + (1− α)v

(τ)
k ,

where v
(τ)
k is the influential vector, which indicates which nodes are influencing the node that we are

investigating. When the nodes with highest probability are found, the minimal conductance set can
be found by using the same method as stated in [4].
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3.1.2 Community detection in directed graphs

When working with directed graphs instead of undirected graphs, it is also possible to find (directed)
communities, as described in [27]. Communities in directed graphs can be useful to for example
find the predator-prey relationships in a biological network [12], or to cluster disciplines in citation
networks where it might be the case that scientists in a certain expertise field cite to publications in
various different expertise fields, but vice versa this is not the case [33]. The authors of [27] describe
different ways of finding communities in directed networks, for example by transforming the directed
network to an undirected network or to make use of the directedness of edges to find motifs that
indicate communities. Moreover, they describe the PageRank-Nibble algorithm for directed graphs,
where conductance is defined as follows:

Definition 6 (Directed conductance). For a graph G = (V,E) with n = |V | and m = |E|, the
conductance of a subgraph S ⊂ G is:

φ(S) =
|δ±(S)|

min (vol(S), 2m− vol(S))
,

where δ±(S) = {(x, y) ∈ E|x ∈ S, y /∈ S} and the volume of S is the sum of the degrees of the
nodes in subgraph S.

The only change with respect to Definition 5 is that we use a directed edge boundary instead of an
undirected one.

3.2 Conductance using HyperBall

We can simplify Definition 5 since in the graphs that we are going to analyse the volume of the
subgraph is in general much smaller than the volume of its complement. Therefore, we will use the
following definition for conductance in the graphs that we use in the rest of this thesis:

φ
(
Sr(v)

)
=
|δ
(
Sr(v)

)
|

vol
(
Sr(v)

) . (3.1)

Our goal is to find expressions for the numerator and the denominator of (3.1) in terms of quantities
that we can find with the HyperBall algorithm. In order to do so, we transform our (undirected) graph
into a directed variant of the graph where every undirected edge becomes two directed edges:

Definition 7 (Out-edgeball). The out-edgeball with radius r around node v is defined as follows:

E−r (v) = {(x, y) ∈ E
∣∣x ∈ Br(v)}.

Similarly, we can also define an in-edgeball:

Definition 8 (In-edgeball). The in-edgeball with radius r around node v is defined as follows:

E+
r (v) = {(x, y) ∈ E

∣∣y ∈ Br(v)}.

The different kinds of edgeballs are illustrated in Figure 3.1. For the in- and out-edgeball it holds
that when an edge is a boundary between a node inside and a node outside the ball of radius r, this
edge is only counted once. All other edges are counted twice because both nodes are in the nodeball
Br(v).

In order to find the edge boundary of a ball subgraph, we can compare the number of edges in the
directed out-edgeball to the number of edges in the undirected edgeball, since it can be seen in Figure
3.1 that we count every edge in the directed out-edgeball twice, except for the edges in the edge
boundary. This leads to two theorems:

14
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(a) The edgeball E2(1)

1
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3

7

4

5

8

6

(b) The in-edgeball E+
2 (1)

1

2

3

7

4

5

8

6

(c) The out-edgeball E−
2 (1)

Figure 3.1: Three methods for counting edges in an undirected graph.

Theorem 2 (Size of the edge boundary of a ball subgraph). For an undirected ball subgraph Sr(v)
the size of its edge boundary, |δ

(
Sr(v)

)
|, is given by

|δ
(
Sr(v)

)
| = 2|Er(v)| − |E−r (v)|,

where |Er(v)| is the size of the edgeball around node v with radius r and |E−r (v)| is the size of the
directed out-edgeball around node v with radius r.

To prove this theorem, we first need an extra definition:

Definition 9 (In-out-edgeball). The in-out-edgeball with radius r around node v is defined as follows:

E±r (v) = {(x, y) ∈ E
∣∣x ∈ Br(v) ∪ y ∈ Br(v)}.

Proof of Theorem 3. We will show that the edge boundary can be written in terms of the undirected
edgeball and the directed out-edgeball. The idea behind this proof is that the edge boundary is equal
to the difference between the out-edge ball and the in-edgeball, since the only difference between the
out-edgeball and the in-edgeball are the edges in the edge boundary (Figure 3.1).

Since we are working with directed edges, we use the definition of the directed edge boundary, as
stated in Definition 6 and will show that the cardinality of the directed edge boundary is equal to the
cardinality of the undirected edge boundary afterwards.

Every node in the ball subgraph Sr(v) is contained in the nodeball with radius r around node v.
Therefore, we can write the edge boundary in terms of this nodeball:

δ±
(
Sr(v)

)
=
{

(x, y) ∈ E
∣∣x ∈ V (Sr(v)

)
, y /∈ V

(
Sr(v)

)}
=
{

(x, y) ∈ E
∣∣x ∈ Br(v), y /∈ Br(v)

}
. (3.2)

When a node x is in the nodeball Br(v), this means that by definition every edge (x, y) ∈ E is
contained in the out-edgeball E−r (v). Similarly, it is true by definition that for a node y ∈ Br(v),
every edge (x, y) ∈ E is contained in the in-edgeball E+

r (v):

x ∈ Br(v) ⇐⇒ (x, y) ∈ E−r (v),

y ∈ Br(v) ⇐⇒ (x, y) ∈ E+
r (v),

y /∈ Br(v) ⇐⇒ (x, y) /∈ E+
r (v),

Now, we can rewrite (3.2) in terms of the in- and out-edgeball:

δ±
(
Sr(v)

)
=
{

(x, y) ∈ E
∣∣ (x, y) ∈ E−r (v), (x, y) /∈ E+

r (v)
}

=
{

(x, y) ∈ E
∣∣ (x, y) ∈ E−r (v)

}
\
{

(x, y) ∈ E
∣∣ (x, y) ∈ E+

r (v)
}

= E−r (v)\E+
r (v). (3.3)
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By Definition 9, it follows that can be seen that E±r (v) = E−r (v) ∪ E+
r (v), which means that (3.3)

can be written as:

δ±
(
Sr(v)

)
=
(
E−r (v) ∪ E+

r (v)
)
\E+

r (v)

= E±r (v)\E+
r (v).

When we use cardinalities instead of sets, the size of the directed edge boundary is as follows:

|δ±
(
Sr(v)

)
| = |E±r (v)\E+

r (v)|
= |E±r (v)| − |E+

r (v)|,

where the second equality holds because E+
r (v) ⊆ E±r (v). The size of the in-out-edgeball |E±r (v)|

is equal to 2|Er(v)|, since in E±r (v) all edges of the undirected edgeball are counted twice and
therefore,

|δ±
(
Sr(v)

)
| = |E±r (v)| − |E+

r (v)| = 2|Er(v)| − |E+
r (v)|,

However, since we have used the directed edge boundary in this proof, we still need to show that
the size of the directed edge boundary is equal to the size of the (undirected) edge boundary. By
definition, the directed edge boundary of ball subgraph Sr(v) contains every edge between a node
inside the nodeball Br(v) and a node outside the nodeball Br(v) exactly once. Since the undirected
edge boundary also contains every edge between a node inside and a node outside the ball subgraph
Sr(v) once, the cardinalities of these two kinds of edge boundaries are the same and therefore:

|δ
(
Sr(v)

)
| = |δ±

(
Sr(v)

)
| = 2|Er(v)| − |E−r (v)|,

which concludes the proof. �

The next theorem we introduce makes it possible to express the volume of the ball subgraph Sr(v)
in terms of the out-edgeball:

Theorem 3. For a ball subgraph Sr(v), the volume of Sr(v) is equal to:

vol
(
Sr(v)

)
= |E−r (v)|,

where |E−r (v)| is the size of the directed out-edgeball around node v with radius r.

Proof. This theorem can easily be proven by using Theorem 2. The sum of the degrees of all nodes
in Sr(v) is equal to 2|Er(v)| and therefore we can use the fact that the number of edges contained
in the ball subgraph Sr(v) is equal to the number of edges in the edgeball with radius r around node
v, minus the edge boundary of Sr(v) (see Figure 3.1):

vol
(
Sr(v)

)
=

∑
x∈Sr(v)

d(x)

= 2|Er(v)| − |δ
(
Sr(v)

)
|

= 2|Er(v)| − (2|Er(v)| − |E−r (v)|)
= |E−r (v)|,

which proves the theorem.

By using Theorem 2 and 3, the conductance of ball subgraph Sr(v) can now be described in terms
of the edgeball and the out-edgeball cardinalities:

φ
(
Sr(v)

)
=
|δ
(
Sr(v)

)
|

vol
(
Sr(v)

) =
2|Er(v)| − |E−r (v)|

|E−r (v)| . (3.4)
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Since the cardinalities of the edgeball and the out-edgeball can be found by using the HyperEdgeball
algorithm, we can now use these results to find the conductance in a ball subgraph Sr(v). Therefore,
we introduce the following adaptation to the HyperEdgeball algorithm:

Algorithm 5 The new initialization for out-edgeballs which uses the HyperEdgeball algorithm to find
the cardinality. Note: instead of undirected edges, we now use directed edges.

1: c[−], an array of n HyperLogLog counters
2:

3: for each v ∈ V do . Initialisation
4: for each e ∈ {(w, v) ∈ E} do
5: Add(c[v], e)
6: end for
7: end for

When using Algorithms 4 and 5 together, we find |Êr(v)| and |Ê−r (v)| for every node v and radius r,
which is enough to estimate conductance in a ball subgraph Sr(v). It can be noticed that all these
definitions and theorems also work for directed networks, which makes it possible to find directed
communities, as discussed in Section 3.1.2.

3.2.1 Hash function

In the HyperLogLog algorithm, 32-bit hashes for every node and edge are used. Every node is assigned
a unique hash. For edges, we hash the concatenation of the two node hashes, similar to the method
described in [28]. Since we want the same hash for the same edge, we always write the edge as
(smallest node index, largest node index) for an undirected graph. For the directed graph, we write
the edge as (out node, in node). Finally, we hash the directed and undirected edge hashes again with
a ‘marker’: a hash for the type of edge (i.e. directed or undirected) in order to make the hashes for
the directed and undirected edges independent from each other. This means that when hashing the
same edge, for example edge (i, j), this will give a different hash for the undirected and the directed
variant of that edge:

{i, j}
i: 0001001

j: 1010011

(i, j)

i: 0001001

j: 1010011

(j, i)

i: 0001001

j: 1010011

00010011010011

00010011010011

10100110001001

0010011

0010011

1001110

Edge marker

Directed edge marker

Directed edge marker

1000010

0010111

1011100

Figure 3.2: Example of hashing the undirected and directed edges between node i and j: first, node
i and j are hashed separately. Then, we concatenate the two hashes into a new hash and we hash
the concatenation. In order to make the three edges ({i, j}, (i, j) and (j, i)) unique, we concatenate
the three resulting hashes with a ‘marker’ and hash this concatenation.
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3.2.2 Error bounds

We introduce the estimator φ̂
(
Sr(v)

)
for conductance of the ball subgraph Sr(v). We can rewrite

Equation (3.4):

φ̂
(
Sr(v)

)
=

2|Êr(v)| − |Ê−r (v)|
|Ê−r (v)|

= 2
|Êr(v)|
|Ê−r (v)|

− 1, (3.5)

where |Êr(v)| and |Ê−r (v)| are respectively the estimators for the edgeball and the directed edgeball
around node v with radius r. The expectation and variance of these estimators, as the cardinality of
the estimated set goes to infinity, are given in Theorem 1:

E
[
|Êr(v)|

]
= |Er(v)| ·

(
1 + δ1

(
|Er(v)|

)
+ o(1)

)
≤ |Er(v)| ·

(
1 + δ1 + o(1)

)
, (3.6)

E
[
|Ê−r (v)|

]
= |E−r (v)| ·

(
1 + δ1

(
|E−r (v)|

)
+ o(1)

)
≤ |E−r (v)| ·

(
1 + δ1 + o(1)

)
,

Var
[
|Êr(v)|

]
= |Er(v)|2 ·

( βp√
p

+ δ2
(
|Er(v)|

)
+ o(1)

)
≤ η2 · |Er(v)|2,

Var
[
|Ê−r (v)|

]
= |Er(v)|2 ·

( βp√
p

+ δ2
(
|Er(v)|

)
+ o(1)

)
≤ η2 · |Er(v)|2. (3.7)

The coefficient η is defined as follows:

η =
βp√
p

+ δ2 + o(1). (3.8)

The upper bounds are derived by using the fact that |δ1(x)| ≤ 5 · 10−5 = δ1 for all x and |δ2(x)| ≤
5 · 10−4 = δ2 for all x, when the number of registers is larger or equal to 24 (Theorem 1). For the
rest of this thesis, we assume that the number of registers is always larger than 24.

We now introduce Theorem 5 and 7 that give a lower and upper bound for the conductance esti-
mator φ̂

(
Sr(v)

)
based on Chebyshev’s inequality (Theorem 4) and Vysochanskij-Petunin’s inequality

(Theorem 6) and we show the derivation of these bounds.

Theorem 4 (Chebyshev’s inequality). Assume that the random variable X has variance Var(X) = σ2.
Then, for a > 0,

P
(
|X − E(X)| ≥ a

)
≤ σ2

a2
.

Theorem 5 (Chebyshev bound for the conductance estimator). The conductance estimator φ̂
(
Sr(v)

)
of a ball subgraph Sr(v), as defined in (3.5), has the following error bound when the number of edges
and directed edges in this subgraph tend to infinity:

P

[
φ̂
(
Sr(v)

)
∈
(

1− ε
1 + γ

· φ
(
Sr(v)

)
,

1 + ε

1− γ · φ
(
Sr(v)

))]
≥ 1− η2

(
|Er(v)|2
p2

1

+
|E−r (v)|2

p2
2

)
,

with ε = p1
|Er(v)| + δ1 + o(1), γ = p2

|E−
r (v)| + δ1 + o(1) and p1, p2 > 0, where δ1 = 5 · 10−5.

Proof. To find the error bound of this estimator φ̂
(
Sr(v)

)
we use Chebyshev’s inequality. The

estimator φ̂
(
Sr(v)

)
consists of two other estimators with known expectation and variance, as described

in Equations (3.6) - (3.7). Our goal is to use these estimators to find a lower and upper bound for
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φ̂
(
Sr(v)

)
. Following Theorem 4, we get the following inequalities for p1, p2 > 0 when the number of

edges and directed edges in this subgraph tend to infinity:

P
(∣∣|Êr(v)| − E

[
|Êr(v)|

]∣∣ ≥ p1

)
≤ |Er(v)|2 · η2

p2
1

, (3.9)

P
(∣∣|Ê−r (v)| − E

[
|Ê−r (v)|

]∣∣ ≥ p2

)
≤ |E

−
r (v)|2 · η2

p2
2

, (3.10)

with η as defined in (3.8). We can rewrite the left-hand side of (3.9), and the same holds for (3.10):

P
(∣∣|Êr(v)| − E

[
|Êr(v)|

]∣∣ ≥ p1

)
= P

(∣∣|Êr(v)| − |Er(v)|
(
1 + δ1

(
|Er(v)|

)
+ o(1)

)∣∣ ≥ p1

)
= P

(∣∣∣∣∣ |Êr(v)| − |Er(v)|
(
1 + δ1

(
|Er(v)|

)
+ o(1)

)
|Er(v)|

∣∣∣∣∣ ≥ p1

|Er(v)|

)

= P

(
|Êr(v)|
|Er(v)| /∈

(
1 + δ1

(
|Er(v)|

)
+ o(1)− p1

|Er(v)| , 1 + δ1
(
|Er(v)|

)
+ o(1) +

p1

|Er(v)|
))

≤ P
(
|Êr(v)|
|Er(v)| /∈ (1− ε, 1 + ε)

)
≤ |Er(v)|2 · η2

p2
1

,

with ε = p1
|Er(v)| + δ1 + o(1). Similarly, we obtain that for γ = p2

|E−
r (v)| + δ1 + o(1)

P

(
|Ê−r (v)|
|E−r (v)| /∈ (1− γ, 1 + γ)

)
≤ |E

−
r (v)|2 · η2

p2
2

,

In order to find an error bound for the conductance estimate instead of the two estimators |Êr(v)|
and |Ê−r (v)|, we define the following two events:

A :
|Êr(v)|
|Er(v)| ∈ (1− ε, 1 + ε),

B :
|Ê−r (v)|
|E−r (v)| ∈ (1− γ, 1 + γ).

By using the union bound, we can express the intersection of events A and B as follows:

P
(
A ∩B

)
≥ 1− P

(
Ā ∪ B̄

)
≥ 1− P

(
Ā
)
− P

(
B̄
)
≥ 1− |Er(v)|2 · η2

p2
1

− |E
−
r (v)|2 · η2

p2
2

. (3.11)

Now, we rewrite the event A ∩B to obtain probabilistic bounds for φ̂
(
Sr(v)

)
:

P
(
A ∩B

)
≤ P

[ |Êr(v)|
|Er(v)|
|Ê−

r (v)|
|E−

r (v)|

∈
(

1− ε
1 + γ

,
1 + ε

1− γ

)]

= P

[ |Êr(v)|
|Ê−

r (v)|
|Er(v)|
|E−

r (v)|

∈
(

1− ε
1 + γ

,
1 + ε

1− γ

)]

= P

[
2
|Êr(v)|
|Ê−r (v)|

− 1 ∈
(

1− ε
1 + γ

·
(

2
|Er(v)|
|E−r (v)| − 1

)
,

1 + ε

1− γ ·
(

2
|Er(v)|
|E−r (v)| − 1

))]

= P

[
φ̂
(
Sr(v)

)
∈
(

1− ε
1 + γ

· φ
(
Sr(v)

)
,

1 + ε

1− γ · φ
(
Sr(v)

))]
. (3.12)
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Combining (3.11) and (3.12) results in the error bounds for the conductance estimator:

P

[
φ̂
(
Sr(v)

)
∈
(

1− ε
1 + γ

· φ
(
Sr(v)

)
,

1 + ε

1− γ · φ
(
Sr(v)

))]
≥ 1− η2

(
|Er(v)|2
p2

1

+
|E−r (v)|2

p2
2

)
.

When our estimators |Êr(v)| and |Ê−r (v)| follow a unimodal distribution, we can also use Vysochanskij-
Petunin’s (VP) inequality.

Theorem 6 (Vysochanskij-Petunin’s inequality). Assume that the random variable X has a unimodal
distribution with finite mean E(X) and variance Var(X) = σ2. Then, for λ/σ >

√
8/3,

P
(
|X − E(X)| ≥ λ

)
≤ 4σ2

9λ2
.

When we use this inequality instead of Chebyshev’s inequality, we can obtain tighter error bounds.
These error bounds are as follows:

Theorem 7 (Vysochanskij-Petunin bound for the conductance estimator). The conductance estima-

tor φ̂
(
Sr(v)

)
of a ball subgraph Sr(v), as defined in (3.5), has the following error bound when the

number of edges and directed edges in this subgraph tend to infinity and when the distribution of the
estimator is unimodal:

P

[
φ̂
(
Sr(v)

)
∈
(

1− ε
1 + γ

· φ
(
Sr(v)

)
,

1 + ε

1− γ · φ
(
Sr(v)

))]
≥ 1− 4

9
η2

(
|Er(v)|2
λ2

1

+
|E−r (v)|2
λ2

2

)
,

with λ1 >
√

8/3 ·Var
(
|Er(v)|

)
, λ2 >

√
8/3 ·Var

(
|E−r (v)|

)
, ε = λ1

|Er(v)| + δ1 + o(1) and γ =
λ2

|E−
r (v)| + δ1 + o(1), where δ1 = 5 · 10−5.

The derivation of this error bound goes in the same way as the proof of Theorem 5, but now we
use the Vysochanskij-Petunin inequality. As stated in the theorem, these bounds can only be used
when the distribution of the estimator is unimodal. We can check whether a distribution is unimodal
by using the DIP test of unimodality [18]. When this test gives a low p score, we can say that the
distribution is unimodal.

3.3 Discussion

The advantage of finding conductance using HyperLogLog counters as described in the previous
sections is that the conductance of all ball subgraphs in a graph are found at the same time with
very low memory usage, which makes it more memory- and time-efficient than other algorithms that
try to find minimal conductance sets. However, balls are not always the same as sets and therefore
it is possible to find an even lower conductance set using the minimal conductance ball subgraphs as
seeds sets in the algorithms described in Section 3.1.1 in order to do a fast and precise preselection of
promising nodes that could be in the center of a minimal conductance set, such as PageRank-Nibble
or the Multi Walker Chain model.
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4 | Triangles

Instead of using conductance to find clusters in a graph, we can also look at the number of triangles in
a graph to identify how clustered a graph or subgraph is. Related to counting triangles is calculating
the transitivity, which in fact is the triangle density of a graph. We introduce another adaptation
of the HyperBall algorithm to count triangles and wedges and we find the error bounds of these
estimates. Moreover, we show how to find the transitivity in ball subgraphs and give error bounds of
this transitivity estimate.

4.1 Community detection

A triangle, also described as a 3-cycle, contains as many edges as a group of 3 nodes can have and
is therefore very connected. This also indicates that when a subgraph contains a lot of triangles, this
is a very clustered subgraph and could therefore be a good community. The transitivity also tells us
something about how connected a graph is [43].

Definition 10 (Transitivity). The transitivity of a graph G is defined as

t(G) =
3|∆(G)|
|w(G)| ,

where |w(G)| =
(
vol(G)

2

)
is the number of wedges in G and |∆(G)| the number of triangles in this

graph.

The authors of [30] empirically found that subgraphs with high transitivity also have a prominent
community structure, which makes transitivity a useful measure for finding communities in graphs.
Finding the number of wedges in a subgraph is an easy problem, but unfortunately it is not trivial to
count triangles in graphs, especially not for large graphs. The brute-force method to count triangles
in graphs is to try all possible combinations of nodes to find triangles, which costs O(n3) operations
and that is unfeasible for large graphs. We have looked into methods for counting triangles in graphs,
which we describe in the following section.

4.1.1 Triangle counting

There are different types of triangle counting algorithms (Figure 4.1), which is summarised in [2]. In
this report we focus on random access counting algorithms, which are algorithms that use graphs with
available adjacency lists and a known size. Restricted access methods are based on the assumption
that not the whole graph is known and that we need to use for example random walks to explore
the graph. In this section we discuss the different triangle counting algorithms, where we make the
difference between exact counting algorithms and approximate counting algorithms.
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Figure 4.1: Classification of triangle counting works, from [2].

Exact counting

The most naive method of triangle counting is by iterating over a node and its neighbours and
then checking whether its neighbours are also neighbours. This brute-force method of counting and
enumerating triangles has complexity O(n3). This algorithm also enumerates the triangles, i.e. it
gives a list of all triangles in a graph, not only the count.

When having access to the whole graph and its adjacency matrix A, it is possible to count triangles
by using the fact that

∆(G) =
1

6
Tr(A3), (4.1)

where Tr(A) is the trace of matrix A. It can be seen that the method of (4.1) only counts the
number of triangles and does not list the triangles. However, since we are dealing with very large
graphs and matrix multiplication is still quite costly, the complexity of this method is not much
lower than the brute-force method of counting triangles. In [3], the authors give an algorithm for
exact triangle counting using a different method for high- and low-degree vertices which has a time
complexity of O(m2ω/(ω+1)), where ω is the exponent of fast matrix multiplication and m = |E|,
since this algorithm is defined by using matrix multiplication. Following the algorithm of [11], the
time complexity of matrix multiplication is O(mω), where ω ≤ 2.376.

An even smaller time complexity can be found when using algorithms like tree-lister [20], edge iterator
[6] or node iterator [37]. The first one, tree-lister, makes a spanning tree of a graph and then makes
use of the fact that every triangle needs at least one edge in the tree. However, constructing a
spanning tree of a graph is non-trivial.

Node iterator and edge iterator work more or less in the same way. The node variant iterates over
all neighbours and neighbour’s neighbours in order to find triangles. This algorithm does so in a
smart way, i.e. using a sorted list so all triangles are only found once. The edge iterator iterates over
edges {u,w} ∈ E and then checks whether node v ∈ N is in both the neighbourhood of u and w.
Both these algorithms have a time complexity of O(m3/2). However, in practice most of the times
edge iterator is faster [35]. There are also improvements of the node and edge iterator algorithm,
for example ayz, listing-ayz [3], node iterator-core, forward [37] and compact-forward [25]. These
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algorithms use the basic idea of the node and edge iterator algorithms, but compress the memory use
or divide the graph in smart way in order to improve the performance.

Schank [35] showed that from these algorithms, compact-forward is the most time and space efficient
in practice for graphs with a skewed degree distribution, while edge iterator works best for graphs
with degrees that do not differ much from their average degree.

Approximate counting

Since we are dealing with very large graphs and a time complexity of O(m3/2) can still be too high,
an option is to approximate the triangle count. There are four different kinds of methods that deal
with approximate triangle counting, which we will discuss in this section.

Graph sparsification

The first type, graph sparsification-based methods, reduces a large graph by probabilistically removing
some edges from the original graph. The idea is to count the triangles in the sparse graph and then
extrapolate this count to the large graph. Since the remaining sparse graph is much smaller, it is
possible to use an exact counting algorithm for this graph in a reasonable amount of time. DOULION
[42], colorful triangle counting [31] and an adaptation of DOULION [14] are examples of graph
sparsification methods.

In DOULION, the edges in the graph are removed with probability 1 − p in order to find a sparse
graph. This means that the expected count of the triangles in the original graph is ∆̂(G) = 1

p3 ∆(Gs),
where Gs is the sparse graph.

In colourful triangle counting, the idea is to give all vertices a different color and only keep vertices
in the sparse graph that are connected to the same color. The probability that a triangle is still there
in the sparse graph is then p2, since if two edges are in the sparse graph, so is the third. This gives
an expected triangle count of ∆̂(G) = 1

p2 ∆(G). This method has a better accuracy than DOULION
since it samples more triangles.

The last method in graph sparsification is the adaptation of DOULION, which also samples edges
from a graph G with probability p, but besides that checks if the edge of an open triple is also in the
original graph. If so, this triple is counted as a triangle. Since this is an extra check in the graph,
this will take more time.

Triple sampling

Instead of sampling triangles, what has been done in the graph sparsification-based algorithm, it is
also possible to count triples in a graph and from this estimate the number of triangles. This makes
use of the fact that the transitivity t(G) of a graph can be estimated and therefore when knowing the
number of triples, the number of triangles can easily be approximated: ∆(G) = 1

3 t(G) · |Π|, where
|Π| is the number of triples in a graph. However, uniformly sampling triples in a graph by sampling a
node u and then sampling two neighbours v and w of u gives us oversampling of low-degree nodes
and under-sampling of high-degree nodes.

The algorithm described in [36] deals with this problem by sampling vertices proportional to the
number of triples in this vertex and then uniformly sampling on of those triples which makes the
sampling uniform. After the triples are sampled the number of triangles is found by multiplying with
the transitivity (Definition 10). This transitivity estimate has been improved by Al Hasan [1] by using
independent sampling.
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Vertex and edge sampling

Vertex and edge sampling are two approximate triangle counting algorithms based on the exact triangle
counting algorithms edge iterator and node iterator. The idea of these methods is to uniformly sample
edges or vertices and based on that find the approximate number of triangles. An example of this
method is shown in [32], which shows that the accuracy of these types of algorithms is very good for
large networks and that edge sampling works better than vertex sampling.

Linear algebra-based methods

The last type of approximate triangle counting methods is based on linear algebra. As shown in
equation (4.1), the number of triangles in a graph can be found by using the trace cubed of the
adjacency matrix, which is equal to the sum of the eigenvalues cubed. Since the graphs we are
dealing with are very large and sparse and usually follow a power-law distribution, this means that
the eigenvalues are very skewed which makes it possible to only use the top-k eigenvalues. These
eigenvalues can be approximated by using the Lanczos method [24]. However, this method does not
give guarantees about the accuracy of the estimation.

4.2 Counting triangles using HyperBall

Instead of counting nodes or edges with the HyperLogLog counters, we can also count the number of
distinct triangles in a graph and enumerate them. To do so, we use the same algorithm as described
in Algorithm 4 (page 11), but we initialise the counter differently in order to count triangles instead
of edges (Algorithm 6). With the HyperLogLog counters we can find an estimate of the size of the
number of triangles in a ball of radius r around node v, |∆̂r(v)| (Definition 3). In Algorithm 6, we
initialise the HyperLogLog counter by finding every triangle around every node and then we hash it
to add this triangle to the counter. We hash a triangle in a similar way as described in Section 3.2.1:
we hash every node independently and then hash the concatenation of the three nodes together with
a marker to create unique hashes for every triangle.

Instead of the naive method described in Algorithm 6 for the initialisation, we can also count triangles
by using one of the exact counting algorithms as described in Section 4.1.1, such as compact-forward
or edge iterator in order to make the triangle counting in the initialisation even faster.

Algorithm 6 Initialisation for the Triangle ball algorithm.

1: c[−], an array of n HyperLogLog counters
2:

3: for each v ∈ V do . Initialisation
4: for each i ∈ N(v) do
5: for each j ∈ N(v), i ∈ N(j) do
6: Add(c[v], (v, i, j))
7: end for
8: end for
9: write 〈v, c[v]〉 to disk, which estimates |∆0(v)|

10: end for
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4.2.1 Error bounds

We want to know the expectation and variance of the estimator
∣∣∆̂r(v)

∣∣, which estimates the number
of triangles in a ball around node v with radius r. Since this estimator is equal to the size of the
HyperLogLog counter for the number of triangles in Algorithm 6, this means that we know the
expectation and variance of this estimator when the number of triangles goes to infinity (Theorem
1):

E
[∣∣∆̂r(v)

∣∣] =
∣∣∆r(v)

∣∣ · (1 + δ1
(∣∣∆r(v)

∣∣)+ o(1)
)
, (4.2)

Var
[∣∣∆̂r(v)

∣∣] =
∣∣∆r(v)

∣∣2 · ( βp√
p

+ δ2
(∣∣∆r(v)

∣∣)+ o(1)
)2

. (4.3)

Since the number of triangles in a graph is much lower than the number of edges, we need larger
graphs in order to have a reasonable error bound on the triangle count.

We again use the Chebyshev inequality (Theorem 4) in order to find a lower and upper error bound
for this triangle estimator:

Theorem 8 (Chebyshev bound for the triangle estimator). The triangle estimator
∣∣∆̂r(v)

∣∣ of a ball
subgraph Sr(v) has the following error bound when the number of triangles in this subgraph tend to
infinity:

P
(∣∣∆̂r(v)

∣∣ ∈ (E
(∣∣∆̂r(v)

∣∣)− a,E(∣∣∆̂r(v)
∣∣)+ a

)
≥ 1− η2

∣∣∆r(v)
∣∣2

a2
,

for a > 0 and η =
βp√
p + δ2 + o(1), as defined in (3.8).

Proof. The proof of this theorem is straightforward: we can use in Chebyshev’s inequality for the
triangle estimator, fill in the expectation and variance from Equations (4.2) and (4.3) and then rewrite
the equation in order to get the error bounds stated in Theorem 8:

P
(∣∣∣∣∆̂r(v)

∣∣− E
(∣∣∆̂r(v)

∣∣)∣∣ ≥ a) ≤ Var
(∣∣∆̂r(v)

∣∣)
a2

,

P
(∣∣∣∣∆̂r(v)

∣∣− E
(∣∣∆̂r(v)

∣∣)∣∣ ≥ a) ≤
∣∣∆r(v)

∣∣2 · ( βp√
p + δ2

(∣∣∆r(v)
∣∣)+ o(1)

)2

a2
,

P
(∣∣∆̂r(v)

∣∣ ∈ (E
(∣∣∆̂r(v)

∣∣)− a,E(∣∣∆̂r(v)
∣∣)+ a

)
≥ 1−

(
βp√
p + δ2

(∣∣∆r(v)
∣∣)+ o(1)

)2∣∣∆r(v)
∣∣2

a2
,

for a > 0. Since η =
βp√
p + δ2 + o(1) ≥ βp√

p + δ2
(∣∣∆r(v)

∣∣)+ o(1), as defined in (3.8), this concludes

the proof.

The Vysochanskij-Petunin inequality (Theorem 6) can also be used in order to get a slightly tighter
error bound:

Theorem 9 (Vysochanskij-Petunin bound for the triangle estimator). The triangle estimator
∣∣∆̂r(v)

∣∣
of a ball subgraph Sr(v) has the following error bound when the number of triangles in this subgraph
tend to infinity and when the distribution of the estimator is unimodal:

P

(∣∣∆̂r(v)
∣∣ ∈ (E

(∣∣∆̂r(v)
∣∣)− λ,E(∣∣∆̂r(v)

∣∣)+ λ
))
≥ 1− 4η2

∣∣∆r(v)
∣∣2

9λ2
,

for λ >
√

8/3 ·Var
(∣∣∆r(v)

∣∣).
This derivation goes in the same way as the proof of Theorem 8, but now we use the Vysochanskij-
Petunin inequality.
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4.3 Transitivity using HyperBall

In order to find the transitivity of ball subgraphs, we need to find the number of wedges, |w
(
Sr(v)

)
|,

in these ball subgraphs. By using the HyperLogLog algorithm, we can find the number of wedges in
Sr(v) in the same way as finding the number of triangles. The algorithm stays the same but we leave
out the check whether two neighbours of a node are also each other’s neighbours (line 5 in Algorithm
6) since this is not required to have a wedge. There is an easier way to find the number of wedges
in a graph, as stated in Definition 10, but to use this we need to know the list of nodes in all ball
subgraphs. This is not available using the HyperLogLog algorithm and therefore we need to use the
same method that we use for triangle counting. Moreover, the advantage of this method is that we
find the number of wedges in a ball around a node without knowing which nodes are in every ball
subgraph.

4.3.1 Error bounds

In a similar way as we did in Section 3.2.2, we can find the Chebyshev and Vysochanskij-Petunin error
bounds of our estimator for transitivity. The transitivity estimator is

t̂
(
Sr(v)

)
:=

3
∣∣∆̂r(v)

∣∣∣∣ŵ(Sr(v)
)∣∣ . (4.4)

The expectation and variance of our estimators
∣∣∆̂r(v)

∣∣ and
∣∣ŵ(Sr(v)

)∣∣ are given in Theorem 1, which
results in the following theorem for the Chebyshev error bound of the transitivity estimator:

Theorem 10 (Chebyshev bound for the transitivity estimator). The transitivity estimator t̂
(
Sr(v)

)
of

a ball subgraph Sr(v), as defined in (4.4), has the following error bound when the number of wedges
and triangles in this subgraph tends to infinity:

P

[
t̂
(
Sr(v)

)
∈
(

1− ε
1 + γ

· t
(
Sr(v)

)
,

1 + ε

1− γ · t
(
Sr(v)

))]
≥ 1− η2

(
|∆
(
Sr(v)

)
|2

p2
1

+
|w
(
Sr(v)

)
|2

p2
2

)
,

with ε = p1∣∣∆r(v)
∣∣ + δ1 + o(1), γ = p2∣∣w(Sr(v)

)∣∣ + δ1 + o(1) and p1, p2 > 0, with δ1 = 5 · 10−5.

When this transitivity coefficient has a unimodal distribution amongst the nodes, we can again use
the Vysochanskij-Petunin inequality in order to get tighter error bounds:

Theorem 11 (Vysochanskij-Petunin bound for the transitivity estimator). The transitivity estimator
t̂
(
Sr(v)

)
of a ball subgraph Sr(v), as defined in (4.4), has the following error bound when the number

of wedges and triangles in this subgraph tends to infinity and the distribution of the estimator is
unimodal:

P

[
t̂
(
Sr(v)

)
∈
(

1− ε
1 + γ

· t
(
Sr(v)

)
,

1 + ε

1− γ · t
(
Sr(v)

))]
≥ 1− 4

9
η2

(
|∆
(
Sr(v)

)
|2

λ2
1

+
|w
(
Sr(v)

)
|2

λ2
2

)
,

with λ1 >
√

8/3 ·Var
(∣∣∆r(v)

∣∣), λ2 >
√

8/3 ·Var
(∣∣w(Sr(v)

)∣∣), ε = λ1∣∣∆r(v)
∣∣ + δ1 + o(1) and

γ = λ2∣∣w(Sr(v)
)∣∣ + δ1 + o(1), with δ1 = 5 · 10−5. .

The derivation of Theorems 10 and 11 goes the same as the derivation of Theorems 5 and 7.
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4.4 Discussion

All algorithms that are described in Section 4.1.1 find either a list of all triangles in a graph or the
exact/approximate number of triangles in a graph. With the adapted HyperBall algorithm for counting
triangles, this idea gets extended to finding triangles in a ball around a node. Moreover, this algorithm
is able to locate high densities of triangles in the entire graph. When finding the number of triangles in
a ball around a node using the methods in Section 4.1.1, we first need to find these ball-subgraphs and
then find the triangles. Finding these ball-subgraphs is not trivial memory- and time-wise. Therefore,
the HyperLogLog algorithm is very suitable for this type of triangle counting. However, this makes it
also difficult to compare this algorithm to other triangle-counting algorithms.

In fact, the goal of this algorithm is to find the number of triangles in a ball of a certain radius
around ever node in a graph, which is a different problem than finding all triangles in a graph. After
the initialization phase the proposed algorithm only calculates the union of two counters, which is
much more efficient memory- and time-wise than comparing the union of two sets which is needed
in most triangle counting algorithms. Since we simultaneously find the number of triangles in all ball
subgraphs of the graph, this is an addition to the existing algorithms.

There are already algorithms that try to find the transitivity in graphs using for example wedge
sampling. An example of this is the algorithm described in [22], where they make use of the fact that
when sampling 23 wedges, the probability that the two vertices in a wedge share another edge is 1/2.
This algorithm finds the transitivity coefficient of a graph in O(

√
n) space, but nothing is said about

the time requirements. Moreover, this algorithm does not use ball subgraphs which makes it difficult
to compare.

In addition to finding the transitivity, we can also find the location of ball subgraphs with high transi-
tivity in the whole graph while using less memory with the HyperBall algorithm. Since high transitivity
subgraphs result in good communities, these ball subgraphs can already be good communities or can
be used as seed sets for for example PageRank-Nibble, as described in Section 3.1.1, in order to find
even better communities.
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In this chapter we will show the numerical results of our tests of Algorithms 3, 5 and 6 with several
graphs. We have done three types of experiments:

1. Checking the error bounds of our estimators for conductance, triangles, transitivity and cycles
using generated LFR graphs: synthetic graphs with ground-truth communities.

2. Finding communities using conductance, triangles and transitivity and comparing these com-
munities to the ground-truth communities in LFR graphs.

3. Finding conductance, the number of triangles and transitivity in large real life networks and
using these measures as seed sets for PR-Nibble.

We start with showing and discussing the numerical results done in LFR graphs, where we explain
how the LFR graphs are generated and discuss the results of the error bounds of the conductance,
number of triangles and transitivity. Then, we discuss how to find communities in these LFR graphs
with the found measures and show the results of the PR-Nibble algorithm with different seed sets.
Lastly, we show the numerical results of the large real life graphs and compare these results to the
synthetic LFR graphs.

5.1 Numerical results for LFR graphs

5.1.1 LFR model

LFR graphs [23] are a type of generated graphs where the communities are already known. For these
graphs, we can choose a mixing parameter µ which indicates the probability of an edge connecting to a
node outside its community. There are also other parameters to indicate the minimum and maximum
community size (|Cmin|, |Cmax|), the average and maximum degree (d̄, dmax) and two parameters
for the power law distribution of the node degrees (τ1) and the community size distribution (τ2). The
LFR graph is generated as follows [23]:

1. Generate nodes with a power law degree distribution with exponent τ1, by using the configura-
tion model [29].

2. For every node, a fraction 1−µ links is reserved for connections to nodes inside its community,
and a fraction µ links is reserved for connections to nodes outside its community.

3. The sizes of the communities are found by using another power law distribution with exponent
τ2.

4. Every node and its links are randomly added to a community, until the maximum size of this
community is reached.

5. There is some rewiring to ensure that the mixing parameter µ is still valid for all nodes.

28



CHAPTER 5. RESULTS

For these experiments, we have used the LFR graph generator of NetworkX 2.4 in Python 3.6.9 to
make three types of graphs with the parameters as shown in Table 5.1. We have used graphs with
1000 and 5000 nodes because this enabled us to also find the exact number of edges, directed edges,
wedges and triangles in these graphs.

Graph n = |V | τ1 τ2 |Cmin| |Cmax| d̄ dmax µ
LFR-1 1000 2 3 10 50 10 50 0.1 - 0.9
LFR-2 1000 2 3 20 100 20 100 0.1 - 0.9
LFR-3 5000 2 3 10 50 10 50 0.1 - 0.9

Table 5.1: Parameters for the generated LFR-graphs

In Figure 5.1, we have plotted the estimated conductance of a graph with 1000 nodes with different
mixing parameters. When changing this mixing parameter µ, it can be seen that also the distribution
of the conductance in S1(v) changes. With µ = 0.05, there are ball subgraphs with a conductance
of 0, while with µ = 0.9 the conductance is in general much higher. This makes sense since with
µ = 0.05 the communities nearly have no links to the outside, while with µ = 0.9 the communities
have more links to other communities than within their own community. However, it can also be seen
that for every mixing parameter there are some ball subgraphs with a very high conductance.
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Figure 5.1: Conductance in S1(v) for different µ, in a LFR-1 graph with p = 214 registers, sorted
from smallest to largest conductance.

For the experiments done on LFR graphs, we have used a mixing parameter µ = 0.3, since this was
the smallest mixing parameter with no isolated nodes in every generated graph.

5.1.2 Error bounds

In this section, we show the outcomes of our introduced algorithms for finding the conductance,
number of triangles and the transitivity in the above described LFR graphs. For these graphs, we are
interested in the conductance in ball subgraphs of radius 1 and 2. A ball larger than this radius consists
of a large part of the entire graph and is therefore not interesting anymore to find clusters.

Conductance

In Figure 5.2, the real and estimated conductance in a LFR-3 graph with a mixing parameter µ = 0.3
in two ball subgraphs is plotted. The estimation was made using p = 214 registers. Since the DIP
test for unimodality [18] gives a p−value smaller than 0.0085, we can reasonably assume that the
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conductance estimator is unimodal and therefore we can use the Vysochanskij-Petunin error bounds
(Theorem 7).
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Figure 5.2: Estimated and real conductance in the LFR-3 graph with µ = 0.3 and p = 214 registers.
The nodes are sorted by realised conductance in ascending order.

It can be seen that the Vysochanskij-Petunin bounds are tight and represent the 95%-margin of the
estimation quite well. The estimation error, which is the difference between the realisation and the
estimation, is given in Figure 5.3. It can be seen that the error is centered around 0, which means
that our estimator is (almost) unbiased. Moreover, the histogram shows that the error has a small
relative variance.
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Figure 5.3: Histogram of the estimation error of the conductance in S1(v) and S2(v) in the LFR-3
graph with µ = 0.3 and p = 214 registers.

The difference between these two histograms is very interesting: it can be seen that the histogram in
Figure 5.3b, which depicts the estimation error in the ball subgraph S2(v), has a normal distribution,
while the estimation error in the ball subgraph S1(v), Figure 5.3a, has a different distribution where
the mass in a radius of approximately 0.01 around 0 is all moved to 0. Since this only happens in
balls of radius 1, balls with a small number of edges and directed edges, this tells us it has something
to do with the error in linear counting.
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Figure 5.4: Error in the number of estimated edges and estimated directed edges in S1(v) in a LFR-3
graph with µ = 0.3, p = 214 registers.

With linear counting, the size E of a counter is estimated by:

E = p · log(p/V ),

where V is the number of zeros in the counter and p is the number of registers. The size E therefore
only increases in small steps of ±0.43 when having small cardinalities. This is the case for the
estimated cardinality of the edge counter and the directed edge counter, which means that these
errors are correlated. This can also be seen in Figure 5.4, where we have plotted the error in the
estimated number of edges against the estimated number of directed edges. Since we divide these
two estimators in order to get the conductance of a ball subgraph, this correlation is an important
factor.

Linear counting for estimating the size is done until a cardinality of 5/2 ·p, which is 5/2 ·214 = 40960
edges in this case. This means we should also observe this phenomenon in the estimate of the
conductance of ball subgraphs with radius 2. This is not the case, however, as can be seen in Figure
5.5. An explanation for this is that the range of the error is much larger since the size of the edge
balls varies between 100 edges and 4200 edges instead of between 30 and 500 edges in S1(v).

In Table 5.2 we show the calculated Chebyshev and Vysochanskij-Petunin error bounds of the con-
ductance for the three LFR graphs, together with the experimental results. For the experimental
results, we generated 100 different LFR-1, LFR-2 and LFR-3 graphs and took the mean and variance
of the error and the maximum absolute error of the conductance in these graphs in order to show
that the HyperBall algorithm works well and is consistent for these graphs. It can be seen that the
Vysochanskij-Petunin and Chebyshev error bounds are more or less constant for p = 214 registers
over the different LFR graphs and the different radii. Moreover, the mean error is close to zero, which
confirms that the conductance estimator is almost unbiased. When increasing the number of nodes,
this mean error will only become closer to zero.

We have also looked at different numbers of registers in the LFR-1 graph to show how the precision
increases when increasing the number of registers, which is shown in Table 5.3. This table shows that
when increasing the number of registers, the Vysochanskij-Petunin and Chebyshev error bounds and
the experimental error decreases very fast and the mean error decreases but keeps oscillating around
0, as already expected by Theorem 1.
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2 (v)|, zoomed in

Figure 5.5: Error in the number of estimated edges versus estimated directed edges in S2(v) in a
LFR-3 graph with µ = 0.3, p = 214 registers.

Graph VP Chebyshev Mean error Variance error Max error

LFR-1
S1(v) ±0.07560 ±0.1155 3.693 · 10−5 1.904 · 10−4 0.09165
S2(v) ±0.07622 ±0.1164 −8.806 · 10−5 1.673 · 10−4 0.05536

LFR-2
S1(v) ±0.07544 0.1153 −1.838 · 10−4 2.056 · 10−4 0.07314
S2(v) ±0.07773 0.1186 −4.630 · 10−4 1.530 · 10−4 0.05178

LFR-3
S1(v) ±0.07560 0.1155 −8.756 · 10−6 1.932 · 10−4 0.1172
S2(v) ±0.07588 ±0.1159 −2.289 · 10−5 1.795 · 10−4 0.07239

Table 5.2: Error bounds (95%) and experimental bounds for conductance in the ball subgraphs
S1(v) and S2(v) in 100 generated LFR-1, LFR-2 and LFR-3 graphs.

Triangles

For the estimator of the number of triangles, we show error bounds of Theorems 8 and 9. In Figure
5.6, we show the relative size of these Vysochanskij-Petunin and Chebyshev error bounds with an
increasing number of registers. It can be seen that for the triangles, the relative error is already less
than 5% of the real number of triangles when p = 212 for the Vysochanskij-Petunin bounds and when
p = 213 for the Chebyshev bounds.

Since the triangle estimate also has a low p−value on the DIP test for unimodality (p < 0.01), we
can again use the Vysochanskij-Petunin bounds. In Figure 5.7 we show the number of triangles in
the LFR-3 graph in three different ball subgraphs: S1(v), S2(v) and S3(v). There is a large difference
in number of triangles between the balls of radius 2 and 3, which can be explained by the fact that
ball subgraphs of radius 3 are more or less the entire graph in these graphs, so it makes sense that
these subgraphs have a large numbers of triangles. Moreover, it can be seen that when increasing the
number of registers, the estimation quickly becomes closer to the realisation (Figure 5.7b).
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p VP Chebyshev Mean error Variance error Max error
28 ±0.7506 ±1.367 3.858 · 10−3 0.01485 0.6556
210 ±0.3219 ±0.5230 3.987 · 10−4 3.236 · 10−3 0.2529
212 ±0.1520 ±0.2377 2.945 · 10−4 7.631 · 10−4 0.1723
214 ±0.07560 ±0.1155 −8.756 · 10−6 1.932 · 10−4 0.1172
216 ±0.03929 ±0.05954 −6.172 · 10−5 4.950 · 10−5 0.07150
218 ±0.02158 ±0.03285 2.175 · 10−5 1.183 · 10−5 0.06403

Table 5.3: Average error bounds and experimental bounds for conductance in the ball subgraph
S1(v) in 100 generated LFR-1 graphs with µ = 0.3 with different numbers of registers.

8 10 12 14 16 18 20 22

b (p = 2b registers)

0

5

10

15

20

25

30

P
er

ce
nt

ag
e

of
nu

m
b

er
of

tr
ia

ng
le

s Chebyshev

VP

Figure 5.6: Error bounds (95%) for triangle counting as a percentage of the number of triangles
with different numbers of registers.

Transitivity

For the transitivity estimate, we can also give the Vysochanskij-Petunin and Chebyshev error bounds,
as described in Theorems 10 and 11. In Figure 5.8, we show the transitivity in the ball subgraph
S1(v) (Figure 5.8a) and S2(v) (Figure 5.8b).

The DIP test for unimodality gives a p−value lower than 0.01 so the Vysochanskij-Petunin error
bounds can again be used. Interesting to see in these plots is that the transitivity in ball subgraphs
of 2 is already very small, which means that there are much more wedges than triangles in these ball
subgraphs. This is again an indication that the best communities in these kind of graphs are between
the ball subgraphs of radius 1 and the ball subgraphs of radius 2, as also stated in [16].

In Figure 5.9 we plotted the number of triangles and the number of wedges over the three ball
subgraphs S1(v), S2(v) and S3(v). It can be seen that there is a clear relation between the number
of wedges and the number of triangles in all of these ball subgraphs and that it is nearly linear, which
also explains the range of the transitivity in S2(v) is very small (between 0.1 and 0.2). Since the LFR
graphs are generated in such a way that links are added with a certain probability, this very strong
relation between wedges and triangles is a particular property of these LFR graphs.
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Figure 5.7: Triangle estimate and realisation in a LFR-3 graph with µ = 0.3. The nodes are sorted
by realised number of triangles in ascending order.
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Figure 5.8: Transitivity estimate in a LFR-1 graph with µ = 0.3 and p = 214 registers. The nodes
are sorted by realised transitivity in ascending order.
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5.1.3 Communities in LFR graphs

When finding the conductance in the ball subgraphs of radius 1, it can be seen that the balls with
lowest conductance are already a quite good representation of a community. In Figure 5.10, the
ball subgraphs of radius 1 of the 5 nodes with smallest conductance are depicted on the left. These
‘communities’ are more or less similar to the ground truth communities of the LFR-graph, which
are shown on the right. This is in line with what is stated in [16]: in graphs with a large global
clustering coefficient and a heavy-tailed degree distribution the ball subgraph of radius 1 is already a
good candidate for a minimal conductance set.

(a) 5 smallest conductance communities in S1(v) (b) Corresponding ground-truth communities

Figure 5.10: 5 communities in a LFR graph with 1000 nodes and µ = 0.3, based on smallest
conductance and ground truth.

Moreover there is a relation between the degree of a node and the conductance of the ball around this
node in LFR graphs. In Figure 5.11a, we plot the conductance over different radii of the ball subgraph
of the five highest and lowest degree nodes. It can be noticed that the high-degree nodes have smaller
conductance in the ball subgraph of radius 1, but in the ball subgraph of radius 2 this is not the
case. This again confirms the hypothesis that communities can be found in LFR graphs by using ball
subgraphs of radius 1 as a seed set, since these subgraphs already have low conductance.

When making a similar plot of the number of triangles in ball subgraphs of different radii, Figure
5.11b, we observe a similar phenomenon: the high-degree nodes have in general more triangles than
the low-degree nodes over all radii, which also means that these high-degree nodes have a lower
conductance.
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Figure 5.11: Conductance and number of triangles of the 5 highest and 5 lowest degree nodes in a
LFR-3 graph with µ = 0.3 and p = 214 registers.

Seed sets for PageRank-Nibble

Another possibility to find communities is to use a set of nodes with the smallest conductance in
Sr(v) or the largest number of triangles in Sr(v) as a seed set for the PageRank-Nibble or Multi-
Walker Chain algorithm, as described in Section 3.1. We have implemented this for a LFR-3 graph
with µ = 0.3 and p = 214 registers and we have chosen 5 different seed sets consisting of 100
nodes:

1. Nodes with smallest conductance in S1(v) and S2(v),

2. Nodes with largest number of triangles of radius 0 and radius 1, |∆0(v)| and |∆1(v)|,
3. Nodes with largest transitivity in S1(v) and S2(v),

4. Nodes with highest degree,

5. Randomly chosen nodes.

For the first three seed sets (conductance, number of triangles and transitivity) we have used the ball
subgraphs of radius 1 and 2 and compared the conductance found by the PR-Nibble algorithm to
respectively the estimated conductance in ball subgraphs of radius 1 and radius 2. For the PR-Nibble
algorithm, we have used a maximum cut size of 200, a teleport probability of α = 0.85 and we
calculate the ε-approximate PageRank vector with ε = 10−8 [4]. The results are presented in Figure
5.12.

Example In order to understand what is depicted in Figure 5.12, we will give a small example. In
Figure 5.12a, one larger blue dot can be found at the bottom of this figure. This blue dot corresponds
to node i that is the center of a ball subgraph of radius 1 with low estimated conductance, since the
blue seed sets consists of 100 nodes with lowest estimated conductance in their corresponding ball
subgraphs of radius 1. The estimated conductance of the ball subgraph around node i is given on
the x−axis and is equal to 0.5926.

Then, we ran the PR-Nibble algorithm with seed node i, which resulted in a subgraph, not necessarily
a ball subgraph, with low conductance. The conductance after PR-Nibble, so the conductance of this
new subgraph, is given on the y−axis and is equal to 0.3165.
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(b) Ball subgraph of radius 2

Figure 5.12: Conductance in ball subgraphs of radius 1 and 2 versus the set conductance found by
using PR-Nibble with the center node of the ball as seed in a LFR-3 graph with µ = 0.3, p = 218

registers. The curves are confidence ellipses with a confidence interval of 3σ.

In Figure 5.12 it can be seen that for every seed that is used, the resulting community has a smaller
conductance. This can be seen since every dot is below the diagonal (dashed line), which means that
for every dot, the y−value is smaller than the x−value. Especially in the ball subgraph of radius 1
(Figure 5.12a) the conductance of the ball subgraph is already low and after the PR-Nibble algorithm
the resulting communities have the most improved conductance score. Choosing 100 random nodes
as a seed set works significantly worse and it can be seen that there is not much difference between
choosing the highest degree nodes or the nodes with the largest number of triangles as a seed set.
This is again a confirmation of the fact that in these LFR-graphs, high-degree nodes are also the
nodes with the most triangles around them (Figure 5.11b). Choosing the nodes with the highest
transitivity also works well to find low conductance sets, but the initial conductance of these sets is
on average much higher.

When using seed sets based on the ball subgraphs of radius 2 and comparing it to the conductance
of these balls, the differences are less pronounced and different than in the ball subgraph of radius 1:
as can be seen in the right picture, the nodes with the largest number of triangles now give lowest
conductance sets.
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Figure 5.13: Boxplots of the resulting conductance after PR-Nibble in every seed set
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To quantify these statements, we made a boxplot of the resulting conductance after PR-Nibble for
every seed set (Figure 5.13) which makes it easier to compare the conductance after running PR-
Nibble with the different seed sets.

This confirms that for ball subgraphs of radius 1, the transitivity seed set works best and gives the
lowest conductance sets after PR-Nibble. For the ball subgraphs of radius 2, as already said, the
triangle seed set works best and the transitivity seed set does not work well at all. It can also be seen
that the resulting conductance in Figure 5.13b is in general higher than in Figure 5.13a. This can be
explained by the fact that the LFR graphs have relative small communities and therefore measures
the ball subgraph of radius 2 do not work well as a seed sets.

5.2 Numerical results for real life graphs

In order to test our algorithms in real-life graphs, we have used two large networks with a ground truth
community structure: com-DBLP and com-Amazon [26, 45]. com-DBLP is the coauthorship
network of the computer science library DBLP, where nodes represent the authors and edges exist if
two authors published one or more papers together. The Amazon network was made by crawling the
Amazon website through the users who bought this product also bought...-section. A node in this
network is a product and there is an edge between nodes when two products are frequently bought
together. Both these networks have communities consisting of 10 to 200 nodes. In Table 5.4, the
properties of these graphs are summarised and more information about these networks is given in
[45].

n = |V | m = |E| |∆|
com-DBLP 317k 1M 2M
com-Amazon 334k 925k 667k

Table 5.4: Properties of the used real life graphs

For the two graphs, we have used p = 213 registers in all plots that are shown below. We have first
plotted the conductance and number of triangles of these three graphs.

(a) com-DBLP (b) com-Amazon

Figure 5.14: Conductance in ball subgraphs S1(v) and S2(v) in real life graphs. The nodes are
sorted by estimated conductance in ascending order.

There is a slight estimation error in Figures 5.14a and 5.14b, since the conductance can only be
between 0 and 1. This is in line with the empirically found maximum error of the conductance
estimator, as described in Table 5.2. When comparing Figure 5.14 to the plot given in Figure 5.1,
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we notice that the range of the conductance in these real life graphs is similar to the range of a LFR
graph with mixing parameter µ = 0.05. This means that there are very well-defined communities
with only a few links to the outside of the community in these real life graphs.

In Figure 5.15 the number of triangles in these three real-life graphs is plotted. There is a large
difference between the number of triangles in the ball subgraphs S2(v) and S3(v) in all graphs, but
there is also a large difference in the number of triangles in the DBLP (5.15a) and in the Amazon
graph (5.15b): in the Amazon graph there are less triangles than in the DBLP graph in all ball
subgraphs.

(a) com-DBLP (b) com-Amazon

Figure 5.15: Number of triangles in ball subgraphs S1(v), S2(v) and S3(v) in real life graphs. The
nodes are sorted by estimated number of triangles in ascending order and the y-axis has a log-scale.

While the number of triangles differs much in those real life graphs, the transitivity in both graphs is
more or less the same, as depicted in Figure 5.16.

(a) com-DBLP (b) com-Amazon

Figure 5.16: Transitivity in ball subgraphs S1(v), S2(v) and S3(v) in real life graphs. The nodes
are sorted by estimated transitivity in ascending order.

Just like the transitivity in the LFR-graphs, the transitivity in ball subgraph S1(v) behaves quite
erratically while the transitivity in ball subgraphs with a larger radius is smoother. In the real life
graphs, it can be seen that there is again an error in the estimation, since we reach a transitivity of
1.5 instead of a maximum of 1. This error is much larger than the error in conductance, but still
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within the error bound. A difference with the LFR graphs with µ = 0.3 is that the transitivity in these
real life graphs has a larger range: instead of the transitivity ranging between 0.1 and 0.2 (Figure
5.8b) in a ball subgraph of radius 2, the real life graphs have a transitivity that is ranging from 0 to
around 1 in ball subgraphs of radius 2 and 3, which means that even ball subgraphs of radius 2 or 3
are very clustered and therefore could be a community in contrary to the LFR graphs, where most
communities are of the size of a ball subgraph of radius 1.

Since the error can become quite big in the transitivity, as can be seen in the above plot, it might
again be a good idea to investigate this further by finding a relation between the number of wedges
and triangles. However, as can be seen in Figure 5.17, the real life graphs do not behave the same
like the LFR-graphs in this aspect. Where we observed a very clear relation between the number
of wedges and the number of triangles in LFR graphs, this is not the case in the real life graphs.
This makes it clear that when we want to find a clustered group of nodes, looking at the number
of triangles around this node is not necessarily the best way and using the transitivity of a subgraph
gives different results. Moreover, this does also mean that we cannot sort by degree in order to find
clustered groups of nodes: high degree nodes have by definition a high wedge count, but as can be
seen in Figure 5.17 this does not necessarily mean high triangle counts.

(a) com-DBLP (b) com-Amazon

Figure 5.17: Triangles versus wedges in ball subgraphs S1(v), S2(v) and S3(v) in real life graphs.

We have also plotted the conductance and the triangles over different radii of the ball subgraphs with
the 5 highest- and 5 lowest degree nodes in Figures 5.18 and 5.19 to check the behaviour of the
conductance and the number of triangles over these different radii.

There is no defined split in the high degree and low degree nodes based on the conductance in the
real life graphs, as can be seen in Figure 5.18. While in the DBLP graph, Figure 5.18a, we see a
clear division starting in the ball subgraph S3(v), this is less clear in smaller radii. This shows that
we cannot just sort by degree in order to find clustered groups of nodes based on conductance and
that clustered nodes are not necessarily centered around a node with high degree.

For the triangles, however, as depicted in Figure 5.19, the split is very clear. High-degree nodes have
much more triangles over all radii of the ball subgraphs, while low-degree nodes have a much lower
number of triangles, even in ball subgraphs of radius 3.
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Figure 5.18: Conductance of the 5 highest and 5 lowest degree nodes in real life graphs.
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Figure 5.19: Number of triangles of the 5 highest and 5 lowest degree nodes in real life graphs.

Seed sets for PageRank-Nibble

In Figures 5.20 and 5.22 we show the conductance of the different seed sets in S1(v) and S2(v) in
comparison to the found conductance sets of PageRank-Nibble. The pictures show different results
than we have found in LFR-graphs and the most striking difference is that using the 100 nodes with
a smallest conductance ball subgraph does not work anymore, since there are a lot of nodes with no
links to the the rest of the graph which makes the conductance of these nodes zero. However, since
we have used p = 213 registers, these results are less precise than the results with PR-Nibble for LFR
graphs.

In Figure 5.21, it can be seen that for the Amazon graph, in both ball subgraphs the transitivity seed
set gives the lowest resulting conductance after PR-Nibble and also the random seed set gives a low
conductance after PR-Nibble.
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(a) Ball subgraph of radius 1
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(b) Ball subgraph of radius 2

Figure 5.20: Conductance in a ball subgraph of radius 1 and 2 versus the set conductance found
by using PR-Nibble with the center node of the ball as seed in com-Amazon, p = 213 registers. The
circles are confidence ellipses with a confidence interval of 3σ.
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(b) Ball subgraph of radius 2

Figure 5.21: Boxplots of the resulting conductance after PR-Nibble in every seed set in the Amazon
graph

For the DBLP graph, Figure 5.22, the results are quite clear. In the ball subgraph of radius 1 we can
see that the number of triangles of the transitivity as a seed set works best, since these ball subgraph
already have low conductance and moreover they improve the most after running the PageRank-
Nibble algorithm. For the ball subgraph of radius 2, one could say that using triangles as a seed set
works best: the triangles have a very small variance and are therefore very clustered and after doing
PageRank-Nibble. This is confirmed in Figure 5.23: the transitivity and triangle seed sets give a
much lower conductance after PR-Nibble in comparison to the degree and random seed sets.
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Figure 5.22: Conductance in a ball subgraph of radius 1 and 2 versus the set conductance found
by using PR-Nibble with the center node of the ball as seed in com-DBLP, p = 213 registers. The
circles are confidence ellipses with a confidence interval of 3σ.
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(b) Ball subgraph of radius 2

Figure 5.23: Boxplots of the resulting conductance after PR-Nibble in every seed set in the DBLP
graph

While for the Amazon graph, the transitivity and the random seed sets get the best results, the DBLP
graph has the best results by using the number of triangles as a seed set. A reason for this can be
that in the DBLP graph there are more triangles, which makes the entire graph more clustered. A
difference between the real life graphs and the LFR-graphs is that in this real life graph, seed sets
using measures with ball subgraphs of radius 2 also give good results which again indicates that the
communities in this graph are larger.
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6 | Conclusion and Discussion

6.1 Conclusion

The aim of this research was to find clustered groups of nodes using the HyperBall algorithm. We
started with a method to find the conductance in ball subgraphs Sr(v) around node v with radius
r. We introduced Theorem 2 and 3 which expressed the conductance of a ball subgraph in terms of
quantities that can be estimated with an adapted version of the HyperBall algorithm by using directed
versions of undirected edges.

We derived two kinds error bounds for the conductance estimate in ball subgraphs: Chebyshev and
Vysochanskij-Petunin error bounds, where the latter can only be used when our estimate has a
unimodal distribution. These error bounds turned out to be tight, as can be seen in Figure 5.2 and in
Table 5.2, and the error in the estimate decreases fast when increasing the precision of the HyperBall
algorithm (using more registers) or increasing the number of nodes and edges in a graph. Interestingly,
in the error of the conductance in ball subgraphs of radius 1 there is a step-wise error which can be
explained by the correlation between the number of directed and undirected edges.

In Chapter 4, we introduced an adaptation of the HyperBall algorithm to count the number of
triangles or wedges in ball subgraph Sr(v) and we again derived error bounds of these estimates by
using the Chebyshev and VP error bounds. Since the estimated number of triangles and number of
wedges is a direct output of the HyperBall algorithm, the error is smaller and also decreases fast
when increasing the number of registers (Figure 5.6). However, since counting and enumerating the
number of triangles is not a trivial task, it takes longer than the ‘normal’ HyperBall algorithm.

In Chapter 4, we have also studied the transitivity, which can be seen as the relation between the
number of triangles and wedges in a graph. When this transitivity is close to 1, this means that
a graph is very clustered and therefore the transitivity is a good measure for finding clustered ball
subgraphs. We have found the error bounds for the transitivity in the same way as we did for
conductance, depicted in Figure 5.8. Moreover, we found that there is a strong relation between the
number of triangles and the number of wedges in LFR-graphs, which shows that it is not necessary
to find the transitivity and that the number of triangles or the number of wedges are already a good
indication of clustered groups of nodes. However, we found that this is a specific property of the
LFR-graphs.

In Chapter 5 we have compared our results in generated LFR-graphs to real life graphs with defined
communities. We used a graph of 300 thousand products (nodes) of Amazon product, with a link
between two products when customers who bought product a also bought product b, and a graph
from the DBLP computer science bibliography that represents authors as nodes and two authors have
a link when they have published a paper together. These graphs do not behave the same as the
generated LFR graphs: there is no clear relation between the number of triangles and wedges in a
graph and there is also no clear split between high- and low-degree nodes in terms of conductance,
which makes the transitivity and conductance measures even more important to find clusterings in
these graphs. Moreover, in the real life graphs we see that the ball subgraph conductance of all
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radii has lower conductance than the LFR-graphs, which means that there are more well-defined
communities.

Lastly, we have used the estimates for conductance, transitivity and number of triangles as pre-
selection for low-conductance sets that can be found by for example PageRank-Nibble or the Multi-
Walker Chain algorithm. We have used seed sets of the 100 nodes with lowest conductance, highest
transitivity and largest number of triangles and used these seed sets as starting seed for the PageRank-
Nibble algorithm. The conductance of the resulting set that was found by PageRank-Nibble was better
than the conductance of the ball subgraph for every seed in the seed set. Pre-selecting on the lowest
conductance, highest transitivity or largest number of triangles gave a better result in the PageRank-
Nibble algorithm than using a seed set based on degree or choosing 100 nodes at random. In the real
life graphs, this result is not always as evident as in the LFR-graphs, but still it could be seen that the
triangle and transitivity seed sets gave in general better minimal conductance sets after PR-Nibble.
Moreover, when dealing with graphs with isolated nodes or graphs that are disconnected, using lowest
conductance balls as seed-sets does not work. These ball subgraphs should be discarded in order to
get useful results. In large networks, however, it is no trivial task to identify and discard these ball
subgraphs. In general, we recommend using highest transitivity as a seed set for the PR-Nibble
algorithm, since this seed set gave the most consistent and best results.
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6.2 Discussion

We now discuss some interesting directions for further research. We have shown some results of graphs
and realisations that were possible on a ‘normal’ computer, but to better assess the performance of
the HyperBall algorithm, we need to further increase the size of the graphs that we are working
with.

In the experiments on the LFR-graphs we came across some interesting results, as depicted in Figure
5.4: there is a correlation between the error in the estimated number of edges and the estimated
number of directed edges in our algorithm. We have an intuition of why these strange patterns occur
since this only happens when linear counting is used (lines 18 - 20 of Algorithm 2), but it might be
interesting to explore this more and to research the linear counting algorithm that is used. Ertl [13]
described an adaptation of the HyperBall algorithm where this linear counting is not used anymore,
but we did not research this any further. Another option is to use this correlation between the edges
and directed edges in order to make the estimations more precise: since the edgeball and the directed
out-edgeball have overlap, it might be an idea to the same hash markers (Section 3.2.1) which could
cancel out bias. The use of hashes has been explored further in [17], but is not included in this
research.

The adaptation of the HyperBall algorithm to count triangles is a promising addition to the possibilities
of the HyperBall algorithm. However, since the initialisation itself still needs to count the exact
number of triangles in order for the HyperBall algorithm to work, this algorithm can only be as
fast as the fastest exact counting algorithm for triangles in a graph. Instead of an exact counting
algorithm, it might be possible to use an approximation of the number of triangles around a node as
initialisation step in Algorithm 6 in order to make it faster, but this also means that it might become
less precise.

In Chapter 5, we have chosen to use three kinds of LFR graphs that we could also count in an exact
way in a reasonable amount of time. We have chosen a mixing parameter of µ = 0.3 in most of
these graphs since this mixing parameter gave graphs with well-defined communities that were also
connected. When using smaller mixing parameters, the graphs were not connected anymore which
made more it difficult to analyse. However, we are not sure whether µ = 0.3 is the best representation
of real life graphs. We also did not look into changing the parameters for the power law distributions
(τ1 and τ2), which can also change the structure of the generated LFR-graphs to behave more like
real life graphs.

For the real life graphs, we have used two graphs with a clear community structure. While both
graphs have communities, there are still a lot of differences between those two graphs. This can
depend on the size of the communities, the number of links between communities and the average
degree of the graph. It would be interesting to explore more of these real graphs to see how these
graph properties relate to ball conductance or transitivity, or to use different kinds of graphs such as
directed, weighted or temporal graphs, since the HyperBall algorithm should work for these kinds of
graphs. For temporal graphs, the method described in this research could help identify properties of
temporal graphs very fast, since the introduced algorithm finds the conductance or the number of
triangles in all ball subgraphs of the graph. However, for this to work, it is necessary to change the
temporal graph into a ‘normal’ graph in a certain way. In [5] such a method was introduced, but it
would be interesting to investigate this further.

We also used our clustering measures (conductance, number of triangles and transitivity) as seed
sets for PageRank-Nibble. We chose to use PageRank-Nibble because we wanted to use the idea
of starting with a good seed set. Moreover, the Multi Walker Chain model, as described in Section
3.1.1, was only an addition to the PageRank-Nibble so when it works on PageRank-Nibble, our idea
was that it also would work for the Multi Walker Chain model. We did not check this for the Multi
Walker Chain model, but it might be interesting to see whether the seed sets still work for the Multi
Walker Chain model and whether this algorithm finds the low conductance sets even faster.
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In the PageRank-Nibble algorithm, we did not investigate how the different parameters changed the
resulting minimal conductance set. We have chosen to use a maximum community size of 200,
which is quite large, and a teleport probability of 0.85 since this is standard for PageRank-vectors.
However, it might be interesting to do further research about how these parameters change the
minimal conductance set when using different kinds of seed sets. The outcomes of the PageRank-
Nibble algorithm were also difficult to analyse, as can be seen in Figure 5.12. While we can see that
some seed sets work better than others, it is difficult to choose the measures on which we want to
base our comparison. Moreover, in the real life graphs (Figures 5.20 and 5.22) we see that there
are nodes that are not connected to the rest of the graph and therefore have a conductance of zero
which makes the lowest ball conductance as a seed set not useful. Therefore, an interesting idea for
further research is to remove these disconnected nodes from the graph in order to find clusterings in
large connected components.
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[5] A. Badie-Modiri, M. Karsai, and M. Kivelä, Efficient limited-time reachability estima-
tion in temporal networks, Physical Review E, 101 (2020), p. 052303.
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A | Glossary

G = (V,E) An undirected graph with node set V and edge set E
n = |V | Number of nodes in a graph
m = |E| Number of edges in a graph
N(v) All nodes in incident to node v
{x, y} ∈ E Undirected edge
(x, y) ∈ E Directed edge
Br(v) Ball consisting of nodes around node v with radius r
Er(v) Ball consisting of undirected edges around node v with radius r
∆r(v) Ball consisting of triangles around node v with radius r
E−r (v) Ball consisting of directed out-edges around node v with radius r
E+
r (v) Ball consisting of directed in-edges around node v with radius r

E±r (v) Ball consisting of directed in- and out-edges around node v with radius r
Sr(v) Ball subgraph in G induced by the nodes in Br(v)
p = 2b Number of registers in a HyperLogLog counter
φ(S) Conductance of a subgraph S
δ(S) Edge boundary of a subgraph S
vol(S) Volume of a subgraph S
t(S) Transitivity of a subgraph S
w(S) Set of wedges in a subgraph S
C(S) Set of cycles in a subgraph S

Table A.1: Glossary of the notation used throughout this thesis
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