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Abstract—Applications related to autonomous driving, urban
planning and asset monitoring rely on accurate information
about the objects and their location in real world coordinates.
Identifying stationary objects is one such application that
finds importance in urban planning and asset monitoring,
for instance: detection of roadside billboards, lamp posts
etc. With the availability of point cloud representations of
the environment, several approaches have been proposed
for detection and segmentation of stationary objects in 3D.
The detection of billboards is one such application which is
challenging because of its incoherent visibility in multi-view
images and absence of depth information due to its shape.
This paper proposes Joint SPLATNet3D for semantic-instance
segmentation of stationary objects in the scene. The proposed
network performs two tasks: predicts a semantic label and
generates an instance embedding for every 3D point. The
multi-task loss function enables the network to jointly optimize
the two tasks. This paper describes the dataset generation and
feasibility study of semantic and instance segmentation for
billboards. The paper gives a comparative analysis of Joint
SPLATNet3D and MT-PNet for both the tasks. Preliminary
experiments on semantic segmentation show that SPLATNet3D
gives an average IoU of 75% in comparison with MT-PNet
which gives an IoU of 46%. Experiments on joint training show
that Joint SPLATNet3D gives an IoU of 68% in comparison with
MT-PNet which gives an IoU of 48% for semantic segmentation.
The results of instance segmentation for both the networks do
not show good improvements for this dataset.

Index Terms—Urban planning, billboard detection, SPLAT-
Net3D, MT-PNet, Joint SPLATNet3D, Multi-task loss function.

I. INTRODUCTION

The accurate perception of visual information about streets
and roads, play a crucial role in applications related to urban
planning. The emergence of street view imagery has been
beneficial for development of algorithms related to object
detection in real world scenarios [1], [2]. Street view datasets
contain plethora of images covering a large stretch of geogra-
phy, depicting street views captured at regular intervals. Recent
developments in lidar and camera sensors have been useful
for creating point cloud representations of the environment
[3]. This enables us to address different object detection and
segmentation problems in 3D. Several approaches have been
proposed in literature for learning features from images and
lidar [4], [5], [6], [7], [8].

Applications related to urban planning rely on geographic
information of objects in the environment and billboard detec-
tion is one such application. Advertisement billboards are used
for marketing a brand, company, product, service etc. They are

used as a tool to create awareness among people or broadcast
information about a specific product or service. Billboards are
usually placed in areas with high traffic, for example along
highways and cities so that they are seen by a large group
of people. Traditional approaches in urban planning involved
capturing images of the streets and manually annotating the
location of every billboard. The availability of street view
images and lidar data have made it possible to automatically
detect billboards in 3D. There are number of data acquisition
setups used for capturing information from camera and lidar.
The data acquisition setup used for experimentation in this
paper is described in Fig 1 and is proprietary to Cyclomedia
Technology [9]. The setup includes sensors mounted on a car
with four cameras front(F), back(B), right(R), left(L) and a
lidar placed at the center. The images capture information of
several objects in the scene and billboards are one such objects
of interest for this study. A point cloud representation of this
data is generated by projecting every pixel in the image to 3D
using camera parameters and depth information from lidar.
The lidar is slightly slanted backwards so depth information
may not be available for the whole image.

Fig. 1: Street view image and point cloud acquisition setup
[10]. The setup describes four cameras (F,B,R,L) and a lidar
that is slightly slanted backwards

The images contain billboards of varying aspect ratios,
shapes and colors. This leads to several challenges in detect-
ing billboards. First, billboards come in arbitrary shape and
running 2D object detection algorithms [11], [12] on these
images would generate loosely fit bounding boxes as in Fig
2. As a result the pixels apart from actual billboard result
in noise when projected to 3D. This motivates the choice
of segmentation based approaches because it is possible to
segment regions of arbitrary shapes. Second, billboards that are
placed close to each other as in Fig 3 are incoherently visible
in successive frames and projecting the same information to
3D leads to false positives. Hence it is important for an
algorithm to learn these distinct attributes in 3D and point
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Fig. 2: Instance of an image from billboards dataset[10]
showing loosely fit bounding boxes when viewed as 2D object
detection problem with images.

Fig. 3: Illustration of multiple billboards of the same category
where each billboard has to be detected as a separate instance
after projecting it to 3D [10]

cloud representations could be leveraged to overcome this
problem.

This paper proposes Joint SPLATNet3D for semantic-
instance segmentation of stationary objects in the scene. The
network is trained on 3D point clouds to jointly optimise
the two tasks using a multi-task loss function. The key
contributions of the work are: 1. Dataset generation for
training and evaluation with semantic and instance labels. 2.
Feasibility study on semantic segmentation of billboards with
SPLATNet3D[13] and MT-PNet[14]. 3. Comparative study of
Joint SPLATNet3D and MT-PNet. The feasibility study shows
that SPLATNet3D gives an IoU of 75% whereas MT-PNet
gives 46%. The experiments on joint training show that Joint
SPLATNet3D gives an IoU of 68% and MT-PNet gives an
IoU of 48% for semantic segmentation on billboards. Both
the networks do not show good improvements on instance
segmentation for this dataset.

The paper is organized as follows: Section II describes the
related research in this area. Section III describes the complete

methodology adopted to realise the approach. Section IV
describes the dataset used for analysis, performance evaluation
metrics and results. Section V presents the inferences made
from the study and discusses the possible shortcomings in the
proposed idea. Section VI presents the overall learning from
the work and also lists directions for further research.

II. RELATED WORK

The availability of lidar data combined with the power
of deep learning has drawn enormous attention of several
researchers. Object detection with lidar, requires techniques
different from the ones used for detection in images. The
lidar data is sparse in nature and this makes it difficult for
algorithms to detect object that are far away. On the other
hand, images give dense representation of the regions but lack
depth information [15]. This has led to development of several
approaches that learn features from lidar and camera.

A. Approaches based on multi-view images

The class of techniques that use multi-view images and 2D
convolutional neural networks(CNN) to tackle the problem of
detection/segmentation fall under this category. One of the
most promising approaches in this direction was MVCNN
[16] where 2D CNNs were used to generate region pro-
posals and the results were projected to 3D. Nassar et.al
[17] proposed a joint learning technique for robust object
detection in panoramic images. The approaches based on
multi-view images have shown promising results but have
inherent shortcomings. The geometric information with multi-
view images is not as accurate as that of lidar point clouds. In
scenarios where complex structures are involved it is difficult
to choose the number of viewpoints that capture all the details
of the scene [18].

B. Approaches based on transformed lidar maps

Transformed lidar maps are of two categories: range view
(front view) and bird’s eye view (top view). The work in
VeloFCN [19] describes the approach to generate front view
map and performs 3D object detection with fully convolutional
networks. 3DFCN [20], PIXOR [21] use the bird’s eye view
map to train a fully convolutional network. The lidar maps
used in the above works are generated using 2D projections
and this results in loss of surface and depth information. The
choice of viewpoint is based on heuristics and is specific to
the object categories under study [13]. Voxel based approaches
convert the unstructured point cloud to a 3D volumetric grid
and thereby applying 3D convolutions on voxelized shapes
[22]. This approach is computationally expensive because it
involves 3D convolutions and volumetric representation is
constrained by its resolution.

C. Joint lidar and camera based approaches

The approaches in this class could be described in two
categories: cascading approaches and parallel approaches.
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1) Cascading approaches: The approaches in this category
generate region proposals on images using 2D object detection
and use lidar to generate final predictions in 3D. Frustum
PointNet[4] and Frustum ConvNet [5] use lidar depth map
to project region proposals from images to a frustum like
structure. The projected points are clustered using PointNets
[6]. The performance of this class of techniques are bounded
by the precision of 2D object detection. The region proposals
of true detections are only projected to 3D and false negatives
cannot be recovered.

2) Parallel approaches: AVOD [7] and MV3D [8] are
approaches that use transformed lidar maps. These approaches
use 2D convolutional networks as feature extractors to train
separately on images and lidar maps. The feature vectors are
fused to generate 3D detections. Contfuse [15] proposes deep
continuous fusion to aggregate features from images and lidar
maps. This class of approaches would be useful for objects
like car, pedestrian and bicycle which have evident height,
width and depth attributes. This would not be useful for objects
like billboards because: 1. the height attribute of the billboard
would be lost with top view image and 2. front view projection
would lead to loss of depth information.

D. Approaches based on lidar point clouds
Point clouds are defined as unordered set of vectors with ir-

regular structure. They represent geometric data of the environ-
ment which is very useful for 3D object detection. PointNets
[6] have been one of the pioneering works for learning features
directly on point clouds. The PointNets tend to neglect the
geometric relationship between a point and its neighbours so
improvements were proposed in PointNet++[23]. Alternate ap-
proaches use graph based structures in neural networks to learn
the local structure of the objects. Some of the notable works
are [24], [25], [26], [27]. Sparse Lattice Networks (SPLATNet)
were proposed in [13] for point cloud segmentation and image
labelling. The paper proposes two sub-networks 1. SPLAT-
Net3D that processes 3D point clouds and 2. SPLATNet2D-
3D that processes multi-view images and 3D point clouds.
The works described above are related to semantic and part
segmentation of point clouds. Instance segmentation is another
important aspect in 3D segmentation and different techniques
have been proposed. Semantic segmentation aims to predict
a class label whereas instance segmentation clusters the se-
mantic labels into instances. Instance segmentation is seen as
a post processing on semantic segmentation [4], [28]. SGPN
[29] has been one of the pioneering works that defined the
similarity matrix for clustering instances. This comes with
a drawback that the size of the similarity matrix increases
quadratically with the number of points in the point cloud.
Multi-task loss functions have been used for jointly learning
multiple tasks like detection and segmentation [30]. Multi-task
Pointwise Networks(MT-PNet) [14] proposes joint semantic-
instance segmentation with multi-task loss function. The net-
work is trained to simultaneously predict a semantic label
and generate an instance embedding for every 3D point. The
SPLATNet3D and MT-PNet are considered for analysis and
Joint SPLATNet3D is proposed based on the discriminative
loss function [31].

III. METHODOLOGY

The primary step involves feasibility study of semantic seg-
mentation for billboards dataset. This includes dataset genera-
tion and training the two categories of networks: SPLATNet3D
and MT-PNet. The details of dataset generation is described
in this section and the experiments are detailed in Section IV.

The proposed approach for semantic-instance segmentation
(Joint SPLATNet3D) is shown in Fig 4. Joint SPLATNet3D
uses SPLATNet3D as a feature extractor and then diverges to
two tasks: predicting a semantic label and creating an instance
embedding for every 3D point. The network is trained on
3D point clouds where each point cloud P ∈ Rn×d, here
n is the number of points and d is the number of features.
The features in a point cloud can be point locations (XYZ),
color information (RGB), surface normal etc. This paper uses
point clouds with locations and color features where the color
features are obtained from corresponding image pixels. The
network is trained using a multi-task loss function defined as
the sum of prediction loss and embedding loss. The prediction
loss is based on softmax loss [32] and the embedding loss is
based on the discriminative loss function [31]. The technique
of using multi-task loss function is inspired from MT-PNet
which uses PointNet as a feature extractor instead. Hence this
study involves a comparative analysis of Joint SPLATNet3D
and MT-PNet. The building blocks of Joint SPLATNet3D
are Bilateral Convolutional Layer [33] and multi-task loss
function.

A. Bilateral Convolutional Layer (BCL)
BCL describes a way to include sparse high dimensional

filtering in neural networks. The approach in SPLATNet3D
builds upon this idea to learn features from high dimensional,
sparse point clouds. The network uses a stack of BCL’s and
1x1 convolutional layers to generate per-point predictions. The
BCL takes an input point cloud and performs three steps:
Splat, Convolve and Slice as described in Fig 5

• Splat: Let F ∈ Rn×df be the input features given to
a BCL, where n is the number of points and df is the
number of features (XYZRGB). BCL takes input features
F and projects it onto a lattice space using barycen-
tric interpolation [13]. A lattice space is defined using
permutohedral lattice [34] with flexible representation of
features. The choice of interpolation and lattice structure
has been motivated by the authors in [13]. The grid
spacing in the lattice structure is controlled using the Λ
parameter called the scaling matrix.

• Convolve: BCL performs convolution on the splatted
signal with learnable filter kernels.

• Slice: the convolved signal is mapped back to input signal
using barycentric interpolation and the output could be
used for further processing.

B. Multi-task loss function
The features extracted from SPLATNet3D are used to learn

semantic and instance labels using a multi-task loss function.
The output of the final 1×1 convolution layer in Fig 4 is given
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Fig. 4: Joint SPLATNet3D - proposed network for joint semantic-instance segmentation of point clouds. The network is trained
with point clouds and the output of the final convolutional layer is given to two tasks: predict semantic labels and generate
instance embeddings

Fig. 5: Processing steps in BCL as described in [13]. Splat:
interpolates the features of the input point cloud onto a
permutohedral lattice. Convolve: performs sparse filtering on
the splatted signal with learnable kernels. Slice: interpolates
the convolved signal back to the input signal. Output is mapped
as segmentation labels.

to two tasks: predicting semantic labels and creating instance
embeddings. The total loss (L) is defined as sum of two losses
as defined in equation 1.

L = Lprediction + Lembedding (1)

The prediction loss (Lprediction) is defined by the softmax
loss [32] and embedding loss (Lembedding) is defined by the
discriminative loss [31]. The intuition behind discriminative
loss function is that embeddings with same instance label
would end up close together and the ones that belong to
different instances would lie apart as seen in Fig 6. The loss
function described in equation 2 is based on pull and push
forces among the clusters. A cluster is defined as group of
point embeddings that belong to the same instance [14].

Lembedding = αLpull + βLpush + γLreg (2)

The parameters defined in equation 2 namely α, β, γ are
hyperparameters and the loss terms are defined below. The
Lpull, Lpush and Lreg functions are adapted from [14].

• Lpull or variance is the force within the cluster that pulls
an embedding towards its center. The active region of

Fig. 6: The forces defined in the discriminative loss function
[31]. The pull force draws the embeddings towards the mean of
the cluster and push force tries to maintain the cluster centers
far apart. The margins highlighted as dotted circles describe
the active region of the forces.

the force is controlled by the parameter δv as seen by the
dotted circle in Fig 6.

• Lpush or distance is the force that pushes the cluster
centers away from each other. The active region of push
force is controlled by the parameter δd as seen by the
dotted circle in Fig 6.

• Lreg or regularization is described as a pulling force that
draws all clusters close to the origin.

C. Network Architecture
The architecture has been adapted from [13] and [14].

The input point cloud is passed through a 1 × 1 convo-
lutional layer followed by a stack of 5 BCLs. The BCLs
operate on permutohedral lattice defined by the lattice features
(XYZRGB). The lattice scales(λ) for 5 BCLs are set as: (λ0,
λ0/2, λ0/4, λ0/8, λ0/16) respectively. The output of 5 BCLs
are concatenated and passed through two 1× 1 convolutional
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layers. The concatenation of outputs from different layers has
been motivated by the work in [35]. The output is then passed
to a softmax layer and an embedding layer. The softmax layer
generates class-wise semantic probability for each point. The
embedding layer generates a vector of dimension (n × 32),
where n is the number of points. The parameters of the
embedding loss are defined as: α = 1, β = 1, γ = 0.001 based
on the intuition that Lpull and Lpush are equally weighted. The
parameters δd, δv are hyperparameters for training and setting
δd > 2δv ensures each embedding is closer to its own cluster
center[14] .

D. Dataset generation

The billboards dataset [10] contains camera images and
depth images from lidar, captured using the setup described
in Section I. This dataset is proprietary to Cyclomedia Tech-
nology and is used for experimental purposes in this paper.
A point cloud representation of this dataset is created by
projecting the color information of every pixel in the image
to 3D using the depth information from lidar. The information
in the point clouds is represented by 3D coordinates (XYZ)
and color information (RGB). Thus point clouds are generated
for every image and are called as full image point clouds as
shown in Fig 7.

Fig. 7: Snapshot of a full image point cloud from billboards
dataset. The regions highlighted in the point cloud belong to
one category of billboard called sign facade. The highlighted
regions are to be segmented as area point clouds.

This study aims to segment the regions of point cloud that
contain a billboard in it. An area point cloud is defined as
the region or area of billboard extracted from the full image
point cloud. The dataset contains four classes of billboards:
sign facade, sign ground, flag facade, flag ground as seen in
Fig 8. The billboards come in different shape, background,
aspect ratio and exhibit wide range of intra-class variations.
Hence the experiments are conducted on a single category of
billboard i.e. sign facade. The networks are trained on two
classes: a billboard and a background. The dataset generation
is a two step process:

• Manual segmentation of area point clouds from full image
point clouds.

• Generation of a semantic and an instance label for every
3D point. This is achieved using K-Nearest neighbour
[36] algorithm. The area point cloud is the first nearest
neighbor of its respective full image point cloud.

The datasets were generated in two stages: 1. Dataset for
semantic segmentation and 2. Dataset for joint semantic-
instance segmentation.

Fig. 8: The billboards in the dataset are categorized into 4
classes. There are several variants within each class and one
instance of each class is seen in this image.

1) Dataset - Semantic Segmentation: The first version
of dataset (V1) contains point clouds with one instance of
billboard class(sign facade) in a full image point cloud. It
contains 75 point clouds for training and 25 for testing. This
dataset suffered from class imbalance problem because the
billboards constitute a small region of the point cloud with
respect to background. In order to overcome this problem, net-
works were trained with weighted softmax loss function[37].
The weight for each class (weightclass) is computed as the
ratio of number of points of the class over the total number of
points(Np) as in equation 3. The experiments are described in
Section C 1 and based on the inferences, a revised version of
the dataset (V2) was created. This dataset contains point clouds
with one billboard and small region of background around it
as seen in Fig 9. It contains 108 point clouds for training and
47 point clouds for testing.

weightclass =
Np[label == class]

Np
(3)

2) Dataset - Joint Semantic and Instance Segmentation:
The datasets used for analysis of instance segmentation has to
contain multiple billboards in every point cloud. Similarly two
versions of dataset have been created for analysis: dataset V3
and V4. Dataset V3 contains multiple instances of billboard
with full background as seen in Fig 10. This dataset contains
84 point clouds for training and 22 point clouds for testing.
Dataset V4 is a simplified version which contains multiple
billboards with small background as shown in Fig 11. This
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Fig. 9: Snapshots of point clouds from billboards dataset V2,
describing a billboard and small region of background around
it

Fig. 10: Snapshot of a point cloud from billboards dataset
V3, describing multiple instances of billboard on a full back-
ground.

dataset contains 84 point clouds for training and 22 point
clouds for testing.

IV. EXPERIMENTAL RESULTS

The experiments are divided into two stages: semantic
segmentation and joint semantic-instance segmentation. The
initial experiments are based on semantic segmentation with
SPLATNet3D and MT-PNet with billboards datasets V1 and
V2. SPLATNet3D is based on Caffe[38] and MT-PNet is
based on Pytorch[39]. The second set of experiments in-
clude joint training of semantic-instance segmentation with
billboards datasets V3 and V4. The Joint SPLATNet3D has
been implemented in Caffe and experiments were conducted
on NVIDIA Tesla P100 graphics card.

A. Dataset
Billboards dataset: This dataset contains four versions as

described in Section III D. Datasets V1 and V2 are used
for feasibility study on semantic segmentation of billboards.
Datasets V3 and V4 are used to study the performance of
proposed the joint semantic-instance segmentation algorithm.

B. Performance Evaluation
Intersection over Union (IoU)[40] and accuracy metrics are

used to evaluate semantic segmentation. The segmentation

Fig. 11: Snapshot of a point cloud from billboards dataset
V4, describing multiple instances of billboards with smaller
background.

network generates per-point predictions and this could be
plotted as the elements of a confusion matrix namely True
positives(TP), False positives(FP), True negatives(TN) and
False negatives(FN). The IoU metric is defined in equation
4 and the accuracy is defined in equation 4.

IoU =
TP

TP + FP + FN
(4)

Accuracy =
TP

Totalpredictions
(5)

Instance segmentation is considered as an object detection
task and is evaluated with mean average precision at IoU
threshold of 0.5(mAP@0.5) as in [14].

C. Results

1) Semantic Segmentation: The initial experiment in-
volved training SPLATNet3D with dataset V1. Training con-
figuration: batch size = 2; sample size = 40000; base learning
rate = 0.0001; learning rate decay = 0.5; decay rate = 10000;
epochs = 50000. The network couldn’t learn any useful
features of billboard instead treated them as noise. Training
the network with softmax loss function did not converge and
we could infer that the problem was due to class imbalance
in the dataset. This motivated the experiment with weighted
softmax loss function instead of softmax loss function with
a similar training configuration given above. The weighted
softmax loss is useful when certain classes in the dataset are
over or under represented. The network is trained with class
weights: billboard = 50 and background = 1. The loss function
has been implemented in Caffe, trained with SPLATNet3D
and the results are shown in Fig 12. The plot shows that the
accuracy for billboard class saturates close to 1.0 and that of
background class saturates to 0.1.

This behavior of the network could be attributed to the
nature of training data samples. The batches of training data
couldn’t represent a proper distribution of samples from both
the classes. This would have caused the weighted softmax loss
function to just learn the class with a higher weight. The idea
of using a dataset with smaller background region around the
billboard was motivated by this experiment. Hence billboards
dataset V2 was used for further analysis. The SPLATNet3D
was trained with weighted softmax loss function and dataset
V2. The class weights were: billboard = 8 and background =
1. The weights were adjusted based on the proportion of the
background with respect to billboard in the dataset. The results
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Fig. 12: Plot showing class-wise test accuracy for SPLAT-
Net3D with weighted softmax loss function trained on dataset
V1. The accuracy of billboard class saturates to 1.0 and that
of background class saturates to 0.1

Fig. 13: Plot showing class-wise test accuracy for SPLAT-
Net3D with weighted softmax loss function trained on dataset
V2. The accuracy of billboard and background tends to satu-
rate to 1.0 and 0.1 respectively

are plotted in Fig 13 and it is observed that the accuracy of
both the classes are still saturating like the previous case.

The dataset V2 was better balanced than dataset V1 but
still the network couldn’t learn class wise features. This could
have been because the weighted loss function tries to priortize
the class with higher weight and it might not be suitable
for this category of dataset. This led to experimentation of
SPLATNet3D with softmax loss function and dataset V2.
The results are shown in Fig 14 and the plot shows average
accuracy of 0.78 for billboard and 0.93 for background. This
shows that the network is able to learn features of background
and billboard with dataset V2 and softmax loss function.

The next set of experiments were conducted with MT-PNet

Fig. 14: Plot showing class-wise test accuracy for SPLAT-
Net3D with softmax loss function and dataset V2. The plot
shows improvement in accuracy for both the classes

Fig. 15: Plot showing class-wise test accuracy for MT-PNet
with softmax loss function and dataset V2. The accuracy of
billboard is lower than that of background class

and dataset V2 was used because it showed promising results
with SPLATNet3D. The original implementation of MT-PNet
contains multi task loss function. The MT-PNet was trained
with weighted softmax, softmax and joint loss functions. The
training with softmax loss function gave better results. The
training configuration of MT-PNet: batch size = 2; sample
size = 40000; base learning rate = 0.001; learning rate decay
= 0.5; decay rate = 50; epochs 1000. The plot in Fig 15
shows gradual increase in accuracy for both the classes but
the final accuracy for billboard class is still low at 0.18. The
background class shows better performance when compared to
the billboard class. The loss of the network tends to saturate
even with further decrease in learning rate and shows no
further improvement in accuracy.

A comparative study of SPLATNet3D and MT-PNet for
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Fig. 16: Illustration of input point cloud, ground truth, prediction - SPLATNet3D and prediction - MT-PNet starting from left
to right. SPLATNet3D does have many false positives but MT-PNet predicts most of the parts of point cloud as background

semantic segmentation with dataset V2 is presented TABLE
I. The table describes classwise and overall average IoU
for both the networks. It could be inferred from table that
SPLATNet3D shows good improvement over MT-PNet for
billboard class. The average IoU for background class does
not vary much for both the networks. It is important to note
that the performance of the networks could only be judged
based on how well it classified points of the billboard and not
that of the background. The prediction result for a test point
cloud is shown in Fig 16. It could be inferred from Fig 16
c that SPLATNet3D shows better performance for billboard
but many points in the background are misclassified. The
prediction of MT-PNet in Fig 16 d shows that almost all of the
points are classified as background with few random patches
of points being classified as billboard.

TABLE I: Comparison of semantic segmentation with SPLAT-
Net3D and MT-PNet for billboards dataset V2

Semantic segmentation(IoU)

Method Billboard Background Overall

SPLATNet3D 0.69 0.8 0.75
MT-PNet 0.18 0.75 0.46

2) Joint Semantic and Instance Segmentation: The
experiments in this section describe the training and
evaluation of joint semantic-instance segmentation for Joint
SPLATNet3D and MT-PNet. The results are presented in
three sections: 1. Results Semantic segmentation 2. Results
Instance segmentation. 3. Results overall comparison

Results - Semantic segmentation: The first experiment in
this regard is carried out on Joint SPLATNet3D with softmax
loss function trained on dataset V3. Training configuration:
batch size = 2; sample size = 40000; base learning rate =
0.0001; learning rate decay = 0.5; decay rate = 10000; epochs
= 50000; δd = 1.5; δv = 0.5. The results are shown in Fig 17
and the plot shows an average accuracy of 0.38 for billboard
category. The performance of the network is very good for
background but not for billboard class.

The experiments in Section IV C 1 show that dataset
with smaller background gives better results for billboard.
Therefore Joint SPLATNet3D was trained on dataset V4 with

Fig. 17: Plot showing class-wise test accuracy for Joint
SPLATNet3D with softmax loss function and dataset V3. The
results in the plot show the accuracy for semantic segmentation
trained in a joint setting

the same training configuration as in the previous experiment.
The evaluation of Joint SPLATNet3D with dataset V4 is
shown in Fig 18. The results show improvement in accuracy
for billboard category with reduction for background. The
improvement is attributed to the fact that dataset V4 contains
smaller background than dataset V3. This observation is
consistent with the feasibility study described in Section IV C
1. The average accuracy for billboard category is 0.58 which is
better than the previous experiment but it also provides scope
to further improve the performance.

The network is trained on homogeneous batches of data
defined by the sample size and batch size. The data points
are randomly sampled from every point cloud in the training
set. The billboards represent small region of the point cloud
when compared to the background. Therefore the probability
of sampling points from background class is higher than that
of the billboard class. This provides scope for experimentation
with alternate sampling techniques which could be useful for
this dataset. Sampling points equally from both the classes will
generate a balanced distribution of points for every batch of
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Fig. 18: Plot showing class-wise test accuracy for Joint
SPLATNet3D with softmax loss function and dataset V4. The
dataset with smaller background leads to improvement in the
accuracy of billboard category

training. Therefore Joint SPLATNet3D with equal sampling
and softmax loss function is trained on dataset V4 using a
similar configuration setting as used in previous experiment.
The result is shown in Fig 19 and it shows improvement in
the accuracy of both the classes. This shows that training
on smaller background with softmax loss function and equal
sampling gives better performance.

The above experiment provides scope for analyzing the
effect of weighted softmax loss function on sampling. This
experiment aims to compare the performance of softmax
and weighted softmax loss functions on equal sampling. The
Joint SPLATNet3D is trained on dataset V4 with weighted
loss function (weights: billboard = 2; background = 1). and
equal sampling. The training configuration is similar to the
experiments described above. The results are shown in Fig
20 and it could be inferred from the plot that accuracy of
billboard and background category does not vary much with
in comparison to the experiment with softmax loss function.
Therefore using weighted loss function with equal sampling
does not affect the performance of this network given the
dataset contains small background with respect to billboards.

The next set of experiments were conducted on MT-PNet
for joint semantic-instance segmentation. Similar experiments
of MT-PNet on dataset V3 and V4 with random sampling does
not show any improvement in the accuracy of billboard class.
Therefore the MT-PNet was trained on dataset V4 with equal
sampling and softmax loss function. Training configuration:
batch size = 2; sample size = 40000; base learning rate =
0.0001; learning rate decay = 0.5; decay rate = 50; epochs =
2000; δd = 1.5; δv = 0.5. The results are shown in Fig 21 and
the plot shows an average accuracy of 0.22 for billboard and
0.53 for background. The accuracy of both the class could be
further improved.

The effect of loss function on sampling is also studied
with MT-PNet. The network is trained on dataset V4 with

Fig. 19: Plot showing class-wise test accuracy for Joint
SPLATNet3D with equal sampling and softmax loss function
trained on dataset V4. The equal sampling shows improvement
in the accuracy of both the categories

Fig. 20: Plot showing class-wise test accuracy for Joint
SPLATNet3D with weighted softmax loss function, and equal
sampling on dataset V4. The accuracy of both the classes show
similar trend

weighted loss function (weights: billboard = 2; background
= 1) and equal sampling. The results in Fig 22 show that
using the weighted softmax loss function further improves
the accuracy of both the categories in comparison to the
softmax loss function. The best performance of MT-PNet is
seen with equal sampling and weighted loss function trained
on dataset with smaller background. Further experiments on
MT-PNet with dataset V3 shows no improvement in accuracy
of billboard class.

Results - Instance segmentation: The multi task loss
function enables the network to learn instance embeddings
for every point in the training set. The instance predictions
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Fig. 21: Plot showing class-wise test accuracy for MT-PNet
with equal sampling and softmax loss function on dataset V4.
The accuracy of billboard is far lower than that of background
class

Fig. 22: Plot showing class-wise test accuracy for MT-PNet
with equal sampling and weighted softmax loss function on
dataset V4. The accuracy of billboard shows improvement but
is still lower than that of background class

are determined by applying mean shift algorithm[41] on the
embeddings of the trained model. The bandwidth for mean
shift algorithm is set to the push force margin(δd) as defined
in [14]. The choice of bandwidth is crucial and it varies for
Joint SPLATNet3D and MT-PNet when trained on billboards
dataset. The analysis presented in this section describe the
training and evaluation with dataset V4 as it shows promising
results for semantic segmentation. The initial setting for band-
width was 1.5 and the discriminative loss was trained on labels
of both the classes. This resulted in mAP@0.5background = 1
and mAP@0.5billboard = nan. This behavior of the network
could be attributed to two reasons: 1. the mean shift algorithm
clusters all the feature vectors as a single instance which is

labelled as background. 2. a very high setting for bandwidth
which would have clustered all the features as one instance. A
closer inspection of the feature vectors would be more intuitive
for further analysis and this is achieved using the t-SNE plot.
The t-SNE plot for Joint SPLATNet3D and MT-PNet with
points from two classes and one class is shown in Fig 23. It
could be inferred from Fig 23 a, c that both the networks show
the background points as a single large cluster. This is due to
the labelling of the dataset because billboard contains multiple
instances and the whole background is considered as a single
instance. The t-SNE plot shown in Fig 23 b, d shows multiple
groups of points and this is because they are plotted on samples
of billboard class only. This gives us two options for further
analysis: 1. introduce instances in background category or 2.
learn the instances of the billboard category alone. The second
option has been chosen for further analysis because the main
goal of the work is to segment billboards effectively. Therefore
the discriminative loss is trained and evaluated on samples of
billboard category for both the networks.

The bandwidth(δd) parameter is crucial for training the
discriminative loss and evaluating the trained model with mean
shift algorithm. The effect of bandwidth on the number of
instances and final mAP@0.5 has been analysed for both the
networks. The analysis for Joint SPLATNet3D is shown in
TABLE II. The table shows that training Joint SPLATNet3D
with δd values ranging from 15 to 10e-20 gives no unique
instances on evaluation. This is not the expected prediction
because every train and test data contains multiple instances
of billboard. Considering one of the trained models and
estimating the bandwidth on the predicted feature vectors
gives bandwidth values in the range of 10e-38 to 13e-38.
Evaluating the mean shift algorithm with these values gives
multiple instances as seen in TABLE II. The variations in
number of instances and bandwidth in this range is random and
cannot be trusted. It shows that the discriminative loss function
aggressively decays the feature vectors of Joint SPLATNet3D
and training with bandwidth values as low as 10e-38 would
not be useful.

TABLE II: Joint SPLATNet3D - effect of varying
bandwidth(δd) on the number of instances and final
mAP@0.5billboard with billboards dataset V4

Bandwidth(δd) Average no of instances mAP@0.5billboard

15 1 0.67
1.5 1 0.67

0.15 1 0.67
10e-10 1 0.67
10e-20 1 0.67
13e-38 4 0.13
12e-38 6 0.12
10e-38 4 0.14

Similar experiments are conducted with MT-PNet and the
results are shown in TABLE III. The table shows that varying
bandwidth in the range of 1.5 to 1.0 cluster the output into
a single instance. Further investigation on bandwidth values
in range of 0.6 to 0.39 does show multiple instances but the
mAP@0.5 is very low.
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Fig. 23: t-SNE plot of both the networks with labels of both the classes and only billboard. From left to right: Joint SPLATNet3D
with two classes and one class, MT-PNet with two classes and one class. t-SNE plot for two classes shows single large cluster
and plot for one class shows multiple clusters.

TABLE III: MT-PNet - effect of varying bandwidth(δd) on
the number of instances and final mAP@0.5billboard with
billboards dataset V4

Bandwidth(δd) Average no of instances mAP@0.5billboard

1.5 1 0.17
1.0 1 0.17
0.7 3 0.03
0.6 3 0.09
0.5 3 0.04

0.45 2 0.03
0.39 3 0.02

Results - Overall comparison: The best performing models
of Joint SPLATNet3D and MT-PNet are considered and the
results are shown in TABLE IV. The table does not include
the results of instance segmentation because both the networks
do show promising results. It could be inferred from the table
that Joint SPLATNet3D shows good improvement over MT-
PNet for billboard category and both the network show similar
results for background. It is also interesting to compare the
IoU for background in TABLE I and TABLE IV. This shows
that the IoU for background is lower than that of billboard in
TABLE IV. This behavior could be attributed to the nature of
sampling used for training both the networks.

TABLE IV: Comparison of joint semantic-instance segmen-
tation with Joint SPLATNet3D and MT-PNet for billboards
dataset V4

Semantic segmentation(IoU)

Method Billboard Background Overall

Joint SPLATNet3D 0.73 0.62 0.68
MT-PNet 0.34 0.61 0.48

The prediction result for Joint SPLATNet3D is shown in
Fig 24. The predictions for semantic segmentation in Fig 24 c
shows that many regions of the background are misclassified
as billboard. It is also interesting to note that the network
misclassifies the regions of background which have similar
color features as that of the billboard shown in Fig 24 a. The
prediction for instance segmentation is shown in Fig 24 e.
The results of billboard category is only considered owing
to the nature of training the discriminative loss function. The
network tends to cluster both the samples of billboard into a

single instance. It is also observed that multiple small clusters
are formed at random which can be seen as white and black
patches in Fig 24 e.

V. DISCUSSION

Semantic segmentation: The experiments with
SPLATNet3D show that softmax loss function is more
suitable than weighted softmax loss function for semantic
segmentation given that random sampling was used. This
observation is made on dataset with smaller background and
it might not be the same for dataset with full background.
Experiments on MT-PNet with dataset V2 and softmax loss
function show small gains in accuracy of billboard category
when compared to the background. The network does not
show any gains on dataset with full background. This provides
further scope to improve the accuracy for billboard category
with other training configurations. This has been reflected in
the experiments of joint semantic-instance segmentation with
MT-PNet.

Joint Semantic-Instance segmentation: The experiments
on semantic segmentation with Joint SPLATNet3D and MT-
PNet show that, dataset with smaller background gives better
results with softmax loss function. This observation is con-
sistent with dataset containing single billboard and multiple
billboards both having small background. The results of both
the networks show further improvement with equal sampling
on dataset with smaller background. This gain with equal
sampling comes with the downside that many regions of the
background are misclassified as billboard. Both two networks
behave distinctly with experiments on equal sampling and
weighted loss function. Joint SPLATNet3D with equal sam-
pling shows similar results for softmax and weighted softmax
loss functions. MT-PNet with equal sampling gives better
results for weighted softmax loss function when compared to
softmax loss function. However this observation is consistent
only for datasets with smaller background.

The experiments on instance segmentation show that train-
ing the discriminative loss function without background sam-
ples has proved to be useful. This is attributed to the nature
of labelling adopted for dataset generation. The datasets are
labelled in a way such that the background is considered
as a single instance whereas billboard contains multiple in-
stances. The experiments on tuning the bandwidth(δd) for
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Fig. 24: Illustration of input point cloud, ground truth - semantic labels, semantic prediction, ground truth - instance labels,
instance prediction in alphabetical order. The prediction results are with respect to Joint SPLATNet3D.

Joint SPLATNet3D show that the discriminative loss aggres-
sively decays the feature vectors to very small values. The
discriminative loss is expected to stop further decays in the
feature vectors when the pull and push forces between the
clusters are balanced. The decay shows that the loss function
couldn’t balance the forces and this could be attributed to the
nature of feature vectors generated by Joint SPLATNet3D.
Therefore the features generated by Joint SPLATNet3D are
not very suitable for instance segmentation of billboards with
discriminative loss function. Similar experiments on tuning
bandwidth for MT-PNet does not does not show aggressive
decay in feature vectors. But owing to its poor performance
in semantic segmentation it is possible that the network does
not effectively represent the features of billboards.

VI. CONCLUSION AND FUTURE SCOPE

Automatic detection of billboards in 3D is a crucial asset
for urban planning. This paper proposes Joint SPLATNet3D,
a novel approach for semantic-instance segmentation of bill-
boards. The proposed approach is based on SPLATNet3D
and multi-task loss function. The network predicts a class
label and an instance embedding for every 3D point. This
paper describes the process of dataset generation, feasibility
study of semantic segmentation and final experiments on joint
semantic-instance segmentation for billboards. Preliminary ex-
periments on semantic segmentation show that SPLATNet3D
gives an average IoU of 75% in comparison to MT-PNet which
gives 46%. Final experiments on joint training show that Joint
SPLATNet3D gives an average IoU of 68% in comparison
to MT-PNet which gives 48% for semantic segmentation.
Training Joint SPLATNet3D with equal sampling improves
the IoU for billboard class but reduces the IoU of background
class. Experiments on instance segmentation show that training
discriminative loss with samples of billboard category alone is
useful. However the features generated by Joint SPLATNet3D
are not very suitable for instance segmentation of billboards
with discriminative loss function. Overall experiments show

that Joint SPLATNet3D is more suitable than MT-PNet for
semantic segmentation of billboards. The experiments in this
paper are limited to one category of billboard with respect to
background. This provides scope for further experimentation
of semantic segmentation with all the categories of billboards.
The observations on instance segmentation with Joint SPLAT-
Net3D is limited to billboards dataset. Therefore Joint SPLAT-
Net3D could be bench-marked with S3DIS dataset[42] which
is considered as a standard dataset for instance segmentation.
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