
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

ASIP design and algorithm
implementation for beamforming

in an antenna array

J.M. Oedzes
M.Sc. Thesis
August 2020

Supervisors:
dr.ir. S.H. Gerez

dr.ir. A.B.J. Kokkeler
dr.ir. M.S. Oude Alink

Masoud Abbasi Alaei M.Sc.

Computer Architecture and Embedded Systems Group
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

II

Abstract

Beamforming is a technique that can be used in antenna arrays to electronically
steer wireless signals in a specific direction for directional signal transmission or re-
ception. The technique is widely used in a multitude of communication standards.
Beamforming requires coefficients to be chosen for each of the antennas in the ar-
ray, which proves to be a computationally intensive task. This work investigates
the implementation of a 4-antenna beamforming algorithm for a hybrid beamforming
system onto an application-specific instruction set processor (ASIP), which is a type
of processor that can be extended with custom instructions to suit its specific appli-
cation. The Tzscale processor was used as the base for the ASIP and is build upon
the RISC-V instruction-set. An implementation of the Tzscale processor from the
ASIP Designer Environment by Synopsys was used. Extensive complexity analysis
is performed on the algorithm before implementation in C. After software optimiza-
tions, the required number of clock cycles already reduced by 44%. The ASIP was
then extended with native fixed-point support for multiplication and division, as pro-
filing results indicated that this would be the most beneficial for the implementation.
The native fixed-point support reduced the required number of clock cycles for run-
ning the optimized software version by 61%, while only increasing the required area
of the processor by 8%. Power numbers based on a 10% toggle rate show that the
implementation also requires only 40% percent of the energy to run an algorithm
cycle.

iii

IV

Contents

List of acronyms vii

1 Introduction 1
1.1 Research questions . 2
1.2 Report organization . 2

2 Background 5
2.1 Beamforming . 5
2.2 Application-specific instruction set processor 6

2.2.1 Design flow . 8
2.3 Related work . 10
2.4 Hybrid beamformer top-level view . 13

3 The QMP algorithm 15
3.1 Formal description . 15
3.2 Analysis . 16

3.2.1 Complexity . 16
3.2.2 Dominant operations . 18
3.2.3 Memory requirement . 19

3.3 Implementation . 21
3.3.1 General considerations . 22
3.3.2 Fixed-point number representation 23

3.4 Verifying functional correctness . 26

4 Running on Tzscale 27
4.1 The Tzscale processor . 27
4.2 Generating the dictionary vectors . 28
4.3 Profiling . 29
4.4 Software optimizations . 31
4.5 Discussion on profiling results . 34

v

VI CONTENTS

5 Modifying the Tzscale 37
5.1 Native fixed-point support . 37

5.1.1 New instruction encoding . 38
5.1.2 Multiplication . 40
5.1.3 Division . 43

5.2 Implementation . 49
5.2.1 Verifying functional correctness 51
5.2.2 VHDL simulation . 51
5.2.3 Comparison between VHDL and the ISS 55

5.3 Results and evaluation . 56

6 Conclusion and future work 59
6.1 Conclusion . 59
6.2 Experience with ASIP Designer . 61
6.3 Recommendations for future work . 62

References 65

Appendices

A Matlab implementation 69

B C implementation 71

C Tzscale Division 79

List of acronyms

ADC analog to digital converter

ALU arithmetic logic unit

APN analog preprocessing network

ASIC application-specific integrated circuit

ASIP application-specific instruction set processor

CAU complex arithmetic unit

CGRA coarse-grained reconfigurable architecture

CPU central processing unit

FPGA field programmable gate array

HDL hardware description language

HLS high-level synthesis

ISA instruction set architecture

ISS instruction set simulator

LSB least significant bit

MIMO multiple-input multiple-output

MRB matrix register banks

MSB most significant bit

PDG primitives definition and generation

QMP quantized matching pursuit

RF radio frequency

RISC reduced instruction set computer

RTL register transfer level

SDK software development kit

SIMD single instruction multiple data

vii

VIII LIST OF ACRONYMS

SISO single-input single-output

SVD singular value decomposition

TTA transport triggered architecture

VHDL very high speed integrated circuit hardware description language

Chapter 1

Introduction

In multiple-input multiple-output (MIMO) systems multiple antenna elements are
deployed at both the transmitter and the receiver end, in contrast to single-input
single-output (SISO) systems where only a single antenna is used. This increased
number of antennas allows for multiple data streams to be transmitted simultane-
ously, which can be used to increase the reliability of the communication channel
as well as increase the data rate. The multiple antennas also allow for a technique
called beamforming: a signal processing technique utilizing multiple antennas for
directional signal transmission or reception, making beamforming a specific case of
MIMO. Beamforming is achieved by transmitting the same signal through multiple
antennas, while varying the phase and magnitude for each separate antenna. The
same can be done at the receiver side to be more sensitive to a specific direction.
MIMO and beamforming technology attracts more and more attention and is already
widely used in a significant number of fields like for example Wi-Fi and cellular net-
works.

Beamforming leads to separate radio frequency (RF) front-ends and analog to
digital converters (ADCs) for each antenna, resulting in increased circuit size and
higher power consumption. Next to that, effectively performing beamforming proves
to be a computationally intensive task, requiring very powerful digital hardware for
processing of the signals. To reduce the computational load, a hybrid structure with
both an analog and a digital part can be implemented where analog preprocessing
networks (APNs) are used to already cancel interference before reaching the digital
domain. Employing APNs reduces the required ADC resolution since interference
can be pre-canceled and does not have to be digitized, which also translated to
lower power consumption [1].

To perform beamforming, optimal weights for the antennas have to be calculated
constantly to be able to recover the transmitted data streams in the best way. This
thesis work will use an application-specific instruction set processor (ASIP) for that
purpose, running the search algorithm as proposed in [1]. An ASIP is a processor

1

2 CHAPTER 1. INTRODUCTION

that can be tailored to the specific application that it is designed for, by adding to its
instruction set architecture (ISA) or modifying its existing one. This means that for
their specific applications, ASIPs can be made relatively fast and energy efficient.
This thesis work concerns the ASIP used for calculating the optimal beamforming
weights and builds upon [2], a thesis work serving as a foundation for this research.
An ISA is already chosen, the basis for the ASIP is constructed and also already
a complex instruction is added to the ASIP which can perform square root opera-
tions. This work will continue the work that was started by [2], with one of the main
challenges being scaling up from a 2-antenna system as used in [2] to a 4-antenna
system.

1.1 Research questions

The final goal of the research assignment is to continue the work that was started
by [2]. Given the previous research work, the research question for this research
thesis can be formulated as follows: Which changes should be made to the ASIP
as proposed in [2] to increase performance and efficiency to find the beamforming
coefficients for a 4-antenna system?

The following sub-questions are formulated:

• What impact does the change of a 2-antenna system as used in [2] to an N-
antenna system have on performance and required memory?

• Does analysis of the algorithm without the context of the target architecture
yield interesting results? Is there a relation between this analysis and profiling
results after compilation for the target architecture? Is this relation as can be
expected?

• Which changes can be made to the ISA by arithmetical (e.g. complex-number
operations) or control-oriented (e.g. hardware loop controller) instructions, to
increase performance and efficiency?

1.2 Report organization

The remainder of this report is organized as follows. In Chapter 2 background about
beamforming and ASIPs is discussed, as well as related work on the subject. The
beamforming algorithm is elaborated upon in Chapter 3. That chapter will introduce
the formal description of the algorithm and perform analysis on it. The memory

1.2. REPORT ORGANIZATION 3

requirement and implementation of the algorithm are discussed as well. Chapter 4
will then present results of running the implementation as discussed in Chapter 3 on
the ASIP. The software implementation will be optimized, and finally a discussion
will be held on what is best to be implemented into the ASIP. Chapter 5 discusses
the modification of the ASIP and the new results due to these modifications. Finally,
Chapter 6 will draw conclusion based on the results and provide recommendations
for future work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

2.1 Beamforming

Beamforming is a technique used in antenna arrays to electronically steer the trans-
mission or reception of signals into a certain direction. Instead of simply broadcast-
ing the signals equally in all directions, the system tries to determine the direction of
interest and transmits or receives a more concentrated beam to or from that direc-
tion. The technique of beamforming is widely used in a large number of fields, like
for example 5G. The operation of 5G requires very high data rates, where beam-
forming proves to be a good technique to transmit and receive at these high speeds
efficiently [3].

Conventional array

Main beam

Sidelobes

Beamforming array

Figure 2.1: Antenna arrays with and without beamforming

Beamforming tries to solve the problem of capacity and throughput limitation that is
caused by the omni-directional nature of transmission through antennas. The distri-
bution of energy by a node in directions other than the intended one not only causes
unnecessary interference to other nodes, but also reduces the potential range of

5

6 CHAPTER 2. BACKGROUND

the transmission (due to a lower strength of the signal and multipath components).
With directional communications, however, spatial reuse and range would be simul-
taneously enhanced, having a higher signal energy in the desired direction as an
effect. [4].

The use of multiple antennas in a beamforming antenna array leads to the use
of separate RF front ends and ADCs resulting in increased circuit size and power
consumption [1]. In existing multi-antenna receivers, an ADC operation requires the
same power as that of hundred thousands of logic gates [5], showing that cutting
down on either the number of required ADCs or the ADC resolution would greatly
benefit power consumption. To achieve this, hybrid beamforming systems consisting
of both APNs and digital hardware can be used, where the APNs reduce the load
on the ADCs and digital hardware.

APNs can be used in several ways. A relatively simple way to reduce the number
of RF and ADC chains is to use antenna selection, where the antenna with the
highest signal energy is selected to be used for the actual signal processing. A big
drawback of this is that interference cannot be canceled this way. Ideally, the APNs
should be used to linearly combine the received signals using weighing coefficients
[1]. In such a setup, signals with higher signal energy receive a higher weight,
resulting in these signals having a greater influence on the linearly combined signal
than signals with lower signal energy. In an actual system it is very likely for the
optimal weighing coefficients to change over time, as the receiver and transmitter
can move with respect to each other. To make use of beamforming in its optimal
way, an algorithm which tries to find the optimal weighing coefficients should run in
real-time, constantly updating the weighing coefficients in the APNs. As stated in
Section 1, this research will use an ASIP as the processor in a hybrid beamforming
system to calculate the beamforming coefficients that are needed in the APNs.

2.2 Application-specific instruction set processor

Most engineers are familiar with the concept of an application-specific integrated
circuit (ASIC). An ASIC usually provides high performance and efficiency on a rel-
atively small area (die) compared to a general-purpose processor, due to it being
designed specifically and only for its target application. For this reason, ASICs are
widely used. However, the development of ASICs usually takes a long time because
of a couple of reasons. Firstly, as ASICs are designed with one specific application
in mind, development often starts from scratch. Another disadvantage to the use of
ASICs is that once the design is finished and production has started, there is no way
to alter its functionality. An ASIC can often be configured to some degree, for exam-
ple by writing to its internal registers, but the core functionality remains the same.

2.2. APPLICATION-SPECIFIC INSTRUCTION SET PROCESSOR 7

This makes ASICs inflexible once their design is finished.

© 2018 Synopsys, Inc. 71-

Architectural specialization
Parallelism: instruction-level,
data-level, task-level
Power-optimised RTL generation
Power-gating of cores

Architectural specialization
Parallelism: instruction-level,
data-level, task-level

Minimize
Power

consumption

Maximize
Performance

Support changing requirements
without SoC re-spin
Quick algorithm mapping from C
to silicon, with easy debugging

Programma-
bility

A
S
I
P

Power & Performance Efficiency

A
p

pl
ic

at
io

n
 F

le
xi

b
ili

ty

General Purpose
Microprocessor

Extensible
Processor

Application-
Specific µP/DSP

Programmable
Datapath

Hardwired
Datapath

Synopsys Confidential Information

Figure 2.2: Flexibility and performance trade-off for different hardware solutions [6].

On the other end of the extreme would be the general-purpose processor, designed
for maximum flexibility and fitting as many different applications as possible. Design-
ing with general-purpose processors mostly consists of writing software to perform
the required tasks. Where in general-purpose processors flexibility on the hardware
level is still constrained by the architecture of the processor, a great amount of flexi-
bility is achieved by the ability to easily write and change the software running on the
processor. Especially higher-level languages like C or C++ enable the designer to
implement complex behavior in a relatively short time, while a compiler takes care of
the translation to machine code to match the specific architecture. Also, using these
higher-level languages in combination with their compilers significantly increases
reusability, as software can easily be ported to different architectures. All of this flex-
ibility comes at the cost of higher power consumption and lower speed compared to
ASICs. Where both options have clear benefits and drawbacks, an ASIP tries to be
the best of both extremes and is the balance between an ASIC and pure software-
based solutions [7]. Figure 2.2 draws a picture of how an ASIP fits in between the
extremes of the general-purpose processor and the ASIC.

An ASIP is a processor with an instruction set tailored to the exact application that
it is designed for. Customization of a processor for a specific application holds the
system cost down, which is especially important for embedded consumer products
manufactured in high volume [8]. The trade-offs involved in designing ASIPs differ
considerably from the design of general-purpose processors, because they are not
optimized for a wide variety of applications but target a specific problem class just
like ASICs. Regardless of this specific design, flexibility is maintained since in the

8 CHAPTER 2. BACKGROUND

end the behavior of the system is still determined by the software running on the
ASIP, which can be altered and updated easily. Also, using modern design tools the
ISA can be altered and extended relatively easily to suit different applications. For
instance, a processor for DSP applications generally shows MAC units, dual mem-
ory banks, and address generation hardware, while a network processor provides
instructions for fast data packet manipulation and routing table lookup [9].

2.2.1 Design flow

The design of an ASIP is a hardware/software co-design problem that often consists
of the same set of steps, which starts with a target application and finally ends with
hardware synthesis of the ASIP. Most often, the following 5 steps can be identified
in the design process [10]:

1. Application analysis
Input in the ASIP design process is an application along with potential test data
and design constraints. Often the application consists of one or multiple algo-
rithms that need to perform complicated mathematical operations, or operate
on large chunks of memory, both of which are not always supported by conven-
tional ISAs. The application should be profiled to find the potential ”hotspots”
which are interesting to try and optimize using additions to the hardware. The
insights gained in this stage are used in the subsequent design steps.

2. Architectural design space exploration
An exploration into different architectures that could fit the need of the applica-
tion is performed. Most often an already existing architecture is chosen as the
base for the ASIP. Some of these architectures can allow for customization on
many levels, including the micro-architecture and the pipeline, while others are
more constrained but often adhere to certain standards.

3. Instruction set generation
An instruction set is to be generated to suit the need for the applications under
design. Most often a base ISA is provided with the architecture that is chosen
for the ASIP. The base ISA is often relatively limited, but it is of course ex-
tended with custom instructions to suit the applications’ needs. The instruction
set is used during the code synthesis and hardware synthesis steps.

4. Code synthesis
A compiler is generated for the ISA which can then be used to compile the
application on the new hardware. Compiler generation is part of most modern
ASIP design tools. After compilation of the application on the new ISA, the

2.2. APPLICATION-SPECIFIC INSTRUCTION SET PROCESSOR 9

software can be profiled again, specifically for the new ISA. Most often there
are multiple design cycles that alternate between this step and the instruction
set generation step. Once the designer is satisfied with the performance, the
next step can be done.

5. Hardware synthesis
In this step the hardware is synthesized using the ASIP architectural template
and ISA. Synthesis can be performed for both FPGA and ASIC implementa-
tions, after which also post-synthesis simulations can be performed.

As ASIPs are designed to run software (algorithms) specifically written for the tar-
get application, the design of ASIPs always starts with step 1, the algorithm itself.
Finding useful alterations and extensions to the ISA requires a deep understanding
of the application algorithm which for a large part can be gained by analyzing the
corresponding source code. Therefore, source code profiling is the first important
step in ASIP design [11]. Traditional source code profiling can be divided into two
classes: assembly level profiling and high-level profiling.

The difference between the two originates from the fact that assembly language
always corresponds to a specific ISA while a high-level language does not. This
means that assembly level profiling is specific to the architecture, and can thus pro-
vide architecture-specific information like the number of clock cycles required to ex-
ecute a certain function. This is not the case with high-level profiling, where profiling
is done only at the source code level. This makes high-level profiling a little less use-
ful for ASIP design, as it cannot gather architecture-specific information. However,
it can still be useful since this type of profiling can be used to already tackle ineffi-
ciencies on the software level. Because of these reasons, it would be interesting to
consider both profiling options.

The environment used for ASIP design in this research is called ’ASIP Designer’,
by Synopsys [12]. It is a retargetable compiler, simulation and hardware generation
environment. ASIP Designer is a high-level synthesis (HLS) environment, where
the nML and PDG languages are used to describe the processor and its behav-
ior. Figure 2.3 shows the design flow to be used with the environment. The steps
shown in the diagram slightly differ from the steps as discussed before. The first
step, SDK generation, assumes that an architectural design space exploration was
already performed, and that a base architecture was chosen as a result of that.
The SDK generation step generates a compiler specifically for the ASIP and also
an instruction set simulator (ISS) that can be used to simulate the behavior of the
processor when the application code would be running on it. This makes the ISS an
ideal tool for performing assembly-level profiling. The ASIP Designer environment
does not incorporate any high-level profiling. As a result of that, this step will need

10 CHAPTER 2. BACKGROUND

to be performed apart from the ASIP Designer environment. The architectural op-
timization step indicates the process of modifying the ASIP by adding or modifying
instructions. The SDK generation step can then be performed again to generate a
new SDK for the modified ASIP. These first two steps can be done multiple times
until the designer is satisfied with the simulated performance. The last steps, hard-
ware generation and verification, indicate the hardware synthesis process where
synthesizable RTL is generated. The RTL can be used to perform simulations, ver-
ify behavior at the hardware level, or implement the ASIP on an FPGA.

Figure 2.3: ASIP design process in the ASIP Designer tool [12].

2.3 Related work

Section 2.1 and 2.2 introduced beamforming and the ASIP. This section will cover
some of the research that has been done, specifically concerning ASIPs and their
use in wireless communication related scenarios. No literature was found regarding
the exact same topic of this research, i.e., literature about ASIP design on behalf of
a beamforming algorithm. Instead, the literature study was focused on closely re-
lated topics. For example, ASIP design for other communication related algorithms.
The difference in context in which the algorithm operates should not be a problem,
since ASIP design specifically targets the operations and actions performed by the
algorithm, regardless of the algorithm’s application.

2.3. RELATED WORK 11

[13] shows the design of an ASIP for an MD5 hash algorithm. This is a good ex-
ample of a straightforward ASIP design problem: an algorithm that performs a lot
of operations on a large data set. The ISA was extended with multiple instructions,
e.g. complete instructions for specific rounds of the algorithm. These alterations sig-
nificantly decrease the required number of clock cycles required to run the algorithm.

[14] use an ASIP to run three different beamforming algorithms used in hearing aids.
The trade-off between performance of the algorithms and power consumption is an-
alyzed, the latter of which is especially important in this case as hearing aids are
battery powered. The proposed application-specific hardware optimizations were
implemented in a VLIW-SIMD hearing-aid processor, where the processor’s datap-
ath width was modified. A total of 24 different processor configurations were studied.
It appeared that the optimizations resulted in either a reduced silicon area require-
ment of up to 2 times or a decreased power consumption up to 11 times, with only
a slight decrease in algorithm performance.

In [15] an ASIP is used for a real-time control module for a retrodirective antenna
array. The developed digital control module was capable of updating the current
coefficients of an eight-element antenna array in less than 1s with a power con-
sumption of 5.3mW for beamsteering angles from 0 to 60 degrees.

[16] presents an ASIP-based flexible MMSE-IC Linear Equalizer for MIMO turbo-
equalization applications. The proposed ASIP has a single instruction multiple data
(SIMD) architecture with an ISA extended with specialized instructions and a 7-stage
pipeline. Several efforts are made on behalf of efficient computational and storage
resource sharing: matrix register banks (MRB) multiplexing, a 16-bit complex arith-
metic unit (CAU) made up of 4 combined complex adder/subtractor/multiplier units,
2 real multipliers, 5 complex adders, and 2 complex subtractors, and flexible 32-
bit to 16-bit data conversion at multipliers’ output. The proposed ASIP achieves a
throughput of 273 MSymbol/Sec. The Processor Designer frame-work from CoW-
are Inc. was used for this research, which allows for automatic generation of ASIP
software development tools along with VHDL and Verilog descriptions for hardware
synthesis and system integration

An ASIP architecture implementation of channel equalization algorithms for MIMO
systems in WCDMA downlink is presented in [17]. The instruction set of transport
triggered architecture (TTA) processors is extended with several user-defined op-
erations specific for channel equalization algorithms that significantly optimize the

12 CHAPTER 2. BACKGROUND

architecture for the physical layer of the mobile handset. The implemented ASIP
solutions meet the real-time requirements for the 3GPP wireless standard with rea-
sonable clock speed and power consumption.

[18] describes the development of an ASIP used as an singular value decompo-
sition (SVD) processor in SVD-MIMO systems for 4 to 16 transmitter and receiver
antennas. The proposed design uses floating-point units for computation requiring
high precision. Also, an optimization was done to the SVD algorithm, showing the
importance of source code profiling. The optimization was done by looking at the
minimum number of required QR method iterations according to each size of the
MIMO channel matrix. The resulting architecture is able to do real-time processing
for 4x4 to 16x16 MIMO-OFDM.

[19] describes the implementation of a multi-mode MIMO detector based on the
concept of partially reconfigurable ASIP. The use of reconfigurable hardware allows
for the implementation of multiple MIMO detection algorithms each with different
antenna and modulation configurations. The rASIP is made up mainly of a coarse-
grained reconfigurable architecture (CGRA) coupled with a processor. As matrix
operations are required in a lot of MIMO related algorithms the ISA of the processor
is extended with support for different matrix operations. Also, special instructions
for the implementation of the control path required by the different algorithms are
added. Synopsys Processor Designer was used as the tool for the implementa-
tion of the ASIP. Feasibility of the proposed approach is shown by implementing
three non-iterative MIMO detection algorithms. Post-layout results are generated
for 65nm CMOS technology. It appears that the proposed rASIP design is about
1.6–5.4 times more efficient than programmable architectures, and approaches the
throughput performance of dedicated ASICs.

A CGRA based approach is also taken in [20]. This paper notes the difficulty to de-
sign hardware for MIMO systems with high flexibility and scalability with high hard-
ware efficiency. Three different optimization techniques are applied, targeting flexi-
ble and scalable matrix operations for reduced memory access, flexible data access
and the support for different bit widths. Fabricated on a 28nm CMOS technology,
the chip achieves high flexibility and scalability while supporting various detection
algorithms, various MIMO scales, such as 4x4, 32x32, and 128x8 and baseband
processing tasks, such as filtering and fast Fourier transformation.

[21] shows a hybrid hardware/software 802.11ac/ax system design with ASIP im-
plementation. In this paper, a design is presented for an 802.11ac/ax system with an

2.4. HYBRID BEAMFORMER TOP-LEVEL VIEW 13

ASIP to implement multiple disjoint system tasks at much faster speed compared to
a general purpose processor. Channel SVD, channel compression/decompression
and beamforming weight computations were all implemented to run at the same time
on the ASIP to support the 802.11ac MU-MIMO beamforming feature. The actual
task to be done by the ASIP core at any given time can be programmed at any given
time resulting in a very high hardware savings compared to an all hardware imple-
mentation.

It becomes clear that ASIP design is a very broad topic. Even when considering it
in the context of a lot of the research presented above (wireless communication) it
appears that a lot of different options and possibilities can be considered. Looking
at all research combined it very well shows that ASIP design is very specific to the
design problem and the design always needs to be tailored specifically to that.

Another thing that became clear from the literature research is that ASIP design
indeed always starts with a certain algorithm or program and an extensive analysis
of this algorithm or program. Clearly understanding the operations of the algorithm
and having a good implementation of it are integral to making correct design deci-
sions for the ISA.

Lastly, the thesis carried out prior to this work is addressed. In [2] the main research
question was: ”Can a performance and energy efficient ASIP be designed as the
baseband processor which performs the search algorithm to find the optimum coef-
ficient value of the analog beamformer in the hybrid MIMO communication system”.
This research question was answered successfully, as an ASIP was designed with
the RISC-V ISA as a reference design on which the ASIP was developed. The Tzs-
cale processor based on this architecture was taken as the skeleton design which
was customized by adding a square root unit in hardware. As a result of this, the
efficiency was increased by a decrease in the number of required clock cycles of
approximately 50%, while only increasing the required area by approximately 3%.
This is a very significant improvement. This work will use the architecture and ex-
tensions made to the ISA as proposed by [2], and build upon that to scale the design
from 2 antennas to 4 antennas, while at the same time trying to further increase the
performance and efficiency.

2.4 Hybrid beamformer top-level view

The structure of the hybrid beamforming system as discussed in [2] can be seen in
Figure 2.4, with the analog beamformer and the baseband processing connected
to each other via RF chains. There is an RF chain for each of the antennas. The

14 CHAPTER 2. BACKGROUND

Figure 2.4: Hybrid beamforming structure at the receiver [2]

baseband processing block is the part of interest in this research, focusing on the
ASIP. A short explanation for each block is given as follows [2]:

• Dictionary. The dictionary contains all possible values of the quantized analog
beamforming coefficients. As the number of entries in the dictionary increases
exponentially with more antennas, the dictionary will be stored in an external
memory unit. The memory unit requires an interface with the ASIP since the
ASIP is running the algorithm and therefore needs access to this dictionary.

• Channel Estimator. The calculation of the optimum analog beamforming coef-
ficients will be elaborated on in Section 3. The algorithm requires the cross-
correlation vector Crx and its corresponding whitened vector value Crx, which
are estimated by the channel estimator block. The block will also calculate the
co-variance matrix of the received signal.

• ASIP. The ASIP is responsible for running the algorithm and find the optimum
analog beamforming coefficients. It will use the values from the channel esti-
mator to find the best set of coefficients in the dictionary, and then pass these
to the shift registers.

• Shift registers. The shift registers are used as an interface between the ASIP
and the analog beamforming circuit. The values produced by the ASIP are
shifted to the analog beamformer, which will result in its switches being turned
on or off.

• Multiplier. The multiplier is expected to perform the digital beamforming on
the signals coming from the RF chains. The ASIP is not involved in the digital
beamforming part.

Chapter 3

The QMP algorithm

The algorithm to find the best set of coefficients for the APNs considered in this re-
search is the quantized matching pursuit (QMP) algorithm and is described in [1].
The sections in this chapter will discuss a formal representation of the algorithm, per-
form analysis in terms of complexity, memory requirement for storing the dictionary
used by the algorithm and the mathematical operations that require implementation
and finally discuss the implementation of the algorithm in the C language.

3.1 Formal description

The APN uses different coefficients for each antenna for receiving the signal that is
being transmitted to it. The coefficients therefore have to be chosen in such a way
that the signal coming from the APN matches the transmitted signal in the best way.
This is can be achieved by transmitting a reference signal which is known to both
the receiver and the transmitter. Once the reference signal is received and arrives
at the channel estimator, the channel estimator can then pass the required data to
the ASIP after which an exhaustive search can be performed where all different sets
of coefficients are tried on the received signal. The set of coefficients that yields the
best correlation to the reference signal is then chosen as the set of coefficients to
be used in the APN.

An algorithm that achieves this is proposed by [1] and is called the quantized
matching pursuit (QMP) algorithm. This algorithm performs an exhaustive search
for the highest correlation in a dictionary containing coefficient values. (3.1) serves
as a mathematical representation of the QMP algorithm as proposed by [1], where
wopt refers to the optimal whitened APN coefficients.

wopt = argmax
wi∈D

|wH
i rxs|
‖wi‖

(3.1)

Here, wi represents the ith set of whitened coefficients from the dictionary and wH
i

15

16 CHAPTER 3. THE QMP ALGORITHM

represents the complex conjugate transpose of that vector. rxs is the input vector
to the algorithm and is obtained by (3.2), where Rx is the covariance matrix of the
received signal and rxs is the cross-correlation vector between the received signal
and the known reference signal. The size of Rx and rxs depends on the number of
antennas in the system. Given a system of Nr antennas, Rx is an Nr × Nr square
matrix and rxs is a vector with Nr elements.

rxs = Rx
− 1

2 rxs (3.2)

Lastly, the whitened dictionary D can be found using (3.3), where D is the normal
unwhitened dictionary. The dictionary contains all permutations (with repetition) of
the set of possible coefficient values, which are represented by column vectors of Nr

elements. The set of possible coefficient values depends on the number of bits used
for these coefficient values, which is denoted by Rw. Given Nr and Rw the dictionary
is a matrix of size Nr × 2RwNr.

D = Rx
1
2 D (3.3)

A Matlab function which implements the behavior of the algorithm can be found in
Appendix A. The analysis and implementation of the algorithm in the rest of this
chapter are based on this Matlab implementation.

3.2 Analysis

To gain insight into the requirements of the algorithm in terms of computational ca-
pability and memory, analysis is performed in three different ways: complexity in
big-O notation, a breakdown of the dominant operations that are performed while
running the algorithm and the required memory size (mainly for the dictionary that
is required in the algorithm).

3.2.1 Complexity

In computer science, the complexity of algorithms is often expressed using the big-O
notation. As the size of the inputs to an algorithm increases, its runtime will increase,
and the big-O notation mathematically represents the curve of this runtime given the
size of the inputs. The representation is useful because it offers quick insight and a
means of comparison between the performance of different algorithms, and how the
performance of an algorithm scales given the size of its input.

3.2. ANALYSIS 17

Table 3.1: Complexities of the main mathematical operations in the algorithm loop
Operation Complexity
Matrix vector multiplication O(Nr

2)

Vector norm O(Nr)

Complex conjugate of vector O(Nr)

Dot product O(Nr)

Complex number absolute O(1)

Division O(1)

For the QMP algorithm, only the operations of the algorithm inside the main algo-
rithm loop are considered. This is because the order of the loop combined with order
of the operations within it will outweigh the order of any of the operations that are
outside of the loop. To find the complexity of the QMP algorithm, the Matlab code as
per Appendix A will be considered. It is important to mention that some lines of the
Matlab code break down into several separate mathematical operations. Table 3.1
shows each separate mathematical operation that happens inside of the algorithm
loop, and their complexities in big-O notation. It can be seen that the complexities of
all operations inside the algorithm loop are either a constant, or depend only on the
number of antennas. Also, it becomes clear that only the complexity of the matrix-
vector multiplication has to be considered for the final expression as it is the fastest
growing term. To get the final expression, O(Nr

2) should be multiplied by the loop
variable. As explained in Section 3.1, the size of the loop depends on the size of the
dictionary, which is a matrix of size Nr × 2RwNr. Since the loop will access this dic-
tionary vector by vector, the final expression of the big-O complexity can be written
down as follows:

O
(
2RWNrNr

2
)

(3.4)

1 2 3 4 5 6

X

105

1010

B
ig

 O
 c

om
pl

ex
ity

 N
r
=X, R

w
=3

 N
r
=4, R

w
=X

 N
r
=X, R

w
=X

Figure 3.1: Influence of varying Nr and Rw on execution time

18 CHAPTER 3. THE QMP ALGORITHM

The final expression shows a complexity that depends on two variables and is ex-
ponential in nature. Increasing both variables a the same time would imply a drastic
increase in execution time. This is best visualized by the graph in Figure 3.1. As the
y-axis is displayed logarithmically, every step on the y-axis represents an order of
magnitude.

3.2.2 Dominant operations

The big-O notation is a useful and widely used metric for the order of an algorithm.
However, the expression does not provide much information about the algorithm
except for how it scales given different input sizes. For ASIP design a more in-
depth analysis providing insight into the dominant mathematical operations would
be helpful. An analysis like this aids in anticipating potential hot-spots of the algo-
rithm running on a processor. Next to that, it can serve as a means of comparison
between this analysis and profiling results of the algorithm after it is simulated using
an instruction-set simulator. Profiling results that differ too much from this analysis
might be an indication that the algorithm was not implemented very efficiently.

To get insight into the most dominant operations that are performed in the algorithm,
the mathematical operations shown in Table 3.1 are considered. Each of these
mathematical operations is broken down into a number of simpler operations: (com-
plex) addition, (complex) multiplication, division, square root, the complex conjugate
and the absolute value of a complex number. Table 3.2 shows this breakdown,
where the number of simpler operations that are required for each operation from
Table 3.1 is written down as how it depends on the number of antennas.

Table 3.2: Breakdown of main mathematical operations into simpler operations
add Cadd mul Cmul div sqrt Cconj Cabs

Matrix vector mult. 0 Nr
2 0 Nr

2 0 0 0 0
Vector norm 2Nr 0 2Nr 0 0 1 0 0
Complex conj. of vector 0 0 0 0 0 0 Nr 0
Dot product 0 Nr 0 Nr 0 0 0 0
Complex number abs. 0 0 0 0 0 0 0 1
Division 0 0 0 0 1 0 0 0

Symbolic subtotal 2Nr Nr +Nr
2 2Nr Nr +Nr

2 1 1 Nr 1
Subtotal 8 20 8 20 1 1 4 1
Total 32768 81920 32768 81920 4096 4096 16384 4096

The ’Subtotal’ row of the table represents the same as the symbolic subtotal given

3.2. ANALYSIS 19

that Nr = 4 and the ’Total’ row represents the same as the subtotal row multiplied by
4096. This number is equal to the number of vectors in the dictionary for Nr = 4 and
Rw = 3. The table clearly shows that complex addition and complex multiplication
are the most dominant operations. However, since most processors do not natively
support complex-number operations, it would be interesting to also simplify all com-
plex operations into a number of basic (non-complex number) operations. Table 3.3
shows which regular operations are required for each complex-number operation.

Table 3.3: Regular operation for each complex operation
add sub mul sqrt

Cadd 2 0 0 0
Cmul 1 1 4 0
Cconj 0 0 1 0
Cabs 1 0 2 1

Table 3.4 is the result of combining the results of Table 3.2 and 3.3. It contains
only 5 mathematical operations: addition, subtraction, multiplication, division and
the square root and it draws a picture of what can be expected of the profiling results.

Table 3.4: Total number of required regular operations
add sub mul div sqrt

Matrix vector mult. 3Nr
2 Nr

2 4Nr
2 0 0

Vector norm 2Nr 0 2Nr 0 1
Complex conj. of vector 0 0 Nr 0 0
Dot product 3Nr Nr 4Nr 0 0
Complex number abs. 1 0 2 0 1
Division 0 0 0 1 0

Symbolic subtotal 3Nr
2 + 5Nr + 1 Nr

2 +Nr 4Nr
2 + 7Nr + 2 1 2

Subtotal 69 20 94 1 2
Total 282624 81920 385024 4096 8192

3.2.3 Memory requirement

The QMP algorithm as described in Section 3.1 makes use of a dictionary to store
all possible coefficient vectors. Since the length of each of these vectors is equal to
Nr, and the number of vectors is equal 2RWNr the number of bytes required to store
the dictionary grows rather rapidly when increasing either Nr or RW. Considering
that each number in every vector is a complex number, and assuming that 4 bytes

20 CHAPTER 3. THE QMP ALGORITHM

are used to represent each number, 8 bytes are required to represent a complex
number. The full amount memory required is then shown by (3.5).

bytesDictionary = 8 ·Nr · 2RWNr (3.5)

This means that for Nr = 4 and RW = 3 a total of 131072 bytes are required to
completely store the dictionary. For simple embedded processors this is a relatively
large amount of memory, especially since this is the required memory only for the
coefficient vectors and it does not include memory required for other variables or
the program itself. For Nr = 4 and RW = 3 this amount of memory is most likely
realisable, however, when one would scale to higher numbers this memory require-
ment likely becomes a problem. Section 2.4 mentioned that in [2] it was decided to
store the dictionary in an external memory unit as a means of tackling this memory
requirement problem.

Having an external memory unit to store the dictionary solves the problem of mem-
ory requirement. The external memory unit can be chosen exactly such that it fits the
dictionary values for a certain Nr and RW. However, even though it solves the mem-
ory requirement problem, it also introduces multiple new problems, most of which
are either practical or financial in nature. Now that there is an external memory unit,
there needs to be an interface between this external memory and the CPU with its
proprietary memories. An interface like this is almost guaranteed to be slower in
terms of the required clock cycles to access the memory as compared to the CPU’s
proprietary memories. Other practical problems are the need for the external mem-
ory to be preloaded with its values before it can be used and the fact that if a change
was to be made to the software that also requires an update to the coefficients in the
dictionary, the external memory needs a separate update. These practical problems
all together result in a financial one, since they imply that a slightly longer develop-
ment time is required compared to an implementation without external memory, not
to mention the slight added cost of the external memory unit itself.

Given the problems introduced by having an external memory raises the question if
explicitly storing the dictionary is necessary. Section 3.1 mentions that the dictionary
itself is the set of all permutations with repetition of the set of possible coefficient
values. Permutations with repetition of a set of numbers are just all possible combi-
nations that can be made using this set and a given length. In the case of the QMP
algorithm, the set of numbers called Wangle is equal to all unique coefficients of which
the size is determined by RW, and the length is simply the number of antennas Nr.
Given the set Wangle, generating the dictionary is rather simple and could even be
achieved in software by using Nr nested loops. Since in the algorithm the dictionary

3.3. IMPLEMENTATION 21

would be accessed on a vector by vector basis, it is very well possible to generate
each vector from Wangle as soon as it is needed. This requires the program to store
Wangle in memory, but it eliminates the need of storing the complete dictionary.

bytesWangle
= 8 · 2RW (3.6)

The required number of bytes to store Wangle is shown by (3.6), and is significantly
lower compared to the dictionary. For Nr = 4 and RW = 3 no external memory would
be required to store the 64 bytes of Wangle. However, generating the vectors of the
dictionary as they are needed does require some time, and therefore a test should be
done comparing the performance of an implementation where the algorithm makes
use of a pre-computed dictionary and an implementation that generates each vector
separately as they are needed.

3.3 Implementation

This section will discuss the considerations regarding the implementation of the
QMP algorithm. It is important to mention this, since the way in which the algorithm
is implemented decides the efficiency of the algorithm to start with. As mentioned
in Section 2.2.1, the software side is always the first step of ASIP design and might
arguably be the most important one. Since ASIP design mainly relies on software
profiling for identifying potential hotspots, poorly designed software could badly in-
fluence the design choices made for the ASIP if the profiling results were to indicate
a hotspot that would not necessarily need to be there.

Another part to the implementation are the simplifications that were made in
the software. As can be seen in Appendix A, two matrices called Rx sqrt and
Rx sqrt inv are passed to the QMP algorithm. However, in the actual algorithm
as proposed by [1], only the matrix Rx is passed to the algorithm, and the program
itself needs to calculate the matrix square root and the inverse of the matrix square
root. These two operations are left out, as they are relatively difficult to implement
and their impact on performance of the algorithm will be rather small. This is be-
cause these operations happen outside of the algorithm loop, meaning that they
only need to be performed once for every full run of the algorithm.

Furthermore, it should be mentioned that the implementation of the program will
be done in such a way that the program scales with differing values of Nr and RW.
Even though most results of the ASIP design in this research focus on Nr = 4 and
RW = 3, it is very useful to have a program that scales for different values of these
parameters. This way, any future research that considers other parameter values
can still easily reuse this implementation by only updating the parameters in the
software. Also, in this research it allows the program to easily scale to Nr = 2

22 CHAPTER 3. THE QMP ALGORITHM

and RW = 3 so that a comparison can be made between the performance of this
implementation and the implementation proposed in [2].

Lastly, after implementation of the algorithm the program will first be tested on a
regular PC1, as it allows for easier debugging and verifying the correctness of the
outcome. The functional correctness of the program will be tested by comparing the
results of the C program to the results of the Matlab script.

3.3.1 General considerations

The programming language of choice for this project is the C language. The use
of either C or C++ is required in the ASIP Designer tool as the tool only generates
compilers for these languages. The C language is a relatively low-level language
providing a lot of control and most insight into what will happen on the assembly
level. This insight and low-level control are important because the purpose of ASIP
design is to run software/algorithms in the most efficient way possible (either in terms
of power consumption, speed or both), implying the requirement for an efficient pro-
gramming language.

The way in which software is implemented is an interesting point to consider, both
from an efficiency standpoint as well as an ease of development standpoint. Often
software is written in such a way that not a single concept or operation is written
twice, but is rather implemented through a function (or method). Especially from an
ease of development standpoint, this makes a lot of sense. It enables the program-
mer to write concise code in which the functionality of certain concepts or operations
can easily be altered (as only the function that implements them requires change).
Also, this provides easy reusability as the programmer can use the functions in other
projects as well. However, implementing every single repeated operation through
functions does result in overhead in the program, compromising its efficiency. Ev-
ery time the program calls a function, a context switch is required where all required
function arguments and the return address need to be pushed on the call stack, after
which the program can jump to the function code and execute it. When the function
has finished executing, the context needs to switch back to the point from which the
function call was made while cleaning up the call stack accordingly. This indicates
that a low-level software implementation sometimes is a trade-off between ease of
development and efficiency of the software.

Implementing software as efficiently as possible is critical for ASIP design. This

1Compiled using GCC version 7.5.0 and executed on an Ubuntu 18.04.4 LTS distribution running
on an Intel Pentium G5400

3.3. IMPLEMENTATION 23

might make it seem like an obvious choice to not perform small and simple repeated
operations through a function, so that a lot of overhead through function calls is pre-
vented. However, in ASIP design it is useful to implement especially these types
of operations (relatively simple, often used) through functions because of two rea-
sons. Firstly, the ASIP designer tool performs its profiling mainly on a function level,
meaning that most insight can be gained when there are a significant number of
functions to profile. Secondly, especially the smaller kinds of operations that are
often repeated are the perfect target to explore, since they might have potential to
be implemented as an instruction into the instruction-set of the ASIP. Because of
this reason, most of the software required for the QMP algorithm is implemented
through functions, which are grouped together by category to form small libraries.
These libraries are written for a fixed-point number representation (discussed in the
next section), for handling complex numbers and for the required matrix and vector
operations.

The C language does come with a way of reducing the overhead caused by func-
tion calls while maintaining ease of development with a technique called inlining. A
compiler hint can be used to tell the compiler to try and inline certain functions at the
place from where they would be called. This will be elaborated upon in Chapter 4.

3.3.2 Fixed-point number representation

Most of the time when real or fractional numbers are needed in a program, a floating-
point number representation is used. Floating-point numbers are widely used in
computing due to their ability to represent fractional numbers and their high dy-
namic range. However, operations on floating-point numbers are significantly more
complex compared to integer arithmetic. Because of this reason, a lot of the more
relatively simple processors do not come equipped with dedicated floating-point
hardware. The behavior of floating-point numbers can often still be emulated on
these kinds of processors, but then operations will take even longer. The Tzscale
processor that is used for the ASIP design also does not come equipped with dedi-
cated floating-point hardware. Because of this reason, in [2] it was decided to make
use of a fixed-point number representation instead. A fixed-point number represen-
tation functions very similarly to an integer number representation, meaning that
operations on these numbers are still relatively easy. The effect of a binary point is
achieved by scaling the number to be represented in fixed-point format by a constant
factor (a power of 2). A simple example of why this works is to imagine a number
that could not be represented by a regular integer, like 0.5. If a scaling factor of 2
was applied to this number, the result would be 1, indicating that 0.5 can be repre-
sented in a fixed-point number format as long as the number is scaled with at least

24 CHAPTER 3. THE QMP ALGORITHM

a factor of 2. The original number can always be retrieved by dividing the fixed-point
number by its scaling factor.

Figure 3.2 shows an example of a 32-bit fixed-point number, where a scaling fac-
tor of 226 is used. The scaling factor results in a binary point being placed between
bit 25 and 26. The binary point divides the number into an integer and a fractional
part, where the fractional part represents the part of the number that is lower than
0. The plain 32-bit binary number of Figure 3.2 is equal to 1630597136 in decimal.
But when scaling this value back by the scaling factor of 226, it is revealed that this
fixed-point number actually represents the value 24.29779. A fixed-point number
representation does not require its binary point to be placed at a specific fixed loca-
tion. Arithmetical operations can still be done on fixed-point numbers that have their
binary points at different locations. To achieve this, the binary points of the different
fixed-point numbers need to be aligned before performing the operation.

1111 0000000100000110 000000110001

Integer part Fractional part

31 02625

Figure 3.2: A fixed-point number with a scaling factor of 226, resulting in the binary
point being placed between bit 25 and 26

For the QMP algorithm, the fractional part of the fixed-point numbers requires a
granularity of 0.0001 [2]. In [2], it was decided to use 28 bits for the fractional part
of the number, or in other words, a scaling factor of 228 was used. This leaves 4
bits to store the integer part of the fixed-point number. Given the fact that this re-
search will mainly consider a 4-antenna system instead of a 2-antenna system, it
was decided to reduce to scaling factor to 226, in order to have some more integer
bits. The algorithm could require this, since now intermediate results in matrix and
vector operations could become a bit larger, since they result from larger matrices
and vectors. All numbers will use the same scaling factor. This can be done, as 26
bits for the fractional part of the fixed-point number is sufficiently precise.

Given the fact that all fixed-point numbers in the implementation of the QMP algo-
rithm have the same scaling factor, addition and subtraction works in the same way
as when using a regular integer representation, i.e. no alignment of the binary point
is required. Multiplication and division are a little bit more complicated. Let’s say two
numbers A and B are converted to a fixed-point format using scaling factor S and
are then multiplied to become the result R. The result would be AS·BS=RS2. This
multiplication yields an unwanted answer, as the result is now scaled with a factor

3.3. IMPLEMENTATION 25

S2 instead of just S. To get to the wanted answer the result should now be divided
once by the scaling factor S. In order to keep full precision, the division by scaling
factor S should be done after the multiplication is performed. This implies that ideally
the multiplication needs to happen in a 64 bit number representation, as the result
of a 32 bit number multiplication could require at most 64 bits to completely store
the result. A similar problem appears when dividing two fixed-point numbers. The
operation would look as follows: AS/BS=R. Now the result lost the scaling factor
completely. In order to maintain full precision, number A needs to be scaled by the
scaling factor S, resulting in AS2/BS=RS, yielding the required result. To completely
fit this operation, it needs to be performed on a type of 32 bits plus at least the
number of bits required to represent S. So, in the case of a 32 bit CPU a 64 bit
representation is a convenient choice.

The QMP algorithm also requires square root operations. Using the same logic as
in the multiplication and division example, the ideal fixed-point square root operation
goes as follows:

√
AS2=RS, thus ideally requiring a 64-bit square root operation.

Because a 64-bit square root operation is rather long and complex, in this imple-
mentation the square root operation will be performed first, after which the scaling
factor is restored by multiplying the result by

√
S, just like it was done in [2]. The fact

that the results will be a little less precise is not a problem, as Chapter 4 will explain
that the square root operation is not strictly required for the algorithm and can thus
be left out.

A summary of all fixed-point operations can be found in Table 3.5. The table clearly
shows that the addition and subtraction operations can be performed normally, but
that the other operations require extra steps to get to the required answer. The
multiplication and divisions by the scaling factor S are handled by bit shifts in the
software (therefore requiring the scaling factor to be a power of 2).

Table 3.5: Ideal implementation of fixed-point operations
Operation Implementation
Addition AS+BS = (A+B)S
Subtraction AS-BS = (A-B)S
Multiplication AS·BS=ABS2 → ABS2/S=ABS
Division AS·S=AS2 → AS2/BS=(A/B)S

Square root AS·S=AS2 →
√

AS2=
√

AS

All functionality required for the fixed-point number representation is bundled in a
small library that can be included in the application code.

26 CHAPTER 3. THE QMP ALGORITHM

3.4 Verifying functional correctness

To verify that the C implementation functioned correctly, the results of the C imple-
mentation were compared to the results of the Matlab implementation, where the
Matlab implementation was assumed to be correct. It was interesting to see that
both implementations finally decided on a different ’best’ set of coefficients for the
same input, making it seem as if the C implementation was not correct. However,
after closer inspection it appeared that the C implementation also calculated a very
high correlation for Matlab’s best result and vice versa. This indicates that the C im-
plementation could still be correct, but calculates slightly different values. To be able
to definitively decide on the correctness of the implementation, all correlations cal-
culated by the C implementation were compared to the ones calculated by Matlab,
for the same input data and the same order of coefficient vectors. The percentage
difference for each of the outputs can be seen in the histogram of Figure 3.3.

0 0.5 1 1.5 2 2.5

Percentage difference 10-4

0

200

400

600

800

1000

#o
cc

ur
an

ce
s

Figure 3.3: Histogram of all relative differences between the results of the C imple-
mentation compared to the results of the Matlab implementation using
the default Tzscale processor

The histogram includes the percentage difference for áll calculated correlations, in-
dicating that none of the correlations calculated by the C implementation differed
significantly from the results of the Matlab implementation. This histogram shows
that the C implementation does produce the correct results. The slightly different
outcomes of the Matlab and C implementations is most likely due to their different
levels of precision. The C implementation is written to make use of a 32 bit fixed-
point number representation, where in Matlab its standard 64-bit double type was
used.

Chapter 4

Running on Tzscale

The previous chapter discussed the QMP algorithm and its implementation in detail.
This chapter will focus on taking that implementation to the Tzscale processor. First,
the Tzscale processor (and the extended version as proposed in [2]) and its features
are discussed. The algorithm will be executed on the processor using its instruction
set simulator, after which the profiling results can be analyzed. The first profiling
results then allow for some software optimizations, after which the best course of
action for extending the processor is discussed.

4.1 The Tzscale processor

The Tzscale processor is based on the RISC-V ISA and comes modeled as an
example project in the ASIP designer tool. The use of this processor for the ASIP
is due to this research being a continuation of the research started by [2]. The
processor is very well suited for this design problem, as it is a relatively simple
processor built upon the open source extendable instruction-set RISC-V [22]. The
main features of the Tzscale are:

• 32 bit wide data path, with an ALU and shifter.

• 16 or 32 field (configurable) central register file.

• load/store architecture, which supports 8, 16 and 32 bit memory transfers and
an indexed addressing mode.

• 3 stage pipeline.

• single cycle multiplier and multicycle division/remainder unit.

The compiler that the ASIP designer tool generates for the Tzscale processor comes
with a C runtime library, emulation of 64-bit integer operations, a floating-point emu-
lation library and a math library. Especially the emulation of 64-bit integer operations

27

28 CHAPTER 4. RUNNING ON TZSCALE

is useful for the fixed-point number representation as discussed in Section 3.3.2.

Instruction-set
The exact instruction-set that the Tzscale processor is built upon is the RV32I integer
instruction-set of the RISC-V specification [23]. The implementation of RV32I does
deviate slightly from the official specification, as it allows the designer to configure
the processor to have either 16 or 32 registers. RV32I requires the design to have
32 registers, where a design with only 16 registers would be closer to the smaller
RV32E specification. RV32I is a relatively simple instruction set, supporting most
regular load/store, bitwise, control and integer arithmetic instructions. In RISC-V,
the base ISA is often extended with the RV32M extension, providing the ISA with
multiplication and division instructions.

Multiplication and division
The Tzscale implements its multiplication and division instructions in a way that is
close to the standard RV32M extension, using the same base instructions and their
encoding. However, the way in which the Tzscale implements the division instruc-
tions does not adhere to the RISC-V standard. The RISC-V explicitly specifies the
required behaviour for division by 0, or overflow in the case of signed division. The
Tzscale does not implement these cases. This means that the multiplication and
division instructions of the Tzscale processor should be considered as a custom ex-
tension made to the base integer ISA. This is also in line with what is stated in the
processor manual, as it does not mention RV32M in any way [23].

Square root
In [2], an extension to the Tzscale processor was made in the form of a 32-bit integer
square root instruction. This instruction was added to support the QMP algorithm,
as it appeared that the square root instruction required a significant amount of the
required runtime. This square root instruction was added as a new separate exten-
sion to the ISA of the Tzscale. This implementation will also be considered in this
work.

4.2 Generating the dictionary vectors

Section 3.2.3 discussed that the QMP algorithm as proposed by [1] would require
a rather large amount of memory to store the complete dictionary of possible vec-
tors, but that these vectors might just as well be generated in software using only
the much smaller set of numbers called Wangle. To test if generating the dictionary
vectors from Wangle in real time while running the algorithm does not require too

4.3. PROFILING 29

much time, two software versions were made: a version that uses a completely pre-
computed dictionary and a version that generates the dictionary vectors from Wangle

as they are needed. This generation of the dictionary vectors happens through a
function which emulates the dictionary behavior, i.e., it gets passed an index i for
which it returns what would be the ith vector of the original pre-computed dictionary.
Using the compiler generated by the ASIP designer tool, both implementations were
compiled for an unmodified Tzscale processor. The results can be seen in Table 4.1.

Table 4.1: Results for a pre-computed dictionary vs. generation in real time
Clock cycles Program size Data size

Version #cycles % #bytes % #bytes %
Pre-computed 23387517 100.0 1826 100.0 164384 100.0
Generated in real time 23465332 100.3 1804 98.8 33376 20.3

The clock cycles column shows the number of clock cycles required to fully run the
program. The program size represents the number of bytes required to store the
complete program in the program memory, and the data size represents the number
of RAM bytes required to store the data used by the algorithm. It should be noted
that always at least 32768 bytes are reserved in the data memory. This memory is
used for the (call) stack. The table clearly shows that generating each vector when
it is needed is not significantly slower than loading the values from a pre-computed
dictionary, as only 0.3% additional clock cycles are required. Also the program size
remains roughly the same. Then the great advantage of not having to store the
complete dictionary becomes very clear from the data size column, since 80% less
data memory is required compared to the version where a pre-computed dictionary
is used. The fact that generating each vector in real time is not much slower should
not come as a big surprise, as generating a dictionary vector from Wangle is not
a very computationally intensive task. It only requires the original index i passed
to the emulation function to be translated to Nr indexes used to select the correct
values from Wangle. This translation only requires an additional right shift (dividing by
a power of 2) and a bitwise-and operation (modulo of a power of 2) for each index.

Since the advantage of the significantly reduced amount of memory outweighs
the disadvantage of 0.3% extra clock cycles, the software version which emulates
the behavior of the dictionary will be used in the remainder of this research.

4.3 Profiling

Using the compiler generated by the ASIP designer tool, the C implementation of
the QMP algorithm as discussed in Section 3.3 that emulates the dictionary behav-

30 CHAPTER 4. RUNNING ON TZSCALE

ior is compiled for an unmodified Tzscale processor. This implementation will be
referred to as the ’naive’ implementation, because all fixed-point number operations
are implemented as function calls to the fixed-point number library, even though, for
example, fixed-point addition and subtraction can be done in the exact same way as
integer addition and subtraction. The compilation results in a program that requires
1804 bytes in the program memory. The ASIP designer tool also generates an ISS
that is used to simulate the cycle-accurate behavior of the processor. The ISS pro-
duces all kinds of insights into the performance of the program and the processor,
as it produces results on, for example, the number of clock cycles used by each
function or the number of times that certain functions are called. The naive imple-
mentation will yield the most complete profiling results, as all major operations are
shown as function calls. Completely running the algorithm takes 23465332 clock
cycles. The profiling results can be seen in Table 4.2 below.

Table 4.2: Profiling results for the naive software implementation
Function % of total cycles Function calls Cycles per call
Long division 22.04% 4096 1222
Fixed-point multiplication 21.56% 368704 13
Complex multiplication 17.57% 81936 51
Matrix vector multiplication 12.72% 4097 717
Complex addition 9.08% 81936 26
Integer sqrt 4.62% 8192 132
Fixed-point addition 3.61% 282672 3
Dot product 3.25% 4096 186
Norm of vector 2.04% 4096 117
Complex conjugate of vector 1.19% 4096 68
Dictionary emulation 1.06% 4096 61
Fixed-point subtraction 1.05% 81936 3

The table shows the most dominant functions in terms of relative clock cycle usage
after a run of the algorithm. The number of function calls made is an interesting met-
ric for two reasons. Firstly, a function that takes up a significant portion of the clock
cycles with only a relatively small number of function calls could be an interesting
target to explore for optimization. This is also represented by the cycles per call col-
umn. Secondly, the number of function calls can be compared to Table 3.2 and 3.4
to check if the number of function calls compares to the expected number of opera-
tions. All fixed-point operations should be compared to Table 3.4, and the complex
operations should be compared to Table 3.2. The functions ’Long division’ and ’Inte-
ger sqrt’ in the table should be considered to be the fixed-point operations, since the

4.4. SOFTWARE OPTIMIZATIONS 31

implementation of these fixed-point functions mainly relies on those two functions.
The number of functions calls from Table 4.2 compares very well to the anticipated
number of function calls as shown in Table 3.2 and 3.4, indicating expected behav-
ior.

Another interesting thing that can be noticed in Table 4.2 is the appearance of
the long division function. This function comes from the library for emulating 64-bit
integer operations that is generated for the Tzscale along with its compiler. As men-
tioned in Section 3.3.2, a 64-bit number representation is used in the implementation
of fixed-point multiplication and division. This results in the call to the long division
function. The fact that this 64-bit division is completely emulated in software is the
reason that it takes over a 1000 clock cycles to complete. The impact on 64-bit
multiplication is less significant, as the compiler is still able to use the multiplication
instructions of the processor1 to achieve 64 bit behavior.

4.4 Software optimizations

Table 4.2 shows the most complete profiling results for the algorithm, where every
single operation is called as a function. Now that this information is known, some
software optimizations could be done which potentially remove functions and oper-
ations from the list. As discussed in Section 3.3.1, having function calls to a library
with only relatively little and simple implementation provides a relatively large over-
head. A prime example of this in the case of this implementation is the fixed-point
number library, that sits at the bottom of the software and is used in every other user
implemented library as well (complex-number and matrix operations). One way to
remove overhead is to use the C keyword inline. The inline keywords hints to the
C compiler to not actually call the function, but rather inline its implementation at the
place from which the function is called. Inlining every single function in a software
implementation is not a good idea, as it becomes increasingly difficult for the com-
piler to do so efficiently. Also, in such a case, a new kind of overhead appears in the
form of more required program memory. Especially when larger function are inlined,
a copy of that function is to be placed at every position in the software where it is
called. For this reason, inserting the inline keyword is only done for the fixed-point
library in this software implementation.

Another optimization can be done in the complex-number library. In the naive ap-
proach all arguments of the complex-number functions are passed by value. Since

1Especially the ’multiply high’ or ’mulh’ instructions are useful as they return the upper 32 bits of
the 64 bit result

32 CHAPTER 4. RUNNING ON TZSCALE

each complex number consists of a real and an imaginary part, every complex-
number argument requires 2 values to be copied to the call stack. To try and reduce
the required store word operations to store all these values on the call stack, most
complex-number operations were updated to have their arguments passed by refer-
ence instead.

Lastly, a small change can be made to the algorithm: removing a mathematical op-
eration while the end result stays the same. In the implementation of the algorithm
shown in Appendix A, it can be seen that the decision of which coefficient vector is
considered best is based on the if statement within the main algorithm loop. This if
statement compares each end result of the mathematical operations to the previous
result, where each time the biggest value is considered best. The latter is important:
the mathematical correctness of the result is irrelevant, as long as the biggest value
is chosen. The values that are compared in the if statement ultimately result from
an operation like

√
A√
B
, where A and B represent other mathematical operations. If

the only thing of interest of all
√

A√
B

operations is to find the highest value, then con-
sidering the highest value of all A

B operations would yield the same result. So, as a
final optimization to the software the square root operations are not required and are
therefore left out. The new profiling results for the optimized software can be found
in Table 4.3 below.

Table 4.3: Profiling results for the optimized software implementation
Function % of total cycles Function calls Cycles per call
Long division 37.08% 4096 1217
Complex multiplication 33.06% 81936 50
Matrix vector multiplication 10.93% 4097 372
Complex addition 6.07% 81936 10
Vector norm 3.47% 4096 107
Dot product 2.93% 4096 99

As expected, no fixed-point operations are shown anymore since the compiler was
able to inline all fixed-point functions. The result of passing arguments by reference
can be very clearly recognized in the matrix-vector multiplication function. This func-
tion calls a lot of complex-number functions in order to perform its calculation. Now
that these function arguments are passed by reference, it saves on a lot of load and
store word operations. A similar effect can be seen in the complex addition function.
In the naive approach, this function required 26 clock cycles to complete, whereas
now it only requires 10 clock cycles. In the case of the complex addition function,

4.4. SOFTWARE OPTIMIZATIONS 33

this is mainly due to the fact that now the fixed-point addition function is inlined,
requiring a lot less load and store word operations moving arguments and return
addresses around on the call stack. The effect becomes very clear when looking at
the disassembly of the complex addition function for both software versions.

PC Instruction Assembly

--- ----------- --------------

172 10 11 addi x2, 16

174 fe c1 2e 23 sw x12,-4(x2)

178 fe b1 2c 23 sw x11,-8(x2)

182 46 0c lw x11, 0(x11)

184 48 10 lw x12, 0(x12)

186 fe a1 2a 23 sw x10,-12(x2)

190 fe 11 28 23 sw x1,-16(x2)

194 f4 ff f0 ef jal x1, -178

198 ff 81 20 83 lw x1,-8(x2)

202 ff c1 21 83 lw x3,-4(x2)

206 00 a0 a0 23 sw x10,0(x1)

210 00 41 a6 03 lw x12,4(x3)

214 00 40 a5 83 lw x11,4(x1)

218 f3 7f f0 ef jal x1, -202

222 ff 81 21 83 lw x3,-8(x2)

226 ff 41 20 83 lw x1,-12(x2)

230 00 a1 a2 23 sw x10,4(x3)

234 00 01 a2 03 lw x4,0(x3)

238 ff 01 21 83 lw x3,-16(x2)

242 00 40 a0 23 sw x4,0(x1)

246 00 a0 a2 23 sw x10,4(x1)

250 10 15 addi x2, -16

252 00 01 80 67 jalr x0, x3, 0

Listing 4.1: Cadd() calling xadd()

PC Instruction Assembly

--- ----------- --------------

20 00 46 21 83 lw x3,4(x12)

24 00 05 a2 03 lw x4,0(x11)

28 00 06 26 03 lw x12,0(x12)

32 00 45 a5 83 lw x11,4(x11)

36 96 12 add x12, x4

38 95 8e add x11, x3

40 00 c5 20 23 sw x12,0(x10)

44 00 b5 22 23 sw x11,4(x10)

48 00 00 80 67 jalr x0, x1, 0

Listing 4.2: Cadd() after optimization

It is clear that the software optimizations have already drastically improved the per-
formance of the implementation. The new results in terms of the required number of
clock cycles and the program size for each extra step of software optimization can
be seen in Table 4.4 below.

Listing 4.1 shows the disassembly of the complex addition function for the naive
approach. It is very clear that load and store word instructions are by far the most
executed instructions in this function, while its only purpose is to add together two
numbers. The call to the fixed-point addition function (xadd()) can be recognized
from the two jal instructions. Listing 4.2 shows the disassembly of the complex
addition function for the optimized software version. It is clear that inlining the fixed-
point addition function has a significant effect, both on the size of the complex ad-

34 CHAPTER 4. RUNNING ON TZSCALE

dition function as well as its speed. Also, the behavior of the function can now be
recognized more easily. The function starts by loading the 4 values that it requires,
then simply adds them together, and stores only the two values of the result back on
the stack.

Table 4.4: Results of software optimization for Nr = 4

Clock cycles Program size
Software version #cycles % #bytes %
Naive 23465332 100.0 1804 100.0
Inlining 16275588 69.4 1772 98.2
Inlining, pass by ref. 14313224 61.0 1544 85.6
Inlining, pass by ref., without sqrt 13228786 56.4 1428 79.2

After all optimizations, the algorithm runs almost twice as fast and requires 20% less
space in program memory. In addition, the significant effect on speed of inlining the
fixed-point library becomes clear, as inlining alone cuts off over 30% of the clock
cycles.

At this point, it could be interesting the compare the optimized software to the
software implementation used in [2]. Table 4.5 shows the results while running the
algorithm for Nr = 2, and also displays the results acquired in [2].

Table 4.5: Comparison to the results acquired by [2] for Nr = 2

Clock cycles Program size
Software version #cycles % #bytes %
[2] 387642 100.0 18366 100.0
Naive 188349 48.6 1810 9.9
Inlining 150721 38.9 1778 9.7
Inlining, pass by ref. 140191 36.2 1542 8.4
Inlining, pass by ref., without sqrt 124153 32.0 1426 7.8

4.5 Discussion on profiling results

The results of the different optimized software versions show that moving around
data inside the processor is a task that often takes up a lot of time. Optimizing the
software using the inline keyword and passing values by reference instead of by
value can drastically reduce the amount of data that needs to be moved around,
therefore improving the speed of the algorithm. It might very well be possible that
more of these kinds of optimizations are possible to further increase the perfor-
mance of the algorithm by altering the software alone. However, for this research

4.5. DISCUSSION ON PROFILING RESULTS 35

the software optimizations were left at this point so that a sufficient amount of time
can also be spent on modifying the processor.

Another interesting thing that appears from the profiling results is that the fixed-
point number representation takes a heavy toll on the speed of the algorithm. This
can mainly be attributed to the long division that is required for fixed-point division,
but Table 4.2 shows that also fixed-point multiplication is responsible for a lot of the
clock cycles. This makes it an interesting idea to maybe implement native support
for fixed-point multiplication and division. Something like this should be possible, as
the multiplications and division operations on fixed-point numbers are very similar to
integer operations, except that they ideally require a larger type (i.e. a larger register
in hardware) in order to keep full precision, and they require an additional bit-shift
which by itself is not a difficult operation.

One could argue that adding SIMD instructions to assist the complex-number
and matrix operations would also make sense. It could be very beneficial to have a
small additional ALU such that some simple arithmetic operations could happen in
parallel. This happens quite often, given that most complex-number operations re-
quire calculation for both the real and the imaginary parts and that matrix operations
are just the same repeated operations on different data. However, adding this kind
of support becomes quite difficult when the underlying data type is not yet natively
supported by the processor.

These reasons make it the logical step to try and add native fixed-point support
for the mathematical operations that are happening on fixed-point numbers in the
QMP algorithm. This implementation will be discussed in Chapter 5.

36 CHAPTER 4. RUNNING ON TZSCALE

Chapter 5

Modifying the Tzscale

This chapter will discuss the modifications that are made to the Tzscale processor.
Chapter 4 and Section 4.5 showed that it would be very beneficial for the Tzscale
processor and the QMP algorithm to have native support for fixed-point operations.
The implementation of these new instructions is elaborated upon, as well as their
verification and new results of the processor using the new instructions.

5.1 Native fixed-point support

In Section 3.2.2 it is shown that the mathematical operations that are required to
run the QMP algorithm are: addition (add), subtraction (sub), multiplication (mul)
and division (div). In Section 4.4 it was shown that the square root operation is not
required for the algorithm, meaning that this operation does not require native fixed-
point support in the processor. Fixed-point addition and subtraction can be done
using the regular integer adder/subtractor, as long as the binary point in the two
fixed-point numbers are aligned with each other. Given the fixed-point implemen-
tation as discussed in Section 3.3.2, this will always be the case. This means that
an unmodified Tzscale processor already has native support for fixed-point addition
and subtraction.

The Tzscale only requires new instructions for multiplication and division to natively
support the required fixed-point operations. The multiplication and division will need
to happen in the way that is shown in Table 3.5. Given that the scaling factor is a
power of 2, i.e., the binary point is placed between two bits in the 32 bit representa-
tion, the problem of the scaling factor can be accounted for with additional bit shifts.
Say the number of bits after the binary point is called Nf, then after a multiplication
of two fixed-point numbers the result should be shifted Nf bits to the right to get the
final answer. For a division instruction that divides A by B, A should first be shifted

37

38 CHAPTER 5. MODIFYING THE TZSCALE

Nf to the left before being divided by B. In the fixed-point library that was written for
this algorithm, Nf is set by a macro definition, meaning that Nf cannot change during
runtime (as it is not required to). It would be very convenient to still have control
over Nf in software, as for different values of Nr and Wangle the requirements of the
fixed-point representation might change. Given this, and the fact that Nf is known at
compile time, the number of bits that should be shifted in a fixed-point multiplier and
divider could be encoded into the instruction by an immediate value. A 5-bit imme-
diate value would support the full range of bits in the 32-bit number representation,
allowing the user to place the binary point at any place.

5.1.1 New instruction encoding

Now that the new required multiplication and division instructions are known, their
encoding can be determined. Section 4.1 explained that the Tzscale processor
adhered to the encoding and instruction format of the standard RV32M extension,
but that it does not fully implement it and should thus be considered as a custom
extension. RISC-V has reserved space in its opcode map specifically for custom
extensions to the ISA. The base opcode map used for RISC-V can be seen in
Table 5.1.

Table 5.1: RISC-V base opcode map, inst[1:0]=11 [22]
inst[4:2] 111
inst[6:5]

000 001 010 011 100 101 110
(>32b)

00 LOAD LOAD-FP custom-0 MISC-MEM OP-IMM AUIPC OP-IMM-32 48b
01 STORE STORE-FP custom-1 AMO OP LUI OP-32 64b
10 MADD MSUB NMSUB NMADD OP-FP reserved custom-2/rv128 48b
11 BRANCH JALR reserved JAL SYSTEM reserved custom-3/rv128 ≥ 80b

It is interesting to note that the non-standard multiplication and division extension
of the Tzscale is still placed at the spot of the standard RV32M extension in the
base opcode map (the standard place for RV32M is at OP, having the full opcode
of 0110011). Since the default Tzscale implementation is already non-standard and
will be differentiated from even further with the implementation of the fixed-point
functionality, it would be a good idea to change the opcode from OP to one of the
places reserved for custom instructions. In [2], the extension was implemented in
the custom-0 space, but given the fact that this extension implementing the square
root instruction is no longer required, the multiplication and division extension will
be placed there. This means that every instruction encoding for a multiplication or
division instruction starts with the opcode of 0001011 (on the LSB side).

5.1. NATIVE FIXED-POINT SUPPORT 39

When a custom extension is added to the RISC-V architecture, it does not neces-
sarily have to adhere to the encoding formats as already specified by the RISC-V
specification. Still, it would be wise to stay as close as possible to the already ex-
isting encoding formats, as a large deviation most likely requires a larger and more
complex decoder. The original encoding format used for the multiplication and divi-
sion instructions for the Tzscale can be seen in Figure 5.1 below.

31 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode

Figure 5.1: Standard R-type encoding as per the RISC-V specification

The previously discussed opcode can be seen at the LSB side. All registers are
specified through the 5-bit fields rs2, rs1 and rd, being the two source registers and
the destination register, respectively. The 3-bit and 7-bit funct parts can be used
to select the exact instruction further, since an opcode is often used for multiple
instructions of the same category. Sadly, the standard R-type encoding used in the
default Tzscale cannot accommodate the 5-bit immediate value required for the new
fixed-point instructions, so a change will have to be made.

A couple of things are important to keep in mind while designing the new encod-
ing. Firstly, the location of the registers should not be changed in the encoding, as
the decoder can then be constructed in such a way to always take the register ad-
dresses from the same location. Secondly, the opcode should also stay in its original
position, as this is the first thing to be looked at by the decoder. And lastly, the MSB
of any immediate value should ideally be placed at bit position 31, so in the case
of a signed immediate value the decoder can always use that bit to check signed-
ness [22]. Even though the 5-bit immediate value is unsigned the MSB can still be
placed there. The new proposed instruction encoding including the 5-bit immediate
value can be seen in Figure 5.2.

31 27 26 25 24 20 19 15 14 12 11 7 6 0

imm funct2 rs2 rs1 funct3 rd opcode

Figure 5.2: Custom instruction encoding including a 5-bit immediate

In the original encoding, funct7 was completely redundant in the case of a multi-
plication or division instruction, since it was set to 0x01 regardless of the chosen
type of instruction. The choice between each division and multiplication instruction
was made through funct3 only. In the new encoding, funct2 is used to distinguish
multiplication from division. Only one bit is explicitly required for this, but since the
immediate value never requires more than 5 bits, these 2 bits remained from the

40 CHAPTER 5. MODIFYING THE TZSCALE

original encoding that used funct7. Funct3 is used to specify the specific type of
multiplication/division. Now that multiplication and division are distinguishable from
the funct2 part, the funct3 part has new free space that could be used for new mul-
tiplication/division instructions in the future. The 5-bit immediate value is present in
this new encoding as 5 bits on the MSB side. This immediate value can now be
used to make a fixed-point implementation for any of the existing multiplication and
division instructions. The nML file responsible for the definitions of the instruction
encoding (”opcode.n”) was updated to support the new format.

5.1.2 Multiplication

The default Tzscale comes with 4 different multiplication instructions: mul, mulh,
mulhsu and mulhu. The mul instruction performs a regular integer multiplication in-
struction yielding the lower 32 bits as the result, while the several different mulh
instructions yield the upper 32 bits as the result. This means that the multiplier in-
side the Tzscale processor already works on a 64-bit register. This enables the
processor to implement something like 64-bit integer multiplication fairly easily. The
nML description for the multiplication instruction can be seen in the listing below.

1 opn alu_rrr_mul(op: funct3_mul_div, rd: mR1, rs1: mR1, rs2: mR2)

2 {

3 action {

4 stage DE:

5 switch (op) {

6 case mul : mpyC = mul (mpyA=rs1,mpyB=rs2) @mpy;

7 case mulh : mpyC = mulh (mpyA=rs1,mpyB=rs2) @mpy;

8 case mulhsu : mpyC = mulhsu (mpyA=rs1,mpyB=rs2) @mpy;

9 case mulhu : mpyC = mulhu (mpyA=rs1,mpyB=rs2) @mpy;

10 }

11 PD = mpyC;

12 stage WB:

13 rd = PD;

14 }

15 syntax : op " " rd "," rs1 "," rs2;

16 image : funct7_muldiv.mul_div::rs2::rs1::op::rd::opc.mul_div_e;

17 }

Listing 5.1: nML description for the multiplication instructions of the default Tzscale

The nML description consists of a declaration, an action block, a syntax definition
and an image definition. The declaration part has to contain all parameters that are

5.1. NATIVE FIXED-POINT SUPPORT 41

1 w32 mul(w32 a, w32 b)

2 {

3 return a * b;

4 }

Listing 5.2: PDG description for the mul instruction of the default Tzscale

required for the instruction, and names each of them. In the case of the mul instruc-
tion, this is the funct3 part of the instruction encoding (as that is used to decode
which multiply operation to execute), and all the registers on which the instruction
operates. The action block describes what should happen for each pipeline stage. In
the case of a mul instruction, a call is made to the corresponding PDG function in the
decode execute (DE) stage, and the result is then put in its register in the write-back
(WB) stage. The syntax definition represents the disassembly corresponding to the
instruction and the image definition contains the exact instruction encoding. All pa-
rameters in the image definition are defined in a separate nML file called ”opcode.n”.

The mul instruction is the instruction of interest for adding native fixed-point support.
When implementing a fixed-point mul instruction with an immediate 5-bit value that
indicates the number of required bit shifts, the regular mul instruction can be exe-
cuted when choosing that immediate value equal to 0. This means that the original
mul instruction can be completely replaced by the new fixed-point one. The PDG
description for the regular multiplication instruction is fairly simple, and can be seen
in Listing 5.2.

New multiplication instruction
To implement the new mulfxdpt instruction, both the nML and the PDG descriptions
should be altered. The nML description for the new fixed-point instruction can be
seen in Listing 5.3. An extra parameter can be seen in the declaration, namely the
immediate value as a c5u type. This type specifically represents an unsigned 5-bit
constant, where the constant type indicates that it functions as an immediate. This
immediate is passed to the new fixed-point multiplication PDG function through a
new 5 bit transitory called mpyI. The other multiplication instructions do not require
the immediate value, and thus remain unchanged. In the new nML description,
the image definition now describes the new instruction encoding as discussed in
Section 5.1.1. The new parameters funct2 mul div (in the image definition) and
funct3 mul (in the declaration) are added to the opcode file. The 5-bit immediate
value can be seen at the start of the image definition.

42 CHAPTER 5. MODIFYING THE TZSCALE

1 opn alu_rrr_mul(op: funct3_mul, rd: mR1, rs1: mR1, rs2: mR2, imm: c5u)

2 {

3 action {

4 stage DE:

5 switch (op) {

6 case mulh : mpyC = mulh (mpyA=rs1,mpyB=rs2) @mpy;

7 case mulhsu : mpyC = mulhsu (mpyA=rs1,mpyB=rs2) @mpy;

8 case mulhu : mpyC = mulhu (mpyA=rs1,mpyB=rs2) @mpy;

9 case mulfxdpt : mpyC = mulfxdpt(mpyA=rs1,mpyB=rs2,mpyI=imm) @mpy;

10 }

11 PD = mpyC;

12 stage WB:

13 rd = PD;

14 }

15 syntax : op " " rd "," rs1 "," rs2 ",imm:" imm;

16 image : imm::funct2_mul_div.mul_type::rs2::rs1::op::rd::opc.mul_div_e;

17 }

Listing 5.3: nML description for the multiplication instructions of the modified Tzs-
cale

The PDG description should be altered such that it receives an extra argument rep-
resenting the immediate value and that a shift is performed on the multiplication
result. It is implemented in such a way that the complete instruction can still execute
in one cycle. This should be possible, as shifting in hardware is not very complex.
The new PDG description for the mulfxdpt instruction can be seen in Listing 5.4.

Just like the PDG descriptions for the different mulh instructions, the new PDG de-
scription makes an explicit 64-bit multiplication by using an int64 t type. The im-
mediate value is received through the standard w32 datatype, that is used in most
Tzscale PDG descriptions. This is a requirement, since the c5u type cannot be

1 w32 mulfxdpt(w32 a, w32 b, w32 s)

2 {

3 int64_t p = a * b;

4 p >>= s[4:0];

5 return p[31:0];

6 }

Listing 5.4: PDG description for the mulfxdpt instruction of the modified Tzscale

5.1. NATIVE FIXED-POINT SUPPORT 43

used in the PDG description. Defining the multiplication like this is sufficient, as it is
possible for the multiplication operator to be synthesized.

5.1.3 Division

The default Tzscale comes with 4 different division related instructions: div, rem,
divu and remu. The div and divu instructions perform signed and unsigned divi-
sion, whereas the rem and remu perform the signed and unsigned modulo operation,
respectively. All of these instructions make use of the same multi-cycle functional
unit that is called div. This multi-cycle functional unit is required as a division operator
often cannot be synthesized, meaning that its behavior has to be explicitly defined.
This is mainly due to the fact that division in hardware is a lot more complex com-
pared to multiplication. This also explains the need for a multi-cycle functional unit:
the operation is best performed in multiple clock cycles. A division or remainder
operation in the Tzscale can take up to 34 clock cycles to complete: 1 initialization
cycle, up to 32 division iterations and 1 write back cycle. The regular div instruction
is shown in the nML description in Listing 5.5.

1 opn div_rr(rs1: mR1, rs2: mR2, rd:c5unz)

2 {

3 action {

4 stage DE:

5 R[div_wad=rd] = wd = divC = divs(divA=rs1, divB=rs2) @div;

6 }

7 syntax : "div " "x"rd ", " rs1 "," rs2;

8 image : funct7_muldiv.mul_div::rs2::rs1::funct3_mul_div.div::rd::opc.mul_div_e,

class(div);↪→

9 }

Listing 5.5: nML description for the div instruction of the default Tzscale

Much of the same nML can be recognized from the nML used for the multiplication
instruction. The most striking difference is the lack of the write back stage in the
action block. This is due to the division being done in a multi-cycle functional unit,
where the write back is handled by the multi-cycle functional unit itself. The other
instructions are all handled by their own separate nML descriptions. They can be
found in Appendix C.

The behavior of the division and remainder instructions are again defined in the
PDG language. Two different implementations are used: a behavioral description, to

44 CHAPTER 5. MODIFYING THE TZSCALE

be used by an instruction-accurate ISS, and an implementation model that is used
for a cycle-accurate ISS and the RTL generation and synthesis. The behavioral
description is more straightforward, and can use the division and modulo operators.
This is because the ISS itself is compiled into a program to simulate the behavior
of the hardware, where no RTL generation or synthesis is involved. The behavioral
PDG descriptions can be seen in Listing 5.6. The description is easy to read, and is
exactly equal to what would be a C code equivalent.

The behavioral description is used specifically for an instruction-accurate ISS.
An instruction-accurate ISS makes an abstraction of the pipeline stages, and simu-
lates a single instruction at a time. This is a simpler (and therefore faster) method
of simulating the processor behavior compared to a cycle-accurate ISS. A cycle-
accurate ISS does not require a behavioral description, as it uses the implementa-
tion model. The cycle-accurate ISS requires all information provided by the imple-
mentation model to provide cycle-accurate results. This is mainly due to the fact
that not all instructions always take the same number of clock cycles to complete.
This is also the case for the division instruction, as will be discussed later. The cycle-
accurate ISS is the one that is used in this research. For completeness, a behavioral
model is still included.

1 w32 divs(w32 a, w32 b) { return a / b; }

2 w32 rems(w32 a, w32 b) { return a % b; }

3

4 w32 divu(w32 a, w32 b) { return (uint32_t)a / (uint32_t)b; }

5 w32 remu(w32 a, w32 b) { return (uint32_t)a % (uint32_t)b; }

Listing 5.6: Behavioral PDG description for the division and remainder instructions
of the default Tzscale

The PDG description for the implementation model is significantly longer, and a
lot more complex to understand. It requires knowledge and understanding of how
division is performed in hardware. According to the Tzscale processor manual, the
algorithm that is used for division is called the ”iterative division algorithm” [23]. What
is most likely meant by this statement, is that a division result is achieved through
an algorithm that requires multiple iterations, as is often the case. More specifics on
the implementation are not given in the manual.

A relatively simple method for doing division in hardware that is very common
is a shift/subtract division algorithm [24]. After close inspection, it appears that the
Tzscale division implementation is also an iterative shift/subtract division algorithm.
Lets say that in a division of A

B A is called the dividend and B is called the divider. The

5.1. NATIVE FIXED-POINT SUPPORT 45

result of this division is called the quotient, and the value that remains is called the
remainder. In a shift/subtract division algorithm the dividend is placed in a double
register, where it is loaded on the rightmost side of the register. The divisor is stored
in a separate register. Lets consider a 4-bit example as shown in Figure 5.3. A 4-bit
example can fully explain the inner workings of the algorithm, as it functions exactly
the same for a higher number of bits, except that it will take more iterations before
the final answer is calculated.

0 0000101 0010
Dividend Divisor

Figure 5.3: 4-bit example where the dividend is placed in a double register

The algorithm works by shifting the dividend one bit to the left, thus shifting the MSB
of the right register into the LSB position of the left register. The left register is then
added to the 2’s complement of the divisor to calculate what is called a trial differ-
ence. The result of the trial difference is placed in a 4+1 bit register, where the extra
bit is used to store the correct signedness of the answer. Until this point it was un-
known what bit was to be placed at the LSB side of the right register after its shift
operation, but this is where the trial difference comes in. The trial difference essen-
tially indicates whether or not the divisor could be subtracted from the left register.
If this was the case (sign bit equals 0), a 1 should be inserted at the LSB side of the
left register, otherwise (sign bit equals 1, indicating a result that is still negative) a 0
should be inserted, indicating that the inverse sign bit is inserted. At the next shifting
iteration these bits shift to the left along with all other bits. When the sign bit of the
trial difference is set to 0, the contents of the left register will be replaced by the 4 bit
trial difference result, since it was possible to subtract the divisor without resulting
in a negative answer. The operation is completed once all bits of the dividend have
been shifted into the left register. At that point the left register contains the remainder
result and the right register contains the quotient. This behavior describes the exact
way in which the Tzscale implements the algorithm. A visual representation of the
algorithm performing the full operation for 4-bit numbers can be seen in Figure 5.4.

It should be noted that this implementation does not yet account for signed division,
while signed division is possible given the instructions of the Tzscale. The Tzscale
implements this as follows. When a signed division or signed remainder instruction
is used, the division unit first checks the signedness of both operands. In the case
of signed operands, the operands are converted to unsigned using 2’s complement.
The division unit then keeps track of two status bits to indicate what should be the

46 CHAPTER 5. MODIFYING THE TZSCALE

0 0000101

0 0001010

0010

+

2's comp.

11 110

0 0010100

+

01 111

0 1101000

+

10 000

0 0010001

+

01 111

0 1001000

Replace

Step 1:
Shift,
no overflow

Step 2:
Shift,
no overflow

Step 3:
Shift,
overflow

Step 4:
Shift,
no overflow

Dividend Divisor

Remainder Quotient
00010010

Figure 5.4: 4-bit example of the division algorithm in the Tzscale

signedness of the end result. The PDG description used for loading the operands
into the division unit based on the signedness of the instruction can be seen in
Listing 5.7. divA and divB are the transitories used to load the operands into the
division unit. In the case of a division instruction, the end result is negative if the
dividend was negative, or if the divisor was negative, but not both. In the case of a
remainder instruction, the end result is negative if the dividend was negative. The
operations determining the value of these status bits can be seen on line 10 and
11 in Listing 5.7. After the division unit has completed all its iterations, the correct
signedness of the final answer is restored using these status bits, indicating whether
or not to again take the 2’s complement of the final result.

The Tzscale processor also implements initialization functionality which speeds
up the division result. The default Tzscale processor uses 32-bit operands for the
division, in 32 bit registers, meaning that it would take 32 clock cycles to fully run
the shift/subtract algorithm. However, all consecutive 0 bits on the LSB side of the
dividend will never result in a sign bit of 0 on the trial difference once they are shifted
into the left register. Only when the first 1 is shifted into the left register there is a
possibility for the sign bit to become 0. To speed up the division, the Tzscale counts
this number of X leading 0 bits in the dividend on initialization of the division unit.
The counter keeping track of the number of iterations is then initialized to 33 − X,

5.1. NATIVE FIXED-POINT SUPPORT 47

1 if(divC_divs_divA_divB_div_DE_sig ||

2 divC_rems_divA_divB_div_DE_sig) {

3

4 if(divA < 0) { divA_loc = -divA; }

5 else { divA_loc = divA; }

6

7 if(divB < 0) { divB_loc = -divB; }

8 else { divB_loc = divB; }

9

10 is_neg_div = (divA<0 ^ divB<0) ? 1:0;

11 is_neg_rem = (divA<0) ? 1:0;

12 }

13 else {

14 divA_loc = divA;

15 divB_loc = divB;

16 is_neg_div = 0;

17 is_neg_rem = 0;

18 }

Listing 5.7: PDG description used to load the operands for the signed and unsigned
case

and the dividend is shifted X bits to the left into the left register, inserting only 0’s
at the LSB side. The initialization of the counter is explained by the way in which
the counter is used. Previously, it was mentioned that the write back stage was
not part of the nML description, as this should now be handled by the multi-cycle
functional unit. The write back of the division unit is done in its last clock cycle,
when the counter has a value of 1. When the division unit is idle, the counter should
have a value of 0. So, in order to achieve the correct number of cycles for the divi-
sion operation, the counter receives an offset of 1, resulting in the expression 33−X.

New Division instruction
Now that the behavior of the multi-cycle functional unit implementing division is
known, its behavior can be altered to support the fixed-point variant. The nML de-
scription for the new division instruction can be seen in Listing 5.8. Just like the nML
for the new multiplication instructions, the c5u type is used to indicate the imme-
diate value. The image definition is also updated to represent the new instruction
encoding.
As mentioned previously, the algorithm for division used by the Tzscale can be
scaled up to a higher number of bits. To implement fixed-point division in the Tzs-
cale, the register in which the dividend is placed will be double the size, so that

48 CHAPTER 5. MODIFYING THE TZSCALE

1 opn div_rr(rs1: mR1, rs2: mR2, rd:c5unz, imm:c5u)

2 {

3 action {

4 stage DE:

5 R[div_wad=rd] = wd = divC = divs(divA=rs1, divB=rs2, divI=imm) @div;

6 }

7 syntax : "div " "x"rd ", " rs1 "," rs2",imm:"imm;

8 image :

imm::funct2_mul_div.div_type::rs2::rs1::funct3_div.div::rd::opc.mul_div_e,

class(div);

↪→

↪→

9 }

Listing 5.8: nML description for the modified div instruction

the full range of possible scaling factors (through the 5-bit immediate) can be used.
During the first cycle of the division where the dividend is placed in its register, it
should be shifted the number of bits specified by the immediate value to the left,
implementing the required behavior described in Section 3.3.2. Then, the division
can be performed through all shift/subtract iterations. A division can now take at
most 64 clock cycles, because the size of the dividend register has doubled. When
the division unit is finished with all its iterations, the division result can be found in
the lower 32 bits of the right register, and the remainder result can be found in the
lower 32 bits of the left register. Also, all internal counters and the PDG functions
supporting the multi-cycle functional unit should be updated to support the larger
data type and larger number of cycles.

Lastly, division by 0 should be discussed. Section 4.1 mentioned that the Tzscale
does not support division by 0. The reason for this lack of support is not due to
the algorithm that is used for division. To the contrary, if the algorithm is executed
exactly as shown in Figure 5.4 division by 0 would yield the result as specified in
the RISC-V manual, namely that all quotient bits are set to 1 and the remainder is
set to the value of the dividend). The RISC-V specification dictates specifically that
no exception is raised in the case of division by zero [22]. Since the Tzscale counts
the number of leading zero bits and skips all of these iterations, zeros are inserted
into the quotient resulting in the wrong answer. The modified implementation of the
Tzscale correctly accounts for division by 0, by considering it as a special case in the
initialization cycle. In this special division by 0 case, all bits in the quotient register
are set to 1, and the remainder register is set to the value of the dividend, therefore
adhering to the RISC-V specification. The complete modified PDG implementation
for the Tzscale can be found in Appendix C.

5.2. IMPLEMENTATION 49

5.2 Implementation

The previous section explained the modifications to the Tzscale in detail, where
both fixed-point multiplication and division are added through new instructions and
alterations to the underlying hardware. Two more steps are required to be able to
implement the new instructions into the already existing software: the use of the new
instructions should be detailed in the compiler header files of the Tzscale processor
after which the software should be updated to make use of the new instructions.

The compiler header files are a set of C++ header files forming the link between
the PDG/nML implementation and the software side. The CHESS part of the ASIP
designer tool can use the header files to compile the application code for the ASIP.
An example from the processor header file regarding the int datatype, describing
regular multiplication, can be seen in Listing 5.9.

1 promotion int operator*(int,int) = w32 mul(w32,w32);

2 promotion unsigned operator*(unsigned,unsigned) = w32 mul(w32,w32);

Listing 5.9: Operator promotion for multiplication on the default Tzscale, linking the
multiplication operator to the PDG function

1 promotion int MUL_FXDPT(int,int,unsigned) = w32 mulfxdpt(w32,w32,w32);

2

3 inline int operator*(int a, int b) {return MUL_FXDPT(a,b,0);}

4 inline unsigned operator*(unsigned a, unsigned b) {return MUL_FXDPT(a,b,0);}

Listing 5.10: Making the new multiplication functionality accessible through an in-
trinsic function

Defining the behavior for certain operators can be done in multiple ways. In List-
ing 5.9 the promotion keyword is used, which is the most common way. Now, the
new PDG function that implements the fixed-point behavior should be accessible
in the application code. To achieve this, an intrinsic function can be used. Given
the fact that the fixed-point multiplication instruction replaces the original one, reg-
ular multiplication should then execute the instruction through a call to the intrinsic
function. This can be done using the inline keyword for the multiplication operator.
The updated compiler header code that implements this behavior can be seen in
Listing 5.10.

50 CHAPTER 5. MODIFYING THE TZSCALE

The division and modulo operators can be updated in the exact same way: making
intrinsic functions for the different instructions, and linking them to their operators by
inlining the intrinsic function. This implementation can be seen in Listing 5.11.

1 promotion int DIV_FXDPT(int,int,unsigned) = w32 divs(w32,w32,w32);

2 promotion int REM_FXDPT(int,int,unsigned) = w32 rems(w32,w32,w32);

3

4 promotion unsigned DIVU_FXDPT(unsigned,unsigned,unsigned) = w32 divu(w32,w32,w32);

5 promotion unsigned REMU_FXDPT(unsigned,unsigned,unsigned) = w32 remu(w32,w32,w32);

6

7 inline int operator/(int a, int b) {return DIV_FXDPT(a,b,0);}

8 inline int operator%(int a, int b) {return REM_FXDPT(a,b,0);}

9

10 inline unsigned operator/(unsigned a, unsigned b) {return DIVU_FXDPT(a,b,0);}

11 inline unsigned operator%(unsigned a, unsigned b) {return REMU_FXDPT(a,b,0);}

Listing 5.11: Making the new division functionality accessible through intrinsic func-
tions

Given the implementation of the new PDG functions through the compiler header
files, the behavior of regular integer arithmetic stays exactly the same. The fixed-
point behavior can now be accessed by calling the intrinsic functions, and passing
the number of bits after the binary point as a third argument. The fixed-point library
was updated to make use of the new functionality, which can be seen in Listing 5.12.

1 //fixed-point multiplication

2 inline fixedpt xmul(fixedpt A, fixedpt B){

3 return MUL_FXDPT(A, B, FIXEDPT_FBITS);

4 }

5

6 //fixed-point division, dividing A by B

7 inline fixedpt xdiv(fixedpt A, fixedpt B){

8 return DIV_FXDPT(A, B, FIXEDPT_FBITS);

9 }

Listing 5.12: Implementation of the new intrinsic functions in the application code

5.2. IMPLEMENTATION 51

5.2.1 Verifying functional correctness

Now that the ASIP is modified with new fixed-point functionality, the functional cor-
rectness of the result of the application code should be re-verified to see whether the
design behaves as expected. The verification will be done in exactly the same way
as in Section 3.4: by a histogram showing all percentage differences between all
outcomes of the application code running in the ISS and all outcomes of the Matlab
implementation. Section 4.4 discussed that the square root operation was removed
from the application code, as removing it did not influence the end result. However,
since the Matlab implementation does make use of the square root operation, it was
temporarily re-enabled in the C application code so their results could be compared.
The result can be seen in Figure 5.5.

0 0.5 1 1.5 2 2.5

Percentage difference 10-4

0

200

400

600

800

1000

#o
cc

ur
an

ce
s

Figure 5.5: Histogram of all relative differences between the results of the C imple-
mentation compared to the results of the Matlab implementation using
the modified Tzscale processor

The histogram shows an almost exactly equal percentage difference distribution as
can ben seen in Figure 3.3. This is the expected result in the case that the new
instructions function correctly.

5.2.2 VHDL simulation

Complete verification of the new instructions also includes a VHDL simulation. A
simulation like this requires a complete hardware description of the processor. The
ASIP designer tool provides GO for this purpose: it can translate nML and PDG to
synthesizable RTL. A GO configuration file is used to instruct the tool of the required
settings for the translation. In this case, it was chosen to generate VHDL along with

52 CHAPTER 5. MODIFYING THE TZSCALE

PC I n s t r u c t i o n Assembly
−−− −−−−−−−−−−− −−−−−−−−−−−−−−
20 00 40 21 83 lw x3 , 4 (x0)
24 00 80 22 03 lw x4 , 8 (x0)
28 01 80 65 13 o r i x10 , x0 ,24
32 d2 32 45 8b mul fxdpt x11 , x4 , x3 , imm:26
36 d4 41 c2 0b d iv x4 , x3 , x4 , imm:26

Listing 5.13: Top of the disassembly of the test program

a testbench specifically constructed to be used in ModelSim. The testbench can
be used to start the simulation, where the testbench then loads a memory config-
uration file that should be generated from compiled application code. To test the
new instructions, a simple test program was written to use the newly implemented
instructions through the fixed-point library. The test program has two randomly cho-
sen fixed-point numbers stored in its data memory: 0.6 and 0.21. Given the scaling
factor of 226, these two numbers are stored in memory as the integers 40265318
and 14092861. The disassembly at the beginning of the program can be seen in
Listing 5.13. The top shows two lw (load word) instructions, where both parameters
are loaded from the data memory into registers x3 and x4. The ori (or immediate)
instruction is placed there by compiler optimization as this instruction is not required
for the multiplication and division operations. The result of this instruction is later
used at the end of the program. Then, both new instructions can be recognized,
where the multiplication is executed before the division. It is interesting to note that
the compiler placed the two source registers x3 and x4 in a different order for both
instructions. The compiler can choose to swap the source registers for the multi-
plication instruction, since it is given the commutative property. This property tells
CHESS that swapping the operands will still result in the same outcome.

Figure 5.6: Simulation result of the new mul instruction

5.2. IMPLEMENTATION 53

The VHDL simulation where the new fixed-point multiplication instruction is executed
can be seen in Figure 5.6. The execution of the instruction starts at the spot where
the yellow cursor is placed. The instruction executes in one clock cycle, thus provid-
ing its result on the output transitory mpyC out on the same clock cycle. The input
parameters can be seen in mpyA in, mpyB in and mpyI in, where the latter is used
for the immediate value. The expected result is the two input transitories multiplied
by each other, and then scaled back by a factor of 226, yielding 8455716. This num-
ber can indeed be recognized as the result in mpyC out, indicating correct behavior.

The beginning of the execution of the new division instruction can be seen in Fig-
ure 5.7, where the instruction starts executing at the yellow cursor. The input pa-
rameters can be seen in divA in, divB in and divI in, just like the multiplication
instruction. It appears that the transitories of the multiplication and the division unit
share the same input, as they always show the same data. The first clock cycle is
the initialization cycle, where the correct values are loaded into the local registers B
and PA, with the divisor being stored in B and the (shifted) dividend being stored in
PA. The shifted dividend has 12 leading zero bits, so the counter (called cnt in the
figure) is initialized with 65−12 = 53, meaning that there will be 52 division iterations
and 1 final write-back cycle. Also, it can be recognized that a signed division instruc-
tion is being executed as the corresponding control signal is set to 1 (recognizable
in the figure by en divC divs ...).

Figure 5.7: Simulation result of the new div instruction (at the start)

54 CHAPTER 5. MODIFYING THE TZSCALE

Figure 5.8: Simulation result of the new div instruction (at the end)

Figure 5.9: Simulation result of the new div instruction (fully shown)

The end of the execution can be seen in Figure 5.8. The cursor is now placed at
the very end of the execution, after execution of the write back cycle. The last cycle
of the division iterations can be seen in the clock cycle where the counter has a
value of 2. After that cycle (counter has a value of 1), the division result is ready
and can be seen on the signal w1 out. The expected division result is the value of
the dividend scaled up by 226 and then divided by the value of the divisor, yielding

5.2. IMPLEMENTATION 55

191739615. This is indeed the value that can be recognized on w1 out, indicating
correct behavior.

The complete execution of the division instruction can be seen in Figure 5.9. The
time difference between both cursors is 216ns. A clock frequency of 250MHz was
used for the simulation, meaning that the division instruction took 54 clock cycles
from start to write back. This is to be expected: 1 initialization cycle, 52 division
iterations and 1 write back cycle.

5.2.3 Comparison between VHDL and the ISS

The VHDL simulation discussed in the previous section showed correct behavior
for the test program. While this shows correct behavior for the parameters used in
the test program, the ideal test case would be a full comparison between the ISS
and the VHDL simulation both running the application code for the QMP algorithm.
This can be done by comparing so-called register log files that both the ISS and
the testbench for the VHDL simulation can generate. These log files contain every
write action to data memories and the processor’s registers, for every clock cycle of
the program. Every clock cycle in the file starts with the number of the clock cycle
followed with the value of the program counter between parenthesis. If any writing
was done in a clock cycle, this information is printed after it on the next lines.

The ISS was configured to output such a log file. After a full simulation, the log file
of the ISS was compared to the log file of a VHDL simulation running the application
code of the QMP algorithm. At first sight, the log files seemed similar, however,
the order of writes to memory and register locations were ordered differently. An
example of this, for the 19th clock cycle, can be seen in Listings 5.14 and 5.15. The
actions within the 19th clock cycle are the same, however, both simulations added
them to the file in a different order.

19 (164)

R[3] = 32812

DM1_3[4121] = 0

DM1_2[4121] = 0

DM1_1[4121] = 128

DM1_0[4121] = 44

Listing 5.14: Cycle 19 for VHDL

19 (164)

DM1_0[4121] = 44

DM1_1[4121] = 128

DM1_2[4121] = 0

DM1_3[4121] = 0

R[3] = 32812

Listing 5.15: Cycle 19 for the ISS

The different order of the information in the log files makes it difficult to compare the
results by hand. Instead, a Python script was written to compare both log files. The

56 CHAPTER 5. MODIFYING THE TZSCALE

script gathers all write actions for a clock cycle both for the ISS log file and the VHDL
log file. For both log files, these write actions are then put in a list. Both lists are
then ordered, so they can be compared element by element. This operation is then
done for every clock cycle. After running this python script on the lists is appeared
that the contents of all lists were the same. This means that both the ISS and the
VHDL implementation performed the same actions in every clock cycle, indicating
equal behavior.

5.3 Results and evaluation

New results are produced for the modified Tzscale processor with native fixed-point
support. Separate results are produced for a Tzscale with only a new multiplication
instruction and a Tzscale with both a new multiplication and a new division instruc-
tion. This way the impact of both changes can be reviewed separately. The software
version that was used to produce the result was the most optimized software ver-
sion as discussed in Section 4.4. The new results in terms of the required number of
clock cycles and program size are acquired through the newly generated ISSs and
can be seen in Table 5.2 below.

Table 5.2: Results of the modified Tzscale for Nr = 4
Clock cycles Prog. size

Processor version #cycles % #bytes %
Unmodified 13228786 100.0 1428 100.0
Native fixed-point mul 9951410 75.2 1186 83.1
Native fixed-point mul and div 5151930 38.9 882 61.8

The support for native fixed-point multiplication results both in a faster algorithm
as well as a smaller one. Now, only 1 clock cycle is required in order to achieve
fixed-point multiplication, where in the first profiling results it was shown that the
unoptimized software version required 12 clock cycles to do the same. Furthermore,
the addition of native fixed-point division is even more impressive. This was to be
expected, as the emulated long division took over a 1000 clock cycles to complete,
whereas the new division instruction completes in 66 clock cycles or less.

For reference, the results for Nr = 2 are shown in Table 5.3, where significant
improvements are visible as well. It is interesting to note that the impact of native
fixed-point multiplication support is relatively smaller compared to Nr = 4, while the
impact of fixed-point division support is relatively larger. This can be explained by
looking at Table 3.4. The table shows that the number of divisions in one cycle of

5.3. RESULTS AND EVALUATION 57

the algorithm loop is constant, whereas the number of multiplications increases with
higher values of Nr.

Table 5.3: Results of the modified Tzscale for Nr = 2
Clock cycles Prog. size

Processor version #cycles % #bytes %
Unmodified 124153 100.0 1426 100.0
Native fixed-point mul 107113 86.3 1184 83.0
Native fixed-point mul and div 32149 25.9 878 61.6

Now that the new and improved results in terms of the required number of clock
cycles and program size are known, it is important to know the cost of the improve-
ments in terms of both the required amount of hardware and the power consumption.
To acquire these results, all different designs were synthesized for the UMC 65 nm
technology1, which is the exact same technology used in [2]. The synthesis is done
for the same clock frequency as well, namely 250 MHz. This makes it possible to
compare the synthesis results of the newly modified Tzscale processor to the syn-
thesis results acquired in [2]. The synthesis results can be seen in Table 5.4.

Table 5.4: Synthesis results for UMC 65nm technology
Area Power Energy

Processor version µm2 % mW % nWh %
Unmodified 45609 100.0 0.5721 100.0 8.41 100.0
Native fixed-point mul 46501 102.0 0.5783 101.1 6.39 76.0
Native fixed-point mul and div 49206 107.9 0.5905 103.2 3.38 40.2
Native integer sqrt [2] 46763 102.5 0.6029 105.4 NA NA

The power numbers presented in Table 5.4 are for 10% toggle rate switching activity
as calculated by the Synopsys Design Compiler. This is purely a metric to provide
a means of comparing the power efficiency between different designs. The number
does also allow for an approximation of the amount of energy required to run the
algorithm. The energy column in Table 5.4 is calculated by multiplying the time
required to run the algorithm by the corresponding power number. The results show
that the algorithm runs significantly more efficient in terms of the required energy on
the modified processors, but that this is mainly due to the increase in speed.

Lastly, the table shows that fixed-point multiplication support requires an addi-
tional 2% of area, where fixed-point division support then requires an additional

1The UMC 65 nm technology is available to the university via Europractice

58 CHAPTER 5. MODIFYING THE TZSCALE

5.9%. In total just under 8% extra area is required. The extra hardware that is re-
quired can be considered significantly more than the hardware that was required for
the integer square root unit as implemented in [2], however, the performance gains
are also a lot more significant (especially for Nr = 2).

The increase in required hardware is especially striking for native fixed-point mul-
tiplication. A 2% increase might not seem like a lot, but when comparing it to the
2.5% increase in hardware for a completely new dedicated square root unit, it raises
the question what all the extra hardware is required for. One way in which it might
be explained is the fact that the multiplier already was one of the largest units in
the Tzscale processor, only preceded by the register file [23]. The division unit is
also large, but this is mainly due to the many internal registers and control logic
required to run the algorithm. The multiplication operation performs in one clock
cycle, meaning that all electrical signals have to propagate through the multiplier
completely before the end of the clock cycle. With the addition of the variable shifter
at the end of the multiplier, this path has become even longer. This could be an
explanation for the relatively large increase, as all that extra hardware might be re-
quired to accommodate this longer path while still being able to reach a speed of
250MHz.

The final profiling results after running the most optimized software version on the
Tzscale with full native fixed-point support can be seen in Table 5.5. Long division
is no longer emulated in software and is therefore no longer present in the table.
The division operation now happens through the inlined fixed-point division function
which calls the new intrinsic for fixed-point division. Given the fact that the operation
is inlined at the place where it is used, the clock cycles required to perform the
division are added to the clock cycles for main(). The table clearly shows that
the influence of the main function on the total number of clock cycles is not very
significant, indicating that the division indeed happens a lot faster.

Table 5.5: Final profiling results
Function Percentage of total clock cycles
Matrix vector multiplication 29.56%
Complex multiplication 22.25%
Complex addition 15.89%
Dot product 7.86%
Main 7.04%
Vector complex conjugate 5.40%

Chapter 6

Conclusion and future work

This chapter draws a conclusion on the work done in this thesis and will then discuss
future work. The conclusion section will separately deal with each sub-question from
Chapter 1 after which the main research question will be answered.

6.1 Conclusion

The goal of this thesis was to investigate the algorithm for finding the beamforming
coefficients, both on the software and the hardware level, to increase speed, reduce
the number of bytes required for storing the program and the required data, and de-
crease power consumption. This work was a continuation of the work started in [2],
with the goal of further investigating the topic and improve upon the results. Now,
each sub-question that was presented in Section 1.1 will be treated after which the
main question can be answered.

What impact does the change of a 2-antenna system as used in [2] to an N-antenna
system have on performance and required memory?

Chapter 3 thoroughly discussed how the algorithm scales for different numbers
of antennas and the number of bits in the coefficient alphabet. It appeared that the
complexity of the algorithm increases drastically for higher numbers of antennas,
showing exponential behavior. Figure 3.1 inherently visualizes this, by varying the
different parameters and showing the results on a logarithmic scale. The required
memory size for the main parameters used in this research was still manageable
at 131072 bytes. However, given that the required memory size also exponentially
increases for a higher number of antennas, it was decided to not explicitly store the
complete dictionary, but rather generate it as needed while executing the algorithm.
It appeared that this drastically reduces the required memory size, while the com-
putational overhead for on-the-fly generation is very small. This is best shown by

59

60 CHAPTER 6. CONCLUSION AND FUTURE WORK

Table 4.2, where it can be seen that only 1.06% of the clock cycles is spent on gen-
erating vectors from the dictionary.

Does analysis of the algorithm without the context of the target architecture yield
interesting results? Is there a relation between this analysis and profiling results
after compilation for the target architecture? Is this relation as can be expected?

Analysis of the algorithm without the context of the target architecture in this re-
search was mainly done through an extensive complexity analysis. For every part of
the algorithm, the number of required operations was determined. This was done to
see both the absolute number of operations required for a given number of antennas
and how the number of operations scales for different parameters. Table 3.2 and 3.4
show these results. This method mainly provided insight into what kind of profil-
ing results to expect, enabling the check whether the final software implementation
performs as expected. It appeared that the actual software implementation running
on the Tzscale indeed showed operations of which the number of times they were
executed was very similar to the results from Table 3.2 and 3.4.

It must be noted, however, that most insights were gained using the profiling
results presented in Chapter 4. These profiling results, along with a look at the
disassembly that was generated for the compiled application code, resulted in the
software optimizations that are discussed in Section 4.4. The results of the software
optimizations might be some of the most interesting ones in this research. Due to
software optimizations only, the required number of clock cycles was almost cut in
half for Nr = 4. For Nr = 2, it was shown that the most optimized software version
only required 32% of the clock cycles compared to the application code used in [2],
truly showing the significance of research on the software level.

Which changes can be made to the ISA by arithmetical (e.g. complex-number op-
erations) or control-oriented (e.g. hardware loop controller) instructions, to increase
performance and efficiency?

The final profiling results in Chapter 4 and the interpretation in Section 4.5 showed
that it would be very beneficial for the Tzscale to have native fixed-point support.
Other, more involved arithmetical instructions would not yet make sense when the
processor would not have native support for the main used datatype. Native fixed-
point support was implemented into the Tzscale by modifying the existing multipli-
cation unit and division unit, with an immediate value encoding into the instruction
to indicate the scaling factor to be used for the fixed-point number. After the addi-
tion of support for native fixed-point multiplication and division, only 38.9% of the
clock cycles were required compared to an unmodified Tzscale. This increase in
speed came at a cost of 8% extra required chip area and an increased average

6.2. EXPERIENCE WITH ASIP DESIGNER 61

power draw of 3.2%. This is reasonable, however, as the increase in speed results
in only 40.2% of the energy being required for the algorithm on the modified Tzscale.

Which changes should be made to the ASIP as proposed in [2] to increase perfor-
mance and efficiency to find the beamforming coefficients for a 4-antenna system?

The three sub-questions have shown that performance and efficiency were suc-
cessfully increased with the changes made to both the software and the Tzscale
processor. The Tzscale was extended with native support for the required fixed-
point operations, being able to find the beamforming coefficients in 5151930 clock
cycles for Nr = 4 using the new hardware. Also the effect of software optimizations
is clearly shown, with the first implementation requiring 23465332 while the fully op-
timized software version reduced that to 13228786. This software optimization step
was an important one, as it was also shown that the square root operation that was
implemented into the Tzscale in [2] was unnecessary for the algorithm, as it yields
the same results without it.

6.2 Experience with ASIP Designer

The experience of working with the ASIP Designer environment was one with mixed
feelings. A large part of the negative side is due to ASIP Designer being quite over-
whelming when starting off. ASIP Designer requires multiple languages to describe
the processor and compiler behavior, most of which were unknown to me when start-
ing off. Next to that, the environment comes with a lot of internal tools, most of which
have to be used for a full design cycle. For example: CHESS is the retargetable C
compiler, CHECKERS is the ISS generator, GO is the synthesizable HDL generator,
DARTS is the assembler and disassembler and BRIDGE is the linker. It takes some
time to get into it, and to realize which tools require specific interaction and which do
not. Luckily, after some experience these things become less of a problem. There
is one more thing to ASIP Designer that tends to get a little tedious: the number of
different projects that are required for a full design cycle. First, there is the proces-
sor project, with its different files containing the full processor description. After this
project is compiled, at least 4 more projects are required for the full design cycle:
a separate project for each ISS, a project for generating the C runtime libraries, a
project for HDL generation and an application project that uses the ISS and the pro-
cessor model to simulate C code. Given the fact that most of these things belong
together, it feels like more of the different projects could have been put together into
one larger project.

ASIP Designer comes with a large set of manuals, providing at least one man-
ual for each of the tools mentioned above. The manuals are quite detailed, and

62 CHAPTER 6. CONCLUSION AND FUTURE WORK

all required information could be found in them. However, some inconsistencies
were found in the documentation for the Tzscale. For example, the Tzscale proces-
sor manual stated that RV32I was implemented as the base instruction-set, while
the read-me provided with the processor files stated that RV32E was implemented.
Also, the processor manual could have been a little more extensive. For example,
it would have been nice to see a more extensive description on the division unit. In
this work, the division unit had to be mainly reverse engineered to find out how it
worked.

The user interface, called ChessDE, looks and feels a little old from a visual
perspective. Functionally, it works perfectly fine. After some time of working with,
it is quite fast and switching between the different projects goes rather smoothly.
The environment proved to be a powerful one, where once familiar with the different
tools, a designer can extend and test a processor in a very short amount of time.
One of the most important reasons for this is the retargetable compiler that comes
with the environment, allowing C code to be compiled onto the custom processors.
Development would have been significantly more difficult without the presence of
this retargetable compiler.

6.3 Recommendations for future work

The work done in this research already was a continuation of the project reported
in [2]. After this research, there is still a lot more that can be done. The following
points are listed for potential future work:

1. The fixed-point support that was set up in this research can be further investi-
gated.

(a) A complete redesign of the division unit should yield better results. The
existing division unit in the Tzscale can divide an N-bit number by an N-bit
number in N bit shifts, while it should be possible to divide a 2N-bit number
by an N-bit number in N-steps [24]. This is quite interesting for fixed-point
support, as only the dividend requires a larger datatype, while the divisor
remains the same size. Redesigning or modifying the division unit to
resemble a restoring hardware divider [24] should yield better results.

(b) It would be interesting to see the effect of hard-coding the number of bits
after the binary point into the processor. This research focused on flexibil-
ity, allowing the programmer to choose the number of bits after the binary
point by encoding it into the instruction through an immediate value. How-
ever, this flexibility did require the construction of a new type of instruction,

6.3. RECOMMENDATIONS FOR FUTURE WORK 63

complicating the decoder of the processor. Also, variable bit shifters are
required to implement the behavior for both the multiplier and the division
unit. When the number of antennas and bits in the alphabet remain fixed,
hardcoding the number of bits after the binary point is possible and should
yield a processor requiring less area.

2. Different architectural changes could be explored.

(a) Given the nature of the algorithm, it could be very interesting to add
SIMD instructions. Both complex-number and matrix and vector oper-
ations could benefit greatly from this, as simple arithmetical operations
could happen in parallel.

(b) Smaller, less obvious changes to the ISA could be explored. For exam-
ple, a branch immediate instruction could be added. Currently, the Tzs-
cale only supports register-register branch operations. However, most of
the branches in the disassembly are based of a constant number in the
application code, often representing the number of antennas or the num-
ber of bits in the alphabet. Every time such a branch instruction is to be
evaluated, the constant value first needs to be loaded from memory into
a register. If the Tzscale would have register-immediate branch instruc-
tions, it would not require this constant value to be loaded from memory,
as it could be encoded into the instruction (given that the constants are
known at compile time).

3. The change denoted by point 2b is cannot be extracted from the analysis
and profiling results in this research. This indicates that there might be other
changes to the ISA that would be very beneficial but have not yet been found.
It might be interesting to try and profile/analyze the behavior and the require-
ments of the code running on the Tzscale in more different ways than was
done in this research.

4. The top-level design shown in Figure 2.4 can be considered. The interfaces
between the different blocks connecting to the ASIP should be worked out and
implemented, after which the ASIP could be implemented onto an actual FPGA
to conduct real-world measurements and testing.

64 CHAPTER 6. CONCLUSION AND FUTURE WORK

Bibliography

[1] V. Venkateswaran and A. van der Veen, “Analog beamforming in MIMO com-
munications with phase shift networks and online channel estimation,” IEEE
Transactions on Signal Processing, vol. 58, no. 8, pp. 4131–4143, Aug 2010.

[2] A. Pohekar, “ASIP design on behalf of hybrid beamforming in MIMO communi-
cation system,” Master’s thesis, University of Twente, October 2019.

[3] R. Chataut and R. Akl, “Massive MIMO systems for 5G and beyond net-
works—overview, recent trends, challenges, and future research direction,”
Sensors, vol. 20, no. 10, p. 2753, 2020.

[4] R. Ramanathan, “On the performance of ad hoc networks with beamforming
antennas,” in Proceedings of the 2nd ACM international symposium on Mobile
ad hoc networking & computing, 2001, pp. 95–105.

[5] B. Murmann, “Digitally assisted analog circuits,” in 2005 IEEE Hot Chips XVII
Symposium (HCS), Aug 2005, pp. 1–29.

[6] M. Willems, “Multicore design using application-specific instruction-set
processors (ASIPs),” accessed: 12 March 2020. [Online]. Available: https:
//www.synopsys.com/designware-ip/technical-bulletin/multicore-design.html

[7] C. Liem, T. May, and P. Paulin, “Instruction-set matching and selection for DSP
and ASIP code generation,” in Proceedings of European Design and Test Con-
ference EDAC-ETC-EUROASIC, Feb 1994, pp. 31–37.

[8] M. Gschwind, “Instruction set selection for ASIP design,” in Proceedings of the
Seventh International Workshop on Hardware/Software Codesign (CODES’99)
(IEEE Cat. No.99TH8450), March 1999, pp. 7–11.

[9] K. Karuri, M. A. Al Faruque, S. Kraemer, R. Leupers, G. Ascheid, and H. Meyr,
“Fine-grained application source code profiling for ASIP design,” in Proceed-
ings. 42nd Design Automation Conference, 2005., June 2005, pp. 329–334.

65

https://www.synopsys.com/designware-ip/technical-bulletin/multicore-design.html
https://www.synopsys.com/designware-ip/technical-bulletin/multicore-design.html

66 BIBLIOGRAPHY

[10] M. K. Jain, M. Balakrishnan, and A. Kumar, “ASIP design methodologies: sur-
vey and issues,” in VLSI Design 2001. Fourteenth International Conference on
VLSI Design, Jan 2001, pp. 76–81.

[11] Q. Chen, Q. Jinguo, Y. Zhang, and J. Ju, “Source code profiling for ASIP design:
Strategy and implementation,” in 2011 International Conference on Electronics,
Communications and Control (ICECC), Sep. 2011, pp. 1032–1035.

[12] Synopsys, “ASIP designer,” accessed: 16 March 2020. [Online]. Available:
https://www.synopsys.com/dw/ipdir.php?ds=asip-designer

[13] Y. S. Mehrabani, M. Eshghi, and Y. S. Mehrabani, “Design of an ASIP processor
for MD5 hash algorithm,” in 2012 20th Telecommunications Forum (TELFOR),
Nov 2012, pp. 548–541.

[14] L. Gerlach, G. Payá-Vayá, S. Liu, M. Weißbrich, H. Blume, D. Marquardt, and
S. Doclo, “Analyzing the trade-off between power consumption and beamform-
ing algorithm performance using a hearing aid ASIP,” in 2017 International
Conference on Embedded Computer Systems: Architectures, Modeling, and
Simulation (SAMOS), July 2017, pp. 88–96.

[15] A. M. Engroff, A. G. Girardi, M. V. Heckler, A. Winterstein, and L. A. Greda,
“ASIP development of a real-time control module for a retrodirective antenna ar-
ray,” AEU - International Journal of Electronics and Communications, vol. 109,
pp. 31 – 42, 2019.

[16] A. R. Jafri, D. Karakolah, A. Baghdadi, and M. Jezequel, “ASIP-based flex-
ible MMSE-IC linear equalizer for MIMO turbo-equalization applications,” in
2009 Design, Automation Test in Europe Conference Exhibition, April 2009,
pp. 1620–1625.

[17] P. Radosavljevic, J. R. Cavallaro, and A. de Baynast, “ASIP architecture im-
plementation of channel equalization algorithms for MIMO systems in WCDMA
downlink,” in IEEE 60th Vehicular Technology Conference, 2004. VTC2004-Fall.
2004, vol. 3, Sep. 2004, pp. 1735–1739 Vol. 3.

[18] T. Kaji, S. Yoshizawa, and Y. Miyanaga, “Development of an ASIP-based sin-
gular value decomposition processor in SVD-MIMO systems,” in 2011 Interna-
tional Symposium on Intelligent Signal Processing and Communications Sys-
tems (ISPACS), Dec 2011, pp. 1–5.

[19] X. Chen, A. Minwegen, Y. Hassan, D. Kammler, S. Li, T. Kempf, A. Chattopad-
hyay, and G. Ascheid, “FLEXDET: Flexible, efficient multi-mode MIMO detec-

https://www.synopsys.com/dw/ipdir.php?ds=asip-designer

BIBLIOGRAPHY 67

tion using reconfigurable ASIP,” in 2012 IEEE 20th International Symposium on
Field-Programmable Custom Computing Machines, April 2012, pp. 69–76.

[20] G. Peng, L. Liu, S. Zhou, S. Yin, and S. Wei, “A 2.92-Gb/s/W and 0.43-Gb/s/MG
flexible and scalable CGRA-based baseband processor for massive MIMO de-
tection,” IEEE Journal of Solid-State Circuits, vol. 55, no. 2, pp. 505–519, Feb
2020.

[21] N. Yoshida, L. Lanante, Y. Nagao, M. Kurosaki, and H. Ochi, “A hybrid HW/SW
802.11ac/ax system design platform with ASIP implementation,” in 2017 In-
ternational Symposium on Intelligent Signal Processing and Communication
Systems (ISPACS), Nov 2017, pp. 827–831.

[22] The RISC-V Instruction Set Manual, CS Division, EECS Department, University
of California, Berkeley, May 2017.

[23] Synopsys, ASIP Designer - Tzscale - Processor Manual, O-2018.09 ed.

[24] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs. USA:
Oxford University Press, Inc., 2000.

68 BIBLIOGRAPHY

Appendix A

Matlab implementation

1 %Quantized Matching Pursuit, this runs on the asip

2 function W = QMP(Rx_sqrt, Rx_sqrt_inv, R_xs, w)

3 % Pre-calculation

4 rxs = Rx_sqrt_inv * R_xs;

5 w_wh = Rx_sqrt * w;

6

7 % Find best match

8 result = -inf;

9 for i = 1 : size(w,2)

10 w1 = abs(w_wh(:,i)'*rxs)/norm(w_wh(:,i));

11 if w1 > result

12 w_final = w_wh;

13 result = w1;

14 end

15 end

16

17 % Finalize

18 W = Rx_sqrt_inv * w_final;

19 end

69

70 APPENDIX A. MATLAB IMPLEMENTATION

Appendix B

C implementation

Main file

1 //user file includes

2 #include "settings.h" //contains all setting macros

3 #include "matlab_data_gen.h"

4 #include "matrix.h"

5

6 //system file includes

7 #if TRACK_TIME_ON || SHOW_FINAL_RESULT_ON

8 #include <stdio.h>

9 #endif

10 #if TRACK_TIME_ON

11 #include <time.h>

12 #endif

13

14 //this function can be found at the end of this file

15 void dicionary_emu(const uint32_t idx, complex_n result_vec[NR_A]);

16

17 int main() {

18 complex_n w_vector[NR_A]; //to store a vector of the dictionary

19 complex_n w_vector_final[NR_A]; //the store the resulting vector of the

dictionary↪→

20 complex_n w_wh_vector[NR_A]; //to store the whitened version of a vector of

the dicionary↪→

21 complex_n rxs[NR_A]; //to store rxs (as a result of multiplying

R_x_sqrt_inv with R_xs)↪→

22 fixedpt weight = -2147483648; //smallest possible value

23

24 #if TRACK_TIME_ON

25 clock_t start_time = clock();

26 #endif

27

71

72 APPENDIX B. C IMPLEMENTATION

28 ////// QMP - Quantized Matching Pursuit algorithm //////

29 multiply_matrix_by_vector(R_x_sqrt_inv, R_xs, rxs);

30

31 //algorithm loop, performing exhaustive search

32 for(uint32_t idx1 = 0; idx1 < W_SIZE; idx1++){

33 dicionary_emu(idx1, w_vector);

34

35 multiply_matrix_by_vector(R_x_sqrt, w_vector, w_wh_vector);

36

37 fixedpt norm = norm_of_vector(w_wh_vector);

38

39 cconj_of_vector(w_wh_vector); //take the elementwise complex onjugate of the

vector↪→

40 fixedpt abs_value = cabsolute(multiply_vector(w_wh_vector, rxs));

41 fixedpt new_weight = xdiv(abs_value, norm);

42

43 if(new_weight > weight){

44 weight = new_weight; //update the weight to the new best

value↪→

45 for(uint32_t i = 0; i < NR_A; i++) //update the weights vector to the

newly found one↪→

46 w_vector_final[i] = w_vector[i];

47 }

48 }

49

50 #if TRACK_TIME_ON

51 clock_t end_time = clock();

52 double time_spent = (double)(end_time - start_time) / CLOCKS_PER_SEC;

53 printf("Time spent: %f seconds\n\n", time_spent);

54 #endif

55

56 #if SHOW_FINAL_RESULT_ON

57 printf("Final weight:\n%f\n\n", fixedpt_to_flt(weight));

58 printf("Final coefficients whitened:\n");

59 for(uint32_t i = 0; i < NR_A; i++)

60 printf("[%d] .r = %f, .i = %f\n", i,

fixedpt_to_flt(w_vector_final[i].r),

fixedpt_to_flt(w_vector_final[i].i));

↪→

↪→

61 #endif

62

63 return 0;

64 }

65

66

67 //fucntion that emulates the dictionary behavior. W_angle contains all unique

numbers that reside in memory↪→

73

68 //returns the vector (through w_vec[NR_A]) that would be at the idx'st place in

memory↪→

69 void dicionary_emu(const uint32_t idx, complex_n w_vec[NR_A]){

70 uint32_t W_angle_idx;

71

72 //based on idx (ranging from 0 to W_SIZE-1) the required indexes for W_angle are

calculated (ranging from 0 to W_ANGLE_SIZE-1)↪→

73 for(uint32_t i = 0; i < NR_A; i++){

74 W_angle_idx = (idx >> ((NR_A - 1) * (NR_A - 1 - i))) & (W_ANGLE_SIZE - 1);

75 w_vec[i] = W_angle[W_angle_idx];

76 }

77 }

Complex number type and functions

1 #ifndef COMPLEX_N_H

2 #define COMPLEX_N_H

3

4 #include "fixedptc.h"

5

6 // Complex number struct, containing a fixedpt real and imaginary part.

7 typedef struct complex_n {

8 fixedpt r, i;

9 } complex_n;

10

11 // Adds complex number a to b and returns the result.

12 complex_n cadd (complex_n a, complex_n b){

13 a.r = xadd(a.r,b.r);

14 a.i = xadd(a.i,b.i);

15 return a;

16 }

17

18 // Subtracts complex number b from a and returns the result.

19 complex_n csub (complex_n a, complex_n b){

20 a.r = xsub(a.r,b.r);

21 a.i = xsub(a.i,b.i);

22 return a;

23 }

24

25 // Multiplies complex number a with b and returns the result.

26 complex_n cmul (complex_n a, complex_n b){

27 complex_n res;

28 res.r = xsub(xmul(a.r,b.r), xmul(a.i,b.i));

29 res.i = xadd(xmul(a.r,b.i), xmul(a.i,b.r));

30 return res;

74 APPENDIX B. C IMPLEMENTATION

31 }

32

33 // Divides complex number a by b and returns the result.

34 // It is calculated by expanding and then simplifying

35 // the following: (a / b) * (cconj(b) / cconj(b))

36 complex_n cdiv (complex_n a, complex_n b){

37 complex_n res;

38 fixedpt div = xadd(xmul(b.r, b.r), xmul(b.i, b.i));

39 res.r = xdiv(xadd(xmul(a.r, b.r), xmul(a.i, b.i)), div);

40 res.i = xdiv(xadd(xmul(a.i, b.r), xmul(a.r, b.i)), div);

41 return res;

42 }

43

44 // Returns the complex conjugate of the complex number.

45 complex_n cconj (complex_n a){

46 a.i = -(a.i); //complex conjugate

47 return a;

48 }

49

50 // Returns the aboslute value of the complex number.

51 fixedpt cabsolute (complex_n a){

52 fixedpt abs_value;

53 abs_value = xsqr(xadd(xmul(a.r,a.r), xmul(a.i,a.i)));

54 return abs_value;

55 }

56

57 #endif //COMPLEX_N_H

Matrix operations

1 #ifndef MATRIX_H

2 #define MATRIX_H

3

4 // Calculates the product of a NR_A by NR_A matrix and a 1 by NR_A vector.

5 // Returns the result as a 1 by NR_A vector stored in res.

6 void multiply_matrix_by_vector(complex_n mat[NR_A][NR_A], complex_n vec[NR_A],

complex_n res[NR_A]){↪→

7 for(uint32_t i = 0; i < NR_A; i++){

8 res[i].r = 0;

9 res[i].i = 0;

10 for(uint32_t j = 0; j < NR_A; j++){

11 res[i] = cadd(res[i], cmul(mat[i][j], vec[j]));

12 }

13 }

14 }

75

15

16 // Multiplies two vectors of 1 by NR_A and returns the scalar result.

17 complex_n multiply_vector(complex_n vec1[NR_A], complex_n vec2[NR_A]){

18 complex_n sum = {.r = 0, .i = 0};

19

20 for(uint32_t i = 0; i < NR_A; i++)

21 sum = cadd(sum, cmul(vec1[i], vec2[i]));

22

23 return sum;

24 }

25

26 // Returns the norm of a 1 by NR_A vector.

27 fixedpt norm_of_vector(complex_n vec[NR_A]){

28 fixedpt sum = 0;

29

30 for(uint32_t i = 0; i < NR_A; i++)

31 sum = xadd(sum, xadd(xmul(vec[i].r, vec[i].r), xmul(vec[i].i, vec[i].i)));

32

33 return xsqr(sum);

34 }

35

36 // Returns the complex conjugate of each complex element in the vector.

37 void cconj_of_vector(complex_n vec[NR_A]){

38 for(uint32_t i = 0; i < NR_A; i++)

39 vec[i] = cconj(vec[i]);

40 }

41

42 #endif //MATRIX_H

Fixed point implementation

1 #ifndef FIXEDPTC_H_

2 #define FIXEDPTC_H_

3

4 //system file includes

5 #include <stdint.h>

6

7 #ifndef FIXEDPT_BITS

8 #define FIXEDPT_BITS 32

9 #endif

10

11 #ifndef FIXEDPT_WBITS

12 #define FIXEDPT_WBITS 6

13 #endif

14

76 APPENDIX B. C IMPLEMENTATION

15 #if FIXEDPT_BITS == 32

16 typedef int32_t fixedpt;

17 typedef int64_t fixedptd;

18 typedef uint32_t fixedptu;

19 typedef uint64_t fixedptud;

20 #else

21 #error "FIXEDPT_BITS must be equal to 32"

22 #endif

23

24 #if (FIXEDPT_WBITS % 2) != 0

25 #error "FIXEDPT_WBITS must be an even number"

26 #endif

27

28 #if FIXEDPT_WBITS >= FIXEDPT_BITS

29 #error "FIXEDPT_WBITS must be less than or equal to FIXEDPT_BITS"

30 #endif

31

32 #define flt_to_fixedpt(ARG) ((fixedpt) (((float)ARG) * (1 << (FIXEDPT_BITS -

FIXEDPT_WBITS))))↪→

33 #define fixedpt_rconst(ARG) flt_to_fixedpt(ARG) //legacy support, this macro

was first called fixedpt_rconst↪→

34 #define fixedpt_to_flt(ARG) ((float) (((float)ARG) / (1 << (FIXEDPT_BITS -

FIXEDPT_WBITS))))↪→

35

36 #define FIXEDPT_FBITS (FIXEDPT_BITS - FIXEDPT_WBITS)

37 #define FIXEDPT_FMASK (((fixedpt)1 << FIXEDPT_FBITS) - 1)

38 #define HALF_FIXED_FBITS (FIXEDPT_FBITS / 2)

39

40 #define FIXEDPT_ONE ((fixedpt)((fixedpt)1 << FIXEDPT_FBITS))

41 #define FIXEDPT_ONE_HALF (FIXEDPT_ONE >> 1)

42 #define FIXEDPT_TWO (FIXEDPT_ONE + FIXEDPT_ONE)

43 #define FIXEDPT_PI fixedpt_rconst(3.14159265358979323846)

44 #define FIXEDPT_TWO_PI fixedpt_rconst(2 * 3.14159265358979323846)

45 #define FIXEDPT_HALF_PI fixedpt_rconst(3.14159265358979323846 / 2)

46 #define FIXEDPT_E fixedpt_rconst(2.7182818284590452354)

47

48 fixedpt xadd(fixedpt A, fixedpt B);

49 fixedpt xsub(fixedpt A, fixedpt B);

50 fixedpt xmul(fixedpt A, fixedpt B);

51 fixedpt xdiv(fixedpt A, fixedpt B);

52 fixedpt xsqr(fixedpt A);

53

54 fixedpt xadd(fixedpt A, fixedpt B){

55 return A + B;

56 }

57

58 fixedpt xsub(fixedpt A, fixedpt B){

77

59 return A - B;

60 }

61

62 fixedpt xmul(fixedpt A, fixedpt B){

63 return ((fixedpt)(((fixedptd)(A) * (fixedptd)(B)) >> FIXEDPT_FBITS));

64 }

65

66 fixedpt xdiv(fixedpt A, fixedpt B){

67 return ((fixedpt)(((fixedptd)(A) << FIXEDPT_FBITS) / (fixedptd)(B)));

68 }

69

70 // calculates the integer square root of the fixedpt input number

71 // rounds the answer to the nearest integer

72 // this is based on the code found here (last accessed: 18-05-2020):

73 //

https://stackoverflow.com/questions/1100090/looking-for-an-efficient-integer-square-root-algorithm-for-arm-thumb2↪→

↪→

74 fixedpt xsqr(fixedpt A){

75 uint32_t op = (uint32_t) A;

76 uint32_t res = 0;

77 uint32_t one = 1uL << 30; // The second-to-top bit is set

78

79 // "one" starts at the highest power of four <= than the argument.

80 while(one > op)

81 one >>= 2;

82

83 while(one != 0){

84 if(op >= res + one){

85 op = op - (res + one);

86 res = res + 2 * one;

87 }

88 res >>= 1;

89 one >>= 2;

90 }

91

92 // Do arithmetic rounding to nearest integer

93 if(op > res)

94 res++;

95

96 return ((fixedpt) res) << HALF_FIXED_FBITS;

97 }

98

99 #endif //FIXEDPTC_H_

78 APPENDIX B. C IMPLEMENTATION

Setting macros

1 #ifndef SETTIGS_H

2 #define SETTIGS_H

3

4 /**

5 * if set to 1, <time.h> will be included to keep track

6 * of the time required to run an algorithm cycle

7 */

8 #define TRACK_TIME_ON 1

9

10 /**

11 * if set to 1, the final result (weight and coeffcients)

12 * will be displayed

13 */

14 #define SHOW_FINAL_RESULT_ON 0

15

16 #endif //SETTIGS_H

Appendix C

Tzscale Division

Default nML

1 opn div_rru(rs1: mR1, rs2: mR2, rd:c5unz){

2 action {

3 stage DE:

4 R[div_wad=rd] = wd = divC = divu(divA=rs1, divB=rs2) @div;

5 }

6 syntax : "divu " "x"rd ", " rs1 "," rs2;

7 image :

funct7_muldiv.mul_div::rs2::rs1::funct3_mul_div.divu::rd::opc.mul_div_e,

class(div);

↪→

↪→

8 }

9

10 opn rem_rru(rs1: mR1, rs2: mR2, rd:c5unz){

11 action {

12 stage DE:

13 R[div_wad=rd] = wd = divC = remu(divA=rs1, divB=rs2) @div;

14 }

15 syntax : "remu " "x"rd ", " rs1 "," rs2;

16 image :

funct7_muldiv.mul_div::rs2::rs1::funct3_mul_div.remu::rd::opc.mul_div_e,

class(div);

↪→

↪→

17

18 }

19

20 opn div_rr(rs1: mR1, rs2: mR2, rd:c5unz){

21 action {

22 stage DE:

23 R[div_wad=rd] = wd = divC = divs(divA=rs1, divB=rs2) @div;

24 }

25 syntax : "div " "x"rd ", " rs1 "," rs2;

79

80 APPENDIX C. TZSCALE DIVISION

26 image : funct7_muldiv.mul_div::rs2::rs1::funct3_mul_div.div::rd::opc.mul_div_e,

class(div);↪→

27 }

28

29 opn rem_rr(rs1: mR1, rs2: mR2, rd:c5unz){

30 action {

31 stage DE:

32 R[div_wad=rd] = wd = divC = rems(divA=rs1, divB=rs2) @div;

33 }

34 syntax : "rem " "x"rd ", " rs1 "," rs2;

35 image : funct7_muldiv.mul_div::rs2::rs1::funct3_mul_div.rem::rd::opc.mul_div_e,

class(div);↪→

36 }

Modifed nML

1 opn div_rru(rs1: mR1, rs2: mR2, rd:c5unz, imm:c5u){

2 action {

3 stage DE:

4 R[div_wad=rd] = wd = divC = divu(divA=rs1, divB=rs2, divI=imm) @div;

5 }

6 syntax : "divu " "x"rd ", " rs1 "," rs2",imm:"imm;

7 image : imm::funct2_mul_div.div_type::rs2::rs1::

funct3_div.divu::rd::opc.mul_div_e, class(div);↪→

8 }

9

10 opn rem_rru(rs1: mR1, rs2: mR2, rd:c5unz, imm:c5u){

11 action {

12 stage DE:

13 R[div_wad=rd] = wd = divC = remu(divA=rs1, divB=rs2, divI=imm) @div;

14 }

15 syntax : "remu " "x"rd ", " rs1 "," rs2",imm:"imm;

16 image : imm::funct2_mul_div.div_type::rs2::rs1::

funct3_div.remu::rd::opc.mul_div_e, class(div);↪→

17

18 }

19

20 opn div_rr(rs1: mR1, rs2: mR2, rd:c5unz, imm:c5u){

21 action {

22 stage DE:

23 R[div_wad=rd] = wd = divC = divs(divA=rs1, divB=rs2, divI=imm) @div;

24 }

25 syntax : "div " "x"rd ", " rs1 "," rs2",imm:"imm;

26 image : imm::funct2_mul_div.div_type::rs2::rs1::

funct3_div.div::rd::opc.mul_div_e, class(div);↪→

81

27 }

28

29 opn rem_rr(rs1: mR1, rs2: mR2, rd:c5unz, imm:c5u){

30 action {

31 stage DE:

32 R[div_wad=rd] = wd = divC = rems(divA=rs1, divB=rs2, divI=imm) @div;

33 }

34 syntax : "rem " "x"rd ", " rs1 "," rs2",imm:"imm;

35 image : imm::funct2_mul_div.div_type::rs2::rs1::

funct3_div.rem::rd::opc.mul_div_e, class(div);↪→

36 }

Modified PDG

1 // Behavioural models for IS ISS

2

3 w32 divs(w32 a, w32 b, w32 s) { return (int32_t) ((int64_t) ((((int64_t) a) << s) /

(int64_t) b)); }↪→

4 w32 rems(w32 a, w32 b, w32 s) { return (int32_t) ((int64_t) ((((int64_t) a) << s) %

(int64_t) b)); }↪→

5

6 w32 divu(w32 a, w32 b, w32 s) { return (uint32_t) ((uint64_t) ((((uint64_t) a) << s)

/ (uint64_t) b)); }↪→

7 w32 remu(w32 a, w32 b, w32 s) { return (uint32_t) ((uint64_t) ((((uint64_t) a) << s)

% (uint64_t) b)); }↪→

8

9 // Implementation model

10

11 uint97_t div_step(uint97_t pa, uint32_t b)

12 {

13 uint97_t new_pa = pa << 1;

14 uint34_t diff = (uint34_t)(new_pa[96:64]) - b;

15 if (diff[33] == 0) {

16 new_pa[96:64] = diff;

17 new_pa[0] = 1;

18 }

19 return new_pa;

20 }

21

22 uint6_t div_clb(uint64_t a) // count number redundant leading bits

23 {

24 uint6_t r;

25 uint64_t tmp = a;

26 if (tmp[63: 0] == 0) r = 63;

27 else if (tmp[63: 1] == 0) r = 63;

82 APPENDIX C. TZSCALE DIVISION

28 else if (tmp[63: 2] == 0) r = 62;

29 else if (tmp[63: 3] == 0) r = 61;

30 else if (tmp[63: 4] == 0) r = 60;

31 else if (tmp[63: 5] == 0) r = 59;

32 else if (tmp[63: 6] == 0) r = 58;

33 else if (tmp[63: 7] == 0) r = 57;

34 else if (tmp[63: 8] == 0) r = 56;

35 else if (tmp[63: 9] == 0) r = 55;

36

37 else if (tmp[63:10] == 0) r = 54;

38 else if (tmp[63:11] == 0) r = 53;

39 else if (tmp[63:12] == 0) r = 52;

40 else if (tmp[63:13] == 0) r = 51;

41 else if (tmp[63:14] == 0) r = 50;

42 else if (tmp[63:15] == 0) r = 49;

43 else if (tmp[63:16] == 0) r = 48;

44 else if (tmp[63:17] == 0) r = 47;

45 else if (tmp[63:18] == 0) r = 46;

46 else if (tmp[63:19] == 0) r = 45;

47

48 else if (tmp[63:20] == 0) r = 44;

49 else if (tmp[63:21] == 0) r = 43;

50 else if (tmp[63:22] == 0) r = 42;

51 else if (tmp[63:23] == 0) r = 41;

52 else if (tmp[63:24] == 0) r = 40;

53 else if (tmp[63:25] == 0) r = 39;

54 else if (tmp[63:26] == 0) r = 38;

55 else if (tmp[63:27] == 0) r = 37;

56 else if (tmp[63:28] == 0) r = 36;

57 else if (tmp[63:29] == 0) r = 35;

58

59 else if (tmp[63:30] == 0) r = 34;

60 else if (tmp[63:31] == 0) r = 33;

61 else if (tmp[63:32] == 0) r = 32;

62 else if (tmp[63:33] == 0) r = 31;

63 else if (tmp[63:34] == 0) r = 30;

64 else if (tmp[63:35] == 0) r = 29;

65 else if (tmp[63:36] == 0) r = 28;

66 else if (tmp[63:37] == 0) r = 27;

67 else if (tmp[63:38] == 0) r = 26;

68 else if (tmp[63:39] == 0) r = 25;

69

70 else if (tmp[63:40] == 0) r = 24;

71 else if (tmp[63:41] == 0) r = 23;

72 else if (tmp[63:42] == 0) r = 22;

73 else if (tmp[63:43] == 0) r = 21;

74 else if (tmp[63:44] == 0) r = 20;

83

75 else if (tmp[63:45] == 0) r = 19;

76 else if (tmp[63:46] == 0) r = 18;

77 else if (tmp[63:47] == 0) r = 17;

78 else if (tmp[63:48] == 0) r = 16;

79 else if (tmp[63:49] == 0) r = 15;

80

81 else if (tmp[63:50] == 0) r = 14;

82 else if (tmp[63:51] == 0) r = 13;

83 else if (tmp[63:52] == 0) r = 12;

84 else if (tmp[63:53] == 0) r = 11;

85 else if (tmp[63:54] == 0) r = 10;

86 else if (tmp[63:55] == 0) r = 9;

87 else if (tmp[63:56] == 0) r = 8;

88 else if (tmp[63:57] == 0) r = 7;

89 else if (tmp[63:58] == 0) r = 6;

90 else if (tmp[63:59] == 0) r = 5;

91

92 else if (tmp[63:60] == 0) r = 4;

93 else if (tmp[63:61] == 0) r = 3;

94 else if (tmp[63:62] == 0) r = 2;

95 else if (tmp[63] == 0) r = 1;

96 else r = 0;

97

98 return r;

99 }

100

101

102 multicycle_fu div

103 {

104 reg cnt<uint7_t>;

105 reg PA<uint97_t>;

106 reg B<uint32_t>;

107 reg Q_addr_reg<uint5_t>;

108 reg is_div<uint1_t>;

109 reg is_neg_div<uint1_t>;

110 reg is_neg_rem<uint1_t>;

111

112

113 void process () {

114 uint7_t new_cnt = 0;

115 int64_t divA_loc;

116 int32_t divB_loc;

117 int32_t div_res;

118 int32_t rem_res;

119

120 uint1_t div_start = (cnt == 0) &&

121 (divC_divu_divA_divB_divI_div_DE_sig ||

84 APPENDIX C. TZSCALE DIVISION

122 divC_divs_divA_divB_divI_div_DE_sig ||

123 divC_remu_divA_divB_divI_div_DE_sig ||

124 divC_rems_divA_divB_divI_div_DE_sig);

125 if (div_start && (cnt == 0)) {

126

127 divA_loc = divA;

128

129 if(divC_divs_divA_divB_divI_div_DE_sig ||

130 divC_rems_divA_divB_divI_div_DE_sig) {

131

132 if(divA < 0) { divA_loc = -divA; }

133 else { divA_loc = divA; }

134

135 if(divB < 0) { divB_loc = -divB; }

136 else { divB_loc = divB; }

137

138 is_neg_div = (divA<0 ^ divB<0) ? 1:0;

139 is_neg_rem = (divA<0)? 1:0;

140 }

141 else {

142 divA_loc = divA;

143 divB_loc = divB;

144 is_neg_div = 0;

145 is_neg_rem = 0;

146 }

147

148 if(divB_loc == 0){ //to tackle division by 0

149 uint97_t PA_tmp;

150 PA_tmp[63:0] = 0xffffffffffffffff;

151 PA_tmp[95:64] = divA_loc;

152 PA = PA_tmp;

153 new_cnt = 1; //skip directly to write stage

154 }

155 else{

156 divA_loc <<= divI; //shift the bits as described in the immediate

157 uint6_t n = div_clb((uint64_t)divA_loc);

158 PA = (uint64_t)divA_loc << n;

159 B = divB_loc;

160 new_cnt = 65 - n;

161 }

162

163

164 Q_addr_reg = div_wad;

165 is_div = divC_divs_divA_divB_divI_div_DE_sig ||

166 divC_divu_divA_divB_divI_div_DE_sig;

167

168 } else if (cnt > 1) {

85

169 PA = div_step(PA, B);

170 new_cnt = cnt - 1;

171 } else if (cnt == 1) {

172

173 uint97_t pa = PA;

174

175 if(is_div) {

176 if(is_neg_div) { div_res = -pa[31:0]; is_neg_div = 0; }

177 else { div_res = pa[31:0]; }

178 R[Q_addr_reg] = w1 = div_res;

179 }

180 else {

181 if(is_neg_rem) { rem_res = -pa[95:64]; is_neg_rem = 0; }

182 else { rem_res = pa[95:64]; }

183 R[Q_addr_reg] = w1 = rem_res;

184 }

185 new_cnt = cnt - 1;

186 }

187

188 cnt = new_cnt;

189 div_busy = div_start || cnt > 0;

190 div_cnt = cnt > 0;

191 div_addr = div_start ? 0 : Q_addr_reg;

192 div_wnc = (cnt == 2);

193 div_new = (divC_divu_divA_divB_divI_div_DE_sig ||

194 divC_divs_divA_divB_divI_div_DE_sig ||

195 divC_remu_divA_divB_divI_div_DE_sig ||

196 divC_rems_divA_divB_divI_div_DE_sig);

197 }

198 }

	List of acronyms
	Introduction
	Research questions
	Report organization

	Background
	Beamforming
	Application-specific instruction set processor
	Design flow

	Related work
	Hybrid beamformer top-level view

	The QMP algorithm
	Formal description
	Analysis
	Complexity
	Dominant operations
	Memory requirement

	Implementation
	General considerations
	Fixed-point number representation

	Verifying functional correctness

	Running on Tzscale
	The Tzscale processor
	Generating the dictionary vectors
	Profiling
	Software optimizations
	Discussion on profiling results

	Modifying the Tzscale
	Native fixed-point support
	New instruction encoding
	Multiplication
	Division

	Implementation
	Verifying functional correctness
	VHDL simulation
	Comparison between VHDL and the ISS

	Results and evaluation

	Conclusion and future work
	Conclusion
	Experience with ASIP Designer
	Recommendations for future work

	References
	Matlab implementation
	C implementation
	Tzscale Division

