
R E D A C TA B L E B L O C K C H A I N
How to change the immutable and the consequences of doing so

damiano sartori

MSc EIT - Cyber Security
University of Twente

August 2020

Damiano Sartori: Redactable Blockchain, How to change the immutable
and the consequences of doing so, © August 2020

supervisor:
Dr. Maarten Everts

committee members:
Dr. Luís Ferreira Pires
Dr. Ansgar Fehnker

location:
Enschede

time frame:
August 2020

A B S T R A C T

A blockchain is a peer-to-peer distributed ledger that registers crypto-
graphically signed transactions in a sequence of blocks. Each block in
the chain stores the hash of the previous block, thus creating a chain
of blocks. Blockchain is thought to be immutable thanks to the prop-
erties provided by the hash function. More precisely, a blockchain can
be described as a tamper-proof and tamper-evident chain of blocks.

The immutability of a blockchain is undoubtedly one of its strongest
features. However, the inability to change or delete data might be an
undesirable feature in specific contexts and represents another chal-
lenge in the use of blockchain in those situations in which personal
data are at stake. Art. 16 and Art. 17 General Data Protection Reg-
ulation (GDPR), introducing the data subject’s right to rectification
and right to erasure, assumes that modifications and deletion of data
are always possible. Therefore, there might be situations in which the
actual deletion (or change) of data is mandatory, and the inability of
doing so will result in a non-compliant system.

To facilitate the possibility of compliance, we propose and design
the architecture of a blockchain that allows for modifications and dele-
tions of data under particular circumstances. We employ chameleon-
hash functions with ephemeral trapdoor as a substitute for the stan-
dard hash functions used in the blockchain. The ephemeral trapdoor
is different for each newly created hash, which allows for targeted
and fine-grained collision computation.

We distribute the ephemeral trapdoor to the data subject, the data
controller, and the data processors using a verifiable and weighted
secret sharing schemes in which the data subject holds the strongest
share of the trapdoor. However, in case the data subject loses the key
or is unwilling to engage in the protocol, the shares distributed to the
other parties allow for the reconstruction of the ephemeral trapdoor.
To maintain a sufficient level of integrity and keep the tamper-evident
property of a blockchain, we publish a Proof-of-Redaction. This mech-
anism serves to prove that history has been modified and that the
network agreed on the redaction.

We evaluate our proposal with blockchain and cryptography ex-
perts to validate our design. We show that, while the standard im-
mutability is not maintained, a weaker version that accounts for au-
thorized redactions is still achievable. The proposed architecture could
have the ability to reduce the frictions between the immutability of a
blockchain and the GDPR without improperly weakening an existing
architecture.

iii

A C K N O W L E D G E M E N T S

First and foremost, I wish to express my sincere gratitude to my university
supervisor, dr. Maarten Everts, and to my supervisor at the company host-
ing the research. You challenged me since the beginning of the thesis, helped
me to shape my research, and guided me with your precious comments.

Many thanks go to colleagues and interns in Deloitte. You gave me the
opportunity to make the most of out of this experience even if we enjoyed
staying together for less than two months. I appreciated the moments I spent
with you and I am looking forward to reconnecting together. In particular,
I would like to recognize the support received from the thesis coordinators
in Deloitte and all the colleagues who spent their time to provide valuable
comments on the project.

I would also like to thank friends and classmates with whom I spent these
two years. It would be too long to mention you all but I am sure you will
recognize yourself as part of those. It was the first time I lived in a foreign
country for a long time and you all contributed to this unforgettable adven-
ture.

From the bottom of my heart, a special thank goes to Virginia. Even though
we spent almost a year apart, I have always felt loved and supported during
this time. I consider myself lucky for having the chance of spending the last
four years together and I cannot wait to see what is up next.

Last, but not least and less important, thanks to my parents and my broth-
ers. They supported during this process and I recognize I would have never
come this far without you.

v

C O N T E N T S

1 introduction 1

1.1 Motivation . 2

1.2 Problem Statement . 2

1.3 Objectives . 3

1.4 Research Questions . 3

1.5 Methodology . 4

1.6 Timeline . 5

1.7 Contributions . 7

1.8 Structure . 7

2 background 9

2.1 Distributed Ledger Technology 9

2.2 Blockchain . 10

2.2.1 Cryptographic Hash Functions 11

2.2.2 Digital Signatures 11

2.2.3 Asymmetric-Key Cryptography 12

2.2.4 Block . 12

2.2.5 Node . 13

2.2.6 Transaction . 13

2.2.7 Ledger . 14

2.2.8 Consensus . 14

2.2.9 Smart Contract 16

2.2.10 Blockchain Taxonomy 17

2.2.11 Blockchain Decision Models 18

2.2.12 Our Definition of Blockchain 18

2.3 Hyperledger Fabric . 20

2.3.1 The Blockchain Network 20

2.3.2 A New Architecture for Transaction 21

3 related work 25

3.1 Structural Approach . 25

3.2 Local Approach . 30

3.3 Layered Approach . 30

3.4 Account-Based Approach 31

3.5 Summary . 32

3.6 Presentation of our Work 32

4 mapping the gdpr on the blockchain 35

4.1 Introduction to the General Data Protection Regulation 35

4.1.1 Personal Data . 36

4.2 Mapping the blockchain with the GDPR 40

4.2.1 GDPR Six Core Principles 40

4.3 Tensions between Blockchain and the GDPR 43

4.3.1 The roles of Data Controller and Data Processor 44

4.3.2 The exercise of Data Subject’s Rights 48

vii

viii contents

4.3.3 The Transfer of Personal Data to a Third Country 52

4.4 Requirements . 52

4.4.1 Compliance Requirements 52

4.4.2 Technical Requirements 54

5 how to change the immutable 57

5.1 Design . 57

5.1.1 Building Blocks 58

5.1.2 Request Flow . 61

5.2 Integration . 62

5.2.1 Chameleon-Hash Function into the Block Cre-
ation Process . 63

5.2.2 Evidence of Modification into the Block of Trans-
actions . 71

5.2.3 Proof of Redaction 73

5.2.4 The case of Dependent Transactions 75

5.3 Implementation . 77

5.3.1 Chameleon-Hash with Ephemeral Trapdoor Im-
plementation . 77

5.4 Summary . 79

5.4.1 Prototype Design 80

5.4.2 Modification Rights 80

6 evaluation and discussion 83

6.1 Assumptions and Security of Chameleon-Hashes . . . 84

6.1.1 Permissioned Network 84

6.1.2 Security Properties of Chameleon Hash Functions 85

6.1.3 Threat Model . 86

6.2 Security Analysis . 87

6.2.1 Security Requirements and Properties 87

6.2.2 Assessment . 88

6.3 Validation with Expert Interviews 90

6.3.1 Formalisation of Design Qualities 90

6.3.2 Immutability . 92

6.3.3 Assessment through Expert Interviews 92

6.3.4 Discussion of the Assessment 93

6.3.5 Limitations of the Assessment 95

6.3.6 Answer to Research Question RQ2 95

6.4 Performance Evaluation 96

7 conclusion 99

7.1 Answer to the Research Questions 99

7.2 Limitations . 100

7.3 Future Work . 101

bibliography 103

L I S T O F F I G U R E S

Figure 1 Timeline of the Thesis Project 5

Figure 2 Generic structure of a block containing block
header and block data 13

Figure 3 Generic blockchain ledger built as a chain of
blocks . 14

Figure 4 Koens and Poll blockchain decision framework
from [22] . 19

Figure 5 Hyperledger Fabric Transaction Flow1 22

Figure 6 Data controller accepts the request of the data
subject . 62

Figure 7 Data subject appoints the Data Protection Au-
thority . 63

Figure 8 Chameleon-Hash Function into the Merkle Tree 66

Figure 9 First Key Management approach 69

Figure 10 Second Key Management approach 70

Figure 11 Third Key Management approach 71

Figure 12 Fourth Key Management approach 72

Figure 13 Committing the Randomness for Proof-of-Redaction 75

Figure 14 The case of dependent transactions 76

Figure 15 Structure of Experts Interviews 92

ix

L I S T O F TA B L E S

Table 1 Taxonomy of proposed mutable blockchain schemes 33

Table 2 Evaluation Methods used in This Study 84

Table 3 Summary of Experts Assessment 93

Table 4 Performance of Chameleon-Hash with Ephem-
eral Trapdoors 97

x

L I S T I N G S

Listing 1 Description of the Block structure from Hyper-
ledger . 64

Listing 2 Description of the BlockHeader structure from
Hyperledger . 64

Listing 3 Hashing of block data from Hyperledger . . . 65

Listing 4 Transaction validation codes from Hyperledger 72

Listing 5 Generation of RSA public exponent 78

Listing 6 Generation of RSA modulo and private exponent 78

Listing 7 Hashing Process 79

Listing 8 Collision Computation 79

xi

https://github.com/hyperledger/fabric-protos-go/blob/master/common/common.pb.go#L600
https://github.com/hyperledger/fabric-protos-go/blob/master/common/common.pb.go#L600
https://github.com/hyperledger/fabric-protos-go/blob/master/common/common.pb.go#L658
https://github.com/hyperledger/fabric/blob/7e1d1715de7ff04c35e4c5213e67b632d361e222/protoutil/blockutils.go#L65
https://github.com/hyperledger/fabric-protos-go/blob/master/peer/transaction.pb.go#L24

A C R O N Y M S

CHET Chameleon-Hash with Ephemeral Trapdoor

CP-ABE Ciphertext-Policy Attribute-Based Encryption

DLT Distributed Ledger Technologies

DPA Data Protection Authority

DPO Data Protection Officer

GDPR General Data Protection Regulation

PBTF Practical Byzantine Fault Tolerance

PBH Policy-Based Chamaleon Hash

PoA Proof of Authority

PoET Proof of Elapsed Time

PoR Proof of Redaction

PoS Proof of Stake

PoW Proof of Work

RR Round Robin

xii

1
I N T R O D U C T I O N

Looking back to the last half-century of computer history, we may
recognise a slow but continuous movement towards a decentralised
computing paradigm. Initially, mainframes were centralised, and they
were hosting memory, data, and computing power. Access to those
resources was performed via very simple terminals that contained
little or no memory and computing resources. Years later, personal
computers started to gain popularity and computing resources began
their movement from a single centralised location to user’s laptops.
Significant computational power was still hosted by the servers and
accessed by the clients, and access to data was still mainly centralised.
The client-server architecture represents the first step of the decentral-
isation process. More recently, Internet and cloud computing enable
wider - and almost global - access to data from a huge range of de-
vices, from smartphones to sensors integrated into everyday objects.
Nowadays, the decentralisation process is pushed by emerging tech-
nologies such as the blockchain.

A blockchain is a peer-to-peer distributed ledger that registers cryp-
tographically signed transactions in a sequence of blocks. Its very first
well-known application is dated back in 2008 when Satoshi Nakamoto
introduced Bitcoin [1]. Bitcoin is a peer-to-peer electronic cash system
developed to reduce the need to rely on a centralised third party to
regulate financial transactions and give users control over their opera-
tions. It solved the problem of double-spending by using a distributed
timestamp system to create a list of chronologically ordered transac-
tions. Since the first transaction in 2009, Bitcoin gained popularity
and paved the way for the creation of hundreds of cryptocurrencies
in the last decade. Besides the hype in cryptocurrencies, the technol-
ogy supporting Bitcoin has steadily gained interest. New applications
of blockchain outside the financial and payment systems were and
are being proposed. For instance, Internet of Things (IoT), public and
social services, reputation systems, supply chain management, prove-
nance, and healthcare have all been identified as potential sectors in
which blockchain can provide added value.

One of the goals of decentralised systems is to give end-users ad-
ditional control over their digital assets and their data, removing
the trusted middleman. Additional control over a user’s data is also
one of the goals of the General Data Protection Regulation (GDPR).
Adopted in 2016 and enforceable since May 2018, GDPR aims at sim-
plifying the fragmented European regulatory environment concern-
ing data protection and giving more control to individuals over their

1

2 introduction

data. Although blockchain and GDPR have the common goal of em-
powering individuals and increasing the control they have other their
data, some fundamental characteristics of a blockchain are in contrast
with the rights identified by the GDPR. On the one side, blockchain
is thought to be immutable1 because, once a transaction has been
approved and a block has been added to the chain, it is almost im-
possible to modify the content of that transaction without disrupting
the chain. Modification of data will generate a different hash for that
transaction, invalidating the block and all subsequent ones. On the
other side, GDPR recognises the rights of individuals to request the
deletion or the modification of their data. Once an authroity grants
the request, data need to be deleted or modified accordingly, no mat-
ter the technology used to store and manage it.

1.1 motivation

The immutability of a blockchain is undoubtedly one of its strongest
features. Even though it is usually referred to as immutability, we
should specify that it is not absolute property in the sense that a block-
chain could be modified. However, it is extremely difficult to modify
it, and every modification is evident because it alters its structure.
Hence, to be precise, we should refer to a blockchain as a tamper-
proof and tamper-evident structure.

In most scenarios, a tamper-proof and tamper-evident structure
perfectly fulfils the goal of maintaining an immutable log of trans-
actions where parties do not trust each other and do not want to
engage in a trust relationship with a third-party that supervises and
grants the integrity of the transaction process. However, this feature
presents itself in contrast with other requirements in some specific
scenarios. For instance, when material that infringes copyright law or
when personal data is posted on a blockchain.

To prevent users involved in the consensus algorithm and partic-
ipants making use of the blockchain to conduct transactions from
being liable of infringing laws or regulations, it might be useful to
alter the content of the blockchain so that it is possible to remove
unwanted and illegal material.

1.2 problem statement

The presence of unwanted or illegal material on a blockchain might
be detrimental for the participants of the network. In cases where un-

1 To be precise, a blockchain does not achieve perfect immutability. A blockchain could
be modified. However, it is challenging to do so because every modification to ex-
isting data alters the hash chain and requires to recompute the list of all hashes.
Moreover, the fact that changed data modify the hash makes every modification
visible to the other participants.

1.3 objectives 3

wanted content infringes laws or regulations, it should be possible to
remove part of the content from the blockchain so that the network
can operate in a compliant fashion. A very naive way of modifying
the blockchain is making use of hard forks. However, hard forks re-
quire an off-chain agreement among the developers of a blockchain.
All the confirmed transactions that have been removed due to the fork
must be executed again. Another naive approach consists of pruning
the blockchain to remove all blocks older than a specific date. How-
ever, we should note that pruning reduces the size of a blockchain,
and it is not explicitly thought to remove unwanted content. We ar-
gue that it is worth to analyse the problem of modifying a blockchain
more smartly, allowing for finer-grained modification targeted to re-
move unwanted content. Moreover, we believe such change should be
evident and justified so that integrity and immutability of the block-
chain can be maintained to a sufficient level to justify the use of a
blockchain even when its modification is permitted.

1.3 objectives

The first objective of this thesis is to define in which cases we should
permit modification on a blockchain to comply with the General Data
Protection Regulation (GDPR), hereinafter referred to as the Regula-
tion. To achieve this goal, we discuss if and in which circumstances
transactional data, public keys, and hashes should be considered per-
sonal data to determine whether the GDPR applies. We stress that
this discussion is missing in most of the proposed solutions in the lit-
erature, which assume that modifications are necessary without pro-
viding a sufficient justification.

The second objective is to propose an architecture that reduces the
contrasts between the Regulation and the way a blockchain manages
and processes data. With the ultimate goal of simplifying the develop-
ment of a compliant blockchain application, we analyse the existing
frictions to define the requirements that our design should fulfil.

The third objective is to define who should have the rights to pro-
pose and approve modifications. While this definition depends on the
particular application, it is nonetheless helpful to present our design
and to facilitate its integration in a defined use-case.

Last, the fourth objective is to formalise some properties of a block-
chain, namely integrity and immutability, and to examine to which
extent these properties are weakened if we introduce the ability to
modify the ledger.

1.4 research questions

To achieve the goals announced in the previous section, we formulate
the following research questions:

4 introduction

RQ1: Should we modify blockchain technology so that it is possible
to alter or delete transactions to comply with Art. 16 and Art.
17 of GDPR?

SQ1: What obstacles are introduced by Art. 16 and Art. 17 of
GDPR in the processing of personal data in a blockchain?

SQ2: What are the requirements to build a compliant block-
chain system?

SQ3: Is the modification of the blockchain a possible way to
comply with the Regulation?

SQ4: Which technical building blocks should we leverage to
produce a design that facilitates compliance?

SQ5: In case changes are needed, who has the right to propose
and approve modifications?

RQ2: How does the modification of the blockchain impact its proper-
ties?

SQ1: To what extent the integrity of blockchain suffers from
this modification?

SQ2: To what extent the immutability of the ledger suffers from
this modification?

1.5 methodology

To answer our research questions, we adopt the Design Science Re-
search methodology. Precisely, we refer to the methodologies presented
by Hevner et al. in [2] and by Vaishnavi and Kuechler in [3]. The
methodology revolves around a problem that can be solved by de-
signing an artefact. Following the design, the artefact can be imple-
mented, tested, and evaluated to reflect on whether or not the prob-
lem has been solved. According to the methodology presented in [3],
our process is structured in five different phases:

Phase 1: Awareness of the problem. The awareness of the prob-
lem comes from multiple sources, including industry de-
velopments or a reference discipline [3]. In this situation,
the specific problem we are investigating is the incompati-
bility of GDPR requirements and blockchain immutability.
The problem comes from the tentative solution of applying
blockchain to solve the issue of sharing data among organi-
zations in an environment with limited trust. The output of
the awareness phase was our project proposal.

Phase 2: Suggestion. The suggestion phase uses as input the project
proposal to envision new and creative configurations of the
system with the potential of solving the problem [3]. In our

1.6 timeline 5

research, this phase provided us with the design of a sys-
tem able to overcome the limitation of current proposals.

Phase 3: Development. The development phase includes the imple-
mentation of the proposed design [3]. Depending on the
artefact, the development output ranges from formal proofs
to software development or reference architectures. In our
project, the final artefact to be created has been based on
whether a component needs to be added to the blockchain
or modified from an existing architecture.

Phase 4: Evaluation. Once the artefact has been implemented, it is
evaluated in the evaluation phase using implicit and/or
explicit evaluation criteria [3]. The deviations of the sys-
tem from the expected outcome "must be tentatively ex-
plained" [3] with the development of hypothesis to justify
the unexpected behaviour.

Phase 5: Conclusion. The conclusion phase ends the research cy-
cle and includes a strong communication component [3].
In case of a successfully implemented artefact, the conclu-
sion phase presents a new tool that can be later applied to
solve the identified problem. On the contrary, in case the
artefact shows anomalous behaviour, the conclusion phase
proposes a possible explanation and drives future research.

1.6 timeline

Figure 1: Timeline of the Thesis Project

Figure 1 illustrates the phases of the thesis project. The phases in-
clude the following tasks:

Phase 1: Awareness of the problem. To build a theoretical aware-
ness of the problem, we performed a focused review on
redactable blockchain. We identified the limitations of the
proposed solutions, as well as compliance and technical re-
quirements. This phase is based on unstructured interviews
carried out with legal and technical experts of the company
hosting the research, on the literature review of the research
topic, and on a set of documents suggested by the experts
that address the conflicts between GPDR and blockchain

6 introduction

technology. The goal is to develop theoretical knowledge
of the problem, to gather a set of preliminary requirements
and evaluate whether current solutions meet the require-
ments, and to state a list of assumptions to drive the design
of the architecture.

Phase 2: Suggestion. The suggestion phase includes the selection of
tools, technologies, and cryptographic primitives that have
been used in the development phase. The output of the
phase is the preliminary design based on the assessment
of state-of-the-art approaches to modifiable blockchain. The
design identified in this phase has been discussed with the
company’s experts to validate that requirements are theo-
retically satisfied in the design.

Phase 3: Development. The development phase consisted of the de-
velopment of a reference architecture based on the design
proposed in the previous phase. According to [3], an archi-
tecture is a "high level structure of systems". While we do
provide a high-level design of the system, we do also pro-
vide a detailed discussion on the various building blocks
that compose the system. The development phase included
the implementation of some fundamental building blocks
to provide performance evaluation in the following phase.

Phase 4: Evaluation. The evaluation phase includes a compliance
check with the legal requirements, the evaluation of the im-
pact on integrity and immutability, and the testing of the
proof of concept of the implemented building blocks.The
design science research methodology includes a continu-
ous evaluation through "micro-evaluations" [3] performed
by the designer throughout the whole design process. The
concluding formal evaluation has been performed by using
explicit state-of-the-art methods used in related works of
redactable blockchain as well as semi-structured interviews
with experts to check the impact of our work on some key
properties that are discussed in Chapter 6.

Phase 5: Conclusion: The conclusion phase includes a summary of
the research, the answer to the research questions, the dis-
cussion of the limitations and a proposal for future devel-
opments. Its goal is to communicate and summarise the
research findings and to discuss various possible directions
to improve the existing architecture and to develop a work-
ing proof-of-concept.

1.7 contributions 7

1.7 contributions

The contributions of this work are threefold:

1. Provide a legal discussion on whether content on a blockchain
might be subject to GDPR requirements due to its classification
as personal data.

2. Propose a design that allows for the modification of a block-
chain to comply with the Regulation. The main contributions
of the design are the involvement of the data subject into the
modification process through the use of secret sharing and the
introduction of proof of redaction to the ledger. Compared to
existing work, the novelty of our approach is noticeable both in
the way we distribute the trapdoors and in the presence of a
Proof-of-Redaction that shows the ledger was modified.

3. Analyse and evaluate to what extent some key properties of a
blockchain are weakened due to our modification and provide
a performance evaluation of the hash function.

1.8 structure

This document is further structured as follows. Chapter 2 provides
background information on blockchain technology and Hyperledger
Fabric. Chapter 3 presents the findings of the literature review and in-
troduces a categorization of the proposed solutions. Chapter 4 builds
the awareness of the problem from the legal perspective and iden-
tifies requirements for the design phase. Chapter 5 constitutes the
main body of the research and presents the reference architecture as
well as the integration into an existing blockchain. It also provides an
implementation of the main building block of our solution to show
the feasibility of our approach. Following the design, Chapter 6 eval-
uates the research through experts interviews to identify whether we
reached our objectives and discusses the impact of such modification
on a blockchain architecture. Last, Chapter 7 summarises the main
findings, discusses the limitations of our approach and provides di-
rections for future research.

2
B A C K G R O U N D

The core ideas behind blockchain can be traced back to the late 1980s
and the early 1990s [4]. In 1989, Lamport proposed Paxos, a consen-
sus protocol to reach agreement in a distributed environment where
the network might be unreliable [5]. In 1991, Haber and Stornetta
introduced a procedure to certify the moment in which a digital
document was created or modified by using a signed chain of in-
formation as a ledger [6]. In the early 2000s, Mazières and Shasha
developed a block-based data structure and protocol for a multi-user
file system that demonstrated the ability of a block to store data. In
2005, Szabo came up with an early attempt to build a decentralized
currency to move control from a single and centralized entity to vari-
ous smaller entities [8]. All these steps paved the way for the develop-
ment of Bitcoin, the peer-to-peer electronic cash system proposed by
an unidentified person or group of people under the name of Satoshi
Nakamoto [1]. Bitcoin solved the problem of double-spending by us-
ing a distributed timestamp system that allows the creation of a times-
tamped and chronologically ordered list of transactions. Since the cre-
ation of Bitcoin, a steadily-growing interest around cryptocurrencies
began. More recently, researchers showed interest in the technology
supporting Bitcoin, i.e., the blockchain, and its applications outside
the financial and payment systems.

This chapter provides background information on blockchain and
distributed ledger technologies. In particular, Section 2.1 gives a brief
overview of distributed ledger technologies and its components. Sec-
tion 2.2 describes the core components of a blockchain with an intro-
duction of the cryptographic primitives and the record-keeping ele-
ments. Last, Section 2.3 presents Hyperledger Fabric, an open-source
consortium blockchain project hosted by the Linux Foundation. We
use Hyperledger Fabric in Chapter 5 to show the integration of our
design into an existing blockchain architecture.

2.1 distributed ledger technology

A distributed ledger is a database that is synchronized and distributed
across multiple devices and generally spread around different geo-
graphical sites and institutions. Distributed Ledger Technologies (DLT)
is a system based on distributed ledgers, which needs a peer-to-peer
network of interconnected devices, called nodes, and a consensus al-
gorithm that allows the modification of the ledger correctly and con-
sistently. A distributed ledger usually has the following model [4]:

9

10 background

• all participants share a consistent copy of the database, there is
no central server, and optionally, some participants might not
have a full copy;

• network connections are peer-to-peer;

• participants must comply with ledger rules;

• to agree on the validity of a given transaction, participants use
a consensus protocol;

• transactions could be financial or exchanging of assets and rules
for the transaction could be coded in smart contracts;

• digital signatures are used to sign transactions on the ledger;

• the ledger represents a temporal order of how assets evolve.

2.2 blockchain

Broadly, a blockchain can be seen as a distributed data structure sim-
ilar to a peer-to-peer database that records transactions in a ledger.
Anybody can propose a change to the database but only the changes
approved by the other participants are considered to be valid and
added to the ledger. The consensus mechanism allows participants
to accept a transaction and to agree on a specific history. Due to its
novelty, however, the literature lacks agreement on the concept of
blockchain. It can be seen as a data model, i.e., a chain of transactions
grouped into blocks, or as a technology, i.e., a type of distributed
database.

More formally, a blockchain is a peer-to-peer distributed ledger
that registers cryptographically signed transactions in a sequence of
blocks. Each block in the chain stores the hash of the previous block,
thus creating a chain of blocks. Blocks in the chain have only one
parent block, and the first block is called genesis block. Participants
in the peer-to-peer ledger are referred to as nodes. Every node in the
network saves a copy of the ledger and, depending on the type of the
blockchain, proposes and validates transactions, participating in the
consensus algorithm. Blockchain might be challenging to understand
as a whole. Therefore, in the following, we present the core tech-
nologies a blockchain relies on according to [9]. First, we present the
cryptographic primitives that support the building blocks of a block-
chain. Second, we examine the record-keeping components. Third, we
present the taxonomy of existing blockchain. Last, we discuss some
frameworks that allow an individual or organization to understand
whether there might be the need to implement a blockchain in a par-
ticular use case.

2.2 blockchain 11

2.2.1 Cryptographic Hash Functions

A hash function is a compression function that takes a message x̄,
represented as a string of bit of arbitrary length, and maps it into a
string of fixed length y, called the digest. A hash function is designed
to be a one-way function, meaning that it is practically infeasible to
invert and the only way to find the original message is through a
brute-force search of all the possible inputs. A cryptographically se-
cure hash function is a hash function h() that satisfy the following
three properties [9]:

1. Pre-image resistance. A hash function h() is said to be pre-image
resistant if, given a digest y, it is computationally infeasible to
find x̄ such that y = h(x̄).

2. Second pre-image resistance. A hash function h() is said to be
second pre-image resistant if, given a digest y and a message x̄
such that y = h(x̄), it computationally infeasible to find another
message x̂ 6= x̄ such that y = h(x̂).

3. Collision resistance. A hash function h() is said to be collision
resistant if it is computationally infeasible to find two messages
x̄ and x̂, x̂ 6= x̄ such that h(x̂) = h(x̄).

The use of cryptographically secure hash functions in a blockchain
varies from the creation of unique identifiers to securing and connect-
ing block of data [9]. Blocks of data are linked through hash pointers,
a cryptographic hash pointing to the location in which data is stored,
i. e., the previous block in the chain. Hash pointers can be used to
verify whether a block has been tampered with thus ensuring the
integrity of data [10].

2.2.2 Digital Signatures

Digital signature schemes are made of three components [10]. The
first is the key generation algorithm, which creates a pair of keys. To
sign a message, a signer uses its private key - which should remain
secret - and the signature can be later verified with the public key.
The second component is the signing algorithm. The digital signing
algorithm takes a digest of a message h(x̄), the private key of the
signer sk, and a random quantity, to produce a signature s. Once a
party receives the signature, a verification algorithm (the third core
component) checks its validity. A verification algorithm takes a mes-
sage x̄, the signature s, and the public key pk of the sender to check
whether the signature is valid. Digital signature algorithm’s goals are
authentication, non-repudiation, and integrity.

12 background

2.2.3 Asymmetric-Key Cryptography

Asymmetric-Key Cryptographyy (also known as Public-Key Cryp-
tography) includes the cryptographic algorithms that make use of a
pair of keys: a public key and a private key [9]. The two keys are
mathematically related, but it must be infeasible to derive the private
key starting from the public key. The public key can be revealed to
the public without hindering the security of the algorithm. On the
contrary, the private key must be kept secret. The two keys are inter-
changeable in the sense that it is possible to (i) encrypt a plaintext
with the private key and decrypt the ciphertext with the public key
or (ii) encrypt using the public key and decrypt with the private key.
In case (i), the algorithm is used to ensure the integrity and prove
the authenticity of a message. In contrast, in case (ii) the algorithm is
used to ensure confidentiality of the message.

2.2.4 Block

From a data structure point of view, a blockchain is a chain of blocks.
A block contains an ordered list of cryptographically signed transac-
tions. Blocks in the chain are linked through a hashing mechanism:
a block n stores the hash of the previous block n − 1 in its header.
This hashing feature makes the blockchain tamper-proof and tamper-
evident [9]. It is noteworthy to specify that it is not impossible to
modify a blockchain. However, doing so requires a huge amount of
power, and it is extremely difficult. Moreover, the longer the chain of
hashed blocks, the more difficult it becomes to modify their history.

Every blockchain implementation defines the exact structure of the
block. However, most of the implementations divide the block into
two parts [9]:

1. Block header. A block header includes metadata for a block. It
might include:

• the block number, sometimes known as block height;

• the hash of the previous block, although in some imple-
mentations a block contains the hash of the previous two
blocks;

• a hash value representing the list of transactions bundled
into the block;

• a timestamp that records the moment in which the block
has been created;

• the size of the block;

• the nonce value, which is used by the node that publishes
the block to solve the cryptographic challenge.

2.2 blockchain 13

2. Block data. Data stored in a block includes the list of crypto-
graphically signed transactions.

Block	Header

Block	Data

Block	Number
Previous	Block	Hash

Block	Hash	
Size

Timestamp
Nonce

Transaction	1 Transaction	2

Transaction	3 Transaction	...

Transaction	n-1 Transaction	n

Figure 2: Generic structure of a block containing block header and block
data

2.2.5 Node

A node is a participant in a blockchain network. It is often referred to
as peer. Nodes in the network are responsible for storing the ledger,
bundling transactions, creating, validating, and broadcasting blocks
to the other nodes. We can identify different types of nodes depend-
ing on their role:

• full nodes ensure that transactions are valid by storing the com-
plete blockchain; among these, publishing nodes also partici-
pate in the process of adding new nodes to the blockchain;

• lightweight nodes do not store or maintain the complete block-
chain and pass transactions to full nodes for approval.

2.2.6 Transaction

In the blockchain, a transaction is an interaction between two entities
E1 and E2 in the network [9]. Transactions are initiated by the sender
through software and are sent to one or mode nodes in the network.
Transactions are packed with other transactions to form a block, and
the block is broadcasted to the other nodes. A transaction is finally
added to the ledger when the network reaches an agreement on the
fact that transactions inside a block are valid and authentic. Once
consensus is reached, the new block is propagated in the network to
update participants.

14 background

Data stored in a transaction depends on the particular implemen-
tation of the blockchain. However, the mechanism used by the par-
ticipant to create transactions is quite similar in most of them [9]. A
network user, the sender, initiates a transaction by using dedicated
software. The sender specifies its identifier and the identifier of the
receiver as well as the input and the output of the transaction. In the
standard settings, the input of a transaction includes the list of digital
assets to be transferred to the recipient. An entry in the list is a refer-
ence to the source of that digital asset, which is either the transaction
in which the sender received the asset or the event in which the asset
has been created. The output of a transaction includes the identifier
of the recipient and the number of assets to be transferred.

2.2.7 Ledger

A ledger is a structured collection of transactions [9]. At first, ledgers
were paper-based and used to keep track of the exchange of assets
among parties. With the development of digital technologies, paper-
based ledgers became digital and stored in large databased, often
controlled by a single and trusted third-party organization. In recent
times, there is a growing interest in distributed ledgers, and block-
chain is one of the technologies that enable distributed ownership
and distributed infrastructure.

Block	Header

Block	Data

Block	Number
Previous	Block	Hash

Block	Hash	
Size

Timestamp
Nonce

Transaction	1 Transaction	2

Transaction	3 Transaction	...

Transaction	n-1 Transaction	n

Block	Header

Block	Data

Block	Number
Previous	Block	Hash

Block	Hash	
Size

Timestamp
Nonce

Transaction	1 Transaction	2

Transaction	3 Transaction	...

Transaction	n-1 Transaction	n

Block	Header

Block	Data

Block	Number
Previous	Block	Hash

Block	Hash	
Size

Timestamp
Nonce

Transaction	1 Transaction	2

Transaction	3 Transaction	...

Transaction	n-1 Transaction	n

Block	N-2 Block	N-1 Block	N

Figure 3: Generic blockchain ledger built as a chain of blocks

2.2.8 Consensus

As there is no trusted third-party authority in the network that regu-
late transactions and resolves disputes, there is the need for a mecha-
nism that enables parties in the network to agree on a common state
of the ledger. Such agreement is reached through the use of a consen-
sus mechanism. The consensus mechanism determines which blocks
will be accepted as part of the blockchain and in which order. The
problem of reaching consensus among parties in blockchain network
can be seen as a specialization of the Byzantine Generals problem [11].
Firstly identified in [12], the problem refers to a group of generals

2.2 blockchain 15

that are chasing a city, and they must collectively decide to attack or
retreat from the campaign.

Depending on the type of blockchain network, a different consen-
sus mechanism can be employed:

• Proof of Work. Proof of Work (PoW) is a computationally in-
tensive consensus mechanism by which the node that wants
to publish a new block to the blockchain must solve a com-
plex challenge. The challenge is usually in the form of finding
a value, the nonce, such that the hash of the block is lower than
a certain value. The complexity of the challenge is modified to
regulate the rate at which new blocks are published. As a node
finds the right nonce that satisfies the requirements, it broad-
casts the block to all other nodes to be validated. When a node
validates a block, it forwards it to the others to improve the
update speed.

• Proof of Stake. Proof of Stake (PoS) is a consensus mechanism
that uses the stake a user invested into the network to decide
the right candidate to add a new block to the blockchain. The
rationale behind the mechanism is that the higher the stake a
user has traded in the network, the lower is the probability it is
willing to subvert it.

• Proof of Authority. Proof of Authority (PoA), sometimes known
as Proof of Identity (PoI), is a consensus mechanism where the
identity of publishing nodes have been verified through their
link with real-world identities. The likelihood of being assigned
with the task of adding a new block is proportional to the repu-
tation a node has.

• Proof of Elapsed Time. Proof of Elapsed Time (PoET) consen-
sus mechanism is based on a random waiting time generated
by trusted secure hardware. Each participant in the network re-
quires a waiting time to the secure hardware time generator and
stays idle for the selected time. After being idle, it wakes up and
publishes a new block.

• Practical Byzantine Fault Tolerance. Practical Byzantine Fault
Tolerance (PBFT) is a consensus mechanism that relies on repli-
cation to tolerate Byzantine faults [13]. PBFT tolerates the pres-
ence of at most bn−13 c faulty nodes in the network. It works
in three phases: pre-prepare, prepare and commit. Pre-prepare
and prepare are used to order requests, whereas prepare and
commit phases are used to ensure that committed requests are
ordered [14]. Before moving among phases, each node waits to
receive a confirmation from at least 23 of nodes.

• Round Robin. Round Robin (RR) consensus mechanism is used
in some permissioned blockchain and is based on rounds. At

16 background

each round, a node is selected to add a new block to the block-
chain. At the next round, a new node is selected, thus turning
the task of creating blocks among the network participants.

2.2.9 Smart Contract

Nick Szabo has coined the term smart contract in 1994 as [15]

[...] a computerized transaction protocol that executes the
terms of a contract. The general objectives of smart con-
tract design are to satisfy common contractual conditions
(such as payment terms, liens, confidentiality, and even en-
forcement), minimize exceptions both malicious and acci-
dental, and minimize the need for trusted intermediaries.
Related economic goals include lowering fraud loss, arbi-
tration and enforcement costs, and other transaction costs.

In other words, smart contracts are contracts whose terms are recorded
in a computer language instead of legal language. They can be auto-
matically executed by a computer system to perform a transaction
when certain conditions are met [16]. According to [17], smart con-
tracts should carry three key characteristics:

• observability: the ability of the principals to observe each other’s
performance of the contract, or to prove their performance to
other principals [17];

• verifiability: the ability of a participant in a contractual agree-
ment to prove to an arbitrator that a contract has been per-
formed or breached, or the ability of the adjudicator to find
this out by other means [17];

• privity: the principle that knowledge and control over the con-
tents and performance of a contract should be distributed among
parties only as much as is necessary for the performance of
that contract. This is a generalization of the common law prin-
ciple of contract privity, which states that third parties – other
than the designated adjudicators and designated intermediaries
– should have no say in the enforcement of a contract [17].

As an additional constraint, smart contracts are required to be deter-
ministic, i. e., if the same input is submitted, the same output should
be returned. Therefore, smart contracts can work only with the data
specified when they are called. A smart contract cannot perform net-
work requests, read data from the disk, or retrieve data from external
sources.

2.2 blockchain 17

2.2.9.1 Ethereum and Smart Contracts

Ethereum is a blockchain-based platform proposed by Vitalik Buterin
in late 2013. Building on the limitations of Bitcoin, Buterin suggested
the development of "an alternative protocol for building decentralized ap-
plications" [18]. To achieve this goal, the author envisioned a block-
chain with a Turing-complete programming language that allows
anyone to develop decentralized applications and smart contracts.
Ethereum was the first blockchain project that offered the possibil-
ity to develop smart contracts to improve the limited possibility of
the scripting offered by Bitcoin.

In Ethereum, the state is made of accounts. Each account has a 20-
byte address, and transitions between two states happen when value
or information is transferred between accounts. Accounts can be of
two types: externally owned accounts and contract accounts. While
a user’s private key controls externally owned accounts, contract ac-
counts are controlled by their contract code [18]. Similarly to other
transactions, smart contracts are deployed on the blockchain by issu-
ing a transaction that will create the address for the contract account.
When the smart contract is deployed, every message received by the
corresponding contract account results in the activation of its code to
perform certain operations.

2.2.10 Blockchain Taxonomy

There is an increasing agreement on the taxonomy of blockchain pro-
posed in [19]. This taxonomy includes public blockchain, private
blockchain, and consortium blockchain. In a public blockchain, any-
one is allowed to send transactions and to participate in the consensus
process. Additionally, anyone can read the content of the transactions
that happened in the network. On the other hand, a private block-
chain is governed and controlled by a single organization and only
nodes belonging to that organization are allowed to perform transac-
tions and participate in the consensus algorithm. Read permissions
might be restricted to the organization’s nodes or open to external
parties depending on the particular application. Last, a consortium
blockchain is one in which the consensus mechanism is controlled
by a group of pre-defined nodes belonging to different organizations.
As in a private blockchain, read permissions might be restricted to
participants only or open to the public. Regardless of the type of
blockchain, we can identify three common characteristics [10]: (i) all
types make use of a peer-to-peer network to send and process trans-
actions, (ii) all types require that transactions are digitally signed, the
chain is append-only, and participants maintain a shared copy of the
ledger, and (iii) all types employ a consensus mechanism to agree on
a consistent state.

18 background

2.2.11 Blockchain Decision Models

Multiple frameworks have been proposed to discuss when it might
make sense to evaluate the implementation of a blockchain instead
of a centralized or distributed database. In the following, we present
some of the proposed ones that will be useful during the evaluation
of the existing literature.

One of the first known discussions on whether blockchain fits a
particular use case has been proposed by Gideon Greenspan in an on-
line blog [20]. The author identifies eight conditions that need to be
fulfilled before starting a blockchain project: (i) the need of a shared
database, (ii) the presence of multiple entities writing to the database,
(iii) a certain level of mistrust between the involved parties, (iv) the
willingness to remove a centralized authority to disintermediate the
process, (vi) the presence of a relationship among transactions, (vi)
the agreement on a set of legitimate transactions, (vii) the agreement
on a set of validators (miners or node that execute the consensus
protocol), and (viii) the presence of a connection between real-world
assets and their representation as transaction assets. The first struc-
tured methodology has been proposed Wüst and Gervais in [21]. The
authors provided a flow chart to determine if blockchain application
is suitable for a particular use case depending on several properties.
Wüst and Gervais decision model helps understand which type of
blockchain should be employed for a given use case. In a use case
where writers are not known a-priori, then the only alternative is a
public (permissionless) blockchain. Instead, if all writers are known, it
is worth evaluating the presence of a trusted third-party. If such third-
party exist, and it is always online, there is no need for a blockchain,
and a standard database with shared access better fits the situation.
On the contrary, if the third party is offline and the participants do
no trust each other, it can play the role of a certification authority on
a permissioned blockchain.

As observed by Koens and Poll, many frameworks have been pro-
posed. However, most of them ignore possible alternative solutions to
blockchain technology [22]. To overcome that limitation, the authors
propose an additional framework that answers three main questions:
(i) should you use a blockchain? (ii) if so, which type of blockchain is
best? and (iii) if not, which alternative is best? Figure 4 illustrates the
flowchart proposed by Koens and Poll.

2.2.12 Our Definition of Blockchain

Due to its relatively short history, there is not a single definition block-
chain. Therefore, we felt the need to introduce the definition that we
will use throughout the document. By providing this, we are not try-

2.2 blockchain 19

Figure 4: Koens and Poll blockchain decision framework from [22]

20 background

ing to introduce a universally accepted definition of the technology.
Rather, we are trying to provide a solid basis for our arguments.

For the purposes of this document, a blockchain is a peer-to-peer
distributed ledger that stores transactions in a chain of blocks con-
nected through the use of a cryptographic hash function. The ledger
is shared and replicated among the nodes in the network. Nodes
agree on the changes to the ledger by approving and validating trans-
actions through a consensus mechanism.

Nodes might have different roles, such as miners or validators. The
formers are involved in the creation of new blocks, whereas the lat-
ter participate in the validation of newly created blocks. Note that a
blockchain may not need such distinction as nodes can take on differ-
ent roles in different moments depending on how they interact with
the network.

Users interact with the network to submit transactions. Typically,
users do not need to store the complete ledger of the blockchain and
are allowed to store only the information they need for their interac-
tion.

2.3 hyperledger fabric

Hyperledger Fabric is an open-source enterprise-grade distributed
ledger technology platform developed under the umbrella of the Hy-
perledger project by the Linux Foundation. Fabric is a permissioned
DLT platform in which parties are known to each other, but they do
not necessarily need to trust one another fully. It has a modular de-
sign that allows some components to be switched based on the par-
ticular use-case needs. For instance, the consensus protocol is plug-
gable and can be adjusted depending on the trust models on which
the network operates. Hyperledger Fabric does not require a native
and built-in cryptocurrency and supports the development of smart
contracts - called chaincode - in general-purpose programming lan-
guages. In this background section, we present the building blocks
of Hyperledger Fabric, and we will explore its new architecture for
transactions.

2.3.1 The Blockchain Network

In this section, we present the main components of a Fabric net-
work. While some of these are quite common and can be found in
many other blockchain platforms, such as peers, other components
are unique to Fabric, such as the ordering service.

2.3 hyperledger fabric 21

2.3.1.1 Peers

A peer is a fundamental component of a blockchain network. It hosts
the ledger and smart contracts. As usual, the ledger records the im-
mutable history of all transactions, and smart contracts are used to in-
teract with the ledger to read or modify assets. In Hyperledger Fabric,
a ledger is made of two components: the world state and the block-
chain. The world state holds the current values for each asset. Each
asset is associated with a version number that represents the number
of times its values has been updated. The blockchain, instead, is the
log of all transactions representing the changes that have been done
to achieve the current world state’s values.

2.3.1.2 Channels

Hyperledger Fabric supports the privacy of data through different
means. Channels can be considered as subnetwork that includes two
or more network participants. The purpose of channels is to allow
participants to conduct confidential transactions without disclosing
the content of a transaction to the whole network. Each channel has
its ledger with its world state and blockchain. Similarly, chaincode
is installed in a channel, and all peers in that channel will have an
instance of the chaincode. Chaincode can also be designed to com-
municate between channels so that ledger information from another
channel can be accessed if needed.

2.3.1.3 Ordering Service

The ordering service is a unique feature of Hyperledger Fabric. It is
composed of many nodes called orderer - or ordering nodes - and its
function is to generate an ordered list of transactions and to create
blocks. The ordering nodes provide a deterministic order of a set of
transactions, thus avoiding forks in the blockchain. As we will explore
in Section 2.3.2, the ordering service plays a central role in transaction
hashing and block creation. Thanks to the separation between the
chaincode execution and transaction ordering, Fabric has been able
to achieve high performance limiting the scalability issues of many
other blockchain platforms.

2.3.2 A New Architecture for Transaction

Many existing blockchain platforms supporting smart contracts em-
ploy an order-execute approach to handle transactions. According to
this approach, transactions are validated, ordered, and propagated to
all peers in the network, which then execute the set of transaction
sequentially. Hyperledger Fabric introduces a new approach to han-
dle transactions called execute-order-validate. Instead of breaking the
process into two steps, the Fabric model is constituted of three steps:

22 background

Figure 5: Hyperledger Fabric Transaction Flow1

1. transactions are executed, checked, and endorsed;

2. transactions are ordered and bundled into blocks by the order-
ing service;

3. transactions are validated to check their compliance with en-
dorsement policies before committing them to the ledger and
applying their changes.

Transaction ordering and block creation are tasks handled by the
ordering service. The consensus on which transactions are valid is
achieved through the use of endorsement policies. An endorsement
policy specifies which peers of an organization need to execute and
check the validity of a transaction before submitting it to the ordering
service.

2.3.2.1 Transaction Flow

We have just seen how Hyperledger Fabric employs a unique ap-
proach to handle transaction execution and ordering. In this section,
we will take a closer look at the Fabric’s transaction flow that will be
later useful to understand our design. A graphical representation of
the transaction flow can be found in Figure 5

1.
Hyperledger Fabric makes use of the execute-order-validate approach

to transactions. This 3-phase approach can be further divided into six
distinct steps:

1. Execute. The execute phase is also known as the proposal phase
and is the first of the three-phase approach.

a) Initiation. The first step is executed by the client applica-
tion that submits a transaction proposal to a set of peers

1 Image credit goes to Olivia Choudhury et al., Enforcing Human Subject Regulations
using Blockchain and Smart Contracts

https://www.researchgate.net/figure/Outline-of-transaction-flow-in-Hyperledger-Fabric-It-depicts-a-use-case-where-1-A_fig1_323973240
https://www.researchgate.net/figure/Outline-of-transaction-flow-in-Hyperledger-Fabric-It-depicts-a-use-case-where-1-A_fig1_323973240

2.3 hyperledger fabric 23

based on the endorsement policy. The proposal specifies
the chaincode function to execute and the input parame-
ters for that function.

b) Endorsement and Execution. A subset of peers - called en-
dorsing peers - receives the transaction proposal from the
client application. They verify the proposal to check that
it is well-formed, it has not been already submitted, the
signature is valid, and the client is authorized to propose
modifications to the channel’s ledger. Once validated, the
chaincode function is executed to create the read-write set,
i.e., a set of assets specifying the value of each asset before
and after the transaction execution. The proposal response
is sent back to the client application.

2. Order. The order phase is the second phase of the transaction
flow in which transactions are ordered and bundled into blocks
by the ordering service nodes.

a) Inspection. Once the client application receives the pro-
posal responses, it verifies the signatures of the endors-
ing peers and checks whether the proposal responses are
the same. If the client application was only querying the
ledger, the transaction is not submitted to the ordering ser-
vice. If instead, the client application wants to update the
ledger, the transaction is broadcasted to the ordering ser-
vice nodes.

b) Ordering and Bundling. Upon receiving transactions, the
ordering service orders them chronologically for each chan-
nel and creates blocks of transactions for each channel.

3. Validate. The validate phase is the third and last phase of the
approach in which committing peers validate the transactions
and update the ledger based on the output of valid transactions.

a) Validation and Commitment. Blocks of transactions are
delivered by the ordering service to all peers. Peers vali-
date the transaction to ensure the endorsement policy is
satisfied and no ledger updates for the assets specified in
the transactions have been performed since the read-write
set was created.

b) Update. Each peer will append the block to the channel’s
blockchain and will update its ledger based on the output
of the valid transactions. Invalid transactions remain into
the block but are not executed, and their output does not
update the ledger.

3
R E L AT E D W O R K

In this chapter, we present and discuss the proposals to achieve a
modifiable blockchain architecture. We categorize the literature into
four different categories, namely (i) structural approach (ST), (ii) local
approach (LO), (iii) layered approach (LA), and (iv) account-based
approach (AC). We first present each paper, and we conclude each
presentation by identifying its limitations. We build on those limita-
tions to produce an improved version of redactable blockchain. We
conclude with a tabular representation and a summary of the related
work.

3.1 structural approach

Perhaps the first proposal to modify the content of a blockchain was
given in [23]. Ateniese et al. argue that several reasons call for an ed-
itable blockchain, ranging from the removal of inappropriate content
to compliance with regulations.

They propose the use of chameleon-hash functions that leverage
the ability to efficiently find collisions for a given hash by knowing a
secret trapdoor. The presented approach allows the modification of a
blockchain that can be categorised into three different types: (i) modi-
fication of a block, (ii) compression of a set of blocks into a smaller set,
and (iii) insertion of one or more blocks. Ateniese et al. adapted a gen-
eral chameleon-hash function to a specialised chameleon-hash func-
tion that does not suffer from key exposure problems. These prob-
lems arise in old chameleon-hash functions when a party, once it sees
a collision, can find other collisions or recover the secret trapdoor. The
presence of a trapdoor that supports the editability of the blockchain
introduces trapdoor management problems. The authors envisage so-
lutions for the three types of blockchain that works either by giving
power to a central authority or by sharing portions of the trapdoor
with a pre-defined set of parties in the network that can derive the
complete secret through multi-party computation schemes.

We identified various limitations in [23]. First, it is not possible to
distinguish between an original block and a modified one because its
deletion does not leave any trace. While the use of chameleon-hashes
is a very elegant way to preserve the integrity of the chain, we ar-
gue that there should be an alternative mechanism to show that a
modification has happened. Second, the presence of trapdoor intro-
duces additional key management concerns. However, we note that
with sufficient governance and a clever key distribution algorithm,

25

26 related work

this limitation may be overcome. Third, deletions are limited to a
block level, meaning that whenever a transaction includes content
that wants to be removed, the whole block containing the transaction
needs to be deleted. This last limitation seems, from a security stand-
point, the less worrying. However, it is a clear, practical limitation as
a block contains many transactions that belong to different users. At
first sight, it seems unnecessary to alter a whole block when a more
fine-grained mechanism targeted at modifying a single transaction
could be implemented using a similarly elegant implementation of
chameleon-hashes.

A finer-grained and controlled version of a rewritable blockchain is
proposed in [24]. Building on the proposal of Ateniese et al., the au-
thors address the block-level redaction limitation presented in [23] to
support transaction-level redaction. To achieve the desired goal, Der-
ler et al. introduce the concept of policy-based chameleon-hash (PCH)
functions by associating access policies to the hash computation. In
particular, they combine CP-ABE functionalities with chameleon-hash
with ephemeral trapdoors (CHET) functions, a variant of chameleon-
hash functions where two trapdoors are required to compute a col-
lision. Precisely, in addition to the trapdoor used in the standard
construction of chameleon hashes, this primitive employs a second
- ephemeral - trapdoor, specified during the hashing process and
needed to compute a collision. This requirement allows providing a
separate second trapdoor for each hash, instead of a single trapdoor
for every hash calculated with a unique public hashing key [24].

Every participant obtains a secret key for the computation of the
hash function and a second secret key associated with a list of at-
tributes used to perform CP-ABE. To hash a message with respect to
an access policy, a user computes the chameleon-hash function with
the ephemeral trapdoor and encrypts the trapdoor using the encryp-
tion algorithm of CP-ABE. To modify an approved transaction, a user
that has a private key satisfying the access policy can reconstruct
the ephemeral trapdoor and compute a collision for the transaction’s
hash.

Even though the proposed solution is elegant and allows for modifi-
cations on a transaction level, a significant limitation of the approach
is the absence of public evidence that a transaction has been modi-
fied. As observed before, the use of chameleon-hashes allows an in-
visible change. However, we argue that such an imperceptible change
sharply weakens the tamper-evident feature of a blockchain. As a re-
sult, the integrity and immutability of the ledger may suffer severe
consequences.

The work proposed in [25] differs from most of the approaches as
it does not deal with hash functions. Rather, Cai et al. introduce a

3.1 structural approach 27

deletable blockchain based on the proof-of-space consensus mecha-
nism in which the three components of a transaction, i.e., the identity
of the sender, the identity of the receiver, and the content of the trans-
action, do not need to be public.

During the deletion process, the system uses a traceable ring sig-
nature or a Pedersen commitment scheme to disclose the sender’s
identity or the transaction content, respectively, depending on the
privacy requirements. The deletion request can be submitted only
by the sender of the transaction and signed by the participants of
the network that agree on removing the transaction using a linkable
multi-signature scheme. If the multi-signature is valid, i. e., it is not
generated by a single malicious user, the rest of the users in the net-
work accept the deletion operation.

Upon transaction submission, a traceable ring signature is created
by the sender, attached to the transaction, and broadcasted to the net-
work. If the sender chooses to reveal its identity to delete the block
of transactions, it generates another traceable ring signature. In case
both signatures are valid, the other users in the network compute the
various public keys used to sign the transactions in the block (which
are assumed to be created by a single sender). If the process results
in the identification of a unique public key, the key is revealed and
the deletion process proceeds. If the sender decides to disclose the
content of the transaction, instead, it generates a Pedersen commit-
ment scheme. Similar to the previous procedure, the other users of
the network check whether the committed value holds within the
same block and eventually proceeds in the deletion process. If the
request to delete a block is valid, the network generates a so-called
linkable digital multi-signature used to replace the transaction block.
Such substitution does not create clashes in the hash chain due to a
particular block design implemented by the authors.

In their protocol, Cai et al. assume that all transactions in a block
are originated from the same sender. This assumption might be a lim-
itation as most of the blockchain architectures do not have similar
restrictions. Another limitation we identified in the proposed scheme
is the need to disclose part of the content of a transaction to propose a
deletion. In highly sensitive domains, such as healthcare, this is likely
to be unacceptable because a patient might not be willing to reveal its
identity to the whole network to ask for the deletion of its personal in-
formation. Further, the creation of a specialised block structure makes
the scheme incompatible with existing blockchain implementations.
A careful reader may notice that a modification of the block creation
procedure happens with the use of chameleon-hash functions as well.
However, we argue that such change is minimal compared to the ones
proposed in this scheme. Last, Cai et al. claim to provide a deletion
mechanism able to work on a transaction level. However, the fact that
the same sender needs to generate all transaction in a block prevents

28 related work

the scheme from being used at a real transaction level. When a redac-
tion is performed, all transactions inside a block are invalidated. As
a result, the whole block becomes invalid.

The use of an additional cryptographic technique is proposed by Lee
et al. The authors adopt truncated hash values to compute the hash
value of a block and employ a multichain structure [26]. Upon trans-
action submission, the transaction owner sets a difficulty level that
determines the amount of work needed to modify the transaction.
Noteworthy, the owner can propose an immutable transaction by ade-
quately setting the difficulty level. Approved transaction are bundled
into blocks and attached to a single main chain after being mined.
Depending on the difficulty level, a transaction owner can submit
a modification request to a sidechain network [26]. The choice of
the sidechain on which to propose the modification depends on the
difficulty level of the transaction. Sidechains are controlled from the
main chain with the tail bits of the block hash in the main chain [26].
When a sidechain is reconnected to the main chain, the modification
requests are executed.

An explicit limitation of this approach is the ability of the sender
to decide the difficulty level of transaction modification. A malicious
user can set the difficulty level high enough to create an immutable
transaction. Hence, the solution assumes that no malicious users sub-
mit unlawful immutable transactions. Similarly, drawing a parallel
with the GDPR, a malicious peer can set the difficulty level of a trans-
action high enough to render the transaction immutable. Therefore,
there may be situations in which data cannot be deleted or modified
upon the data subject’s request.

Another structural approach is suggested by Deuber et al. The
authors developed a consensus-based voting mechanism that does
not rely on trust assumptions or heavy cryptographic primitives [27].
Consensus voting is combined with policies to dictate which modifi-
cations are allowed. Additionally, the protocol provides public verifia-
bility and accountability [27]. Challenging the proposals that suggest
the use of heavy cryptographic primitives, the authors provide a de-
centralised mechanism for a permissionless network in which anyone
can propose modifications. Miners vote on the modification proposals
and check if the request satisfies the policy. To account for modified
blocks, both the block validation algorithm and the chain validation
algorithm are modified. Intuitively, a modified block clashes with the
previous and the following blocks. Hence, the modification of the vali-
dation strategy is supported by the inclusion of an additional Merkle
tree in the block structure to store the old state information of the
redacted block.

3.1 structural approach 29

Similarly to the work of Ateniese et al., the redaction happens at
a block level. Moreover, the work of Deuber et al. requires to modify
the validation process. In particular, the old state of a block, repre-
sented by the Merkle tree, needs to be kept so that the new validation
algorithm works.

An analogous approach is presented by Xu et al.: a redactable proof-
of-stake-based blockchain featuring fast confirmation and public ver-
ifiability. Their proposal is driven by the absence of algorithms that
allow a rapid approval of a redaction proposal in a permissionless
setting [28]. Any user in the network can propose a redaction by sub-
mitting a candidate edited block. The members of the voting commit-
tee, i.e., users that have the rights to approve the proposed candidate
block, are decided through the use of a verifiable random function.
Each stakeholder privately executes the test to verify whether it is
part of the voting committee. Being a PoS permissionless blockchain,
users’ likelihood to be engaged in the voting process depends on
the stakes they own. Any edited block in the chain is publicly veri-
fied, and multiple redactions are allowed in a single block. Similarly
to [27], Xu et al. propose the addition of a redaction policy and the
modification of the block structure, block validation and chain valida-
tion algorithms. The block structure is modified to include the orig-
inal state of a block before a redaction happens. The original state
is then used in the block validation and chain validation algorithm.
In the block validation algorithm, the procedure validates the data
included in the block and the signature of the leader who proposed
the block, but, for an edited block, the validation of the signature hap-
pens against the original state. In the chain validation algorithm, the
procedure checks the relationship with the block with the neighbour-
ing ones. In case of a redacted block, the validation process verifies
whether the redaction policy is satisfied.

The work of Xu et al. presents limitations that are similar to the
work of Deuber et al. except for block-level modifiability. The old
state of the block still needs to be saved such that the new valida-
tion procedure succeeds. Moreover, their strategy introduces modifi-
cations to the block structure, to the block validation algorithm, and
to the chain validation algorithm.

An original solution is presented in [29]. Puddu et al. present the
possibility of mutable proof-of-work blockchain that provides the
same tamper-resistance and guarantees of immutable blockchain [29].
The proposed model achieves mutability thanks to its ability to main-
tain alternative versions of data records, agree on a valid version, and
hide the invalid ones. Alternative versions are structured as a set of
different transaction versions, where only one transaction is specified
as active. A specific transaction version included in the collection is

30 related work

the nope, used to delete content. All mutation requests are subject to
a policy check to ensure modifications are triggered by authorised en-
tities as specified by the transaction sender [29]. At a certain point in
time, the active transaction is decrypted, whereas all the other transac-
tions in the set are encrypted. Decryption keys are distributed among
miners using secret sharing. Upon modification request, miners en-
gage in a multi-party computation protocol to recover the appropriate
decryption key and decrypt the required version of the transaction. To
address the problem of transaction consistency that happens when a
transaction depends on a modified one, Puddu et al. propose the use
of a cascading effect in which all affected transactions are modified.

Using the approach of Puddu et al., the sender of the transaction
can encrypt alternative versions of data. While this approach could
be used to support deletions by providing an encrypted empty trans-
action, all modifications might not be known a-priori. If data needs
to be modified with a mutation that was not initially envisioned, this
solution will not help.

3.2 local approach

In contrast to most of the proposals, the work of Florian et al. fo-
cuses on a local erasure of data without requiring significant modifi-
cations to the transaction protocol. According to the authors, a local
modification is more practical and more natural to adopt compared
to a global change of the blockchain protocol. The proposed work
is a functionality-preserving local erasure (FPLE) deployed as an ex-
tension to node software. FPLE allows participants to select a por-
tion of transaction data and to erase that content without requiring
major protocol modifications or coordination procedures [30]. When-
ever a node deems an erasure necessary, it stores the transaction in
the erasure database with the deleted part overwritten. The original
transaction is then removed or overwritten from its original location.
To avoid that after a deletion a node cannot correctly recognize new
blocks that depend on the erased one, the authors enforce two rules:
unconfirmed transactions with reference to deleted data are consid-
ered invalid, whereas confirmed transactions that cannot be verified
are accepted trusting that miners are behaving correctly and have suf-
ficient incentives to mine valid blocks.

3.3 layered approach

The layered approach proposes to redact a blockchain through the
use of an additional layer built on top of the blockchain itself. An
example of such an approach is the work of Thyagarajan et al. They
present a publicly-verifiable layer that allows modifying blockchain
content [31]. Any user in the network can propose a modification,

3.4 account-based approach 31

and a deliberation process performs a decision on the request to
check whether it complies with the repair policy of the chain. Net-
work participants agree on the policy to be checked upon repair re-
quest that specifies the requirements a proposal needs to satisfy. After
a proposal is submitted, a group of deciders (a subset of participants)
propose a decision and post it into the chain. Once the decision is
taken, miners (i) verify that the proposal satisfies the policy require-
ments, (ii) check that deciders have accepted the proposal, and (iii)
update the block according to the proposal. To support multiple re-
pairs and allow the validation of the chain after a modification, Thya-
garajan et al. propose the use of two additional data structures: a
repair layer database and an approved repairs database. There is a
one-to-one relationship between a block in the chain and an entry in
each database. The repair layer database is used when the block con-
tents need to be deleted. Precisely, the repair database stores the hash
of the transaction to be removed from the original block. Instead, the
approved repairs database stores the approved repair proposals. The
proposed work achieves a partial level of integration with existing
blockchain implementation thanks to the modification of the valida-
tion algorithm. Instead of validating the modified chain, the chain
is verified using the original content on each block. Hence, the hash
chain appears not to be broken.

3.4 account-based approach

Unlike the previous approaches, account-based focuses on the mod-
ification of a user’s account status. The work of Gates is the only
one to date that approaches the problem of blockchain modifiability
from this perspective. The author proposes GateChain, an architec-
ture that supports revocable transaction models (RTM). To achieve
the desired revocation, the blockchain leverages an augmented ac-
count model that supports additional transaction types. In this ap-
proach, the revocation of a blockchain transaction does not require its
deletion. Instead, the model supports the user in withdrawing the ac-
count status changed due to an incorrect transaction [32]. To achieve
so, the RTM of GateChain introduces two account types: the stan-
dard account and the vault account. The standard account follows
the transaction model of Bitcoin (UTXO), and it is used for conven-
tional transactions that do not support revocable states. Instead, the
vault account is specifically designed to support revocable states [32].
Since the revocation of account status can produce a change only after
a predefined delay period, a user willing to revoke a transaction can
initiate the procedure before the delay period expires. The proposed
model does not entirely solve the problem of modifying or deleting
transactions from a blockchain. Instead, [32] can be better classified as
a safety mechanism that allows users to revert a transaction in case

32 related work

they realize that an error occurred. Notably, this revocation mecha-
nisms can be applied only of a transaction is issued from a vault ac-
count, meaning that erroneous transactions created from a standard
account cannot be reverted.

3.5 summary

In this section, we summarize the various approaches designed for
blockchain mutability. Table 1 gives a graphical overview of the dis-
cussion. In the table, category reflects the different types of approaches
we identified in the literature. Settings define the blockchain architec-
ture for which the solution is presented, being it permissioned, per-
missionless, PoS-based, PoW-based, PoSP-based, etc. Note that in this
particular representation, PoSP refers to the proof-of-space consensus
mechanism introduced in one of the proposals. Integration refers to
the ability of the proposed scheme to work with existing blockchain
architectures. Public verifiability specifies whether the modification
can be seen and verified by the participants in the network. Accuracy
defines the scope of the change and/or deletion, which can be either
block or transaction.

The structural approach proposes a modification of the block struc-
ture to support the modification of the blockchain. The proposed
solutions that fall under this category are usually not compatible
with existing blockchain architecture due to the structure modifica-
tion they require. Under the local approach, proposals suggest eras-
ing data on a node-level rather than on a global level. By doing so,
a node is free to decide whether removing or not the unwanted con-
tent when deletion has been approved. The layered approach we re-
ported is designed to achieve a partial level of integration with ex-
isting blockchain. As a result, the client that interacts with the net-
work, the block structure, or the blockchain architecture is partially
(or not at all) modified. However, the process of validating the chain
is changed to avoid that modifications result in an invalid blockchain.
This approach is made possible through the creation of an additional
layer on top of an existing blockchain that supports modifications.
The account-based approach does not address the problem of modi-
fying the blockchain entirely. Instead, it can be seen as a preventive
measure that allows participants to revert an erroneously issued trans-
action before a specific time. After the predefined revocation period
is expired, it is not possible to modify the transactions that have been
accepted and added to the chain.

3.6 presentation of our work

This section introduces our work starting from an analysis of what is
missing in the related work we analysed. As can be seen from Table 1,

3.6 presentation of our work 33

Category Settings Integration Public Verifiability Accuracy

[23] ST Not specified No No Block

[24] ST Not specified No No Transaction

[25] ST PoSP based No Yes Block

[26] ST Permissionless Partial Not specified Transaction

[27] ST Permissionless No Yes Block

[28] ST Permissionless Partial Yes Transaction

[29] ST PoW based No No Transactions

[30] LO Not specified Yes No Transaction

[31] LA Not specified Partial Yes Transaction

[32] AC Not specified No No Transaction

Table 1: Taxonomy of proposed mutable blockchain schemes

most of the work proposes to redact content on a transaction level.
We agree with such a decision, and we believe redactions should hap-
pen on a transaction-level to offer fine-grained modification abilities.
Therefore, our work will strive to achieve transaction-level modifia-
bility minimising the impact on the whole block.

We have already noted that the account-based approach does not
solve the problem of modifying content on a blockchain. Instead, it
is more a preventive measure. The local approach, instead, relies on
the fact that every node in the network performs a redaction when
needed. Last, the layered approach modifies the process used to val-
idate a blockchain. Instead of validating the modified chain, this ap-
proach validates the original one. To do so, the original data still
needs to be available for the validation to happen correctly. Even
though the structural approach usually modifies the block structure
to allow modifications, and it might be hard to integrate into an ex-
isting architecture, we believe it is the most viable approach among
the ones we discussed. If wisely used, a structural approach could
introduce little modification to the block structure or the block cre-
ation process and could render integration with an existing block-
chain quite straightforward.

Another component we believe should be present in a modifiable
blockchain is the ability to see that modification or deletion of data
has been done at a certain point in time. While in some of the dis-
cussed work a change is visible, in others every action on past data
is hidden. However, we think that the integrity of the ledger could be
severely weakened and the tamper-evident property would be lost.
We therefore suggest introducing a mechanism through which the
network agrees on a modification. Such agreement results in a trans-
action published on the ledger so that every participant tracks the
redaction in its history.

34 related work

Given the fact that one of our goals is to allow redactions to ease the
frictions between the immutability of the blockchain and the data sub-
ject’s rights stated in the GDPR, we believe we should begin our dis-
cussion with an analysis on whether data on a blockchain falls within
the scope of the regulation. Moreover, we think that the redaction pro-
cess should involve the relevant parties, i. e., data subject, data con-
troller, and data processor and that the request of redaction should be
started by the data subject. We stress that all related work is lacking
a proper discussion on the legal aspect of the problem, which should
be the starting point towards the design of compliant blockchain ap-
plications. Therefore, in the next chapter, we will address the problem
from a legal perspective with the goal of understanding if and which
data on a blockchain should be redacted.

4
M A P P I N G T H E G D P R O N T H E B L O C K C H A I N

This chapter focuses on understanding which data on a blockchain
could be subject to the Regulation and if modification of that data
is needed to produce a compliant use of blockchain. We stress that,
given the multidisciplinary nature of the problem, every technical
effort should be based on a solid understanding of the legal aspect,
which is lacking on the related work we discussed.

Before striving for a solution to the contrast between Article 16 and
Article 17 of the GDPR and the immutability property of a blockchain,
we will provide an introduction to the GDPR. GDPR applies only to
personal data, and therefore we will analyse which data stored on a
blockchain might classify as such and thus will be caught under the
scope of the Regulation. We anticipate that, due to an unclear legal
framework and conflicting opinions of different statutory bodies, it is
very challenging to provide an answer with certainty.

Following the discussion on what type of personal data might be
at stake in a blockchain, we proceed into the mapping of the core
principle of the Regulation with the blockchain. As a result of this
mapping, we identify the major conflicts between the two, namely the
assignment of data controller and data processor roles, the exercise
of data subjects’ rights, and the transfer of personal data to third
countries.

To conclude, we present the legal and technical requirements to
build a compliance blockchain application without weakening block-
chain core properties in such a way that would render its application
useless.

4.1 introduction to the general data protection regu-
lation

The General Data Protection Regulation (GDPR) [33] is the new Eu-
ropean regulation on data protection and privacy for all citizens of
the European Union (EU) and the European Economic Area (EEA)
that supersedes the Data Protection Directive 95/46/EC. Adopted on
April 2016 and enforceable since May 2018, the aims of the GDPR
are mainly to give individuals more control over their data and to
simplify the regulatory environment within the European Union to
provide clear visibility, understanding, and control over data that is
processed. Unlike the Data Protection Directive, the GDPR is a reg-
ulation that directly applies to the European Union member states
without additional local implementations.

35

36 mapping the gdpr on the blockchain

Before diving into the details of the requirements imposed by the
regulation and its goals, it is worth reflecting on the cases in which
the GDPR does apply. Art. 2 GDPR and Art.3 GDPR identify the ma-
terial and territorial scope of the regulation respectively. The material
scope defines that the Regulation applies to the processing of personal
data, both manually and partially or entirely automated. In simple
terms, the regulation applies to any processing of personal data, and
its material scope is defined broadly to ensure a high level of protec-
tion [34]. The territorial scope defines that the regulation applies to
the processing of personal data belonging to EU citizens regardless
of where the processing takes place.

The GDPR identifies two major actors that play a role in the pro-
cessing of data subjects’ data, namely the data controller and data
processor. Following, we provide their definition that will be later
used to assign their responsibilities to the actors that can be identi-
fied in a blockchain:

data controller "the natural or legal person, public authority, agency
or other body which, alone or jointly with others, determines the pur-
poses and means of the processing of personal data;". The controller
can be then identified as the one entitled to decide the purpose
of processing, which data should be processed, for how long,
who can access, and what security measures need to be taken. If
there is the case that several entities take the decision, there may
be "joint controllers". The data controller must exercise control
over the data processor, and it has the responsibilities for that
process, including legal liability [34].

data processor "means a natural or legal person, public authority, agency
or other body which processes personal data on behalf of the controller;".
The existence of the processor depends on a decision taken by
the controller that can decide to process data within the organi-
zation or to delegate the activity to an external person, namely
the processor. To be qualified as a processor, one has to be a
separate legal entity with respect to the controller and to carry
out the processing of personal data on behalf of the controller.
Processors are obliged to maintain a record of all processing
activities to demonstrate their compliance with the regulation,
to implement organizational and technical measures to secure
the processing mechanism and to notify data breaches to the
controller [34].

4.1.1 Personal Data

This section discusses whether data stored on a blockchain consti-
tute personal data and will be caught within the scope of the Reg-
ulation. As we anticipated, there is a surrounding uncertainty on

4.1 introduction to the general data protection regulation 37

whether data processed by a blockchain should be considered as
personal. This legal unclarity caused by missing guidelines and by
conflicting opinions expressed by legal authorities hinders the de-
velopment of GDPR compliant blockchain applications that process
personal data [35]. GDPR defines personal data as "any information
relating to an identified or identifiable natural person", and an identifiable
person - usually referred to as data subject - as a natural person that

"can be identified, directly or indirectly, in particular by
reference to an identifier such as a name, an identifica-
tion number, location data, an online identifier or to one
or more factors specific to the physical, psychological, ge-
netic, mental, economic, cultural or social identity of that
natural person".

Where data is stored completely anonymous, it is not considered
personal data, and it does not fall within the applicability of the Reg-
ulation. Instead, pseudonymous data still qualifies as personal data
and, as such, its processing is regulated. According to the GDPR,
pseudonymous data is the one obtained with

"the processing of personal data in such a manner that
the personal data can no longer be attributed to a specific
data subject without the use of additional information,
provided that such additional information is kept sepa-
rately and is subject to technical and organizational mea-
sures to ensure that the personal data are not attributed to
an identified or identifiable person." [33]

According to [36], two categories of data on a blockchain might fall
under the scope of the GDPR: transactional data stored inside a block
and users’ public keys. Transactional data include all data stored in a
block except for public keys and might include personal data depend-
ing on the application the blockchain is designed to support. For in-
stance, let us consider a financial transaction. The transaction content
includes the sender’s public key, the receiver’s public key, and the
amount to be transferred. Since we consider transactional data as all
data except for public keys, the amount to be transferred constitutes
our transactional data, which, alone, does not constitute for personal
data as it does not refer to an identified or identifiable natural per-
son. It is a number that, alone, does not allow any direct or indirect
identification of a data subject. Let us now discuss the second exam-
ple of a blockchain that manages medical data. A transaction might
include the doctor’s public key, the patient’s public key, and a set of
health-related data, such as heart rate, blood pressure, cholesterol lev-
els, etc. Unlike the previous number, these can be used to identify a
data subject either directly or by combining them with an additional
set of data.

38 mapping the gdpr on the blockchain

4.1.1.1 Transactional data

Transactional data can be stored in three alternative formats: plain
text, encrypted, or hashed. In the following, we will evaluate whether
one of these alternative storing formats is sufficient to classify data as
anonymous and thus relieves us from the need to provide appropriate
additional mechanisms to comply with the Regulation. The standard
of anonymity imposed by the GDPR is high [36]. Precisely, anonymi-
sation of personal data comes "from processing personal data in order
to irreversibly prevent identification". Personal data stored in plain text
format remains personal data and thus falls within the scope of the
Regulation. Encrypted data is subject to the requirements of the Reg-
ulation as well because encrypted data can still be accessed by using
the correct decryption key.

Under the EU data protection regime established by the GDPR, en-
cryption is a pseudonymisation technique because the data subject
can be indirectly identified [36, 35]. Transactional data that has been
hashed constitutes personal data as well [35]. Even though hash func-
tions are built in such a way that it is not possible to recover the origi-
nal data without brute-forcing the input space, the Article 29 Working
Party declared that hashing represents a form of pseudonymisation
technique because it might still be possible to link the dataset with
the data subject [36].

Arguably, from a technical point of view, it is very unlikely that
hashed data can be used to recover the original data. However, from
a legal point of view, none of the hashing techniques currently used
has been declared as capable of anonymisation by the European Data
Protection Supervisor [36]. To further clarify the matter, hashing algo-
rithms are not considered able to achieve the standard of anonymisa-
tion if they are used alone. The use of salted has or peppered hash,
however, increases the strength of hashing algorithms due to the pres-
ence of additional data added to the original one during the hash-
ing process. With regard to salted hash functions, Article 29 Working
Party have already presented its opinion stressing the fact that they
are not capable of achieving anonymisation [37]. A slightly different
opinion has been expressed with regard to peppered hash functions.
Whilst Article 29 Working Party recognised that this technique offers
higher privacy guarantees, it does not specify whether it is suitable
to achieve anonymisation for GDPR purposes [35].

A naive solution to achieve compliance for transactional data is the
one of storing personal data off-chain, meaning that data is not di-
rectly stored on the ledger. Instead, hash pointers of personal data are
stored on the ledger so that it is possible to prove the integrity of the
data without exposing it in a shared environment. It is worth notic-
ing that this solution does not solve all the problems connected with
personal data management. As observed by Finck, meta-data stored
on the blockchain might reveal personal information even though

4.1 introduction to the general data protection regulation 39

personal data is not directly stored on-chain. Moreover, storing data
off-chain might require the introduction of a trusted third party that
handles the storage of data, removing part of the motivation for intro-
ducing a blockchain. However, storing personal data off-chain seems
to be one of the most important steps to produce a GDPR-compliant
blockchain application [36]. According to Finck et al., unless pep-
pered hash functions are used in combination with additional pri-
vacy guarantees, their application will not render data anonymous
because the criteria identified by Article 29 Working Party to deter-
mine whether the identification is still possible, namely singling out,
linkability, and inference, are not likely to be satisfied [35].

4.1.1.2 Public Keys

Public keys are pseudonyms used to represent a user in a blockchain
without the need to use other identification mechanisms, such as the
US social security number or the Dutch BSN. As we have already seen
in the case of transactional data, to avoid public keys being consid-
ered personal data, they should be anonymous. Referencing the defi-
nition of pseudonymisation we cited before, public keys are data that
cannot "be attributed to a data subject without the use of additional
information". However, when additional information is available and
combined with a public key, identification can be considered plau-
sible [36]. Hence, public keys are not regarded as anonymous data
and, according to Finck, it is possible to conclude that public keys
are pseudonymous data and fall within the scope of the regulation.
Public keys are considered personal data in the case they are used to
relate to a natural person [35]. Instead, if public keys are not used to
identify a natural person, for instance, an organisation, they are not
personal data.

Being an essential component of a transaction, it is not possible to
move public keys off-chain, as doing so will remove any connection
between the transaction and its participants. Moreover, public keys
are required to submit and approve transactions and avoiding their
use will prevent the use of the system. Given that it is not possible to
store them off-chain only, compliance with the GDPR in this situation
is more difficult to obtain [36].

Nonetheless, various mechanisms have been proposed to reduce
the possibility of linking public keys with an individual. A first propo-
sition is the use of stealth address, i.e., transactions that are associ-
ated with hashed one-time keys. Such a mechanism requires the cre-
ation of a new address and a new pair of keys for each transaction
the user wants to submit. However, such an arrangement have been
proved to be far from achieving high guarantees of privacy protec-
tion [36, 35]. Another possible mechanism includes the use of zero-
knowledge proofs (ZKP) that provide the evidence that a transaction
has occurred without disclosing the actual content of the transaction,

40 mapping the gdpr on the blockchain

such as transactional data and public keys. With regard to ZKP, a Eu-
ropean Parliament issued report seems to consider zk-SNARKs - a
particular design of ZKP - as a possible mean to comply with data
protection by design requirements [35]. Ring signatures are another
possibility to hide the public key of a user behind a public key asso-
ciated with a group. Using this technique, it is possible to prove that
a user in a group signed a transaction with a private key associated
with the set of public keys connected to the group, without revealing
the exact user. Homomorphic encryption allows performing compu-
tation on encrypted data to produce the same result of the calculation
performed on the original data. Whilst it could make possible to store
only encrypted data on the blockchain, it is doubtful that such data
could be considered anonymous for GDPR purposes [35].

Another alternative is the addition of noise to the data such that
it becomes impossible to define the identities of the senders and re-
ceivers of multiple transactions bundled together. Provided that noise
techniques are combined with more robust privacy techniques, and
necessary safeguards are put in place, Article 29 Working Party recog-
nised that the addition of noise to data might be considered as an ac-
tual anonymisation technique [36]. However, we should stress that the
decision is not universal, and additional safeguards and privacy tech-
nique might be evaluated on a case-by-case basis. According to Finck,
it is not possible to conclude whether one of the mentioned mecha-
nisms constitutes a suitable anonymisation technique that satisfies the
standard of the GDPR. Hence, in many cases where personal data
managed through a blockchain, both public keys and transactional
data can constitute personal data for GDPR purposes.

4.2 mapping the blockchain with the gdpr

In this section, we introduce the principles set by the GDPR on the
protection of personal data, and we draw a parallel between those
principles and blockchain technology. According to the literature we
reviewed [36], it is possible to argue that the principles of Accuracy
and Storage Limitation are, at first sight, in contrast with how a block-
chain is generally designed. On the contrary, it is much easier to find a
gentle association between the other principles and such a distributed
technology.

4.2.1 GDPR Six Core Principles

In this section, we present the six core principles on which data pro-
tection is based on. Being a particular type of distributed ledger, a
blockchain requires a copy of the data is shared and replicated among
nodes. At first sight, this replication feature might seem in contrast
with many of the core principles of the Regulation [38]. In the follow-

4.2 mapping the blockchain with the gdpr 41

ing, we discuss how those principles reflect on blockchain and which
are the pain points when someone tries to interface the technology
and the Regulation.

4.2.1.1 Lawfulness, Fairness, and Transparency

Article 5 Sec. 1 lit. a GDPR introduces the principle of lawfulness,
fairness, and transparency in the processing of personal data. Pre-
cisely, it states that "personal data shall be processed lawfully, fairly and in
a transparent manner in relation to the data subject" [33]. In other words,
personal data can be processed if and only if there is legal permission
or the data subject’s consent [34]. To give informed consent on the
processing of their data, the data subjects need to understand how
their data is being processed. Hence, the transparency principle re-
quires that (i) the identity of the data controller is known to the data
subject, (ii) there is enough information for the data subject to un-
derstand the purpose of processing, (iii) data subjects have the right
to obtain confirmation and communication of processing activities,
and (iv) data subjects are aware of risks, rules, safeguards, and rights
related to personal data processing [33].

According to Ibáñez et al., transparency on the intended use of data
and the presence of legitimate reasons to collect personal data are rea-
sonably easy to achieve on a blockchain. Indeed, validation rules on
a blockchain are usually public and can be communicated to data
subjects. More problematic is the lawfulness of data processing activi-
ties. In particular, the issue resides in the control on data processor to
make them accountable whenever something unlawful is done with
data [38]. In public and permissionless blockchain, accountability on
the data processor is hard to obtain because identities are not clearly
established. However, the authors believe that under the assumption
that validators are considered joint data controllers, it is easy to map
a distributed data controllership to the centralised case covered by
the GDPR [38].

4.2.1.2 Purpose Limitation

Article 5 Sec. 1 lit. b GDPR introduces the principle of purpose limi-
tation in the processing of personal data. Precisely, it states that "per-
sonal data shall be collected for specific, explicit and legitimate purposes
and not further processed in a manner that is incompatible with those pur-
poses;" [33]. However, some purposes such as archiving for the public
interest, statistical purposes, or scientific and historical research pur-
poses should not be considered as incompatible. The purpose plays
a central role in the lawfulness of processing activities as it specifies
why personal data is collected and for what reasons it is processed. It
allows to determines whether other principles, such as data minimi-
sation, accuracy, and storage limitation are respected [34].

42 mapping the gdpr on the blockchain

Similarly to fair and lawful processing of personal data, Ibáñez et
al. considers this principle easy to respect because it is easy to inform
users on the purposes of personal data processing. However, there is
an issue in the case of public and permissionless blockchain because
it is hard to control if someone takes advantages of the open availabil-
ity of data to execute some form of processing that goes beyond the
initial purposes [38].

Finck et al. identifies an additional problem concerning the pur-
pose limitation principle whenever a blockchain processes personal
data. Precisely, the question resides on whether the continuous pro-
cessing of blocks after the execution of the transaction that inserted
that data into the ledger can be compatible with the purpose lim-
itation principle [35]. An additional and broader discussion on the
purpose limitation principle can be found in [35].

4.2.1.3 Data Minimisation

Article 5 Sec. 1 lit. c GDPR introduces the principle of data minimi-
sation in the processing of personal data. Precisely, it states that "per-
sonal data shall be adequate, relevant and limited to what is necessary in
relation to the purpose for which they are processed;" [33]. Data minimisa-
tion principle should not be considered as a prescription to reduce
data collection to an absolute minimum. Instead, its goal is to reduce
the amount of data collected to the lowest possible to realise the pro-
cessing purposes [34].

Ibáñez et al. considers this principle as independent from the use
of a blockchain, meaning that data minimisation principle in the cen-
tralised setting considered by the GDPR can be easily applied to a dis-
tributed environment. Similarly to a centralised data controller, data
controllers jointly running a consortium permissioned blockchain are
required to assess that collected data does not exceed the required to
perform processing purposes [38].

Finck et al. supports a different opinion on the data minimisation
principle and expresses concerns about two characteristics of block-
chain technology. First, the append-only and continuously growing
structure of blockchain renders obsolete data very hard to deal with.
Second, the fact that the ledger is replicated among nodes creates
many replications of personal data [35].

4.2.1.4 Accuracy & Storage Limitation

We discuss the mapping of accuracy and storage limitation with a
blockchain in the same section due to their close relationship when
mapped with the technology. Both principles require the ability to
modify or delete personal data subject to a data subject request. This
ability seems at odds with the way blockchain is designed.

4.3 tensions between blockchain and the gdpr 43

Article 5 Sec. 1 lit. d GDPR introduces the principle of accuracy in
the processing of personal data. Precisely, it states that "personal data
shall be accurate and, where necessary, kept up to date; every reasonable step
must be taken to ensure that personal data that are inaccurate, having regard
to the purposes for which they are processed, are erased or rectified without
delay;" [33]. Connected with this principle is the right to rectification
(Art. 16 GDPR).

Article 5 Sec. 1 lit. e GDPR introduces the principle of storage limi-
tation in the processing of personal data. Precisely, it states that "kept
in a form which permits identification of data subjects for no longer than is
necessary for the purposes for which the personal data are processed;" [33].
Similarly to the data minimisation principle, storage limitation sug-
gests that data should be stored as less as possible subject to the
processing purposes for which it has been collected. This principle is
connected with the right to erasure (Art. 17 GDPR).

Blockchain is designed to be tamper-proof and tamper-evident, and
the possibility to make modification or deletion is hard on purpose.
As we discussed in previous sections, the two properties, usually
grouped and referred to as immutability, are highly praised and de-
sirable in some scenarios. They are however, in direct conflict with
the right to rectification and the right to erasure [38].

4.2.1.5 Integrity and Confidentiality

Article 5 Sec. 1 lit. f GDPR introduces the principle of integrity and
confidentiality in the processing of personal data. Precisely, it states
that "processed in a manner that ensures appropriate security of the personal
data, including protection against unauthorised or unlawful processing and
against accidental loss, destruction or damage, using appropriate technical
or organisational measures;" [33]. Being a very general principle, this
obligation does not seem to generate any particular in relation to
blockchain technology [35].

4.3 tensions between blockchain and the gdpr

In this section, we review the major conflicts that arise whenever we
try to map a blockchain with the Regulation. First, we present vari-
ous alternatives to identify the roles of the data controller and data
processor in the different types of blockchain. Second, we review the
tensions regarding the exercise of rights and freedoms of a data sub-
ject. Third, for completeness, we briefly describe the possible problem
of personal data transfer to third countries or in international organi-
sations. Even though we present all the mentioned tensions, we shall
specify that the third one falls outside the scope of this research, and
it is presented for completeness purposes. Instead, the main focus
of our discussion will be on the second conflict mentioned above,
namely the exercise of data subject’s rights and freedoms. In particu-

44 mapping the gdpr on the blockchain

lar, we will focus on the right to rectification and the right to erasure.
Indeed, as we discussed in the previous section, they appear as be-
ing at odds with the way a blockchain is structured [38]. Since the
data controller and the data processor are in charge of satisfying the
requests of a data subject, their role in the blockchain is in close re-
lationship with the ability of a data subject’s to exercise its rights.
Moreover, the allocation of responsibilities of the data controller and
data processor is fundamental to allow data subjects to exercise their
rights [39]. Therefore, we shall discuss their mapping with the block-
chain as well.

It has bee argued that the tensions between the GDPR and block-
chain technology are due to two main factors [35]. First, GDPR has
based its principles on the assumption that it is always possible to
identify an entity - the data controller - to which a data subject can re-
fer when exercising its rights [35]. While in a centralised environment
it is most of the time possible to identify a data controller unequiv-
ocally - or a set of them under the definition of joint controllers -
the identification of such figure is much more complicated in a dis-
tributed scenario. Second, GDPR prescribes that data can be modified
or erased when necessary. However, modification and deletion on a
blockchain are designed to be as hard as possible with the goal of
preserving the integrity of the ledger and creating trust in the net-
work [35].

4.3.1 The roles of Data Controller and Data Processor

Data controller and data processor are two fundamental roles identi-
fied by the GDPR when it comes to the accountability of the process-
ing of personal data. Controllers (and processors as well) are obliged
to implement appropriate security measures and to demonstrate that
processing operations are compliant with the principles of the Regu-
lation [39]. In a centralised scenario, where a central entity establishes
the means and purposes for processing personal data, it is possible
to identify both roles clearly and objectively. Similarly, one or multi-
ple entities (still objectively identifiable) are responsible for the actual
processing of personal data. However, the definition becomes inad-
equate in those scenarios in which the processing of personal data
happens in a distributed fashion [39].

According to the opinion of the Article 29 Working Party on the
concept of controller and processor [40], determining the purposes
and means of data processing is equivalent to determine why and
how of certain processing activities [35, 39]. Precisely, the concept of
controller should be considered as a functional concept, meaning that
it is "intended to allocate responsibilities where the factual influence is, and
thus based on a factual rather than a formal analysis" [40]. Therefore, it
is not possible to provide a formal decision on who is the data con-

4.3 tensions between blockchain and the gdpr 45

troller because (i) a formal definition of a controller laid down by law
might be lacking or (ii) because it might be that the formal appoint-
ment does not reflect the factual responsibilities. Any identification of
the controller through a contract can be overturned in case the factual
responsibility is found to be on a different party than the one initially
identified [35]. Although the why and how of data processing (purposes
and means respectively) seem to have an equivalent importance, [40]
appears to give a higher importance to the purposes over the means.
In fact, the determination of the purposes is a responsibility of the
data controller, whereas the determination of the means of process-
ing might be delegated to the data processor [39, 40]. Additionally,
according to [40], the determination of the purposes of personal data
processing automatically triggers the qualification of an entity as the
data controller.

Following the discussion presented in [39], the opinions of [40], and
the work of Finck [35, 36], we dive into mapping the roles identified
in the GDPR in the participants of a blockchain network. As stressed
by Duarte, to understand who determines the purposes and means
of data processing, it is necessary to consider both how personal data
is processed and the structure and governance of the blockchain [39].

4.3.1.1 The role of the Data Controller

GDPR prescribes that a data controller must be identified. The data
controller is the one entitled to decide the purpose of processing,
which data should be processed, for how long, who can access, and
what security measures need to be taken. The role of the data con-
troller is thought and designed to fit a centralised scenario [38, 39].
However, in a distributed environment such as a blockchain where
several parties participate, it is challenging to identify responsibilities
and assign roles [39]. Intuitively, the mapping with a permissionless
blockchain is more laborious compared to the mapping with a per-
missioned one because there are no limitations on who can join the
network, and validation rules are often decided by developers when
the technology is built. Instead, when a permissioned blockchain is
used, the assignment of the role to participants simpler due to the
more centralised governance of the blockchain. It has been proposed
that developers might be identified as data controllers. However, de-
velopers often do not participate in the consensus protocol, and vali-
dation rules might be changed by validators provided that they reach
enough consensus. Therefore, developers seem to exercise a minimal
influence on the means of processing and no influence over the pur-
poses of processing [35].

data controller in public - permissionless blockchain

In public and permissionless blockchain, the control on the platform
is distributed, and there are no centralised authorities that supervise

46 mapping the gdpr on the blockchain

the transaction process and the inclusion of additional nodes, users,
or miners. Hence, it is not easy to map a centralised definition of the
data controller to the highly distributed setting of such a blockchain.
Moreover, there is no comprehensive agreement in the literature re-
garding the assignment of this particular role in distributed ledgers.
According to Duarte, the difficulty in determining the data controller
comes primarily from two factors: (i) there is a broad and unsuper-
vised number of actors that influence the management of personal
data, and (ii) the purposes of the processing might be different in the
same platform [39].

Bacon et al. present a method to overcome these difficulties. The
authors propose to assess the problem from a micro-level perspec-
tive. Precisely, they sustain that the assignment of the role of the con-
troller should be based on a transaction-level analysis. According to
both [41] and [39], this micro-level perspective suits better compared
to the macro-level one that suggests identifying the controller based
on the study of the blockchain as a whole infrastructure. They argue
that, in the case of a micro-level perspective, it is the users itself that
determines the purposes and means of processing through its deci-
sion to join and use the blockchain platform. A recent European Par-
liament report expresses similar opinions. It qualifies users as both
data controllers and data processor because they upload data on the
ledger and store a copy of it. The view of users as the data controller
is, however, far from being straightforward and unproblematic. For
our research, we will not dive into the consequences of users as data
controllers. The interested reader can find a structured and compre-
hensive discussion of this situation in [35].

In a scenario where users are considered data controllers, miners
exercise control over the means of processing. However, they do not
exercise control over the purposes, which is the main criteria to estab-
lish the role of the controller [39]. On the contrary, it might be that
nodes - those who store the ledger and participate in the validation
of blocks - can be seen as joint controllers.

The assignment of roles, however, might not be accurate in all plat-
forms. Indeed, there are cases in which nodes and miners can set up
additional purposes and modify the means of processing. In those
cases, both should qualify as joint controllers [39].

data controller in private - permissioned blockchain

Unlike public and permissionless blockchain, a central entity - or
a group of well-defined entities - that decide the purposes and the
means of the processing of personal data governs private and permis-
sioned blockchain. In such a situation, two contrasting opinions arise.
The first is due to Finck who proposes to identify as data controller
the platform itself and to assign responsibilities to the organisation
that governs the platform. On the contrary, Bacon et al. sustain the

4.3 tensions between blockchain and the gdpr 47

micro-level perspective we discussed above and argue that assigning
duties to the platform cannot be done when the problem is analysed
from a macro-level perspective only. In their opinion, the data con-
troller should be the users, and the centralised authority should be
assigned the role of the data processor.

The mapping proposed by Duarte summarises the two previous
opinions. In his view, it is crucial to follow the suggestions of the
Article 29 Working Party stating that the allocation of responsibilities
should be based on the factual influence the various parties exercise
in the process [40]. Hence, we can identify two cases. In the first case,
users have limited or no control over the platform they are allowed
to use to perform their activities. Therefore, we can argue they do
not exercise sufficient control on the choice of the platform to have a
factual influence over the purposes and means of processing. Clearly,
in this situation, the influence is exercised by the central authority
governing the blockchain that should be assigned with the role of the
data controller. In the second case, instead, users have the possibility
of choosing the platform on which to run their business. Therefore,
they have factual influence over purposes and means of processing,
and they should be assigned with the role of the data controller.

data controller in consortium blockchain Similarly to
a private blockchain, a consortium blockchain is permissioned and
governed by a set of nodes belonging to different companies. The set
of nodes might be interpreted as a centralised entity that exercises
factual influence by determining purposes and means of processing.
Therefore, they should be identified as data processors. Ibáñez et al.
proposes that, in case a community jointly decide the validation and
the processing rules, it is possible to fit the entities in the community
under the definition of joint data controllers [38]. However, quoting
the work of Finck, "it is far from clear what degree of involvement is neces-
sary to be qualified as a joint controller" as different cases law expressed
contrasting opinions on the subject Finck et al.

4.3.1.2 The role of the Data Processor

Similar to the role of the data controller, a data processor should be
identified as well. However, unlike the previous role, a data processor
might not exist at all. Indeed, its existence depends on the decision
of the data controller on outsourcing the processing of personal data.
To be qualified as a processor, one has to be a separate legal entity
with respect to the controller and to carry out the processing of per-
sonal data on behalf of the controller. As the identification of the data
controller, the assignment of the data processor to one entity in a
blockchain is far from being clear.

48 mapping the gdpr on the blockchain

data processor in public - permissionless blockchain

We previously discussed the micro-level perspective proposed by Ba-
con et al. to assign roles in public and permissionless blockchain. Fol-
lowing the reasoning, the user itself decides the purposes of the pro-
cessing. Hence, it should be qualified as the data controller. In this
situation, nodes and miners exercise control over the means of pro-
cessing as they control the validation process. Therefore, they should
be identified as the data processor. Instead, in case nodes and miners
voluntarily exercise control over the purpose of processing by propos-
ing new ones, there is no data processor in the network as they qualify
as joint data controllers.

data processor in private - permissioned blockchain

We presented before the mapping proposed by Duarte to identify the
data controller in private and permissioned blockchain. In the first
case he identifies, users have limited or no control over the platform
they are allowed to use to perform their activities. Instead, the central
authority governing the blockchain exercises the influence and that
should take on the role of the data controller. In this scenario, no
processor should be identified. In the second case, instead, the users
have the possibility of choosing the platform to run their business.
Therefore, they have factual influence over purposes and means of
processing, and they should take on the role of the data controller.
Accordingly, the nodes belonging to the private organisation offering
the service to the users should qualify as data processor [39].

data processor in consortium blockchain According to
the above discussion, the set of nodes in a consortium should be re-
garded as the data controller. In case additional nodes and miners
that do not belong to the initial set of nodes are added to the block-
chain, they should represent the data processor. They do not exercise
control over the purposes of the processing, but they do exercise con-
trol over the means by participating in the validation process and the
consensus mechanism.

4.3.2 The exercise of Data Subject’s Rights

In Section 4.2, we presented the six core principles of the GDPR, and
we discussed their mapping on a blockchain architecture. Some of
these principles do not present particular concerns when the support-
ing technology is a blockchain. However, at first sight, it seems that
some other provisions trigger both technical and legal challenges. In
particular, limitations appear to happen concerning the right to ac-
cess, the right to rectification, and the right to erasure. Additionally,
when using public and permissionless blockchain, the challenges may
be higher to overcome.

4.3 tensions between blockchain and the gdpr 49

Although the right to access is not our primary focus, we note
that there might be limitations regarding the exercise of this right
from data subjects. Often, personal data stored on a blockchain is en-
crypted or hashed. Therefore, it might be hard to provide the data
subject with the exact knowledge of what personal data is stored and
processed [39]. Similarly, it may be hard to ensure the data subject
has a copy of its data because a node can provide its local copy of
the blockchain, which is not guaranteed to be equivalent to the ones
stored in all the other nodes [39].

Stressing the fact that it might be hard for data subjects to exer-
cise their rights in a blockchain, we should acknowledge that data
controllers in a private or consortium blockchain are in a better po-
sition to facilitate data subjects’ exercise of their rights [35]. As we
discussed above, in private blockchain users or nodes should be re-
garded as data controllers, whereas in consortium blockchain nodes
are most likely to be assigned with this role. Since both users and
nodes possess more control over the data that is processed and how it
is processed, the exercise of the rights above should be more straight-
forward.

Even though data subject’s themselves can be qualified as data con-
trollers in many applications, challenges remain on how to exercise
the right to rectification in the so-called immutable structure of a
blockchain [39]. In public and permissionless blockchain, there are
three main obstacles to the exercise of this right. First, a node might be
able to modify its local copy of the blockchain but, since the adopted
blockchain is the one accepted by the majority of the participants,
such modification is irrelevant [39]. Second, it may be impossible to
identify enough the nodes in the network to create a fork. Third, the
process of creating a fork requires a high level of coordination. We
argue that a fork should be considered as the last possible solution to
apply a modification due to the necessity of reaching an agreement
off-chain before the forking process. In a more closed environment,
such as a private or consortium blockchain, the set of nodes can be
identified in a more straightforward way and agreement on a modifi-
cation is easier to obtain.

Similar challenges to those identified in the case of the exercise of
the right to rectification can be found in the process of exercising
the right to erasure. Indeed, it is tough - and almost impossible after
a sufficient set of blocks have been added to the chain - to change
or delete data on a blockchain. As before, one may argue that it is
possible to use the forking process to remove data from a blockchain.
In agreement with [39], we stress once again that a hard fork should
be an exceptional event and should not be considered as the preferred
method to allow data subjects to exercise the right of erasure.

Before diving into the presentation of technical and legal approaches
to address the problems connected with the rights to rectification and

50 mapping the gdpr on the blockchain

erasure, it is worth noticing that the meaning of erasure is open to
interpretation [35, 39]. To further complicate the matter, we should
highlight the fact that the definition of erasure remains unsettled. Ac-
cording to the European Court of Justice (ECJ), erasure of personal
data might include its simple removal from a search index without
requiring data to be deleted. Accordingly, someone might argue that
the deletion of the encryption key used to encrypt data or the sup-
pression of the link that enables a party to access personal data can
be regarded as sufficient measures to claim compliance with the Reg-
ulation. However, there are no official decisions on whether the steps
above could be considered enough. The Court of Justice of the Eu-
ropean Union (CJEU) seems to suggest that the erasure should be
equivalent to the destruction of personal data. However, this opinion
is in contrast with the one expressed by the ECJ.

Last, we stress that, as discussed in Section 4.1.1.1 and Section 4.1.1.2,
both transactional data and public keys stored on a blockchain are
most likely to be considered as personal data even when encrypted or
hashed. Further, the anonymisation threshold imposed by the GDPR
is currently unlikely to be satisfied by the current state-of-the-art al-
gorithms.

4.3.2.1 Technical approaches to the problem

Chapter 3 focuses on solutions that involve the modification of the
blockchain. However, it is worth noticing that it is not the only pro-
posed approach. Most of the work done so far focuses on the preser-
vation of transaction privacy, whereas the general problem of data
protection received increasing attention only recently [38].

Some naive approaches to address transaction privacy suggest to
create a fresh key pair for each transaction to reduce the likelihood
of detecting pattern by analysing transactions. Others suggest the use
of TOR as a mean to hide the real identity of the transactor. We ar-
gue that their implementation might be used to achieve a higher level
of privacy. However, they are far from attaining data protection and
from being compliant with the Regulation. More sophisticated meth-
ods aiming at complying with the GDPR propose the integration of
cryptographic techniques into validation protocols to hide potentially
private information [38]. For instance, ring signatures allow a party
to sign a transaction with its private key and another party to ver-
ify that the transaction has been signed with a key associated with
a group of keys, without revealing its exact identity. Other solutions
take a step further and try to hide the content of a transaction while
permitting validators to check the regularity and authenticity of it.
Cryptographic techniques used to achieve the mentioned goal are
ring-confidential transactions and zero-knowledge proofs. According
to [38], there are very few technical proposals tailored to allow data
subjects to exercise their right of erasure. Ibáñez et al. argue that this

4.3 tensions between blockchain and the gdpr 51

lack of technological solutions is driven by the belief that, once a suf-
ficient anonymisation level of personal data is obtain on a blockchain,
there is no need to check compliance because data is not personal
anymore once it has been anonymised.

4.3.2.2 Legal approaches to the problem

One of the most straightforward and most advocated solutions com-
ing from the legal environment proposes to store personal data off-
chain and to save on the blockchain a hash used as a link to an en-
crypted entry in a database where the data is stored [36, 38]. In agree-
ment with [38], we argue that such a solution renders the blockchain
useless as it brings back some of the problems that might justify the
use of a blockchain as a mean to ensure integrity and availability.

The proposal to store data off-chain is also seen as a solution to
implement the right to erasure. If a data subject requests the erasure
of its data, it might be enough to delete the data in the database
and leaving the hash link as pointing to an empty location. Similarly,
the right of rectification can be satisfied by creating a new transac-
tion that invalidates the hash link to the incorrect data and issues a
new link to the correct version. However, in both cases, the hashes of
personal data will remain on the blockchain. At the time of writing,
many pieces of research clarify that hashing should be regarded as
a pseudonymisation technique that does not prevent the Regulation
from applying [36].

We previously discussed the fact that the term erasure might be
open to interpretation, and the right to erasure is not an absolute right.
However, as noted in [38], the possibility that a semantic invalidation
of data being stored on the blockchain can be considered enough
depends on the sensitivity of the information. Indeed, there is an
example in which a court ruled in favour of a complete deletion asked
by a data subject. This means that it is not always possible to rely
on a semantic invalidation of data (similar to the one obtained by
issuing a new transaction that obfuscates the old one) and that in
some situations a hard deletion is required [38].

Another possibility for erasure might be the use of strong encryp-
tion so that data becomes anonymous. Unfortunately, a precise legal
definition of a sufficient level of encryption is lacking, and the thresh-
old imposed by the GDPR to achieve anonymity is notoriously very
high. Moreover, according to [36], none of the encryption algorithms
developed so far has been recognised as able to achieve such level. As
argued by Ibáñez et al., the deletion of both the key and the original
data will likely put the controller in a safer position compared to the
one obtained by deleting the key only [38].

52 mapping the gdpr on the blockchain

4.3.3 The Transfer of Personal Data to a Third Country

Personal data can be moved to third countries, i. e., countries out-
side the European Union, only after an accurate evaluation of the
safeguards and security protections provided by the state under in-
vestigation. In particular, when deciding on whether a third coun-
try possesses enough safeguards, one should investigate if the coun-
try "offer[s] guarantees ensuring an adequate level of protection essentially
equivalent to that ensured within the Union" [33]. In case there are suf-
ficient safeguards, transfer of personal data to a third country does
not require any additional process. In case safeguards are not enough,
transfer of personal data might still be allowed if either the controller
or the processor can provide those safeguards. As the location of the
nodes in a blockchain might be hard - or even impossible - to control,
the transfer of personal data to third countries in a blockchain can
generate conflict with the GDPR [39].

Similarly to the other conflicting situation we discussed above, the
situation is harder when the blockchain is public and permissionless.
On the contrary, when the blockchain is private and centrally man-
aged or permissioned and operated by a consortium, it is simpler to
determine the location of the participants as they are controlled be-
fore joining the network. Nevertheless, participants may be located
outside the European Union. In those cases, a legal ground has to be
found to process personal data in the blockchain and to move data to
nodes located outside the Union [39].

4.4 requirements

In this section, we present the legal and technical requirements that
we collected through our review process and a set of interviews we
conducted with legal and technical experts. First, we present the ele-
ments that will enable our prototype to comply with the Regulation.
Second, we describe the technical requirements of a modifiable block-
chain that respect the legal requirements.

4.4.1 Compliance Requirements

In this chapter, we introduced the GDPR as well as its core princi-
ples and how they map with a blockchain. Due to the fact that the
Regulation applies to personal data only, we discussed what type of
data stored on a blockchain might be considered as such. We discov-
ered that, although encrypted or hashed, both transactional data and
public keys stored on a blockchain constitute personal data in most
of the situations. Therefore, data subjects have the right to request
the rectification of incorrect data and the erasure of data according
to Art. 5 GDPR. However, we have already noticed that the right to

4.4 requirements 53

erasure is not absolute. GDPR prescribes six different grounds on
which data subjects can base their exercise of the right to erasure.
However, according to [38], at least two of them are challengeable.
The first regards the fact that personal data is no longer necessary
for the purposes for which it has been collected. Ibáñez et al. argue
that on a blockchain it is always required to process data. Therefore
perpetual processing is needed for the purposes for which data has
been obtained [38]. The second ground that can be challenged re-
gards the withdrawal of consent. The authors propose that, under
the assumption that the data subject gave the approval for processing
on a blockchain, consent must be perpetual as well and cannot be
revoked. Without claiming our support for or against this interpreta-
tion, we argue that there is a lack of clarity around the possibility to
challenge the grounds identified by the Regulation and, to the best of
our knowledge, [38] are the only ones to support this argument.

We also noticed how the concept of erasure is open to interpretation,
and many sources point to encryption and hashing as potentially
viable solutions to achieve compliance. However, the same sources
stress the lack of legal definitions regarding what could be consid-
ered as a sufficient level of encryption. Additionally, most of them
agree on the classification of encrypted and hashed data as personal
data, acknowledging that the presence of a hard-delete functionality
might help the data controller in being compliant and demonstrating
its compliance with the Regulation.

To conclude this section, we summarise our discussion, and we pro-
vide the answer to SQ3 of RQ1. Although the fact that hashed data is
deemed to be personal data despite the very low likelihood of recover-
ing the initial data could be surprising, we acknowledge the absence
of legal definition or court decisions stating that hashing can be con-
sidered as a sufficient measure for deletion. Moreover, we recognise
that encrypted and hashed personal data are still being considered
personal by many authors in the literature. Therefore, we argue that,
in case personal data, in plain text, encrypted form, or hashed is not
stored on the blockchain there is no need to propose modifications to
a blockchain to comply because the ledger does not contain personal
data. However, we find it hard to think of the usefulness of a block-
chain in which there is no link between the data stored off-chain and
the data stored on the ledger. Therefore, to justify the use of a block-
chain, at least hashes of personal data might be stored on the ledger
to enhance the data integrity. Moreover, the public keys of users are
likely considered personal data as well. In those cases, introducing
a modification feature to the blockchain is a possible way to comply
with the Regulation.

54 mapping the gdpr on the blockchain

4.4.2 Technical Requirements

This section presents the technical requirements that we identified
through the literature review and the interviews. The first require-
ment that we discuss is the ability to modify a single transaction -
and we refer to as transaction-level modifiability - in contrast with
the ability to alter a block - which we refer to as block-level modifia-
bility. As we will present, the possibility to modify a block presents
limitations due to the unrealistic assumptions the approach supposes.
Second, we present the evidence of modification. Arguably, the ability
to alter a blockchain ledger poses the risks of weakening its integrity
and immutability. Therefore, we thought that the public evidence of
modification could avoid the loss of tamper-evidence as any modifica-
tion will still be visible to all participants. Third, we introduce what
we call proof-of-redaction. Although it is not possible to have com-
plete certainty about the fact that a node deleted the information, we
argue that the presence of such a proof could render each node ac-
countable for its actions and could serve as evidence of the fact that
the request was processed by the node.

4.4.2.1 Transaction-level modifiability

From the analysis of the existing solutions, we discovered that a few
solutions provide transaction-level modifiability. We define transaction-
level modifiability as the ability to modify a or delete a single transac-
tion without impacting a whole block. The inability to edit or delete
a single transaction is an explicit limitation of most of the proposed
scheme. Some of them assume either that a block includes a single
transaction or that a block contains transaction issued by an individ-
ual user. We argue that these assumptions are far from being real in
many of the current blockchain implementations. Moreover, these are
not realistically feasible as they will introduce additional overhead in
terms of storage and scalability.

4.4.2.2 Evidence of modification

Immutability is a highly-praised feature of blockchain. Although re-
ferring to a blockchain as tamper-proof and tamper-evident is more
correct, we group those properties and refer to those as immutability
for simplicity. The immutability of a blockchain is undoubtedly one
of its strongest features and likely the one that makes a blockchain
unique compared to other types of distributed ledgers. The robust
hash chain structure perfectly achieves the goal of maintaining an im-
mutable log of transactions where parties do not trust each other and
do not want to engage in a trust relationship with a third-party that
supervises and grants the integrity of the transaction process. How-
ever, there are some other scenarios in which this feature presents it-

4.4 requirements 55

self in contrast with different requirements. For instance, the presence
of unwanted or illegal material on a blockchain might be detrimental
for the participants of the network. In those case, where laws or regu-
lations are infringed, it may be possible to remove part of the content
from the blockchain so that the system can be operated a compliant
fashion. However, modifying the blockchain inevitably weakens the
tamper-evident property. Precisely, in case a modification happens,
it can happen without leaving any traces. We stress that to reduce
the impact of a modification, it should be evident that an alteration
has occurred. We believe a modification should be justified so that au-
ditability and the trustworthiness of the blockchain can be maintained
to a sufficient level to justify the use of a blockchain even when its
modification is permitted.

4.4.2.3 Proof of Redaction

The Proof-of-Redaction (PoR) is a mechanism that allows a party to
agree on the proposed redaction and to show to the network that
a redaction happened. Before a modification or deletion is executed,
the network agrees on a redaction submitted by a peer of the data
controller - or one of the data controllers in case there are many. After
the computation of the collision, the peer in charge of computing it
proposes a transaction specifying how to redact the ledger and which
random value could be used to compute the collision. If the proposal
is validated by the other peers, it is published as a way to show that
the network agreed on a precise way to modify the ledger.

5
H O W T O C H A N G E T H E I M M U TA B L E

In the previous chapter, we focused on building a solid understand-
ing of the legal aspect of the problem. We concluded that in many sit-
uations, both encryption and hashing are not sufficient to anonymise
personal data. Therefore, if a data subject request for modification
or deletion is approved on a legal ground, that decision needs to
be applied on the blockchain. We identified three requirements that
we believe are sufficient to design a redactable blockchain that does
not weaken an existing architecture, namely transaction-level mod-
ifiability, evidence of modification, and proof of redaction. Using a
structural approach, we tackle the problem of blockchain immutabil-
ity with a small adjustment to the block creation process, and we
strive for maintaining the tamper-evidence property through the in-
troduction of the proof of redaction.

This chapter describes the architectural design of our proposal of
redactable blockchain that leverages chameleon-hash functions with
ephemeral trapdoor. We begin with the introduction of the design of
our redactable blockchain, and we proceed with the presentation of
its technical building blocks. We continue by representing and com-
menting on the flow of a data subject’s request and analyse the two
possible cases that such a request creates in the network. After the
presentation of the building blocks and the flow of transactions, we
combine the two elements, we demonstrate where the building blocks
fit in the architecture and how we incorporate them to produce our
final design. Moreover, we provide an implementation in Go of the
chameleon-hash function with ephemeral trapdoor. The evaluation of
whether the design meets the declared objectives and the results of
applying the modifications in terms of performance and core proper-
ties is discussed in Chapter 6.

5.1 design

In this section, we present the architectural design of our solution that
provides the ability to modify or delete a transaction on a blockchain,
based on the request of a data subject. Depending on the request,
the blockchain will update the wrong transaction data and produce
evidence of modification. Furthermore, each node of the network
that was identified as either the data controller or the data processor
publishes a proof-of-redaction. We begin by introducing the various
building blocks of our solution, and we proceed by combining them
into the blockchain. We continue by presenting the flow of a data sub-

57

58 how to change the immutable

ject’s request into our architecture. Last, we show how to incorporate
the building blocks into an existing blockchain architecture to achieve
the desired capabilities.

5.1.1 Building Blocks

This section provides the details of the building blocks of the solution.
First, we introduce the concept of chameleon-hash functions. We pro-
ceed by showing why early designs of such functions would not be
suitable for our architecture due to a security flaw called key expo-
sure, and we present their strengthened concept with ephemeral trap-
doors. Following the presentation of chameleon-hash functions, we
present commitment schemes and secret sharing schemes that will be
used during to manage the ephemeral trapdoors and to execute the
redaction procedure.

5.1.1.1 Chameleon-Hash Functions

A chameleon-hash is a particular type of hash function parametrised
by the presence of a public key [24]. Firstly introduced by Krawczyk
and Rabin in [42], chameleon hashes are designed to be collision resis-
tant for any party except for those that possess the trapdoor, i. e., the
secret key related to the public key. Chameleon-hash functions are
constructed so that the knowledge of the public key allows a party
to compute the hash function. In contrast, the knowledge of the trap-
door makes the process of finding a collision for every given input
much more straightforward.

Let us now introduce a more formal definition. A chameleon-hash
function CH() is a non-standard hash function associated with a user
U which holds a pair of keys: a public key pk and a secret key sk gen-
erated from a given key generation algorithm [42]. Given a message
m and a random string r as inputs, the function CHU(m, r) generates
a hash value that satisfies the following properties:

1. Collision resistance. The chameleon-hash function CHU() is
said to be collision resistant if it is computationally infeasible
to find two input pairs m1, r1 and m2, r2, m1 6= m2 such that
CHU(m1, r1) = CHU(m2, r2).

2. Trapdoor collision. A chameleon-hash function CHU() holds
the trapdoor collision property if there is an efficient algorithm,
given the secret key sk, an input pair m1, r1 and an additional
message m2, computes a value r2 such that CHU(m1, r1) =

CHU(m2, r2).

3. Uniformity. A chameleon-hash function CHU() is said to be uni-
form if all messages m induce the same probability distribution
on CHU(m, r) where r is chosen uniformly at random.

5.1 design 59

To summarise, a chameleon-hash function offers the same collision
resistance guarantees that a cryptographic hash function offers un-
less the party computing the collision knows the trapdoor - the secret
key sk - associated with the public key pk used to compute the hash.
Many of the early designs of chameleon-hash functions, however, suf-
fer from a problem called key exposure. The problem, described in
both [43] and [44] by Chen et al. and Ateniese and de Medeiros respec-
tively, consists in the ability of every party to acquire the knowledge
of the trapdoor when the first collision is computed by the holder of
the secret key. Therefore, when the party knowing the trapdoor com-
putes the first collision, it becomes possible for any other party to
recover the secret key and to compute arbitrary collisions on all the
hashes derived from the same public key. While in other scenarios
problem could be only marginal, it is not acceptable for our applica-
tion. Every peer in the network will gain knowledge of the trapdoor
associated with all the transactions issued by the same user. Therefore,
it will be able to compute collision for all the mentioned transactions.

Chen et al. and Ateniese and de Medeiros independently provided
an implementation of a chameleon-hash function that does not suf-
fer from key exposure based on different hardness assumptions. A
recent development on key-exposure free chameleon-hash function is
due to Camenisch et al. who envisioned the addition of a second -
ephemeral - trapdoor [45]. The presence of a freshly-chosen second
trapdoor limits the ability of the first trapdoor’s holder because it ren-
ders not possible to compute arbitrary collision with the knowledge
of a single secret. Moreover, the second trapdoor is different for every
hash computed with the same public key - and therefore associated
with the same secret key. Such construction avoids the problem of
giving every party the ability to compute arbitrary collisions once the
first collision has been computed. Indeed, the computation of a col-
lision by an authorised party does not leak any information on the
second trapdoor used to find the collision.

5.1.1.2 Commitment Scheme

A commitment scheme is a cryptographic primitive that allows a
party to commit to a value without revealing the actual value while
maintaining the ability to disclose the value later. Commitment schemes
are designed as a two-step process:

1. during the commit phase, a party chooses a value and produces
a commitment to that value;

2. during the reveal phase, the committed value is disclosed, and
the commitment can be checked.

Commitment schemes posses two security properties, namely hid-
ing and binding. The hiding property ensures that, at the end of the

60 how to change the immutable

commitment phase, no receiver can learn information on the commit-
ted value. The binding property, instead, ensures that at the end of the
reveal phase, the party computing the commitment cannot disclose a
value different from the one it committed to.

5.1.1.3 Weighted and Verifiable Secret Sharing

Once the key-exposure issue of early chameleon-hash designed is
solved, we ran into the problem of distributing the ephemeral trap-
door so that collisions can be found only when the party holding one
first trapdoor is allowed to do so. Secret sharing schemes enable us
to distribute the ephemeral trapdoor among different parties so that
each party cannot compute the secret unless it combines its share
with others until a threshold is reached.

Secret sharing, introduced independently by Shamir and Blakley,
refers to a method used to divide a secret S into shares si and to
distribute the shares among a set of participants. In secret sharing
schemes, a party - the dealer - divides the original secret S into shares
si and distributes the shares among the participants. Each participant
cannot reconstruct the entire secret if not by joining its share with
others’ shares. Moreover, the secret can be reconstructed only when
a sufficient number of parties combine their shares. Formally, a (t,n)-
threshold secret sharing scheme [46] is a scheme where

• a secret S is shared among

• n players

• which receive a share si of the secret S, with i ∈ {1, ..,n}

• such that the secret S can be reconstructed from at least t shares.

Verifiable secret sharing was introduced as a modified version of
secret sharing, where every participant can detect malicious actions
either by the dealer or by other participants. For instance, using verifi-
able secret sharing a party can discover whether the share it received
from the dealer is correct and belongs to the set of shares that allow
the secret to be reconstructed. Similarly, every party can verify that
another participant is disclosing a valid share during the reconstruc-
tion of the secret, and it is not lying on its share to gain knowledge of
the others’ share. To construct a verifiable secret sharing, each share
should contain a public commitment through which it is possible to
prove the correctness of the received share.

In weighted secret sharing schemes, each share si of the secret S is
associated with a weight wi. Instead of requiring at least t shares to
reconstruct the secret, weighted secret sharing schemes require that
the sum of the weights of the parties participating in the reconstruc-
tion is greater than or equal to the threshold.

5.1 design 61

5.1.2 Request Flow

In this section, we show how the flow of a data subject’s request hap-
pens. We begin by presenting the trivial case in which the request
is directly deemed acceptable by the data controller(s) after the anal-
ysis of its Data Protection Officer (DPO). We proceed by showing
the case in which the data subject needs to appoint the Data Protec-
tion Authority (DPA) due to the data controller refusing to accept
the request without sufficient justification. We stress that the imple-
mentation of the system covers the case in which a request has been
granted. Precisely, a request to delete or rectify data should be per-
formed by a data subject to the data controller directly without the
use of the blockchain. The DPO should carefully evaluate a request
and, in case there is a dispute, the DPA might play a significant role
as well. While it should be possible to encode decision rules in smart
contracts, the current imprecise and uncertain situation reduces the
ability to execute automated processing of a data subject request.

5.1.2.1 Case 1: Data Controller Accepts

The first and most trivial case is the one in which the data controllers
accepts the initial request of the data subject. In such a scenario - rep-
resented in Figure 6 - there is no need to include the DPA as the
request is deemed correct since the beginning. Therefore, once the
data controller accepts the request, it performs its action (modifica-
tion or deletion), it publishes a proof of action, and it forwards the
request to the data processor(s). Since a data processor may or may
not exist, the arrows in the figure are dotted.

In many cases, the request performed by the data subject will be
directed to the Data Protection Officer. The Data Protection Officer
(DPO) is a role that has to be identified by the data controller, and it
is required by the Regulation to oversee the data protection strategies
of a company to ensure compliance with the GDPR. Since every or-
ganization does not need to identify a DPO, there might be cases in
which the entity is not present. However, in those cases in which sen-
sitive personal data is managed, the DPO is most likely to be present.
Therefore, we assume that the data controller will process a data sub-
ject’s request through the DPO.

A similarly trivial situation is the one in which the DPO objects the
request of the data subject and provides grounds to justify its rejec-
tion. In case the data subject considers the decision correct under the
offered justifications, the process terminates. The situation in which
the data subject decides to challenge the decision is described in the
following section.

62 how to change the immutable

Data Subject

Data	Subject
submits	the
request	to	the
Data	Controller

Data Controller(s)

Data	Controller
evaluates	the
request	through

the	DPO

1.	Perform	action
2.	Publish	proof
3.	Forward	request

Data Protection Officer

Yes

Accept?

Data Protection Authority Data Processor(s)

1.	Perform	action
2.	Publish	proof

Figure 6: Data controller accepts the request of the data subject

5.1.2.2 Case 2: Data Subject appoints the Data Protection Authority

The Data Protection Authority (DPA) - or Supervisory Authority - is
an entity that each Member State should identify to monitor the ap-
plication of the GDPR and to protect the rights and freedoms of data
subjects. Among the various tasks of which the DPA is responsible
for, Art. 57, Sec. 1, lit. e and Art. 57 Sec.1 lit. f identify two crucial
responsibilities in relation to the figure of the data subject. Precisely,
the first prescribes the responsibility of providing data subjects with
the information they need concerning the exercise of their rights [33],
whereas the second states that the DPA should handle complaints
filed by the data subject - or any other organization or association -
and update the applicant regarding the progress and outcomes of the
claim [33].

Being in charge of handling data subject’s complaints, the DPA
could receive a data subject’s request to evaluate the protection of its
rights. The flow is similar to the once where there is a DPO. However,
instead of submitting a complaint to the DPO, the data subject files
a complaint to the DPA. Similarly, the DPA evaluates the complaint
to understand whether the data subject’s rights are being respected
or violated by the data controller. If the DPA deems the request ac-
ceptable, the authority informs the data controller which proceeds as
in the case above: the action of the request is executed, a proof is
published, and all the data processors - if any - are informed of the
decision and are instructed with the actions to take to ensure com-
pliance. Once a data processor receives a notification from the data
controller, it takes steps to execute the action, and it publishes its
proof of deletion. The flow is depicted in Figure 7.

5.2 integration

In this section we focus on how we integrate the building blocks and
the cryptographic primitives presented in Section 5.1.1 to support

5.2 integration 63

Data Subject

Data	Subject
submits	the
request	to	the
Data	Controller

Data	Subject	does
not	agree	with	the

decision

Data	Subject
appoints	to	the
Data	Protection
Authority

Data Controller(s)

Data	Controller
evaluates	the
request	through

the	DPO

1.	Perform	action
2.	Publish	proof
3.	Forward	request

Data Protection Officer

No
Accept?

Data Protection Authority

Yes

Data	Protection
Authority	evaluates

the	request

Accept?

Data Processor(s)

1.	Perform	action
2.	Publish	proof

Figure 7: Data subject appoints the Data Protection Authority

the flow depicted in Section 5.1.2 into an existing blockchain, namely
Hyperledger Fabric.

For simplicity, we will start by addressing the case in which there
are no multiple transactions linked together. This assumption will re-
flect on the ability to modify or delete a single transaction without
the need for implementing a cascade effect on all the others that de-
pend on the modified/deleted one. We will briefly discuss the more
complex case later in the chapter.

5.2.1 Chameleon-Hash Function into the Block Creation Process

To make an existing blockchain modifiable - or redactable - the first
change we should implement is the modification of the hash function.
We have already observed in the review of the related work - Chap-
ter 3 - that different methods have been proposed. We will briefly
recap some of them and discuss which is, in our opinion, the best
choice.

5.2.1.1 Chameleon-Hash Integration in Related Work

The work of Ateniese et al. is perhaps the most representative one,
as well as the first one, and received the attention of the consulting
company Accenture which submitted the first patent of a modifiable
blockchain. In their work, the authors proposed the use of chameleon-
hash functions as a substitute for the hash function used to chain the
blocks in a blockchain [23]. A finer-grained application of the same
concept is proposed by Derler et al. in [24] addressing the limitation
of a block-level modification. Similarly to the work of Ateniese et al.,
the authors substitute the existing hash function with a new primitive
they dubbed chameleon-hash with ephemeral trapdoors. However, in-

64 how to change the immutable

stead of targeting the hash function used to connect blocks, Derler et
al. focused on the hash function used to compute hashes of transac-
tions. Note that, while the hash function used to chain the blocks and
to compute hashes of transactions might be the same, the scope of the
modification differs a lot. Therefore, we will base our design on the
work presented in [24].

5.2.1.2 Chameleon-Hash Functions in Hyperledger Fabric

Unlike many other blockchain architectures, Hyperledger Fabric uses
a particular design of transaction flow. The first phase of the trans-
action flow is represented by a user that submits a transaction pro-
posal to various peers in the network through a chaincode function
call. Each peer that received the transaction executes the chaincode
function and returns the result of the execution as a transaction pro-
posal response. When the application has collected enough consistent
and signed transaction proposal responses, it forwards the transac-
tion containing the endorsed responses to the ordering service. The
ordering service has the responsibility of ordering transactions and
bundling them into blocks. Once a block is created, it is broadcasted
to all peers that independently validate the block and commit it to
their ledger. Note that Hyperledger Fabric supports the use of chan-
nels which allow for partitioning the network, thus creating multiple
subnetworks. However, for simplicity, we will assume that all peers
are in the same channel. Therefore all will receive the broadcasted
blocks and will eventually have the same ledger. The case in which
there exist multiple channels does not differ except for the fact that
only those peers in a channel will receive the newly created block.

To understand where the hash function comes into play, it is worth
analysing the structure of a block in Hyperledger Fabric. A block is
composed of three main parts presented in Listing 1

Listing 1: Description of the Block structure from Hyperledger

1 type Block struct {

2 Header *BlockHeader

3 Data *BlockData

4 Metadata *BlockMetadata

5 }

The chaining of blocks in the blockchain happens through the hash
of the previous block that is inserted into the hash of the current
block. Both hashes are stored in the header of the block, as can be
seen in Listing 2:

Listing 2: Description of the BlockHeader structure from Hyperledger

1 type BlockHeader struct {

2 Number uint64

https://github.com/hyperledger/fabric-protos-go/blob/master/common/common.pb.go#L600
https://github.com/hyperledger/fabric-protos-go/blob/master/common/common.pb.go#L658

5.2 integration 65

3 PreviousHash []byte

4 DataHash []byte

5 }

Listing 3: Hashing of block data from Hyperledger

1 func BlockDataHash(b *cb.BlockData) []byte {

2 sum := sha256.Sum256(bytes.Join(b.Data, nil))

3 return sum[:]

4 }

As the name might suggest, the hash of the list of transactions is
contained in the DataHash field. The DataHash field is computed by the
ordering service during the creation of a new block. By looking at
the code in Listing 3, it is possible to notice how Hyperledger Fabric
does not apparently make use of the widespread concept of Merkle
tree to compute the hash of the transactions in a given block. Instead,
transactions’ data is converted into a byte array, and the hash is com-
puted, by default, using SHA-256 checksum algorithm. To be precise,
Hyperledger Fabric is designed to support the Merkle tree structure.
However, the default width of the Merkle tree’s leaves is specified as
the maximum dimension of a block and, as a result, the Merkle tree
is a simple flat hash over the concatenation of bytes of a block data.
Therefore, the Merkle tree results in a single leaf - which is also the
root - computed as the hash over the concatenation of all transactions.

the hashing process At this point, there are two options to
integrate the ability of modification into this architecture:

1. The first alternative would be to substitute the default hash
function used to compute DataHash and employ the chameleon-
hash function instead. To compute a collision, one could use a
sequence of byte equal to the previous one except for the por-
tion representing the transaction to be deleted. While this ap-
proach is straightforward and requires very few modifications
to the architecture, it poses a major issue. Indeed, to compute a
collision, a party will need to know the whole string and will
be able to extract meaningful information on other transactions.
Moreover, the hash function will be unique, and a single public
key has to be used as input. This does not allow for hashing
each transaction with a different hashing key as in the design
of Derler et al.

2. The second alternative would be to substitute the whole proce-
dure of hashing. Precisely, it could be possible to compute the
DataHash field as the root of a Merkle tree. Using this approach, a
hash will be computed for each transaction and hashes will be
combined in pairs and hashed further, until the root of the tree

https://github.com/hyperledger/fabric/blob/7e1d1715de7ff04c35e4c5213e67b632d361e222/protoutil/blockutils.go#L65

66 how to change the immutable

H1	=	CHash(T1,	R1) H2	=	CHash(T2,	R2) H3	=	CHash(T3,	R3) H4	=	CHash(T4,	R4)

H12	=	Hash(T1+T2)

Hash	of	Block	Data

H34	=	Hash(T3+T4)

H1	=	CHash(T1,	R1) H2	=	CHash(T2,	R2) H3	=	CHash(T3,	R3) H4'	=	CHash(T4',	R4')

H12	=	Hash(T1+T2)

Hash	of	Block	Data

H34	=	Hash(T3+T4')

H4	=	CHash(T4,	R4) trapdoor H4'	=	CHash(T4',	R4')	=	H4

Original
Merkle
Tree

Modified
Merkle
Tree

Computing	the
collision

Figure 8: Chameleon-Hash Function into the Merkle Tree

is reached and the final DataHash is computed. To compute a col-
lision, one could substitute only the data of the transaction to be
deleted and perform the computation for the leaf of the Merkle
tree corresponding to that transaction. In such a way, each leaf
will be hashed with a different public hashing key, and the ad-
ditional trapdoor can be managed appropriately. Even though
it requires more modifications to the hashing process, this sec-
ond approach allows for a targeted and proper disclosure of
the ephemeral trapdoor. Therefore, we will modify the hashing
process as just mentioned.

It is worth noticing that the behaviour of the second approach can
be achieved by the first as well by modifying the configuration pa-
rameter that specifies the width of the Merkle tree. However, changes
to the hashing procedure are still needed to account for different
hashing keys. To decide which of the two alternatives for this ap-
proach to use should rely on performance reasons, given the fact that
they should produce an equivalent result. A visual representation
of where the chameleon-hash function should be used to obtain a
redactable transaction is presented in Figure 8.

5.2.1.3 Trapdoor Distribution in Related Work

Until this point, we identified where the hash function comes into
play when creating a new block. This is done by the ordering service
which orders and bundles transactions into a block before broadcast-

5.2 integration 67

ing it to the other peers in the network. Recalling the fact that we are
introducing chameleon-hash functions with ephemeral trapdoors, we
should discuss how to distribute the keys in such a way that the abil-
ity to modify a transaction does not belong exclusively to the ordering
service. Before diving into the various approaches that we propose,
it is worth looking at how the problem is addressed in some of the
recent related work.

The work of Ateniese et al. proposes three approaches to manage
the trapdoor keys of the chameleon-hash function. Since in their work
the trapdoor key is unique, they discuss key management suitable for
a single key. Nonetheless, the discussion gives an initial idea of pos-
sible approaches. The three key management approaches depend on
the type of blockchain used in a particular application, where the
types of blockchain are considered as being those presented in Sec-
tion 2.2.10 due to Buterin [19]. In the case of a private blockchain,
one could envision the presence of a central authority. Therefore, the
straightforward key management solution would be to give the trap-
door key to a central authority which has the power to compute col-
lisions [23]. In the case of a consortium blockchain, instead, the trap-
door key could be shared among all the parties in the consortium
through a Multi-Party Computation (MPC) protocol [23]. To recon-
struct the trapdoor key, all the parties - or at least a sufficient number
of them - have to engage in the protocol. Last, in a public blockchain,
the trapdoor key could be either shared among all the full miners or
shared among a carefully chosen set of full miners [23].

A different proposal is the one presented in [24] by Derler et al.
In their work, they envision the role of the attribute authority, which
is responsible for issuing the public key used to compute the hash
function to the various address owners in the network. Further, the
attribute authority issues the secret keys containing a list of attributes
to all the other users. When an address owner wants to submit a mod-
ifiable transaction, it computes the chameleon-hash of the transaction,
and it encrypts the ephemeral trapdoor using an access policy. If - and
when - a transaction needs to be modified, only the parties possessing
a secret key that satisfy the access policy can decrypt the ephemeral
trapdoor and to compute a collision.

5.2.1.4 Trapdoor Distribution Schemes

We will now discuss some of the trapdoor distribution approaches
that we identified. To help with the discussion, we introduce the fol-
lowing notational convention:

• u represents a user in the network;

• p represents a peer in the network;

• U represents the set of users in the network;

68 how to change the immutable

• CA is the certificate authority that will acquire the role of at-
tribute authority

• pku represents the public key of the chameleon-hash function
associated with the user u;

• skp represents the secret key of the chameleon-hash function
associated with the peer p;

• ek represents the ephemeral trapdoor;

• ch(t,k) is a chameleon-hash function with input the transaction
t and a key k

• enc(m,k) is the an encryption procedure with inputs a message
m and the encryption key k;

• dec(c,k) is the decryption procedure with inputs a ciphertext c
and the decryption key k;

• enc(m, A) is the an encryption procedure with inputs a mes-
sage m and an access policy A;

• dec(c, [a]) is the decryption procedure with inputs a ciphertext
c and a list of attributes [a];

In our work based on the architecture of Hyperledger Fabric, the
ordering service nodes inevitably play a central role being the ones
that compute the block’s hash value using the ordered list of transac-
tions as input. However, we do not want to give the ordering service
the power of being only one that knows all ephemeral trapdoors. As
a consequence, we identified the following - non-exhaustive - list of
key management solutions:

1. The first approach is similar to the one proposed by Derler et
al. In the beginning, the attribute authority CA sends the pub-
lic hashing keys pku to all users u ∈ U and the secret keys
skp to all peers in the network. Note that skp contains a list
of attributes. Upon submitting a transaction, a user u sends its
public hashing key pku to the ordering service node. The order-
ing service node uses the pku to compute the chameleon-hash
of a transaction t as ch(t,pku). Further, it computes the ephem-
eral trapdoor ek and it encrypts the trapdoor with an access
policy A as enc(ek, A). Upon receiving a request to modify a
transaction, a peer will try to decrypt the ephemeral trapdoor
using the attributes [a] attached with its secret key skp using
the procedure dec(c, [a]). If the attribute list satisfies the access
policy A, the peer can decrypt the trapdoor and to compute a
collision. Once a collision has been found, it is possible to insert
the new message (or to delete the old one by replacing it with a
placeholder) into the blockchain without breaking the chain. A

5.2 integration 69

Attribute	Authority User Peer Ordering	Service

1.	Send	pku

2.	Send	skp	(key,	[a])

3.	Send	transaction	(t,	pku)

5.	Compute	trapdoor	ek
4.	Hash	transaction	ch(t,	pku)

6.	Encrypt	trapdoor	enc(ek,	A)7.	Send	ecnrypted	trapdoor

8.	Redaction	request	for	t

9.	Decrypt	trapdoor	dec(ek,[a])
10.	Compute	collision

Figure 9: First Key Management approach

visual representation of this approach can be found in Figure 9.

2. The second approach, similar to the first one except for the dis-
tribution of ephemeral trapdoors, is represented in Figure 10.
Instead of encrypting the ephemeral trapdoor ekwith respect to
an access policy A, the ordering service can send ek to the user
u. We note that there are different methods to achieve such a re-
sult, and we do not discuss them now. When the user u wants
to submit a request, it discloses the ephemeral trapdoor to the
peer p representing the data controller. Upon receiving the re-
quest and ek, the peer p can compute a collision and redact the
transaction as requested by u. Note that using this approach,
the secret key of the peers does not necessarily have to contain
the list of attributed [a].

3. The third approach combines the presence of the ephemeral
trapdoor proposed in [24] with the distribution of the keys as
envisioned in [23] in the case of a consortium blockchain. Simi-
larly to the previous one, it differs from the first because of the
way the ephemeral trapdoor ek is distributed. Indeed, the or-
dering service can divide the ephemeral trapdoor ek into shares
and send the shares to the peers in the network. To perform a
redaction after a data subject request, peers rebuild the trapdoor
by engaging in a multi-party computation protocol. Once the se-
cret has been reconstructed, it can be used by the peer identified
as the data controller to compute a collision and perform the

70 how to change the immutable

Attribute	Authority User Peer Ordering	Service

1.	Send	pku

2.	Send	skp

3.	Send	transaction	(t,	pku)

6.	Send	trapdoor

7.	Redaction	request	(t,ek)

8.	Compute	collision

4.	Hash	transaction	(t,	pku)

5.	Compute	trapdoor	ek

Figure 10: Second Key Management approach

redaction requested by the user. The approach is represented in
Figure 11.

4. The fourth approach combines the second and the third. Pre-
cisely, the distribution of the ephemeral trapdoor is done sim-
ilarly to what presented in [23], but a share of the trapdoor
is sent to the user who proposed the transaction. Therefore,
the ordering service can divide the ephemeral trapdoor ek into
shares and send the shares to the peer representing the data
controllers(s) and the data processor(s) as well as to the user
u. However, instead of providing the same share to all sharers,
different parties receive shares of different weight. Through a
weighted secret sharing scheme, it is possible to assign more re-
construction power to a party compared to others. We propose
assigning the strongest share to the user u so to provide u with
the highest level of control on its data. The other parties will
receive weaker shares compared to the user. If the other shares
alone are enough to reconstruct the trapdoor, the recovery of the
secret in case the user u does not want to engage in the proto-
col or lost its share is still possible. Alternatively, we can require
the user’s share to be present, resulting in higher security. We
stress that the decision depends on the application, and we do
not prefer one or the other mechanism. Moreover, to avoid the
need to trust the ordering service as a dealer, it is possible to
use verifiable weighted secret sharing schemes in which a party
can check the correctness of the received share using the public

5.2 integration 71

Attribute	Authority User Peer Ordering	Service

1.	Send	pku

2.	Send	skp

3.	Send	transaction	(t,	pku)

5.	Compute	trapdoor	ek

4.	Hash	transaction	ch(t,	pku)

6.	Send	trapdoor	shares

7.	Redaction	request	for	t

8.	Reconstruct	trapdoor	
9.	Compute	collision

Figure 11: Third Key Management approach

commitment attached to the share. A visual representation of
the fourth approach is given in Figure 12.

5.2.2 Evidence of Modification into the Block of Transactions

The second building block of our proposal consists of providing ev-
idence of the fact that a modification has happened. Note that this
is different from the proof that each peer will publish on the block-
chain during the process. Indeed, the evidence will be bundled into
the block that contains the modified transaction and not in a newly
created block to certify that the process is finished. This evidence of
modification highlights the fact that the transaction is not the origi-
nal one even though its hash is the same as the original one due to
the collision found through the use of the chameleon-hash function.
The insertion of this evidence into the block is the last step of the
redaction process.

A naive approach to provide such evidence is the use of transac-
tion validation codes, a built-in code in Hyperledger Fabric. Due to
the particular transaction flow of Fabric, it could happen that a trans-
action submitted by a user and inserted into a block by the ordering
service is not valid at the moment of its commitment to the ledger.
This conflict may arise for various reasons. For instance, if a second
transaction that modifies the same values has been inserted into the
blockchain after the first one was proposed, but before it was com-
mitted. If any of the conflicting situations happens, the transaction is
inserted into the block, but it is marked as invalid with one of the

72 how to change the immutable

Attribute	Authority User Peer Ordering	Service

1.	Send	pku

2.	Send	skp

3.	Send	transaction	(t,	pku)

5.	Compute	trapdoor	ek

4.	Hash	transaction	ch(t,	pku)

6.	Send	trapdoor	shares

8.	Redaction	request	(t,eku)

9.	Reconstruct	trapdoor	
10.	Compute	collision

7.	Send	powerfull	trapdoor	share	eku

Figure 12: Fourth Key Management approach

available transaction validation codes. By adding a unique code to
the list of available ones - as represented in dark red in Listing 4 -
each peer should be able to mark the modified transaction with the
proper validation code. Whenever a party wants to check whether
the transaction has been changed, it is sufficient that it verifies the
transaction validation code by making a request to the peers in the
network. This code is inserted into the block metadata, the third field
of the structure presented in Listing 1. Since block metadata is not
considered during the computation of the block hash, a modification
of this field does not create a conflict in the block chaining. As one
would expect, the evidence in the block is publicly visible.

Listing 4: Transaction validation codes from Hyperledger

1 type TxValidationCode int32

2

3 const (

4 TxValidationCode_VALID TxValidationCode = 0

5 TxValidationCode_NIL_ENVELOPE TxValidationCode = 1

6 TxValidationCode_BAD_PAYLOAD TxValidationCode = 2

7 TxValidationCode_BAD_COMMON_HEADER TxValidationCode = 3

8 .

9 .

10 .

11 TxValidationCode_REDACTED_TRANSACTION TXValidationCode = 253

12 TxValidationCode_NOT_VALIDATED TxValidationCode = 254

13 TxValidationCode_INVALID_OTHER_REASON TxValidationCode = 255

14)

https://github.com/hyperledger/fabric-protos-go/blob/master/peer/transaction.pb.go#L24

5.2 integration 73

5.2.3 Proof of Redaction

The proof of redaction represents the last piece of our redactable
blockchain design. As we observed in Chapter 3, the designs that
leverage chameleon-hash functions do not present any evidence of
the fact that a transaction has been modified. The absence of the evi-
dence comes from the indistinguishability property of chameleon-hash
functions: it is not possible to tell whether the hash value is computed
by the hashing process of the original data or if it comes from the
adaptation of an already existing hash. Indistinguishability is a very
appealing property in many cases, and the fact that two hashes are
identical and indistinguishable helps in avoiding the need to break the
chain to redact data. However, we have also observed that this absence
of evidence could weaken the tamper-evidence of a blockchain.

Tamper-evidence and tamper-proofs are the building blocks of block-
chain’s immutability. We saw that the tamper-proof property might
be hacked through the use of chameleon-hash functions. Similarly, the
tamper-evident property could be hacked by the use of chameleon-
hashes. Therefore, we need to integrate an additional mechanism to
retain the tamper-evident property. We have already introduced the
evidence of modification into the transaction block. However, it is
as simple as an added value to identify which transaction has been
redacted. A question that pops up is what happens if the code is used
for a valid transaction. The blockchain will show a redacted trans-
action; however, the transaction will not be a redacted one, but the
original one where the transaction validation code has been misused.
How can one discern between an original transaction with a misused
validation code from a redacted transaction?

5.2.3.1 A naïve Proof-of-Redaction

To answer this question, we introduced the Proof-of-Redaction (PoR).
The Proof-of-Redaction is an additional transaction published to the
blockchain to show that the network agreed on the modification or
deletion of an already published transaction. It is proposed by the
party computing the collision, i. e., one of the peers of the data con-
troller to whom the data subject submitted its request. Once the colli-
sion has been calculated, the peer proposes a transaction containing a
new timestamp for the transaction, the new data used to modify the
existing transaction, and the random number that produces the colli-
sion. The endorsement policy for such type of transaction should be
designed so that each organization can check the validity of the pro-
posed data and randomness through the use of the public chameleon-
hash validation function.

Once the collision has been verified, the endorsing peers of all or-
ganizations in the network send a proposal response to the data con-
troller’s peer which inspects the response and, if all endorsements

74 how to change the immutable

are correct, submits the transaction to the ordering service. The trans-
action can be submitted using the standard hashing mechanism or
using the chameleon-hash function. If the goal is to avoid a possi-
ble redaction of the proof, the hash should be computed using a
standard hash function. However, if the proof contains personal data
that could be modified or deleted, the chameleon-hash should be pre-
ferred. Once the Proof-of-Redaction has been published to the ledger,
each peer can modify data and use the proposed randomness to com-
pute the collision. Moreover, the transaction validation code can be
modified to show the presence of a redacted transaction.

5.2.3.2 Committing the Randomness

At first sight, the naive Proof-of-Redaction we have just proposed
seems to work just fine. However, after a more in-depth look, it is
possible to notice that it presents some weaknesses.

As a redaction proposal, the party computing the collision presents
the new data, a new timestamp, and the random number that pro-
duces the collision. At this point, each peer should wait for the trans-
action to be approved before changing the original transaction. How-
ever, all parties are already aware of all the components needed to
generate a valid collision. Therefore, a malicious party could modify
the original transaction before the other parties validate the redaction
proposal. To avoid the situation in which a party changes a trans-
action before others approve it and the risk of ending up in an in-
consistent state, we decided to substitute the random number with a
commitment to it.

As a result, the redaction procedure becomes a two-step process de-
picted in Figure 13. During the first step, the party computing a colli-
sion publishes the new data, a new timestamp, and a commitment to
the random value that allows producing a collision. This set of data
is bundled into a transaction proposal which, as before, needs to be
signed by the other parties in the network. However, at this point, no
party except the one computing the collision is aware of all the com-
ponents needed to compute it. If the other peers sign the transaction
proposal and all signatures are correctly collected by the party com-
puting the collision, the transaction is published to the ledger as a
mean to demonstrate that the network agrees on the proposed mod-
ification. When the proposal is published, the party computing the
collision can post the random number to the ledger. Upon receiving
the random number, all other parties can validate the commitment
by verifying that the published randomness satisfies the commitment
and confirm the fact that the random number, together with the new
data and timestamp, produces the desired collision.

Thanks to the presence of the Proof-of-Redaction, it is possible to
distinguish a transaction containing the original data with a misused
transaction validation code from one that has been modified follow-

5.2 integration 75

User Data	Controller's	Peer Other	Peers Ordering	Service

1.	Request	redaction

2.	Reconstruct	trapdoor

4.	Send	redaction	proposal
			(newTx,	timestamp,	C(r))

5.	Send	proposal	response

10.	Redact	transaction

3.	Compute	collision

9.	Publish	randomness

6.	Submit	transaction

8.	The	transaction	is	validated	and	committed	to	the	ledger

10.	Redact	transaction
11.	Update	validation	code11.	Update	validation	code

Figure 13: Committing the Randomness for Proof-of-Redaction

ing the procedure. A correctly redacted transaction will have a new
timestamp bigger than the other timestamps in the block. The same
timestamp and the redacted data can be found on the ledger together
with the randomness that allows creating the block. Therefore, if a
transaction presents the TxValidationCode_REDACTED_TRANSACTION and there
exist the connected Proof-of-Redaction on the ledger, the transaction
has been correctly redacted. Instead, if the transaction presents only
the redaction code, but there is no proof connected with that transac-
tion on the ledger, it is possible to conclude that the code was misused
and the transaction the original one. It is worth noticing that a trans-
action with a misused transaction validation code is considered an
invalid transaction. Therefore, it did not produce any change to the
ledger when it was inserted into the blockchain.

5.2.4 The case of Dependent Transactions

The discussion we had until this point was focused on understand-
ing how it is possible to achieve modifiability of a single transaction
through the use of chameleon-hash functions and how the data con-
troller and data processor’s peers provide proof of the modification
by publishing a transaction to the blockchain. A question that naively
pops out is what happens when multiple transactions are linked to-
gether, i. e., a transaction on the blockchain depends on one that has
been modified or deleted. The fact that transactions dependent on a
redacted one should be modified depends on the particular applica-
tion for which the blockchain has been designed. Let us create an

76 how to change the immutable

Block	n-3

d	=	4										[1]
a	=	21								[1]

Block	n-2

a	=	a	-	6					[2]
b	=	2										[1]

Block	n-1

a	=	a	+	2						[3]
c	=	16										[1]

Block	n

a	=	a	+	3							[4]
c	=	c	-	1								[2]

Ledger

a	=	20						[4]	
b	=	2								[1]
c	=	15						[2]
d	=	4								[1]

Peer

Redact	(a,	[2])

Redact	(a,	[2+1])

Redact	(a,	[2+1+1])

Figure 14: The case of dependent transactions

artificial example of a land registry. The blockchain stores transac-
tions that occur when a user buys or sells a piece of land. We do not
store money transactions, but we just store the fact that the owner
of a piece of land has changed. If a data subject is granted the right
to have its transaction removed, the deletion of that transaction does
not interfere with other transactions in the blockchain unless the data
subject has been the last owner of the piece of land. However, if the
data subject is still the owner of the property, any deletion request is
likely to be denied.

In the case in which transactions are dependent, it should be possi-
ble to scroll the whole list of blocks to find transactions whose result
could be changed as a consequence of redactions. Even though it
does not seem to be a native built-in method in Hyperledger Fabric
to achieve such a result, we can leverage how the architecture stores
assets and process transactions. Assets are stored as key-value pairs
and transaction proposals submitted by a user contains the key value
of the asset they are going to modify and its version. Version numbers
of an asset are used to check that, while a transaction was being en-
dorsed, ordered, and committed, another transaction did not modify
the same asset, thus invalidating the initial state of the former trans-
action. When a transaction is redacted, we could save the value of the
representing the asset that has been modified and its version number.
To check for a subsequent transaction that depends on the redacted
one, we can search for transactions that contain the same key value
but a version number higher than the one included in the redacted
transaction. By doing so, we should be able to identify all transactions
that have been stored on the ledger and depend on the redacted one
given the fact that their execution modified the version of the same
asset. A representation of a simplified process is given in Figure 14.

To be precise, there is a built-in method if Hyperledger Fabric is
configured to work with a specific state database, namely Level-DB.
Level-DB provides a technique called GetHistoryForKey(key) which al-
lows retrieving all transactions that modified the specified key. In

5.3 implementation 77

such a situation, it is possible to use the built-in function. If a differ-
ent state database is used, the procedure we identified above achieves
a similar result.

5.3 implementation

In this section, we present our implementation of the design. We be-
gin with the implementation of the chameleon-hash with ephemeral
trapdoor.

5.3.1 Chameleon-Hash with Ephemeral Trapdoor Implementation

We present our implementation of a chameleon-hash function with
ephemeral trapdoor based on a chameleon-hash function presented
in [45]. We provide the first implementation of such a hash function
in Go using a black-box approach as described in [45]. Such a black-
box approach allows us to implement the presence of the second -
ephemeral - trapdoor by combining two instances of chameleon-hash
functions instead of implementing the presence of the trapdoor di-
rectly. We decide to implement the ephemeral trapdoor via a black-
box combination of two chameleon-hash implementations due to the
fact that other approaches require the computation of a huge random
prime number. We empirically tested that the computation of a ran-
dom prime e > n3, where n is an RSA 2048-bit modulo and e is the
public exponent, introduces a heavy overhead. Instead, the combina-
tion of two chameleon-hash functions requires to compute two ran-
dom primes e1 > n2 and e2 > n2 separately. This approach turned
out being much faster. Therefore, we decided to opt for the black-box
construction. Notably, both the direct approach and the black-box ap-
proach present the same security properties that we will discuss in
Chapter 6.

We now show our implementation of the chameleon-hash function,
and we discuss which parties in the network execute which steps.
Since the black box-construction is a combination of two chameleon-
hash instances, we present one chameleon-hash instance. The pres-
ence of the trapdoor is implemented by using an additional instance
of the chameleon-hash function. According to the construction pro-
vided in [45], the first step is the generation of e, the RSA public
exponent. Connected with the generation of the public exponent is
the generation of the RSA modulo n and the private exponent d. As
in any standard RSA instance, n is generated as a product of two
big random prime numbers, p and q, whereas d is computed as the
inverse of e modulo φ(n). These two algorithms are executed when
a user joins the network. The public exponent e is connected with
the identity of the user and plays the role of the public hashing key.
Instead, the private exponent d works as one of the two trapdoors

78 how to change the immutable

that allow a peer to compute a collision. Since the data controller’s
peers are in charge of computing the collisions, the key can be di-
rectly made available to them, or it can be sent together with the
public hashing key to the user. Note that disclosing the private ex-
ponent d to a peer since the bootstrapping of the network does not
pose security problems as d alone does not allow a party to compute
a collision.

5.3.1.1 Setup

The function CParGen - presented in Listing 5 - generates the RSA pub-
lic exponent e as a random prime number with a bit-length λ. In our
implementation, λ is set to 2048 bits. This function is executed when
a user joins the network and assigns a hashing key to it. This step is
executed by the Certificate Authority (CA) that is already in charge
of generating an identity for users upon registration to the network.

Listing 5: Generation of RSA public exponent

1 func CParGen (1λ) {

2 e := randomPrime(λ)

3 return e

4 }

The function CKeyGen - presented in Listing 6 - generates the RSA
modulo n and the private exponent d. Similarly to the previous func-
tion, CKeyGen is computed by the CA when a user registers to the net-
work. The presence of the second ephemeral trapdoor is provided
through the execution of this function by the ordering service during
the hashing process. Once the second trapdoor has been generated, it
can be divided in shares and sent to the relevant parties by using a
verifiable and weighted secret sharing scheme. The verifiability of the
sharing scheme allows each party to prove that the share they receive
is correct and the fact that the scheme produces shares of different
weights allows us to provide a powerful share to the data subject
while providing enough less powerful shares to the other parties.

Listing 6: Generation of RSA modulo and private exponent

1 func CKeyGen (λ, e) {

2 repeat {

3 p := randomPrime(λ/2)

4 q := randomPrime(λ/2)

5 n := p*q

6 phi(n) := (p-1) * (q-1)

7 } until e > n AND isCoprime(phi(n), e)

8 d := inverseModulo(e, phi(n))

9 return n,d

10 }

5.4 summary 79

5.3.1.2 Hashing

Listing 7 presents the function CHash which is executed by the ordering
service to hash a transaction using a user’s public key, i. e., the RSA
public exponent. The function randomNumber() is designed so to provide
a random number of at most λ bits. The function H∗n() is a random
oracle instantiated as a SHAKE256 hash function with 256 bytes of
output, i. e., 2048 bits. The function computes a random number r and
uses the public exponent e, the randomness r, and the hash function
H∗n() to hash a message. To insert the second ephemeral trapdoor,
it is sufficient to execute the same function a second time using the
second RSA modulo generated through the execution of CKeyGen.

Listing 7: Hashing Process

1 func CHash (λ,e,n,tx) {

2 r := randomNumber(λ)

3 h1 := H∗n (tx)

4 hash := h1 * r
e mod n

5 return hash,r

6 }

5.3.1.3 Collision

The procedure used to find a collision is presented in Listing 8. The
private exponent d allows to revert the initial exponentiation as in any
standard RSA algorithm and produces as output a new random value
newR that, together with the new transaction data newTx allows to
find a collision for the original hash value.

Listing 8: Collision Computation

1 func CAdapt (oldHash,n,tx,newTX,d) {

2 if newTX == tx return r

3 h1 := H∗n (newTx)

4 newR := (oldHash * inverseModulo(h1, n))d mod n

5 return newR

6 }

5.4 summary

Before jumping to the evaluation of the proposed design, we should
briefly recall how we introduced the ability of modification, who pos-
sesses the keys to activate the modification process, and what evi-
dence of modification we added to the architecture. By doing so, we
provide the answer to SQ4 and SQ5 of research question RQ1 in Sub-
section 5.4.1 and Subsection 5.4.2 respectively.

80 how to change the immutable

5.4.1 Prototype Design

In this section, we provide the answer to SQ4 of RQ1 that asks which
is a proper design for a prototype. We described the various build-
ing blocks of the design and how they are integrated with into an
existing blockchain implementation in the previous section. Our de-
sign is based on the work of Camenisch et al. which proposed a new
primitive called chameleon-hash function with ephemeral trapdoor.
By modifying the standard hash function used to compute the hash
of the transactions in a block, we provide the ability to modify or
delete a transaction without breaking the connection between blocks.
However, we felt that a modification or deletion should be publicly
visible so that the blockchain will retain the tamper-evident property.
Therefore, we introduce a transaction validation code that marks a
transaction as redacted as soon as a modification or deletion hap-
pens. Last, we envision the presence of a proof published by the data
controllers and data processors - if any - into the blockchain.

5.4.2 Modification Rights

In this section, we provide a possible answer to SQ5 of RQ1 that asks
who should have the right to propose and approve redactions. First
of all, we note that the redaction request comes from the data subject
and needs to be evaluated and accepted by the DPO - or the DPA
in case of a dispute. In our work, we focus on the data modification
rights on the ledger when a redaction has been previously approved.
As we mentioned earlier, it should be possible to automate part of
the decision process through smart contracts. However, the current
level of uncertainty around the process of granting or denying a data
subject’s request hinders our ability to design rules for automated
enforcement.

We identified four different possibilities to handle the redaction
process and avoid to centralise the power on the ordering service.
First, secret keys distributed to the peers of the data controller could
contain a set of attributes. Upon transaction validation, the ordering
service encrypts the ephemeral trapdoor subject to an access policy.
When a redaction is requested, only the peers satisfying the access
policy will be allowed to decrypt the trapdoor and compute a colli-
sion. Second, the ordering service could send the ephemeral trapdoor
directly to the data subject. Upon redaction request, the data sub-
ject discloses the ephemeral trapdoor to the data controller’s peers
which compute the collision and perform the redaction. Third, the
ephemeral trapdoor could be distributed using a secure secret shar-
ing scheme. Upon redaction request, the trapdoor could be rebuilt
through a collaboration between the parties. When the secret is recon-
structed, it can be used to compute a collision and perform the redac-

5.4 summary 81

tion. Last, the ephemeral trapdoor could be divided into weighted
shares using a weighted and verifiable secret sharing. The strongest
share should be sent to the user while the other weaker shares are
sent to the data controller and data processor peers. The secret trap-
door can be reconstructed using the strongest share and any of the
other share or by combining all other shares. Using this approach, it
could be possible to reconstruct a secret even when the user does not
want to engage in the protocol or when the user’s key is lost.

While the second approach can be seen as the one that reflects
the directions of the GDPR by giving more control to the data sub-
ject, we acknowledge that the process of managing keys could be a
hard task for many people. On the other side, the first approach as-
is seems to give high power to the ordering service that decides the
access policy to use during the encryption of the ephemeral trapdoor.
Lower reliance on the ordering service could be achieved by asking
the ordering service to prove the fact that the access policy allows
the authorised parties to decrypt the trapdoor. The third approach
seems to be the one that requires a fair and distributed effort to many
parties. Again, the ordering service should prove the fact that the
secret can be reconstructed from the various shares. The fourth and
last approach combines the involvement of the data subject with a
distributed effort in the key reconstruction. We believe this approach
is the one that achieves the goal of giving data subject more control
over its data with the possibility to allow the other parties to recon-
struct the secret and perform redactions in case the data subject is
not willing to engage in the protocol or when the data subject’s key
is lost.

6
E VA L U AT I O N A N D D I S C U S S I O N

This chapter describes the process used to evaluate the design of the
architecture we provided in Chapter 5. To choose the appropriate
approach for our evaluation, we will follow the framework of Venable
et al. In particular, we begin by choosing the evaluation approach
based on the four-step process presented in the authors’ work [48].

The first step revolves around the formalisation of the evaluation’s
goal. The goal of our evaluation is to demonstrate that the design
we are proposing achieves the technical requirements we identified
without a disproportionate impact on an existing blockchain. To align
our goals with the categories identified in [48], we can formalise the
goal as establishing the efficacy of our architecture.

The second step of the process requires to decide a strategy for
the evaluation. In their work, Venable et al. identify four different
strategies. Due to the technical nature of our work, it is sound to
reduce our choice between a Technical Risk & Efficacy strategy and a
Purely Technical one. However, the problem we identified is not purely
technical as it involves a legal component. Therefore, we decided to
follow a Technical Risk & Efficacy strategy.

The third step regards the identification of the properties to evalu-
ate. According to Venable et al., the selection of properties is unique
to the artefact under evaluation. Therefore, we formalised a set of
qualities we wanted to assess. We used an analytical approach [2],
and we performed both static analysis and dynamic analysis.

The fourth and last step concerns the design of the evaluation
episodes. We designed our evaluation as shown in Table 2. The eval-
uation of our work is structured in three parts, of which the first two
are static analysis and the last part is the dynamic analysis. Accord-
ing to Hevner et al., static analysis examines "the structure of an artefact
for static qualities" [2], whereas dynamic analysis studies the "artefact
in use for dynamic qualities" [2]. We will define both the static qualities
and the dynamic quality for each evaluation part.

The first part of our evaluation is a security analysis of the redactable
blockchain design. Since our work is modifying an existing and es-
tablished blockchain architecture, there is the risk of unintentionally
weakening the system. To check whether our work produces such an
undesirable outcome, we inspire the first part of our evaluation on the
work of Garay et al. [49] and Kiayias et al. [50, 51]. Their work demon-
strate three fundamental requirements of a robust transactional ledger,
namely common prefix, chain quality, and chain growth, ensure the prop-
erties of Persistence and Liveness. While the three requirements have

83

84 evaluation and discussion

Evaluation Method Artefact Goal

Static
Analysis

Proof Architecture
Design

Demonstrate that an existing archi-
tecture is not weakened

Static
Analysis

Expert
Interviews

Architecture
Design

Validate design to ensure that key
properties are satisfied and re-
quirements are met

Dynamic
Analysis

Performance
Test

Chameleon-
Hash Func-
tion

Test the feasibility of using
chameleon-hash in existing archi-
tectures

Table 2: Evaluation Methods used in This Study

been initially used to assess the robustness of the consensus protocol,
they have been lately employed to validate the design of modifiable
blockchain in [27, 52].

The second part of our evaluation is a qualitative evaluation per-
formed through semi-structured interviews with domain experts. Ex-
perts were chosen based on their knowledge of the blockchain and
the cryptographic primitives. Both the first and the second part of
the evaluation constitute our static analysis according to its definition
given in [2]. We will carefully define the static qualities - or properties
- of the system that we want to evaluate in the dedicated sections.

Last, as the third part of our evaluation, we discuss the perfor-
mances of the implementation of one of the building blocks, namely
chameleon-hash function with ephemeral trapdoor. This third phase
is the dynamic analysis that tests the performance of the fundamental
building block of our architecture.

6.1 assumptions and security of chameleon-hashes

This section presents the assumptions and the threat model we will
use as a reference attacker model for our evaluation.

6.1.1 Permissioned Network

We decided to discuss a possible integration of our architecture in
Hyperledger Fabric. The choice of Fabric is mainly due to its per-
missioned setting and the higher possibility to comply with various
GDPR requirements. Fabric offers the ability to create channels, i. e.,
subnetworks of peers that will share the same ledger and will execute
the same chaincode. The sharing of information could, therefore, be
designed so that only the relevant parties will get access to the data.
Moreover, Fabric recently introduced an additional feature called pri-
vate data: data deemed as private can be shared only with the relevant
stakeholders with or without the presence of a channel. Furthermore,
private data can be obfuscated for the ordering service, that may be

6.1 assumptions and security of chameleon-hashes 85

controlled by an organisation that should not be able to access the
content of a transaction.

As a result of our choice of Hyperledger Fabric, we evaluate our
design in a permissioned environment. To align the meaning of per-
missioned with the taxonomy we presented in Chapter 2, we can refer
to Fabric as a consortium where a pre-identified set of organisations
controls the ordering service and the endorsement policies. Write per-
missions are restricted to the parties that are part of the network or
part of a channel in the more restrictive situation. Similarly, read op-
erations are limited to those parties that are part of the network or
channel. However, even though parties do know each other, they do
not necessarily need to trust each other.

6.1.2 Security Properties of Chameleon Hash Functions

In this section, we present the properties of chameleon-hash with
ephemeral trapdoor (CHET) based on [45]. The proofs of the secu-
rity properties can be found in [45]. The assumptions on which the
security of the hash function are based are the same of the ones stated
in their paper, namely the RSA assumption and the one-more RSA-
assumption. The formalisation of both assumptions can be found in
the original article [45], which shows that the construction is secure
under those assumptions in the random oracle model [45].

Definition 6.1 (Indistinguishability) [45] A chameleon-hash function
with ephemeral trapdoor CHET is indistinguishable if for any efficient
adversary A there exist a negligible function v such that

|Pr[IndistinguishabilityCHETA (λ) = 1] −
1

2
| 6 v(λ)

Informally, indistinguishability requires that a randomness r does not
reveal whether it was obtained through CHash or through Adapt, that
is, it is not possible to understand whether the randomness is pro-
duced during the hashing process or the computation of a collision.
As a consequence, an outsider cannot decide if the transaction is the
original one or if the modified one.

Definition 6.2 (Public Collision Resistance) [45] A chameleon-hash
function with ephemeral trapdoor CHET is publicly collision resistant if
for any efficient adversary A there exist a negligible function v such that

Pr[PublicColResCHETA (1λ) = 1] 6 v(λ)

Informally, public collision resistance requires that even if an adversary
has access to an Adapt oracle it cannot find a new collision, i. e., differ-
ent from the one generated by the oracle, by itself.

86 evaluation and discussion

Definition 6.3 (Private Collision Resistance) [45] A chameleon-hash
function with ephemeral trapdoor CHET is privately collision resistant
if for any efficient adversary A there exist a negligible function v such that

Pr[PrivateColResCHETA (1λ) = 1] 6 v(λ)

Informally, private collision resistance requires even the holder of the
secret key cannot compute a collision by itself if the second ephemeral
trapdoor is unknown even in the presence of an honest hashing oracle
which does not return the trapdoor.

Definition 6.4 (Uniqueness) [45] A chameleon-hash function with ephem-
eral trapdoor CHET is unique if for any efficient adversary A there exist a
negligible function v such that

Pr[UniquenessCHETA (1λ) = 1] 6 v(λ)

Informally, uniqueness requires that it is hard two find two distinct
randomness values r1 and r2, r1 6= r2 for the same message m and
hash value h.

As an additional property, we require a CHET to be correct. Pre-
cisely, we require that for every security parameter λ ∈ N, for all
public parameters generate from the Setup, for every public exponent
e, modulo N, message m, for every hash h, randomness r, and trap-
door etd, we have that the check CHashCheck()= true [45]. Similarly, we
require that for each message m ′ and randomness r ′ outputted by
Adapt, CHashCheck()= true [45].

According to Camenisch et al., a chameleon-hash with ephemeral
trapdoor is said to be secure if is correct, indistinguishable, publicly colli-
sion resistant, and privately collision resistant.

6.1.3 Threat Model

Although the trust model is usually defined when designing a cryp-
tosystem, we felt the need to formalise our assumption regarding the
trustworthiness or the different parties in the network. We have al-
ready discussed that, given the permissioned nature of Fabric, parties
do know each other but do not necessarily need to trust each other.
We can formalise this assumption with the honest-but-curious - or
semi-trusted/semi-honest - threat model where the different parties
follow the protocol but are eager to learn as much as possible regard-
ing the others’ secrets. Additionally, we require that the peers in the
network do not collude to reconstruct the data subject secret. By do-
ing so, we maintain the ability to rebuild the second trapdoor even
when the share of the data subject is lost. However, we observe that it
is possible to relax this requirement and allow collusions among net-
work peers if the threshold on the commitment scheme is designed
to require the data subject’s share.

6.2 security analysis 87

6.2 security analysis

In this section, we define the properties of Persistence and Liveness.
We also define the requirements that ensure the achievement of these
properties. The three requirements, namely common prefix, chain qual-
ity, and chain growth are the three qualities on which we base our
static analysis. Our goal is to show that our design does not pre-
clude the ability to ensure the properties of a robust transactional ledger.
Therefore, we prove that it does not violate any of the requirements
mentioned above.

6.2.1 Security Requirements and Properties

We begin by introducing the definition of Persistence and Liveness due
to Garay et al. and Kiayias et al.

Definition 6.5 (Persistence) The property of persistence (with parameter
k ∈ N) states that when a node in the network proclaims a transaction t as
stable, all other nodes in the network - if queried - will report the transaction
t at the same position in the ledger and will agree on the entire prefix of the
ledger [49, 50], i. e., the ledger up to the transaction t. A transaction is said
to be stable if at least k blocks have been appended to the ledger after the
block that contains the transaction t.

Definition 6.6 (Liveness) The property of liveness (with parameter u ∈
N, referred to as transaction confirmation time) states that if all honest
nodes in a network are willing to insert a transaction t in the ledger, after
a time u all nodes - if queried and honestly responding - will report the
transaction as stable [50].

We now introduce the definition of the three requirements, namely
common prefix, chain quality, and chain growth. While they have been
formalised in [49, 50], we provide a definition closer to the ones re-
ported in [27, 52] as these include the original ones and are formalised
in a simpler fashion with a focus on the design of redactable block-
chain.

Definition 6.7 (Chain Growth) The property of chain growth, with pa-
rameters τ ∈ N and s ∈ N, states that if two chains C1 and C2 possessed
by two honest parties at two time slots slt1 and slt2, with slt2 − slt1 > s,
then it holds that len(C2) − len(C1) > τ · s, for s ∈ N and 0 < τ 6 1,
where τ is the speed coefficient.

In simple words, the property of chain growth means that the block-
chain stored by any honest party is increasing over time with the
addition of blocks to the chain.

88 evaluation and discussion

Definition 6.8 (Chain Quality) The property of chain quality states that
in l ∈ N consecutive blocks belonging to a chain C of a honest party there
will be at maximum µ · l adversary blocks, where 0 < µ 6 1 is the chain
quality coefficient.

Informally, the chain quality property expresses the fact that the ratio
of adversary blocks in any segment of a chain stored by an honest
party will be no more than a fraction τ, where τ is the fraction of
resources belonging to an adversary [27].

Definition 6.9 (Common Prefix) The property of common prefix states
that given two chains C1 and C2 belonging to honest parties at time slots
slt1 and slt2, with slt1 < slt2, then Cdk1 � C2, where Cdk1 denotes the
chain obtained from C1 by removing the last k blocks, where k ∈ N is the
common prefix parameter.

Informally, the common prefix states that considering the chains of
two honest nodes at two different time slots, the shortest chain is a
prefix of the longest one up to the common prefix parameter k.

6.2.2 Assessment

In this section, we assess the security of our work based on the prop-
erties of common prefix, chain growth, and chain quality. We show that
while the proof of the chain growth is trivial, the proof of chain qual-
ity is more elaborated. Moreover, since the common prefix definition
does not account for modifications, some modifiable blockchain pro-
tocol does not inherently maintain the property of common prefix
starting from a blockchain that satisfies it. To account for modifi-
cations, Deuber et al. introduced the definition of editable common
prefix [27]. However, our work does not substitute or delete blocks.
Instead, it allows the authorised parties to compute collisions for a
targeted rewriting such that the chain of blocks is not modified.

chain growth To show the fact that the chain growth property
is maintained we note that our work does not delete blocks. Instead,
it is a targeted rewriting of transactions in a blockchain. Even when
the request of the data subject is to remove a transaction, we replace it
with a placeholder to delete the original information and remove any
reference to it. If we suppose that the original blockchain satisfies the
chain growth property, our work does not interfere with the ability
of the chain to grow. Indeed, the chain will grow as before if new
transactions are bundled into blocks by the ordering service.

chain quality Let us suppose the presence of an attacker A that
holds a fraction of computational power up to µ. A can follow differ-
ent strategies to increase the fraction of malicious nodes in the chain

6.2 security analysis 89

of an honest node. For instance, the attacker A could extend the chain
of an honest party by proposing additional malicious blocks. How-
ever, the creation of blocks is a responsibility of the ordering service
in the Fabric architecture. Therefore, the attacker has two strategies
to attack the generation of new blocks.

The first strategy is to submit as many malicious transactions as
possible to the ordering service to create a malicious block full of
its transactions. However, the adversary computational power will be
up to µ, where the computational power represents its transaction
creation capacity. As a result, the chain will contain a fraction of ma-
licious blocks up to µ · l, where l is the length of the portion of the
chain we are inspecting. Moreover, a similar situation could happen
in the original non-modifiable architecture. Hence, our work does not
allow an attacker to increase its fraction of malicious blocks.

The second strategy can be adopted when an attacker controls a
fraction up to µ of the ordering service nodes - which can be now
seen as the attacker computational power. In such a case, the ma-
licious ordering service portion will be able to modify transactions
before their insertion into a block. However, whenever a block is cre-
ated and broadcasted to the peers, transactions are not executed by
default. Instead, the peers that receive the block check the validity of
the transactions and mark them as valid or invalid before executing
them and updating the ledger. Even in the case in which the attacker
succeeds in modifying transactions so that peers will no be aware
of the modification, the fact it holds up to µ power in the ordering
service node will stop him from being able to produce more than
a fraction of µ malicious blocks. As in the previous case, this attack
can be carried out in the original non-modifiable architecture as well
when an attacker can take control of part of the ordering service pro-
cess. Therefore, our work does not give an advantage to the attacker
compared to the original architecture.

An alternative attacking strategy could be targeting the rewriting
of blocks that may include the ability to delete blocks or to modify
them. However, since our work does not allow to remove blocks from
the chain, it is not possible to increase the share of the malicious
block in a portion of the chain with l blocks by removing honest
blocks. Therefore, the attacker has to modify transactions in a block
so that the block becomes malicious. Again, we envision two possible
strategies.

The first strategy can be used when the creation of the modifiable
transaction has been done correctly without malicious intervention.
This may happen when an attacker gains control of a share µ of or-
dering service nodes at a time slot slt2 > slt1, where slt1 represents
the time slot in which the transaction has been bundled into the block
by an honest node. Due to the fact that the adversary A does not pos-
sess the knowledge of the trapdoors that unlock the ability to find

90 evaluation and discussion

collisions, the chameleon-hash behaves as a collision-resistant hash.
Therefore, A needs to compute collisions via brute force attack, which
is impractical if the bits of security provided by the hash function are
enough and the chameleon-hash function is collision-resistant for all
parties unaware of the trapdoors.

The second strategy can be used when the creation of the modifi-
able transaction has been done maliciously by an attacker controlling
the malicious portion of the ordering service. This may happen when
the ordering service node uses as the public hashing key its own pub-
lic key or a public key different from the one belonging to the creator
of the transaction. This creates a block that contains a set of malicious
transaction. Since the attacker controls a fraction up to µ ordering ser-
vice nodes, the malicious transactions in a portion of the chain of l
blocks will be at most µ · l. If the attacker decides to modify the trans-
action it controls, the fraction of malicious transactions in the portion
of the chain will not increase.

common prefix Trivially if no redaction operations have been
performed on the chain, the property is satisfied assuming that the
original architecture meets the common prefix. Even when a transac-
tion modification happens, the hashes of the blocks are not modified
thanks to the design of the chameleon-hash function. Therefore, our
work does not insert the possibility of creating inconsistencies in the
chains of a hones party.

6.3 validation with expert interviews

In this section, we present the evaluation performed through expert
interviews which constitutes the second static analysis of our refer-
ence architecture. During this phase, we analyse the structure of the
artefact we developed, and we formalise the set of qualities that will
be used to evaluate the design.

6.3.1 Formalisation of Design Qualities

This section introduces and formalises the qualities - or properties -
of the design that we will assess during our interviews with experts.
We will later evaluate whether our design achieves these properties
taking into consideration the threat model we defined previously.

6.3.1.1 Integrity

Definition 6.10 (Integrity) Integrity is the property that data or informa-
tion have not been altered or destroyed in an unauthorised manner.

6.3 validation with expert interviews 91

Informally, integrity is the property that ensures data have not been
modified or cancelled by an unauthorised party. A similar definition
of integrity can be found in [21].

When in relation to our design, we would like the ledger to main-
tain the integrity property. We can, therefore, derive from the integrity
property our definition of ledger integrity.

Definition 6.11 (Ledger Integrity) Ledger Integrity is the property that
data or information contained in a blockchain ledger have not been altered or
destroyed in an unauthorised manner.

For our evaluation, we will specifically refer to the part of the ledger
of Hyperledger Fabric called transaction log, i.e., the chain of blocks
that stores the cryptographically linked list of blocks.

6.3.1.2 Tamper-proofness

Definition 6.12 (Tamper-proofness) A blockchain ledger is said to be
tamper-proof when it is not possible to modify data on the ledger if not
by brute-forcing the cryptographic hash or by hijacking the consensus mech-
anism.

In Hyperledger Fabric, the consensus mechanism is represented by
the endorsement policies that define which parties need to endorse a
transaction before it is published. Endorsement policies are defined
at the moment in which the chaincode that creates a transaction is
deployed in the network.

Definition 6.13 (Weak Tamper-proofness) A blockchain ledger is said
to be weakly tamper-proof if an unauthorised party cannot modify data
on the ledger if not by brute-forcing the cryptographic hash or by hijacking
the consensus mechanism.

Compared to the previous definition of a tamper-proof blockchain
ledger, we relax the requirements of this property to render it suit-
able for a redactable blockchain. Any redactable blockchain cannot
achieve the original tamper-proof property as data modification or
deletion are features of such proposals. Therefore, we formalised a
weaker notion of tamper-proofness to consider authorised and agreed
modifications as valid.

6.3.1.3 Tamper-evidence

Definition 6.14 (Tamper-evidence) A blockchain ledger is said to be
tamper-evident if the ledger cannot be tampered with in an unnoticed man-
ner.

Informally, we say that the tamper-evidence quality is present if any
modification is evident and can be seen by the other parties in the
network.

92 evaluation and discussion

Introduction Design Presentation Design Efficacy

Experts background

Problem Definition

Blockchain Background

Building Blocks

Integration

Qualities Formalization

Strength &
Weaknesses

Assessment

Additional Remarks

Figure 15: Structure of Experts Interviews

6.3.2 Immutability

Definition 6.15 (Immutability) A blockchain ledger is said to be immutable
when it is both tamper-proof and tamper-evident.

Similarly to what we proposed above in the case of tamper-proofness,
we can introduce the notion of weak immutability.

Definition 6.16 (Weak Immutability) A blockchain ledger is said to be
weakly immutable when it is both weakly tamper-proof and tamper-evident.

6.3.3 Assessment through Expert Interviews

This section presents the structure of the validation interviews we
held with experts and reports the results of the assessment. We di-
vided each validation interview into three main phases represented
in Figure 15. First, we gathered information on the interviewees’ back-
ground to assess their familiarity with the realm of cryptography and
the concept of blockchain. Besides, we evaluated the familiarity of the
experts with Hyperledger Fabric. Even though experts’ acquaintance
with Fabric was not a prerequisite, the assessment gave us insights
on the level of background information to provide during our second
phase. Second, we presented the reference architecture we designed
with a focus on the building blocks and their integration into an ex-
isting architecture. Last, we introduced the definition of the qualities
we wanted to assess, and we asked experts to express their opinion.
Through the use of semi-structured interviews, we allowed the ex-
perts to present additional comments on the architecture.

We interviewed a total of 7 experts with cryptography or block-
chain background. In particular, experts have 1 to 6 years of experi-
ence in cryptography developed both in an academic setting and in a
professional environment. In contrast, the prior experience of experts
with blockchain was lower, ranging from almost no experience to 5

6.3 validation with expert interviews 93

Reviewers
Ledger

Integrity
Tamper-
proofnes

Weak
tamper-proofness

Tamper-
evidence

Immutability
Weak

immutability

R1 + - - + ++ - - +

R2 + - - + ++ - - +

R3 = - - = ++ - - =

R4 + - - + ++ - - ++

R5 = - - + ++ - - ++

R6 ++ - - ++ ++ - - ++

R7 + - ++ ++ - - ++

Table 3: Summary of Experts Assessment

years. Acquaintance with Hyperledger Fabric was lower than the one
with the blockchain, but we did not include previous knowledge of
Fabric as a requirement to participate in the evaluation process. The
summary of the assessment can be found in Table 3. We summarised
a slightly positive opinion with the + symbol and a stronger positive
opinion with ++. Similarly, we represent a slightly negative opinion
with the − symbol and a stronger negative opinion with −−. To ac-
count for reviewers who did not feel comfortable in expressing their
opinion on some qualities based on our presentation, we introduce
the symbol =.

6.3.4 Discussion of the Assessment

This section discusses the opinions and the comments that we col-
lected during the experts’ review of the architecture.

ledger integrity As can be observed from Table 3, the opinion
of experts on the ability to maintain the integrity of the ledger was
positive or slightly positive. The main comments we received on this
property regards the threat model and the definition of unauthorised:
except for one, all interviewees referred to the threat model when
assessing the integrity of the ledger and some of them would have
preferred to receive a more precise definition of unauthorised.

tamper-proofness Trivially, we validated that the original qual-
ity of tamper-proofness cannot be satisfied by a redactable blockchain
that employs chameleon-hash functions during the hashing process.
This is because chameleon-hash functions are designed so to allow
parties that possess the private key(s) to compute a collision for the
hash value and to modify data such that the Merkle tree’s root is
not changed. Therefore, tampering with the ledger is possible. One
notable comment on tamper-proofness regards its formalisation: one
reviewer pointed out that, although tamper-proofness is ultimately
connected with immutability, if the meaning of tampering is consid-

94 evaluation and discussion

ered as malicious modification the design is capable of retaining this
property.

weak tamper-proofness Similarly to ledger integrity, we re-
ceived positive or slightly positive opinions on weak tamper-proofness.
Recalling that the definition of weak tamper-proofness accounts for
authorised modifications, experts agree on the fact that the design ap-
pears to satisfy this property. Therefore, we validated that, although
the original tamper-proofness cannot be met unless we consider tam-
pering as malicious, the property of weak tamper-proofness can be
regarded as a satisfiable alternative.

tamper evidence Among the various properties, tamper evidence
was the one in which experts showed a strong positive feeling. We,
therefore, validated that through the Proof-of-Redaction mechanism
we introduced, modifications and deletions are visible to the partic-
ipants, and the presence of their signature certifies that they agreed
on the proposal and took part in the process. Moreover, we validated
that hiding the randomness into a commitment is a sound choice to
avoid that parties can redact their ledger before reaching a collective
agreement.

immutability Since our formalisation of immutability requires
that tamper-proofness is satisfied, we can conclude that it is not possi-
ble to achieve perfect immutability. However, we also validated that it
is not always needed to fulfil such property and its presence strongly
depends on the particular application.

weak immutability Given the impossibility of maintaining per-
fect immutability and authorising redactions, we formalised the prop-
erty of weak immutability as the presence of both tamper-evidence
and weak tamper-proofness. Even though the comments we received
where positive, we received feedback on the formalisation of such
property. On the one side, some experts argued that given the fact
that immutability is quite a strong property, a different formalisation
of the property that accounts for modifications could have been for-
mulated. On the other side, we received positive comments regarding
the ability of weak-immutability to capture the presence of authorised
changes. Regardless of the comments, a majority of the reviewers
were positive on the ability of the design to reach this level of im-
mutability. Depending on the application, several interviewees also
recognised that such weaker immutability might be desired.

6.3 validation with expert interviews 95

6.3.5 Limitations of the Assessment

In terms of limitations, we identified the following as possible weak
points of our evaluation process.

First of all, the low experience of experts with the architecture of
Hyperledger Fabric sporadically created some misunderstanding in
the overall discussion. This limitation was pointed out directly dur-
ing the review process. Therefore, further evaluation with experts ac-
quainted with Fabric or longer evaluation sessions with more substan-
tial background could be performed to obtain a more precise overall
evaluation.

Second, we assessed the qualities of our design during an interview.
Therefore, we based the assessment on the presentation we gave dur-
ing each 60 to 90 minutes session. Taking into consideration the com-
plexity of the design that combines various cryptographic primitives,
the complexity of the architecture in which we proposed the integra-
tion, and the limited time available, it was hard to gather a precise
assessment. Most of the reviews we collected express a positive or
negative comment regarding the ability to reach the declared quali-
ties. Some of them, instead, did not feel comfortable in providing an
evaluation due to the short time available to digest a sophisticated de-
sign. Therefore, two sessions ended before we were able to assess the
properties because interviewees felt uncomfortable in providing feed-
back. As a result, we found it hard to build an accurate summative
assessment. On the other hand, we believe the review process shows
a robust formative component which can be used as a base to derive
future work and improvements.

Third, the fact that we decided not to specify a precise secret shar-
ing and commitment scheme to maintain certain freedom to target
the specific application needs may have limited the ability of experts
to evaluate the design. Even though we stress the fact that the precise
scheme should be decided based on the application needs, further
evaluations may be needed taking into consideration an exact instan-
tiation of secret sharing and commitment schemes.

6.3.6 Answer to Research Question RQ2

This section provides the answer to RQ2 considering the results of the
evaluation as a starting point. During the reviews, we asked experts
to provide their opinion on the impact that the use of redaction could
have on an existing blockchain architecture. While we showed that
the requirements for a robust transactional ledger are not violated in
our design, we felt the need to include expert’s opinions regarding
the impact of redaction on the integrity and immutability properties.
We formalised the definitions of these properties previously in this
Chapter.

96 evaluation and discussion

SQ1: To what extent the integrity of the blockchain suffers from this modi-
fication? We formalised the integrity of the blockchain as the integrity
of the ledger. To be precise, in this particular context, we refer to the
ledger as the hash-chained list of blocks. We assessed ledger integrity
during the reviews, and we received slightly positive opinions. Due
to the limitations we presented in the previous section, it was not pos-
sible to derive a yes or no answer. However, expert’s opinion shows
that, if assessed with the proper threat model and the correct assump-
tions in place, the architecture is designed to favour the presence of
such quality.

SQ2: To what extent the immutability of the blockchain suffers from this
modification? We formalised the property of immutability as the situa-
tion in which both tamper-proofness and tamper-evidence are present.
The assessment showed that the immutability property does not hold
in a redactable blockchain. However, we introduced a slightly weaker
definition of tamper-proofness and immutability that considers the
fact that a redactable blockchain is not designed to be immutable.
Similarly to the previous assessment, expert’s opinion shows that
considering a proper threat model and a correct set of assumptions,
the architecture is designed to favour the presence of weak tamper-
proofness. The presence of tamper-evidence through the use of the
Proof-of-Redaction received a stronger positive opinion with less de-
pendency on the threat model. Therefore, we can conclude that weak
immutability holds as long as both tamper-evidence and weak tamper-
proofness hold.

6.4 performance evaluation

In this section, we present the evaluation of the performance of our
implementation of the chameleon-hash function with ephemeral trap-
door that we described in Section 5.3.1. This last part of the evaluation
represents the dynamic analysis of the system to test the performance
of its main building block.

We implemented the function using Go 1.14.2 and tested its execu-
tion on a virtual machine with an Intel Core i7-8750H CPU @ 2.20GHz
running Ubuntu 20.04. We executed the five algorithms 1000 times,
and we computed the average, which is reported in Table 4. Addi-
tionally, we indicate the number of multiplications in modulo, expo-
nentiations in modulo, and the number of primes generated during
each operation.

As can be noted from the performance in Table 4, the Setup is the
operation that requires the highest amount of time. The reason for
the high amount of time needed for the setup phase is the creation of
a 2048-bit long prime e. However, the setup is a one-time operation
executed when a new user joins the network. Therefore, from a prac-

6.4 performance evaluation 97

Operation #Multiplications #Powers #Primes[bit] Time[ms]

Setup / / 1[2048] 785.14

CKGen / 2 2[1024] 189.64

Hash 2 4 2[1024] 191.57

Check 1 1 / 7.47

Adapt 2 3 / 22.37

Table 4: Performance of Chameleon-Hash with Ephemeral Trapdoors

tical perspective, it does not slow down the hashing process, and it
does not impact on the performance of the architecture significantly.

The generation of the RSA modulo and the private exponent d is
done in CKGen. Since a fresh ephemeral trapdoor needs to be computed
for each new hash, the performance of this operation impacts the
speed of Hash as well because CKGen is used to compute the second
ephemeral trapdoor. As can be seen from the difference between the
execution time of CKGen and CHash, the actual hashing process requires
very little time.

Adapt is a very efficient operation as well. The fact that it requires
less time to execute compared to Hash resides in the absence of prime
number generation primitives in the function body.

Last, the most used operation - and the fastest one as well - is Check

. It is required both during the validation of a new block and the
validation of the redaction proposal. The little execution time needed
for this operation introduces very little overhead in the validation
process.

7
C O N C L U S I O N

In this work, we designed and presented a reference architecture of
a redactable blockchain, i. e., a blockchain that supports deletion and
modification of approved transactions. We employed chameleon-hash
functions with ephemeral trapdoor to introduce transaction-level mod-
ifiability to redact single transactions without impacting the chain of
blocks.

To ensure that a single party does not have the power to compute
collisions through the use of the trapdoor, we divide the secret into
shares proposing the use of a weighted and verifiable secret sharing
scheme.

We described a redaction process that makes use of the standard
transaction model of Hyperledger Fabric, and we introduced the Proof-
of-Redaction. This mechanism allows parties in the network to ap-
prove and reach consensus on a redaction proposal before the actual
redaction. To avoid that parties in the network redact the content of
the transaction before participants reach a collective agreement, we
hide the randomness that produces the collision into a commitment.

To validate our design, we performed in-depth interviews with
cryptography and blockchain experts who expressed positive feelings
regarding the ability of the design to retain some fundamental prop-
erties of a blockchain.

We believe that our work has the ability to alleviate the frictions
between the highly praised immutability of a blockchain and some
data subject’s rights presented in the GDPR.

7.1 answer to the research questions

This section reports the answers to the two research questions we
identified at the beginning of our work. Since the answers to the var-
ious subquestions can be found throughout the document, here we
focus on building a complete answer to the main research questions.
We investigated two main research questions

RQ1: Should we modify blockchain technology so that it is possible to alter
or delete transactions to comply with Art. 16 and Art. 17 of GDPR?
To understand which requirements are imposed by the Regula-
tion on the management of personal data in a blockchain, we
reviewed various related work on the contrasts between block-
chain immutability and the GDPR. We validated with a legal ex-
pert that in many cases, hashes of personal data, transactional
data, and user’s public keys are considered personal data when

99

100 conclusion

stored in a blockchain. Therefore, we conclude that, at the mo-
ment of writing, a modification or deletion of personal data in
a blockchain is a necessary - but not sufficient - requirement
to achieve compliance. We designed a reference architecture for
a redactable blockchain leveraging the use of chameleon-hash
functions with ephemeral trapdoor. We discussed who should
have the right to propose modifications, and we presented a
process through which parties in the network reach consensus
on a proposed change. The redaction agreement is published as
proof that history has been modified.

RQ2: How does the modification of the blockchain impact its properties?
To assess the impact that the redaction process introduces into
an existing architecture, we performed a static analysis of the
fundamental properties of a blockchain. First, we provided a
theoretical discussion on the key properties of a robust transac-
tional ledger. This concept has been lately used to assess the de-
sign of a redactable blockchain in related work. We showed we
do not violate any of the requirements to build a robust transac-
tional ledger, and we concluded that our work does not weaken
an existing architecture. Second, we discussed and validated
our work during interviews with cryptography and blockchain
experts to assess the integrity and immutability of the design.
While a redactable blockchain cannot meet the standard im-
mutability, we introduced a weaker notion of immutability that
considers the presence of parties who are authorised to produce
collisions. Experts expressed an average positive feeling on the
ability of our work to retain integrity and weak-immutability of
the ledger.

7.2 limitations

The aims of this thesis were (i) to discuss whether modifications
should be permitted on a blockchain to ease compliance with the
GDPR, (ii) to analyse the frictions between some data subject’s rights
and the way a blockchain manages data and to propose an architec-
ture to alleviate the identified conflicts, (iii) to discuss who should
have the right to introduce modifications, and (iv) to what extent
some critical properties of a blockchain are affected if we allow mod-
ifications to happen. We believe that, while the classification of data
on a blockchain as personal depends on the particular application
and it is not trivial, our architecture contribute to reduce the frictions
without a significant impact on the key properties of a blockchain.
However, we acknowledge that some components of our work could
be susceptible to discussion.

The first limitation of our work concerns with the uncertainty of
the legal landscape of personal data management on a blockchain. It

7.3 future work 101

is not clear whether personal data on a blockchain will continue to
be deemed as such even when more robust hashing mechanisms will
be used or when additional privacy guarantees will be put in place.
Therefore, we developed our architecture starting from unsettled ar-
guments that could weaken the design if significant changes in the
legal landscape develop shortly.

Another limitation regards the actual proof of the fact that the arte-
fact works in practice. While we tested a working implementation of
chameleon-hash function with ephemeral trapdoor, and we validated
our architecture with experts through semi-structured interviews, a
proof-of-concept of the complete architecture should be developed to
assess the efficacy of the design in practice.

Concerning the implementation of the hash function, we recognise
that a Public-Key Infrastructure (PKI) based on RSA could be consid-
ered as obsolete and more recent PKIs based on elliptic curves may
be used to increase the security of the scheme and to improve its
performance. However, due to the fact that the security properties of
chameleon-hash functions have been proven for a limited set of con-
structions, we decided to use existing work rather than building a
construction by ourselves.

To conclude, the last limitation we identified concerns with the
threat model in which the design has been evaluated. While we be-
lieve that compliance in a permissioned blockchain is easier to achieve
compared to a permissionless blockchain and that the honest-but-
curious model captures a fair representation of the permissioned envi-
ronment, we recognise the need to relax some constraints to produce
a more thorough evaluation.

7.3 future work

The limitations we described in the previous section could potentially
steer future works.

One limitation we identified concerns with the uncertainty of the
legal landscape on which we based our analysis of personal data man-
agement in a blockchain. While it is not possible for us to clarify the
legal matter, future research in the field can take into account the
legal changes and adapt the architecture accordingly.

With regards to the design, we propose as future work the formal
verification of some security properties. While the security of building
blocks have already been proved, it should be possible to formalise
our design as a cryptographic protocol and use an automated verifi-
cation tool, such as ProVerif, to check a subset of the security prop-
erties. Additional future work on the design should focus on a more
in-depth analysis of the case of dependent transactions. We stress that
this analysis should be performed when the use case because there

102 conclusion

might be no need to modify transactions dependent on a redacted
one.

For what it concerns the implementation of the design, we iden-
tified to the choice of a precise instantiation of secret sharing and
commitment schemes as the first step towards a working proof-of-
concept. Similarly, a construction of chameleon-hash functions based
on different PKIs might become available, and future work could base
new development on those constructions.

Last, we propose as future work the assessment of our design as-
suming a more permissive threat model. While we have already dis-
cussed that it is possible to relax the non-collusion assumption by
adequately setting the threshold in the secret sharing scheme, we
recognise that many application of blockchain require to work in un-
trusted settings. Therefore, the assessment of the design in a threat
model that reflects an untrusted scenario represents a relevant future
work.

B I B L I O G R A P H Y

[1] Satoshi Nakamoto. ‘Bitcoin: A Peer-to-Peer Electronic Cash Sys-
tem’. In: Cryptography Mailing list at https://metzdowd.com (Mar.
2009).

[2] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha
Ram. ‘Design Science in Information Systems Research’. In: MIS
Quarterly 28.1 (2004), pp. 75–105. issn: 02767783. url: http://
www.jstor.org/stable/25148625.

[3] Vijay Vaishnavi and B Kuechler. ‘Design Science Research in
Information Systems’. In: Association for Information Systems (Jan.
2004).

[4] European Union Agency for Network and Information Security.
Distributed Ledger Technology & Cybersecurity. Dec. 2016. doi: 10.
2824/80997.

[5] Leslie Lamport. ‘The Part-Time Parliament’. In: ACM Transac-
tion on Computer Systems 16.2 (May 1998), pp. 133–169. issn:
0734-2071. doi: 10.1145/279227.279229. url: https://doi.
org/10.1145/279227.279229.

[6] Stuart Haber and W. Scott Stornetta. ‘How to Time-Stamp a Dig-
ital Document’. In: Journal of Cryptology 3.2 (Jan. 1991), pp. 99–
111. issn: 0933-2790. doi: 10 . 1007 / BF00196791. url: https :

//doi.org/10.1007/BF00196791.

[7] David Mazières and Dennis Shasha. ‘Building Secure File Sys-
tems out of Byzantine Storage’. In: Proceedings of the Twenty-First
Annual Symposium on Principles of Distributed Computing. PODC
’02. Monterey, California: Association for Computing Machin-
ery, July 2002, pp. 108–117. isbn: 1581134851. doi: 10.1145/
571825 . 571840. url: https : / / doi . org / 10 . 1145 / 571825 .

571840.

[8] Nick Szabo. Bit Gold. https://nakamotoinstitute.org/bit-
gold/. Dec. 2005.

[9] Dylan Yaga, Peter Mell, Nik Roby, and Karen Scarfone. ‘NISTIR
8202 Blockchain Technology Overview’. In: National Institute of
Standards and Technology 8202 (Oct. 2018).

[10] Rui Zhang, Rui Xue, and Ling Liu. ‘Security and Privacy on
Blockchain’. In: ACM Computing Surveys 52.3 (July 2019). issn:
0360-0300. doi: 10.1145/3316481. url: https://doi.org/10.
1145/3316481.

103

http://www.jstor.org/stable/25148625
http://www.jstor.org/stable/25148625
https://doi.org/10.2824/80997
https://doi.org/10.2824/80997
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/279227.279229
https://doi.org/10.1007/BF00196791
https://doi.org/10.1007/BF00196791
https://doi.org/10.1007/BF00196791
https://doi.org/10.1145/571825.571840
https://doi.org/10.1145/571825.571840
https://doi.org/10.1145/571825.571840
https://doi.org/10.1145/571825.571840
https://nakamotoinstitute.org/bit-gold/
https://nakamotoinstitute.org/bit-gold/
https://doi.org/10.1145/3316481
https://doi.org/10.1145/3316481
https://doi.org/10.1145/3316481

104 bibliography

[11] Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Xiangping Chen,
and Huaimin Wang. ‘Blockchain challenges and opportunities:
A survey’. In: International Journal of Web and Grid Services 14.4
(2018), pp. 352–375.

[12] Leslie Lamport, Robert Shostak, and Marshall Pease. ‘The Byzan-
tine Generals Problem’. In: ACM Transactions on Programming
Languages and Systems 4.3 (Juy 1982), pp. 382–401. issn: 0164-
0925. doi: 10.1145/357172.357176. url: https://doi.org/10.
1145/357172.357176.

[13] Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Xiangping Chen,
and Huaimin Wang. ‘An Overview of Blockchain Technology:
Architecture, Consensus, and Future Trends’. In: June 2017. doi:
10.1109/BigDataCongress.2017.85.

[14] Miguel Castro, Barbara Liskov, et al. ‘Practical Byzantine fault
tolerance’. In: OSDI. Vol. 99. 1999. 1999, pp. 173–186.

[15] Nick Szabo. Smart Contracts. http://www.fon.hum.uva.nl/rob/
Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/

szabo.best.vwh.net/smart.contracts.html. 1994.

[16] UK Government Office for Science. Distributed Ledger Technol-
ogy: beyond blockchain. 2016.

[17] Nick Szabo. ‘Formalizing and Securing Relationships on Public
Networks’. In: First Monday (Sept. 2016). http://journals.uic.
edu/ojs/index.php/fm/article/view/548/469.

[18] Vitalik Buterin. ‘A next-generation smart contract and decen-
tralized application platform’. In: Ethereum White Paper (2014).

[19] Vitalik Buterin. On Public and Private Blockchains. https://blog.
ethereum.org/2015/08/07/on-public-and-private-blockchains/.
Aug. 2015.

[20] Gideon Greenspan. Avoiding the pointless blockchain project. https:
//www.multichain.com/blog/2015/11/avoiding-pointless-

blockchain-project/. 2015.

[21] Karl Wüst and Arthur Gervais. ‘Do you Need a Blockchain?’ In:
2018 Crypto Valley Conference on Blockchain Technology (CVCBT).
June 2018, pp. 45–54.

[22] Tommy Koens and Erik Poll. ‘What blockchain alternative do
you need?’ In: Data Privacy Management, Cryptocurrencies and
Blockchain Technology. Springer, Sept. 2018, pp. 113–129.

[23] Giuseppe Ateniese, Bernardo Magri, Daniele Venturi, and Ew-
erton Andrade. ‘Redactable Blockchain–or–Rewriting History
in Bitcoin and Friends’. In: 2017 IEEE European Symposium on
Security and Privacy (EuroS&P). IEEE. 2017, pp. 111–126.

https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1109/BigDataCongress.2017.85
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
http://journals.uic.edu/ojs/index.php/fm/article/view/548/469
http://journals.uic.edu/ojs/index.php/fm/article/view/548/469
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/
https://www.multichain.com/blog/2015/11/avoiding-pointless-blockchain-project/
https://www.multichain.com/blog/2015/11/avoiding-pointless-blockchain-project/
https://www.multichain.com/blog/2015/11/avoiding-pointless-blockchain-project/

bibliography 105

[24] David Derler, Kai Samelin, Daniel Slamanig, and Christoph
Striecks. ‘Fine-Grained and Controlled Rewriting in Blockchains:
Chameleon-Hashing Gone Attribute-Based’. In: 26th Annual Net-
work and Distributed System Security Symposium, NDSS 2019, San
Diego, California, USA, February 24-27, 2019. The Internet Society,
2019.

[25] Xianji Cai, Yanli Ren, and Xinpeng Zhang. ‘Privacy-protected
Deletable Blockchain’. In: IEEE Access (2019).

[26] N. Lee, J. Yang, M. M. H. Onik, and C. Kim. ‘Modifiable Public
Blockchains Using Truncated Hashing and Sidechains’. In: IEEE
Access 7 (Nov. 2019), pp. 173571–173582. issn: 2169-3536. doi:
10.1109/ACCESS.2019.2956628.

[27] Dominic Deuber, Bernardo Magri, and Sri Aravinda Krishnan
Thyagarajan. ‘Redactable blockchain in the permissionless set-
ting’. In: 2019 IEEE Symposium on Security and Privacy (SP). IEEE.
May 2019, pp. 124–138.

[28] Jing Xu, Xinyu Li, Lingyuan Yin, Bingyong Guo, Han Feng, and
Zhenfeng Zhang. ‘Redactable Proof-of-Stake Blockchain with
Fast Confirmation’. In: IACR Cryptology ePrint Archive 2019 (2019),
p. 1110.

[29] Ivan Puddu, Alexandra Dmitrienko, and Srdjan Capkun. ‘µchain:
How to Forget without Hard Forks’. In: IACR Cryptology ePrint
Archive 2017 (2017), p. 106.

[30] M. Florian, S. Henningsen, S. Beaucamp, and B. Scheuermann.
‘Erasing Data from Blockchain Nodes’. In: 2019 IEEE European
Symposium on Security and Privacy Workshops (EuroS PW). June
2019, pp. 367–376. doi: 10.1109/EuroSPW.2019.00047.

[31] Sri Aravinda Krishnan Thyagarajan, Adithya Bhat, Bernardo
Magri, Daniel Tschudi, and Aniket Kate. ‘Reparo: Publicly Ver-
ifiable Layer to Repair Blockchains’. In: ArXiv abs/2001.00486

(Jan. 2020).

[32] Victor Gates. ‘RTM: Blockchain That Support Revocable Trans-
action Model’. In: ArXiv abs/2001.11259 (Jan. 2020).

[33] European Commission. General Data Protection Regulation. May
2018. (Visited on Mar. 2, 2019).

[34] Paul Voigt and Axel von dem Bussche. The EU General Data
Protection Regulation (GDPR): A Practical Guide. Springer Inter-
national Publishing AG 2017, Jan. 2017. isbn: 978-3-319-57958-0.
doi: 10.1007/978-3-319-57959-7.

https://doi.org/10.1109/ACCESS.2019.2956628
https://doi.org/10.1109/EuroSPW.2019.00047
https://doi.org/10.1007/978-3-319-57959-7

106 bibliography

[35] Michèle Finck, European Parliament, European Parliamentary
Research Service, and Scientific Foresight Unit. Blockchain and
the General Data Protection Regulation: can distributed ledgers be
squared with European data protection law? : study. Scientific Fore-
sight Unit, 2019. url: https://data.europa.eu/doi/10.2861/
535 (visited on Apr. 22, 2020).

[36] Michèle Finck. ‘Blockchains and Data Protection in the Euro-
pean Union’. In: SSRN Electronic Journal (Jan. 2017). doi: 10 .

2139/ssrn.3080322.

[37] Article 29 Data Protection Working Party. Opinion 05/2014 on
Anonymisation Techniques, WP 216. 2014.

[38] Luis-Daniel Ibáñez, Kieron O’Hara, and Elena Simperl. ‘On
blockchains and the general data protection regulation’. In: EU
Blockchain Forum and Observatory. 2018.

[39] Diogo Duarte. ‘An Introduction to Blockchain Technology From
a Legal Perspective and Its Tensions With the GDPR’. In: Cy-
berlaw Journal of the Cyberlaw Research Centre of the University of
Lisbon School of Law-CIJIC (2019).

[40] Article 29 Data Protection Working Party. Opinion 1/2010 on the
concepts of "controller" and "processor", WP 169. 2010.

[41] Jean Bacon, Johan David Michels, Christopher Millard, and Jatin-
der Singh. ‘Blockchain Demystified: a Technical and Legal Intro-
duction to Distributed and Centralized Ledgers’. In: Rich. JL &
Tech. 25 (2018), p. 1.

[42] Hugo Krawczyk and Tal Rabin. ‘Chameleon Hashing and Sig-
natures’. In: Proceedings of the Network and Distributed Systems
Symposium. 2000.

[43] Xiaofeng Chen, Fangguo Zhang, and Kwangjo Kim. ‘Chameleon
Hashing Without Key Exposure’. In: vol. 3225. 2004, pp. 87–98.
doi: 10.1007/978-3-540-30144-8_8.

[44] Giuseppe Ateniese and Breno de Medeiros. ‘On the Key Expo-
sure Problem in Chameleon Hashes’. In: Proceedings of the 4th
International Conference on Security in Communication Networks.
SCN’04. Amalfi, Italy: Springer-Verlag, 2004, pp. 165–179. doi:
10.1007/978-3-540-30598-9_12.

[45] Jan Camenisch, David Derler, Stephan Krenn, Henrich C. Pöhls,
Kai Samelin, and Daniel Slamanig. ‘Chameleon-Hashes with
Ephemeral Trapdoors - And Applications to Invisible Sanitiz-
able Signatures’. In: Public-Key Cryptography - PKC 2017 - 20th
IACR International Conference on Practice and Theory in Public-
Key Cryptography, Amsterdam, The Netherlands, March 28-31, 2017,
Proceedings, Part II. Ed. by Serge Fehr. Vol. 10175. Lecture Notes
in Computer Science. Springer, 2017, pp. 152–182. doi: 10.1007/

https://data.europa.eu/doi/10.2861/535
https://data.europa.eu/doi/10.2861/535
https://doi.org/10.2139/ssrn.3080322
https://doi.org/10.2139/ssrn.3080322
https://doi.org/10.1007/978-3-540-30144-8_8
https://doi.org/10.1007/978-3-540-30598-9_12
https://doi.org/10.1007/978-3-662-54388-7_6
https://doi.org/10.1007/978-3-662-54388-7_6

bibliography 107

978-3-662-54388-7_6. url: https://doi.org/10.1007/978-
3-662-54388-7%5C_6.

[46] Adi Shamir. ‘How to Share a Secret’. In: Communications of the
ACM 22.11 (Nov. 1979), pp. 612–613. doi: 10 . 1145 / 359168 .

359176.

[47] G. R. Blakley. ‘Safeguarding cryptographic keys’. In: Managing
Requirements Knowledge, International Workshop on. Los Alamitos,
CA, USA: IEEE Computer Society, June 1979, p. 313. doi: 10.
1109/AFIPS.1979.98.

[48] John Venable, Jan Pries-Heje, and Richard Baskerville. ‘FEDS:
a Framework for Evaluation in Design Science Research’. In:
European Journal of Information Systems 25.1 (2016), pp. 77–89.

[49] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. ‘The Bit-
coin Backbone Protocol: Analysis and Applications’. In: Advances
in Cryptology - EUROCRYPT 2015. Ed. by Elisabeth Oswald and
Marc Fischlin. Springer Berlin Heidelberg, 2015, pp. 281–310.

[50] Aggelos Kiayias, Alexander Russell, Bernardo David, and Ro-
man Oliynykov. ‘Ouroboros: A Provably Secure Proof-of-Stake
Blockchain Protocol’. In: Advances in Cryptology – CRYPTO 2017.
Ed. by Jonathan Katz and Hovav Shacham. Springer Interna-
tional Publishing, 2017, pp. 357–388.

[51] Aggelos Kiayias and Giorgos Panagiotakos. ‘Speed-Security Trade-
offs in Blockchain Protocols’. In: IACR Cryptol. ePrint Arch. 2015

(2015).

[52] A. Marsalek and T. Zefferer. ‘A Correctable Public Blockchain’.
In: 2019 18th IEEE International Conference On Trust, Security
And Privacy In Computing And Communications/13th IEEE Inter-
national Conference On Big Data Science And Engineering (Trust-
Com/BigDataSE). 2019, pp. 554–561.

https://doi.org/10.1007/978-3-662-54388-7_6
https://doi.org/10.1007/978-3-662-54388-7_6
https://doi.org/10.1007/978-3-662-54388-7%5C_6
https://doi.org/10.1007/978-3-662-54388-7%5C_6
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1109/AFIPS.1979.98
https://doi.org/10.1109/AFIPS.1979.98

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Objectives
	1.4 Research Questions
	1.5 Methodology
	1.6 Timeline
	1.7 Contributions
	1.8 Structure

	2 Background
	2.1 Distributed Ledger Technology
	2.2 Blockchain
	2.2.1 Cryptographic Hash Functions
	2.2.2 Digital Signatures
	2.2.3 Asymmetric-Key Cryptography
	2.2.4 Block
	2.2.5 Node
	2.2.6 Transaction
	2.2.7 Ledger
	2.2.8 Consensus
	2.2.9 Smart Contract
	2.2.10 Blockchain Taxonomy
	2.2.11 Blockchain Decision Models
	2.2.12 Our Definition of Blockchain

	2.3 Hyperledger Fabric
	2.3.1 The Blockchain Network
	2.3.2 A New Architecture for Transaction

	3 Related Work
	3.1 Structural Approach
	3.2 Local Approach
	3.3 Layered Approach
	3.4 Account-Based Approach
	3.5 Summary
	3.6 Presentation of our Work

	4 Mapping the GDPR on the Blockchain
	4.1 Introduction to the General Data Protection Regulation
	4.1.1 Personal Data

	4.2 Mapping the blockchain with the GDPR
	4.2.1 GDPR Six Core Principles

	4.3 Tensions between Blockchain and the GDPR
	4.3.1 The roles of Data Controller and Data Processor
	4.3.2 The exercise of Data Subject's Rights
	4.3.3 The Transfer of Personal Data to a Third Country

	4.4 Requirements
	4.4.1 Compliance Requirements
	4.4.2 Technical Requirements

	5 How to Change the Immutable
	5.1 Design
	5.1.1 Building Blocks
	5.1.2 Request Flow

	5.2 Integration
	5.2.1 Chameleon-Hash Function into the Block Creation Process
	5.2.2 Evidence of Modification into the Block of Transactions
	5.2.3 Proof of Redaction
	5.2.4 The case of Dependent Transactions

	5.3 Implementation
	5.3.1 Chameleon-Hash with Ephemeral Trapdoor Implementation

	5.4 Summary
	5.4.1 Prototype Design
	5.4.2 Modification Rights

	6 Evaluation and Discussion
	6.1 Assumptions and Security of Chameleon-Hashes
	6.1.1 Permissioned Network
	6.1.2 Security Properties of Chameleon Hash Functions
	6.1.3 Threat Model

	6.2 Security Analysis
	6.2.1 Security Requirements and Properties
	6.2.2 Assessment

	6.3 Validation with Expert Interviews
	6.3.1 Formalisation of Design Qualities
	6.3.2 Immutability
	6.3.3 Assessment through Expert Interviews
	6.3.4 Discussion of the Assessment
	6.3.5 Limitations of the Assessment
	6.3.6 Answer to Research Question RQ2

	6.4 Performance Evaluation

	7 Conclusion
	7.1 Answer to the Research Questions
	7.2 Limitations
	7.3 Future Work

	Bibliography

