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1 Introduction

Deep learning is a hot topic among researchers. The amount of publications on
deep learning in the ScienceDirect database grew from 6837 in 2006 to 16288
in 2016, and the number of publications in the Springer database grew from
39 to 706 in the same period [1]. Deep learning can be split into three groups:
supervised, unsupervised and semi-supervised, the latter being a combination
of the other two. For supervised deep learning, data sets require labeling of the
data points. The labeling process costs time, and thus labels are not always
available. Unsupervised deep learning is done without any labels. A key reason
for the success of unsupervised learning is that it can be applied on any specific
domain or data set where annotations are not always available in quantity [2].

The medical field is one of the only sources of volumetric 3D data, which is
obtained through e.g. ultrasound or MRI. For this data type, large annotated
data sets are not readily available. The available data sets are often not anno-
tated or only annotated for a specific region of interest, e.g. a specific organ
[3]. This can be attributed to the long time it takes to label the data, and the
limited time of doctors.

In this research, we will attempt to apply unsupervised deep learning to 4D
ultrasound scans of the pelvic floor. The scans were made in the GynIUS project,
a collaboration between UMC Utrecht, University of Twente and Radboudumc.
The aim of GynIUS is to get functional information of the Levator Ani Muscle
group (LAM), which is critical in pelvic floor (dys)function. Because the LAM
is studied, the ultrasound videos show a patient performing a certain maneuver.
This is either contraction, which contracts the LAM, or valsalva, which stretches
the LAM. The data set is hard to interpret, mostly because the data is very large.
We will attempt to gain more knowledge on this data set through unsupervised
methods.

The unsupervised deep learning method we chose is the Convolutional Au-
toencoder (CAE) [4]. Through convolution, CAEs can preserve spatial infor-
mation in data on multiple dimensions at once. Therefore CAEs can work well
for unsupervised learning of multidimensional data.

The core of this thesis is an article. An article was chosen because of the
success of the CAE in determining the maneuvers performed in the ultrasound
videos. This section serves as an introduction to the project, where the article
presents the work that was done. Section 3 contains additional content, which
was outside of the scope of the article.

2 Article

The article is presented on the next page.
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Convolutional autoencoders to process 4D
gynaecological data

M.T. Hofsteenge, University of Twente

Abstract—Unsupervised deep learning is a great way to gain
more understanding on data sets. We applied unsupervised
methods to gain insight on 4D ultrasound data of the pelvic floor.
We reduced the dimensionality of the 3 physical dimensions of the
ultrasound with a convolutional autoencoder, in an unsupervised
manner. This reduced the data from 4D to 2D, maintaining the
time dimension. Every ultrasound shows a patient performing
a maneuver, which is either contraction or valsalva. These
are thought to be prevalent features in the ultrasounds. Using
the dimensionality reduced data, we successfully classified the
maneuver performed in the ultrasound, with supervised and
unsupervised methods. The supervised classification resulted in
80-95% accuracy, and unsupervised in 75-90% accuracy. This
demonstrates that useful data representations can be found
in very large data by using an unsupervised convolutional
autoencoder for dimensionality reduction.

I. INTRODUCTION

Deep learning has become a major field of scientific study
in recent years. Its exponential growth started with the deep
learning network AlexNet [1] winning the ImageNet competi-
tion in 2012 by a large margin. Deep learning was facilitated
by advancements in computational power and the availability
of large annotated data sets. It has been beneficial for many
different applications, from self driving cars [2] to the medical
field [3].

The medical field now widely applies deep learning in
various specializations. In particular, Convolutional Neural
Networks (CNNs) have had the greatest impact [4]. In med-
ical imaging, end-to-end trained CNNs are often integrated
into existing image analysis pipelines and replace traditional
handcrafted machine learning methods [5].

Volumetric 3D data is common in the medical field, but not
seen much elsewhere. It is obtained by e.g. MRI or ultrasound
scans. Due to the uniqueness of this type of data, the intrusive
nature of these medical scans, and the lack of time of doctors
to properly label scans, large annotated data sets are not readily
available for 3D volumetric data [6]. The available data sets
are often not annotated or only annotated for a specific region
of interest, e.g. a specific organ.

Many different methods have been developed for using 3D
data. 3D data can be processed in a 2D slice-by-slice manner,
but that does not take full advantage of the spatial information
in the 3D scan [7]. More and more methods that do use the
spatial information are being developed. Some researches use
the full volumetric data in a convolutional model [7], [8], while
others split the volumetric data into 2D slices along the 3
principle axes and tackle the data that way [9], [10].

The goal with medical 3D models is often segmentation
or automatic detection of abnormalities, which can support

decision making. This is typically done by using supervised
learning. Another branch of deep learning is unsupervised
learning. Roughly speaking, unsupervised learning involves
observing several examples of a random vector x and attempt-
ing to implicitly or explicitly learn the probability distribu-
tion ρ(x), or some interesting properties of that distribution
[11]. Unsupervised learning has some major benefits over
supervised [12]. No labeling is required, which saves time of
experts. Also, because it does not have a strictly defined task,
it may find interesting patterns above and beyond what we
initially were looking for [13]. This allows finding patterns
that humans cannot detect. Lastly, unsupervised models are
generally more scalable and more easily applied to other
problems.

A popular form of unsupervised deep learning is the autoen-
coder. The idea of the autoencoder dates back to 1986 [14].
An autoencoder uses an encoder and sequentially a decoder.
The encoder reduces the dimensionality of the data to its latent
features. The decoder attempts to closely resemble the original
input using only these latent features. The better the decoding
is, the more probable it is that the latent features contain
relevant information of the input. One of the benefits is, that
if the amount of latent features is much smaller than the input
data, subsequent models on the data can be trained much faster
and have low computer specification requirements. In 2011
the Convolutional Autoencoder (CAE) was presented [15]. By
using convolutional layers, a CAE can preserve information on
data proximity in multiple dimensions at once. This makes it
favorable for higher dimensional data. 3D CAEs are already
being used in the medical field with good results, e.g. for
segmentation purposes [16], [17] or disease prediction [18].

Here, we will use a 3D CAE to study pelvic floor problems
of women. Many women suffer trauma to the pelvic floor
after childbirth. It is not well understood why some women
experience pelvic floor problems after delivery while others
do not [19]. An important muscle group that is associated
with these defects, is the Levator Ani Muscle group (LAM).
The LAM encircles the rectum, urethra and vagina. Dietz and
Lanzarone [20] found that approximately a third of women
have traumas in the LAM after vaginal childbirth. DeLancey
et al. [21] showed that women with pelvic organ prolapse were
much more likely to have such trauma than healthy women.
Azpiroz et al. [22] found that around 60% of patients with
fecal incontinence had impaired contractive strength in the
LAM.

Our goal is to gain more knowledge on 4D ultrasound scans
of the pelvic floor, and to find easier ways of interpreting the
data it contains. Our data set was created to gain functional
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information on the LAM. Interpretation of this data is difficult,
mostly because the scans are very large. We will attempt to
find relevant information on this data using a 3D CAE, as it can
take full advantage of the data in the scan through convolution.
A 4D CAE is unfeasible, because the model would be too large
to fit in computer memory, so the time dimension is omitted
at first.

Since the scans were made for investigating the LAM,
the patients perform a maneuver that activates the muscles.
This is either a vaginal contraction, or the valsalva maneuver.
These maneuvers are prevalent in the ultrasound videos, so
we will investigate if we can classify them using CAEs. This
determination of maneuver is not medically relevant, but is
used as a proof of concept for this type of unsupervised data
processing, since it is one of the most noticeable features for
a human observer. The evaluation of the maneuvers is done
in a two-step process. First, we build a 3D CAE to reduce
each separate frame of the video to its latent features, in
a completely unsupervised manner. The latent space should
then contain the most prevalent features of the video frames.
In the second step we use multiple methods, supervised and
unsupervised, on these latent feature videos to determine the
maneuver performed in it. Our main focus is attempting to do
this in an entirely unsupervised manner.

II. BACKGROUND

An autoencoder is a type of neural network that attempts
to recreate its input. A perfectly mapping autoencoder is
essentially the identity function. It is made with two sequential
neural networks, an encoder and a decoder. The input gets
encoded to a latent space using the encoder, and this latent
space is used to reconstruct the input via the decoder. By
applying constraints on this latent space, such as lowering
the dimension relative to the input, the network is forced to
learn structure in the data in order to reconstruct the input.
The encoder and decoder get trained at the same time through
backpropagation. The goal of training an autoencoder is to
minimize its loss function,

L(x, z) = L(x, g(y)) = L(x, g(f(x))) (1)

Here x is the input data, z is the autoencoder output, y is
the latent space representation, f is the encoder and g is the
decoder. The encoder and decoder typically have a similar, but
reversed structure. In this research, we use a combination of
convolutional and fully connected layers for both the encoder
and decoder, mapping the 3D input to a 1D latent space.

CAEs are already applied in the medical field, but they
typically include an additional term to the loss function.
This term is tailored specifically for the goal of the CAE
and contains a label on the data. The additional term uses
just the latent features, but is trained at the same time as
the autoencoder. Zeune et al. [23] used a 2D CAE which
classifies tumour cells. Basu et al. [18] used a 3D CAE on
MRI images to make predictions about the progression of
Alzheimers disease, using the disease labels that were obtained
6 months after the MRI. Myronenko [16] used a 3D CAE that
essentially has two decoders, one for reconstructing the MRI of

a brain, and one for reconstructing a segmentation of a tumour
cell in the brain. These are all supervised learning methods,
as additional information on the data was introduced.

The key difference between supervised and unsupervised
learning is that unsupervised requires no labels for training. An
autoencoder can be unsupervised because it aims to recreate
its own input, and therefore requires no labels. A key reason
for the success of unsupervised learning is that it can be
applied on any specific domain or data set where annotations
are not always available in quantity [24]. We will focus
on unsupervised learning for dimensionality reduction and
clustering, which are two large fields in it. To the best of our
knowledge, 3D CAEs have not been used for dimensionality
reduction in a purely unsupervised manner on volumetric data.

Dimensionality reduction facilitates, among others, classi-
fication, visualization, and compression of high-dimensional
data [25]. In our 3D CAE, we use a latent space much smaller
than the input data, to reduce the dimensionality of the 4D ul-
trasound data by a significant amount in each frame. Two other
methods of dimensionality reduction are Principle Component
Analysis (PCA) [26] and t-Distributed Stochastic Neighbor
Embedding (t-SNE) [27]. These are common dimensionality
reduction methods, but they unfortunately tend to fail for very
large data.

For cluster classification, K-means [28] and Gaussian Mix-
ture Modeling (GMM) [29] are two popular methods. They are
both applied in a wide array of clustering tasks. K-means has
been used in e.g. finding potential customers for a company
[30] or profiling people’s internet usage [31]. GMM is used
similary, but in some cases outperforms K-means [32]. K-
means attempts to put each data point as close as possible
to a cluster center. Because of this, K-means is good at
detecting spherical clusters of similar density and size, but
tends to fail when this is not the case. This is why we
also introduced GMM, which is a probabilistic approach to
clustering. It employs the expectation-maximization algorithm
[33] to maximize the likelihood that data points belong to
clusters, and accordingly updates the clusters. These clusters
are Gaussian distributions, which do not need to be spherical
as in K-means.

III. METHODS

The data set used is comprised of 4D ultrasound videos of
the pelvic region of women. A 2D slice of one of the videos is
presented in Figure 1. The data was collected in the GynIUS
project, a collaboration between UMC Utrecht, University of
Twente and Radboudumc.

For every patient we use one contraction and one valsalva
ultrasound video. Vaginal contraction contracts the LAM,
while the valsalva maneuver stretches out the LAM. The
valsalva maneuver is performed by closing the mouth and
nose, and breathing out. This forces pelvic organ descent. At
the start of each video the LAM is in resting position. From
around halfway in the video, either contraction or valsalva is
performed. There is no label indicating whether the videos
are of contraction or valsalva, but we know the intended
acquisition order of scans per patient. However, this order can
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Fig. 1: A 2D slice of one of the ultrasound scans. It shows
bone (white), the urethra (yellow), the vagina (blue), the
rectum(green) and the LAM (red).

differ in practice. For each patient, the acquisition starts with
contraction, so we estimate the first video shows contraction
>95% of the time. For valsalva, we took the third video of a
patient. This tends to be valsalva, but for clinical reasons there
were sometimes more than 2 videos of contraction. Therefore,
we estimate valsalva labels to be correct 80-90% of the time.

The videos contain 277 × 352 × 229 × 22 voxels, which
is very large for a single data point. This makes it computa-
tionally expensive to train networks on. Computations within
deep learning are often done on the GPU, as they allow
parallel computations making training much faster. GPUs
unfortunately do not have enough memory for us to directly
apply convolution on the data. Therefore, we split the data
processing in multiple steps.

A) First, the time dimension is not processed yet. We
designed a 3D autoencoder, which we will refer to as 3D-
AE, to process one video frame at a time and encode it to 128
features. We used the trained 3D-AE to encode the videos into
latent feature videos with dimension 22 × 128. This put the
time dimension in again, for further processing.

We processed the latent feature videos in multiple ways.
B) We used it in a supervised manner, by training a

CNN on the labels of contraction and valsalva. This led to
a semi-supervised result, as the reduction of the 3D-AE is
unsupervised, but the CNN is supervised.

C) We classified it in an unsupervised manner, by applying
different clustering techniques. This led to truly unsupervised
classification results.

B) and C) were also applied on just the last 4 frames of
the latent feature videos, so on data of size 4 × 128. We did
this because contraction or valsalva should always be visible
in the last frames. The usage of just the last frames filters out
data that is likely unnecessary.

A. 3D-AE

We trained the 3D-AE on single frames of the ultrasound
videos. The videos were resized from 277 × 352 × 229 × 22
to 192× 256× 192× 22 by removing voxels from the edges.
These removed voxels mostly contained no information, since

the data is cubical while the ultrasounds are not. Also, the gel
padding needed for the ultrasound scans was discarded.

The structure of the 3D-AE can be seen in Figure 2.
The depth of the convolutional layers and the number of
latent features is relatively low. This is necessary to prevent
overloading of the GPU memory. The memory bottlenecks
are the depth of the initial convolutional layer, and the fully
connected layer before the latent features. These compete
for memory and require a balance. We set this balance to a
convolution depth of 8 and 128 latent features. This leads to
a dimensionality reduction of factor 192×256×192

128 = 73728.
We normalized the input data from 0 to 1. The output

function is linear, but with a minimum of 0 and a maximum
of 1. All other activation functions are the swish function
[34]. The swish function was used as it has shown minor
improvements over the often applied Rectified Linear Unit
(ReLU) function. We applied a dropout of 0.5 before the latent
space to reduce overfitting. The loss function we used is:

Loss =
1

n

n∑

i=1

(x̂i − xi)2 + γ|1−
m∑

j=1

y2j | (2)

Here xi is the input, x̂i is the decoded reconstruction, n is
the number of voxels, m is the number of latent features, y
are the latent features and γ is a scaling factor.

The first part of Equation 2 is the reconstruction loss, which
is the Mean Squared Error (MSE) loss between input and
reconstruction. To ensure that the latent features are nonzero,
we introduced the second part. It is inspired by the Orthogonal
Autoencoder (OAE) [35], and will be referred to as the OAE
loss. It takes the sum of the squares of the latent features and
forces it to a constant. This ensures that the latent features
can not explode to a high number, and it also makes them
nonzero. We chose the constant to be 1, which means the loss
is 0 when the latent space vector has length 1.
γ was set to 10−3. This allowed for the latent features

to be normalized, while only having a minor effect on the
reconstruction. The model uses the Adam optimizer [36] with
parameters α = 3×10−4, β1 = 0.9, β2 = 0.999 and ε = 10−7.

B. Supervised

The labels for the CNN are binary, a 0 for a latent feature
video showing contraction and a 1 for a latent feature video
showing valsalva. The same simple model structure was used
for the 22× 128 and 4× 128 data. The CNN starts with a 2D
convolutional layer with depth 8. Sequentially, it applies max-
pooling with pool size 2 × 2 and flattening to a vector. The
flattened vector goes into a fully connected layer of size 8, and
finally the output is given by a fully connected layer of size 1.
The activation functions for all layers are ReLUs, except for
the output activation function which is the Sigmoid function.
We applied a dropout of 0.5 between the fully connected
layers. The loss function is the log loss function [37]. We
used the Adam optimizer again, with the same parameters as
used for the 3D-AE.

We also used this CNN to find mislabeled data points. We
used 5-fold cross validation [38] for this, on the 22×128 data.
For the 5 models trained in the cross validation, we compared
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Input
192x256x192x1 192x256x192x8

96x128x96x16

48x64x48x32 589,824 589,824

128

48x64x48x16

96x128x96x8

192x256x192x1

Output

192x256x192x1

Conv3D 3x3x3
Conv3DTranspose 
3x3x3, 2x2x2 
Swish + 
Max-pool 2x2x2

Encoded
layer

Fully connected
+ Swish
Reshape to
24x32x24x32

Output function Decoded 
layer

Swish + Max-pool
2x2x2 + Flatten

Swish

Dropout

Fig. 2: Model structure of the 3D-AE. Yellow blocks are 3D convolution, green blocks are 3D transpose convolutions.

the classifications with its label. All data points that were
misclassified by at least two models were sent to an expert
for manual evaluation. We updated the labels according to the
manual verification, and retrained the CNN with these labels.
These updated labels were also used for the validation of the
unsupervised methods.

C. Unsupervised

We used multiple unsupervised methods for data analysis.
We classified the data clustering with two algorithms, K-means
and GMM. We applied them to the latent feature videos,
concatenated into a single vector. We also used three methods
that first applied dimensionality reduction to the latent feature
videos, down to 2 data points, before cluster classification.
This allowed us to also perform a visual inspection of the
clustering. These three methods are PCA, t-SNE and a CAE.

The CAE uses two convolutional layers and two densely
connected layers for both its encoder and decoder, and has a
latent space dimension of 2. Its structure is shown in Appendix
A. The CAE has the same structure for both the 22 × 128
and 4× 128 data. All activation functions are ReLUs, but the
output has no activation function. The MSE is used as the loss
function, and the same Adam optimizer is used again.

For all methods, we compared the unsupervised classifica-
tion with the true (updated) labels of the data points to get
a clustering accuracy. We compared this to the classification
ability of the supervised CNN, for a clearer judgment of how
well it performs.

D. Data preparation and network training

We used ultrasounds of 292 patients for training the 3D-AE.
For every patient, we took one valsalva and one contraction
video. From every ultrasound, 4 frames were used. These 4
frames are the first frame, the last frame and two random

frames in between. We did not use all frames, because we
needed to limit the amount of data for memory management
on the external server. We chose the first and last frame,
because they are mostly consistent over the data. We also
used two random frames in between, such that the 3D-AE
does see the complete video, albeit over multiple patients. We
then discard two-thirds of the entire data set in a completely
random manner, to further reduce its size. This results in a
training and validation set of 790 frames, 700 for training
and 90 for validation. The mini-batch size is 1, which is the
maximum that fits in the GPU memory. 20 epochs were done,
which took around 15 hours. The loss was calculated after
every 30 frames. After training, we used the model with the
lowest reconstruction (MSE) loss.

We encoded ultrasound videos of 200 patients with the 3D-
AE, which creates 22 × 128 latent feature videos. We also
took the last 4 frames of each video for the 4 × 128 data
set. We discarded some ultrasound videos, because they had
less than 22 frames. This resulted in 379 encoded videos, of
which 194 are of contraction and 185 are of valsalva. For the
CNN we used a 80-20 training-validation split, resulting in
304 latent feature videos for training and 75 for validation.
17 patients that were unused for the training of the 3D-AE
were used to construct a testing set. All testing set videos
were manually verified to be either contraction or valsalva
by an expert. The testing set contains 29 latent feature videos,
since some ultrasounds had less than 22 frames. We trained the
CNN for 100 epochs, with mini-batch size 8. After updating
the labels according to the outcome of the 5-cross validation,
we retrained the model in the same way.

We trained the unsupervised classification on the latent
feature videos with the updated labels. The K-means was
applied with 10 different random seeds and 300 iterations.
The GMM used 100 expectation-maximization iterations. The
PCA and t-SNE were both set up to return 2 components. The
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(a) (b)

(c) (d)

Fig. 3: Slices of the reconstructed 3D images by the 3D-AE.
(a) is the reconstruction of training frame (b), and (c) is the
reconstruction of validation frame (d). The MSE for (a) is
3.91× 10−3, for (c) it is 8.36× 10−3.

PCA transformation was fit without testing data, for t-SNE we
included the testing data since its transformation is iterative.
The t-SNE was set to a perplexity of 15 for the 22× 128 data
and to 25 for the 4 × 128 data. We used a learning rate of
200, with 5000 iterations. The CAE used the same training-
validation split as the CNN, and was trained for 100 epochs
with mini-batch size 16. We converted the training, validation
and test data to 2 latent features after training. The K-means
and GMM were fit using the validation data, and then used
for classification on the testing set.

All models were made using Keras in the TensorFlow 2.1.0
library in Python. The t-SNE, PCA, K-means and GMM were
computed using the scikit-learn 0.22.1 library. We used an
NVIDIA Titan X for training the 3D-AE, and an NVIDIA
Quadro M1200 for all other models.

IV. RESULTS

A. 3D-AE

The 3D-AE has a validation loss of 7.72× 10−3. Appendix
B shows the loss of the model during training.

Figure 3 shows slices of ultrasound frames and its recon-
struction. The training image shows a recognizable image,
similar to its input. For the validation it is still recognizable,
but less so.

B. Supervised

The accuracy of the trained CNNs can be seen in Table
I. We achieved high accuracy for the training, validation and
testing set for the 22 × 128 data. The accuracy is worse for
4× 128, especially for the testing set.

TABLE I: CNN accuracy for both latent feature video sizes,
on original and updated labels. The highest accuracies are
highlighted.

Data set 22× 128 accuracy (%) 4× 128 accuracy (%)
Training 95.4 91.1

Validation 90.7 90.7
Test 93.1 82.8

Updated labels training 100 96.7
Updated labels validation 94.7 93.3

Updated labels test 86.2 82.8

TABLE II: Validation and testing set accuracy of unsupervised
methods on the contraction and valsalva labels. The highest
accuracies are highlighted.

22× 128 accuracy (%) 4× 128 accuracy (%)
Method validation / test validation / test
CNN 94.7 / 86.2 93.3 / 82.8

K-means 83.1 / 79.3 89.7 / 86.2
PCA + K-means 81.6 / 79.3 89.2 / 86.2

t-SNE + K-means 72.8 / 68.9 87.0 / 86.2
CAE + K-means 82.3 / 79.3 81.8 / 79.3

GMM 82.5 / 79.3 87.0 / 62.1
PCA + GMM 83.4 / 79.3 89.4 / 86.2

t-SNE + GMM 75.9 / 82.8 88.0 / 86.2
CAE + GMM 81.0 / 75.9 91.0 / 86.2

The 5-fold cross validation on the 22×128 data returned 32
latent feature videos that were misclassified 2 times or more,
28 valsalva videos and 4 contraction videos. For the valsalva,
20 of these videos were indeed contraction, 6 were improperly
performed valsalvas and 2 were normal valsalvas. For the
contraction, 1 video was a strangely performed valsalva and
the other 3 were poorly performed contractions. We changed
the labels for the 20 valsalva videos that showed contraction,
and the 1 contraction video showing valsalva.

After the label change, we saw an improved accuracy for
the training and validation of both the 22× 128 and 4× 128.
The testing accuracy however decreased for both.

C. Unsupervised

Table II shows the accuracies achieved by the different
methods. The CNN accuracy was included, for easy compari-
son. We achieve decent to good accuracy on the 22×128 data.
The 4 × 128 data however shows highly improved accuracy,
with the CAE+GMM method achieving accuracy similar to
the CNN. Figure 4 and 5 show 2D plots of the dimensionality
reduced data with its labeling. Here the difference between
22 × 128 and 4 × 128 data can be seen, where the second
clearly has better clustering. This trend of better observable
clusters was seen for all dimensionality reduction methods.

V. DISCUSSION

In this study, we explored the effectiveness of using CAEs
to interpret 4D ultrasound data. We constructed the 3D-AE to
reduce the dimensionality of the data, and sequentially classi-
fied the maneuvers performed in the ultrasounds successfully,
both with supervised and unsupervised methods.

The ability of discrimination between valsalva and contrac-
tion, which is even present in unsupervised classification, in-
dicates that the 3D-AE effectively reduced the dimensionality
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Fig. 5: Last 4 latent video frames (4 × 128) reduced to 2
dimensions by a CAE and classified with GMM. The colors
(red and blue) indicate the true labels, the shape (circle and
triangle) indicates whether GMM predicts the same.

of the ultrasounds. Both supervised and unsupervised methods
show excellent classification. The supervised methods show
an accuracy of 80-95%, while unsupervised methods show
75-90% accuracy. The unsupervised accuracy significantly
improves on the 4× 128 data, where the frames showing the
resting position are discarded.

We constructed the 3D-AE in a fully unsupervised way,
as opposed to other researches using CAEs [16], [18], [23].
With just the OAE loss, which is unsupervised, the information
about the maneuvers was successfully extracted from the latent
features. This is a great result, as it proves that even without
labeling or a data set specific loss function, useful information

can still be extracted.
An improvement with minimal supervision could be to

introduce the number of clusters to the model. This can be
used to assign clusters to the latent features during training
of the 3D-AE, using Kullback-Leibler divergence, as done by
Xie et al. [39] and Guo et al. [40]. The goal of this study
was however not to obtain optimal clustering on valsalva and
contraction, but to find out if a CAE would be able to classify
some of the most prevalent features in the data in an entirely
unsupervised manner, as a proof of concept.

A problem with the data set is that some patients are
unable to properly perform contraction or valsalva, either
psychologically or physically. Psychologically, not all patients
are used to performing these maneuvers, which can cause
problems in making scans that properly show muscle move-
ment. A physical problem can be that through damage in the
LAM, patients can be unable to properly perform contraction.
Damage to the LAM should have less impact on the valsalva
maneuver, since the LAM is not actively involved in valsalva.
The inability to perform maneuvers can lead to predictions
that do not follow the labels, which means a 100% accuracy
is not thought to be achievable on this data set.

The CNN used to classify the maneuver was kept simple,
since our emphasis was to obtain proper dimensionality reduc-
tion with the 3D-AE. The simple structure still identified the
maneuvers very well, achieving a highest test set accuracy of
93.1%. It also allowed for finding wrong data points with the
5-fold cross validation, showing how the CNN even learned
from the latent feature videos when mislabeled data was
present.

The unsupervised methods allowed for decent to good
classification on the 22×128 data, and excellent classification
on the 4×128 data. With PCA and K-means, a validation and
testing accuracy of 89.2% and 86.2% can be achieved. This is
an impressive result, as this classification was done in a fully
unsupervised way starting from the ultrasound data, without
introducing a clustering incentive to the 3D-AE. With the
CAE and GMM the highest validation accuracy was achieved.
This validation however introduced some bias, as the resulting
clustering was manually observed. The testing accuracy is still
86.2%, which makes it in line with the other best methods.

We intentionally did not use state-of-the-art clustering and
dimensionality reduction methods, such as Invariant Informa-
tion Clustering [41] or Feature Selection method for Balanced
Clustering [42]. This was done to demonstrate that the real
power comes from the 3D-AE, and not a powerful clustering
technique.

For all but three methods, the testing set showed an accuracy
of at least 79.3%. The testing set was unfortunately small,
as it required manual annotation. All methods, supervised
and unsupervised, misclassified 2 valsalva points consistently.
These were 2 out of the 3 valsalva points in the testing set that
had annotations that the patient could not perform valsalva
properly. The other misclassifications were also relatively
consistent throughout the different methods. This indicates that
the unsupervised methods find a similar split in the data as
the supervised methods, without receiving a label on the data.
Overall, we think the testing classification is good, but future
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work could include a larger testing set. More annotation does
require time of experts.

One of the major constraints in designing the 3D-AE was
the GPU memory. This left little room for the structure of the
3D-AE. Myronenko [16] used an NVIDIA Volta V100 32GB
GPU while using 3D data, to have more GPU memory to fit
their model in. We used an NVIDIA Titan X which has a
memory of 12GB. Using a GPU with more memory should
improve the obtained results, by increasing the depth of the
initial convolution. Deeper convolution allows the model to
process more local features.

The distinction between valsalva and contraction is un-
fortunately not a very relevant result, since the patients are
explicitly asked to perform a certain maneuver in the making
of the ultrasounds. Its current application could be ordering
the data set, sorting it by contraction and valsalva, as this was
not properly documented.

We believe the 3D-AE structure shows promising results for
dimensionality reduction of very large data. It does need to
be studied more before it can be applied in a relevant manner.
Applications of the 3D-AE will probably remain in the medical
field, as that is the common source of volumetric 3D data.

We only showed that the most prevalent features can be
found using the 3D-AE. Further research has to be done to see
if underlying features can also be processed. This will most
likely involve introducing labels after the 3D-AE, since our
unsupervised methods distinguish the most prevalent features.
This can be seen in the difference in clustering accuracy
between using the 22× 128 data and the 4× 128 data.

A future work that could return medically relevant infor-
mation, is constructing a Recurrent Neural Network (RNN)
on the latent feature videos. Currently, we can not distinguish
contraction from the resting position. With a RNN, changes
in the latent features between frames can be observed. This
could give a precise indication of when the patient starts
performing the maneuver, and also how well this maneuver
is performed. If a patient shows proper valsalva performance
and poor contraction performance, it could be an indication
that the LAM is damaged in such a way that contraction is
no longer possible. This would be medically relevant, and a
RNN combined with the 3D-AE could automate this process.

In conclusion, we have constructed a 3D CAE to apply
unsupervised dimensionality reduction on 4D ultrasounds. The
dimensionality reduced data was used to classify the maneuver
performed in the ultrasounds with excellent accuracy, both
with supervised and unsupervised methods. This shows that
useful information can be extracted from 4D ultrasounds in
an unsupervised manner by using a 3D CAE.
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APPENDIX

A. Structure of the CAE on latent feature videos

The structure of the CAE used on the 22 × 128 data can
be seen in Figure 6. The CAE for 4× 128 data has the same
structure.

Input
22x128x1 22x128x8

11x64x16

Output

10x64x8

22x128x1

Conv2D 2x2

Conv2DTranspose 
3x3, 2x2 
ReLU + 
Max-pool 2x2

Fully connected
+ ReLU

Reshape to 5x32x16

ReLU + zero padding
to 11x64x8

2560
64 64

2

2560

ReLU + Max-pool
2x2 + Flatten

Encoded
layer

Decoded 
layer

Fig. 6: Model structure of the CAE used for dimensionality
reduction of the latent feature videos.

B. Training loss of the 3D-AE

Figure 7 shows the reconstruction loss per epoch during the
training of the 3D-AE. The minimum reconstruction loss was
7.35 × 10−3. The OAE loss is shown in Figure 8. The OAE
loss for the 3D-AE was 0.368. The total validation loss is
nearly identical to the reconstruction loss.
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Fig. 7: Training and validation reconstruction loss of the
training of the 3D-AE. The arrow shows the epoch with the
lowest validation loss.
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Fig. 8: OAE loss of the training of the 3D-AE.



3 Additional content

In this section we will go over two subjects that were not within the scope of
the article, so were omitted there. The first is using the PCA on the latent
feature videos for different combinations of frames than in the article. This is
an additional source of information on the data. Furthermore, we address eval-
uation metrics that we attempted to use other than the contraction and valsalva
classification. These were unfortunately unsuccessful, so were not included in
the article.

3.1 PCA on latent feature videos

In the article, we applied PCA either on all latent feature video frames at once,
or on just the last 4 frames. These led to the most relevant results for deter-
mining the maneuver performed. Here we show more plots that were made with
applying PCA to the latent feature videos, for more insight on the information
contained in the latent features.

Figure 9 and Figure 10 show plots of PCA applied to the first frames and
last frames of the latent feature videos. The first frames seem to not cluster,
which is expected as all videos should be in resting position. For the last frames,
there is clear clustering. This is also as expected, as it should be similar to using
the last 4 frames.
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Figure 9: PCA applied to the first frames of valsalva and contraction latent
feature videos.

Figure 11 shows a plot where PCA was applied to both the first and last
frames of contraction and valsalva. Here, the valsalva first frames, and the
contraction first and last frames seem to cluster together, while the last frames
of valsalva form a seperate cluster. This indicates that the latent features clearly
show valsalva. We think that the separation of contraction and valsalva is
mostly done on valsalva versus non-valsalva. There does not seem to be a clear
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difference between the resting position and contraction for the first and last
frames.
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Figure 10: PCA applied to the last frames of valsalva and contraction latent
feature videos.
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Figure 11: PCA applied to both the first and last frames of valsalva and con-
traction latent feature videos.

Figure 12 shows PCA applied to the first frames of both the contraction and
valsalva video for 8 patients. Generally, there is some clustering per patient,
which indicates that the latent feature videos contain information about the
shape of the pelvic floor per patient. The similarity between first frames should
be there since both the valsalva and contraction video start in resting position,
so the shape of the pelvic floor should be the difference between the frames. It is
not apparent for every patient however, this could be due to different scanning
angles or movement of the patient in between scans.
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Figure 12: PCA applied to the first frames of valsalva and contraction latent
feature videos for 8 patients.
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Figure 13: PCA applied to the first 4 frames, middle 4 frames and last 4 frames
of valsalva and contraction videos.
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Figure 14: PCA applied frame by frame to valsalva and contraction latent
feature videos of 4 patients. The square indicates the first frame of a video.

Figure 13 presents a similar view as Figure 11. It shows the PCA applied to
the first 4 frames, middle 4 frames and last 4 frames of both the contraction and
valsalva latent feature videos. There seem to be 2 clusters here, a big cluster
on the left and a smaller cluster on the right of the plot. The smaller cluster
contains the last valsalva frames, and a big portion of the valsalva middle frames.
We expect this kind of clustering, as it shows that the last valsalva frames have
their distinct cluster, but for the middle frames of the valsalva videos, not all
videos are in valsalva yet. That is why some of the middle frames are still in
the left cluster. The contraction videos do not change in a visible way in this
plot.

Figure 14 shows how the latent feature videos change from frame to frame.
For each patient the first frames tend to lie close to each other in PCA space,
as also observed in Figure 12. The valsalva videos tend to change the most in
PCA space, which is to be expected since the valsalva is most visible in the
other PCA plots. However, there is movement in most of the contraction videos
as well, which does indicate that the contraction latent feature videos change in
time.

3.2 Evaluation metrics

Valsalva and contraction were successfully classified, but we also attempted to
use additional evaluation metrics to classify how well the 3D-AE reduced the
dimensionality of the ultrasounds. These additional methods were unfortunately
unsuccessful. They are treated in this section, to avoid future pitfalls.
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3.2.1 Rest, contraction and valsalva

We attempted to distinguish the resting position from the contraction and val-
salva maneuvers. The start of each scan should have the patient in resting
position, while from around halfway in the video the maneuver will be per-
formed until the end of the video. We attempted to classify the positions using
a CNN, which is nearly identical to the CNN used for classification in the article.
Only its output and loss function were modified.

We labeled the first 5 frames of each video as being rest, the last 5 frames of
valsalva videos to be valsalva, and the last 5 frames of contraction videos to be
contraction. With these 3 labels, we attempted to train a CNN. This was done
with the latent feature videos, so with 5 × 128 data.

First we tried the Softmax [5] function as an output, with the log loss [6].
The classes are unbalanced, there are more resting labels. Thus, we tried classifi-
cation both with unbalanced classes and with classes that were all made equally
large. This class balancing was done by discarding data from the resting and
contraction sets in a random manner, as the valsalva set was the smallest. The
unbalanced Softmax led to a validation accuracy of 68.2%. The validation accu-
racy of valsalva was 86.1%, the resting position had a 94.6% accuracy and the
contraction had a 4.9% accuracy. The model tends to classify valsalva correctly,
while the Softmax balances the contraction and resting labels according to their
occurrence in the data set. This means that the prediction, which is the high-
est value in the Softmax, will be the resting position for both the resting and
contraction labels. The balanced data set had a validation accuracy of 63.5%.
The valsalva had a validation accuracy of 96.3%, the resting position 51.4%
and the contraction 45.7%. This is the same trend as the unbalanced classes,
where accuracy is good on valsalva, but contraction and the resting position are
balanced in the Softmax. This led to random guesses here.

We also tried using a linear output function. Here the contraction was
given a 0, the resting position a 1, and valsalva a 2. These labels led to the
best results, compared to other label combinations. The MSE was used as
the loss function. With unbalanced classes, the average validation output for
contraction was 0.696, for resting it was 0.745 and for valsalva it was 1.73.
For balanced classes, the average validation outputs were 0.580 for contraction,
0.563 for resting, and 1.71 for valsalva. These outputs line up with the trend
that is seen in the Softmax CNNs, where the valsalva can be distinguished,
but the contraction and resting position predictions are simply based on their
occurrence in the data set.

In Figure 13 it is visible that the distinction between contraction and resting
position is not visible in PCA space, while the difference between resting and
valsalva is visible. We think this is the reason why the CNN can not make this
distinction.

The distinction between rest, contraction and valsalva might be made by
using a RNN, as mentioned in the article. Figure 14 does support this idea,
as in PCA space the contraction latent feature videos do move from frame to
frame.
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3.2.2 Pelvic organ prolapse

For 200 patients the measure of pelvic organ prolapse was given. Those measures
are estimates made by the gynaecologist, from 0 to 3. We again used the same
CNN, while varying the outputs and loss functions. There are 19 patients with
a 0, 44 patients with a 1, 96 patients with a 2 and 41 patients with a 3. We
used the last 4 frames of the valsalva videos, as we assume that the prolapse is
most visible during valsalva.

First we tried to build a CNN with a linear output function and the MSE
loss. With the full data set, an accuracy of 45.9% was achieved, which we
attribute to random guessing. With balanced classes, that is all classes only
have 19 data points, the accuracy drops down to 26.7%. This further indicates
that no information is actually learned, and guesses are random.

We also attempted using a Softmax with 4 classes and the log loss. With
unbalanced classes the model achieved a validation accuracy of 43.6%. With
balanced classes the validation accuracy was 31.6%. This is again shows the
guessing is random, only based on the amount of labels per class.

The final attempt was to train a CNN with binary labels and the log loss.
One class contains prolapse measure 0 and 1 and the other class contains pro-
lapse measure 2 and 3, splitting the data set on severeness of the prolapse. With
unbalanced classes, this led to a validation accuracy of 67.6%. This accuracy
was achieved by simply predicting the 2 and 3 class for all data. With balanced
data, we got a validation accuracy of 58.3%. However, this accuracy jumped
around 50% for multiple runs, so we assume this to be random guessing.

We conclude that the measure of pelvic organ prolapse cannot be found in
the dimensionality reduced data. It is not known if the measure of pelvic organ
prolapse can be detected using deep learning models, as it is a rough estimate
by the gynaecologist. This estimation can be inconsistent, so the prolapse might
not be visible in the data. If it is visible, supervised methods should be used to
find it.

4 Conclusion

We have studied 4D ultrasound data of the pelvic floor using unsupervised
deep learning. This was done by constructing the 3D-AE, an unsupervised
3D CAE which reduces the dimensionality of the 3 physical dimensions of the
ultrasound data. We used it to reduce the 4D data to 2D latent feature videos.
We successfully classified the maneuvers performed in the ultrasounds using
the latent feature videos, with supervised and unsupervised methods. This
shows that useful information can be extracted from the 4D ultrasounds in an
unsupervised manner.

The latent feature videos unfortunately had no clear distinction between
when the LAM was in resting position or in contraction. A CNN was unable to
distinguish them, and there was no clear difference between them when PCA
was applied. Furthermore, the measure of pelvic organ prolapse of the patients
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could not be found in the latent feature videos. This data does not seem to be in
the latent feature videos, but it is unknown if it can even be observed in the data
because the measure of prolapse is a rough estimate. These failed evaluation
metrics show that the 3D-AE has a focus on the most prevalent features within
the ultrasounds.

In future work, a RNN could be constructed in an attempt to find when
contraction or valsalva starts within a latent feature video. This would be med-
ically relevant because it can give a measure of how much the LAM contracts,
which can be an indication of damage to the LAM.
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