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Abstract
Polluted air is a big problem nowadays. As air pollution has many downsides, governments have laws
in place to minimise the amount of these substances in the air. One of the measurements is that gas
turbines need to know the amount of emission they produce. One way to achieve this is by measuring the
amount of emission with the aid of measurements tools. However, the measurements tools are expensive
and require much maintenance. In recent years, we have therefore seen the use of prediction instead of
measuring. A predictive emission monitoring system (PEMS) is one way to track the emission in gas
turbines. A PEMS consists of an emission model which is able to calculate the emission based on sensors
within the gas turbine. As it is important that the emission is accuractly tracked, the legislation is quite
strict. PEMSs need to comply with many rules to be put into use. This makes building a PEMS an
labour-intensive task where a lot of field knowledge is required.

Emission Care is an example of a company that builds PEMS for their clients. A big part of this job
is the cleaning of the data and the selection of the input features. In their work they experience the
amount of time it takes to retrieve those insights. Currently they select the input features based on
physics and years of experience. To model their findings they license the software to build their neural
network-based PEMS. However, the iterative strategy they apply now is time- and labour expensive and
would benefit from a supporting tool.

In this research we focused on the creation of an emission model and how data-driven techniques and
machine learning can be used to support this process. The aim was to support the modeller by finding
appropriate input combinations as well as validating them with the use of our model in order to reduce
the time-spent on building a PEMS. In this research we first did a literature study to understand PEMS
better and to determine how other studies approached the development of a PEMS. Furthermore, we
looked into various regression techniques and how we could incorporate historical information to models
that are not built for time series.

The conducted research has resulted in a feature selection algorithm that is able to support the process
of selecting feature combinations. The feature combinations proposed are tested with the current CEM
software and similar scores, R2-score of 0.97, are obtained as for model currently used. Furthermore, the
proposed feature combinations are also applied to our own developed emission models. These models are
based on linear regression, tree-based methods, support vector regression and neural networks. We found
that the models based on data with historical aspects performed similar to the ones without the historical
aspect. If we compare the scores to the CEM software scores, we find that results are comparable for the
tree-based method and the support vector regression model which would make those emission models
good candidates to substitute the current emission model. However, the emission model is only a small
part of the PEMS and therefore, the emission models found in this research serve as proof that the
current CEM software peforms well.
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1 | Introduction
Polluted air is a big problem nowadays. An air pollutant can be defined as a substance in the air that
can potentially harm humans, animals or our ecosystem when the concentration is high enough. This
substances can be either solid particles, liquid droplets, or gasses. Nine of out of every ten persons
breathe polluted air. The World Health Organisation (WHO) even estimates that seven million people
die anually due to exposure to heavily polluted air [3]. 90% of these deaths are in low- and middle-income
countries in Asia and Africa. They are followed by Europe and America. In other words, air pollution
is a global problem.

Most air pollution is caused by humans and directly results from human activity. The three most
well-known emitted substances are CO2, SOx and NOx. The x in SOx and NOx means that the number
of oxygen compounds can differ. This research will mainly focus on NOx emissions. 21% of NOx emis-
sions in Europe is caused by energy production and distribution [4]. NOx can cause both health issues
and environmental problems [5, 6]. NOx, for instance, generates acid rain when it reacts with hydroxide
(OH) in the air. Because of the low pH of acid rain, plants, aquatic animals and our infrastructure are
affected. When the nitrogen oxides react with ultraviolet light from the sun it can also result in photo-
chemical smog. This is a form of polluted air can cause adverse health effects for the people breathing
it in. Altogether, NOx is considered to be one of the heaviest air pollutants.

Polluted air not only causes many deaths, but also contributes to the climate change [5]. Both polluted
air and global warming influence the quality of life on earth negatively. In order to improve, the amount
of harmful substances in the air must be limited. To achieve a limited amount of substances in the air,
agreements are needed. On global, continental, nationwide and local level laws are in place to limit the
emissions. Most of these require plants and other big emitters to measure their emissions. As continuous
measuring tools are expensive to purchase and maintain, several countries also allow prediction-based
monitoring. One way to predict emissions is with the aid of a predictive emission monitoring system
(PEMS).

Emission Care is one of the companies that develops PEMSs for their customers. Their customers are
located in the Netherlands and Norway. In order to build a PEMS they license CEM software devel-
oped by Rockwell Automation [7]. This software uses neural networks in order to build a PEMS. One
of the components of the PEMSs is an emission model. An emission model is built based upon input
data, gathered by sensors in the gas turbine, and is responsible for estimating the emissions. They build
PEMS by selecting input features based on physics of the process producing the emissions and start
designing emission models. Selecting the input features and training emission models is done iteratively
and based on the model performance it is judged whether another iteration is required and the input
features are adapted accordingly. In this way Emission Care slowly moves towards a set of features pro-
viding a model that performs best in terms of uncertainty, robustness and maintainability. However, the
process of selecting the input features and training the different emission models is very time-expensive.
Besides that, as the current approach is based on field-knowledge, known feature combinations are often
tried and tweaked. The main advantage of this approach is that the combinations have already proven
themselves and are explainable in terms of physics which is an important requirement for the delivery
of the PEMSs. However, this approach also creates blinkers, as a solution is mostly sought in the same
direction as previous times.

This research focuses on providing support while creating a PEMS. Rather than looking at the physics,
we focus on the characteristics of the data to create input combinations. With the aid of data-driven
techniques an algorithm is designed that provides its users with insight into the data and suggestions
with regards to possible feature combinations. In order to test this algorithm the CEM software is used,
however as the machine learning field emerges fast we also examined a number of other machine learning
techniques. In other words, the focus of this research was on providing insight and recommendations in
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terms of the input features as well as the development of an emission model. This brings us to our main
question:

M-RQ: How can data-driven techniques and machine learning be applied to support the creation
of an emission model?

The main question actually consists of two parts. The first part is focused on preparing the data for
the emission model. Whilst the second part aims to investigate the various machine learning techniques
available and to build an emission model. This results in the following research questions:

RQ1: How can feature selection be applied to support the creation of an emission model?

RQ2: Based on existing literature, what machine learning techniques are good candidates to be
used for an emission model with time series input data?

RQ3: Which machine learning technique is most suitable for an emission model in terms of un-
certainty, robustness and maintainability?

The conducted research is distributed over several chapters. In chapter 2, the background, gives a more
extensive explanation of what PEMSs are and their acceptance within Europe. It also includes a more
detailed description of what the emission model entails and how it relates to the other components
of a PEMS. Next, in chapter 3, the various machine learning techniques are explained. The chapter
starts off with a short part about data pre-processing and then it explains the four machine learning
techniques – linear regression, tree-based algorithms, support vector regression and neural networks –
as used for this research. Then, in chapter 4, the related work is discussed. The focus of this chapter
is on the implementation as done by other researches and their results obtained. Thereafter, in chapter
5, the data preparation for the emission model is discussed. Apart from creating insight and cleaning
the data this also entails the feature selection algorithm as developed in this research. The results from
chapter 5 can then be applied in chapter 6 where the implementation and results of the different machine
learning techniques are discussed. Chapter 6 first briefly introduces the different hyperparameter tuning
techniques as used in this research and next it discusses the various machine learning techniques. The
method section of the every machine learning technique is directly followed by its results as acquired
knowledge is applied for the following techniques. Then the limitations of this research can be found
the discussion in chapter 7 and the documented is concluded by chapter 8 which entails a conclusion
where the three research questions and the main question are answered. Furthermore an overview of the
contribution of this research is given and future work is discussed.



2 | Background
This chapter presents an overview of PEMS. It will provide background information about PEMS in
order to give a better picture of this niche. First, legislation in Europe is discussed with a focus on
the Netherlands. Followed by how PEMS actually work, what role they play in this research and their
acceptance in Europe.

2.1 Emission legislation in Europe

Emission legislation and guidelines are often drafted on a European level. All European member states,
plus Norway, Iceland and Liechtenstein (European Free Trade Association, EFTA states) are required
to follow the EU environmental guidelines. In 2001 the EU issued a directive, the large combustion
plant directive (LCPD, Directive 2001/80/EC), that specified limits for flue gas emissions for combus-
tion plants with a thermal capacity over 50 MW. As of 2016 these large combustion plants must comply
with the industrial emission directive (IED, Directive 2010/75/EU). This directive aims to control and
reduce the impact of industrial emissions on the environment. [8]

One of the ways to achieve this aim is by raising the cost of emissions. For instance, in Europe there is a
trading system for CO2 emissions. Industrial companies need rights for the emissions they produce. Part
of those rights can be obtained freely for every company, but to emit more additional rights have to be
purchased. These rights can be bought at an auction. On top of the costs for obtaining emission rights,
industrial company owners often have to pay taxes for the emissions they emit. Norway is one of the
countries with an NOx tax [9]. The government introduced it as an incentive for industrial companies to
reduce their emissions. The NOx tax income is used to subsidise investments in NOx reduction measures
in the industry.

Each EU member state implements the EU guidelines in national legislation which forms the legislative
framework for companies and citizens of the member state. The implementation of the EU environmental
guidelines in the Netherlands is given as an example: Small industrial companies in the Netherlands must
satisfy the requirements as stated in the Activities Decree, Activiteitenbesluit in Dutch, which consists
of general requirements with regards to emissions and environmentally harmful matters. However, for
large industrial companies this is not sufficient, they need a specialised permit. These specialised permits
consist, among other things, of emission limit values (ELVs) for air and water, but also of limits for the
amount of waste and noise. Mostly these specialised permits are based upon the Activities Decree. The
Activities Decree also refers to the European best available technique (BAT) guidelines. BAT guidelines
state which technique is advised to protect the environment. Companies must use or implement this
guidelines unless they can prove that it does not work or cost are exorbitantly high. However, in most
situations BAT should be a sufficient method to satisfy the requirements as stated in a permit. [10]

EU guidelines and member state legislation refer often to standards, describing technical details for
implementation and quality assurance of requirements given in the guideline/legislation. Two of the
most well-known parties to write down standards are the international standards organisation (ISO) and
the European norm (EN). Members can easily use these standards to incorporate the norm in their own
environmental legislation. An example of a European norm written out as standard is EN 14181:2014[11].
This standard specifies the need for continuous monitoring for power plants with a capacity over 100
MW. The norm specifies quality assurances needed for automated measuring systems (AMS). It consists
of three quality assurance levels and an annual surveillance test (AST). An AMS is a continuous emis-
sion monitoring system (CEMS) or a predictive emission monitoring system (PEMS). CEMS measures
emissions directly from a stack. However, the measurements tools used are expensive to purchase and
maintain and requires a monthly calibration [11]. PEMSs, on the other hand, determine the emission
based on settings of the installation. Due to the specific nature of PEMS, PEMS shall also comply with
CEN/TS 17198 (applicability, execution and quality assurance of PEMS). [10]
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2.2 Predictive Emission Monitoring System (PEMS)

This section will describe PEMS in more detail. It will first elaborate on how PEMS work followed by
an overview of the acceptance of PEMS across Europe and the rest of the world.

2.2.1 PEMS explained
Simply put a PEMS is a system that is established based on data measurements at the plant. The
resulting system, in combination with combustion data from the plant, is able to calculate the emissions
in the chimney. However, in practice there are many requirements that PEMS have to meet in order to
be accepted as valid emission monitoring system.

Building a PEMS consists of four phases: (1) functional design, (2) stack testing, (3) PEMS engineering,
(4) PEMS online [1]. The first step starts with drafting a document stating, among other things, the
project scope. Furthermore, the variables that should be measured at the plant are determined. In the
next phase stack testing is performed. Emission data from the stack and process data of the plant is
collected under variable operating conditions of the plant. The stack test duration is typically three
to five days. All operating modes of the plant that can influence the emissions are to be predicted are
tested, such as plant capacity, air/fuel ratio, combustion air temperature, fuel type, and so on. A visual
representation of stack testing can be found in Figure 2.1. These measurements are done using CEMS.
The aim during these measurements is to cover normal operation conditions, but also a wide variety of
scenarios so that the drafted PEMS is able to deal with boundary situations. Depending on whether
available, historical data can also be used to determine a PEMS. With these two streams of data a PEMS
is drafted. [12]

Figure 2.1: Stack testing [1]

When all measurements are done, we can move on to the third phase: engineering of the PEMS. Figure 2.2
actually consists of multiple models. Every sensor that is used as an input in the PEMS emission model
is modelled in the sensor validation system. Whenever a sensor does not work properly the value can be
replaced by a modelled parameter from the parameter model. Thanks to these modelled parameters the
emission can be predicted, even when a sensor fails. Sensor validation contributes to the accuracy of the
emission model and is therefore obligatory to include in an approved PEMS [12]. The emission model
uses the validated input parameters to generate the output. On the emission model a daily integrity
test is performed. This test does nothing else than making sure the model remains unchanged. The
engineering of a PEMS, furthermore, entails the configuration of a PEMS data management system.
This is where the process data is saved.

The last phase starts when the engineering of the PEMS is fully finished. During this step the PEMS is
put online. In this phase the software is installed on a clients’ computer to make sure the measurement
data from the sensors is written to the PEMS data management system. Furthermore, the sensor data
and PEMS is used to generate predictions. Normally, validation is performed against data collected
during the stack test at the start of the project. However, if this is not sufficient for the authorities, a
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Figure 2.2: PEMS overview [1]

second stack test is performed from which the measurements are compared to the PEMS predictions. All
these phases are also documented and will result in a document when the PEMS is build and validated.

2.2.2 PEMS in this research
In this research we only focus on the emission model as part of the third phase of building a PEMS.
There are many techniques that can be used to draft the emission model. The available techniques can
be grouped in three kinds of models:

1. physical models,
2. statistical models and,
3. hybrid models.

Physical models are mostly focused on fitting variables so that the function of the inputs results in the
desired output. Statistical models are more focused on selecting the variables. Examples of this tech-
nique are regression models and neural networks. And at last, we have the hybrid models which focus
on the selection of variables through statistics and physical relations [1]. This research will mostly focus
on the second type of models, statistical models. Statistical models enable us to build a PEMS without
knowledge of physical relations. In this research the statistical models are developed with the aid of
various machine learning techniques as introduced in chapter 3.

(a) Design of our emission model (b) Our emission model incorporated in a PEMS
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The focus of this research is to build the emission model for PEMS. In other words, the validation of the
parameters is not taken into account and therefore the PEMS build is only valid in combination with
other software that does validate the parameters of the model. Figure 2.3a gives a schematic overview
with all the elements that are included in our emission model. Then, in Figure 2.3b one can see how our
emission model for PEMS would function in an operational PEMS. Although an emission model only
seems to entail building a model, the feature selection is a big part of it. This research also supports
this task. Besides that, explaining the emission model is also from great importance. As we develop our
own emission model this enables us an opportunity to give more insight in the process than is currently
available.

2.2.3 Acceptance of PEMS
At their introduction PEMS were often used as back up of a CEMS. However, more and more countries
nowadays accept the PEMS model as an alternative for a CEMS. The advantage is that their initial cost
only consists of developing the model and there are no additional measurement instruments to maintain
and install. In other words, the costs of PEMS in comparison to CEMS are much lower.

Before reading this section, it is important to keep in mind that part of this section is based on re-
search from 2014 [13]. One should take into account that acceptance of technologies takes time and is
subject to change. Despite the benefits that PEMS have over CEMS, not all countries allow the usage of
PEMS. This is caused by a lack of trust in the predictive performance of PEMS. As mentioned before, the
Netherlands allow the usage of PEMS by law. This same goes for Denmark. Also, the United Kingdom
permits the usage of PEMS although this does not seem to be enshrined in law. Main condition is that
the operator is able to demonstrate that the PEMS produce valid results. In practice this means that
PEMS must regularly checked by CEMS. There are also countries, like Norway, that only accept the
usage of PEMS on offshore locations. Maintaining and installing CEMS in offshore locations is expensive
and therefore the Norwegian government sees PEMS as a cost saving alternative for these locations. In
other countries like France and Sweden they were still experimenting with PEMS back in 2014. However,
there are also European countries, like Germany and Italy, that are against PEMS. In other words, the
acceptance of PEMS really differs per country. When it comes to PEMS acceptance outside of Europe
we see that in most of the US states and in the middle east PEMS are accepted and used, because of
their low purchase costs. [9, 13].

However, the acceptance of new technology can take time and often countries want to see proof of
concept before implementing and accepting something themselves. The European pre-norm as published
in August 2018, CENTS 17198-PEMS, might be an encouragement for more European countries to
accept PEMS.



3 | Machine Learning (Literature)
In this section the machine learning is discussed as we encountered it in literature. This section starts
with machine learning in its broadest sense. It will then scope based on our data. The machine learning
problems that can be applied in our case will then be explained in the next sections.

In this research the aim is to develop a model that is able to predict the NOx emissions. In order
to develop the model, measurements are done on location for a timeframe of 3 to 5 days, up to 8 hours
a day. In these days they test multiple scenarios – covering the boundaries to make sure the model does
not exceed its training boundaries during regular use. In other words, the input parameters as well as
the output parameters are measured and therefore known for this period. This indicates a supervised
learning algorithm as a best fit for this research.

Supervised learning algorithms are the algorithms that require that input and output data are
known beforehand. However, a distinction can be made based upon the form of the output data. The
range of data can either be limited or unlimited. Whenever the number of outcomes is limited, we refer
to it as categories and therefore this is known as classification. On the other hand, when the number of
outputs is unlimited we call it regression. [14]

The aim of this research is to predict the NOx emission. Although this number will most likely be
within a certain range most of the time, this number can have virtually any value. In other words, this
research aims to solve a regression problem.

Regression analysis is used to determine the relationship between two or more variables. Regression
analysis is one of the most used techniques when it comes to analysing data with multiple factors [15].
It is often used for data description, parameter estimation, control and prediction & estimation.

If regression data is collected at a single time-period, this is called cross-section data. If the regres-
sion data is not collected within a single time-period, we refer to it as time series data [16]. This is also
the case for the emission data as used for this research.

This chapter first continues with a short introduction to data pre-processing. Next it introduces the
regression methods most often used: linear regression, decision trees, support vector regression, and
neural networks [17]. In the following sections, respectively Section 3.2 till 3.5, these methodswill be dis-
cussed. Thereafter, Section 3.6 discusses ensemble learning which aims to use multiple machine learning
algorithms to improve the predictive power.

3.1 Data pre-processing

Data pre-processing is a very important step to prepare data for machine learning algorithms. Data is
often messy which makes it difficult to process for machine learning algorithms. Cleaning data can be a
time expensive task, it can even take up to 80% of the project time, but it is proven to be effective for
the machine learning results [18].

The messiness of data often already starts with the different ranges that every input variable has.
Machine learning algorithms often have trouble distinguishing various situation, which affects the deter-
mination of a model. Therefore, it is better to standardise the data, before it is processed [19]. Chollet
recommends, in his book [20], to use feature-wise normalisation. In case of feature-wise normalisation
every variable is normalised separately by subtracting the mean and standard deviation of the applicable
variable. Afterwards, all variables in a dataset are centred around zero, meaning that the ranges are
comparable while the ratio of values within a variable are still intact.

15
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Other challenges often observed are missing data points or data points with unusual values known
as outliers. Missing data is derived from other variables when possible and otherwise deleted. The
outliers, on the other hand, should always be deleted [21]. Depending on the size of the dataset one can
also reduce the size by compressing the data. In this way the same machine learning techniques can be
applied using less resources. As said, this is particularly useful for large datasets. For plants that only
have measurements from 3-5 days this will not be necessary, however when a lot of historical data is
present it might be worth considering compressing the data. An often-used method for data compression
is principal component analysis (PCA). This method compresses the data by reducing its dimensionality.
In other words, it reduces the number of features. The advantage is that it also removes the noise.
Another way to reduce the number of features is by feature selection. Feature selection can be applied
to make sure all features are relevant. Besides reducing the complexity of the model, this can also pre-
vent overfitting and can therefore increase the model its accuracy. We will not go further into this topic,
but in Section 4.6 one can find which feature selection methods other researchers have used in their work.

For this research, we also have some field-specific data pre-processing challenges. For instance, it is
of great importance that the time stamps of the different variables are aligned. Furthermore, during the
measurements days at the plant everything is measured from starting up the plant to shutting it down.
However, for building an emission model we are only interested in the normal operations [12]. These
normal operations do not include the process of starting up or shutting down a plant nor does it include
the measurements when the load is adjusted. Another challenge to keep in mind is that the data must be
physically probable, whenever physically improbable trends occur in the data, these sections also have
to be removed from the dataset, since the accuracy of these data points cannot be guaranteed.

3.2 Linear regression

Regression analysis is a statistical technique for modelling and investigating the relationships between
an outcome variable, also known as a response variable, and on or more predictor variables, also known
as regressor variables. Regression analysis is often used to predict future response variables based on one
or multiple predictor variables.

Simple linear regression is a linear regression model that contains only one regressor variable. A model
of that kind is written as:

y = β0 + β1x+ ε

where y is the response variable, x the regressor variable, β0 and β1 the unknown parameters, also known
as regression coefficients, and ε the error term. To be more precise, β0 is the intercept and β1 is the
slope. Both these parameters must be determined by estimation based on sample data. The error term,
ε, accounts for the failure of the model to fit the data exactly. Oftentimes an assumption is made about
its distribution. An example of this simple linear regression can be found in Figure 3.1.

Figure 3.1: Example of linear regression
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However, in most situations this model is too simple to capture everything. A more extended version of
simple linear regression is general linear regression, also known as multivariable linear regression (MLR).
MLR does not differ that much from a simple linear regression, however it contains more than only one
regressor. The model is written as:

y = β0 + β1x1 + β2x2 + ...+ βkxk + ε

where the parameters β0, β1, ..., βk are referred to as partial regression coefficients. Both models as in-
troduced in this section are linear regression models because they are linear in the unknown β’s. The
models do not tell us anything about the linearity between the regressor and the response variable(s) [16].

The formula for the model is adapted based on the kind of data it is fed. In this research we are
dealing with time series data, as explained before. The regression model for time series data can be
written as:

y = β0 + β1xt1 + β2xt2 + ...+ βkxtk + ε with t = 1, 2, ..., T

The unknown parameters, the β’s, in a linear regression model are typically estimated using the method
of least squares. One should take into account that autocorrelation can occur when working with time
series. The presence of autocorrelation means that the data is correlated with itself at different time
periods. The danger of this is that it affects the ordinary least-squares regression procedure [15]. In
other words, it affects the adequacy of the model. In Section 3.2.1 autocorrelation and four other
possible threads to model adequacy are named.

3.2.1 Model validity
It is important to check whether the regression model fit is accurate, rather than to assume it is. There
are five different things that need to be checked in order to say something useful with regards to the ad-
equacy of the regression model. Oftentimes graphical analysis of residuals is used to check this adequacy
and the underlying assumptions it is based on.

Linearity is needed for (multi)linear regression; thus, it is important to check whether it is also ac-
tually there. This can be checked by a normal probability plot of the probabilities. This means that
we need to plot the residuals against the regressor. This plots the cumulative normal distribution as a
straight line. In the ideal situation all or most data point lies approximately on this straight line. If this
is not the case, then a linear regression method is probable not suited. [15]

Multivariate normality entails checking whether the residuals follow a normal distribution. Two
important characteristics are the mean of zero and a constant variance. Whether this is satisfied can be
checked by a normal probability plot of residuals, this plot is based on the QQ-plot which can also be
used to check normality. The x-axis, the scaling, remains unchanged when comparing to the QQ-plot, but
the y-axis will now be the associated probability. The normal probability plot needs about 20 point to
produce probability plots that are stable and easy to interpret [15]. One can also use the measurements
skewness and kurtosis to prove normality. Skewness tells us something about the symmetry, or lack of
it, of the data and the kurtosis is a measure the tell whether the data is heavy- or light-tailed relative to
a normal distribution. For a normal distribution the skewness should be close to zero and the kurtosis
should be three. [22]

No multicollinearity since this impacts the ability to estimate regression coefficients. Multicollinearity
occurs when regressors are nearly perfectly linear related. One of the techniques to detect multicollinear-
ity is with the aid of a correlation matrix. Examining the correlation between the regressors is helpful
method to detect multicollinearity between pairs of regressors only. Unfortunately, when more than
two regressors are involved in a near-linear dependence, there is no assurance that any of the pairwise
correlations will be large. Therefore, it is recommended to also run experiments with variance inflation



3.3. Decision trees 18

factor (VIF). VIF quantifies the severity of multicollinearity in an ordinary least-squares regression anal-
ysis. One or more large, when it exceeds 5 or 10, VIFs indicate multicollinearity. In order to remove
multicollinearity one can, remove the variable causing it or centre the data by subtracting the mean score
from each observation for each independent variable. [15]

Homoscedasticity of variance basically means that data points should all have approximately the
same distance from the line. There should be no clear pattern in the distribution. For this purpose,
one can the plot of residuals against the fitted values. However, it is also possible to calculate whether
the data is homoscedasticity. The rule of thumb here is that whenever the ratio of the largest vari-
ance to the smallest variance is equal or lower than 1.5 the data is homoscedastic. When the data is
homoscedastic one can remove this by a non-linear transformation or an addition of a quadratic term. [23]

No autocorrelation which can be checked by plotting the residual in time sequence. Autocorrela-
tion occurs when there is a correlation between model errors at different time periods. One can use the
Durbin-Watson test, which is based on statistics, to test for autocorrelation. For uncorrelated errors r=0
the Durbin-Watson statistic should be approximately 2. If the value is bigger there is autocorrelation.
Autocorrelation can be solved by adding one or more new predictor variables. When this does not work
one can use the Cochrane-Orcutt method or the method of maximum likelihood to estimate the param-
eters. The maximum likelihood method is the preferable option when the autocorrelative structure of
the errors is more complicated than a first-order autoregressive. [15]

3.3 Decision trees

Decision trees use a tree structure to specify decisions and their consequences. A decision tree aims
to predict a response or output variable, γ, given a number of input variables, X = x1, x2, . . . , xn .
A decision tree consists of a root, decision nodes, leaf nodes and branches. An example of a decision
tree can be found in Figure 3.2. The decision nodes, coloured in red, represent a test on a variable
and the branches, the black arrows, the decision made. The leaf nodes, coloured in green, also known
as terminal nodes, are the nodes at the bottom of the tree which include the decision one should make [24].

Figure 3.2: Example of a regression tree [2]

Decision trees are often used because of their clear visual representation of the decision-making process.
Decision trees can produce both categorical and continuous outcomes, we respectively refer to them
as classification trees and regression trees [25]. In practice decision trees are commonly deployed for
classification purposes [24], while we see their usage less for regression problems. This is due to the fact
that we cannot have a leaf node for every value in our training set and even if we could this would mean
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the tree would be extremely overfitted. In order to solve a regression problem with a decision tree the
problem needs to be generalised or categorised to some extent. How the regression tree is built, including
how the features are chosen and split, can be found in Section 3.3.1 Thereafter, in Section 3.3.2 , we will
describe how hyperparameters, pruning and multiple models can prevent the overfitting of regression
trees.

3.3.1 Building a tree
A decision tree can handle continuous variables; however, the data becomes discrete to a certain extent.
The most used option is to determine a threshold and determine to what side the data point belong
based upon this threshold. Determining one threshold instead of making multiple bins for every variable
makes more sense, since we can always decide to split the remaining part of the variable again after it
has been split. The threshold can be randomly determined, for instance, so that an equal amount of
data points is on both sides. However, the more usual way is by recursive binary splitting [26]. This is a
greedy top-down approach of splitting, since it only takes into account the current split and works from
the root till the leaf nodes. The splitting is based on the residual sum of squares (RSS). The average of
RSS is the variance. If we would look at the variance, then the most useful split would be a split were
the combined weighted variance of all child nodes is less than the original variance of the parent node.
However, with recursive binary splitting one focuses on RSS. The idea behind is that it measures the
variance for every split for every variable. In the end, the variable and belonging threshold that is chosen
is the one that has the lowest RSS score of all. In the end, this results in the fact that a data set is split
into multiple smaller regions. With the aid of the decision tree one is able to determine in which region
its data point is located. However, this means that the tree is not able to return a continuous value, but
rather gives a region back. This region is represented by the mean value of this region. In other words,
the output value is a mean value of the region, rather than a specific value. One has a certain range,
but not a concrete answer. These bins all have specified ranges, however this also means that trees have
trouble predicting what they have not seen before. In other words, trees are good at interpolation but
have trouble with extrapolation.

3.3.2 Avoid overfitting
With regression trees there is good chance of overfitting. The bins are, of course, not obvious for re-
gression and therefore a regression tree will proceed till every leaf node consist of only one data point.
However, this makes the leaf nodes too specific and only applicable to really specific data points, in other
words the tree is overfitted. In order to prevent this overfitting one can constrain the tree size, prune
the tree, or use multiple trees.

Constraint tree size: one can constraint the tree size by the tuning of the hyperparameters or by
early stopping. The hyperparameters of a decision tree include, for instance, the minimum number of
samples needed for a node split or for a terminal node, how many samples must be left in a bucket or
the depth of the tree. Just like other cases of hyperparameter tuning, a grid search is mostly used to
determine the suitable value for these parameters. However, one can also follow the rule of thumbs. A
common rule-of-thumbs is, for instance, that at least 0.25% up to 1% of the data samples must be in
each leaf [27]. The other option is early stopping, also known as pre-pruning. Just like hyperparameters
it restricts the size of tree, but it does so by checking the cross-validation error at each stage. If the error
does not decrease significantly enough, then the training of the tree is stopped. However, this leaves
space for underfitting.

Tree pruning: pruning the tree happens after the training is finished, therefore it is also known as
post-pruning. The idea is to remove the nodes that do not contribute any additional information. Two
well-known approaches of tree pruning are minimum error and smallest tree. The tree is pruned back
to the point where the cross-validated error, MSE, was at a minimum. In case of the latter method,
smallest tree, the tree is pruned back one step further than with the minimum error. This method is
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more intelligible, but at the cost of a small increase in the error.

The constraints and the pruning can also be used at the same time. The developer can decide whether
to use the first, the latter, a combination or none. However, one can also decide to use multiple models,
tree in this case.

Multiple trees: training more than one tree to ‘merge’ them in the end also prevents overfitting.
Since multiple models, trees in this case, are used this is also known as ensemble learning. One can train
multiple trees in parallel or sequential. A more detailed explanation of ensemble learning methods can
be found in Section 3.6.

3.4 Support vector regression

Support vector machines (SVMs) are an often-used machine learning technique. SVMs aim to establish
a solution based on a small subset of all training points. Compared to other machine learning approaches
this gives an enormous computational advantage. In this research we are particularly interested in sup-
port vector regression (SVR). SVR is a generalisation of SVM into regression problems. It differs from
a simple regression model as it tries to fit the prediction error within a certain threshold rather than for
the minimal error.

Figure 3.3: Example of a support vector regression model

SVMs were initially used to solve binary classification problems. The classification problem was for this
purpose rewritten as convex optimisation problem. The aim of the initial SVMs was to find a line, called
the separating hyperplane, that separates the two classes. This line should maximise the distance the
distance to both classes. The closest points to the separating hyperplane are called the support vectors
and they determine the margins on both sides. The margins on both sides must have an equal distance
to the separating hyperplane. The area between these margins is known as the hyperplane. In case of
SVR a ε-tube is introduced, as can be seen in Figure 3.3. This ε-tube is essentially the same as the
hyperplane at SVM. Instead of keeping all data points outside the hyperplane, the aim is now to let most
data point fall into the hyperplane. This tube is used to find the best approximation of the function. In
addition, it tries to balance the model complexity and the prediction error. The value of ε, the margin,
determines the width of the tube. The smaller the value of ε, the smaller the tube, the more training



3.4. Support vector regression 21

points will fall outside and the wider the tube the more data point will be within the boundaries of the
tube. The aim is to find the narrowest tube that contains most of the training instances. With SVR all
training points outside of the tube are called the support vectors. These support vectors are the most
influential instances that affect the shape of the tube. [28]. A simple multi-regression can be written as:

f(x) = wTx+ b

In case of SVR the aim is to find the narrowest tube, with the lowest prediction error. The lowest
prediction error means the shortest distance between the predicted and the desired outcome. This aim
is achieved by solving the following optimisation:

minw
1

2
||w||2

Where ||w|| is the magnitude of the normal vector to the surface that is being approximated. To
calculate the prediction error a loss function can be used. There are multiple loss functions that one
can use in case of SVM. These same functions can be used for regression purposes, however the loss
functions only penalise whenever a the threshold, ε, is exceeded. A selection of these loss function can
be found in Section 3.4.1. However, whenever the function is not convex or contains outliers, using only
a loss function, will not be sufficient. In this case one can instead regulate the model by using slack
variables. Slack variables, ξi and ξ∗i , enable us to make the margins of the tube softer. These slack
variables determine how many points can be tolerated outside the tube. Furthermore, a constant, C, is
established to determine how much affect these outliers should have on the results. The introduction of
slack variables and the constant C results in the following (primal) optimisation function:

minRw,b =
1

2
||w||2 + C

N∑
i=1

ξi + ξ∗i

Subject to


yi − wTxi ≤ ε+ ξ∗i , i = 1, ..., N,

wTxi − yi ≤ ε+ ξi, i = 1, ..., N,

ξi, ξ
∗
i ≥ 0, i = 1, ..., N

C is one of the hyperparameters. C’s value is a trade-off between the training error and the flatness
of the solution. The larger C is the lower the final training error, however one risks losing generalisa-
tion properties if C is too large. The aim is to find a value for C where the training error is small,
but the models its generalisation ability is also well. However, there is no best practice when it comes
to determining C. In most cases C is therefore determined by a combination of grid search and cross
validation. However, researchers have experimented a lot with the use of several other hyperparameter
tuning methods. Which methods are used in our field of interest can be found in the related work on
SVR in Section 4.3.

So far, we assumed that a linear function would be able to determine the tube. However, whenever
a non-linear function is needed the data needs to be mapped into a higher dimensional space to achieve
a high accuracy. A situation where a linear function is sufficient, as shown in the formula above, can be
optimised with a primal formulation. For non-linear situations, a dual formulation is in most cases prefer-
able. In order to deal with the non-linearity, the data has to be mapped into a higher dimensional space.
This resolves in a quadratic function, which is expensive and time consuming to calculate. However, this
mapping is not necessary one can also use a kernel function instead. This kernel function defines inner
products in the transformed space. This results in the following function for a dual formulation:

maxα,α∗ − ε
NSV∑
i=1

(αi + α∗
i ) +

NSV∑
i=1

(αi − α∗
i )yi −

1

2

NSV∑
j=1

NSV∑
i=1

(α∗
i − αi)(α∗

j − αj)k(xi, xj)

Subject to

{
0 ≤ αi, α∗

i ≤ C i = 1, ..., NSV ,∑NSV

i=1 (α∗
i − αi) = 0
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Where αi and α∗
i are the Lagrange multipliers corresponding to ξi and ξ∗i , and k(xi, xj) the kernel

function, andNSV is the number of support vectors. There are multiple kernel functions that can be used,
a selection of the most used once can be found in Section 3.4.2. After training the Lagrange multipliers
become zero. Only the Lagrange multipliers that have nonzero values are called support vectors. Once
the Lagrange multipliers are established one can also determine the weights of the regression and hence
the optimal bias.

w =

NSV∑
i=1

(αi, α
∗
i )ϕ(xi)

NSV∑
i=1

(αiα
∗
i )k(xi, xi)

b =
1

NSV

NSV∑
i=1

(yi − ϕ(xi)Tw)

Where ϕ(xi) is the transformation from feature to kernel space (k(xi, x) = ϕ(xi)ϕ(x)). With this
knowledge we can rewrite the simple regression function to a more explicit form. The more explicit
expression is written as

y = wTx+ b =

NSV∑
i=1

(α∗
i − αi)k(xi, x) + b, 0 ≤ αi, α∗

i ≤ C

3.4.1 Loss functions
The loss function, a distance measure, determines the cost of the error between the predicted and actual
outcome. In principle every convex, asymmetrical function can be used as loss function. The most used
loss functions are shown in Table 3.1.

Which loss function to use depends on multiple factors. Three of these factors are the distribution of the
noise that affects the data samples, the sparsity of the model one is looking for, and how complex the
training computation may be [28]. The linear loss function is less sensitive for outliers than the quadratic
function is. The linear loss function is the preferable option whenever the underlying data is distributed
linearly, however it over emphasis small errors. Regularly the quadratic loss function is the standard
method used in machine learning. However, its downside is that it has the tendency to overemphasise
outliers. Huber is a combination of the linear and quadratic loss function. It is the smoothest loss
function from the three. Huber penalises small errors quadratically and the large ones only linearly. The
Huber loss function is a suitable loss function whenever the distribution of the data is unknown [29].

3.4.2 Kernel functions
When nonlinear data is used as input into an SVR the data has to be mapped into a higher dimen-
sional space. However, this process increases the complexity of the model and therefore the computation
time. Instead one can also use a kernel function. The kernel can be seen as a kind of shortcut which
enables us to find the hyperplane faster than we would be able to if we had to calculate it into a higher di-
mensional space. In this section the most used, popular kernels are described and their pros and con [28].

Linear and polynomial kernels these two kernels are mainly used for modelling linear data. The
advantage of the polynomial kernel is that it allows us to model feature conjunctions up to the order
of the polynomial. Polynomial kernels are well suited for linear problems where the training data is
normalised. Furthermore, the usage of either one of these kernels is quite fast.

Radial basis functions (RBF) are the most used kernels for nonlinear data. They allow us to find
circled hyperplanes, also known as hyperspheres. RBF is actually a group of different kernels. RBF
kernels are computationally heavier than linear and polynomial kernels, but they can achieve better
predictive performances on nonlinear data then these other kernels. The downside, however, is that it is
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Loss
Function Equation Plot

Linear
Lε(y, f(x,w)) =
0 |y − f(x,w)| ≤ ε

|y − f(x,w)| − ε, otherwise

Quadratic
Lε(y, f(x,w)) =
0 |y − f(x,w)| ≤ ε

(|y − f(x,w)| − ε)2, otherwise

Huber
Lε(y, f(x,w)) =
c|y − f(x,w)| − c2

2 , |y − f(x,w)| > ε

1
2 |y − f(x,w)|

2, |y − f(x,w) ≤ c

Table 3.1: SVR Loss functions
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computationally heavy. As said there are multiple kernels that fall into the RBF group this is because
the sigma in the RBF kernel can be chosen by the user. Examples of often-used RBF kernels are the
Gaussian, exponential and ANOVA RBF kernel. Which RBF kernel to use depends on how your data is
distributed. The Gaussian RBF kernel received a significant amount of attention and is the kernel
most often used for SVMs. If we would compare it to a polynomial kernel than we could say that a
Gaussian RBF kernel characterises a local mapping, whereas a polynomial kernel characterises a global
mapping. An exponential RBF kernel can be quite effective when discontinuities in the data are
acceptable. ANOVA RBF kernel , on the other hand, tends to perform quite well in multidimensional
regression problems.

Sigmoid kernel is also known as hyperbolic tangent kernel or MLP kernel. This kernel is inspired
on the neural networks which sparked this kernels popularity. In fact, this kernel is equivalent to a two-
layer perceptron neural network. In certain ranges it behaves like an RBF kernel. Although previous
research shows that sigmoid kernels perform well, their behaviour is not fully known. For this reason, it
is mostly advised to use the RBF kernels – at least next to it.

All these different kernels also come with hyperparameters. Depending on which kernel is chosen it
ranges from one to multiple hyperparameters. These hyperparameters are, just like the constant C,
determined by one of the hyperparameter optimisation techniques.

3.5 Neural networks

The full term is artificial neural network, but we often refer to them as neural network (NN). Neural
networks are not algorithms but are rather a framework in which many different algorithms can be ap-
plied to retrieve the desired results. Originally NNs are inspired by the human brain and the aim is
therefore to solve problems in a way the human brain would. That neural networks are powerful can be
derived from the fact that neural networks have replaced both SVMs and decision trees in a wide range
of applications [20].

The name neural network was introduced by Rosenblatt in 1958. He founded a perceptron. A perceptron
is a binary classifier. Every input variable, X = {x1, x2, . . . , xn}, is given a weight, w = {w1, w2, . . . , wn}.
The weight tells us something about the importance of the variable. In order to calculate the output,
every variable is multiplied with its own weight and all outcomes of this process are summed. In other
words, a perceptron is able to make simple decisions based on weighing input evidence. Then it is mea-
sured whether the exceeds the threshold or not, this enables us to identify a class for this data point.
The threshold can also be seen as a bias. Furthermore, we replace the summation for a dot product,
resulting in the following mathematical representation:

output =

{
0 ifw · x+ b ≤ 0

1 ifw · x+ b > 0

where x is an input variable, w its weight and b the bias. The function measures whether the retrieved
value is above the threshold. However, the perceptron as founded by Rosenblatt is only able to cope
with linear input. A neuron, on the other hand, is able to cope with both linear and nonlinear input.
The neuron differs from a perceptron in the fact that it applies an activation function over the output.
A visual representation of a neuron can be found in Figure 3.4. Section 3.5.1 will tell more about the
available activation functions. Furthermore, the weights have to be initialised to calculate the neurons
output. How to determine the initial weights is explained in Section 3.5.2.

Oftentimes neurons are grouped into layers and neural networks consists of multiple layers. An example
can be found in Figure 3.5. The output from the neurons in one layer can on their turn be seen as the
inputs for the neurons in the next layer. The first layer in a neural network is the input layer and the last



3.5. Neural networks 25

Figure 3.4: Neuron Figure 3.5: Neural network

layer is referred to as the output layer and all the other layers, the layer in between, are called hidden
layers. The example, in Figure 3.5, shows a neural network where all neurons in the previous layer are
inputs to all neurons in the next layer, however this does not have to be the case in neural networks.
Furthermore, it is important to note that a neural network can have multiple outputs in the output layer.

Whenever the output is calculated it is time for a kind of feedback loop. In order to determine the
quality of the network the loss is calculated. More about this can be found in Section 3.5.3. Further-
more, an optimiser is used to make sure the learning proceeds. The pace of learning is determined by
the learning. More about the optimiser and the learning rate can be found respectively Section 3.5.4
and 3.5.5. In order to prevent overfitting, it is important that regularisation is applied. A selection of
available methods can be found in Section 3.5.6. Lastly, an introduction into a specific neural network
known as long-short term memory (LSTM) is given in section 3.5.7.

3.5.1 Activation function
In theory the activation function can be any continuous function that is differentiable. However, in prac-
tice in practice activation also perform better when they are bounded and monotonically increasing [30].
In this research we focus on the activation functions most often used and from which the usability is
already proven. The formulas of these functions, their shape and boundaries can be found in Table 3.2.
The linear function is also known as the identity function. As the name already suggests it is only
used in case of linearity. In other words, this activation function will not contribute to the behaviour
of the algorithm. All the other functions in Table 3.2 are nonlinear activation functions. The sigmoid
activation function is often used for binary classification. The advantage of using the sigmoid function,
over a binary activation function, is that due to the probabilities it also gives insight into the certainty of
the outcome. The tangent hyperbolic function is usually used in the hidden layers of a neural network.
It is actually a scaled version of the sigmoid function. It helps to centre the data, with a mean close to 0,
making it easier for the next layer to learn. The computation cost of the last activation function in our
table, the rectified linear unit function, is less expensive than the costs of the sigmoid and the tangent
hyperbolic function. This is because the mathematical operations are simpler. The fact that the output
of some neurons is zero and only part of them are activated, makes this function faster and easier to
calculate.

3.5.2 Weight initialisation
Every input has a weight that determines that determines the importance of the input. The higher the
weight the more impact this input variable has on the output of the neuron. But how does one determine
with which weights to start at initialisation? In this section we go over methods regularly used nowadays.

Zero initialisation as the term already suggests, all the weights are initialised with a value of 0.
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Activation
Function Equation Range Plot

Identity/-
Linear ϕ(z) = z (−∞,∞)

Sigmoid ϕ(z) = 1
1+e−z (0, 1)

Tangent
Hyperbolic
(tanh)

ϕ(z) = 2 · sigmoid(2z) =
ez−e−z

ez+e−z

(−1, 1)

Recified
Linear Unit
(ReLU)

ϕ(z) = max(0, z) =
0 if z < 0

z if z ≥ 0

(0,∞)

Table 3.2: NN Activation functions
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The downside of this method that since all the weights are equal, all the neurons will also have the same
output. Then during the backpropagation, they will also all compute the same gradient, resulting in the
same parameters. In other words, the zero initialisation causes a symmetry problem and therefore the
recommendation is to not use it in any case.

Random initialisation as this term already suggests, the weights are initialised at random. How-
ever, it is important that the values initialised are not all the same as it would result in a similar issue as
we observed at zero initialisation. Furthermore, the values should either not be too small or too large.
In case the initialised weights are too small, the more epochs that are run, the more the variance is
decreasing. As a result, the gradient saturates to 0.5 in case of sigmoid and to 0 in case of tanh. It does
not affect ReLU as much since the gradient for negative value is 0 and 1 for positive inputs. In literature
the saturating gradient is known as the vanishing gradient. When the weights initialised are too large,
the absolute sum of the large weights multiplied by small the inputs will be very large as a result. This
results in a large change in cost with large gradients as a result. This problem mainly affects the ReLU
activation function. In literature this is called an exploding gradient. Both these phenomena, vanishing
gradient and exploding gradient, are unwanted and therefore both these methods cannot be used in this
shape. Important is to note that the gradient with respect to bias only depends on the linear activation
of that layer and not on gradients of deeper layers. In other words, there is no diminishing or exploding
gradients for the bias terms. They can be safely initialised to 0.

Xavier initialisation requires the gradient, Z-values and activations to be similar along all the layers.
In order to use this technique, it is important to scale the data. Then, a formula for the variance is
drafted where all three before-mentioned features remain equal in all layers. This gives the following
formulas for the variance and the standard deviation:

var(w) =
1

fanin
gives σ(w) =

√
1

fanin

In practice, the standard deviation, as written out in the formulas above, is multiplied by a random
value from a normal distribution. A uniform distribution can also be used for this purpose, but since this
comes with limits, we restrict ourselves to a normal distribution in this research. This way of initialising
weights is known as Xavier or Glorot initialisation. This method is mostly used in combination with the
tanh and the sigmoid activation function. Since they have a mean of 0 and 0.5. [31]

He initialisation differs from the Xavier initialisation by the fact that the variance needs to be multi-
plied by 2. This initialisation function is mainly used in combination with the ReLU activation function.
The variance is multiplied by two, because halve of the Z-values - all negative ones -, turn zero in case of
ReLU. In order to compensate for removing halve of the variance, the variance of the weights is doubled.
This gives the following formulas:

var(w) =
2

fanin
gives σ(w) =

√
2

fanin

In other words, the weights initialisation depends on the activation chosen. A random initialisation is
seldomly used. Whenever a tanh or sigmoid activation function is used, normally a Xavier initialisation
is used, while a ReLU activation function is combined with He initialisation [32].

3.5.3 Loss function
The loss function measures the quality of a network its output. Depending on the problem a different
loss function can be chosen. For a two-class classification problem a binary cross entropy is used, while
for a many-class classification problem a categorical cross entropy is used. In this research we want to
predict a numerical value as output, which means that we have a regression problem. This is solved by
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using the mean-squared error (MSE) as a loss function [20]. The equation for the MSE is:

MSE =
1

n

n∑
i=1

(yi − ŷi)2

where n is the number of data points, ŷi are the observed values and yi are the predicted values. If a
neural network has multiple outputs, multiple loss functions can be used. The rule is one per output.
However, gradient descent is only able to cope with one single scalar loss value. Therefore, in case of
multiple they should be combined, averaged, too form one single scalar quality [20].

3.5.4 Optimiser
The optimiser determines how learning proceeds. It uses the loss function to update the network’s
weights. The aim is to find a combination of weight values that yields the smallest possible loss function.
The can be done by solving the gradient. In other words, computing the gradient of the loss with respect
to the network coefficients. Finally, one can move in the opposite direction from the gradient, thus
thereby decreasing the loss. Written out the formula has the following form:

θ = θ − η · ∇J(θ)

Where θ is the weight, η the learning rate and ∇J(θ) the gradient of the loss function. Gradient descent
is the most used technique for training and optimising neural networks. In case of batch gradient descent
(BGD) the gradient is calculated only once and for the entire dataset. This makes this method slow
and difficult for datasets that do not fit in memory. For this reason, stochastic gradient descent (SGD)
is often used. With this method the parameters are updated for each training example. This method
increases the speed tremendously, however the downside is that the frequent parameter updates have
high variance. Due to the frequent updates and fluctuations it ultimately complicates the convergence
to the exact minimum and will keep overshooting due to the frequent fluctuations. Furthermore, a lot
of the functions are non-convex which means that they have more than one minimum and thus contain
a number of suboptimal minima. The difficulty is that whenever SGD gets trapped into such a local
minimum, it cannot leave anymore. To overcome all of these challenges SGD can be extended.

There are roughly two approaches. The first approach focuses on the acceleration of SGD. One of
the methods belonging to this approach is momentum. Momentum is used alongside SGD. It accelerates
SGD by steering into the relevant direction while softening the oscillations in irrelevant directions. It
does so by adding a fraction γ of the update vector of the past step, V (t − 1), to the current update
vector. This fraction γ is set to 0.9 by default. Lastly, we subtract the current update vector from
the current weight to obtain the new weight. Written down mathematical this gives us the following
equations:

V (t) = γ · V (t− 1) + η · ∇J(θ)
θ = θ − V (t)

Where η is the learning rate and ∇J(θ) the loss function of the current weights. The learning rate is
set to 0.1 or 0.01 by default. The size of the learning rate can have a huge impact on the results. By
momentum the learning rate has to be adjusted by hand. In the other approach learning rates play a
major role. They are adapted to find the optimal solution. One of these methods is Root Mean Square
Propagation (RMSProp). RMSProp does not require its users to adapt the learning rate themselves.
Furthermore, it has a learning rate per parameter and updates are applied on individual parameters.
By using different learning rates for different parameters, the focus is more on the importance of the
individual parameters. The mathematical representation for this technique is:

V (θ, t) = γ · V (θ, t− 1) + (1− γ) · (∇J(θ))2

θ = θ − η√
V (θ, t)

· ∇J(θ)
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Our final optimiser, the adaptive momentum estimation (Adam), is a combination between SGD with
momentum and RMSProp [33]. Adam uses estimations of first and second momentums of the gradient
to adapt the learning rate for each weight. The first momentum is the mean and the second momentum
is the uncentred variance. Next, both these momentums are used to calculate the new weights. The
mathematical representation for this technique is:

m̂t =
mt

1− βt1
and v̂t =

vt
1− βt2

θt+1 = θt − η ·
m̂t√
v̂t + ε

Where ε is a small number to prevent division by zero and the β’s are the forgetting factors for the
gradients. By default, ε is set to 10−8, β1 to 0.9, and β2 to 0.999. In practice Adam works well thanks to
the fast conversion, the efficient and fast learning speed. Adam copes with the vanishing learning rate,
slow convergence and the high variance in parameters updates. Although newer techniques are available,
their usability has not been proven scientifically. For instance, AMSGrad which sometimes seems to
outperform Adam, but sometimes performs less. Therefore, we will use Adam in this research since it
has been applied widely and its usability is proven. [34]

3.5.5 Learning rate
The learning rate is a hyper-parameter that determines the speed in which the model learns. It does
so by controlling how much the weights are adjusted. This is done with respect to the loss gradient.
A large learning rate allows the model to learn faster but has a higher probability of ending up with a
sub-optimal set of weights. While a smaller learning rate may allow for a more optimal result but will
take significantly longer to train. The learning rate is often set to 0.01 for multi-layer neural networks.
However, every value in the range of 1.0 to 10−6 is acceptable. But researchers do not recommend one to
use a default value. Rather they emphasise that the learning rate hyper parameter is the most important
parameter to tune. [35]

The difficulty is that there is no easy way of determining the best learning rate. In most cases trial
and error is the best option. Below three methods to determine the learning rate are discussed and why
they are probably better than a fixed learning rate.

Learning rate annealing starts with a high learning rate and lowers it bit by bit as the training
progresses. The idea behind it is that one does not need to know all of the details from the beginning,
hence the larger learning rate, while the details become more interesting in a later stadium, hence the
smaller learning rate then. One of the most popular forms of learning rate annealing is a step decay. In
this case the learning rate is reduced by some percentage after a set number of epochs.

Learning rate (LR) range test is the formalised form of the trail-and-error technique of finding
the proper learning rate. The approach was formalised by Smith in 2015 [36]. The trial-and-error tech-
nique consists of running your model for a few iterations, while gradually increasing your learning rate
with each iteration. At the meantime, you record the loss for each value of the learning rate. If you
plot this against one other, the plot should consist of three areas. The first area is where the learning
rate is too small and thus where the loss is barely decreasing. The second area is the area where the
learning rate is just right, the loss converges quickly. This is the area that we are interested in. Lastly,
the third area, is where the learning rate is too big and hence the loss starts to diverge. Although our
best learning rate value lays within the second area, the other areas are also important. If not all three
regions are displayed properly, for instance because there is a gap in the plot, this is a good indicator
that there is either a bug in the model or an error in the data.

Cyclical learning rates is another technique to determine the learning rate also introduced by Smith [36].
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The cyclical learning rate starts with a low initial learning rate and gradually increases it – either lin-
early or exponentially – at each iteration. As the learning rate increases, there will be a point where the
loss stops decreasing and starts increasing again. Ideally a learning rate value just before the increase
is selected, this is the lowest point on the learning rate against loss graph. This method might feel
weird, because it approaches the problem the other way around of what we are just to. The rationale
behind it is that increasing the learning rate might have a short-term negative effect but can yet achieve
a longer-term beneficial effect. The variation between reasonable bounds would actually increase the
accuracy of the model in fewer step. Appurtenant benefit is the ability to escape a saddle point in the
loss landscape. A saddle point has a small gradient, so a small gradient rate makes model traverse these
saddle point very slowly in later stages of training. By increasing the learning rate in a later stage, it
will help to escape these saddle points more efficiently.

3.5.6 Regularisation
The challenge is not to make a model more complex than necessary. A too complex model contains often
too many details of the data it was trained on. When a model performs well on the training set, but does
not perform well on the test set, then the algorithm is most likely not able to generalise. This problem
is also known as overfitting. Overfitting can be prevented by acquiring more data, however this is often
an expensive and time-consuming task. Another method often used to prevent overfitting is regularisa-
tion. A regularisation technique has the aim to reduce the error on the test set which usually consists
of reducing the variance while trying to keep the bias stable. Regularisation must always be unless the
training set is very, very large meaning. In practice, that it exceeds tens of millions of rows [37]. There
are multiple regularisation techniques from which we will highlight a few in this section.

Weight decay, also known as weight regularisation, is added to the loss function to penalise large
weights. Large weights are undesired since they tend to cause sharp transitions which causes major
changes in the output when the inputs are only slightly changed [38]. Due to the penalty for higher
weights, the algorithm will choose small weights over the larger ones. This method is already used for
decades and has been proven effective for simple linear models but also for more the more complex ones
like neural networks. Examples of weight decay algorithms are L1- and L2-regularisation, respectively
known as LASSO and RR. The difference between these methods is in the weight decay factor they
add to the loss function. Whereas L1-regularisation adds the sum of absolute values of the weights
as the weight decay factor, L2-regularisation adds the sum of the squared values of the weights as the
weight decay factor. As already mentioned in Section 4.1, in practice this means that L2-regularisation
penalises the smaller weights less than the larger weights resulting in no incentive for the smaller weights
to reduce to zero. While L1-regularisation penalises all weights equally resulting in weights of zero, these
variables can then be deleted. By bringing down the weights or even deleting certain variables from
the equation, certain features can be deleted from the input. Elastic Net (EN) combines both L1- and
L2-regularisation. EN has the ability to shrink some of the coefficient while also setting some of them
to zero for a sparse solution. [39]

Dropout regularisation uses a random subset of the network at each iteration to train with. In
the simplest version this random subset is established by setting a threshold and giving each neuron in
the network a random value. Whenever the value exceeds the threshold, the node is kept and otherwise
it will not be taken into consideration. Important is that the input and output layers remain untouched.
By dropping certain neurons, the remaining neurons are forced to learn on their own without relying on
the other neurons. The advantage of this technique is that it is computationally cheaper than weight
decay and it has proven effective in the past [37]. Many different versions of this technique are available
all focused on a specific kind of neural network. For instance, Semeniuta et al. and Kruegar et al.
both made a version of dropout, respectively recurrent dropout and zoneout, that prevent the loss of
long-term memory in RNNs and LSTMs [40, 41]. For optimal results dropout may be combined with
other techniques.
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Early stopping, as the name already suggests we stop the training of the model early in order to
prevent the model from getting too complex. During the training process the error is monitored closely,
whenever the error starts to increase the parameters and frozen and the training process is stopped.
The idea is to start with small random weights and with every iteration the model gets more complex.
In other words, the earlier the training process is stopped the less complex the model is. Early stop-
ping has a similar effect as weight decay, however less training experiments and is therefore less time
expensive. For this reason, Goodfellow et al. recommend to always consider the use of early stopping [37].

Noise is the addition of random input to current data in order to improve the generalisation ability
of the model and its fault tolerance. Noise can only be added during training but can be added at
multiple places. The most common place is to add it to the input data. Other options would be the
addition of noise to gradients or activation functions. However, one has to be cautious about the usage
of noise, Greff et al. added Gaussian noise to the input of their LSTM and concluded that it does not
only hurt performance, but does also increase the computation time [42].

Regularisation techniques are often not used on their own, but multiple techniques are combined. For
instance, early stopping combined with weight decay or early stopping combined with dropout regulari-
sation. However, there is no golden rule on how to combine regularisation techniques it comes down to
experimenting and prior knowledge.

3.5.7 LSTM
Long short-term memory neural networks are a specific kind of recurrent neural networks (RNNs). Unlike
normal neural networks RNNs are able to cope with time series input thanks to the presence of memory.
A memory is useful in case of time series as the previous steps can be used to predict the next. However,
the downside of RNNs is that vanishing gradients often occur. Simply said this means that the weights
of the neural networks do not update because the changes are extremely small. For this reason normal
RNNs are not regularly used anymore. In this research we have therefore decided to favour LSTMs. As
they do not suffer from this problem.

Figure 3.6: Example of an LSTM cell
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When we speak of a LSTM neural network it is a neural network with LSTM cells incorporated. In
practice oftentimes we see a combination of normal neurons and LSTMs cells. An example of a LSTM
cell can be found in figure 3.6. The information flow through this cell, known as the conveyer belt, is
shown in area I. Furthermore, a LSTM cell consists of an input, forget and output gate. The forget gate
is shown in area II where the sigmoid function is used to decide what information to keep and what
is thrown away. Then the next area, III, actually consists of two parts. This is where the storage of
information is handled. In area a we see the input gate layer with again a sigmoid function to decide
which information to keep. Then, in area b, a vector is created of the new candidate values. Next, the
information obtained in area II and III flows back to area I where the information is updated with the
aid of pointwise operations. This step is also marked by area IV. Then, lastly, the output is generated
in area V. For this step the sigmoid function is used again to decide what information to keep and tanh
is used to scale the output.

3.6 Ensemble learning

During ensemble learning multiple algorithms are used to retrieve better results than one single algorithm
would be able to retrieve. These algorithms can be multiple times the same algorithm or a combination
of different algorithms. There are three well-known ways of ensemble learning which will be discussed in
this section. A visual representation of them can be found in Figure 3.7.

Figure 3.7: Ensemble learning techniques

Bagging, which is short for bootstrap aggregating, is a technique were algorithms are trained in paral-
lel. To train every algorithm a dataset is made with the aid of bootstrap sampling. The next step is to
aggregate the results, which is done by averaging in case of regression. An example of bagging is random
forest (RF) which is an ensemble of decision trees. The advantage of RF over a single tree is that it
significantly reduces the chances of overfitting.

Stacking also trains the algorithms in parallel together with a learning algorithm for a meta-model.
All algorithms are trained using available data. When this process is done, the meta-model can be used
at the end to combine the predictions of all trained algorithms.

Boosting trains all algorithms sequentially. The idea behind it is that when an input is misclassi-
fied by a previous algorithm, the weight is increased so the likelihood that the next classifies it correctly
increases. In other words, every algorithm learns from the one before. The fact that the algorithm
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learns from the one before means that chances of overfitting reduce. For this reason, neither pre- nor
post-pruning is necessary. An often-used boosting technique is gradient boosting (GB). GB is essentially
a combination between gradient descent and boosting. Another often used method is gradient boosted
regression trees (GBRT) which is a regression tree that evolves until it reaches its optimum.

As can also be easily concluded from this section, ensemble learning is mostly used to increase the
predictive performances of decision trees. However, stacking, for instance, can also be used to combine
the results of multiple different algorithms. In this way, the strengths from every model can be included
in order to retrieve the best possible results.



4 | Related Work
This chapter contains an overview of the related work found for the various machine learning technique
as introduced in the previous machine learning literature chapter. It first discusses the results for linear
regression, tree-based methods, support vector regression, neural networks and ensemble techniques.
Then, the last section, contains a table with a summary of the related work as found for this research.

4.1 Linear regression methods

A lot of related work have used linear regression to estimate emission. [43], [44], and [45] have used MLR
to predict NOx emission. However, in all three cases MLR was outperformed by a nonlinear method,
either support vector machine or neural networks. However, normal MLR is fitted on the complete
current data and can therefore be easily overfitted. For this reason, a lot of extensions of MLR exists.
Most of these extensions are based on a form of regularisation in order to prevent overfitting. In this
group we discuss a number of methods from two groups penalised methods and latent variable methods.

Penalised methods penalise models that have too many variables. Since these methods are also aimed
at reducing the number of variables, these methods are also known as shrinkage methods. We can also
refer to these methods as embedded methods. Embedded methods are feature selection methods that
are used within a machine learning algorithm and are adapted based on the performance of the model.
Two examples of penalised methods are L1- and L2-regularisation respectively known as Least Absolute
Shrinkage and Selection Operator regression (LASSO) regression and Ridge regression (RR). LASSO
penalises all weights, while RR penalises the smaller weights less than the larger weights. As a result,
LASSO regression is able to set weights to zero after which an input parameter can be omitted, while RR
keeps all features included. Elastic Net (EN) regression is a combination between the both of them which
gives it the ability to shrink some of the coefficients while also setting some of them to zero for a sparse
solution. The advantage of LASSO and RR is that they are both able to deal with multicollinearity. We
see the usage of RR, Lasso and EN regression also back in related work. For instance, Cuccu et al. use the
RR and Lasso regression to estimate the NOx emission of their engines of a gas turbine and Lepore et al.
used it to estimate CO2 emission from a cruise ship [46, 47]. Especially in this last research the results of
LASSO regression were promising. The shipping routes in this research were grouped based on their dis-
tance and for the short and medium length routes LASSO regression turned out to be the best estimator.

Latent variable methods are not directly observed but are determined based on other observed
variables. An example of a method in this group is principal component regression (PCR). During PCR
the dimensionality of the data is reduced, resulting in less variables with still most of the initial infor-
mation. In PCR the principal components of the explanatory variables are used as regressors. Another
latent variable method is partial least squares (PLS) regression. PLS regression performs least squares
regression on principal components rather than on the original data. PLS usually outperforms PCR,
since it makes use of the knowledge of PCR and extends it. Cuccu et al. and Lepore et al. both applied
PCR and PLS during their research [46, 47]. Cuccu et al. research found that PLS indeed outperforms
PCR (in their case), however better results were still obtained with RR and LASSO regression. Also,
Liu et al. applied PLS to their NOx emission estimation, but found that PLS was not the most suitable
method given the large number of outliers in their data [48].

4.2 Decision tree methods

Decision trees are seldom used on their own. This statement is confirmed when we search for related work
with regard to emission monitoring with the aid of a decision tree. We could not find any work where
they used only one decision tree model to calculate the emission. However, we were able to find work
that exploits multiple decision trees. However, ensemble learning is not explained till Section 3.6 and
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therefore we decided to discuss these papers afterwards in the related work section of ensemble learning
in Section 4.5.

4.3 Support vector regression methods

Support vector regression is one of the most commonly applied methods for estimating the emis-
sion [43, 49, 50, 51, 48, 46, 47, 44, 52, 45, 53]. In most cases a normal SVR is used, however we
also see the usage of least squares SVMs (LSSVMs) quite a lot. As the name already indicates LSSVMs
use a least squares method to build the SVM. Where SVMs are based upon a quadratic programming
problem, LSSVM are based on a linear problem. In LS-SVM there is no ε-tube or slack variables, rather
those are replaced by error variables [54]. These error variables measure the distance to the regression
function. Another difference between regular SVM and LSSVM is the fact that for LSSVM all variables
are marked as support vectors, while in normal SVM this is only a selection of all data points. LSSVM
has the advantage that it is reduces the time consumption. LSSVMs are therefore mostly used for large
scale problems and although the same kernels can be chosen for LSSVMs as for SVMs usually the RBF
kernel is chosen [55]. Most papers use either SVR or LSSVM, however Tang et al. compared both SVR
and LSSVMs. In their paper the LSSVM outperforms the SVR [45].

With respect to the choice kernel we see that in almost all cases RBF kernels are used. For the LS-SVMs
in our related work, we even see that an RBF kernel is always used [49, 52, 45]. Tang et al. focused
in their research on the influence of kernel usage for the outcome. In their research they compared an
SVR with RBF kernel with LSSVMs with an RBF kernel, ReLU kernel, sigmoid kernel and an adaptive
kernel. This adaptive kernel (AK) is a combination of the ReLU, RBF and the sigmoid kernel. In the
end, their adaptive kernel retrieved the best results of all. Besides using the kernel for SVR, we can also
perform kernel ridge regression (KRR). KRR is a combination between RR and a kernel. RR is a form
of penalised regression the RR can be seen as the loss function of the kernel. SVR and KRR therefore
differ in the loss function they use. Fitting KRR is mostly faster for medium-sized datasets, however
whenever the dataset is large SVR is recommended because it scales better [56]. Cuccu et al. tested
KRR in their research, however there it was not able to outperform the normal SVR [46].

Another thing where we see a lot of differentiation between the papers is the method to tune hyperpa-
rameters. Traditionally we see grid search (GS) [50] and cross-validation (CV) [46, 47, 44] quite often,
but the related work often uses population-based algorithms to tune hyperparameters. Zhou et al. use
ant colony optimisation (ACO) to tune their hyperparameters [43]. ACO is inspired by the behaviour
of real ant and in order to find the best hyperparameters the best path on a weighted graph has to be
found. Another method used by Tan et al. and Azzam et al. is a genetic algorithm (GA) [51, 53].
GA solves the optimisation problem based on the principle of natural selection. In practice this means,
random individuals from a population are selected to be parents and to produce children. In this way
the problem “evolves” toward an optimal solution. Another method also used in related work [52, 45] is
particle swarm optimisation (PSO). PSO is based on the social behaviour of animals that live in large
colonies. The first generation is randomly generated, and generations afterwards are updated to find
an optimum. However, since these researches are all applied to different data sets it is difficult to draw
conclusions with regard to the best hyperparameter tuning technique. In [48] they did compare GS and
GA which gave better results for GA and also when GS was compared to ACO, as they did in [43], the
GS algorithm is outperformed. In the research of Li et al. the focus is on optimising the results of the
LSSVM by the usage of different hyperparameter tuning techniques. In their paper, [49], they compared
teaching-learning-based optimisation (TBLO) with ameliorated TBLO (A-TBLO), coupled simulated
annealing (CSA), artificial bee colony (ABC), and gravitational search algorithm (GSA). They found
A-TBLO as the best performing technique of all. A-TBLO is a quick version of TBLO which can speed
up the convergence and can improve the quality. TBLO is inspired by the effect of the influence of a
teacher on the output of learners in a class. It consists of two phases: (1) teacher phase, where the
teacher teaches its learners all the knowledge he has himself, and (2) learner phase, where the learners
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increase their knowledge by interactions among themselves. The difficulty is that the hyperparameter
tuning techniques in this paper, [49], are not the same as used in the other related work papers, which
still makes it hard to compare the different techniques.

4.4 Neural network methods

There are many different types of neural networks and many variations possible during training. One
can vary the activation functions, how the weights are initialised, which learning rate is used and so on.
However, all these options make it difficult to compare neural networks. What makes it even harder in
this specific case is that every research also uses a different dataset. In order words, many variations are
possible all with their own effect on the outcome, which makes neural networks really tricky to compare.

There is a lot of difference in how detailed the configuration of the neural networks is written down
in the papers. There is even a number of papers where there is only mentioned that a certain type
of NN is used without any further specifications [50, 48, 45]. In Tan et al. they used a 3-layer NN,
where the number of neurons was determined by log2(T ) , where T is the amount of data samples [51].
Furthermore, they used an adaptive learning rate and gradient descent with momentum. However, this
NN was not able to outperform the SVR model as used in this research. The same goes for a research
conducted by Zhou et al [43]. They tested a generalised regression NN (GRNN) and a back propagation
NN (BPNN), but both were not able to outperform the SVR. The GRNN in this research was based on
the Euclidean distance between two input vectors, while the BPNN was a 3-layer MLP with 23 neurons
in the hidden layer and it was trained with the Levenberg-Marquardt (LM) algorithm. This LM algo-
rithm was also used by Korpela et al. for the training of their MLP with one hidden layer [44]. However,
in their research the MLP was able to outperform the SVR. Also, Azzam et al. were able to configure
a NN that outperformed SVR [53]. Their NN used Bayesian regularisation (BR) and the error of the
network was determined by a combination of the training error and the generalisation error. Also, Cuccu
et al. found that NNs perform well during their feasibility study [46]. For their research they looked into
incremental BP, batch BP, improved resilient BP (iRPROP), and QuickProp. Especially the NN with
iPROP seemed to be produce promising results for scaled data.

In research conducted by Kibrya et al. and Williams-Gossen et al. the predictive performance of
multiple NNs was compared [57, 58]. In both their researches they compared MLP to an RBF NN,
and a GRNN. They both found an MLP as best performing model, although they configured their MLP
networks differently. Kibrya et al configured an MLP with two hidden layers with four neurons each with
a sigmoid activation function for all, except the input, layer. Furthermore, the MLP was trained with
BP, conjugate GD, and QuickProp. Williams-Gossen et al found an MLP consisting of only one hidden
layer with two neurons and a hyperbolic tangent activation function also in this case with exception of
the input layer.

Neural networks have proved capable of predicting emission quite well. This is proven in related work,
but also by the fact that the current software used by Emission Care BV is based on NNs. However, all
related work discussed so far did not have any memory. There are NN available that do have memory,
these NNs are known as recurrent NN (RNN). RNNs can be thought of as multiple copies of the same
network. In comparison with feed-forward NN they have an additional feedback loop. This additional
loop makes them able to pass a message to the next copy. This message contains information about
things learned in the previous versions and therefore it is often referred to as memory. This sequential
information is preserved in the RNNs hidden state. Another advantage of RNNs is that they are able to
take a series of input without a size limit. This makes them highly capable of dealing with time series
for instance. A specific type of RNN is a long-term short memory (LSTM). The closest related work we
could find on the use of RNNs was on the NOx emissions of engines, however the third page of this paper
is blank in every version of the paper that we have found so far [59]. Another paper we found is more
vaguely related and does not estimate the emission, but rather the fuel consumption of a vehicle using
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smartphones and RNNs. This research was conducted by Kanarachos et al. and, to be more precise,
in their work they compare the nonlinear autoregressive network with exogenous inputs (NARX-RNNS)
with LSTMs [60]. The NARX-RNN outperformed the LSTM. The NARX-RNN was trained with a LM
algorithm and the hidden layer had a log-sigmoid activation function and the output layer a linear one.
Furthermore, the number of neurons in the hidden layer was varied even as the lag variables to find the
number that yields the minimum error. This was found for five delay inputs and 47 neurons per hidden
layer. Furthermore, the best results were achieved when the contrast-based fruit fly optimisation with
group policy (c-FOA/g) was applied followed by BR-BP. This estimation error retrieved was beneath 6%
of the actual fuel consumption value. The other research, conducted by Zhang et al, focused on the use
of LSTMs and is more related than the other research since its aims is to forecast vehicle emission [61].
The input gate, forget gate, and the current cell state all use sigmoid functions, while the state of the
current input can be calculated with the hyperbolic tangent function. Furthermore, the BP through time
(BPTT) is implemented to optimise the network weights. The correlation coefficient, R, retrieved is 0.70
for the LSTM. However, when they apply a wavelet transformation in combination with the LSTM it
gives an R of 0.97. The wavelet transform decomposes the original highly variable time series into several
lowly variable sub-series. Each subseries is processed separate by the LSTM and later the results are
summed.

4.5 Ensemble learning methods

Ensemble learning methods can entail all different sorts of machine learning models. In theory, stacking
enables one to train a NN, a SVR, and MLR and combine it with the aid of a meta-model as created
with stacking. However, in related work we mainly see the usage of ensemble learning for decision trees.

Lepore et al., for instance, use bagging of regression trees (BRT), RF, and boosting of regression trees
(BT) in their research to predict CO2 emission of a cruise ship [47]. BRT uses bagging and thus train
multiple trees and takes the average prediction of all trees. RF does the same, however it uses bootstrap
sampling to train on random datasets rather than on the whole dataset. BT is basted on boosting and
trains the trees sequentially, where every tree learns from the previous one. For BT a fixed learning rate
is used in this research of 0.02. In all cases the number of trees is determined by cross-validation. In
the results of this paper we can see that the results for long distances can be best predicted with BT
outperforming all other ensemble learning and linear models.

Another research that uses ensemble learning for estimating the emission is conducted by Pan et al [62].
They estimated real-driving emission for busses. In their initial dataset they did it for three different
fuels and they predicted the emission of four different pollutants including NOx. They predicted it with
the aid of VSP-GBRT. VSP stands for vehicle specific power and it calculates the engine power per unit
mass. In the end, they compared their results against a VT-Micro model which is based on polynomial
regression and found that in comparison their VSP-GBRT reduced the MAE by 27.3%, the MAPE by
33.4% and the RMSE by 22.1%. In other words, the VSP-GBRT clearly performs better for estimating
the emission than the current often used VT-Micro model.

4.6 Related work summarised

This section does not include any new work, rather it presents already discussed work in a table. The
aim is to make it a clear overview which makes it easily visible which methods are regularly used and
which results are obtained. One should be aware of the fact that all results are obtained from different
emitters and different datasets. In other words, one cannot simply compare the results from different
papers one-on-one.
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Validation
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[57]
Gas com-
buster

24 cases, 8
inputs X MLP, RBF

NN, GRNN X - 8 X MAE: 2.3%,
Std: 1.97%

[43]
300 MW
boiler

670 cases, 21
inputs, 67%
train, 33% test

Scaled
[-1,1]

ACO-SVR,
GRNN, RBF
NN, GRNN

ACO, GS - 21 Hold-out,
5-fold CV

MRE: 1.597%,
R: 0.934

[58]

Three gas
turbine
engines

2259 data
points, 4 inputs,
83% train, 17%
test

X MLP, RBF
NN, GRNN X

Sensitiv-
ity
analysis

4 X R: 0.98

[49]
330 MW
boiler

20 cases, 26
inputs X LSSVM

A-TBLO,
CSA,
TBLO,
ABC,
GSA

- 26 LOOCV RMSE: 8.294

[50]
700 MW
boiler

7200 patterns,
100 inputs, 85%
train, 15% test

X ELM, SVR,
ANN GS X 20 X

MSE: 39.40,
MRE: 1.13%,
R: 0.998

[51]
1000 MW
boiler

4371
measurements,
40 inputs

X PCA-SVR,
SVR, ANN GA PCA 5 5-fold CV

MSE: 131.6,
MRE: 4.36,
R:0.962

[48]

197 kW
diesel
engine

180 data points,
40 inputs, 33%
train, 67% test

Normalisa-
tion: [0,1]
and PCA

GA-SVM,
SVM, NN,
PLS

GS, GA PCA 15 LGOCV,
7-fold CV

RMSE: 51.12,
MAPE: 4.65%,
R2:0.98

[46]
Gas
turbine

10 engines,
400k-670k data
points, 50k
clean, 165-171
inputs, 2.5%
train, 97.5%
test (10 unique
test sets)

Normalisa-
tion: Z-score
(iPROP
scaled)

LR, RR,
LASSO,
PCR, PLS,
KRR, SVR,
Incremental
BP, Batch
BP,
iRPROP,
QuickProp

10-fold
CV

Statisti-
cal
analysis

34 10-fold CV

Deviance:
ν-SVR:
[-1.5,1.5],
S-iRPROP:
[-2,1.5]
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[47]

Ro-Pax
Cruise
Ship

1 year (CO2),
Short: 218,
Medium: 85,
Long: 235, 22
inputs, 80%
train, 20% test

Autoscaling

RR, LASSO,
EN, SVR,
PCR,
PCR_FS,
PLS, BRT,
RF, BT

10-fold
CV - 22 Double CV

S: LASSO
RMSE: 0.58,
M: LASSO
RMSE: 0.86,
L: BT ’
RMSE: 0.91

[44]

Two 43
MW
boilers

At least 7
inputs

Scaled [-1,1]
(except
MLR)

MLP, MLR,
SVR, FIS

10-fold
CV (with
10 MC
loops)

X 2 10-fold CV

Boiler B:
RMSE(abs):
5.08,
RMSE(%):
3.58

[53]
Gas
turbine

3 turbines,
395-472
instances, 4-6
inputs, 72%
train, 18% test,
10% validation

Scaled [-1,1]
NN, SVM,
One-layered
NN

GA - 4-6 X R2: 0.997

[52]
1000 MW
boiler

1500 data
points, 1117
clean, 33
inputs, 72%
train, 28% test

X LSSVM PSO
Sensitiv-
ity
analysis

7 LOOCV
7 inputs:
MRE: 2.23%,
R:0.9566

[45]
330 MW
boiler 303 inputs Standardised

LSSVM-AK,
LSSVM-
RBF, RBF
NN, SVR,
LSSVM-
RELU,
MLP,
LSSVM-
Sigmoid,
MLR

PSO

Mecha-
nism
analysis,
RF

12 X RMSE: 2.0725
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[60]

Fuel con-
sumption
of vehicle

3693 samples,
70% train, 15%
test, 15%
validation

X
NARX-
RNN,
LSTM

c-FOA/g
+
BR-BP,
c-FOA/g,
BR-BP,
etc

X X 6000
evaluations

Estimation
error ≈ 6%,
R: 0.96

[13] Vehicle
215,865
samples, 9
inputs

X
Wavelet-
LSTM,
LSTM

X - 9 5-fold CV R: 0.97

[62] LNG bus
5243 NOx
samples, 75%
train, 25% test

X

VSP-GBRT,
VT-Micro
Model
(polynomial
regression)

GS GS 20-
80 CV

NOx:
R2: 0.80,
MAE: 0.053,
MAPE: 23.1%,
RMSE: 0.073

Table 4.1: Overview of the most important related work
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An overview of the most relevant related work for this research can be found in Table 4.1. The order
of the studies in the table is based on their publication year. The oldest papers are at the top and the
newest at the bottom. In this way it is easy to observe how method usage progresses over time.

Important is to note that the column of data specifics contains different values and properties for every
paper. The image is drawn as complete as possible, but not in every case the same specifics, and level
of it, were available. Except from choosing consciously to not write down specifics, some papers did not
state it clearly. If an X is written out, it means that the authors of the paper did not include this specific
information in their paper. In other words, it does not mean they did not do it, but at least it was not
written down explicitly. Whenever we could find information implicitly this is included. For instance,
the paper of Korpela et al. never explicitly state how many variables they have measured [44]. However,
from the images and tables one can deduce that there are at least seven variables measured and therefore
the table states "at least 7 inputs".

As one can see the amount of data points differs a lot among the studies. In a number of cases it
was hard to establish whether the number of data samples was based on measured data or pre-processed
data. Cleaning the data can sometimes reduce the data with as much as 90% which could be an ex-
planation for the big differences. Furthermore, some datasets define their data in terms of samples and
some in terms of cases. Because cases can exist of multiple data samples, this can also be a potential
explanation. However, no real conclusions can be drawn and it just something to keep in mind will
reviewing the results.

The column name #IP stands for number of input parameters, but this was abbreviated in order to
keep the table width in proportion. The same goes for HT which stands for hyperparameter tuning. In
order to keep the overview clear, things are simplified. The column with pollutant emitters, for instance,
only specifies the emitter and when available its power, while there are many more specifics. However,
these specifics would make the table more crowded while the specifics do not contribute for a better
overview with regards to techniques used. For this reason, we decided for a shorter, more general ver-
sion. Another thing simplified is the validation technique, models tested and their results. The models
and validation techniques are ranked based on their performance. In other words, the model or validation
technique mentioned first gives the best results, the second the second-best results, etcetera. Then, in
the last column, the only the results of the best performing model and validation technique are given
as these are most relevant. However, this ranking notation does not apply for the research of [46], [47],
and [52], since the authors of these papers did not notate the performances on all models tested. In [46],
this is due to the fact that is a feasibility study, while [47] has divided its results into three categories
and [52] focuses on choosing the best input parameters rather than on comparing models. In these three
cases it is clearly stated in the results column to which methods the results apply.

What stands out in Table 4.1 is the variety of feature selection (FS) algorithms used. Oftentimes, a
sensitivity analysis or feature importance based on PCA is used as a selection criterion. However, we
also see cases were random forests or grid search is used. In other words, it seems that there is no
standard when it comes to determining a feature selection. The same seems to go for hyperparameter
tuning where a variety of techniques is used. Besides grid search it seems that population-based op-
timisation techniques are a popular way to determine hyperparameters. However, comparing remains
difficult because all studies are applied on different data. Therefore, there is no easy way to conclude
which technique is best.

Another thing that strikes the eye is the fact that SVRs almost always outperform the other models
tested. However, most of papers mentioned in the table have SVR as their main priority. Meaning that
they have tried a lot of different techniques to optimise the accuracy of SVR, while the neural networks,
for instance, are often only included at the last moment for comparison reasons. In other words, the
amount of effort put in neural networks is disproportionate in those papers. In [53] a considerable amount
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of effort is put in both SVRs and NNs and then we see that NNs perform slightly better than SVRs.
However, difficulty is that when both models perform almost equally good, the SVR has the advantage
of having lower computational costs which can be an attractive feature in PEMS applications. None of
the closely related work has put effort into testing the new variants of neural networks like RNNs. The
results obtained by [60] and [61] are promising and therefore neural networks should be given a fair share
of attention while developing a new emission model.

The papers in the table are all based on their own dataset with unique characteristics and a variety
of performance measures are used, which makes it complex to compare results. Furthermore, design
choices made sometimes seem to prefer performance over the existing legislation. For instance, a PEMS
may have no more than 15% uncertainty, to keep uncertainty low one wants to limit the number of
features for this reason, however some of the papers in the table have many input features. However, a
quick scan of the table learns us that, in most cases, R2-scores around 0.94-0.96 are obtained. This is
also in line with the score Emission Care currently obtained for our dataset. With their current approach
and software they obtained a R2-score of 0.97. As related work as well as Emission Care have retrieved
this score, this seems like a reasonable score to aim for during this research as well.



5 | Data Preparation
In this chapter the preparation of the data is discussed. In section 5.1, the specifics of the data are
mentioned as well as how it is cleaned. Subsequently, in section 5.2, we elaborate on how data is selected
and adapted. We then proceed with the feature selection in section 5.3 which focuses on the individual
features and how selections are made.

5.1 Data exploration

The data used in this research was gathered on a Norwegian offshore production platform. It consists
of 163 measured features excluding the target feature. However, this data also contains features that
are not usable for modelling, like alarms. Those are used for other purposes like monitoring the process
and the measurement equipment. Moreover, the data consists of 13 composed features which are created
by arithmetic division of two features. The advantage of those features is that it reduces the number
of input parameters which accelerates the modelling and results in a less complex model. The resulting
model is aimed to predict the NOx concentration. The dataset consists of multiple columns providing
information about the NOx concentration, i.e. the lower and upper range of and the values measured at
different volume percentages. When we refer to the NOx concentration in this research, we refer to the
concentration at 15 volume percent.

All features mentioned so far are not cleaned yet. The cleaning entails, among other things, checking
whether the values are within a reasonable range and whether the trends between features are as can be
expected. As this cleaning requires domain knowledge we use the cleaned features from Emission Care
BV. Their feature list consists of 21 features of which 10 are composed. The difficulty of the composed
features is that most are assembled as combination of other features in the selection. This causes high
correlations among features making the feature selection harder as the standard practice techniques often
struggle to cope with dependencies between features. Additionally, the composed features make it more
difficult to interpret results. Therefore, we decided to only utilise the 11 measured features throughout
this research.

MIP columns
All rows 15,853
- Error 3,420
- Blank 3,395
- Break 3,395
- Cut 3,395

(a)

String Occurrence
Error 10,471
Blank 5,544
Break 4
Cut 3

(b)

Table 5.1: Data exploration in numbers

Data cleaning
The original dataset consists of 15,853 rows. Among these rows are also the faulty measurements and
other irregularities. Besides numerical values the data contains strings as Error, Blank, Break, and Cut.
These strings are partly added during the gathering of the data and partly while checking the data
validity. Table 5.1b states how often each of those 4 strings occur in the data, whereas table 5.1a states
the number of rows left when those strings are deleted. One row can contain multiple strings and hence a
deletion of a string does not necessarily lead to the deletion of an equal amount of rows. Emission Cares’
final dataset has 3,420 rows with 21 features and the target. The final number of rows in this research
is slightly lower. In this research all rows that contained one or more of the previous mentioned strings
were deleted, while Emission Care kept the Blank. As a result our dataset consists of 3,395 values of our
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11 features and the target.

Feature name Tag-name
F_1 EP____2660_MIP
F_2 FT____2601C_MIP
F_3 PDT___2626_MIP
F_4 PDT___2627_MIP
F_5 PT____2631_MIP
F_6 PT____2652_MIP
F_7 ST____2601_MIP
F_8 TT____2616_MIP
F_9 TT____2617_MIP
F_10 TT____2625_MIP
F_11 TZT___2658_MIP

Table 5.2: Features renaming

Features
The features all have tag-names that indicate what they measure. However, since these names can be
hard to distinguish without domain knowledge we have simplified their names. The new feature names,
along with their old tag-names, can be found in table 5.2. Next, every feature is plotted against the
original number of rows. The feature plots of feature 1 and 7 can be found in figure 5.1, while an overview
of all features can be found in appendix A. The grey areas in the plot represent the rows that have been
deleted in the cleaning process, whereas the yellow areas are part of our data selection. The y-axis differs
per feature plot and provides insight into the feature range of every feature. Although the ranges differ,
fluctuations seem to follow a same kind of trend of increase and decrease for most features. This is also
visible for the selected features: F_1 and F_7.

Figure 5.1: Behaviour of features, F_1 and F_7, over time

Target
The data is distributed over 38 time series. This number is partly based on measurements done and
partly caused by our deletion of rows. Measurements were taken every minute. To retrieve more insight
into the timeline of measurements taken the target feature is plotted against the time. The resulting
plots show an overview of the time series measured in a day and indicate the number of measurements a
time series consists of. Figure 5.2 shows an example of two measuring days. The figures of the other time
series can be found in appendix B. Considering the dates it strikes that we can identify two measurements
sessions. One in September 2018 and the other one in December 2018.
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Figure 5.2: NOx concentration over time

The figures display quite some variation in the number of data points per time series group and the range
of the target feature. The lowest NOx concentration is 292.2 against 629.8 as the highest concentration.
The distribution of the NOx concentration, figure 5.3, teaches us how the fluctuations add up in the
total view. Important is to note that this is not necessarily how the NOx concentration is usually
distributed. When measurements are taken for a PEMS multiple scenarios are covered, while in practice
the production platform usually operates in a more constant way. The fact that the data seems to be
log normal or normally distributed is therefore not something we can utilise in this research, however it
does add to our understanding of the data.

Figure 5.3: Distribution of NOx concentration

5.2 Data selection

There is a variety of approaches when it comes to the selection of data when creating PEMS. Thanks to
the availability of timestamps the data can be treated as time series data. However, it also happens often
that these timestamps are ignored and that the data is randomly split into train, test, and validation
data. This subchapter clarifies the choices made for this research. It first determines the optimal train-
test split ratio, it explains why and how the measured time series were split into multiple intervals and
it discusses how the train-test split was applied to the generated intervals to create the final data selection.
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Train-test ratio
A train-test ratio can have a major impact on the chosen model and its performance. A commonly used
train-test ratio is a 80-20 split [20]. However, the optimal split ratio is dependent on the data available
and thus differs per case. In order to test potentially good splits for out data we utilised the learning
curve algorithm of sklearn [56]. This algorithms requires an estimator to calculate the score for every
train-test split entered. This score is calculated five times to remove any randomness. We use a random
forest with a 100 trees as our estimator. Moreover, we create a list with potential train-test splits to
test on. This lists starts with a 70-30 splits. As our dataset roughly contains 4,000 rows, a test set
of more than 30 percent seems unrealistic. After all, the model should contain multiple scenarios and
requires data for this purpose. Furthermore this list consists of a 75-25 and 80-20 list. From 80-20 on we
decided to include all splits up to 95-5. These smaller steps from 80 on are based on the fact that these
ratios between training and testing seem more realistic for our small dataset. We went up to 95 since
the Pavilion8 manual [63] recommends a test set between the five and ten percent.

Figure 5.4: Learning Curve

Figure 5.4 shows the learning curve for our dataset based on the train-test splits. From 80 to 85 percent
of the training data the score increases steadily. From 85 on we see a steep increase with two peaks at 87
and 93 percent. Opinions in literature differ when it comes to deciding the optimal split. On one hand
there are researchers that recommend taking the first peak, 87 percent, as taking more data could overfit
the model. On the other hand, there are also researchers that claim that the highest score retrieved
should be chosen, which would be the second peak. With Pavilion8s’ recommendation in mind we have
decided to go for a middle way and use a 90-10 split.

Creating intervals
Every row has its own timestamps as the data is gathered in time series. However, for a well-functioning
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PEMS it is not required to know any of the previous values measured. In other words, it would not
harm the results when the rows are shuffled. However, in practice we often see that related work divides
its data into intervals, to make sure the PEMS functions on a scenario rather than on randomly chosen
snapshot. Another motivation for us to work with intervals is that we want to research the influence of
adding information from prior rows. The difficulty is to find the balance between the number of rows in
an interval and the number of prior rows to include.

For this purpose we test a variety of interval lengths. Intervals range from 10 till 60 rows with a step size
of ten, we refer to them as IV_10, IV_20, and so on. The intervals are created by dividing the measured
time series into pieces of the desired length. As most of the time series cannot be divided by the interval
size without a number of residual rows, the last interval of almost every time series is shorter. These
shorter intervals will not be filtered out as the amount of data is already limited.

Then we proceed by splitting the acquired intervals of IV_10 till IV_60 into the desired train-test ratio
split of 90-10. For this purpose we utilise sklearns’ train_test_split algorithm [56]. Normally, one would
input the data, a preferred train-test ratio, and a random state number. In our case the train-test ratio
is the 90-10 as established before, however instead of inputting the data, we input all interval numbers
of IV_10. If we would not indicate a random state number our results would differ every time we run
the algorithm, because the 90-10 split is made randomly by the algorithm. By defining a random state
number we ensure that the split is identical, if conditions remain unchanged. But we go one step further
and utilise the random state number in our advantage. As said before not all intervals will be of the set
length. By varying the random state number we can generate multiple different train-test splits which we
can rank to find the best one available. If we would not test for multiple splits the split would influence
the choice of the interval size to a great extent and this is something we want to avoid. In this case that
means that we want to rank the splits to find a test set that is representative for our train data. This
is achieved by creating all train-test splits for all random number states between zero and 1000. And
ranking them according to a set of rules:

Rule 1: The mean and standard deviation of the train and test set should not differ by more than
five percent.

Rule 2: The NOx concentration in the test set should not exceed the boundaries as set by the
train set.

Rule 3: The distribution of the NOx concentration in the test set should be identical or as close
as possible to the distribution as observed in the train set.

The first two rules are according to the recommendations as done by the Pavilion8 manual [63] and
they should both be passed. The second rule ensures that the NOx concentrations present in the test
set do not exceed the highest concentration in the train set nor the lowest. The third rule tests how
representative the test set is with respect to the train set. Pavilion8 and many others in the field do not
test for this as the data obtained covers multiple scenarios whereas their main focus is on testing the
validity of the PEMS under normal operational circumstances. However, since this is a scientific research
and the distribution impacts the choice of the interval size to a great extent, we decided to add this rule
as a selection criterion. Additionally, this third rule gives a numerical value which enables us to rank
the options. The distribution is calculated as the distribution over the number of bins as established
by the Freedman-Diaconis rule. The differences between the percentages per bin are summed and this
score gives us a final ranking. This process is repeated for IV_20, IV_30, IV_40, IV_50, and IV_60.
Furthermore, this process is also repeated to split the train intervals in train and validation intervals, so
that the validation sets can be saved to only apply to the final models.
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History
Every interval is now classified as either train, test or validation. Next we can focus on adding columns
with the values of prior rows. In this research we also refer to these as historical rows. The advantage of
creating those columns is that we are able to use prior information in our model when the model does
not have a memory.

Suppose we take IV_10 and add a single row as history data. The first row in our first interval will not
have any prior rows and therefore no history can be added to this row. However, to the second row in
this interval we can add all values of the first row. The same goes for the third row and so on till the
tenth row. This process is repeated for all individual intervals. In this process we focus on the intervals
rather than the time series, which means, for instance, that the first row of interval two does not have
prior information although this information is available. However, we decided to do so as taking the
prior information would only be an option as the second interval is part of the same group, train, test
or validation, as the first interval. This makes this an complex situation and therefore we keep the focus
on the intervals. As a consequence all first rows in every interval do not contain any prior information.
As we delete the rows without history for the history datasets this means that dependent on the history
size the amount of data available shrinks. We applied this principle for up to five prior rows. And we
repeated the process for all our different interval sizes. When we refer to these datasets we mention the
number of history rows as identifier, thus the dataset without history is H0, the dataset with one row of
prior knowledge is referred to as H1, and so on.

Best interval
The next step is to determine which of the different interval sizes and corresponding history sizes performs
best. This is established with the use of a random forest with 100 estimators. The performance scores of
the different combinations can be found in table 5.3. The interval sizes without any prior information are
highlighted in grey and the best scoring history size per interval size is highlighted in yellow. The interval
sizes without any prior information clearly perform less than the ones with prior information. However,
when no prior information is included, IV_10, IV_20 and IV_50 perform best with MAE scores below
four. When also focusing on the number of prior rows it stands out that IV_20 and IV_50 retrieve MAE
scores below 0.1, while IV_10 has a slightly higher score. However, it is difficult to establish the best
interval based on these MAE scores as the scores are all close to another and relatively low. Instead of
only looking at these MAE scores the number of rows left will help to make the decision. The difference
between the before mentioned well performing IV_10 and IV_50 can be up to 500 rows which is an
large percentage of the roughly 3,400 rows available for this research. As IV_50 obviously has the most
number of rows left and performs well, both with and without history, this will be the interval size of
our choice. As with regards to the history size, the scores are so close no definitive decision is made for
the time-being. The optimal history size will be established while testing the models.

Now we have established that we will use a interval length of 50 with a 90-10 split, we want to give
some insight into how these intervals behave and which are classified as either train, test or validation.
A complete overview for all 87 intervals can be found in appendix C, while figure 5.5 contains a selection
of these figures. The figures show that there is quite some variation in the range in which the NOx
concentration differs. Additionally, it is clearly visible that the test intervals are nicely spread over the
intervals which are still in order of measurement. By paying attention to the really short intervals one
can still identify the old time series.

5.3 Feature selection

While developing a PEMS it is important to minimise the number of features, because the uncertainty
of a PEMS may not be more than 15%. This uncertainty level is not only dependent on the performance
of the model itself, but is also influenced by the uncertainty of the measurement tools used to measure
the features. The influence of this last group can impact the uncertainty to such an extent that it can
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Interval size History size No. of datapoints MAE score
10 0 3395 3.370
10 1 3040 0.114
10 2 2690 0.123
10 3 2341 0.128
10 4 1993 0.172
10 5 1656 0.231
20 0 3395 3.590
20 1 3206 0.086
20 2 3021 0.085
20 3 2837 0.083
20 4 2654 0.113
20 5 2478 0.120
30 0 3395 7.145
30 1 3265 0.346
30 2 3136 0.248
30 3 3007 0.268
30 4 2879 0.307
30 5 2752 0.283
40 0 3395 6.976
40 1 3292 0.133
40 2 3191 0.154
40 3 3090 0.212
40 4 2989 0.409
40 5 2893 0.281
50 0 3395 3.856
50 1 3308 0.080
50 2 3224 0.085
50 3 3141 0.087
50 4 3058 0.095
50 5 2978 0.099
60 0 3395 8.937
60 1 3319 0.226
60 2 3244 0.233
60 3 3169 0.220
60 4 3095 0.256
60 5 3021 0.242

Interval without history
Best performing interval for interval length

Table 5.3: Interval analysis
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Figure 5.5: Selection of where intervals are located in terms of NOx concentration

even be that a simple model with a lower performance scores is preferred over a more complex but better
performing model. This section applies numerous feature selection methods.

Common practice
We first focus on the feature selection algorithm most commonly used. One of these methods is the
creation of a correlation heatmap. It is often made to see whether there are relationships between fea-
tures. These relationships are undesirable as those can lead to misleading results. In this research we
create correlation heatmaps based on pearson and spearman correlation. The first-mentioned gives us
insight into the degree of linear relationship between features, while the latter one is focused on the
monotonic relationship between features. The correlation heatmap of both correlations can be found in
figure 5.6. We speak of a high correlations when the correlation coefficients are higher than 0.5 or lower
than -0.5. Both heatmaps clearly contain a lot of highly correlated features. This complicates the feature
selection process, as features with correlations above 0.9, are more or less interchangeable. Furthermore,
the trends and values in both heatmaps are nearly identical.

(a) Pearson correlation (b) Spearman correlation

Figure 5.6: Correlation heatmaps based on different correlation types
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Although performing the feature selection with highly correlated features is not recommend, we do give
it a shot. One of the frequently used algorithms is SelectKBest from sklearn [56]. This method uses a
scoring function to rank the features, based on feature importance, and it returns the k best features. In
this research we performed this method with F-score as well as mutual information as scoring functions.
The results can be found in respectively figure 5.7a and 5.7b. The two rankings both have features F_6
and F_11 ranked in their top-3. If we look at the ranking of the other features we see that there is not
much consensus. This emphasis the problem of highly correlated features once again, as features with
high correlations can be interchanged.

Next we train a random forest with 100 trees to rank the features again. However, this time we permute
the column values instead of using the feature importance as we have done before. We run the random
forest with the original features and later run it again with one of the features permuted. The difference
between the first and the latter is the importance of the permuted feature. This process is repeated for
every feature in the data. Furthermore, a random feature with random values is added to our feature
selection. Whenever this random feature outperforms one or more real features, those features should
not be considered for selection anymore. The idea behind it is that the surpassed features contribute
less information than a feature without any knowledge of the process [64]. The outcome of this method
can be found in figure 5.7c. Just as we saw before, feature F_6 obtained a top-3 ranking. Also feature
F_2 retrieved a high score, whereas this feature was dominantly present in both other rankings.

The next commonly used method is recursive feature elimination (RFE). This method is computationally
less expensive than the previous method but is often perceived as less reliable. Just like the permutation
method, RFE also requires an estimator. For this purpose a random forest with a 100 trees is used
again to simplify the comparison. With RFE one can enter the number of desired features. RFE then
recursively considers smaller and smaller sets based on the number of features to select. In the end this
results in a feature importance ranking based on the coefficient as assigned to every feature. In order to
make ranking of all 11 of our features, we first let the algorithm calculate the most important feature,
then the two most important features, then the three and so on. This results in a ranking which can
be found in figure 5.7d. Features F_6 and F_11 have both retrieved a top-3 position again. Feature
F_2 also contributes a lot according to this ranking which is in line with the results obtained from
the permutation method. Next RFE is performed with five-fold cross-validation (RFECV) in order to
remove the randomness that normal RFE can still contain. The outcome of the RFECV can be found
in figure 5.7e. Unlike the other figures this one does not give a ranking, but rather gives insight into
the optimal number of features. Eight would be the optimal number of features according to the figure.
However, given that we should minimise the number of features, three features seems more realistic. This
idea is also supported by the outcome of the RFE.

Thus features F_6 and F_11 seem to be good candidates to select for a model. However the various
selection methods do not give a conclusive answer when it comes to which third feature to select. Fur-
thermore, it remains difficult to judge whether these results can be trusted as all methods used are not
suited for highly correlated features.

Feature elimination
To retrieve more reliable results we have to tackle the high correlations. Therefore, an algorithm is
written that eliminates features. Essentially this algorithm does not throw away the features but rather
saves them in a list with features that can be replaced by each other. The algorithm starts by calculating
the pearson correlation between all features. All feature pairs with a correlation value of one are selected.
The algorithms keeps the feature first in the alphabet of every pair and places the other feature on the
replacement list. The algorithm proceeds to do the same for a correlation of 0.99 and os on. Whenever
two features with replacements are linked together the one first in alphabet remains while the other is
added to the replacement list with all of its belonging replacements. The algorithm is designed that
one can stop the feature elimination in two ways: (i) maximum correlation acceptable, or (ii) number of
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(a) SelectKBest with F-scoring (b) SelectKBest with mutual information scoring

(c) Permutation based on RF (d) RFE based on RF with ranked features

(e) RFECV based on RF (CV=5)

Figure 5.7: Feature selection algorithms
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leader features desired.

Figure 5.8: RFE with two and three features

RFE is used to visualise this elimination process. As this method is able to visualise up to two features,
this is the minimum number of leader features. We first run a RFE, as explained before, with all features
and without any restrictions to get a sort of ground truth. Next, we made the replacement list for a
threshold of 1 and run the algorithm with only the remaining features. The features on the replacement
list thus not taken into account anymore. We perform this process for all thresholds and for both pearson
and spearman correlation. The results of the pearson and spearman correlation can be found in respec-
tively appendix D.1 and D.2. These appendices do not contain the figures of all correlation thresholds
up to two variables, rather they contain the figures of the correlation thresholds where replacements
are made. The results differ in the beginning, but when it becomes crucial for this research there is
agreement. For two and three features the results, in terms of remaining features and their ranking,
are the same and can be found in figure 5.8. It stands out that especially F_1 and F_2 add to the
performance of the model. Furthermore, it strikes that the score obtained with three features is much
better than with only two. This confirms the image of the RFECV that three features would be the best
option for a model with minimal number of features.

Lead feature Replacement features
F_1 F_3, F_4, F_5, F_6, F_7, F_9, F_11
F_2 No replacements
F_8 F_10

Table 5.4: Replacement list

The replacement list as it belongs to the scenario where three features are left can be found in table 5.4.
It stands out that feature F_1 has a lot of replacements, while the other two features only have one or
no replacements. Looking back at figure 5.1, it now make sense that F_1 and F_7 seem to follow the
same trend. Whilst validating the features Emission Care found that it was best not to use F_6 and
F_8 for modelling. Hence those two features are only considered in this research when all features are
taken into account for a model. Together with the fact that F_6 and F_11, the well-performing feature
combination according to traditional methods, both are replaced by F_1 makes that this combination
is not considered as an option anymore. The other feature that performed well in part of the traditional
methods is F_2, however both feature F_1 and F_2 are already lead features. To gain more insight
into the three selected features, we plotted their value against the NOx concentration. Furthermore, the
cumulative distribution over the target range is also plotted as a fourth figure. The resulting figures can
be found in figure 5.9. Those figures emphasise the fact that F_1 influences the concentration NOx the
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Figure 5.9: Feature(s) versus target

most. Furthermore, we see that F_10 contains a number of gaps when it comes to values. This requires
additional attention when testing the final models.

We continue by forming all pairs of two among the features of the different groups. These combinations
are plotted against each other and their colour is determined by the value of the NOx concentration.
The resulting figures can be found in appendix E. The outcome of the three combinations consisting
of leaders of every group of features can also be found in figure 5.10. As one might expect the com-
bination F_1 against F_2 gives seems to give the clearest image when it comes to the NOx concentration.

The difficulty with the figures discussed before is that they are based on two features while we concluded
before that a model based on three would perform better. For this reason we created a 3D plot with
all leader features as shown in figure 5.11. A representation from the view of each of the features can
also be found in appendix F. We can identify multiple clusters in the plot and every cluster seems to
have one predominant colour. The difficulty, however, is that there are often multiple clusters with the
same predominant colour. In practice this probably means that a linear regression will struggle with
the complexity of the data, while the more complex regression models are more capable of handling this
kind of logic.
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Figure 5.10: Two features plotted against each other with the target as colour

Figure 5.11: Lead features plotted against each other with the target as colour



6 | Methods & Results
For this research a variety of advanced regression models are designed. This chapter starts with the
introduction of five different hyperparameter tuning techniques in section 6.1. Subsequently, sections 6.2-
6.5 introduce the four types of models, namely linear regression, tree-based, support vector regression
and neural networks. For every model the section starts with the method, which describes the process of
implementing the model. This is followed by a results section, where the obtained results are discussed.
Every type of model is built several times as it enables us to differ among hyperparameter tuning
techniques and datsets.

6.1 Hyperparameter selection

Hyperparameters are basically the settings of a model, which need to be established before the model is
trained. Hyperparameters can help one to find a balance between under- and overfitting. The related
work table in section 3.7, shows us that grid search and genetic algorithms are often used for this pur-
pose. A variety of different genetic algorithms is implemented in related work, which makes it difficult
to determine if there is one best practice. In this study we use grid search to select our hyperparameters.
This method tests all the hyperparameters independently. For all the possible values of hyperparameter
the train and test score is calculated and visualised with the aid of the validation curve as implemented
in the sklearn package [56]. The scores of the validation curve are calculated several times, based on
cross-validation, so that the uncertainty of the results can also be taken into account. However, there
is no consensus on how to interpret the resulting validation curves. One could either select the value of
the first peak, before the score decreases again, or one could select the value of the maximum validation
score retrieved. The difficulty with the first-mentioned is that this might lead to underfitting, while the
latter argument can lead to overfitting. Another downside of this method is that the hyperparameters
are determined in parallel, so the effect of the hyperparameters on each other and their ability to work
together is unknown. For this reason also an incremental approach of grid search is implemented. In the
incremental version we search for the hyperparameters one by one. The ones found will be set to the
estimator used. In this way the influence of those hyperparameter decisions are taken into account while
finding the next ones. Applying this gives us a total of four hyperparameter methods: (i) first peak in
parallel, (ii) first peak incremental, (iii) maximum peak in parallel, and (iv) maximum peak incremental.

The downside of the proposed incremental method is that the order in which hyperparameters are
searched influences the values found. For this reason we also use a random search in this research.
We use sklearns’ RandomSearchCV [56] for this purpose. This method selects one possible value for
every hyperparameter and calculates the resulting score. This is done for a set number of rounds. In
the end it returns the grid which performed best. The advantage of a random search is that it is less
time-consuming than a grid search. However, the downside of this method is that potentially a large
number of hyperparameter settings is never tested. For this reason it is important not to enter too many
values for every hyperparameter, but rather to find reasonable ranges for every hyperparameter. For
all cases where hyperparameters are included, the random search will try 100 unique combinations of
hyperparameters and cross-validates this five times. Which hyperparameters are selected is based on
mean squared error (MSE) scoring.

Normal linear regression does not have any hyperparameters, however the more complex models have.
The tree-based models, the support vector regression, and the neural networks all have hyperparameters.
As we still have six different datasets and five hyperparameter tuning techniques this leaves us with many
variations. As training and testing all of them is time-consuming, this number will be reduced based
on results found. As linear regression is based on linearity, results found for this method cannot be
generalised to the other non-linear models. Therefore, the tree-based models are used to make decision
with regards to which datasets and hyperparameter tuning techniques should be kept. Trees are chosen
as these models are the most time-efficient of the non-linear models while still being non-linear which

56
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enables us to generalise the results found. Based on the results the remaining hyperparameter tuning
technique and datasets are then applied for support vector regression and neural networks.

6.2 Linear regression

Linear regression is the only linear regression model in this research. However, as it depends on linearity
there are many assumptions a model has to meet in order to be deemed valid. In the literature section
this assumptions were already discussed, however in the methods the assumptions are mentioned again
and are now coupled to a measure or diagnostic to measure whether the assumptions are met. Important
is to keep in mind that even a good scoring model, can be invalid when the assumptions are not met.

6.2.1 Methods
As linear regression is a relatively simple machine learning algorithm, it allows us to try many different
settings. We start with drafting a regular linear regression based on our data without history, H0.
Varying the features enables us to find a proper combination for the linear regression models. As this
is determined, the next step is to apply the chosen feature combination to our other datasets, H1 till
H5. Based on results found during this process, one dataset is chosen to execute the different types of
linear regression. Besides regular linear regression, we then also implement Ridge, Lasso, and ElasticNet
regression. Oftentimes a good-performing model is determined based on the performance score retrieved,
however for linear regression it is also important that the assumptions, as introduced in section 3.2.1.,
are satisfied.

Five assumptions

The reliability of the performance score of a linear regression model, depends on how well the five
assumptions of linear regression are met. Five models are trained based on H0 with varying feature
selections. The feature combinations as made can be found in table 6.1, where CN refers to the com-
bination number. As one can deduct from the table the model based on combination I contains all
features, while combination II only contains the selected features. All the other combinations, III till
V, consist of two features. Those combinations are the result of combining the selected features into pairs.

CN Feature combinations
I F[1,2,3,4,5,6,7,8,9,10,11]
II F[1,2,10]
III F[1,2]
IV F[1,10]
V F[2,10]

Table 6.1: Feature combinations for linear regression

The features of each combination are scaled to make sure that the range of each feature does not affect
the results. The scaling is done with the aid of the StandardScaler of sklearn [56]. This scaler subtracts
the mean from each feature and divides it by the standard deviation. The standardised features are then
used to build five models based on sklearns’ implementation of LinearRegression. The performance of
these models is measured by calculating various diagnostics and by creating visualisations to see whether
the five assumptions are met. The first assumption is linearity. Linearity can be demonstrated through
a residual plot. In an ideal situation the residuals have the tendency to cluster towards the middle of
the plot and are symmetrically distributed. The second assumption is normality which can be measured
through the skew and the kurtosis which should be respectively zero and three. The third assumptions
states that there may not be multicollinearity. This can be tested with the variance inflation factor (VIF)
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which is based on the R2-score obtained during training of the model. The VIF score is preferably as low
as possible. A VIF below one means no correlation, while it is said to be moderate between one and five.
Up to ten it is believed to be highly correlated, while a VIF score above 10 is reason for concern. The
fourth assumption to test the performance is the homoscedasticity. To meet this assumptions the data in
the residual plot should not only be distributed symmetrically, but should also not show any patterns. As
this is hard to measure with the eye, also the Breusch-Pagan (B-P) diagnostic is used for this purpose.
This diagnostic null hypothesis that there is homoscedasticity. In order to meet the requirement the
p-value obtained for this diagnostic should be above 0.05, otherwise the data is set to be heteroscedastic
instead. The fifth, and last, assumption is that there may not be any autocorrelation. This assumptions
can be tested with the aid of the Durbin-Watson (D-W) diagnostic. The outcome of this diagnostic
always ranges between zero and four, with a optimum of two. Except for the first assumption the others
are all numerical and can therefore be plotted into a table. To give more insight into the effectiveness of
the combinations also a column with insignificant features is added to this table. This is done with the
aid of statsmodels’ linear regression model [65] which identifies the p-value of every feature included in
the model. A p-value below 0.05 is said to be insignificant and hence the features that obtain a p-value
below 0.05 are stated in the table.

Execution

The process as described before is repeated for all the datasets. However, as said before, not all feature
combinations are tested again. Based on results found for H0, one combination is used to create models
for the other datasets. Also here the results are interpreted with the aid of the five assumptions and the
residual plots. As a last step the best feature combination with the best-performing dataset is used to
compare the different types of linear regression. The alternate forms of linear regression are all forms
of penalised linear regression and are known as Ridge, Lasso and ElasticNet regression. In this research
sklearns’ implementation is used [56].

6.2.2 Results
This section first elaborates on the results found for dataset H0 with the feature combinations as es-
tablished before. Next, it selects the best feature combination to test the other datasets, H1 till H5.
Subsequently the combination with promising results is used to test and compare the different kinds of
linear regression.

CN Features R2 train R2 test Skew Kurtosis VIF B-P D-W Insign. feat.
I F[All] 0.95 0.88 0.14 4.66 21.72 0.00 0.27 F_6 & F_10
II F[1,2,10] 0.94 0.90 0.45 5.33 17.38 0.00 0.24 F_10
III F[1,2] 0.94 0.90 0.46 5.29 17.37 0.00 0.24 X
IV F[1,10] 0.59 0.56 -0.03 2.07 2.47 0.00 0.04 X
V F[2,10] 0.16 0.29 0.46 3.02 1.19 0.18 0.02 X

Table 6.2: [Linear regression] diagnostics for H0 retrieved from the different combinations

Selecting promising combinations

The feature combinations, as mentioned in table 6.1, are used to select data from H0 to train and test
linear regression models on. The diagnostics obtained from these models are shown in table 6.2. The first
assumptions is linearity. Combination I, II, and III perform well according to their R2-scores. Whereas
this R2-score in the table is based on the training data, the actual versus predicted plot, figure 6.1,
displays the performance for the test data. An R2-score of 0.90 was obtained for the testing data. Con-
sidering that training data obtained a MSE of roughly 180 against 280 for the testing data, one might
expect some deviation between the actual and predicted emission. We can see that the model with fea-
ture combination III seems to follow the trends, but struggles to actually predict the emission correctly.
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Figure 6.1: [Linear regression] actual versus predicted outcome (CNIII, H0)

The residual plots, in figure 6.2, also do emphasise this struggle. The residuals obtained are quite large.
Especially for the last two feature combinations there are only a few points that are predicted right or
nearly right. With regards to the second assumption, normality, there is no set of features that has both
the skew and the kurtosis close to respectively three and zero. Combination V comes closest when it
comes to satisfying the both of them. The third assumption is the multicollinearity which is tested with
the aid of the VIF. As a VIF score above 10 is reason for concern, the first three methods do not comply
this assumptions. For the other two methods there is only a moderate correlation between the features,

(I) (II) (III)

(IV) (V)

Figure 6.2: [Linear regression] residual plots of the H0 models based on the feature combinations
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which is acceptable. The fourth assumption, homoscedasticity, requires a Breusch-Pagan score above
0.05. This is only achieved by combination V. In all other cases there is heteroscedasticity rather than
homoscedasticity. The fifth assumption is no autocorrelation which is measured by the Durbin-Watson
diagnostic. Given that this number ranges between zero and four, all of them are close to lower boundary
rather than to two as would be desired. Lastly, the insignificant features are mentioned in the table.
The first two methods both contain insignificant features. The insignificance of feature 10 in the second
method can be seen in method III, where the deletion of this feature does barely have any effect on the
outcome.

Thus, combination V seems to satisfy most of the linear regression assumptions compared to the other
combinations. The difficulty, however, is in the performance of this method. The R2-score as well as the
residual plot obtained are not promising. The score as well as the residual plot of combination III are
promising, however this model does not meet many of the assumptions. For the other datasets, H1 till
H5, combination III is used for building the models. Although this method does not satisfy many of the
assumptions, the diagnostics obtained for method V were not convincing enough to go ahead.

Dataset R2-score Skew Kurtosis VIF B-P D-W Insign. feat.
H0 0.94 0.46 5.29 17.37 0.00 0.24 X
H1 1.00 0.18 2.96 inf 0.00 0.29 X
H2 1.00 0.07 1.56 inf 0.00 0.12 F_1
H3 1.00 -0.05 2.38 inf 0.00 0.05 F_1-1, F_1-2, F_1-3
H4 1.00 0.15 1.78 inf 0.00 0.05 X
H5 1.00 0.20 13.86 inf 0.00 0.89 X

Table 6.3: [Linear regression] diagnostics for the different datasets (CNIII)

Results for H1 till H5

The diagnostics of the models based on feature combination III for the different datasets can be found
in table 6.3. What immediately strikes is the extremely high R2-scores obtained for dataset H1 till H5.
This trend is also clearly visible in the residual plots where the plot is similar for dataset H1 till H5. In
all those cases the residual plot, as can be found in figure 6.3, displays a straight line. However, when
checking the diagnostics to see whether the assumptions are met, it strikes that the diagnostic do not
seem to differ much among the different datasets. To test whether this behaviour is as expected we also
applied the different datasets to our feature combination V, an equal trend was observed.

Therefore, we adapted the datasets to see whether the high scores could be explained. In dataset H1 all
previous row values are present including the previous target value. Whenever this target was left out of
scope, we see that results do not improve for the other datasets. Thus H1 till H5 then all obtain equal
results to dataset H0. In order words, the history target values influence the prediction of the target to a
great extent. This can also be seen when looking at the resulting formula, equation 6.1, where the previ-
ous target value is almost fully responsible for the outcome. Suppose this linear regression model would
be used as actual emission model, then the target would be predicted based on previous predictions. In
other words, the resulting model would almost neglect everything that happens inside the plant. This is
an undesirable situation. As using history for linear regression is already tricky, previous rows in time
series tend to be correlated while autocorrelation must be prevented, we think it is best to neglect the
datasets with history when it comes to linear regression.

conc_NOx = 7.95 · 10−14 × F_1− 7.87 · 10−14 × F_2+ 9.02 · 10−14 × F_1-1

+2.79 · 10−14 × F_2-1+ 55.86× conc_NOx-1
(6.1)
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Figure 6.3: [Linear regression] residual plot (H1, CNIII)

Regressor R2 train R2 test Skew Kurtosis VIF B-P D-W Insign. feat.
Linear regression 0.94 0.90 0.46 5.29 17.37 0.00 0.24 X
Ridge 0.94 0.90 0.46 5.29 17.37 0.00 0.24 X
Lasso 0.94 0.90 0.47 5.21 17.10 0.00 0.23 X
ElasticNet 0.78 0.77 0.38 3.36 4.48 0.00 0.05 X

Table 6.4: Diagnostics for the different LR methods (H0, CNIII)

Other linear regression forms

As all combinations seem to follow the same trend, combination III is continued to be used to create the
models with. In this section a normal linear regression is tested alongside Ridge, Lasso, and ElasticNet
regression. For dataset H0 the scores, table 6.4, and residual plots, figure 6.4, obtained are roughly equal
as the ones obtained with normal linear regression. We only see that ElasticNet performs slightly less
than the others. The same applies for the diagnostics. In other words, performing alternate forms of
linear regression does not improve its predictive power. Out of curiosity we also applied the alternate
forms for dataset H1. Also here we see the same trend when it comes to the score and the diagnostics,
however in the residual plot we see something interesting. Not only the ElasticNet shows a decreasing
trend here, but also does the Lasso model. However, as the score remains 1 and the residual is frankly
quite small, therefore we did not look further into it.

Figure 6.4: Residual plots for the different LR methods (H0, CNIII)

It was expected that a linear regression model for prediction of the NOx concentration should be
unfeasible. The regression result is better than expected, though it is known that the NOx formation is
an exponential function of the temperature level during fuel combustion. The relative high correlation of
the linear model could be an indication that the observed NOx levels in the dataset originate at relative
low temperature levels, where the exponential effect is not yet escalating. A linear relation is then a
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first order estimate of the actual process, having an acceptable regression coefficient. In fact, gasturbines
tend to operate at large excess combustion air flows, resulting in high oxygen levels in the exhaust gas.
In practice, this large excess air flow has a tempering effect on the temperature levels during combustion.
It is expected that linear regression of a component with large (instant) fluctuations, like CO (carbon
monoxyde) will be more difficult.
To conclude, although the different models all satisfy part of the assumptions, none of them was able to
satisfy all of them. This usually hints that results found are not reliable which is not acceptable for an
emission model. Based on physics Emission Care already predicted the unfeasibility of a linear model
for the prediction of the NOx. The regression result is already better than expected, though it is known
that the NOx formation is an exponential function of the temperature level during fuel combustion. The
relative high correlation of the linear model could be an indication that the observed NOx levels in the
dataset originate at relative low temperature levels, where the exponential effect is not yet escalating.
Together with the fact that the distribution is more based on which data is deemed valid, we conclude
that linear regression is a good fit for this research. However, we still included this section as it provided
us with insight about our data.

6.3 Tree-based

The tree-based models are the first non-linear models in this research. Singles trees as well as ensembles
are used to establish the best possible models. As we still have a large variety of datasets and hyperpa-
rameter tuning techniques, this method is also used to reduce the number of options. The conclusion of
which datasets and hyperparameter tuning techniques are kept can be found at the end of the tree-based
results section.

6.3.1 Methods
From all the non-linear models in this research, the tree-based models are computationally the least
expensive. Therefore tree-based models are ideal for testing different methods. During the data selection
no decision has been made with regards to the best hyperparameter tuning technique. The same goes
for the optimal amount of prior information to take into account. As a result there are still five different
hyperparameter tuning techniques and six datasets with different history sizes. This alone results in 30
unique combinations to be tested by the tree-based methods.

An important hyperparameter for each of the tree-based methods is the number of features. During the
feature selection the features proved to be highly correlated. For this purpose the number of features is
restricted by us rather than that letting every tree-based method handle this itself. The feature selection
consists of the three selected features, namely F_1, F_2 and F_10. As the tree-based models are built
for both all features and the selected features, this results in 60 sets of hyperparameters. These sets of
parameters are then each set to their own estimator in order to calculate the MSE and R2 scores on the
test sets. The models and scores with all features included are meant for referencing, while the other
models are used for the prediction of emission values. This process is repeated for all the different tree-
based estimators. In this research we test with a single tree and with two kinds of ensembles, stacking
and boosting.

max_depth min=1, max=20, step=1
min_samples_leaf min=50, max=100, step=2
n_estimators min=10, max=200, step=10
loss ls, lad, huber, quantile

Table 6.5: Tree-based hyperparameters
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Single tree

The single tree used in this research is sklearn’s DecisionTreeRegressor [56]. The shortcoming of a single
tree is often that is has trouble with generalisation, however the advantage is the ability to visualise a
single tree. The most important hyperparameters of a tree include the depth of the tree and the amount
of samples each leaf should include at least. The possible values for each of the hyperparameters can
be found in table 6.5. Important is to note that these hyperparameter can also restrict each other. If
the minimum samples per leaf is reached, for instance, the maximum depth of the tree can still be much
deeper but it cannot be reached since there is simply not enough data. For the minimum samples per
leaf a commonly used rule-of-thumb is that it should contain at least between 0.5% and 1.0% of the
data samples. However, since the dataset in this research is relatively small this would result in very
few samples per leaf. Srivastava [66] recommends in his blog to set the threshold to at least 50 samples
per leaf. This recommendation is implemented in this research. By implementing this rule we hope to
prevent overfitting. A 100 samples per leaf is then set as upper threshold. All values in between, with
steps of two, are then possible values for this hyperparameter. A similar rule-of-thumb for the maximum
depth was not found. Many researchers range it between five and eight, while others stretch this range
up to 32 or even 64. In this research the maximum depth of the tree is set to a 20 as the dataset is
relatively small. We recognise that a depth of 20 is large given the size of our dataset, but think a too
large depth will be prevented by the minimum samples per leaf setting.

Besides these two hyperparameters the random state of the DecisionTreeRegressor is also set to zero to
make sure results do not differ per run. The 60 unique combinations then run and the best values found
for the hyperparameters are then set to an DecisionTreeRegressor and with the corresponding dataset
the MSE and R2 scores are calculated.

Stacking

To test with tree-based stacking an RandomForestRegressor is used as implemented by sklearn [56]. We
apply the same hyperparameter tuning techniques and values as we did for the single trees. Besides
setting the random state, maximum depth and the minimum leaves per leaf, also the optimum number
of estimators is a hyperparameter for this method. By default the number of estimators is 100, after
years of it being 10. In this research, the number of trees ranges between 10, as it used to be, with a
maximum of 200 estimators. All values in between with a step size of ten are considered. As stacking is
done in parallel, also the number of jobs can be defined which enables us to run the algorithm in parallel.
The number of jobs is maximised in order to minimise the computation time. As with the single tree,
we tested all five hyperparameter tuning techniques with all six the datasets again in order to compute
their MSE and R2 scores.

Boosting

To test boosting the GradientBoostingRegressor from sklearn [56] is used. The hyperparameter settings
are nearly identical to the ones for stacking. However, as boosting cannot be done in parallel, there is no
possibility to define the number of jobs for these models. Rather boosting improves the existing model
every time. Therefore, a number of different loss functions is tested to find the best fit. The loss functions
considered are the least squares regression (ls), least absolute deviation (lad), huber, and quantile loss.
Together with all the earlier mentioned hyperparameters these are tested for all five hyperparameter
tuning techniques with all six datasets again and once again used in order to compute the MSE and R2

scores.

6.3.2 Results
This section elaborates on the results found for the different tree-based models. It starts with the results
of a single tree and then looks into two ensemble techniques, stacking and boosting, and their results.
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First-
Parallel

First-
Increment

Maximum-
Parallel

Maximum-
Increment Random

H0

191.88
0.93

191.88
0.93

191.88
0.93

191.88
0.93

188.56
0.93

426.02
0.85

426.02
0.85

135.24
0.95

135.24
0.95

129.77
0.96

H1

168.46
0.94

168.46
0.94

168.46
0.94

168.46
0.94

168.51
0.94

431.39
0.85

431.39
0.85

153.60
0.95

154.84
0.95

196.53
0.93

H2

164.19
0.94

164.19
0.94

164.26
0.94

164.26
0.94

164.26
0.94

121.65
0.96

121.65
0.96

121.65
0.96

121.65
0.96

116.63
0.96

H3

299.57
0.90

299.57
0.90

299.57
0.90

299.57
0.90

169.10
0.94

122.24
0.96

122.24
0.96

130.72
0.96

130.72
0.96

175.29
0.94

H4

161.32
0.95

161.32
0.95

161.34
0.95

161.34
0.95

158.42
0.95

127.48
0.96

127.48
0.96

228.46
0.92

127.48
0.96

120.95
0.96

H5

211.39
0.93

211.39
0.93

211.41
0.93

211.41
0.93

211.41
0.93

116.95
0.96

116.95
0.96

116.95
0.96

116.95
0.96

110.57
0.96

All features
Three selected features [F_1, F_2, F_10]

Table 6.6: [Single tree] scores (upper MSE, lower R2)

Meanwhile evaluating the obtained scores also the datasets and hyperparameter tuning techniques are
evaluated with the purpose of making a selection for the other non-linear models.

Single tree

We use the DecisionTreeRegressor to create our single tree models. The models are created based on
hyperparameters found while applying the five hyperparameter tuning techniques with the six datasets
with different history lengths. This is done for all the data as well as for a selection of features. The
scores obtained on the test sets can be found in table 6.6, where the columns represent the different
hyperparameter tuning techniques and the rows the different datasets.

The table contains the scores of the datasets without the historical target included for H1 till H5. This
is done for the same purpose as when we deleted it from the linear regression, namely that it almost
exclusively predicts the target. Also for the single tree, we saw a really big improvement when using
another dataset than H0 when the historical target was still included. However, in the current situation
we do not see much difference between the different datasets. Especially H0 and H1 seem to perform
roughly equal and we see a slightly better performance for the other datasets. The advantage of a single
tree is the potential to visualise the it. A visualisation of the two best-performing trees with limited
features on H0 and H2 can be found in appendix G.

With regards to the hyperparameter tuning techniques it strikes that especially the first techniques seems
to struggle with obtaining good results for the models with a selected amount of features. While the re-



6.3. Tree-based 65

Figure 6.5: [Single tree] actual versus predicted outcome

sults found by the maximum and random technique are oftentimes close to one another. In figure 6.5 the
actual emission is plotted against the predicted values. The figure displays the first-parallel and random
technique for dataset H0 as well as the best-performing decision tree which is build for dataset H2 with
the random technique. The figure on the right-hand only displays the performance on the testing data.
The plot from the first-parallel technique clearly displays the lack of fit and contains very clear levels
in both plots. For both the random techniques the levels are less visible. The scatter plots look very
similar, however, we do see a clear difference in the line plots. Although the random techniques perform
better, the levels are still quite visible in the line plots.

As the performance scores and the actual versus predicted plots for the maximum and random techniques
are close, it is difficult to conclude anything with regards to which technique performs best. While re-
viewing the hyperparameters of the models with a restricted number of features, it strikes that, although
the scores of the different models are close, the hyperparameters differ. All trees have a minimum samples
per leaf of 50, however the maximum depth of the trees is more variable. For the first two datsets, H0 and
H1, we see a lower maximum depth for the methods with only a limited number of features. However,
whenever we focus on H2 and onward it stands out that the maximum depth does not differ between the
different hyperparameter tuning techniques. The validation curves as obtained for the maximum depth
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First-
Parallel

First-
Increment

Maximum-
Parallel

Maximum-
Increment Random

H0

159.09
0.94

159.09
0.94

148.12
0.95

148.12
0.95

152.25
0.95

191.20
0.93

205.30
0.93

158.21
0.94

167.61
0.94

158.23
0.94

H1

160.28
0.94

159.98
0.94

145.20
0.95

144.27
0.95

145.74
0.95

163.23
0.94

163.23
0.94

152.69
0.95

152.69
0.95

154.30
0.95

H2

163.37
0.94

157.66
0.95

158.66
0.95

157.66
0.95

153.09
0.95

160.59
0.95

160.59
0.95

154.77
0.95

153.98
0.95

168.41
0.94

H3

157.44
0.95

156.59
0.95

154.09
0.95

154.23
0.95

154.05
0.95

163.43
0.94

163.41
0.94

160.14
0.95

160.14
0.95

158.60
0.95

H4

164.77
0.94

167.15
0.94

166.46
0.94

165.88
0.94

156.91
0.95

148.28
0.95

148.28
0.95

147.74
0.95

147.74
0.95

149.74
0.95

H5

162.08
0.95

159.54
0.95

162.08
0.95

160.44
0.95

153.87
0.95

183.58
0.94

183.58
0.94

155.35
0.95

155.35
0.95

156.43
0.95

All features
Three selected features [F_1, F_2, F_10]

Table 6.7: [Stacking trees] scores (upper MSE, lower R2)

and the minimum samples per leaf by H0 can be found in figure 6.6. The validation curves are similar for
the different datasets, in terms of shape as well as R2-score. Whereas we saw the score of the maximum
depth rising, the score of the minimum samples per leaf immediately decreases. The latter suggests that
a better model, and thus a better score, might be achieved by allowing more samples per leaf, however
this increases the chance of overfitting.

Figure 6.6: [Single tree] validation curve for maximum depth of the tree

In conclusion, the random and maximum-techniques give the best performance for the different datasets.
The scores seem improve a lot when the historical target is included in the different datasets. However,
in the current scenario there is not much variation among the different datasets.
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Stacking

The process as described for the single trees is repeated and a similar table is constructed with a stacking
tree-based estimator. The results produced by the RandomForestRegressor can be found in table 6.7.

The table includes some of the same trends that we observed for the single tree. Also for this estimator
there is not much difference between the models based on all data as opposed to the ones that include a
selected number of features. Furthermore, this estimator also heavily relies on the historical target and
therefore also in this case only historical features are included. We see the same pattern as we saw for the
single tree, where the dataset does not matter much for the obtained scores. However, where we saw an
improvement from H2 and on for the single tree, that improvement is not visible here. To get insight into
the predictions done by the random forests the actual versus predicted target is plotted again. One of
the best performing models with not too many history rows, is based on the maximum-parallel technique
with dataset H1. The plot is shown in figure 6.7 and it immediately strikes that the levels as we saw for
the single tree are not visible anymore. Although the MSE of this model is higher than MSEs we saw
for the single trees, the model seems to be a better fit. However, the model still seems to struggle to
predict the boundary values correctly.

In conclusion, results found by the different hyperparameter tuning techniques are comparable. Most of
the trends we saw for a single tree also apply for the random forests. However, for this estimator we do
not see an improvement from a history of two on.

Figure 6.7: [Stacking trees] actual versus predicted outcome
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Boosting

To perform tree-based boosting a GradientBoostingRegressor is used and the process as described for
the single tree is repeated. The results of are summarised in table H.1.

The first thing that strikes is the variety of scores for models based on the dataset without history. The
same trend as before is visible, where including the historical target boosts the scores from H0 to H1 and
on, while no improvement is visible when the historical target is left out of scope. When the historical
target is included the scores are much better with even MSE scores below 10. For the scores of data with
historical target see appendix H. From previous tree-based models we learned that a good score does not
necessarily tell us which predictions are closest. Figure 6.8 displays the actual versus predicted target
for the best scoring model, H0 with the random technique. From the scatter plot it is not very clear that
the performance is better than from the other trees methods we have seen before. However, the line plot
really displays how much better this models fits than the ones we have seen before. There are no levels
visible and also does the line not only seems to follow the trends, but also on the desired height. The
good thing about the gradient-boosting models is that there maximum depth is smaller than we saw for
the random forests and decision trees. This ensures that the models are less complex which is definitely
a benefit.

In conclusion, all hyperparameter techniques perform roughly equal again. Furthermore the historical
data also does not seem to greatly impact the scores. However, we found that the gradient-boosting
model with random technique yield a slightly better score for dataset H1 than it does for dataset H0.

First-
Parallel

First-
Increment

Maximum-
Parallel

Maximum-
Increment Random

H0

116.58
0.96

116.58
0.96

95.23
0.97

120.31
0.96

96.40
0.97

167.56
0.94

123.88
0.96

119.58
0.96

110.77
0.96

88.52
0.97

H1

116.32
0.96

143.35
0.95

109.77
0.96

120.32
0.96

101.59
0.96

111.46
0.96

111.46
0.96

96.20
0.97

97.89
0.97

90.53
0.97

H2

104.25
0.96

116.44
0.96

134.11
0.95

116.65
0.96

184.69
0.94

113.67
0.96

100.82
0.97

103.74
0.96

377.46
0.87

527.32
0.82

H3

121.09
0.96

153.50
0.95

104.54
0.96

108.68
0.96

109.81
0.96

118.61
0.96

109.70
0.96

114.09
0.96

109.12
0.96

99.37
0.97

H4

127.90
0.96

134.52
0.95

113.07
0.96

115.82
0.96

189.98
0.94

159.63
0.95

122.70
0.96

119.34
0.96

483.71
0.84

111.42
0.96

H5

126.77
0.96

123.05
0.96

127.22
0.96

90.62
0.97

201.91
0.93

237.84
0.92

122.11
0.96

129.27
0.96

104.61
0.97

92.58
0.97

All features
Three selected features [F_1, F_2, F_10]

Table 6.8: [Boosting trees] scores (upper MSE, lower R2)
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Figure 6.8: [Boosting trees] actual versus predicted outcome

Hyperparameter tuning technique and dataset selection

The tree-based results as presented in this section do not show a clear best practice. What mostly stands
out is the fact that the minimum samples per leaf of 50 is the limiting factor for all tree-based methods.
To ensure that our threshold was not to strict we also tested to a threshold of 0.5% of the samples which
is roughly 14 samples per leaf. We found that the results for the random forest slightly improve, but at
the cost of only 14 samples per leaf. While for gradient-boosting we a worse score with as many as 41
samples per leaf. In other words, we do not think that the 50 samples per leaf affected our results.

With regards to the hyperparameter tuning technique we oftentimes see that the differences between
scores obtained by the parallel and the incremental technique were small. As the first and maximum
techniques do gather different insights it makes sense to eliminate either the parallel or the incremen-
tal way. We decided to remove the incremental techniques as these cannot be searched in parallel and
therefore order of hyperparameters can influence results to a large extent. Furthermore, the incremental
techniques cannot be run in parallel which makes them more time consuming. Besides the first-parallel
and the maximum-parallel technique the random technique is kept. In this way there still is an element
of incremental and the technique leads to refreshing insights which can be useful.

With regards to an optimal history size the image is more clear. The step from no history to a history
of one gives the biggest score improvement. Together with the fact that the lower the history size the
more data is kept, the optimal history size is one. Besides that, also the dataset without history is kept
which will be used as ground-truth.

In conclusion, for the other non-linear models in this research we only apply the first-parallel, maxi-
mumparallel and the random technique to the datasets without history and with one row of history.

H0
Train 47.55

0.98
Test 88.52

0.97
Validation 48.57

0.98

Table 6.9: [Trees] best model scores (upper MSE, lower R2)
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Best model

The best performing tree-based model obtained was the gradient boosting model with dataset H0 based
on a random hyperparameter tuning technique. For this reason we want to gain more insight into this
model. First, we start by displaying not only the test scores, as seen before, but also the scores obtained
for training and validation. The scores can be found in table 6.9. What strikes is that the test score
obtained is quite a bit lower than the scores obtained for training and validation. We also applied the
random tuning technique to another dataset that was prepared in the same way. Here we got even more
promising results with an MSE for training, testing and validation of respectively 3.64, 11.61, and 7.65.
To see whether the model actually has a good fit we also made the actual versus predicted plots for the
validation set. These can be found in figure 6.9. We see that the predictions mostly follow the line,
however there are also a number of data points that are quite far from the line. But as the line plot
nicely shows, mostly the trends and heights are predicted quite good.

Figure 6.9: [Trees] best model: actual versus predicted outcome

To gain more insight into our selected gradient-boosting model a contour plot is created. Normally a
contour plot is created for models with only two features, however in this case our model consists of
three features. To be able to visualise it anyway, we use a constant value for one of the features. In
figure 6.10 feature two is set to a constant value of 0.0, while the other two features vary over their whole
range. In the left image the colour of the dots is as they should be with a correct prediction, while the
background colour in the right plot displays the colours as the model would predict. The contour plots
with variating constant values and variating features can be found in appendix I. However, the image
as on the left and the datapoints are not included in those figures as normally the chances are low that
datapoints actually have the exact value of the constant.

The tree-based model seems to be able to cope with the upper and lower cluster, however it strug-
gles with the middle one. However, one has to take into account that this image only displays one slice
of the whole model and the image only contains a fraction of all data points. In the previous figures
we often saw that models have difficulties coping with the boundary values. As 0.0 is a lower boundary
value for feature two, it is important to note that a lack of fit on this image does not mean that the
model does not perform well. For the purpose of saying anything about the performance of the model it
is better to refer back to the MSE and R2-scores as stated in table 6.9.
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Figure 6.10: [Boosting trees] contour plots

6.4 Support vector regression

Support vector regression is, besides neural networks, the model most often used in related work for the
creation of an emission model. Whereas other studies often combined support vector regression with
least-squares and genetic algorithms, we test support vector regression in this research with a grid search.
The implementation of the SVR as used in this research can be found in the method section and results
will be discussed thereafter.

6.4.1 Methods
Whether a support vector regressor (SVR) is linear or non-linear depends on the kernel. As established by
the tree-based methods, we test with the datasets H0 and H1 and the hyperparameter tuning techniques
that are done in parallel and at random. Furthermore, every model is done with all features as well as the
selected features. For the implementation of a SVR we utilise the implementation from sklearn [56]. Just
as with linear regression, the features need to be scaled. The scaling is done again with a StandardScaler.

C 2x with x: min=-4, max=7, step=1
Epsilon (ε) min=0.025, max=0.5, step=0.025
Degree min=1, max=10, step=1

Table 6.10: SVR hyperparameters

In table 6.10 the possible hyperparameter values are stated. However, the kernel, also a hyperparameter
of a SVR, is not mentioned in this table. This is due to the fact that we use the kernels to distinguish
between the different SVR models. The linear kernel is tested alongside three non-linear kernels, namely
the sigmoid, polynomial and RBF kernel. For all these kernels we set two other hyperparameters: C
and ε. The first mentioned, C, is a regularisation parameter. A good C value can be found by searching
an exponentially growing series [67]. However, the larger the value of C the more likely one is to overfit
the model. The standard value for C in the sklearn implementation is one, but oftentimes grids are
tested with values up to 1000. In this research the maximum value is restricted at 128, while also testing
multiple values below one. The values are established by a power series with two as ground number.
The epsilon is known as the error sensitivity parameter and determines the number of support vector in
a model. This parameter can have any number bigger than zero. In this case a lower value yields to a
higher chance of overfitting. The standard value as given by sklearn is 0.1. In this case the values are
0.025 higher each times and they range till 0.5. Besides C and epsilon there is also a hyperparameter
called degree mentioned in the table. This hyperparameter is only taken into account for the SVRs with



6.4. Support vector regression 72

a polynomial kernel. It specifies the degree of the polynomial kernel function. The standard value of
sklearn is three, but in this research the grid ranches between one and 10.

6.4.2 Results

First-
Parallel

Maximum-
Parallel Random

H0

305.52
0.89

305.03
0.89

302.36
0.89

280.03
0.90

280.03
0.90

304.21
0.89

H1

304.21
0.89

304.21
0.89

304.46
0.89

280.83
0.90

281.15
0.90

280.83
0.90

All features
Three selected features [F_1, F_2, F_10]

(a) Linear

First-
Parallel

Maximum-
Parallel Random

H0

645.92
0.78

643.76
0.78

644.08
0.78

439.27
0.85

438.64
0.85

438.54
0.85

H1

644.38
0.78

642.37
0.78

642.37
0.78

433.28
0.85

431.01
0.85

432.09
0.85

All features
Three selected features [F_1, F_2, F_10]

(b) Sigmoid

Table 6.11: [SVR] scores for linear and sigmoid kernel (upper MSE, lower R2)

The results of SVR with a linear kernel can be found in table 6.11a. The results for both H0 and H1
are comparable. Furthermore, it strikes that for all hyperparameter tuning techniques the models with
a limited number of features perform better. Although not present in the tables, we see a same trend as
we saw for the linear regression. Whenever the historical target is included into dataset H1, the MSE
has a perfect MSE score of 0.0. However, when looking into the importance of the historical target, we
also see here that the model with H1 relies heavily on this historical target. As we concluded in our
linear regression section, this regression method does not seem the best fit for our research. Therefore,
SVRs with linear kernels are not discussed any further in this research.
The scores obtained for the SVRs with sigmoid kernel can be found in table 6.11b. The sigmoid kernel
retrieves higher MSE scores than the ones we have seen for the linear kernel. However, just like with the
linear kernel, we see that the models with a selected number of features performs better than the ones with
all features included. The results from this model are quite moderate and also the different plots do not
seem to indicate new insight. For this reason the SVR with sigmoid kernels are not discussed any further.

First-
Parallel

Maximum-
Parallel Random

H0

342.46
0.88

344.10
0.88

302.81
0.90

331.88
0.89

331.59
0.89

280.55
0.90

H1

348.03
0.88

348.91
0.88

304.44
0.89

339.65
0.88

339.69
0.88

281.44
0.90

All features
Three selected features [F_1, F_2, F_10]

(a) Polynomial

First-
Parallel

Maximum-
Parallel Random

H0

1625.70
0.43

126.00
0.96

125.99
0.96

1588.86
0.45

111.48
0.96

111.36
0.96

H1

1668.27
0.42

130.46
0.95

141.02
0.95

1631.48
0.44

112.46
0.96

108.03
0.96

All features
Three selected features [F_1, F_2, F_10]

(b) RBF

Table 6.12: [SVR] scores for polynomial and RBF kernel (upper MSE, lower R2)

Our next kernel tested is the polynomial one. Scores obtained can be found in table 6.12a. The SVRs
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with polynomial kernels based on H0 and H1 retrieve comparable scores for all features as it does for the
limited number of features. However, also the results of this kernel do not show something new and the
results are quite average. For this reason also results from these models are not highlighted any further.

Figure 6.11: [SVR RBF ] actual versus predicted outcome

The last kernel tested is the RBF kernel. Results of this kernel can be found in table 6.12b. For both
the datasets the first-parallel hyperparameter tuning technique seems to struggle with finding proper
hyperparameter values. If dataset H1 would include the historical target, this kernel performs really well
with MSE score between one and two. All scores for the datasets with historical target can be found
in appendix H. However, in the current situation the retrieved scores by the maximum and random
hyperparameter tuning technique are still good. The best score is obtained by the model trained on H1
with the random hyperparameter tuning technique. In figure 6.11 we see the actual versus predicted plot
from this model. Although this model seems to struggle with the boundary cases, the line plot indicates
that the height is less of a problem for this model. Although the SVR with RBF kernel based on H1
achieved the best score, the same SVR based on H0 was not that far off.

In conclusion, the random hyperparameter tuning technique seems to perform best. In almost all sce-
narios this was this technique resulted in the best performing models. Besides that, the score does not
seem to improve from the usage of another dataset. As the results of SVRs with RBF kernel of H0 and
H1 with random hypertuning technique were really close, both will be considered as best model. Based
on their performance on the validation set one of this models is chosen to give more in-depth insight
into.

Best Model

Normally one best model is selected to gain deeper insight knowledge in. However, the results of the
SVR-rbf with random technique based on H0 and H1 both get good results. The model based on H1
performs slightly better, however the model based on H0 is less complex as it has less feature inputs.
The model based on H0 only consists of three features, while the one based on H1 consists of six. For

H0 H1
Train 96.73

0.97
83.06
0.97

Test 111.36
0.96

108.03
0.96

Validation 35.40
0.99

36.52
0.99

Table 6.13: [SVR] best model scores (upper MSE, lower R2)
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this reason we calculated the train, test and validation scores here for both of them. The results can be
found in table 6.13. As we can see the model based on H1 indeed retrieves a slightly better score for the
test set, however the model based on H0 retrieves a slightly higher score on the validation set. As the
difference are negligible, we prefer the simpler model. Therefore, the best SVR model is the one with an
RBF kernel and hyperparameters based on the random technique and the use of dataset H0. We also
applied the random technique to another dataset that was prepared in the same way. Also here we got
promising results with an MSE for training, testing and validation of respectively 23.88, 155.68 and 20.17.

Figure 6.12: [SVR] best model: actual versus predicted outcome

The next step is to get the actual versus predicted plot for the validation set. The outcome can be found
in figure 6.12. From this figure it becomes clear that the SVR model is also able to cope with the lower
and higher values in the range. Also the line plot on the right nicely shows how trends are followed. To
say something about the predictive power of this model in a broader sense also the contour plots are
printed. With each time one feature as slice, while the other features have values all over the range. All
contour plot figures can be found in appendix I. In figure 6.13 we see the slice where feature two is set
to 0.00 and the other are variable. On the left the datapoints have the colours as desired, while on the
right the background color indicates the identification as the SVR does. The model seems to be able
to cope with the high emission values, however its the low emission values where the model struggles.
This is especially clearly visible by the lack of dark blue in the contour plot. However with regards to
the upper and lower cluster the SVR seems to follow the trends quite all right. However, it is important
to keep in mind that the training points visualised here, are only a small part of the dataset. Value 0.0
for feature two is a boundary value and therefore it makes sense that the model would struggle with
the identification. However, as relatively many data points had this value it seemed like a good slice to
highlight.
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Figure 6.13: [SVR] contour plot of best SVR model with F_2 is 0.0

6.5 Neural Networks

Neural networks are used by the current software to create the emission models. The hyperparameter
tuning techniques as we have seen before could not be applied to the neural networks, therefore a new
way of finding the appropriate hyperparameters is introduced in section 6.5.1. Furthermore, this section
describes how we divide the neural networks in different categories. Then in section 6.5.2 the results for
the numerous methods will be discussed.

6.5.1 Method
Also the neural networks benefit from the scaling of the features. Therefore, the features are once again
scaled with the aid of sklearns’ StandardScaler [56]. Also the possible hyperparameters have to be de-
fined, before the models can be trained. For the SVR and tree-based methods we used sklearn supported
search methods, however as the neural networks are build with keras [68] we will use the kerastuner [69].
The kerastuner also has the ability to apply a random search, so basically the hyperparameters are found
by the random technique as we have seen before. The scoring is still done with the aid of MSE. How-
ever, also the number of epochs had to be set. The random search has a limit of 200 epochs, however
whenever there is no progress in the last ten rounds the algorithm also aborts. The kerastuner is then
used to establish the values in their range for each of the in table 6.14 mentioned hyperparameters. The
activation function and the number of units both are applied to several layers of the neural networks,
whereas the other hyperparameters are to tune the Adam optimiser. Whenever the hyperparameters are
set, it is also important to set the number of epochs and the batch size. Based on some initial testing we
set the batch size to 50 and the number of epochs to 200. Also in this case the number of epochs actually
executed can be smaller as an early stopping mechanism is implemented again. Oftentimes the batch
size is set to 32, 64, 128 and so on [70]. Testing with multiple batch sizes between 4 and 128 learned
us that between 40 and 60 samples per batch gives us good results. As the interval is set to 50 for this
research, we decided to set the batch size to 50.

In this research we test two different types of neural networks. First, we test a normal artificial neural
network (ANN) and secondly a long-term short memory (LSTM) network. We haven chosen only to
implement an LSTM and not a recurrent neural network (RNN) as RNNs are known for their vanishing
gradient problem. For both types of neural networks, ANN and LSTM, distinctions will be made based
on the number of hidden layers that they consists of. The settings of the ANNs and LSTMs are kept
as similar as possible, so it is easy to compare them. We will test up to three hidden layers as we see
that related work usually has neural networks with one or two hidden layers [57, 71] and research shows
that four hidden layers are rarely used [72]. First a Simple model is build for the both of them. This
model does not rely on the keras tuner and simply consists of an input layer, output layer and the Adam
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Activation function linear, sigmoid, tanh, relu
Number of units min=1, max=50, step=1
Learning rate min=0.0001, max=0.005, step=0.0001
Beta 1 min=0.80, max=1.00, step=0.01
Beta 2 min=0.990, max=1.000, step=0.001
Epsilon min=1e-6, max=1e-8, step=1e-8
AMSgrad True, False

Table 6.14: Neural network hyperparameters

optimiser with standard settings. In case of the ANN this input layer consists of a dense layer with the
amount of features as input, while this dense layer is a LSTM laer in the LSTM models. Then the None
model stands for the fact that there is no hidden layer. Basically the model is similar to the Simple,
however in this case different hyperparameters are tested. The number of inputs is unchanged for the
ANN while the number of units in the LSTM input layer can differ between one and 50. Furthermore,
for both types multiple activation functions are tested and the various settings for the optimiser, as
written in table 6.14, are tested. Our next model is One, the settings for the input layer, output layer
and optimiser are similar as we have seen before. However, in this case a hidden layer is added between
the input and output layer. For both types of neural nets, this is a Dense layer that has between one
and 50 units and one of the optional activation functions. Furthermore, we also have the models Two
and Three. As one might guess these models consists of two and three hidden layers. All these layers
are established the same way as the first hidden layer initialised. To make sure the results are not just a
lucky strike, all the models are cross-validated five times. Just like we established for the tree-methods,
the ANN is executed for H0 and H1. However, as the LSTM is especially drafted for historical data,
these models are not only build on H0 and H1, but also on H2.

6.5.2 Results
This section will first discuss the results as obtained for the normal neural networks, ANNs. Next, it also
discussed the results as found for the LSTMs. As seen before a best model is also highlighted for the
neural networks. Lastly, the results section contains the scores obtained by the CEM software as this is
currently used by Emission Care.

ANN

In table 6.15 the scores can be found for the ANNs. It immediately strikes that the scores obtained
are lower than the ones we have seen before for the other models. However, how the different datasets
and feature selections score in relation to each other is comparable with what we have seen before. The

Simple None One Two Three

H0

640.26
0.78

742.55
0.74

416.72
0.85

589.47
0.79

376.10
0.87

434.03
0.85

435.20
0.85

461.02
0.84

338.75
0.88

366.35
0.87

H1

673.22
0.77

801.61
0.72

954.37
0.67

462.76
0.84

535.24
0.82

429.67
0.85

469.98
0.84

746.73
0.74

470.43
0.84

424.94
0.85

All features
Three selected features [F_1, F_2, F_10]

Table 6.15: [ANN ] scores (upper MSE, lower R2)
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Figure 6.14: [ANN ] actual versus predicted outcome

models Two and Three seem to be the only models with a MSE score below 400. To retrieve more
insight into their performance their actual versus predicted plots can be found in figure 6.14. Most of
the datapoints seem to dance around the line, however compared to the models seen before the range
from the line seems a bit bigger. This is also what strikes if we look at the line representation of the
actual versus predicted plot.

Simple None One Two Three

H0

550.91
0.81

403.55
0.86

521.36
0.82

419.71
0.85

366.11
0.87

377.71
0.87

343.01
0.88

369.75
0.87

386.63
0.87

290.24
0.90

H1

5759.36
-0.99

5805.44
-1.00

5637.02
-0.95

5632.62
-0.94

5891.43
-1.03

5298.35
-0.83

5793.55
-1.00

6261.98
-1.16

5755.09
-0.99

5728.40
-0.98

All features
Three selected features [F_1, F_2, F_10]

Table 6.16: [LSTM ] scores (upper MSE, lower R2)

LSTM

The scores retrieved for the LSTMs can be found in table 6.16. The LSTM models based on H0 are
comparable to the ANNs models based on H0, the only difference is in the input layer. However, the
LSTMs based on H0 seem to perform slightly better. But when we look at the models based on H1 we
see that the LSTMs perform poorly. To gain more insight we have into this, we printed the actual versus
predicted plot of model Three from both H0 and H1, the figures can be found in figure 6.15. The two
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upper figures represent the performance of model Three based on H0. We see that in the training set
the trends are followed quite good, but we already see quite some variation from the desired situation
in the test set. Also model Three based on H1 seems to have no problem to handle the training data.
However, when we look at the testing part, we see really big difference. It seems like peaks are predicted
too late or not even at all. Especially since the historical target is included in these models, one would
expect better results.

Figure 6.15: [LSTM ] actual versus predicted outcome

In conclusion, all neural networks tested perform less than we expected beforehand. None of the models
is able to predict with a certainty great enough that it could actually be put to use. As both the ANNs
and LSTMs obtain much better scores for training than they do for testing, it seems like the models
are overfitted. However, this is just a theory for now. As the results of the LSTMs are poorly and we
saw from previous models with the historical emission included that they heavily depended on that, we
decided to select ANN model Two as our best model.

Best model

H0
Train 132.88

0.96
Test 338.75

0.88
Validation 208.35

0.93

Table 6.17: [NN ] best model scores (upper MSE, lower R2)

ANN model Two is our best model, although the scores are not promising. However, we still found it
important to give insight into the neural networks as well. To give more insight the train, test and vali-
dation score can be found in table 6.17. Although the scores are not bad, we have definitely seen better
before. The same goes for the actual versus predicted plot of the validation set as shown in figure 6.16.
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There are still quite a lot of data points that have quite some deviation from the desired line. The same
is displayed by the line plot of the actual versus predicted plot. We also applied the kerastuner to model
Two for another dataset that was prepared in the same way. Also here we got promising results with an
MSE for training, testing and validation of respectively 7.11, 35.75 and 8.01.

Figure 6.16: [NN ] best model: actual versus predicted outcome

Next we also made a contour plot for this neural network. The result of this can be found in figure 6.17.
Once again we see that this model also fails to predict the lower emission values. Whereas the gradient
as we see in the lower and upper cluster seems to be present in the model. However, as said this is just
one slice. The fact that the model performs well on this particular slice, does not say anything about its
overall performance.

Figure 6.17: [NN ] contour plot of best neural network with F_2 is 0.0

CEM software

The CEM software currently used by Emission Care to model the emission are also neural network
based. To see how this software performs compares to the models implemented by us, the scores are
also included in this section. With regards to the original dataset we see that Emission Care developed
an emission model with four features from which one combined, whereas our emission model only has
three features. If we compare the R2-scores, respectively 0.970 and 0.971, we see that these are roughly
equal. This same trend is observed for the validation dataset. For this dataset the current model has
a selection of five features of which one composed versus only two features in our selection. And again
the R2-scores are quite close to another with respectively 0.973 and 0.985. What strikes, however, is the
fact that the neural networks in the CEM software achieve higher scores for the first dataset.



7 | Discussion
Normally one would discuss the results in this section, but much of the discussion is also already done in
the previous chapter as the methodology was adapted based on results found. However, in this chapter
we will focus more on the overall picture. We bring the separate parts together and also compare them
to the related work. First the data preparation is discussed and thereafter the various machine learning
models.

Data preparation

Much of the data pre-processing was already done by Emission Care. Although they also shared the
raw data, we used the pre-processed data for this research because we lack the field knowledge to do it
properly. However, we still had to cut the data in train, test, and validation sets and add the historical
columns. Normally, the validation set consists of the last time series measured rather than testing the
whole spectrum. However, in order to keep a scientific approach the train, test and validation were
decided to cover the whole spectrum. As one cannot test a model outside the train spectrum, the train
set therefore entails the most extreme values. The test set, on its turn, falls inside this range, and then
the validation set falls inside this range. This design decision also seems to be visible in our models. The
scores obtained for training are usually good as the model trains on it, however the test scores are usually
worse, while the test scores are often on the same level as the train scores. However, given the intention
to test most of the range, we still feel confident that this technique fits its purpose. This technique also
resulted in the fact that the first measured time series is part of the validation set. As the time series
component is normally ignored we feel that this should not cause any trouble.

Furthermore, the data still consisted of many features and a selection needed to be made. This selection
is to a great extent made based on the correlation among the features. However, it is difficult to say
whether this method holds for other datasets then the two tested in this research. In related work we
see that PCA is used, which shrinks the amount of features by essentially merging them together. Es-
sentially this keeps one still dependent on the same amount of sensors. However, we hoped to find PCA
components where one or two features would be really important, highlighting their usability. Unfortu-
nately, this was not the case. Another approach used by related research is the random forest, but here
we found that the random forest struggles favouring features whenever the correlation between them is
high. Furthermore, in this research we only focused on finding feature combinations based on linear and
monotonic relationships between features, however it might be that better feature combinations could be
suggested when also looking into other relationships between features. However, due to time constraints
we were not able to test this theory.

Keeping the amount of input features low is really important as the uncertainty of a PEMS not only
depends on the performance of the model, but also on the uncertainty of the sensors. In other words,
by keeping the amount of features limited, the model uncertainty is kept low. This is why our focus
was not only a good performance, but also a low number of features. Comparing our work to related
work already proves to be difficult as each research uses data from other gas turbines, but is made even
more complex due to number of input features used. In related work we oftentimes see large amount
of features that are used as input. This might have retrieved better scores in their situation, although
our research does not confirm this view, but makes their models unusable in practice. Comparing our
feature selection to Emission Cares’ selection also made us realise that too few features is also a pitfall as
the model is than too dependent on only a few sensors. No further attention has been paid to this issue
in this research, but when the algorithm is put to practice it is important to keep this given in mind.

Machine learning models

Although the linear regression models obtained quite reasonable scores, this models cannot be used by
the simple reason that they do not satisfy linear regression most important assumptions, namely that
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the data is linear. For this same reason the SVR with linear kernel is also not an option. Furthermore,
we tried to imitate the time series for the models by inserting historical columns. However, the resulting
models heavily relied on the historical target. This would mean that the emission model would base
most of its prediction on another prediction. This would enable the emission model to drift off which
is not desirable. Therefore, we decided to take the historical target out of the historical columns. The
downside of this decision is that the other sensors barely contribute if their target is unknown and this
is also what we see in the results for the tree-based methods, SVRs and neural networks.

The tree-based methods roughly obtained MSE scores between 80 and 190 for the test set. The MSE
scores are even as low as 1 when we would take the historical target into account. What strikes is that
the scores obtained for the decision trees are comparable to the ones obtained for the random forests.
However looking into there actual versus predicted plots has learned us that decision trees lack the finesse
for the details. The gradient boosting, on the other hand, is capable quite well of coping with the details
as well. This is also shown from the validation set where a MSE score below 50 was obtained and is
confirmed by its performance on the second dataset.

The SVRs have a lowest MSE score of 108, which makes the overall test scores of the SVR slightly
higher than the ones we have seen for the tree-based methods. However, when we apply validation set
to two of our best SVR models we see a MSE score below 40. Which would mean that the SVR actually
outperforms our best tree-based model. On the second dataset, however, the gradient boosting model
retrieves a better scoring. Also in related work SVR models often yield good results. A quick look at the
results learns us that our results seem quite comparable, however not much can be concluded as there
are too many differences between the studies.

The neural networks are a bit of a letdown. As many of the related studies use neural networks one ex-
pects the results to be, at least, at the same level as the tree-based methods and the SVRs. However, the
neural networks clearly perform less with a lowest MSE of roughly 366 for both the LSTM and the ANN.
The difference between the train and test score is much bigger for this model than for the others. This
might suggests that the neural networks are overfitted which would explain their lack of performance.
However, the implementation of all neural networks is also quite basic. So it might also be the lack of
steering. When the same feature combinations are used as input in the CEM software, which is also based
on neural networks, the scores obtained are comparable to those obtained by the gradient-boosting and
SVR model. This would suggest indeed the the lack of performance is (partly) due to our implementation.
Also one would expect good results for the LSTMs based on H1 and this models still have the historical
target as an input. However, the scores decrease rather than increase, which makes us to believe that
something went wrong in the implementation. The odd thing is that the results obtained with the ANN
for the second dataset are very promising and they are certainly not inferior to the results of the gradient
boosting and SVR model. However, as mentioned before, the second dataset is not examined really close.

The current contour plots display the whole range for the features, however normally certain feature
value combinations are not possible as it would be chemically impossible. A mask could be applied to
prevent confusion, however due to time-constraints this is not done in this research. The different natures
of the tree-based, SVR and NN model are nicely displayed in the contour plots. Although the contour
plots represent snapshots, the differences and similarties between the models are striking. The contour
plots have a circle like elegance when it comes to the SVR model, while the NN model contains more
straight lines. The tree-based model on the other hand, still seems to display some form of layers as we
earlier saw in the actual versus predicted plots. However, apart from these characteristics the trends we
observe seem to be roughly equal.



8 | Conclusions
During this research we aimed to answer our main research question: How can data-driven techniques
and machine learning be applied to support the creation of an emission model? However, before we can
answer this question first the answers to our research questions need to be answered. While answering
these questions we also discuss our achievements and future work.

RQ1: How can feature selection be applied to support the creation of an emission model?

For the feature selection we built a algorithm based on a combination of RFE and correlation among
features to come to a feature selection. As the algorithm lacks any knowledge with regards to the physics
of the process or the legislation, the algorithm cannot be used to feed recommendations to the emission
model on its own. However, as the algorithm provides insight into the data as well as suggestions with
regards to feature combinations, this tool can be used as a supporting tool in the current process. The
performance of the algorithm is tested on two datasets. In both datasets our algorithm came to a different
feature selection then Emission Care did. However, when we train the emission model with the CEM
software the scores obtained are roughly equal. This applies for both the datasets. This suggests that
algorithm is capable in cutting back time needed to develop an emission model.

RQ2: Based on existing literature, what machine learning techniques are good candidates to be
used for an emission model with time series input data?

Linear regression, tree-based algorithms, support vector regression and neural networks were identified
as possible emission models. With the exception of LSTMs all of the possible models are unable to deal
with time series. For all other models the time element was added through the usage of history columns.
Some first tests proved that using the historical target heavily influenced the performance of the model.
As this would give the model the opportunity to drift, the historical target was removed from the history
columns. The models based on data with the remaining history columns perform as well as the ones
without any history.

RQ3: Which machine learning technique is most suitable for an emission model in terms of un-
certainty, robustness and maintainability?

The most suitable emission model is not necessarily the one that obtains the best scores, but one that
performs well in terms of uncertainty, robustness and maintainability. In practice these three elements
are heavily dependent on the number of input features the model incorporates. We found that the linear
regression was not a good fit for an emission model. However, the other three techniques all got pretty
decent results. The neural networks as implemented in this research slightly under-performs compared
to the other methods. Whereas the gradient boosting and the support vector regression retrieve slightly
better, comparable scores. In our opinion they could therefore both be interesting for building emission
models. If we compare the scores of the SVR and tree-based to the current CEM software, which is
based on neural networks, we see that the scores are roughly the same, around a R2-score of 0.97.

M-RQ: How can data-driven techniques and machine learning be applied to support the creation
of an emission model?

The data-driven techniques are represented in the development of the feature selection algorithm. More
testing is required to prove the usability of the developed algorithm, but the results from the two datasets
applied in this research were very promising. If usability is proven this algorithm could be an ideal sup-
porting tool to cut back the amount of time spent on finding feature combinations and building the
corresponding emission models. In order to use the algorithm in practice the coming weeks an interface
will be designed. Another activity for future research would be the identification of more complex rela-
tionships among the features and the target. The algorithm as-is only identifies monotomic and linear
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relationships, while probably many other types of relationships are present among the features. Exposing
and utilising these relationships would possibly lead to a models with better predictive power.

With regards to the creation of an emission model we found that introducing a time-sense in the various
machine learning methods did not influence the results. However, for the models without time-sense we
found that gradient-boosting and SVR were the most suitable candidates. The SVR is already present
in a lot of related work, but we barely see the usage of tree-based algorithm. Given the strict regulation
it is difficult to judge whether tree-based methods would be acceptable as the outcome is based on a set
of questions rather than calculations. However, as the results are very promising the tree-based methods
could use more attention in future work.

The feature selection algorithm as developed for this research can be put to use as soon as the interface is
developed. With regards to the emission models we proved that adding a time-sense element to the data
does not improve the performance. Furthermore, we were not able to beat the scores retrieved by the
CEM software. In other words, the neural networks as currently used are still suitable to built PEMSs.
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E | Selected features plotted
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F | 3D plot feature view

Figure F.1: 3D plot from perspective of feature 1
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Figure F.2: 3D plot from perspective of feature 2

Figure F.3: 3D plot from perspective of feature 10



G | Visualisation of well-performing de-
cision trees
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Figure G.1: [DecisionTreeRegressor ] visualised tree for selected features based on H0
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Figure G.2: [DecisionTreeRegressor ] visualised tree for selected features based on H2



H | Historical target scores

First-
Parallel

First-
Increment

Maximum-
Parallel

Maximum-
Increment Random

H0

116.58
0.96

116.58
0.96

95.23
0.97

120.31
0.96

96.40
0.97

167.56
0.94

123.88
0.96

119.58
0.96

110.77
0.96

88.52
0.97

H1

6.10
1.00

5.76
1.00

8.56
1.00

8.22
1.00

8.07
1.00

4.95
1.00

4.95
1.00

5.59
1.00

4.39
1.00

8.51
1.00

H2

5.79
1.00

6.54
1.00

4.76
1.00

5.56
1.00

8.60
1.00

6.16
1.00

6.16
1.00

3.98
1.00

3.98
1.00

8.75
1.00

H3

6.33
1.00

6.33
1.00

5.82
1.00

9.87
1.00

8.67
1.00

7.47
1.00

7.47
1.00

5.83
1.00

4.88
1.00

9.55
1.00

H4

7.47
1.00

7.47
1.00

6.00
1.00

6.00
1.00

8.92
1.00

7.16
1.00

7.16
1.00

4.98
1.00

4.98
1.00

10.32
1.00

H5

8.89
1.00

8.69
1.00

7.26
1.00

7.01
1.00

9.53
1.00

8.84
1.00

8.44
1.00

6.59
1.00

6.28
1.00

10.69
1.00

All features
Three selected features [F_1, F_2, F_10]

Table H.1: [Boosting trees] scores (upper MSE, lower R2)

First-
Parallel

Maximum-
Parallel Random

H0

1625.70
0.43

126.00
0.96

126.00
0.96

1588.86
0.45

111.49
0.96

111.36
0.96

H1

1601.70
0.45

1.17
1.00

1.17
1.00

1.65
1.00

1.65
1.00

1.65
1.00

All features
Three selected features [F_1, F_2, F_10]

Table H.2: [SVR] scores for RBF kernel (upper MSE, lower R2)
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I | Contour plots of best model

Figure I.1: [Trees] best model contour plots F_1
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Figure I.2: [Trees] best model contour plots F_2
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Figure I.3: [Trees] best model contour plots F_10
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Figure I.4: [SVR] best model contour plots F_1
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Figure I.5: [SVR] best model contour plots F_2
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Figure I.6: [SVR] best model contour plots F_10
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Figure I.7: [Neural network ] best model contour plots F_1
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Figure I.8: [Neural network ] best model contour plots F_2
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Figure I.9: [Neural network ] best model contour plots F_10
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