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Management summary 
 
We perform this research as part of a bachelor thesis for the study program Industrial Engineering and 
Management, at the University of Twente. The research is conducted at an external company, which chose 
to remain anonymous and will be referred to as the manufacturer.    
 
Problem definition 
In our research the focus is on an assembly process at the manufacturer. The assembly process consists 
out of two stages, with at each stage a number of identical and parallel workstations. Each workstation  
has its own inventory spot, where there is space for one job. There are two buffers, one at the front of the 
process and one between stage 1 and stage 2. This type of process is known as a hybrid flow shop (or 
flexible flow shop).  
 
The problem that the manufacturer is facing, is having to flexibly switch the number of active workstations 

at each stage, as a result of starved or blocked workstations. This switching behavior leads to inefficiencies, 

resulting in the following choice of action problem:  

“There should be a decrease of 99% in unplanned switching of workers in the assembly line at the 

manufacturer.”  

To contribute to solving this action problem, we identify the following core problem:  
  
“Scheduling jobs to workstations takes place based on intuition, while we should make a decision based on 

available information.” 

Due to the stochastic processing times and release dates we choose to approach the problem with 

dynamic scheduling. This leads to the following research objective: 

“Propose a dynamic scheduling strategy for the assignment of jobs to workstations in the assembly line at 

the manufacturer.” 

Research method 
In a literature review we identify possible strategies for scheduling jobs to workstations at the assembly 
line. We make a selection of the most relevant strategies and use discrete event simulation to compare 
them. We use a total of 8 KPIs to compare the strategies. The two most important KPIs are the maximum 
tardiness and the makespan. The second most important two KPIs are the average tardiness and the 
percentage of late jobs. The least  important KPIs are the average throughput time, average flow time, the 
number of blocks, and the number of starvations. 
 
We use a total of 4 simulation experiments. In experiment 1 and 2 we find out the scores on KPIs of the 
dispatching rules. In experiment 3 we investigate the effects of decreasing the variability in deviations 
from estimated and actual completion times. In the last experiment, we investigate the effects of using 
different dispatching rules at stage 1 and stage 2.  
 
Results 
Based on literature, we identify that an event driven policy, using complete rescheduling, is the most 
suitable strategy. This means every time there is a new job arrival at one of the buffers or a workstation 
becomes empty, a new schedule is constructed. The most suitable method to construct a schedule, for the 
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assembly line at the manufacturer, is using dispatching rules. The main results of the comparison of 
dispatching rules are shown in Table 1.  
 
Table 1: Averages on KPIs from experiment 1, with colors indicating the relative performance. 

KPI EDD MS FCFS ATC PT+SL SPT Random 

Makespan 703,98 667,00 716,81 739,61 764,88 796,88 718,02 

Max tardiness 274,86 239,18 300,78 317,77 353,11 590,66 439,36 

Avg tardiness 39,60 83,76 41,26 50,43 42,66 41,21 61,56 

Percentage late 49,78% 86,12% 40,73% 75,22% 29,91% 26,72% 42,07% 

Avg throughput time 105,88 119,78 105,98 119,91 114,32 114,41 107,66 

Avg flowtime 244,85 314,75 227,35 279,13 191,20 178,82 231,49 

Nr of blocks 0,05 8,35 0,35 1,95 6,65 7 0,35 

Nr of starvations 62,00 44,50 64,35 32,00 61,85 48 58,95 

 
The comparison of dispatching rules shows that EDD and FCFS outperform the other dispatching rules in 
most KPIs. MS performs best on the most important KPIs, the makespan and maximum tardiness. While 
the random rule scores roughly average on most KPIs, the variance of the KPIs are high, making the random 
rule less robust.  
 
The result of experiment 3, where we investigated the effects of variability in completion times, shows 
that are no significant changes in relative performance, when comparing to the results of experiment 1. 
Experiment 4 shows that using different dispatching rules at stage 1 and stage 2 does not have a significant 
effect on the performance on KPIs. 
 
Conclusion and recommendations 
From the experiments we can conclude that the EDD rule and the FCFS rule has the best overall 
performance. However, the MS rule scores the best in the two most important KPIs, the maximum 
tardiness and the makespan. The SPT is only a good option for achieving low throughput times, flow times 
and percentage of late jobs. The PT+SL shows a good score in percentage of late jobs and a decent overall 
score, but is generally outperformed by the EDD and FCFS when it comes to overall scores. The ATC is by 
far the worst rule.  
 
We recommend to use an event driven policy, with complete rescheduling. For the method of constructing 
a schedule we recommend the MS rule. While the MS rule scores relatively poor in the average tardiness, 
the percentage of late jobs, the average throughput time and the average flowtime, we still recommend 
this option due to its superior performance in the most important KPIs. The expected improvement of 
makespan is 5,3% in comparison to EDD, 7,0% in comparison to FCFS, and 7,1% in comparison to the 
random rule. The expected improvement of the maximum tardiness is 13,0% in comparison to EDD, 20,5% 
in comparison to FCFS, and 45,6% in comparison with the random rule.  
 
Because of the timeframe of this research, we recommend the manufacturer to perform more tests on 
suitable methods for constructing a schedule. Specifically, we recommend to collect more input data for 
the simulation model, and testing more dispatching rules.  
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1. Introduction 
 
In the first chapter, we give an introduction to our research. Starting with an introduction to the problem 
owner, in Section 1.1. Then in Section 1.2 we give a brief context description. Lastly, in Section 1.3 we 
explain the research objective, research questions, and the research approach.   
 

1.1 Introduction to the manufacturer 
The problem owner of the problem that is presented in this research is an external company, at which we 
conducted our research. The company chose to remain anonymous, for that reason we refer to this 
company as the manufacturer.  
 

1.2 Context description 
The assignment proposed by the manufacturer for this bachelor thesis was to develop a strategy for 
assigning products to workstations, also known as scheduling, in one of their assembly lines. This assembly 
line can be classified as a hybrid flow shop (HFS), with two consecutive stages. In this process, products 
are transported from a buffer to the first stage, where they are processed, and afterwards transported to 
the second stage. After stage 2 is finished, the products are transported outside of the process. The 
assembly line is discussed in detail in Section 2.1.  
 
The market the manufacturer operates in can be classified as “engineering to order”, meaning the 
customer specifies the details of the products before they are made. As a result, almost every product that 
is processed is different and usually workers have not worked with the specific product before. The variety 
of different products makes it challenging to estimate the completion times, as well as cause a lot of 
variability in completion times. Apart from variety of products, more factors that cause poor estimation 
and variability in completion times exist. An obvious factor is, in contrary with machines, the work rate of 
workers performing manual labor varies. Other causes are incorrect supply of material to workers and 
errors caused by workers. As a result, planning and scheduling are a challenging for the company. The 
choice of which product to process next influences the performance of the assembly line, resulting in a 
loss of efficiency and tardiness of jobs. For example, if several products with long processing times are 
assigned to workstations in stage 1 at the same time, then this can result in idle time at stage 2. This means 
the workers in stage 2 become idle, because the flow of products has stopped.   
 
The loss of efficiency and tardiness of jobs, is where the need of scheduling (sometimes referred to as 
sequencing) comes in. Scheduling is defined in the literature as the allocation of resources to jobs, on a 
certain time horizon, while optimizing one or more objectives (Pinedo M. , 1995). Scheduling activities 
typically result in a production schedule, containing information on when to process which product on 
which machine. An example of a schedule is given below, in Figure 1.  
 

 
Figure 1: Example of a schedule, where 8 jobs are scheduled on 3 machines. 
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However, classical scheduling methods cannot be applied directly in this case, because classical scheduling 
theory focusses on deterministic cases, relying on the assumption that process times and release dates 
etcetera are known beforehand. In this case we have stochastic process times and stochastic release dates, 
making a predetermined schedule unsuitable. Therefore, we have a need for dynamic scheduling, which 
is an area within scheduling theory that focusses on scheduling in stochastic environments.  
 
Right now, the company has no clear strategy when it comes to scheduling, meaning there has been little 
consideration on what an appropriate production sequence can be. Therefore, the manufacturer wants to 
know the possibilities of scheduling and what a suitable scheduling strategy would be for them.  
 

1.3 Research approach 
In this section, we explain the approach we used during this research by stating the research objective and 
research questions. An overview of the approach we used is given below, in Figure 2 
 

 
Figure 2: Overview of our research approach, with the objective, research questions and deliverables. 
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1.3.1 Research objective 
The main research objective is as follows:  
 
“Propose a dynamic scheduling strategy for the assignment of jobs to workstations in the assembly line at 

the manufacturer.” 

To achieve this goal, we have the following deliverables:  

1) A list of possible dynamic scheduling strategies, supported by existing theory. 
2) Simulation model for scheduling 
3) A selection of scheduling strategies scored on their performance, tested using a simulation model. 
 

1.3.2 Research questions 
To reach the research objective we divided our research into research questions. We use this section to 
explain each research question (RQ). 
 
1) What defines a suitable scheduling strategy for the assembly line at the manufacturer? 

The first RQ serves to define what a scheduling should like for the assembly line. We want answers to this 
question, because the wide availability of methods for approaching scheduling problems forces us to 
narrow down our search. To answer this question, we have divided RQ 1 into three sub questions. We 
answered these questions by using observations and interviews with stakeholders at the manufacturer. 
 

1a) What are the characteristics of the assembly line? 
 

Before making any decisions on scheduling strategies, we want to know the details of the assembly 
line. We answer this question in Section 2.1. 

 
1b) What are the KPIs of the assembly line? 
 
Before we can say anything about the suitability of a scheduling strategy, we need indicators that 
measure the performance of scheduling strategies. Having clear objectives helps us in narrowing 
down our search for potential scheduling strategies, as well as compare them on performance. 
We discuss the KPIs in Section 2.4.1. 
 
1c) What qualitative factors play a role in determining a scheduling strategy? 
 
Apart from quantified and easily measurable KPIs, qualitative factors also play a role in choosing a 
suitable scheduling strategy. We discuss them in Section 2.4.2 

 
2) What relevant dynamic scheduling strategies are available in literature? 
 
Using the answers from our first research question we perform literature research to give an overview of 
available methods for scheduling in a dynamic environment. From these available methods we make a 
selection of strategies that are most relevant to our needs.  
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3) How do the relevant scheduling strategies perform? 
 
After establishing a list of scheduling strategies that are worth investigating further, we use a simulation 
model of the assembly line to compare the different strategies.  
 

3a) What are the scores of the scheduling strategies on the KPIs? 
 
By answering this question we can make a distinction between the performance of different 
scheduling strategies, which helps us in determining what strategy is most suitable. The results 
are shown in Chapter 5. 
 
3b) What is the effect of variability in completion times on the KPIs? 
 
In addition to simulating the effects of different scheduling strategies on the performance of the 
assembly lines, we also want to gain insights on the impact of variability in completion times on 
the performance. For example, we want to know how more or less deviations from estimated 
completion times and actual completion times affect the scores of different scheduling strategies. 
We include this RQ, because the manufacturer aims to improve their predictions on completion 
times. Therefore, investigating these effects is relevant.  

 

1.3.3 Methodology 
In this research we follow the guidelines given in the Managerial Problem Solving Method (MPSM), a 
methodological approach often used in our field of study at the University of Twente.  
 
The MPSM consists of the following phases (Heerkens & Van Winden, 2017): 
 
1. Defining the problem 
2. Formulating the approach 
3. Analyzing the problem 
4. Formulating (alternative) solutions 
5. Choosing a solution 
6. Implementing the solution 
7. Evaluating the solution. 
 
Given the timeframe and scope of our research, we do not consider phase 6 and 7 in our research.  All 
other phases are visited during our research. In Section 2.2 and 2.3 we execute the definition of the 
problem. We then formulate the approach, which can be found in Section 1.3. Afterwards, the problem is 
analyzed throughout Chapter 2. Then we perform a literature review to formulate alternative solutions, in 
Chapter 3. Lastly, in Chapter 4 we explain the setup of our research experiments, and the results are given 
in Chapter 5, which form the basis for choosing a solution. 
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2 Context analysis 
 
In the second chapter, we analyze the context further. We provide a process description in Section 2.1. 
Then in Section 2.2, we provide an overview of the related problems and summarize them in a problem 
cluster. In Section 2.3 we state the problem in terms of a core problem and an action problem. In Section 
2.4 we define the relevant KPIs for the assembly line. In Section 2.5 we explain the research scope. We 
end the chapter by providing a conclusion, in Section 2.6. 
 

2.1 Process description 
In this section, we give an overview of the assembly line and elaborate on the different aspects of the 

assembly line.  

The assembly line consists of two stages, which we refer to as stage 1 and stage 2, with multiple parallel 
and identical workstations at each stage. Each workstation has its own inventory, where there is room for 
one job.  An overview of this process is given in Figure 3. In this process products are picked from a buffer, 
which we refer to as the front buffer, then transported to workstations at stage 1. When stage 1 is finished, 
jobs are brought to the next workstation where processing at stage 2 takes places. Both assembling 
operations are manually performed by workers. Between stage 1 and stage 2 there is a small opportunity 
for holding inventory. Note that there are two points at which we make a scheduling decisions. The first 
scheduling decision is at choosing a job at the front buffer, and the second is choosing a job at the 
intermediate buffer.  
 

 
Figure 3: Overview of the assembly line 

Processing times 
The processing times of the jobs are stochastic, meaning they are not known beforehand. Estimates on 
completion times are made based on properties of the jobs, such as size, weight, complexity etcetera. In 
addition, the jobs have different processing times at each stage. Normally, the processing times at stage 1 
are shorter than the processing times at stage 2. For this reason, the number of parallel workstations at 
stage 2 is higher than the number of parallel workstation at stage 1. Also, the processing times can vary a 
lot between jobs, from a couple of minutes to a couple of hours. Generally speaking, jobs that have a high 
processing time at stage 1, also have a high processing time at stage 2. More information on estimated 
and actual processing times is given in Appendix D: Input data, where we give an overview of the input 
data we used for our simulation model.  
 
Release dates 
The times at which jobs arrive at the front buffer, also known as release dates, are also stochastic. At the 
start of a working day a large portion of jobs are available for processing, which means they have a release 
date of 0. The rest of the jobs become gradually available over the day. Usually jobs are released in an 
interval of a few minutes.  
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Front buffer 
Released jobs are stored at the front buffer. On average, about 100 jobs are available at the front buffer. 
The jobs that are available in the buffer form the set of available jobs to schedule to workstations at stage 
1. 
 
Intermediate buffer 
Between stage 1 and stage 2 there is another opportunity to hold inventory and is used to maintain a high 
utilization of workers. When jobs are finished at stage 1, but the workstations at stage 2 are full, the jobs 
are first brought to this buffer. There is room for a maximum of 4 jobs at this buffer. The jobs that lie in 
the intermediate buffer form the set of available jobs to schedule to workstations at stage 2.  
 
Due dates 
The due dates of the jobs are based on planned departure times of  trucks where finished jobs are stored. 
Therefore, most due dates of jobs come in groups, based on the truck they need to be in. For example, a 
set of jobs have the same due date. For each truckload there are always a few exceptions, some jobs have 
a due date slightly earlier than the rest of the truckload, for loading purposes.  
 

2.2 Problem cluster 
In this section, we give an overview of related problems that the manufacturer is facing at the assembly 
line. Afterwards we visualize the problems using a problem cluster and filter out potential core problems 
and highlight the action problem we are facing. 
 
Blocking 
One of the main problems the company faces are capacity issues, resulting in both overuse and underuse 
of the capacity. Overuse causes blocking in between stage 1 and stage 2. This occurs when the workers at 
stage 2 have too much work to handle, blocking the flow of jobs in the process. This leads to an overflow 
of the inventory between the stages. Blocking is costly, because the inventory it creates takes up valuable 
space, as well as manpower to handle the inventory. Also, severe cases of blocking lead to loss of 
production, since stage 1 workers cannot proceed working. Lastly, the accumulation of inventory that 
blocking causes, leads to higher throughput times of jobs. High throughput times lead to costs from a 
finance standpoint, because we already paid for the materials of the products, but we do not get our 
money before we deliver the products to the customer. 
 
Starvation 
The assembly process also deals with underuse of capacity, in terms of starvation for stage 2 workers. 
Starvation that workstations in stage 2 become idle, in case stage 1 workers do not finish their work in 
time, and there is no inventory left between the stages. Starvation is also costly, because of a loss of 
utilization, and consequently production. Between blocking and starving, the risk of starvation is higher, 
because the number of stage 2 working stations is generally higher than the number of stage 1 stations. 
As a result, a poor scheduling decision at stage 1 can result in starvation. For example, if we have 4 stage 
1 workstations, and we schedule jobs with high processing times to each of them simultaneously, then 
stage 2 is very likely to suffer from starvation.   
 
Switching workforce 
The manufacturer solves the issues of blocking and starvation by switching workers reactively between 
different processes in the company, to maintain high utilization of workers. This switching behavior leads 
to inefficiencies, for starters the changeover times are high, also workers that are continuously switching 
make it harder to manage the processes effectively.  
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We should note that switching in itself can be useful, because it allows you to be flexible with your capacity. 
For example, if there are multiple jobs with high processing time that must go through the first stage, then 
temporarily increasing the capacity of stage 1 can be beneficial. However, in this case the switch is planned, 
in contrary to what happens in reality, where switching is used as a reaction to blocking or starving. 
Therefore, we introduce two kinds of switching, planned switching and unplanned switching, where only 
planned switching is wanted. At the moment switching takes place based on intuition.  
 
In Figure 4 the problem cluster is given, which relates the problems that we identified in a causal chain.  

 
Figure 4: Problem cluster 

2.3 Defining the problem 
In the upcoming section, we start by discussing the action problem, afterwards we identify the core 
problem.  
 
Action problem 
To systematically solve our problem, we define an action problem and a core problem. As Heerkens & Van 

Winden (2017) explains, an action problem is a management problem, formulated as the discrepancy 

between norm and reality. The action problem that we identified for our case is formulated as follows: 

“There should be a decrease of 99% in unplanned switching of workers in the assembly line at the 

manufacturer.” 

We realize this is an ambitious goal, and recognize that scheduling jobs to workstations alone will not solve 

this. However, the problem owner is striving to reach this goal. The scheduling strategy we provide should 

decrease the number of unplanned switches. In addition, the company is looking to implement more 

planned switches in the future, which can significantly decrease the number of planned switches as well. 
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The difference between a planned switch and an unplanned switch is whether you switch as a reaction, 

based on intuition, or switch in advance, based on the available information. 

Core problem 
The problem cluster in Figure 4 shows all problems that are connected to our action problem. The next 
step is to go back in the causal chain to find a core problem. We use the following rules of thumb in 
choosing a core problem (Heerkens & Van Winden, 2017). 

1) Make sure that all problems in the cluster are related to the other problems. Also, we have to 

make sure the problem exists.  

2) Potential core problems have no direct cause themselves.  

3) If we cannot influence the problem, then it cannot become a core problem. 

4) Choose the most important problem, one that has the greatest impact at the lowest cost. 

The core problem we choose is: 

“Scheduling jobs to workstations takes place based on intuition, while we should make a decision based on 

available information.” 

We explain the choice of our core problem in relation to the four conditions we mentioned. To ensure 

condition 1), we performed interviews and observation, and conclude that all problems exist and are 

related. Condition 2) is clearly fulfilled, because there is no direct cause to our core problem. Regarding 

condition 3), we are certain that we can influence our core problem, since we can provide a different 

scheduling strategy than the current one. One of the main reasons we choose scheduling is because it 

fulfills condition 4) quite well, namely the greatest impact at the lowest cost. We expect that providing a 

scheduling procedure based on scientific evidence is going to be an improvement on scheduling based on 

intuition.  

2.4 Performance indicators 
We use this section, to define the performance indicators of a scheduling strategy. Figure 5 contains an 
overview on the performance indicators we use. In Section 2.4.1 we start by defining quantitative KPIs and  
in Section 2.4.2 we define qualitative needs for a scheduling strategy. 

 
Figure 5: Overview of the KPIs and qualitative factors in determining a suitable scheduling strategy for the assembly process at the 
manufacturer. 
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2.4.1 Key performance indicators 
The main idea behind introducing a scheduling strategy at the manufacturer is that a proper choice of job 
assignment to workstations decreases the likelihood of having to switch reactively to blocking and starving. 
However, scheduling has an influence on more factors than only blocking and starving. For example, we 
could schedule our jobs in such a way that blocking and starving rarely occurs, but at the cost of not 
meeting our due dates. Therefore, we do not measure the performance of a scheduling strategy by the 
number of switches, or number of blocking and starving events, but we use performance indicators that 
capture the most important factors such as due dates and the time at which all jobs are completed. 
Combining these objectives should decrease intermediate inventory, and prevent blocking and starving to 
occur, while also keeping due dates in mind (Weng, Wei, & Fujimura, 2012).  
 
The first three KPIs capture the due dates aspect. The first KPI we introduce is the percentage of late jobs 
and is calculated as follows: 
 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑙𝑎𝑡𝑒 𝑗𝑜𝑏𝑠 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑢𝑒 𝑑𝑎𝑡𝑒𝑠 𝑛𝑜𝑡 𝑚𝑒𝑡

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑗𝑜𝑏𝑠 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑
 

 
Apart from wanting to know how many jobs are late, we want to know how much time they exceed their 
due dates. For example, if 20% of the jobs are late, but they are only late by 1 minute, then that would be 
better than 10% jobs that are late, but they are late by 1 hour. To capture this, we introduce the tardiness 
of a job, which is defined as max (0, 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 − 𝐷𝑢𝑒 𝑑𝑎𝑡𝑒), or in other words the number of 
time units the completion time of a job has exceeded its due date. We then calculate the second KPI in the 
following way: 
   

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑎𝑟𝑑𝑖𝑛𝑒𝑠𝑠 =  
𝑆𝑢𝑚 𝑜𝑓 𝑡𝑎𝑟𝑑𝑖𝑛𝑒𝑠𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑗𝑜𝑏𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑗𝑜𝑏𝑠 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑
 

 
Apart from the average, we are also interested in the maximum tardiness, as this becomes an important 
KPI because we are dealing with truckloads. For example, if all jobs in one truckload are on time, except 
for one job which is late for 3 hours, then all jobs of that truckload are late for 3 hours, since the truck 
cannot leave without all its jobs. We calculate the third KPI in the following way:  
 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑡𝑎𝑟𝑑𝑖𝑛𝑒𝑠𝑠 = 𝑚𝑎𝑥 (𝑇𝑎𝑟𝑑𝑖𝑛𝑒𝑠𝑠 𝑗𝑜𝑏 1, 𝑇𝑎𝑟𝑑𝑖𝑛𝑒𝑠𝑠 𝑗𝑜𝑏 2, … … , 𝑇𝑎𝑟𝑑𝑖𝑛𝑒𝑠𝑠 𝑗𝑜𝑏 𝑛)  
 
Apart from due date related objectives, we also have the objective of finishing all jobs as soon as 
possible. This objective is known as the makespan, and is defined as follows: 
 

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 =  max (𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑗𝑜𝑏 1, 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑗𝑜𝑏 2, … … , 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑗𝑜𝑏 𝑛) 
 
Which comes down to the latest completion time of all jobs, or the time at which all jobs are completed. 
 
The next two KPIs are of less importance than the first four, but instead give us more insights in what time 
jobs spend in the entire process. The next two KPIs are the average throughput time and the average 
flowtime.  
 
We define the throughput time of a job as the time between the moment the job arrives at stage 1 and 
the moment the job leaves the process after being processed at stage 2. We calculate the average 
throughput time in the following way: 
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𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑡𝑖𝑚𝑒 =  
𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑎𝑙𝑙 𝑗𝑜𝑏𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑗𝑜𝑏𝑠 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑
 

 
We define the flowtime as the time between a job is released and the moment a job leaves the process. 
We calculate the average flowtime as follows: 
 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑓𝑙𝑜𝑤𝑡𝑖𝑚𝑒 =  
𝑆𝑢𝑚 𝑜𝑓 𝑓𝑙𝑜𝑤𝑡𝑖𝑚𝑒 𝑜𝑓 𝑎𝑙𝑙 𝑗𝑜𝑏𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑗𝑜𝑏𝑠 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑
 

 
While we are still interested in this information, the actual outcome of these KPIs are less valuable in terms 
of performance, because a scheduling strategy with a high flowtime and throughput time can still perform 
well in terms of due dates and makespan, which are more important.   
 
The last two KPIs we measure are the number of blocks at stage 1 and the number of starvations at stage 
2. As mentioned before, blocking and starving are less important KPIs, since we do not care if there is 
blocking or starving, as long as this leads to good scores on more important KPIs. The reason we measure 
them is to gain more insights and because blocking and starving are related to our action problem of 
reducing the number of unplanned switches.  
 

2.4.2 Qualitative needs  
Apart from the KPIs we use, we also take into account some measurements for more qualitive 
performance of the different scheduling strategies. These measurements are no hard constraints, but 
instead they serve as guidelines to keep in the back of our minds when comparing different scheduling 
procedures. The aspects we discuss here mainly serve to improve the implementation of the scheduling 
strategy. 
 
Computation time 
An important aspect of a potential scheduling strategy is the computation time. As mentioned before, an 
optimal schedule would, in most cases, take too long to calculate, and therefore we use heuristics or 
simplifications to speed up the computation time. Also in our case at the manufacturer, computation time 
plays a big role, especially when we make use of dynamic scheduling, where new schedules are calculated 
on a regular basis. If, for example, we want to calculate a new schedule every 30 minutes, but calculating 
a new schedule already takes 40 minutes, then the schedule is of little use. Also, a schedule is based on 
the current state of the system. The larger the computation time, the more the current state of the 
assembly line has changed from the state at the moment we started computing. Within this trade-off 
between accuracy and computation time we are seeking to have an as accurate schedule as possible, 
within reasonable computation time.  
 
Intuitiveness 
Another factor influencing the rate of successful implementation is the intuitiveness of the scheduling 
strategy. Intuitiveness becomes a relevant subject, since there is a variety of complexity in existing 
scheduling methods. The higher the intuitiveness of the scheduling procedure, the higher the chances are 
of a successful implementation. The reason is that employees of different organizational layers, with 
different backgrounds, are going to be influenced by the scheduling procedure. Without trust in the 
scheduling strategy, employees might question the outcome, resulting in resistance from employees.  
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Applicability to other processes 
The last factor that we include is applicability to different processes, which comes down to what extent 
the scheduling procedure (or parts of) can be used for different processes as well. For example, a 
scheduling strategy can be tailored to only one type of process, but a scheduling procedure can also be 
more general and applicable to multiple processes. Again, this is no hard constraint, but only serves as a 
guideline. If, for example, a scheduling procedure with low applicability to other processes performs 
exceptionally well, then we can still choose it over others.   
 

2.5 Scope 
Due to the limited time available for our research, we have to define our scope. The scope that we consider 
in our research is scheduling jobs to workstations in the assembly line at the manufacturer. We do not 
consider other processes at the manufacturer, or processes outside the manufacturer. Also, we limit our 
tests in the simulation model to a small set of scheduling strategies, because the time frame does not allow 
testing a wider range of strategies. In addition, many related topics such as workforce balancing or 
transportation utilization are relevant for the performance of the assembly line, but for simplicity reasons, 
we do not incorporate them into our research.  
 

2.6 Conclusion 
 
In this chapter, we answered RQ 1:“What defines a suitable scheduling strategy for the assembly line at 

the manufacturer? In Section 2.1 we started with answering the first sub research question: “What are the 

characteristics of the assembly line?” We answered this question by providing an overview of the assembly 

line and listed the characteristics afterwards.  

 
In Section 2.2 we provided an overview of all related problems in a problem cluster. Based on the problem 

cluster, we determine an action problem and a core problem, in Section 2.3.  We chose our action problem 

to be: “There should be a decrease of 99% in unplanned switching of workers in the assembly line at the 

manufacturer.” Afterwards we chose a core problem: “Scheduling jobs to workstations takes place based 

on intuition, while we should make a decision based on available information.”  

We used Section 2.4 to answer the remaining two sub questions of RQ 1. In Section 2.4.1 we gave answer 
to RQ 1B: “What are the KPIs of the assembly line?”  A total of 8 KPIs were formed, from which the 
maximum tardiness and the makespan are the most important. Less important are the average tardiness 
and the percentage of late jobs. The least important KPIs are the average throughput time and the average 
flow time, and the number of blocks and starvations. In Section 2.4.2 we answer RQ 1C: “What qualitative 
factors play a role in determining a scheduling strategy?” We recognized intuitiveness, computation time 
and applicability on different processes as the qualitative factors.  
 
In Section 2.5 we set out the scope of our research. 
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3 Literature review 
 
In Chapter 3, we answer RQ 2, in which we are looking for relevant scheduling strategies in the literature. 
We start in Section 3.1 by explaining the theoretical framework that is used during this research. In Section 
3.2 we provide general approaches that the literature provides. In Section 3.3 we provide an overview of 
available methods for constructing schedules. We use the last section of this chapter, Section 3.4, to 
provide a conclusion on the literature review.  
 

3.1 Theoretical framework 
In the following section, we establish a theoretical framework in which we define the relevant concepts 
related to dynamic scheduling.  
 

3.1.1 Hybrid flow shop scheduling problem 
As mentioned before scheduling is known as assigning jobs to resources, in such a way that one or more 
objectives are minimized or maximized. The hybrid flow shop scheduling problem (HFSP) is defined in the 
following way (Fernandez-Viagas & Framinan, 2020):  
 
We consider a set of jobs 𝑁 = {1, … , 𝑛} that are processed in a set of stages 𝑆 = {1, … . 𝑠}. Each stage 𝑖 ∈
{1, … 𝑠} has 𝑚𝑖 identical parallel machines. The processing time of each job 𝑗 ∈ {1, … , 𝑛} on a machine of 
stage 𝑖 ∈ {1, … 𝑠} is given by 𝑝𝑖𝑗. In addition, all jobs follow the same sequence of stages, and machines 

can only handle one job at a time. Regarding set up times, we either neglect them, or incorporate them 
into the processing times. We denote the completion time of job 𝑗 ∈ {1, … , 𝑛} in stage 𝑖 ∈ {1, … 𝑠} by 𝐶𝑖𝑗.  

 

3.1.2 Conceptual model 
As part of our theoretical framework we define concepts that are relevant to dynamic scheduling. An 
overview of the concepts is given in a conceptual model, shown in Figure 6. 
 

 
Figure 6: Conceptual model of dynamic scheduling. 
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Dynamic events 
The main difference between dynamic scheduling and classical scheduling is the presence of dynamic 
events. The events that are related to dynamic scheduling can be classified into two categories: job-related 
and resource related (Chen, et al., 2019).  Examples of job related events are changes in due dates, 
completion times, or emergency jobs. Resource related examples are breakdowns of machines or operator 
illness.  
 
Rescheduling 
To cope with the dynamic events, rescheduling is often used. The literature provides two main 
rescheduling methods, namely schedule repair and complete rescheduling (Ouelhadj & Petrovic, 2009).  
 
Rescheduling strategy 
The frequency at which rescheduling takes place is often referred to as the rescheduling strategy, in which 
three main strategies can be identified. The first strategy is periodic rescheduling, which divides the 
dynamic problem into sub problems that can be considered as regular scheduling problems (Chen, et al., 
2019). The period determines the frequency of which a deterministic schedule is updated. Another 
strategy is event driven scheduling. An example is multi-agent based dynamic scheduling (Shi, Guo, & Song, 
2019), this approach updates a schedule when disruption events occur. The last type of strategy is a hybrid 
between the first two strategies, where the schedule is either updated on a periodic basis, or if significant 
disruptions have taken place.  
 
Scheduling algorithms 
Solving the HFS dynamic scheduling problem is done by either an exact algorithm or a heuristic (Weng, 
Wei, & Fujimura, 2012). Exact solutions are proven to be strongly NP-hard, meaning computation time 
takes considerable time. Therefore, heuristics are often used in practice. Heuristics are efficient models 
that find near-optimal solutions within reasonable computation time.    
 
Objectives 
The goal of dynamic scheduling is to find the optimal schedule according to one or more objectives. Typical 
objectives that occur in a HFS are related to due dates, earliness and tardiness (Weng, Wei, & Fujimura, 
2012).  In addition, efficiency related are often included as an objective, like minimizing the makespan.  
 

3.2 General approach to dynamic scheduling 
In this section, we elaborate on the theory on dynamic scheduling in a HFS, based on literature. We start 
by mentioning a couple of general points regarding dynamic scheduling. Afterwards, we distinguish three 
general approaches to handling stochastic factors in scheduling. Next, we explain the difference between 
complete rescheduling and scheduling repair, which are the two main ways to handle the HFSP. 

 
General points on dynamic scheduling 
While elegant mathematics and algorithms exist to solve classical scheduling problems in simple machine 
environments, the complexity quickly rises when considering more complex machine environments, such 
as the HFS (Pinedo M. L., 2016). Solving the deterministic case of the HFSP is proven to be strongly NP-
hard, making exact solutions not a viable option, as their computation time is very high. In the stochastic 
case this complexity only rises. The literature agrees that a gap exist between theory and practice. Pinedo 
(2016) argues that the gap exists, because the simplistic models used in theory are usually very different 
than the complex manufacturing systems in practice. He gives a variety of reasons, from which we list a 
few that are relevant when we apply theory to our case at the assembly line: 
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1) Theory often assumes that all jobs to be scheduled are known beforehand, while in reality jobs 

often become available continuously, subject to some degree of randomness. 
2) A lot of theory does not emphasize on rescheduling, neglecting the fact that revision of a schedule 

might be beneficial, due to stochastic events. 
3) Real manufacturing systems differ a lot from theoretical models, specifically real manufacturing 

systems have more restrictions than literature takes into account. 
4) Most theory does not take into account that machine availability changes over time. 
5) Stochastic models that are used in literature have specific assumptions. For example, some models 

assume that processing times have an exponential distribution. However, in reality processing 
time usually do not follow exponential distributions. 

6) Processing time of jobs of the same type have the possibility of changing, due to learning curves, 
while the theoretical models often assume the processing times to be fixed. 

7) In practice often seemingly cruel approaches are used for solving scheduling problems. Since the 
more randomness the process contains, the less sophisticated methods are applicable.  

 
On the bright side, Pinedo (2016) states that time spend on theory was not wasted, because a lot of the 
methods that try to cope with dynamic environments are based on the theory that has been developed. 
In addition, he mentions that successfully applying scheduling theory to practice often requires a mix of 
the theoretical models and methods.   
 
One of the gaps of existing research on dynamic scheduling is that it tends to focus on only one dynamic 
event (Peng, et al., 2019). For example, a research often takes into account only machine breakdowns, 
neglecting the fact that more dynamic events occur. Furthermore, a lot of research tends to use probability 
theory and fuzzy logic, but therefore lacks to cope with reacting to real-time events (Qin, Zhang, & Song, 
2018). In addition, they mention that the research that does try to cope with reacting to real time events 
tends to focus on one dynamic event, mostly random job arrivals, rush jobs or machine breakdowns. This 
leaves uncertain processing times in dynamic scheduling still a comparatively limited subject.  
 
Approaches to solving dynamic scheduling problems  
The dynamic events that cause the need for revision of a schedule are dealt with by three major 
rescheduling strategies (Chen, et al., 2019), which are event driven, periodic and hybrid strategies. In most 
methods the dynamic scheduling problem is divided into static subproblems, as they are known in classical 
scheduling theory. In event driven strategies (sometimes referred to as online scheduling), every time an 
event occurs (e.g., a workstation completed a job), rescheduling takes places. This strategy is likely to give 
the best performance, however computation time can be a problem, because events can occur frequently. 
The second strategy, the periodic strategy, makes a new schedule every fixed period of time. The new 
schedule is executed until the end of the period, at which a new schedule is made. The last strategy is 
called the hybrid strategy, this strategy is a mix between periodic and event driven scheduling. An example 
of a hybrid strategy is that a new schedule is determined every fixed period, or earlier if major events 
causes the state of the system to change significantly.  
 
With one of the challenges in applying scheduling theory in practice being that every process is completely 
different, it is not clear which of the three methods is the best for the assembly line at the manufacturer. 
One could argue that event driven scheduling might be necessary due to the high presence of stochasticity, 
but an immediate counter argument would be the threat of high computation time. However, the 
relatively high processing times of the jobs mean that the time between events is relatively high as well. 
This makes event driven scheduling an interesting option to investigate further. Also, the hybrid option is 
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interesting, since a revision of the schedule might only lead to significant improvements if unforeseen 
events have taken place. The periodic approach is the simplest and would perform the best in terms of 
computation time and is easier to implement, however the threat exists that performance goes down in 
case of unforeseen events between periods of rescheduling. While exploring other options can be 
interesting for further research, we choose to only include event driven rescheduling in the simulation 
study. The main reason is the high presence of stochastic factors, as well as the fast computation time of 
the chosen scheduling algorithms, make the event driven strategy the most promising.  
 
Rescheduling strategies 
Once you have decided on how often you want to revise your schedule, a rescheduling strategy has to be 
chosen. The literature provides two main strategies, namely schedule repair and complete rescheduling 
(Ouelhadj & Petrovic, 2009). The schedule repair strategy applies local adjustments to the current 
schedule, based on the new information about the state of the system. These minor adjustments have two 
benefits, namely saving computation time and causing minimal disruption to the entire system. Disruption 
to the system can in some cases be relevant, if for example, a schedule for the entire day is used for 
different planning activities as well. Significant deviations from the initial schedule can result on negative 
implications on other planning activities.  However, schedule repair does come at the cost of performance.  
 
A common strategy that uses schedule repair is robust scheduling. In a paper that focusses on unknown 
release dates of jobs a robust scheduling strategy, using a hybrid approach, is proposed (Jianyu, et al., 
2020). This paper predetermines a forecast of the job releases for a longer period of time, and makes a 
schedule based on the forecast. As the time elapses, they update the schedule if the actual job releases 
cause large deviations between the forecasted release dates and the actual release dates. When updating, 
minimizing the changes from the original proposed schedule is a part of the objective function.  
 
The other strategy Ouelhadj & Petrovic (2009) mentions is complete rescheduling, which calculates an 
entire new schedule from scratch. While this can take significantly more time to compute and disrupts the 
entire system, the results should be better than using schedule repair.  
 
In our case, schedule repair is less interesting, for a couple of reasons. First of all, we do not consider 
disruptions of an initial schedule to be of great importance. Secondly, with the high presence of 
stochasticity, an initial schedule is most likely to be inaccurate after processing times turn out to be 
different than expected. While schedule repair is interesting in terms of saving computation time, we think 
that the loss in performance makes schedule repair less interesting. This leaves us with the option of 
complete rescheduling, which is in addition to the mentioned downsides of schedule repair, also more 
applicable to the assembly line at the manufacturer, because complete rescheduling handles the changes 
in division of workforce more easily.  
 

3.3 Overview of solving methods 
In this section, we provide an overview of available scheduling algorithms for solving the HFSP, that can 
be applied within one or more of the approaches. For each of the methods we shortly discuss some of the 
benefits and downsides in relation to our case at the manufacturer. 
 
(Composite) dispatching rules 
According to Ouelhadj & Petrovic (2009), dispatching rules have played a big role in dynamic contexts, and 
a lot of simple and complex dispatching rules have been proposed by the literature. A big advantage of 
dispatching rules is that they are easy and intuitive, therefore easy to implement. However, a main 
drawback is that they usually perform poorly in comparison with more advanced methods, due to the 
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myopic nature of dispatching rules. In addition, Pinedo (2016) points out that composite rules only focus 
on one objective.  
 
Since the machine environments that are considered in practice often require multiple objectives, 
composite dispatching rules were introduced. These composite dispatching rules are more complex than 
the regular dispatching rules, because they consider multiple objectives. Pinedo (2016) gives an example 
of a commonly used composite dispatching rule, the Apparent Tardiness Cost (ATC). The ATC combines 
the Weighted Shortest Processing Rule with the MS rule  
 
Due to their intuitiveness, fast computation time and easy implementation, we consider both dispatching 
rules and composite dispatching rules as a method worth investigating further. While the solution of the 
rules would not be near optimal, given the timeframe of this research and the needs at the manufacturer, 
dispatching rules are most promising. Therefore, we included several dispatching rules for comparison, in 
our simulation study. The choice of dispatching rules is given in Section 4.1.2. 
 
Mixed integer programming 
Constraint based programming techniques like mixed integer programming (MIP) are another way of 
solving the HFSP. While a lot of research on dynamic scheduling formulate their specific scheduling 
problem as a MIP model, they acknowledge that solving the model is often not possible within reasonable 
time. However, Pinedo (2016) does provide some methods, such as the branch and bound method, that 
can calculate suboptimal solutions to these MIP models.  
 
Due to their complexity, high computation time and because each problem requires very specific 
formulations, we do not include MIP models into our simulation model.  
 
Stochastic models 
Another way of solving the HSP in dynamic environments is by using stochastic models. Pinedo (2016) 
explains that various methods exist that can be used to model the randomness that occurs in dynamic 
environments. These models use probability theory to predict certain outcomes like job completion times, 
based on their underlying distribution. An example is applying models that are used in queuing theory to 
study the behavior of a production environment. A big downside, as mentioned in Section 3.2, is that these 
models rely heavily on the underlying assumptions of statistical distributions. For example, queuing theory 
uses the assumption that processing times follow an exponential distribution, but we know that is almost 
never the case. 
 
Since the performance of the stochastic models relies heavily on the assumptions on processing times, we 
conclude that they are not suited for the assembly at the assembly line. The main reason is that we know 
that the estimates we have on the processing times of jobs are often inaccurate, and are therefore not a 
good basis to form our decisions on.   
 
 
Metaheuristics 
A popular approach to solving production scheduling problems are meta-heuristics, which are higher level 
heuristics that guide local search algorithms away from local optima (Ouelhadj & Petrovic, 2009). Local 
search algorithms take a schedule and try to improve it via so called neighborhood operations. An example 
of a neighborhood operation is swapping two adjacent jobs in the schedule. The main drawback of local 
search algorithms is that they converge to what is called a local optima, from which no neighborhood 
operation can be applied anymore that improve the schedule. These local optima can be far away from 
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the global optimum, and therefore local search usually does not perform well enough. Metaheuristics look 
like local search algorithms, but try to escape from local optima by sometimes accepting bad solutions in 
an intelligent way. There is a wide majority of metaheuristics available, but the most mentioned algorithms 
in literature are simulated annealing, ant colony optimization and genetic algorithms.   
 
The good solutions, wide applicability make metaheuristics an interesting method for solving our case. 
However, the main disadvantages are the required computation time and the complexity of the 
algorithms. Therefore, we do not include them in the simulation study.     
 

3.4 Conclusion 
We started this chapter in Section 3.1 by providing a theoretical framework, which we depicted in a 
conceptual model in Figure 6.  
 
We used Section 3.2 and Section 3.3 to answer our second research question: “What relevant dynamic 
scheduling strategies are available in literature?”  We broke a scheduling strategy down into a rescheduling 
strategy, a rescheduling frequency, and a scheduling algorithm. In Section 3.2 we provided a number of 
options, from which we chose complete rescheduling as our rescheduling strategy, and an event drive 
policy as our rescheduling frequency. We chose these, because they are expected to handle the 
stochasticity of the processing times and release dates in the best way. 
 
 In Section 3.3 we discussed various algorithms used for constructing a schedule. We chose dispatching 
rules to be most relevant to the assembly process, because of its simplicity and fast computation times. 
We did not choose one of the more advanced algorithms for constructing a schedule, because they rely 
more heavily on assumptions, like deterministic processing times. In addition, the complexity of the more 
advanced algorithms are a lot harder to implement, making them less suitable for the manufacturer. 
 
 
 
 
  



18 
 

4 Solution design 
 
In this chapter, we explain how we apply scheduling in the assembly process and how we are going to 
compare different strategies using a simulation model. In Section 4.1, we explain the strategy that we to 
use in the simulation model and give an overview of the different scheduling algorithms that we test in 
the simulation model. We use Section 4.2 to elaborate on the simulation model that is used. In Section 
4.3, we give a conclusion of the chapter.  
 

4.1 Scheduling strategy 

 

4.1.1 General strategy 
The literature review has led us to use the following main strategy. We make choices on our rescheduling 
frequency, rescheduling method and on what scheduling algorithm to use for determining a schedule. 
First, we focus on the first two, the frequency and method of rescheduling. After discussing these two, we 
discuss how we take into account the inventory at the workstations into the scheduling strategy.  
 
Event driven policy 
The rescheduling frequency that we use is an event driven policy, meaning that certain events in the 
assembly line trigger the construction of a new schedule. The first event we choose are job arrivals, either 
at the front buffer, or at the intermediate buffer. The second event is after a workstation, or when an 
individual inventory of a workstation becomes empty. For example, after a job is finished on a workstation, 
the workstation is emptied.  
 
The event driven policy, with the events that we choose, means that we are rescheduling frequently. We 
make this choice, rather than rescheduling periodically, for two reasons. First of all, the amount of 
stochasticity in the dynamic events make rescheduling periodically less interesting. For example, if we 
make a schedule now, then in 20 minutes the schedule is likely to be inaccurate due to new job releases 
and deviations in expected and actual completion times of jobs. The second reason is related to 
computation time, which is one of the main reasons to consider periodically, rather than on a very frequent 
basis. Since we only focus on dispatching rules, which are known for their fast computation times, we have 
the luxury to reschedule frequently.   
 
Rescheduling method 
When rescheduling, we have the choice to either make a new schedule from scratch, or to repair the last 
schedule based on the dynamic events that happened in the meantime. One of the main reasons for 
considering repairing schedules, is that it allows you to stick more closely to an initial schedule, which is 
often related to other planning and control activities within a process. Secondly, repairing a schedule saves 
significant computation time. In this study, we do not have the objective of sticking to an initial schedule 
and computation time is not a problem. Therefore, we focus only on complete rescheduling.  
 
Leaving a workstation empty 
An important aspect of having inventory spots at workstation is that we may not want to load these spots. 
Consider the following example; we load the inventory spot of workstation 1 with job x, while job y is in 
progress at workstation 1. We expected that job y is finished soon, but due to the stochasticity in the 
completion times, the job takes longer than expected. Meanwhile, workstation 2 becomes idle, because 
the job finished earlier than expected. Now we regret putting job x at the inventory spot of workstation 1, 
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because we would rather have the job at workstation 2. Because of this example, choosing to wait with 
loading a workstation can be beneficial. However, the tradeoff is that there is a chance a job is finished 
early, in that case the worker becomes idle and has to wait until the workstation is filled. . In our simulation 
model we always fill the workstation, except for a special case. In this case the number of available jobs is 
small. If we make a schedule, but all the jobs are assigned to different workstations, because they all 
contain smaller jobs, then we leave the station empty. Whenever a new event occurs, as defined within 
our event driven policy, we make a new schedule and again assess if we want to fill the workstation or let 
it remain empty. In Appendix A: Flowcharts of events, we provide flowcharts that give an overview of the 
scheduling process.    
 

4.1.2 Scheduling algorithms 
In this section, we explain all the dispatching rules that we choose to incorporate into the simulation study 
for comparison. The selection we made is based on the popular dispatching rules in the literature.  
 
Earliest due date (EDD) 
This is, together with FCFS and SPT, one of the most classical and simple dispatching rules. The EDD rule 

orders all jobs on their due dates, so the job with the earliest due date is ranked first.  

First come first served (FCFS) 
The FCFS rule, which is in this case similar to the well-known First In First Out (FIFO) rule, orders all jobs 

according to their release date. This means the job with the earliest release date is ranked first.  

Shortest processing time (SPT) 
As its name suggests, the SPT ranks the jobs according to their processing time. The job with the shortest 
processing time is ranked first. The SPT rule is known to be good for the utilization of your process (Pinedo 
M. , 1995). However, because it does not take into account any due dates, the rule usually does not 
perform well towards due dates related objectives. 
 
Minimum slack (MS) 
The MS rule ranks the jobs according to their slack times. A slack of a job is defined by max (𝑑𝑢𝑒 𝑑𝑎𝑡𝑒 −
𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒, 0). In other words, the remaining time until the job has to 
be started in order to reach its due date. With the MS rule, the jobs are ranked from least slack to most 
slack.  
 
Processing time + slack time (PT+SL) 
The next rule we use is a variation on the PT+WINQ+SL rule. The regular PT+WINQ+SL rule ranks beams by 
looking at their process time, slack time and takes into the work in the queue of the next operation.  
In the variation we neglect the work in the queue of the next operation and pick the job with the minimum 
𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 + 𝑠𝑙𝑎𝑐𝑘 𝑡𝑖𝑚𝑒. In contrary with the MS rule, here the we define the slack as 
min (𝑑𝑢𝑒 𝑑𝑎𝑡𝑒 − 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒, 0).  
  
Apparent tardiness cost (ATC) 
The ATC is a more complex dispatching rule, that ranks the jobs based on a combination of the SPT rule 
and the MS rule. The goal is to utilize the property of the SPT rule of high utilization, while keeping into 
account due dates.  
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Before giving the formula for the ATC rule, we explain the terminology used in this formula: 
 
𝑝𝑗  ∶ 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑗𝑜𝑏 𝑗  

𝑝̅   ∶ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑗𝑜𝑏𝑠 
𝑑𝑗  ∶  𝐷𝑢𝑒 𝑑𝑎𝑡𝑒 𝑜𝑓 𝑗𝑜𝑏 𝑗 

𝑡   ∶  𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 
𝐾  ∶ 𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 
 
The formula for each ranking 𝐼𝑗(𝑡) of each job is as follows (Pinedo M. , 1995): 

 

𝐼𝑗(𝑡) =  
1

𝑝𝑗
exp (−

max(𝑑𝑗 − 𝑝𝑗 − 𝑡, 0)

𝐾𝑝̅
) 

 
The larger 𝐾 is, the more emphasis on the SPT rule. Then obviously, the smaller 𝐾 is, the more emphasis 
on the MS rule. In case of the ATC rule, the job with the highest score is scheduled first.  
 
With the ATC rule, jobs are scheduled one at a time, meaning every time a workstation becomes free 
again, a new ranking index is computed. This differs from the other rules, because the ranking of the jobs  
with the ATC changes over time, where for the other rules the ranking remains the same. For example, 
when we are assigning all of the jobs to a workstation, the ranking of the jobs at time t = 0  can be in a 
different order than when we are looking into the future, at for example time t = 10. This is caused by the 
exponential part of the formula, which does not behave linearly when t increases.  
 
To determine the scaling parameter 𝐾  in the formula, we performed a parametric analysis by running the 
simulation model for different values of 𝐾. This analysis is included in Appendix F: Parametric analysis ATC 
rule. 
 
Random 
The random rule randomly orders the available jobs. We use the random rule to compare the effects of 
using dispatching rules in comparison with using random scheduling. While in the current situation 
scheduling takes place based on intuition, the random procedure is likely to be the closest to the current 
situation.   
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4.2 Simulation model 
In the following section, we elaborate on the simulation model we used for testing different solutions.  

4.2.1 Discrete event simulation 
The type of simulation used for our experiments is called discrete event simulation. This type of simulation 
is used to simulate processes by jumping from event to event skipping the time in between, rather than 
continuously simulating. An event triggers certain actions and often plans new events for the future. In 
our case we use events for arrival of jobs at buffers, completion of jobs, filling workstations, moving jobs, 
and events used for initialization.  
 
The goal of our simulation study is to compare the different scheduling algorithms as proposed in Section 
4.1.2. During the simulation run we collect statistics that we use to calculate KPIs. We use the KPIs that we 
mentioned in Section 2.4.1.  
 

4.2.2 Conceptual model  
A conceptual model is often used a bridge between the developer and the user or problem owner. In the 
conceptual model we explain what our simulation code should do. With our model we simulate the 
assembly process as depicted in Figure 3 from Section 2.1. However, the number of parallel workstations 
differs from what is in the figure.  
 
Apart from a broad overview, we want to give more detail into the simulation from a conceptual 
perspective. Therefore, we used flowcharts to visualize the most important simulation events. To give an 
idea, we include one of the main events, namely when a stage 1 workstation is empty, shown in Figure 7. 
This event is triggered after a stage 1 workstation is emptied. We start by determining a new schedule, 
then we check if the workstation that was emptied in included in the schedule. If the workstation is not 
included, we change the status of the workstation to being starved. If the workstation is included then we 
update the workstation and remove the job we just scheduled from the front buffer. Lastly, we check 
whether the worker at the workstation is idle. If he is idle, we start the job and generate a completion 
event. If he is still working on another job, then we do nothing. We included the rest of the main events in 
Appendix B: Conceptual models for simulation model. 
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Figure 7: Flowchart of stage 1 workstation empty event. 

Scheduling 
The scheduling in the simulation model takes places according to the general strategy we discussed in 
Section 4.1.1. However, for practicability reasons we used a method that saves a lot of computation time. 
This method makes use of the fact that since we make a new schedule whenever we fill a workstation, we 
do need to know anything about jobs that are scheduled after we assign a job to the workstation we want 
to fill. To make use of this, we include an algorithm, shown in Appendix C: Algorithm used for scheduling 
in simulation model, that is triggered whenever we try to fill a certain workstation. First, we assign the jobs 
one by one to the workstation, until either we assign a job to the workstation we are trying to fill, or all 
available jobs are assigned. If the latter occurs, then we return that we do not want to schedule a job at 
this moment to the workstation we are trying to fill. However, there is one exception where we still want 
to fill a workstation, even if the schedule suggests that we shouldn’t. This exception occurs when we have 
an empty stage 2 workstation and the schedule suggests that we should not fill it yet, but we are currently 
dealing with blocking in stage 1. In this case finished jobs from stage 1 cannot be moved towards the 
intermediate buffer, because the intermediate buffer is full. If this happens, we assign the job to the stage 
2 station anyways, making room at the intermediate buffer for the blocked jobs from stage 1.  
 

4.2.3 Input data 
In order to simulate the assembly process we need input data, specifically on jobs that have to be 
processed, and the number of parallel workstations at each stage.  
 
Jobs 
Together with the manufacturer we established a set of jobs that provides an accurate representation of 
the assembly process.  The jobs each have corresponding due dates, release dates, estimated completion 
times, and actual completion times. Because the amount of historical data on estimated and actual 
completion times is limited, we duplicated every recorded job once and shuffled them around a bit to 
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remain close to the actual system. This dataset is included in Appendix D: Input data.  This set of jobs 
contains 116 jobs and takes around 10 to 12 hours of total production time, depending on what scheduling 
algorithm is used. The release dates and the due dates of the jobs are very tight, as a result it is impossible 
to process all the jobs on time.  
 
Additional input data 
While the dataset described above best represents the actual system, the amount of data is limited. There 
is too much room for coincidence when it comes to scoring the different algorithms on performance, 
because the stochastic factors influence the performance of the scheduling algorithms. For example, for 
some of the jobs the actual completion times can differ by one hour from the estimate. If one of the 
algorithms scheduled one of these jobs at the very end, the makespan would be heavily affected. 
Therefore, we want to eliminate the luck factor as much as possible, making our result more viable.  In 
order to do so, we perform multiple simulation replications using the same due dates, release dates and 
estimated completion times, but with different actual completion times, since this stochastic factor has 
the most influence on the performance. For each replications we determine the actual completion times 
by sampling a deviation percentage from the estimated completion times and add this to the estimate. 
We use a deviation percentage because a job with a higher completion time is more likely to have a higher 
absolute deviation, than a job with short completion time.  
 
We determine the deviations by assuming a separate normal distribution for stage 1 and stage 2 and then 
take a random sample out of these distributions. The parameters, as well as upper and lower bounds we 
use for sampling from these distributions, are given in Table 2. We use bounds to prevent outliers on 
deviations. The establishment of the parameters for these normal distributions, as well as more 
information on the deviations, can be found in Appendix E: Choosing distributions and parameters for 
input data. We should note that we do not have convincing evidence that assuming a normal distribution 
is justified. But since our goal was to create deviations from the estimates, in such a way that we can 
simulate the effects deviations in completion times have on our chosen dispatching rules, we believe the 
assumption still provides us with what we need.   
 
Table 2: Parameters and bounds for sampling deviation percentages for the completion times of stage 1 and stage 2 jobs. 

Stage Mean Sigma Lower bound Upper bound 

1 -8,64 53,85 -80,17 142,04 

2 -1,19 48,72 -60,59 164,64 

 
 
Number of parallel workstations 
The number of parallel workstations at each stage is based on the workload of the jobs. For the simulation 
experiments we use 4 workstations at stage 1 and 13 workstations at stage 2.  
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4.2.4 Simulation runs 
Number of replications 
As we explained in the previous section, we use multiple replications of the simulation experiment.  While 
making multiple replications increases the accuracy of our experiments to evaluate the different 
scheduling algorithms, it also increases computation time. Therefore, we perform 20 replications for each 
of the interventions in all 4 experiments. 
 
Start and end of run 
At the start of the simulation run, we start the way an actual working day in the assembly process starts. 
We begin by filling all stage 1 stations and let the workers start. The stage 2 workers start 1 hour later, 
because otherwise they would have to wait on jobs to finish in stage 1. The simulation run ends when all 
jobs have been processed. This means we do not use any warmup period.  
 

4.2.5 Assumptions and simplifications 
In order to simulate the assembly process, we have to make some assumptions and simplifications, 
because it is almost impossible to capture the real system in a simulation model. We make assumptions 
when we have certain gaps of knowledge that we have to fill. When the real system is too complex, we 
make simplifications, because it would be impossible to simulate the system otherwise. We make the 
following assumptions and simplifications:  
  
List of assumptions: 

- Deviation percentages from actual and estimated completion times are normally distributed. 

- Whenever more workstations are blocked at stage one and a spot opens at the intermediate 

buffer, we choose to solve the blocked workstation that has been blocked the longest. 

 

List of simplifications: 

- All parallel workstations at a stage are identical, meaning they have the same work rate and can 

handle any kind of job. 

- All transportation of jobs takes the same amount of time. 

- The amount of parallel workstations at each stage remains the same throughout a simulation run. 

- Jobs are released at constant intervals. 

- Outliers in completion time are not taken into considerations.  

- Transport time of jobs are neglected.  

-  

4.2.6 Validation and verification 
Important factors in simulating processes are the validation and the verification of the model that is used.  
 
Validation 
The validity of a simulation model concerns whether the model is a good representation of the real system. 
The actions that we performed in terms of validation are weekly meetings with the problems owners from 
the manufacturer. In these meetings we discussed the conceptual models of the assembly line, as well as 
showing the actual simulation model. These meetings led to the validation of the simulation model, in an 
iterative way.  
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Verification 
The verification of the simulation model concerns whether the conceptual model is correctly implemented 
into the simulation software. We performed verification by running several test experiments. In these test 
experiments we checked whether the simulation output corresponded to the expected output, based on 
the given input. In addition, we did a lot of manual jumping through events, where we checked if the 
expected actions for each event were performed correctly.  
 

4.3 Conclusion 
We started in Section 4.1 by explaining how we apply the scheduling strategy from Chapter 3 in the 
simulation model. Also, we provided an overview of the dispatching rules that we tested in our simulation 
model.  
 
In Section 4.2 we elaborated  on the details of the simulation model. We used conceptual models to explain 
the simulation. In addition, we specified how we used the input data.  

  



26 
 

5 Solution tests 
 
In Chapter 5, we compare the performance of selected dispatching rules, by using our simulation model. 
We start by providing the experiment setup in Section 5.1. In Section 5.2 we show the results from the 
simulation output. Afterwards, Section 5.3 is used to analyze the performance of the scheduling 
algorithms. We finalize the chapter in Section 5.4 with a conclusion. 
 

5.1 Experiment setup 
To find out how the selected dispatching rules perform, we use a total of 4 experiments. In each of the 
experiments we perform 20 replications, for each of the chosen dispatching rules. In the first experiment, 
we use the real input data. In the second experiment we use randomly generated data, to investigate 
whether less uncertainty in completion times has an effect on the performance. The third experiment is 
used to investigate the effects of less uncertainty in completion times. In experiment 4, we investigate 
combining dispatching rules.  
 
1) Experiment with real dataset 
 In this experiment, we test how the chosen dispatching rules perform on the dataset containing the real 
actual completion times. In the scheduling algorithms there is some randomness involved in the 
assignment of jobs, because some jobs get the same score. For example, in the FCFS rule, a lot of jobs have 
release date 0. As a result, there is some luck involved whether the choice was good. Therefore, we 
perform 20 replications, and in each replication the choice between jobs with the same score is 
randomized.  
 
2) Experiment with randomly generated dataset 
In this experiment we test the scheduling algorithms on randomly generated dataset, which contains 
different deviations in estimated and actual completion times for each experiment. The details of the input 
data are given in Section 4.2.3.  
 
3) Experiment with randomly generated dataset with less uncertainty in completion times  
In this experiment, we consider less uncertainty in completion times. This can lead to interesting results 
as well, since the manufacturer is looking to increase the accuracy of their estimated completion times. 
Also, from a scientific standpoint it is interesting to see how the performance changes when the variance 
of completion times changes.  
 
We now use different parameters when sampling deviation percentages from actual and estimated 
completion times from normal distributions. We set the mean equal to 0 and the standard deviation equal 
to 15, which are considerably better than in the second experiment. Also, we change the upper and lower 
bounds. The bounds are now set to fall within two standard deviations of the mean, or in other words the 
values are roughly within the 2,5th and 97,5th percentile.  The input parameters we use for sampling the 
deviation percentages are shown in Table 3. 
 
Table 3: Input parameters for the normal distributions used for sampling deviation percentages. 

Stage Mean Sigma Lower bound Upper bound 

1 0 15 -30 30 

2 0 15 -30 30 
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4) Experiment with randomly generated dataset with combination of dispatching rules 
In the final experiment we investigate the effects of choosing different scheduling algorithms at different 
stages. This means that we choose a different scheduling algorithm at the front buffer and the 
intermediate buffer. We do not consider all combinations, but only combinations of the most promising 
scheduling algorithms from experiment 1. Therefore, we use the combinations of EDD, MS and FCFS.  
 

5.2 Experiment results 
In the following section, we give the results of the simulation experiments. For each experiment, we 
discuss the experiments in a general way. More detailed results, containing not only averages, but also 
standard deviations and confidence intervals of each of the KPIs can be found in Appendix G: Detailed 
output simulation runs.  
 

5.2.1 Experiment 1 
In the first experiment, when we test the dispatching rules on the real data, we obtain the following results, 
shown in Table 4. 
 
Table 4: Averages on KPIs from experiment 1, with colors indicating the relative performance. 

KPI EDD MS FCFS ATC PT+SL SPT Random 

Makespan 703,98 667,00 716,81 739,61 764,88 796,88 718,02 

Max tardiness 274,86 239,18 300,78 317,77 353,11 590,66 439,36 

Avg tardiness 39,60 83,76 41,26 50,43 42,66 41,21 61,56 

Percentage late 49,78% 86,12% 40,73% 75,22% 29,91% 26,72% 42,07% 

Avg throughput time 105,88 119,78 105,98 119,91 114,32 114,41 107,66 

Avg flowtime 244,85 314,75 227,35 279,13 191,20 178,82 231,49 

Nr of blocks 0,05 8,35 0,35 1,95 6,65 7 0,35 

Nr of starvations 62,00 44,50 64,35 32,00 61,85 48 58,95 

 
From the table, we see that most of the dispatching rules only score well in certain areas. Especially the 
MS and the SPT score well in certain areas, but poorly in others. The EDD, FCFS and PT+SL perform the 
best overall. All though, the PT+SL is outperformed by EDD and FCFS in most areas. Except from the 
random rule, the ATC rule has the worst overall performance. The random rule scores around average for 
the makespan and percentage of late jobs, but poorly on the maximum and average tardiness.  
 
Apart from the averages over 20 replications, we are also interested in the variance of the KPIs. For 
example, a KPI can have a good average, but if there is a lot of variance in outcomes for each replication, 
then the rule is less robust. We only include the most promising rules for further analysis; EDD, FCFS and 
MS. Also, the random rule is included, to show the effects of using dispatching rules in comparison with 
choosing randomly. We analyze the most important KPIs, of the most promising rules by using boxplots, 
which show the minimum and maximum as well as the median, mean and the range between the first and 
third quartile.  
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Makespan 

 

Figure 8: Boxplot of makespan over 20 replications in experiment 1. 

From Figure 8 we can conclude that MS rule outperforms the other rules in terms of makespan. In addition, 
the spread of the makespan for the MS rule is smaller than the other rules, meaning the MS rule is more 
robust. This is what we expected, since there is more randomness involved in the other rules. Obviously 
for the random rule we expect more spread in the outcome. Also, in the EDD and FCFS rule there is a lot 
of randomness involved, due to jobs with equal scores. For example, there are a lot of jobs with the same 
due date, while there are only a few jobs with the exact same amount of slack.   
 
Maximum tardiness 

 

Figure 9: Boxplot of maximum tardiness over 20 replications in experiment 1. 
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Again, the MS rule outperforms the other rules. Both the average and the spread are smaller for the MS 
rule. The random rule is clearly outperformed by the others, in terms of maximum tardiness.  
 
Blocking and starvation 
The results in Table 4 show that starvation occurs significantly more frequently than blocking. 
Furthermore, most of the results show combined starving and blocking numbers between 50 and 70. The 
exception is the ATC rule, which scores significantly lower on blocking and starving, but worse on overall 
performance. Therefore, we conclude there is no relationship between the number of combined blocks 
and starvations, and the performance of dispatching rules, based on our results.  
 

5.2.2 Experiment 2 
In the second experiment, we used the randomly generated data, where the deviations between the actual 
and estimated completion time differed for each run. The results are shown in Table 5.  
 
Table 5: Averages on KPIs from experiment 2, with colors indicating the relative performance. 

KPI EDD MS FCFS ATC PT+SL SPT Random 

Makespan 784,81 713,67 805,69 792,04 835,84 845,50 811,59 

Max tardiness 374,94 316,26 428,44 360,93 443,51 649,45 498,89 

Avg tardiness 43,64 82,32 56,22 56,06 46,52 45,60 68,43 

Percentage late 47,24% 80,09% 44,44% 70,04% 32,54% 27,11% 46,51% 

Avg throughput time 137,88 151,96 131,65 140,19 120,27 117,35 131,82 

Avg flowtime 242,42 309,60 240,24 279,95 190,14 178,45 242,79 

Nr of blocks 4,80 18,45 3,25 13,65 0,90 0,00 3,10 

Nr of starvations 29,80 18,20 42,35 23,45 39,35 41,60 38,90 

 
Due to the use of the randomly generated data, the KPIs in the second experiment are overall slightly 
higher than in the first experiment. However, the results are very similar to the results of the first 
experiment, in terms of patterns. Overall, the dispatching rules show the same relative performance as in 
the first experiment. However, there are a few exceptions. The first one is the SPT rule, which seems the 
be slightly better in relative performance, than in the first experiment. Secondly, while the ATC is also a 
bit better than the first experiment, the overall performance is still the worst. Overall, we conclude that 
the relative performance from the first experiment, shows the same patterns in relative performance as 
in the second experiment. 
 

5.2.3 Experiment 3 
In experiment 3, we used the randomly generated data, this time with smaller deviations in completion 
times. The results are shown in Table 6. 
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Table 6: Averages on KPIs from experiment 3, with colors indicating the relative performance. 

KPI EDD MS FCFS ATC PT+SL SPT Random 

Makespan 719,83 675,21 744,34 779,32 778,53 772,18 758,31 

Max tardiness 278,43 239,71 338,63 354,27 378,62 588,23 486,24 

Avg tardiness 43,26 87,09 50,62 58,41 49,18 45,62 70,09 

Percentage late 53,36% 91,81% 45,60% 82,67% 33,28% 26,51% 46,68% 

Avg throughput time 121,56 147,42 117,45 137,84 113,09 108,32 120,27 

Avg flowtime 248,74 319,94 239,57 289,15 194,27 177,90 243,02 

Nr of blocks 0,60 15,30 0,75 11,50 0,00 0,10 0,40 

Nr of starvations 33,15 13,80 43,70 17,45 40,35 46,55 41,90 

 
The results of experiment 3 are very similar to the results of experiment 2. As expected the KPIs are overall 
slightly better in the third experiment, because of the lowered degree of stochasticity in deviations 
between estimated and actual completion time. However, there are two notable exceptions. The first 
exception is the max tardiness, which has improved a lot for almost all dispatching rules. The improvement 
in maximum tardiness is expected, since the maximum tardiness is likely to be influenced by outliers in 
completion times. Because we narrow down the deviations in completion times, the smaller the maximum 
tardiness becomes. The second exception is the percentage late, which appear to be slightly worse than 
the second experiment. Overall we conclude that the relative performance has not changed significantly 
when the completion estimates are closer to the actual times.  
 

5.2.4 Experiment 4 
In experiment 4 we investigated some combinations of scheduling algorithms, with the real data. The 
results are shown in Table 7. 
 
Table 7: Averages on KPIs from experiment 4, with colors indicating the relative performance. 

KPI EDD/MS EDD/FCFS MS/EDD MS/FCFS FCFS/EDD FCFS/MS 

Avg tardiness 704,16 708,34 668,03 664,92 710,56 708,40 

Max tardiness 275,15 276,51 232,79 233,63 289,63 290,51 

Percentage late 39,53 39,50 83,49 83,72 41,20 41,23 

Makespan 49,61% 49,61% 86,12% 86,12% 40,73% 40,95% 

Avg throughput time 105,88 105,87 119,50 119,76 105,97 105,96 

Avg flowtime 244,88 244,88 314,51 314,75 227,35 227,33 

Nr of blocks 0,00 0,00 8,60 8,80 0,30 0,00 

Nr of starvations 63,90 63,40 44,40 44,00 64,90 66,35 

 
In addition to the confidence intervals of the averages, we also provide tables with comparisons to the 
results of experiment 1, in Appendix G: Detailed output simulation runs. The results from this experiment 
show that using different dispatching rule for the front buffer and the intermediate buffer, show very little 
change in compared with using the dispatching rule of the front buffer also at the intermediate buffer. For 
example, the results of using EDD on both buffers are almost the same as using EDD/MS or EDD/FCFS. 
While the values differ slightly, the confidence intervals as shown in Appendix G: Detailed output 
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simulation runs, are mostly overlapping, from which we conclude that there is not enough evidence to 
conclude that a combination of dispatching rules has any effect on the performance.   
 

5.3 Analysis of dispatching rules 
EDD 
The EDD rule, scores very well from an overall perspective. However, in Figure 8 and Figure 9, we see a 
relatively high variance in KPIs, meaning the rule is less robust. In comparison with the FCFS rule, which 
scores similarly in most KPIs, the average tardiness appears to be lower, while the percentage late is a bit 
higher.  
 
MS 
The MS rule outperforms the other rules, in terms of maximum tardiness and the makespan, at the cost 
of the average tardiness and the percentage late. In addition, both flowtime and throughput time are very 
high.  
 
FCFS 
Similarly to the EDD rule, the FCFS scores well from an overall perspective, making it a good option.  
 
ATC 
The ATC rule is by far the worst scoring rule. In general, the more advanced dispatching rules are, the 
worse the scores on our KPIs are.  
 
PT+SL 
This rule performs alright from on overall perspective, but still worse than the EDD and FCFS. However, 
the PT+SL rule is good for minimizing the percentage of late jobs. In addition, the PT+SL rule scores well 
on throughput time and flow time.  
 
SPT 
As expected, the SPT rule score very well on average tardiness and percentage late. Also average 
throughput time and average flow time are exceptionally low, but at the cost of a high makespan and an 
high maximum tardiness.  
 
Random 
The random rule scores around average for most KPIs and below average for the maximum tardiness and 
the average tardiness. The biggest issue with the random rule is the variance of the KPIs, meaning that the 
KPIs vary a lot per run, due to the randomness.  
 

5.4 Conclusion 
Throughout this chapter, we presented the results of our simulation study. We started in Section 5.1 by 
explaining our experiment setups, for a total of 4 experiments.  In experiment 1 we used the real data and 
in experiment 2 we used the randomly generated data, where the deviations in actual and estimated 
completion times differ for each experiment. In experiment 3 we used randomly generated data again, 
but with less variability in deviations, to answer RQ 3B: “What is the effect of variability in completion times 
on the KPIs?” In experiment 4 we look at possible combinations of dispatching rules, with the real dataset.  
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The results are shown in Section 5.2, answering RQ 3A: “What are the scores of the scheduling strategies 
on the KPIs?” To answer RQ 3B, we observed that changing the variability in completion times does not 
significantly influence the relative performance of the dispatching rules.  
 
In Section 5.3 We answered RQ 3:” How do the relevant scheduling strategies perform?” We concluded 
that the ATC is the worst rule. The SPT rule scores well in terms average tardiness and percentage late, but 
performs very poor on the other KPIs. The PT+SL rule is alright in overall performance, but is out performed 
by the EDD and FCFS rule, which show the best overall performance. The MS rule performs well, in our 
two most important KPIs, maximum tardiness and makespan, but performs worse than EDD and FCFS in 
the other KPIs. However, the MS rule is more robust than the EDD and FCFS rule.  
 
We compared using dispatching rules with using a random rule, and conclude that the use of dispatching 
rules show superior performance over the random rule. Especially the use of dispatching rules shows 
improvement in the maximum tardiness, and the robustness of the performance.  

6 Conclusion 
In this final chapter, we conclude on our research. In Section 6.1, we answer our research questions. In 
Section 6.2 we discuss the limitations of our research and possible further research.  
 

6.1 Conclusion 
The goal of this research was to propose a scheduling strategy for the assembly line at the manufacturer. 
To achieve this goal we divided our research in three main research questions: 
 
What defines a suitable scheduling strategy for the assembly line at the manufacturer? 
 
By answering the first question we found out that there are quantitative and qualitative needs for a 
scheduling strategy. The quantitative needs are captured in KPIs and are related due dates and efficiency 
of the assembly process. The qualitative needs are related to the implementation of the scheduling 
strategy. 
 
What relevant dynamic scheduling strategies are available in literature? 
 
 By answering our second main question, we conclude that an event driven policy with complete 
rescheduling, using dispatching rules, is most suitable for the assembly line at the manufacturer.  
 
How do the relevant scheduling strategies perform? 
 
To answer the last research question we tested several dispatching rules and came to the following 
conclusions. The results of the simulation show that the ATC rule is not a good option, because it is 
outperformed by all other rules. Also, the SPT rule did not perform well, especially the high maximum 
tardiness made the SPT a poor choice, since this is one of our most important KPIs. While the overall 
performance is alright, the PT+SL is outperformed in most KPIs by the EDD and FCFS, making PT+SL a less 
interesting option.  
 
Because of its simplicity and overall good performance, the EDD and FCFS are suitable options. In addition 
the MS is a suitable option. The MS scores poorly in percentages of jobs on time and the average tardiness, 
but scores well in maximum tardiness and makespan, which we consider as the two most important KPIs. 
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Furthermore, the MS rule is more robust than the EDD and FCFS rule, meaning that there is less variance 
in the performance of the MS rule. Therefore, we recommend to implement the MS rule.  
 
We conclude our research by commenting on the objective we stated in Section 1.3.1:  
 
“Propose a dynamic scheduling strategy for the assignment of jobs to workstations in the assembly line at 

the manufacturer.” 

In the dynamic scheduling strategy we propose, we use an event driven policy to handle the stochastic 
release dates and processing times. In this event driven policy, a new schedule is constructed from scratch, 
each time a specified event occurs. The events that we specify are job completion and job arrivals.  
 
For the construction of a new schedule, we suggest using dispatching rules, because of their fast 
computation time and simplicity. More specifically,  we suggest to implement the MS rule.  
 

6.2 Contribution to practice and science 
In this section, we discuss the contribution of our research to both practice and science.  
 
Contribution to practice 
We establish the need for a dynamic scheduling strategy, used to cope with the uncertainly in arrival times 
and completion times. Furthermore, our simulation results provide a list of dispatching rules, with scores 
on KPIs. Also, we show that using different dispatching rules at the front buffer and the intermediate buffer 
has no significant benefits. In addition, the results from experiment 3 show that the relative performance 
of dispatching rules does not change significantly when there is less uncertainty in completion times. Based 
on the results we provide recommendations on the choice of dispatching rules. The expected gain over 
scheduling randomly, is mostly in the maximum tardiness and the robustness of performance.  

 
The simulation model that we use during our research contributes to practice as well, since the model can 
be used for further investigation of scheduling possibilities. In addition, by expanding the simulation 
model, the manufacturer can investigate other improvements to the assembly process, such as transport 
capacity, changing the number of parallel workstations at each stage, etcetera.  
 
Contribution to science 
Our research introduces the use of dynamic scheduling using dispatching rules in a unique variation of the 
HFS, namely a two stage assembly line with an intermediate buffer and an individual inventory spot for 
each parallel workstation at each stage. Also, our research focusses on the presence of highly stochastic 
processing times, while literature tends to focus on either deterministic processing times or less stochastic 
processing times.   
 
First results show that simple dispatching rules, focused on due dates, outperform rules focused on 
utilization or rules focused on multiple objectives. More specifically, the EDD, FCFS, show the best overall 
performance, while the MS rule is superior in terms of maximum tardiness and makespan.  
 

6.3 Limitations and further research 
In this section, we discuss the limitations that our research has and suggest further research to overcome 
them. The main reason for the limitations are the limited amount of time and the limited amount of 
available production data. 
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1) The first limitation is the input data used for the simulation model. During our research we worked 

with limited data, which has an influence to the validity of the results. Collecting more data on 
deviations between estimated and actual completion times can be used to verify our results.  

2) A simulation model always comes with limitations, because you have to make assumptions and 
simplifications. Eliminating some of these assumptions and simplifications, as discussed in section 
4.2.5, can improve the validity of our research. Another suggestion is to test the scheduling 
algorithms in the real system, as this is the most accurate way to test the performance.  

3) Many more methods on scheduling are available in literature. Testing more methods can result in 
finding better solutions. A good way to start would be testing more dispatching rules. While more 
advanced techniques can be an interesting option as well, our recommendation is to first increase 
the accuracy of estimating completion times, since the more advanced techniques tend to perform 
worse the more randomness is involved. 

4) As discussed in Section 4.1.1, leaving workstations empty on purpose can be an interesting option. 
Further research has to be done on how this can be used in a beneficial way.  

5) The experiments on the effects of variability of completion on the KPIs are limited. More 
experiments are needed to make solid conclusions. 
 

 
 

  



35 
 

References 
Chen, J., Wang, M., Kong, X., Huang, G., Dai, Q., & Shi, G. (2019). Manufacturing synchronization in a 

hybrid flowshop with dynamic order arrivals. Journal of Intelligent Manufacturing, 2659-2668. 

Fernandez-Viagas, V., & Framinan, J. M. (2020). Design of a testbed for hybrid flow shop scheduling with 

identical machines. Computers and Industrial Engineering 141. 

Heerkens, H., & Van Winden, A. (2017). Solving Managerial Problems Systematically. Groningen: 

Noordhoff Uitgevers bv. 

Jianyu, L., Sun, Z., M, P. P., Bai, Y., Zhang, S., & Li, C. (2020). A robust dynamic scheduling approach based 

on release time series forecasting for the steelmaking-continuous casting production. Applied 

Soft Computing Volume 92. 

Luo, H., Huang, G. Q., Zhang, Y., Dai, Q., & Chen, X. (2009). Two-stage hybrid batching flowshop 

scheduling with blocking and machine availability constraints using genetic algorithm. Robotics 

and Computer-Integrated Manufacturing 25, 962-971. 

Ouelhadj, D., & Petrovic, S. (2009). Survey of dynamic scheduling in manufacturing systems. Journal of 

Scheduling, 417-431. 

Peng, K., Pan, Q.-K., Gao, L., Li, X., Das, S., & Zhang, B. (2019). A multi-start variable neighbourhood 

descent algorithm for hybrid flowshop rescheduling. Swarm and evolutionary computation, 92-

112. 

Pinedo, M. (1995). Scheduling theory, algorithms and systems. New Jersey: Prentice Hall. 

Pinedo, M. L. (2016). Scheduling theory, algorithms and systems. New York: Springer. 

Qin, W., Zhang, J., & Song, D. (2018). An improved ant colony algorithm for dynamic hybrid flow shop 

scheduling with uncertain processing time. Journal of intelligent manufacturing, 891-904. 

Shi, L., Guo, G., & Song, X. (2019). Multi-agent based dynamic scheduling optimisation of the sustainable 

hybrid flow shop in a ubiquitous environment. International Journal of Production Research. 

Weng, W., Wei, X., & Fujimura, S. (2012). Dynamic routing strategies for JIT production in hybrid flow 

shops. Computers and Operations Research, 3316-3324. 

 

  



36 
 

Appendix A: Flowcharts of events 
 

 
Figure 10: Flowchart of the general dynamic scheduling strategy in case of a job arrival event. 

 
Figure 11: Flowchart of the general dynamic scheduling strategy in case of a an empty workstation event. 
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Appendix B: Conceptual models for simulation model 
 

 
Figure 12: Flowchart of stage 1 job completed event 

 

 
Figure 13: Flowchart of trying to move a job to the intermediate buffer event. 
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Figure 14: Flowchart of a job arrival at the intermediate buffer event. 

 
Figure 15: Flowchart of job release at the front buffer event. 



39 
 

 
Figure 16: Flowchart of stage 2 job completed event. 

 
Figure 17: Flowchart of moving a stage 2 job out of the process event. 
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Figure 18: Flowchart of stage 2 workers being released event. 

 

 
Figure 19: Flowchart of a stage 2 workstation that is emptied event. 
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Figure 20: Flowchart of checking for blocking event. 
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Appendix C: Algorithm used for scheduling in simulation model 
 

 
Figure 21: Algorithm used for scheduling in the simulation model, to save computation time. 
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Appendix D: Input data 
 

Table 8: Input data with real estimated and actual completion times. 

Beam ID Due date Release date Estimated stage 1 Actual stage 1 Estimated stage 2 Actual stage 2 

1 240 0 12,50 3,87 36,27 20,70 

2 240 0 10,00 3,25 42,20 31,55 

3 240 0 10,00 4,48 42,20 30,20 

4 240 0 27,50 18,78 39,07 50,70 

5 240 0 12,50 4,14 19,47 21,82 

6 240 0 12,50 10,40 21,82 21,78 

7 240 0 10,00 5,49 42,20 24,47 

8 240 0 22,50 16,79 32,27 32,90 

9 240 0 12,50 11,48 19,20 32,10 

10 240 0 10,00 4,36 45,50 36,65 

11 180 0 27,50 25,54 105,72 66,68 

12 240 0 22,50 20,98 43,50 43,12 

13 180 0 27,50 20,29 100,37 74,72 

14 240 0 30,00 26,46 120,20 98,87 

15 240 0 10,00 6,36 17,17 28,40 

16 240 0 12,50 4,93 36,27 38,07 

17 240 0 15,00 11,12 28,02 29,07 

18 180 0 10,00 10,79 42,40 32,23 

19 240 0 10,00 2,41 42,20 28,87 

20 180 0 22,50 17,13 37,73 46,82 

21 240 0 15,00 12,95 28,02 32,42 

22 240 0 10,00 2,86 42,20 29,62 

23 180 0 10,00 8,07 37,12 34,23 

24 240 0 12,50 22,28 20,68 22,32 
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25 240 0 10,00 3,56 42,20 36,18 

26 240 0 10,00 7,24 17,17 27,47 

27 180 0 27,50 16,26 57,62 56,93 

28 240 0 20,00 25,06 38,53 58,53 

29 420 60 20,00 37,87 60,08 55,20 

30 420 168 67,50 82,08 251,42 175,30 

31 420 12 10,00 4,54 21,55 42,40 

32 420 120 5,00 6,88 14,00 11,18 

33 420 90 10,00 1,98 21,55 35,43 

34 420 174 15,00 22,18 108,63 74,23 

35 360 138 22,50 54,46 157,13 147,37 

36 420 36 10,00 17,29 28,00 32,45 

37 420 24 10,00 4,83 21,55 27,70 

38 420 144 5,00 0,00 14,00 37,05 

39 420 102 5,00 7,22 14,00 18,82 

40 420 54 67,50 123,14 254,93 216,77 

41 420 48 17,50 26,33 134,35 240,45 

42 420 96 5,00 7,71 14,00 28,15 

43 420 180 30,00 27,41 217,28 141,38 

44 420 78 17,50 19,18 55,12 55,77 

45 420 108 27,50 20,52 64,97 59,32 

46 420 156 5,00 7,50 14,00 15,80 

47 480 126 15,00 26,53 83,45 66,80 

48 420 72 5,00 6,06 14,00 37,05 

49 420 84 10,00 5,28 21,55 55,00 

50 420 6 30,00 28,79 72,18 28,45 

51 420 150 20,00 44,02 143,25 131,67 

52 360 162 22,50 36,29 157,13 104,10 
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53 420 114 15,00 21,16 108,63 88,23 

54 420 30 5,00 5,85 14,00 17,45 

55 480 18 10,00 16,38 71,60 61,87 

56 420 42 20,00 34,28 127,32 122,37 

57 420 132 5,00 6,01 14,00 32,38 

58 420 66 10,00 7,14 21,55 28,40 

59 240 0 10,00 6,36 17,17 28,40 

60 180 0 15,00 22,18 108,63 74,23 

61 240 0 10,00 5,49 42,20 24,47 

62 180 0 67,50 123,14 254,93 216,77 

63 180 0 5,00 6,01 14,00 32,38 

64 180 0 5,00 6,06 14,00 37,05 

65 240 0 10,00 3,56 42,20 36,18 

66 180 0 30,00 27,41 217,28 141,38 

67 180 0 10,00 8,07 37,12 34,23 

68 180 0 27,50 16,26 57,62 56,93 

69 240 0 10,00 4,48 42,20 30,20 

70 180 0 10,00 7,14 21,55 28,40 

71 240 0 10,00 2,86 42,20 29,62 

72 180 0 27,50 25,54 105,72 66,68 

73 240 0 15,00 12,95 28,02 32,42 

74 180 0 10,00 17,29 28,00 32,45 

75 180 0 5,00 5,85 14,00 17,45 

76 180 0 30,00 28,79 72,18 28,45 

77 180 0 5,00 0,00 14,00 37,05 

78 240 0 12,50 10,40 21,82 21,78 

79 240 0 20,00 25,06 38,53 58,53 

80 180 0 5,00 7,22 14,00 18,82 



46 
 

81 180 0 22,50 36,29 157,13 104,10 

82 180 0 10,00 4,83 21,55 27,70 

83 180 0 10,00 5,28 21,55 55,00 

84 240 0 12,50 4,14 19,47 21,82 

85 180 0 20,00 37,87 60,08 55,20 

86 180 0 67,50 82,08 251,42 175,30 

87 240 0 22,50 20,98 43,50 43,12 

88 420 240 20,00 44,02 143,25 131,67 

89 420 246 22,50 54,46 157,13 147,37 

90 480 192 15,00 11,12 28,02 29,07 

91 420 234 10,00 4,54 21,55 42,40 

92 420 324 15,00 21,16 108,63 88,23 

93 420 342 22,50 17,13 37,73 46,82 

94 420 216 5,00 7,50 14,00 15,80 

95 480 318 12,50 11,48 19,20 32,10 

96 420 348 5,00 7,71 14,00 28,15 

97 480 300 10,00 7,24 17,17 27,47 

98 480 204 10,00 4,36 45,50 36,65 

99 420 330 17,50 19,18 55,12 55,77 

100 480 264 12,50 22,28 20,68 22,32 

101 480 258 10,00 3,25 42,20 31,55 

102 420 282 27,50 20,29 100,37 74,72 

103 480 186 22,50 16,79 32,27 32,90 

104 420 276 10,00 10,79 42,40 32,23 

105 420 252 17,50 26,33 134,35 240,45 

106 420 288 20,00 34,28 127,32 122,37 

107 420 270 27,50 20,52 64,97 59,32 

108 420 210 5,00 6,88 14,00 11,18 
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109 480 312 27,50 18,78 39,07 50,70 

110 480 354 30,00 26,46 120,20 98,87 

111 480 222 12,50 3,87 36,27 20,70 

112 480 228 10,00 16,38 71,60 61,87 

113 480 294 15,00 26,53 83,45 66,80 

114 480 306 10,00 2,41 42,20 28,87 

115 420 198 10,00 1,98 21,55 35,43 

116 480 336 12,50 4,93 36,27 38,07 
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Appendix E: Choosing distributions and parameters for input data 
 

 
Figure 22: Histogram of deviation percentages of stage 1 jobs. 

Table 9: Descriptive statistics of deviation percentages of stage 1 jobs. 

Stage 1 

  

Mean 0,92 

Standard Error 7,13 

Median -8,64 

Mode #N/A 

Standard Deviation 53,85 

Sample Variance 2900,20 

Kurtosis -0,45 

Skewness 0,53 

Range 222,20 

Minimum -80,17 

Maximum 142,04 

Sum 52,33 

Count 57 
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Figure 23: Histogram of deviation percentages of stage 2 jobs in blue bars 

Table 10: Descriptive statistics of deviation percentages of stage 2 jobs. 

Stage 2 

  

Mean 10,96 

Standard Error 6,45 

Median -1,19 

Mode #N/A 

Standard Deviation 48,72 

Sample Variance 2373,42 

Kurtosis 1,99 

Skewness 1,45 

Range 225,23 

Minimum -60,59 

Maximum 164,64 

Sum 624,85 

Count 57 

 

Distribution and parameters 
Both histograms from stage 1 and stage 2 deviations from actual and estimated completion times show 
some similarity to a normal distribution, which is plotted, for the corresponding mean and standard 
deviation, in orange. However, both stages show a trend where most deviations are shifted to the left of 
the mean, and outliers only occur to the right of the mean.  
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In the first attempt to see if these deviations represent the original data, we sampled the deviations for 
stage 1 and stage 2 from normal distributions with their corresponding mean and standard deviations as 
shown in Table 9 and Table 10. The simulation results, in comparison with the original data, show 
significantly longer worse KPIs. Therefore, in the second attempt, to compensate for the trends of a large 
portion of deviations being shifted to left of the mean and outliers being shifted to the right, we now use 
the medians as parameters for the means of the distributions. In addition, we introduced bounds for 
sampling, that prevent enormous outliers in the deviation of actual and estimated completion times. The 
second attempt shows a more accurate representation of the original dataset.  
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Appendix F: Parametric analysis ATC rule 
 

In order to find the correct scaling parameter for the ATC dispatching rule we perform a parametric 
analysis. We run the simulation for different values of the scaling parameter, over a total of 5 replications 
per run. The results are shown in Table 11. 
 
Table 11: Parametric analysis of scaling parameter in ATC dispatching rule. 

Parametric analysis 
ATC 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 

Avg tardiness 60,20 58,63 56,73 53,87 57,34 51,59 50,59 40,01 24,96 27,24 

Max tardiness 334,10 358,95 362,44 311,62 336,75 294,99 321,13 365,55 595,94 579,72 

Percentage late 84,83% 84,48% 81,55% 80,00% 79,48% 74,31% 71,90% 60,17% 23,45% 20,34% 

Makespan 754,10 778,95 782,44 731,62 759,72 715,76 741,78 785,55 786,23 784,89 

Avg throughput time 117,37 117,27 119,44 122,21 124,35 119,73 120,36 117,99 104,62 112,38 

Avg flowtime 290,72 289,68 287,40 284,14 287,65 280,21 278,27 261,24 200,03 188,08 

 
Since we are looking for overall balance between average tardiness, maximum tardiness, percentage late 
and the makespan, the values of 0,6 and 0,7 fit the best. We make the final choice of choosing 0,6 because 
of the better score on max tardiness and makespan.  
 
As expected, the ATC rule start behaving more like the SPT rule when having a larger K. The values of the 
KPIs at a value of 1,0 is almost equal to those of the SPT rule.  
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Appendix G: Detailed output simulation runs 
 

Experiment 1 

EDD 
Table 12: Simulation output for EDD rule in experiment 1. 

KPI Mean Sigma 
L.B C.I 
(95%) 

U.B C.I 
(95%) 

Makespan 703,98 33,05 688,51 719,45 

Max tardiness 274,86 36,04 257,99 291,72 

Avg tardiness 39,60 5,69 36,94 42,27 

Percentage late 49,78% 4,75% 47,56% 52,01% 

Avg throughput time 105,88 3,58 104,21 107,56 

Avg flowtime 244,85 7,67 241,26 248,44 

Nr of blocks 0,05 0,22 -0,05 0,15 

Nr of starvations 62,00 10,67 57,01 66,99 

 
MS 
Table 13: Simulation output for MS rule in experiment 1. 

KPI Mean Sigma 
L.B C.I 
(95%) 

U.B C.I 
(95%) 

Makespan 667,00 15,26 659,86 674,14 

Max tardiness 239,18 12,64 233,27 245,10 

Avg tardiness 83,76 1,94 82,86 84,67 

Percentage late 86,12% 0,39% 85,94% 86,30% 

Avg throughput time 119,78 1,54 119,06 120,50 

Avg flowtime 314,75 1,97 313,82 315,67 

Nr of blocks 8,35 2,21 7,32 9,38 

Nr of starvations 44,50 3,22 42,99 46,01 

 
FCFS 
Table 14: Simulation output for FCFS rule in experiment 1. 

KPI Mean Sigma 
L.B C.I 
(95%) 

U.B C.I 
(95%) 

Makespan 716,81 38,82 698,65 734,98 

Max tardiness 300,78 34,95 284,42 317,13 

Avg tardiness 41,26 1,51 40,55 41,96 

Percentage late 40,73% 3,01% 39,32% 42,14% 

Avg throughput time 105,98 3,85 104,17 107,78 

Avg flowtime 227,35 3,80 225,57 229,13 

Nr of blocks 0,35 1,57 -0,38 1,08 

Nr of starvations 64,35 10,05 59,64 69,06 
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ATC 
Table 15: Simulation output for ATC rule in experiment 1. 

KPI Mean Sigma 
L.B C.I 
(95%) 

U.B C.I 
(95%) 

Makespan 739,61 46,55 717,82 761,39 

Max tardiness 317,77 49,27 294,72 340,83 

Avg tardiness 50,43 1,94 49,53 51,34 

Percentage late 75,22% 1,89% 74,33% 76,10% 

Avg throughput time 119,91 1,80 119,07 120,75 

Avg flowtime 279,13 2,31 278,05 280,22 

Nr of blocks 1,95 1,90 1,06 2,84 

Nr of starvations 32,00 8,91 27,83 36,17 

 
PT+SL 
Table 16: Simulation output for PT+SL rule in experiment 1. 

KPI Mean Sigma 
L.B C.I 
(95%) 

U.B C.I 
(95%) 

Makespan 764,88 30,80 750,46 779,29 

Max tardiness 353,11 25,52 341,16 365,05 

Avg tardiness 42,66 1,18 42,11 43,21 

Percentage late 29,91% 1,01% 29,44% 30,39% 

Avg throughput time 114,32 0,64 114,03 114,62 

Avg flowtime 191,20 1,56 190,47 191,93 

Nr of blocks 6,65 1,57 5,92 7,38 

Nr of starvations 61,85 8,76 57,75 65,95 

 
SPT; we use only 1 run in the first experiment, because the output of multiple runs will be the same. 
Table 17: Simulation output for SPT rule in experiment 1. 

KPI Mean 

Makespan 796,88 

Max tardiness 590,66 

Avg tardiness 41,21 

Percentage late 26,72% 

Avg throughput time 114,41 

Avg flowtime 178,82 

Nr of blocks 7 

Nr of starvations 48 
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Random 
Table 18: Simulation output for random rule in experiment 1. 

KPI Mean Sigma 
L.B C.I 
(95%) 

U.B C.I 
(95%) 

Makespan 718,02 33,66 702,27 733,78 

Max tardiness 439,36 103,50 390,92 487,80 

Avg tardiness 61,56 17,09 53,56 69,56 

Percentage late 42,07% 3,85% 40,27% 43,87% 

Avg throughput time 107,66 3,30 106,12 109,21 

Avg flowtime 231,49 12,35 225,71 237,26 

Nr of blocks 0,35 1,57 -0,38 1,08 

Nr of starvations 58,95 7,51 55,44 62,46 

 
Experiment 2 
 
EDD 
Table 19: Simulation output for EDD rule in experiment 2. 

KPI Mean Sigma 
L.B C.I 
(95%) 

U.B C.I 
(95%) 

Makespan 784,81 93,89 740,87 828,76 

Max tardiness 374,94 106,49 325,10 424,78 

Avg tardiness 43,64 12,61 37,74 49,54 

Percentage late 47,24% 7,01% 43,96% 50,52% 

Avg throughput time 137,88 15,44 130,66 145,11 

Avg flowtime 242,42 17,82 234,08 250,76 

Nr of blocks 4,80 5,17 2,38 7,22 

Nr of starvations 29,80 13,58 23,45 36,15 

 
MS 
Table 20: Simulation output for MS rule in experiment 2. 

KPI Mean Sigma 
L.B C.I 
(95%) 

U.B C.I 
(95%) 

Makespan 713,67 63,15 684,11 743,22 

Max tardiness 316,26 71,97 282,58 349,95 

Avg tardiness 82,32 23,00 71,56 93,08 

Percentage late 80,09% 8,89% 75,93% 84,25% 

Avg throughput time 151,96 14,15 145,34 158,59 

Avg flowtime 309,60 26,67 297,12 322,08 

Nr of blocks 18,45 7,16 15,10 21,80 

Nr of starvations 18,20 5,74 15,52 20,88 
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FCFS 
Table 21: Simulation output for FCFS rule in experiment 2. 

KPI Mean Sigma 
L.B C.I 
(95%) 

U.B C.I 
(95%) 

Makespan 805,69 82,69 766,99 844,39 

Max tardiness 428,44 99,65 381,80 475,08 

Avg tardiness 56,22 15,28 49,07 63,38 

Percentage late 44,44% 7,96% 40,72% 48,16% 

Avg throughput time 131,65 13,41 125,38 137,93 

Avg flowtime 240,24 22,37 229,77 250,71 

Nr of blocks 3,25 5,88 0,50 6,00 

Nr of starvations 42,35 12,44 36,53 48,17 

 
ATC 
Table 22: Simulation output for ATC rule in experiment 2. 

KPI Mean Sigma 
L.B C.I 
(95%) 

U.B C.I 
(95%) 

Makespan 792,04 104,05 743,35 840,74 

Max tardiness 360,93 109,35 309,75 412,10 

Avg tardiness 56,06 14,37 49,34 62,79 

Percentage late 70,04% 8,40% 66,11% 73,97% 

Avg throughput time 140,19 13,59 133,83 146,55 

Avg flowtime 279,95 17,27 271,87 288,03 

Nr of blocks 13,65 6,56 10,58 16,72 

Nr of starvations 23,45 12,56 17,57 29,33 

 
PT+SL 
Table 23: Simulation output for PT+SL rule in experiment 2. 

KPI Mean Sigma 
L.B C.I 
(95%) 

U.B C.I 
(95%) 

Makespan 835,84 92,47 792,56 879,12 

Max tardiness 443,51 96,72 398,24 488,77 

Avg tardiness 46,52 8,67 42,46 50,58 

Percentage late 32,54% 2,37% 31,43% 33,65% 

Avg throughput time 120,27 7,95 116,55 123,99 

Avg flowtime 190,14 11,00 184,99 195,29 

Nr of blocks 0,90 4,02 -0,98 2,78 

Nr of starvations 39,35 10,94 34,23 44,47 
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SPT 
Table 24: Simulation output for SPT rule in experiment 2. 

KPI Mean Sigma 
L.B C.I 
(95%) 

U.B C.I 
(95%) 

Makespan 845,50 91,38 802,73 888,27 

Max tardiness 649,45 101,00 602,18 696,72 

Avg tardiness 45,60 6,09 42,75 48,45 

Percentage late 27,11% 2,59% 25,90% 28,32% 

Avg throughput time 117,35 8,95 113,16 121,54 

Avg flowtime 178,45 7,87 174,77 182,14 

Nr of blocks 0,00 0,00 0,00 0,00 

Nr of starvations 41,60 15,13 34,52 48,68 

 
Random 
Table 25: Simulation output for random rule in experiment 2. 

KPI Mean Sigma 
L.B C.I 
(95%) 

U.B C.I 
(95%) 

Makespan 811,59 92,18 768,45 854,73 

Max tardiness 498,89 124,89 440,44 557,33 

Avg tardiness 68,43 16,13 60,88 75,97 

Percentage late 46,51% 4,60% 44,36% 48,66% 

Avg throughput time 131,82 14,13 125,21 138,44 

Avg flowtime 242,79 17,73 234,49 251,09 

Nr of blocks 3,10 5,00 0,76 5,44 

Nr of starvations 38,90 15,36 31,71 46,09 

 
Experiment 3 
 
EDD 
Table 26: Simulation output for EDD in experiment 3. 

KPI Mean Sigma 
L.B C.I 
(95%) 

U.B C.I 
(95%) 

Makespan 719,83 48,05 697,35 742,32 

Max tardiness 278,43 38,68 260,33 296,54 

Avg tardiness 43,26 5,51 40,68 45,83 

Percentage late 53,36% 4,15% 51,42% 55,30% 

Avg throughput time 121,56 5,80 118,84 124,27 

Avg flowtime 248,74 8,04 244,98 252,50 

Nr of blocks 0,60 1,57 -0,13 1,33 

Nr of starvations 33,15 8,44 29,20 37,10 
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MS 
Table 27: Simulation output for MS in experiment 3. 

KPI Mean Sigma 
L.B C.I 
(95%) 

U.B C.I 
(95%) 

Makespan 675,21 21,67 665,07 685,35 

Max tardiness 239,71 41,92 220,09 259,33 

Avg tardiness 87,09 8,36 83,18 91,01 

Percentage late 91,81% 2,41% 90,68% 92,94% 

Avg throughput time 147,42 5,73 144,74 150,10 

Avg flowtime 319,94 8,76 315,84 324,04 

Nr of blocks 15,30 4,47 13,21 17,39 

Nr of starvations 13,80 2,21 12,76 14,84 

 
FCFS 
Table 28: Simulation output for FCFS in experiment 3. 

KPI Mean Sigma 
L.B C.I 
(95%) 

U.B C.I 
(95%) 

Makespan 744,34 54,88 718,66 770,03 

Max tardiness 338,63 54,23 313,25 364,01 

Avg tardiness 50,62 6,03 47,80 53,45 

Percentage late 45,60% 4,71% 43,40% 47,81% 

Avg throughput time 117,45 6,06 114,61 120,28 

Avg flowtime 239,57 8,89 235,41 243,73 

Nr of blocks 0,75 3,35 -0,82 2,32 

Nr of starvations 43,70 12,57 37,82 49,58 

 
ATC 
Table 29: Simulation output for ATC in experiment 3. 

KPI Mean Sigma 
L.B C.I 
(95%) 

U.B C.I 
(95%) 

Makespan 779,32 69,04 747,01 811,63 

Max tardiness 354,27 73,88 319,69 388,85 

Avg tardiness 58,41 4,97 56,09 60,74 

Percentage late 82,67% 2,50% 81,50% 83,84% 

Avg throughput time 137,84 5,06 135,47 140,20 

Avg flowtime 289,15 5,39 286,62 291,67 

Nr of blocks 11,50 3,41 9,90 13,10 

Nr of starvations 17,45 9,42 13,04 21,86 
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PT+SL 
Table 30: Simulation output for PT+SL in experiment 3. 

KPI Mean Sigma 
L.B C.I 
(95%) 

U.B C.I 
(95%) 

Makespan 778,53 37,84 760,82 796,24 

Max tardiness 378,62 32,61 363,36 393,89 

Avg tardiness 49,18 2,81 47,86 50,49 

Percentage late 33,28% 1,44% 32,60% 33,95% 

Avg throughput time 113,09 2,64 111,85 114,32 

Avg flowtime 194,27 3,94 192,43 196,11 

Nr of blocks 0,00 0,00 0,00 0,00 

Nr of starvations 40,35 6,23 37,44 43,26 

 
SPT 
Table 31: Simulation output for SPT in experiment 3. 

KPI Mean Sigma 
L.B C.I 
(95%) 

U.B C.I 
(95%) 

Makespan 772,18 28,34 758,92 785,44 

Max tardiness 588,23 31,82 573,34 603,12 

Avg tardiness 45,62 2,23 44,58 46,66 

Percentage late 26,51% 1,34% 25,88% 27,13% 

Avg throughput time 108,32 1,86 107,45 109,19 

Avg flowtime 177,90 2,54 176,71 179,09 

Nr of blocks 0,10 0,45 -0,11 0,31 

Nr of starvations 46,55 5,40 44,02 49,08 

 
Random 
Table 32: Simulation output for random rule in experiment 3. 

KPI Mean Sigma 
L.B C.I 
(95%) 

U.B C.I 
(95%) 

Makespan 758,31 59,38 730,52 786,10 

Max tardiness 486,24 111,81 433,91 538,57 

Avg tardiness 70,09 16,25 62,49 77,70 

Percentage late 46,68% 4,35% 44,64% 48,72% 

Avg throughput time 120,27 8,29 116,39 124,14 

Avg flowtime 243,02 10,15 238,27 247,77 

Nr of blocks 0,40 0,99 -0,07 0,87 

Nr of starvations 41,90 9,28 37,55 46,25 
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Experiment 4 
 
EDD/MS 
Table 33: Simulation output for EDD/MS in experiment 4. 

KPI Mean Sigma 
L.B C.I 
(95%) 

U.B C.I 
(95%) 

Makespan 704,16 32,55 688,92 719,39 

Max tardiness 275,15 36,61 258,02 292,29 

Avg tardiness 39,53 5,58 36,92 42,14 

Percentage late 49,61% 4,62% 47,45% 51,77% 

Avg throughput time 105,88 3,63 104,18 107,58 

Avg flowtime 244,88 7,80 241,23 248,53 

Nr of blocks 0,00 0,00 0,00 0,00 

Nr of starvations 63,90 7,68 60,31 67,49 

 
EDD/FCFS 
Table 34: Simulation output for EDD/FCFS in experiment 4. 

KPI Mean Sigma 
L.B C.I 
(95%) 

U.B C.I 
(95%) 

Makespan 708,34 34,69 692,11 724,58 

Max tardiness 276,51 37,85 258,80 294,23 

Avg tardiness 39,50 5,52 36,92 42,09 

Percentage late 49,61% 4,63% 47,44% 51,78% 

Avg throughput time 105,87 3,57 104,20 107,54 

Avg flowtime 244,88 7,76 241,25 248,51 

Nr of blocks 0,00 0,00 0,00 0,00 

Nr of starvations 63,40 8,04 59,64 67,16 

 
MS/EDD 
Table 35: Simulation output for MS/EDD in experiment 4. 

KPI Mean Sigma 
L.B C.I 
(95%) 

U.B C.I 
(95%) 

Makespan 668,03 13,91 661,52 674,54 

Max tardiness 232,79 12,97 226,71 238,86 

Avg tardiness 83,49 1,87 82,62 84,37 

Percentage late 86,12% 0,39% 85,94% 86,30% 

Avg throughput time 119,50 1,47 118,81 120,19 

Avg flowtime 314,51 1,92 313,61 315,41 

Nr of blocks 8,60 2,39 7,48 9,72 

Nr of starvations 44,40 3,76 42,64 46,16 
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MS/FCFS 
Table 36: Simulation output for MS/FCFS in experiment 4. 

KPI Mean Sigma 
L.B C.I 
(95%) 

U.B C.I 
(95%) 

Makespan 664,92 15,30 657,76 672,08 

Max tardiness 233,63 14,53 226,83 240,43 

Avg tardiness 83,72 1,97 82,80 84,64 

Percentage late 86,12% 0,39% 85,94% 86,30% 

Avg throughput time 119,76 1,53 119,05 120,48 

Avg flowtime 314,75 2,01 313,81 315,69 

Nr of blocks 8,80 1,51 8,09 9,51 

Nr of starvations 44,00 2,10 43,02 44,98 

 
FCFS/EDD 
Table 37: Simulation output for FCFS/EDD in experiment 4. 

KPI Mean Sigma 
L.B C.I 
(95%) 

U.B C.I 
(95%) 

Makespan 710,56 34,04 694,63 726,49 

Max tardiness 289,63 27,84 276,60 302,66 

Avg tardiness 41,20 1,49 40,50 41,90 

Percentage late 40,73% 3,16% 39,25% 42,21% 

Avg throughput time 105,97 3,76 104,21 107,73 

Avg flowtime 227,35 3,74 225,59 229,10 

Nr of blocks 0,30 1,34 -0,33 0,93 

Nr of starvations 64,90 9,56 60,42 69,38 

 
FCFS/MS 
Table 38: Simulation output for FCFS/MS in experiment 4. 

KPI Mean Sigma 
L.B C.I 
(95%) 

U.B C.I 
(95%) 

Makespan 708,40 29,53 694,58 722,22 

Max tardiness 290,51 28,52 277,16 303,86 

Avg tardiness 41,23 1,56 40,50 41,96 

Percentage late 40,95% 3,08% 39,51% 42,39% 

Avg throughput time 105,96 3,81 104,18 107,74 

Avg flowtime 227,33 3,77 225,57 229,09 

Nr of blocks 0,00 0,00 0,00 0,00 

Nr of starvations 66,35 8,13 62,54 70,16 

 


