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Abstract—With the recent advancement of technology, partic-
ularly with graphics processing and artificial intelligence algo-
rithms, fake media generation has become easier. Using deep
learning techniques like Deepfakes and FaceSwap, anyone can
generate fake videos by manipulating the face/voice of the target
in the video. These AI synthesized face-swapping videos, also
known as deepfakes are a big threat to the authenticity and
trustworthiness of online information. These deepfakes can be
used for malicious purposes like phishing scams and fake news.
Detecting face tampering in realistic forged videos generated
using a recent technique called Deepfake has become of utmost
importance. Traditional image forensics techniques have lower
performance in detecting face tampering in videos due to the
compression which degrades the features and makes it difficult
to identify video tampering.

This paper provides an overview of the recent developments in
deepfake technologies, how they are generated, what are the data-
sets available. We discuss what inconsistencies are introduced
in videos due to deepfake generation and propose a spatio-
temporal hybrid model of Capsule Networks integrated with
Long Short-Term Memory Networks. This model exploits the
inconsistencies and identifies real and fake videos and is our
contribution towards deepfake detection. Therefore, our research
question for this paper is ”Can the performance of detecting
inconsistencies in a video to identify deepfakes be improved by
combining a long short-term memory network with a capsule
network to create a spatio-temporal hybrid model?”. Firstly, a
Capsule Network is introduced to detect spatial inconsistencies
in a single frame and then combined with LSTM to detect
the spatio-temporal inconsistencies across multiple frames and
achieves an accuracy of 83.42%. The state-of-the-art model
XceptionNet for deepfake detection is used as the baseline for
a single frame detection and combined with LSTM for multiple
frames detection. Using visualization of the capsule’s activation,
we understand what features the capsules learn and provide an
explanation for identifying deepfakes and real videos. Using 3
different frame selection techniques, we also show that frame
selection has a significant impact on the performance of our
models. The model is tested on 2 additional data-sets with
multiple deepfake generation methods, different augmentations,
and different facial filters like dog filter and flower crown filter.
Finally, we conclude the paper with an improvement in the
Capsule Network’s performance when combined with an LSTM
but fails to outperform the state-of-the-art model on one data-set
by a small gap of ~3%, whereas, achieves similar performance on
another data-set having never-seen-before deepfake generation
method and heavy augmentations. With almost comparable
performance with the state-of-the-art model, in contrast to the
size, our model has 1/5th the number of parameters and 1/4th

the size of the state-of-the-art model and hence, is a lighter model
and has reduced computational cost.

I. INTRODUCTION

Deepfake technology has found many applications like de-
aging people, lip-sync, and face-swapping. These technologies
are beneficial in the media industry, such as lip-sync can be
used for dubbing a movie into another language, while keeping
it realistic and entertaining for the viewers. Various deepfakes
available on the web are usually where one movie actor’s face
like Nicolas Cage has been swapped onto the target actor’s face
in random movies [1]. Another recent example by a deepfake
artist to make the actor Robert De Niro younger in the movie
”The Irishman” where Netflix spent $175 million to de-age
him, the deepfake artist made more superior de-aging results to
Netflix’s CGI within 7 days by using free deepfake technology
[2]. Figure 1 shows an example of deepfake video generated
by Facebook on how to make pour-over coffee [3].

Fig. 1: Deepfake video on how to make Pour-over Coffee.

Although the advancement in deep learning and deepfake
technology has many beneficial applications in daily life,
business, and film industry, they can also serve for malicious
purposes and make people struggle to believe what is real.
For example, anyone with deepfake technology can make a
powerful politician an artificial intelligence (AI) puppet and
make them say things, which they may have never said in real
life. A recent example of this lip-sync technology was [4],
where Barack Obama, the former president of USA, was seen
saying bad things about the current president Donald Trump,
was an impersonation done by the famous actor/comedian
Jordan Peele. This video was made to show how realistic the
deepfake technology has become and also, how it can influence
future elections when used with wrong motives. A recent
example of this was witnessed in action in Indian election



campaigns where the Delhi president for the Bharatiya Janata
Party (BJP) was seen criticizing the incumbent Delhi govern-
ment of Arvind Kejriwal [5]. The deepfake video went viral
on Whatsapp, a cross-platform messaging app, and reached
approximately 15 million people, dissuading them from voting
for the rival political party in Delhi.

Deepfakes have already been used for fraudulent use-cases.
[6] describes the first case where deepfake audio was used to
scam a CEO of a UK-based energy firm and robbed C220,000.
Another mistrust due to the rise of deepfakes is making people
believe something real, is said to be fake, like a politician’s
video criticizing the rival party being real, but that politician
refuses all the allegations and calls them fake videos. [7] is
one example of such a case where simple video manipulations
of the original video of Nancy Pelosi, the speaker of the US
House of Representatives, made people believe it is a fake
video generated using the deepfake technology. While it was
a real video, the video’s speed was slowed down by 25% and
the pitch was altered to make it sound real, made her appear
like she was slurring words, and was drunk. Due to the rise of
deepfakes, it has been much easier to cause misinterpretation
of videos, spread lies, and misinformation. Due to the easy
access to the Internet, anyone can viral a deepfake video and
before the video has been distinguished as real or fake, the
damage is already done, making people believe what they
want to, without knowing the truth. This kind of fake news,
is making people lose trust in what is real and what is fake
anymore, and how we can distinguish between the two. Hence,
there is a requirement for research in this area which can help
in detecting deepfakes from real and stopping them before they
can spread misinformation.

This research aims to create a detector that can be used to
identify a video as a deepfake or not. We perform analysis of
the recent developments in deepfake technologies and propose
a new methodology by integrating Capsule Networks (Capsu-
leNet) with Long Short-Term Memory (LSTM) Networks and
our contribution towards deepfake detection. Therefore, the
following research question is addressed in our work: ”Can
the performance of detecting inconsistencies in a video to
identify deepfakes be improved by combining a long short-
term memory network with a capsule network to create a
spatio-temporal hybrid model?”

The research question can be formulated in the following
sub-questions:

RQ1: What are the current technologies available for deepfake
generation and detection?

a) What are the methods used to generate fake media?
b) What are the available deepfake data-sets?
c) What are the methods available to detect fake media,

the state-of-the-art model, and their benchmarks?
RQ2: How does a Capsule Network perform for detecting

spatial inconsistencies using a single frame?
a) Does training a Capsule Network using a single frame

to detect spatial inconsistencies in a frame helps in
identifying real and deepfakes?

b) By visualizing the activation neurons/capsules, what
inconsistencies are detected by Capsule Network to
identify a sample as fake/real?

c) How does the Capsule Network perform in comparison
to the state-of-the-art Convolutional Neural Network
(CNN)?

RQ3: Can the performance be improved by integrating the Cap-
sule Network with a Long Short-Term Memory Network
to also detect temporal inconsistencies?

a) Does training a combined Capsule Network+LSTM
network using a sequence of frames to detect spatial +
temporal inconsistencies in a video helps in identifying
real and deepfakes?

b) Does the selection of frame sequences have a signifi-
cant impact on the detection of fake videos?

c) How does the Capsule Network+LSTM network per-
form in comparison to the state-of-the-art CNN+LSTM
network?

In this paper, we first present the background on this topic,
available data-sets, and techniques for deepfake detection
in Section II. The approach of this research is defined in
Section III, where we explain the data-set being used, the pre-
processing pipeline, and our proposed model. We also describe
the performance metrics and evaluation methods that will be
used to evaluate our models and perform comparisons. The
results of this research are shown and explained in Section IV,
where we visualize the activations of capsules to explain what
spatial features are learned by the capsule network, and per-
formance comparisons of our model to baseline benchmarks.
Finally, in Section V, we conclude with our findings, and the
research questions are answered.

II. BACKGROUND

A. Fake Media Generation

Face Swap: This manipulation means swapping a face from
a source video onto the face on the target video. Deepfake is
the face swaps performed by using deep learning. FakeApp [8]
is the first attempt towards generating fake videos. The model
behind FakeApp is an autoencoder-decoder pairing structure,
where the autoencoder extracts the latent features of the face,
and the decoder reconstructs the face from these features. Two
encoder-decoder pairs are used to train on the source set and
the target set respectively. The encoders share the weights such
that the two pairs share the same encoder. When the shared
encoder passes the features of image A to the decoder of
image B, it performs the face swap. This approach is used
in various deepfake generation works such as FaceSwap [9],
[10], DeepFaceLab [11], DFaker [12].

Facial Expression: Manipulating facial expressions of a
person, i.e. transferring the facial expression from one person
to another person. Face2Face [13], a real-time facial reenact-
ment system is one of the popular techniques where the facial
expressions of a source face are transferred onto the target’s
face. One of the recent examples is where a realistic video is



generated of a person (Barack Obama) [4], [14], and shown
speaking things he never said.

Facial Attributes: These manipulations include modifying
facial attributes such as gender, the color of skin or hair,
age, adding glasses, etc. One of the recent examples is using
DeepFaceLab [11], generated for performing face swap, which
is used for de-aging an actor (Robert De Niro) in the movie
”The Irishman” [15].

B. Deepfake Data Set

UADFV [16] is one of the first deepfake data-set and con-
tains 49 real videos collected from YouTube and 49 deepfake
videos. The videos are synthesized using the DNN model
using FakeApp.

DF-TIMIT [17] is a data-set generated using Faceswap-
GAN applied to the Vid-TIMIT data-set. It consists of 640
deepfake videos split into two equal subsets: DF-TIMIT-LQ
and DF-TIMIT-HQ, with the size of synthesized faces of 64
x 64 and 128 × 128 pixels, respectively.

FaceForensics++ [18] contains 1,000 real videos collected
from YouTube and 1,000 deepfake videos generated using
Faceswap.

Deepfake Detection [19] Data-set provided by Google/Jig-
saw consists of 363 real videos and 3068 deepfake videos of
28 consented individuals of various genders, ages, and ethnic
groups. The deepfake synthesis method is not disclosed.

Celeb-DF [20] provides a new data-set generated using
an improved deepfake synthesis method, using videos of 59
celebrities collected from YouTube to make 5639 deepfake
videos and 590 real videos.

Deepfake Detection Challenge Preview [21] is a preview
data-set provided by the partnership of various organizations
including Facebook, Microsoft, AWS, and Partnership on AI.
The data-set is constructed via a data collection campaign
where 66 consented individuals from various genders, ages,
and ethnic groups are used to make a more diverse and real-
world deepfakes. The preview data-set consists of 4119 deep-
fake videos, generated using two different unknown synthesis
algorithms and 1131 real videos.

Deepfake Detection Challenge [22], [23] is a data-set
consisting of 100,000 fake videos and 19,154 real videos
released on Kaggle [24], an online platform where data science
and machine learning practitioners compete. The challenge
was released with prize money of $1,000,000 to contribute
and develop better deepfake detection models. The deepfake
videos are generated using 4 different techniques, namely
Deepfake Autoencoder (DFAE), MM/NN face swap, Neural
Talking Heads (NTH), and Face Swapping GAN (FSGAN).

A concise summary of the available deepfake data-sets is
provided in Table I.

C. Fake Media Detection

The earlier generation of deepfake videos was not as re-
alistic as the new deepfakes. These early deepfakes usually
showed various kinds of physical inconsistencies and earlier

Database Real Videos Fake Videos

UADFV (2018) 49 (YouTube) 49 (FakeApp)[16]

DeepfakeTIMIT (2018) 320 (VidTIMIT) 640 (faceswap-GAN)[17]

FaceForensics++ (2019) 1,000 (YouTube) 1,000 (DeepFake)[18]

Deepfake Detection (2019) 363 (Actors) 3,068 (DeepFake)[19]

Celeb-DF (2019) 590 (YouTube) 5,639 (DeepFake)[20]

DFDC Preview (2019) 1,131 (Actors) 4,119 (Unknown)[21]

DFDC (2019) 19,154 (Actors) 100,000
[22], [23] (4 Different Methods)

TABLE I: Available Deepfake Data-sets

detection models took advantage of these inconsistencies to
detect fakes.

EyeBlinking [25] discusses inconsistencies like lack of
blinking of eyes, were due to not enough training videos with
the blinking of eyes. The average blinking rate of a normal
human being is 10/min, the original videos have 34.1/min
blinks whereas fake videos have only 3.4/min blinks. Long-
term recurrent convolutional neural networks (LRCN) model
is used to capture temporal dependencies and achieves the best
performance of AUC=0.99 in comparison to CNN AUC=0.98
and eye aspect ratio EAR=0.79 on the UADFV data-set.

Two-Stream [26] is a two-stream network in which a CNN
stream GoogLeNet InceptionV3 model [27] used for face
manipulation detection is fused with a path triplet stream
trained using steganalysis, the study of detecting features
hidden using steganography, with SVM for classification and
achieves AUC=0.927 on their data-set.

MesoNet [28] is another CNN based model that is designed
with a lower number of layers to focus on the mesoscopic
properties of images. As microscopic analysis based on image
noise is not possible due to compression of videos and at
the macroscopic level, human eyes struggle to distinguish
forged images, hence they adopt an intermediate method to
focus on mesoscopic. It provides two different models called
Meso-4, which uses conventional convolutional layers and
MesoInception-4 based on Inception modules [29]. The eval-
uation of these models is done on deepfake videos collected
from the Internet and is achieved an average detection rate of
98% for Deepfake videos.

ConvolutionalLSTM [30] is a temporal-aware pipeline to
identify deepfakes generated and validated on videos collected
from multiple video-hosting websites. The proposed model
consists of a combination of a CNN, for frame feature extrac-
tion combined with an LSTM for temporal sequence analysis.
As the deepfakes are generated frame-by-frame, each frame
has a new face generated which will have inconsistencies
when compared to every other frame and therefore, lacks
temporal awareness between frames. These temporal incon-



sistencies such as flickering in frames and inconsistent choice
of illuminants are used to detect deepfakes and results in an
accuracy of ~97% on their data-set.

HeadPose [16] is another example where inconsistent head
poses are exploited. They compare two head poses estimated
using only the central region landmarks and using the whole
face landmarks. The difference between the two head poses
is less for original videos as both should be consistent,
whereas, significant for fake videos because the central region
is generated and has different head pose orientation, while
the outer region is the same. An SVM model based on an
estimated 3D head pose orientation is used to identify as
deepfakes and achieves AUC=0.890 on the UADFV data-set.
These videos were easier to identify deepfake or not. With
the improvement in techniques for synthesizing deepfakes, the
newer data-sets are generally much better in both quality and
quantity as compared to the first generation of deepfakes.

FaceWarpingArtifacts [31] uses VGG16 and ResNet based
models [32] trained on face images manipulated by basic
image processing functions like resizing and interpolating, to
expose the face warping artifacts that usually happen due to
the manipulations by deepfake generation. ResNet-50 achieves
the best performance with AUC=0.974 on the UADFV data-
set and outperforms HeadPose, Two-Stream, and MesoNet
models.

XceptionNet classifier [33], is a traditional CNN with
pre-trained weights of ImageNet. [18] provides an overview
of the detection performance, where multiple models using
steganalysis and CNN based networks are evaluated on the
FF++ (FaceForensics++) data-set [18]. XceptionNet performs
best in all face manipulation techniques and achieves the state-
of-the-art accuracy of 96.36% for deepfakes. Followed by
MesoNet [28], an InceptionNet [29] based CNN architecture
to detect face tampering in videos with 87.27% accuracy.
XceptionNet is also evaluated using the DFDC Preview data-
set [21] and achieves 93.0% precision.

VisualArtifacts [34] focuses and exploits the missing re-
flections, details in the eyes, teeth, and facial contours of
videos to detect deepfakes. It provides two models, one based
on a multi-layer neural network model and another based on
a logistic regression model to train and evaluate deepfake
videos collected from YouTube. The multi-layer neural net-
work achieves the best result with AUC=0.851 when both eyes
and teeth are used for detecting deepfakes.

Multi-task [35] provides a CNN based model to simultane-
ously detect manipulated images and segment the manipulated
areas as a multi-task learning problem and achieves the highest
score on the segmentation task on the FF++ data-set.

RecurrentConvolutional [36] exploits the temporal dis-
crepancies across multiple frames caused by the manipulations
that are performed frame-by-frame. The CNN models used are
DenseNet and ResNet, where DenseNet outperforms ResNet.
The difference with ConvolutionalLSTM [30] is that they use
pre-trained CNNs while RecurrentConvolutional models are
trained end-to-end. DenseNet with alignment and bidirectional

recurrent network achieves the best performance with accu-
racy=96.9% on the FF++ data-set.

Capsule [37] uses capsule structures [38] for deepfake
detection. The architecture is based on a previous paper that
used capsule networks for forgery detection and forensics [39].
The model uses the VGG19 [40] network as the backbone
for deepfake detection. Although CapsuleNet achieves 92.17%
accuracy and XceptionNet achieves 94.81% for deepfakes in
multi-class classifications, CapsuleNet has a more balanced
performance for all labels in FF++ data-set.

Although the above methods focused on generalized deep-
fake detection models, there are papers which focus on learn-
ing features of specific individuals. ProtectingWorldLearders
[41] builds a one-class SVM based detection model to distin-
guish one individual from other individuals. Each individual’s
action units (AU) are extracted as features and learned to
distinguish between an individual like Barack Obama vs others
including deepfakes, comedy impersonators, etc.

A concise summary of the Deepfake detection methods and
their best performance is provided in Table II.

D. Capsule Network

Although CNNs perform well in the domain of computer
vision, they have limitations when applied to inverse graphics.
The pooling layers in CNNs cause loss of information after
every convolution layer and have local translational invariance
due to which they are unable to identify the position of one
object relative to another and predict a face if the important
features are present but not in the correct position. Hinton
et al. [42] in 2011 addressed these limitations and proposed
the capsule architecture to overcome these drawbacks. Due
to a lack of efficient algorithms and hardware limitations, the
capsule network was not implemented effectively. With the
recent developments of dynamic routing [38] and expectation-
maximization routing [43] algorithms introduced in 2017 and
2018 respectively, capsule networks have been implemented
with remarkable results and outperform CNNs on few object
classification tasks. In [38], capsule network achieves 79%
accuracy on affine test set whereas the traditional CNN model
with a similar number of parameters achieves 66% accuracy.
In [43], capsule network achieves significantly better accuracy
and reduces the number of errors by 45% in comparison
to the state-of-the-art CNN model. These developments in-
troduced 1) dynamic routing-by-agreement and replaced the
max-pooling of CNN, and 2) squashing which replaced the
scalar output feature detectors of CNN with vector output
capsules. The agreement between capsules which preserves
the pose information enables the capsule networks to enclose
more information than a CNN with less training data required.

Various applications of capsule networks have been seen
in object classification and computer vision. Iesmantas et al.
[44] perform a binary classification for breast cancer images
using capsule networks. Saqur et al. [45] propose CapsGAN
for generating images in the 3D domain using GANS. Duarte
et al. [46] use capsule networks for video segmentation and in
[47] perform action classification in videos. Capsule networks



Study Features Classifiers Databases Best Performance

Zhou et al. (2018) Image related Steganalysis CNN, SVM

UADFV AUC = 85.1%

Two-Stream [26]

DeepfakeTIMIT (LQ) AUC = 83.5%
DeepfakeTIMIT (HQ) AUC = 73.5%

FF++ / DFD AUC = 70.1%
Celeb-DF AUC = 53.8%

Afchar et al. (2018) Mesoscopic Level CNN

Own Acc. = 98.4%

MesoNet [28]

UADFV AUC = 84.3%
DeepfakeTIMIT (LQ) AUC = 87.8%
DeepfakeTIMIT (HQ) AUC = 68.4%
FF++ (DeepFake, LQ) Acc. ' 90.0%
FF++ (DeepFake, HQ) Acc. ' 94.0%

FF++ (DeepFake, RAW) Acc. ' 98.0%
Celeb-DF AUC = 54.8%

Guera and Delp (2018) Image + Temporal Informationl CNN + RNN Own Acc. = 97.1%ConvolutionalLSTM [30]

Yang et al. (2019) Head Pose Estimation SVM

UADFV AUC = 89.0%

HeadPose [16]

DeepfakeTIMIT (LQ) AUC = 55.1%
DeepfakeTIMIT (HQ) AUC = 53.2%

FF++ / DFD AUC = 47.3%
Celeb-DF AUC = 54.6%

Li et al. (2019) Face Warping Artifacts CNN

UADFV AUC = 97.4%

FaceWarpingArtifacts [31]

DeepfakeTIMIT (LQ) AUC = 99.9%
DeepfakeTIMIT (HQ) AUC = 93.2%

FF++ / DFD AUC = 80.1%
Celeb-DF AUC = 56.9%

Rossler et al. (2019) Image-related Steganalysis CNN

UADFV AUC = 91.2%

XceptionNet [18]

DeepfakeTIMIT (LQ) AUC = 95.9%
DeepfakeTIMIT (HQ) AUC = 94.4%
FF++ (DeepFake, LQ) Acc. ' 94.0%

FF++ (DeepFake, HQ) Acc. ' 98.0%
FF++ (DeepFake, RAW) Acc. ' 100.0%

Celeb-DF AUC = 65.5%

Matern et al. (2019) Visual Artifacts Logistic Regression, MLP

Own AUC. = 85.1%

VisualArtifacts [34]

UADFV AUC = 70.2%
DeepfakeTIMIT (LQ) AUC = 77.0%
DeepfakeTIMIT (HQ) AUC = 77.3%

FF++ / DFD AUC = 78.0%
Celeb-DF AUC = 55.1%

Nguyen et al. (2019) Image-related Autoencoder

UADFV AUC = 65.8%
DeepfakeTIMIT (LQ) AUC = 62.2%

Multi-task [35] DeepfakeTIMIT (HQ) AUC = 55.3%
FF++ / DFD AUC = 76.3%

Celeb-DF AUC = 54.3%
Dolhansky et al. (2019) Image-related CNN DFDC Preview Precision = 93.0%

XceptionNet [21] Recall = 8.4%
Sabir et al. (2019) Image + Temporal Information CNN + RNN FF++ (DeepFake, LQ) AUC = 96.9%RecurrentConvolutional [36]

Nguyen et al. (2019) Image-related Capsule Network

UADFV AUC = 61.3%

Capsule [37]

DeepfakeTIMIT (LQ) AUC = 78.4%
DeepfakeTIMIT (HQ) AUC = 74.4%

FF++ (Deepfake) Acc. = 92.17%
Celeb-DF AUC = 57.5%

TABLE II: Performance of Deepfake Detection Methods

are also used for forensics and forgery detection. Nguyen et
al. [39] proposed capsule-forensics for detecting manipulated
images and performance was better than MesoNet. Their next
paper [37] proposes an improved capsule-forensics network for
detecting fake images and videos generated on the FF++ data-
set. The model achieved equivalent or better scores in compar-
ison to state-of-the-art methods while using fewer parameters
and hence, less computational cost. These advancements in
capsule networks in multiple domains and forgery detection
have motivated us to study and work with capsule networks
for the detection of deepfakes and explain the theory behind
it through visualizations.

E. Inconsistencies and Motivation

The idea behind using capsule networks is 1) they are
more robust, preserve pose information, and are equivariant
in parameters like translation, rotation, scale, thickness, etc.
making them overcome the limitation of a CNN’s not being
rotational invariant and therefore, not requiring to feed rotated
face images to the network. The capsule network learns the
rotation as one of its parameters, making them not only
detects feature but also their orientation. A rotated face has
eyes, nose, and mouth features in the same orientation. 2)
a Capsule Network requires fewer parameters than a CNN



while achieving similar performance. Spatial inconsistencies
in deepfakes are usually blurred and flickering of faces, lack
of sharpness in teeth region and no reflection in the eyes, also
as the face is generated and moved on the target face, there are
inconsistencies in boundary regions around the face generated
which helps in identifying if a face is real or not. Therefore,
training a deep learning model to detect these inconsistencies
will help in identifying deepfakes. Hence, we’ll be exploring
a capsule network as the deep learning model in place of a
traditional CNN for detecting spatial inconsistencies in videos
to identify deepfakes as done in [37], [39].

As we are working with videos, and the deepfakes tamper
with the face in the video by performing modifications frame-
by-frame, every new face generated in a frame is different
from other frames as the generation algorithm doesn’t keep
track of previous faces generated before generating a new
face in the next frame. This creates temporal inconsistencies
within frames across time, which can be exploited by training a
recurrent neural network as they have the feature to remember
the previous inputs as well, to detect these temporal inconsis-
tencies and identify deepfakes as done in [30], [36].

Therefore, the main contribution of this work is by integrat-
ing a capsule network with an LSTM network. We propose
a spatio-temporal hybrid model that will exploit and detect
the inconsistencies in both the spatial domain and temporal
domain and identify a video as a deepfake or not.

III. METHOD

In this section, we describe the data-set in detail, the pre-
processing performed for extracting faces from frames, and
our proposed method for detecting video face manipulations,
i.e., given a sequence of frames as input, detect whether faces
are real (pristine) or fake. We also describe the performance
metrics used and our evaluation methods. The overall pipeline
of our model is provided in Figure 2.

A. Data Set

The complete DFDC data-set provided on the Kaggle chal-
lenge is used [22], [24]. AWS, Facebook, Microsoft, and the
Partnership on AI along with other academics have come
together to build this Deepfake Detection Challenge to develop
intelligent models that will help to detect real and manipulated
media content. A preview data-set [21] was released initially
with 66 paid actors, 1131 real and 4119 fake videos. Two
different unknown facial modification approaches were used to
generate fake videos. The complete DFDC data-set [23] con-
tains over 470GB of videos (19,154 real videos and 100,000
fake videos) using 486 actors. Each video has a duration of
~10sec and is generated using 4 different deepfake generation
techniques, namely Deepfake Autoencoder (DFAE), MM/NN
face swap, Neural Talking Heads (NTH) and Face Swapping
GAN (FSGAN), with no augmentations performed. The data-
set is split into train, validation, and test set, which is used for
training our model and evaluate performance. Additionally,
[23] provides two test sets that are used for performance
comparison on Kaggle, namely for the Public Leaderboard

using a Public Test Set and Private Leaderboard using a Private
Test Set. Public Test Set is collected in the same way as
DFDC and contains 4,000 videos (2,000 real videos and 2,000
fake videos) from 214 actors who are not used in the DFDC
data-set. The major difference from the DFDC data-set is one
additional deepfake generation technique, StyleGAN is used
along with the 4 generation techniques used for DFDC data-
set, and heavy augmentations are applied to approximately
79% of all videos. Private Test contains 10,000 videos (5,000
real videos and 5,000 fake videos) and is focused on more
generalization of videos and contains 50% videos collected
similarly as the DFDC data-set using 260 actors along with
50% organic content collected from the Internet. Due to
privacy issues and lack of consent from the actors in the 50%
organic content collected from the Internet, these videos are
not provided in the Private Test Set and therefore, are not
taken into consideration. The final Private Test contains 5,000
videos (2,500 real videos and 2,500 fake videos). The data
was generated using the same 4 techniques used for the DFDC
data-set and heavy augmentations are applied to approximately
79% of all videos with additional never-before-seen filters
including a dog filter and a flower crown filter.

In the rest of the paper, we reference the DFDC’s test set
as DFDC Test Set, Kaggle’s Public test set as Public Test
Set, and Kaggle’s Private test set as Private Test Set.

Data-set Total videos Real Fake Augmentationsvideos videos

DFDC 119,154 19,154 100,000 No Aug(Actors)

Public 4,000 2,000 2,000 79% AugTest Set (Actors)

Private 5,000 2,500 2,500 79% Aug +
Test Set (Actors) additional filters

TABLE III: Different Data-sets Used

For creating the data-set, we perform the following steps:
1) Subsampling: As the data-set is imbalanced with

100,000 fake videos and only 19,154 real videos, we randomly
subsample our fake videos with random seed=84 such that the
final data-set is balanced with 19,154 fake and 19,154 real
videos.

2) Train-Test Split: As the DFDC data-set is provided in 50
parts, we perform folder wise split to avoid mixing of actors
videos across multiple folders such that the model will be
predicting scores on actors not seen before. We use folders 0-
39 for Training, 40-44 for Validation, and 45-49 for Testing.
Additionally, as multiple faces are possible in videos, and not
all the faces in a video may be deepfakes, therefore to train
the model with only deepfakes, we filter out the multiple face
videos and only use single face videos for training.

After performing the above data-set creation steps, our data-
set is split into the train (~70%), validation (~15%), and test-
set (~15%). This data-set is then used to train our deepfake
detection model and its performance is evaluated.



Fig. 2: Model Pipeline for Deepfake Detection.

B. Preprocessing

It is important to extract frames and perform pre-processing
on the videos to reduce computational complexity. The pre-
processing steps can be summarized as follows:

1) Frame Selection: Every video has 30 frames per second
and ~10sec long i.e. ~300 frames, using all the frames is both
computationally expensive and resource consuming. There-
fore, we select 10 frames from each video to be used to train
and evaluate the models. We perform three different methods
of frame selection such that we can compare the performance
of our model on each selection method and see whether the
selection of frames impacts our results. Additionally, we select
a single frame from each video to compare the impact of a
single frame and multiple frames on our results. The 4 methods
of selection are:

1) Single Frame: Extract the 10th frame from each video
to use towards a single frame spatial based model.

2) First 10: Extract the first 10 frames from each video as
shown in Figure 3(a).

3) Equal Interval: Extract 10 frames from each video with
a 1-sec interval as shown in Figure 3(b).

4) Most Changes: Select the 1-sec frame interval which
has most changes happening within that interval in the
following way:

a) Extract 10 frames from each video with a 1-sec inter-
val.

b) Calculate the structural similarity (SSIM) between two
consecutive frames for all the 10 frames.

c) As SSIM provides a measurement for the similarity
between two images, we select the consecutive frames
pair which has the least structural similarity.

d) Using the selected frame pair interval as start and
endpoint respectively, extract 10 frames within them
at an equal interval including the start and endpoint to
get a series of 10 frames with most changes appearing
in the face region in a 1-sec interval as shown in
Figure 3(c).

2) Face detection and cropping: As we want to focus on
the task of deepfake detection, we would like to only detect

Fig. 3: Frame selection methods: (a) First 10: First 10 frames
are selected (b) Equal Interval: 10 frames extracted at equal
interval from ~10sec (~300 frames) video. (c) Most Changes:
Frame 150 and Frame 180 have the least similarity score. 10
frames extracted between Frame 150 and Frame 180.

the face part with the facial manipulations.

1) Face detection: We use a deep learning based face detec-
tion model called Mobilenet SSD [48] as it has higher
performance with lower computation cost.

2) Selecting the same face across multiple frames: When
detecting multiple faces across multiple frames, faces are
swapped while detection due to different faces having
higher confidence in different frames. To avoid this and
keep all the faces uniform, we keep a bounding box for
each face found in a frame and search for faces in that
bounding box across all frames. If there is a miss in any
faces across multiple frames, we drop that face from the
video. This also avoids false detection of the face across
multiple frames.

3) Crop face: As only facial features correspond to facial
manipulations cropping the image only to focus on the
face reduces the complexity of the model and should
improve the model performance. Adding pixel padding
to the crop window in a range of 1.5-2.0 times the crop
window helps in capturing the spatial differences around
the face boundaries. We use pixel padding=1.7 times the
width of the face, such that the total width of the cropped



face becomes 1.7 times the actual cropped face.
4) Rescale: After cropping, as all the images should be of

uniform size, we rescale them to the same scale. We use
224x224 as the image size.

3) Augmentation: As augmentation increases data and also
makes the model robust and is also performed on the unseen
Test data-set on Kaggle, we perform similar augmentations
as performed in [21] i.e. Jpeg-Compression and downscale
augmentation along with additional basic augmentations such
as horizontal flip, rgbshift, brightness, contrast, gamma, hue
and saturation provided by Albumentations [49]. We perform
one of the following augmentations from Table IV on 33% of
the training data:

Augmentation Parameters Probability

RandomBrightnessContrast Brightness Limit = 0.3 p = 0.1665Contrast Limit = 0.5

RandomGamma Gamma Limit = (80, 120) p = 0.1665

RGBShift
R Shift Limit = 105

p = 0.1665G Shift Limit = 45
B Shift Limit = 40

HueSaturationValue
Hue Shift Limit = 42

p = 0.1665Saturation Shift Limit = 10
Value Shift Limit = 17

JpegCompression Quality Lower = 50 p = 0.334Quality Upper = 70

TABLE IV: Augmentations Performed

Additionally, we perform Horizontal Flip with a 50% chance
to flip and normalize images using the mean = (0.485, 0.456,
0.406) and standard deviation = (0.229, 0.224, 0.225).

C. Proposed Model

We propose our CapsuleNet + LSTM model which will
detect spatio-temporal inconsistencies from a given sequence
of frames. The model can be split into two part: the Capsu-
leNet, which acts as a feature extractor and identifies spatial
inconsistencies in a single frame and the LSTM, which takes
a sequence of feature vectors extracted by CapsuleNet as
input from a sequence of frames and identifies temporal
inconsistencies across the given sequence of frames.

For the Capsule Network, we use the capsule forensics
model [39] and remove the output capsules to extract feature
vectors as output. The model uses part of the pre-trained VGG-
19 [40] (until the third max-pooling layer) as a feature extrac-
tor and is equivalent to the CNN part of the original capsule
network architecture. After the features are extracted from the
CNN, they are passed to multiple capsules, each with different
weights initialized (initialized from a normal distribution). As
using fewer capsules limits to capture fewer features [39], and
using more capsules runs out of features to be learned as seen
in our experiments and may overfit, we limit our model to
use 10 capsules. Each capsule consists of a 2D convolutional
part, a statistical pooling, and a 1D convolutional part. For the
forensics task, the statistical pooling layer [50], [51] has been
proven to be effective and also improves performance in our

experiments. The statistical pooling layer includes mean and
variance filters which are calculated as follows:

Mean, µk =
1

HxW

H∑
i=1

W∑
j=1

Ikij

Variance, σ2
k =

1

HxW − 1

H∑
i=1

W∑
j=1

(Ikij − µk)
2

where H and W are the height and width of the filter
respectively, k is the layer index, and I is the 2-dimensional
filter array. The output of the statistical pooling layer is 1-
dimensional, which is then passed through the 1D convolu-
tional part and the final output is a feature vector of size 8 from
a single capsule. Using 10 capsules and flattening, we obtain
80 features extracted from a single frame. These features help
in detecting spatial inconsistencies in a given frame.

We perform the same with 10 frames of a video to get 10
feature vectors of size 80 each. These 10 feature vectors are
then given as an input into a single layer LSTM model with
512 hidden units which captures the temporal inconsistencies
across multiple frames using these feature vectors. The output
of the last LSTM cell is then passed through a Fully Connected
Layer of output size 256 followed by ReLU and Dropout
of 50% to avoid overfitting in LSTM. The output is again
passed through a second Fully Connected Layer and then
through Softmax which provides a probability score between
0 (real) and 1 (fake). Using a more Fully Connected Layer
helps in mapping complex features to output with better
performance. As the model uses both spatial and temporal
features to identify a given sequence of frames from a video
as real or fake, hence, it is a spatio-temporal model for
deepfake detection. The detailed model architecture is shown
in Figure 4.

Cross-entropy loss function and AdamW optimizer [52] are
used with a learning rate of 1e-3 and a weight decay of 1e-4
to optimize the network.

D. Baseline Models

1) CapsuleNet: The Capsule Forensics model [39] is used
as the CapsuleNet. The number of capsules is set the same
as our proposed model, i.e. 10 capsules. The input is a single
frame and the output is the probability of the video being real
or fake.

2) XceptionNet: XceptionNet model [18] is the state-of-
the-art model for deepfake detection. We use the pre-trained
model and replace the last layer with a set of custom layers.
The custom layers are Fully Connected layer 2048 to 512,
ReLU, BatchNorm1d, Dropout(0.5), Fully Connected layer
512 to 1 output. This output node is passed through Sigmoid
to get a probability from 0 (real) to 1 (fake). Binary cross-
entropy loss function and AdamW are used to optimize the
network.

3) XceptionNet + LSTM: Additionally, we compare if
combining XceptionNet with the LSTM model improves the
performance of the state-of-the-art model. The pre-trained
XceptionNet model is used with the last layer removed. The



Fig. 4: Detailed Architecture: CapsuleNet + LSTM Model

XceptionNet outputs a feature vector of length 2048 which
is then given as input to a single layer LSTM of 512 hidden
units. The rest of the architecture after LSTM is the same as
that of CapsuleNet + LSTM.

E. Performance Metrics

For evaluating our model performances, we focus on three
metrics, namely:

1) Accuracy: Accuracy is the percentage of correctly clas-
sified observations i.e.

Acc =
correct

correct + incorrect

2) Logistic Loss: Log Loss or Binary Cross Entropy mea-
sures the uncertainty of prediction based on how much
it varies from the actual label. Log loss quantifies the
accuracy of the model and is also used in the Kaggle
competitions for evaluating models ranking users. Lower
the log loss score, better the model.

LogLoss = − 1

n

n∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] ,

where
• n is the number of videos being predicted
• ŷi is the predicted probability of the video being FAKE
• yi is 1 if the video is FAKE, 0 if REAL
• log() is the natural (base e) logarithm

3) AUC: Area under the ROC curve is a single measure that
can be used for comparing the performance of classifiers.
AUC of a classifier is equal to the probability that the
classifier will rank a randomly sampled positive example
higher than a randomly sampled negative example. Using
AUC, we can measure how much a classifier is capable of
distinguishing between classes i.e. it represents the degree
or measure of separability. The higher the AUC, the better
the classifier in distinguishing between a real video and
a deepfake video.

F. Evaluation

As we want to evaluate our models on different techniques,
we use multiple validation methods. The validation steps for
each of the methods can be summarized as follows:

1) Performance comparison of Convolutional Network vs
Capsule Network on Single Frame: Each model is trained on
a single frame taken from every video to learn the spatial
features to achieve a single output score and the performance
is compared using the metrics stated in Subsection III-E.

2) Performance comparison of Convolutional Network vs
Capsule Network on Frame-by-Frame (Average): Each model
is trained on multiple frames taken from every video to
learn the spatial features to achieve multiple output scores for
multiple frames and the performances are compared on the
average of these scores using the metrics stated in Subsection
III-E.

3) Performance comparison of Convolutional Network with
LSTM vs Capsule Network with LSTM on Multiple Frames:
Each model is trained on multiple frames taken from every
video to learn the spatio-temporal features to achieve a single
output score and the performances are compared using the
metrics stated in Subsection III-E.

4) Visualization of Activation of Capsules of CapsuleNet
+ LSTM model: Our model is given a sequence of real and
deepfake as input and the activation capsules are visualized
using the open-source tool [53] implementing the Grad-CAM,
Guided Backpropagation algorithm [54] and Grad x Image
[55]. Using the visualizations, we can understand what each
capsule focuses on, and explain how the capsules differentiate
between a real and a fake video depending on the features
they capture. Each capsule will learn a different feature as
each capsule has a different weight initialization (initialize by
using a normal distribution). For visualizations, we use the
latent features extracted by the capsules before the statistical
pooling layers as the 2D structure is present.



Model Frame Selection Accuracy Log-Loss AUC

CapsuleNet Single Frame 78.49% 0.5876 0.8516
XceptionNet Single Frame 84.48% 0.4066 0.8883

CapsuleNet First 10 (Average) 79.36% 0.5849 0.8684
XceptionNet First 10 (Average) 85.50% 0.3972 0.9359

CapsuleNet Equal Interval (Average) 80.96% 0.5824 0.8996
XceptionNet Equal Interval (Average) 86.78% 0.3018 0.9571

CapsuleNet Most Changes (Average) 79.27% 0.5870 0.8774
XceptionNet Most Changes (Average) 86.27% 0.3410 0.9460

CapsuleNet + LSTM First 10 77.77% 0.5361 0.8599
XceptionNet + LSTM First 10 83.56% 0.4236 0.9104

CapsuleNet + LSTM Equal Interval 83.42% 0.4763 0.9115
XceptionNet + LSTM Equal Interval 85.09% 0.4688 0.9168

CapsuleNet + LSTM Most Changes 81.54% 0.5066 0.8873
XceptionNet + LSTM Most Changes 84.58% 0.4752 0.9216

TABLE V: Model performance on DFDC Test Set

IV. RESULTS

A. CapsuleNet vs XceptionNet and Single Frame vs Multiple
Frames

Table V compares the performances of different models
when applied to different frame selection methods. For single-
frame detection, it can be seen that XceptionNet outperforms
CapsuleNet by ~6% in accuracy. When an average of 10
frames is taken using the same XceptionNet and CapsuleNet
models, an increase in performance in both models is seen,
although a ~6% gap in accuracy remains between CapsuleNet
and XceptionNet. Thus, it shows that only using a single frame
is not as effective as using a sequence of frames.

Depending on the single-frame selected, there is a chance
that the frame selected may be a real frame in a deepfake
video and the single-frame model will classify it as a real
video. In Figure 5, we use the CapsuleNet on a real video and
a deepfake video to predict if every single frame is fake or
not. As can be seen, the model for the deepfake video predicts
some frames as real, and similarly for the real video predicts
some frames as fake. Hence, it is better to consider a sequence
of frames in comparison to a single frame to detect deepfake
videos.

B. Temporal Inconsistencies and CapsuleNet + LSTM

We extract the spatial features from each frame using Cap-
suleNet and these features are given as input to the LSTM net-
work to find temporal inconsistencies. Based on these spatial-
temporal inconsistencies, our model predicts if a given video
is real or fake. From Table V, we can see the performance
of using CapsuleNet + LSTM has increased the accuracy by
~5% against CapsuleNet predicting on a single frame, and
~2-2.5% against CapsuleNet predicting on average of multiple
frames on the DFDC Test Set. In general, CapsuleNet + LSTM
detecting spatio-temporal inconsistencies improve the model
performance than using a single CapsuleNet.

When compared to the baseline XceptionNet model and
XceptionNet + LSTM model, the CapsuleNet + LSTM model

Fig. 5: Output of Capsule Network on full Real and Deepfake
video.

does not surpass the state-of-the-art model for detecting fake
and real on the DFDC Test Set. However, the gap between
the two is much reduced and the difference is ~3.3% in
CapsuleNet + LSTM model vs XceptionNet (average of
multiple frames) and ~1.7% in CapsuleNet + LSTM model
vs XceptionNet + LSTM. On the other hand, XceptionNet’s
performance does not improve when combined with LSTM,
opposite to what happened with CapsuleNet. In other words,
XceptionNet alone outperforms all the other models. This
may be due to the deep, heavy model and complex output of
XceptionNet which fails the LSTM model to detect temporal
inconsistencies between frames and does not generalize well.

On the other hand, when comparing accuracy on the Public
Test Set for best performance, similar accuracy i.e. ~78% was
attained by our model CapsuleNet + LSTM, state-of-the-art



XceptionNet and XceptionNet + LSTM model. Considering
the Equal Interval frame selection, the XceptionNet model has
a significant drop of ~7.8% in accuracy, and XceptionNet +
LSTM model has a significant drop of ~6.7% in accuracy.
Whereas, a smaller drop of ~5% in accuracy is seen by
CapsuleNet + LSTM model. The reason for similar accuracy
between both XceptionNet based models and CapsuleNet +
LSTM model may be due to the augmentations applied to
79% and an additional unseen deepfake generation technique
used in this data-set. This shows that our model is more
robust towards unseen deepfake generation techniques and
heavy augmentations than XceptionNet based models and
achieves similar performance to the state-of-the-art model. As
this is an open initiative by Facebook to contribute towards
deepfake detection, they have shared results of top-performing
models and achieves 82.56% accuracy and log-loss of 0.20336
on Public Test Set [56]. Although there is a big difference
in comparison to the log-loss of our model, the difference
between the accuracy is small, i.e. ~4%. As we don’t have the
complete Private Test Set, we cannot compare the results with
the top-performing models.

When comparing accuracy on the Private Test Set for best
performance, similar accuracy i.e. ~81% is achieved by both
XceptionNet and XceptionNet + LSTM whereas CapsuleNet
+ LSTM achieves 76.64% accuracy. The reason for the sig-
nificant drop in accuracy for our model in comparison to
Public Test Set may be due to the additional never-seen-
before filters like dog filter and flower crown filter used in
Private Test Set. Although these are additional augmentations
applied to the videos, tampering, and modifications are done
in the face area. Hence, these videos should no more be
considered as real as inconsistencies are introduced from these
filters and our model classifies them as deepfakes or the filter
overlaps and hide the inconsistencies introduced by deepfake
generation methods and classifies them as real. Figure 6 shows
examples of dog filter applied on videos and our model
predicts inaccurately on most of them. Due to this reason,
comparing model performance on the Private Test Set may
not be accurate enough and the results are ambiguous.

Fig. 6: Dog Filter applied on Real and Deepfake videos and
their predictions.

C. Frame Selection

From Table V, we can see that the Equal Interval frame
selection method always has higher performance results than
the First 10 and Most Changes method in all the models. In

the average of frames, the impact of frame selection method
is small, i.e. ~0.1-1.6%, whereas in temporal based models,
i.e. CapsuleNet + LSTM and XceptionNet + LSTM, we can
see the impact is huge. Although XceptionNet + LSTM based
models have a slight increase of ~1.5% from First 10 and
~0.5% from Most Changes in accuracy in comparison to Equal
Interval, CapsuleNet + LSTM have a higher accuracy increase
of ~5.6% from First 10 and ~1.9% from Most Changes in
accuracy in comparison to Equal Interval. Similarly, when
comparing the performance of frame selection methods on the
Public Test Set and Private Test Set in Table VII, Equal Inter-
val always performed better for all the models in comparison
to the First 10 and Most Changes selection techniques.

The First 10 method captures the first 10 frames where
the transition between two consecutive frames is captured
and the difference between these two frames is least. The
Most Changes method captures the transition between the most
changing frames in 1-sec interval and the difference between
frame ith and frame (i+1)th is more than the First 10 method.
Whereas the Equal Interval method captures 10 frames at
equal intervals and the difference between frame ith and frame
(i + 1)th is bigger than both the First 10 and Most Changes
method and hence, the models detect higher inconsistencies
when using these frames. In other words, higher differences
within the selected 10 frames capture more inconsistencies
and have higher performance. Therefore, the frame selection
method for detecting fake videos is an important aspect and
Equal Interval achieves the best performance.

Similarly, Figure 7, Figure 8 and Figure 9 shows the
ROC curve using different frame selection methods for the
classification of DFDC Test Set, Public Test Set and Private
Test Set using the CapsuleNet + LSTM model. The area under
the curve (AUC) values are shown in Table V for the DFDC
Test Set and Table VII for the Public and Private Test Set.
Equal Interval has the best performance, followed by Most
Changes and then the First 10 method for each data-set.

Fig. 7: ROC curve for frame selection on DFDC Test Set.



Fig. 8: ROC curve for frame selection on Public Test Set.

Fig. 9: ROC curve for frame selection on Private Test Set.

D. Computational Complexity

Models are trained on High-Performance Cluster using one
of the multiple GPUs including Tesla P100, Titan-X, and 1080-
Ti shared between multiple users. Although, XceptionNet/X-
ceptionNet + LSTM outperforms our model CapsuleNet +
LSTM with a short gap in DFDC Test Set and comparable
results in Public Test Set, CapsuleNet + LSTM is much
smaller than both XceptionNet and XceptionNet + LSTM. As
shown in Table VI, the number of parameters of CapsuleNet
+ LSTM is 1/5th of XceptionNet and 1/7th of XceptionNet
+ LSTM and the size of CapsuleNet + LSTM is 1/4th of
XceptionNet and 1/5th of XceptionNet + LSTM. Figure 10
shows a bubble graph comparing the model size on the x-axis,
accuracy on the y-axis, and the number of parameters as the
area of the bubble. The accuracy here is for the Equal Interval
frame selection method on the DFDC Test Set. Therefore,
when comparing our CapsuleNet + LSTM model to state-
of-the-art XceptionNet model, for ~3% drop in accuracy in
DFDC Test Set, our model is 4 times smaller in size and 5

times smaller in the number of parameters, hence making it
lighter and reduced computational cost than the state-of-the-art
model. It will require fewer resources and power to be used
in distributed systems or integrating into online social media
platforms for real-time identification of deepfakes at a lower
computational cost. Hence, focusing more on state-of-the-art
efficiency than state-of-the-art accuracy.

Model No. of Parameters Size
(in million) (in MB)

CapsuleNet 2.79M 6.3MB
CapsuleNet + LSTM 4.03M 21.1MB
XceptionNet 21.86M 87.8MB
XceptionNet + LSTM 27.24M 109.3MB

TABLE VI: Model Size

Fig. 10: Computational comparison of the Models. The X-
axis is the Size of the Models, Y-axis is the Accuracy for the
Frame-selection ”Equal Interval” method in the DFDC Test
Set and the Area of the Bubble is the Number of Parameters.

E. Visualization of Capsules and Spatial Features Extracted
To understand how our model predicts a given video as

real or fake, we use the open-source tool [53] implementing
the Grad-CAM, Guided Back-propagation algorithm [54] and
Grad x Image [55], we visualize the capsules of CapsuleNet
+ LSTM model for a real video and a fake video as shown in
Figure 11, we can see the input image (a) and their respective
visualizations (b)-(g). Figure (b)-(e) are the Gradient-weighted
Class Activation Map (Grad-CAM) of different capsules,
where each capsule is identified as a different feature in the
input image. In Figure 11i, (b) focuses below the mouth region,
(c) focuses outside the eyes and nose region, (d) focuses on
eyes and nose, (e) focuses on the whole face excluding eyes.
(f) and (g) are the output of Guided Grad X Image in grayscale
and color. It can be seen that the capsules mostly focus on the
facial regions of the whole face when identifying the given
sequence of frames as fake.



Model Frame Selection
Public Test Private Test

Accuracy Log-Loss AUC Accuracy Log-Loss AUC

CapsuleNet Single Frame 71.65% 0.6188 0.7837 72.19% 0.6151 0.7969
XceptionNet Single Frame 75.50% 0.5651 0.8153 77.21% 0.5396 0.8287

CapsuleNet First 10 (Average) 71.63% 0.6170 0.7997 73.49% 0.6084 0.8213
XceptionNet First 10 (Average) 76.83% 0.5918 0.8674 78.81% 0.5622 0.8930

CapsuleNet Equal Interval (Average) 73.63% 0.6129 0.8241 75.88% 0.6041 0.8480
XceptionNet Equal Interval (Average) 78.99% 0.4979 0.8863 81.08% 0.4552 0.9170

CapsuleNet Most Changes (Average) 72.28% 0.6166 0.8096 74.51% 0.6075 0.8305
XceptionNet Most Changes (Average) 77.34% 0.5369 0.8744 79.74% 0.4929 0.9049

CapsuleNet + LSTM First 10 72.73% 0.6271 0.8059 74.61% 0.6128 0.8195
XceptionNet + LSTM First 10 77.75% 0.5356 0.8576 78.20% 0.5270 0.8625

CapsuleNet + LSTM Equal Interval 78.38% 0.5699 0.8567 76.64% 0.6624 0.8403
XceptionNet + LSTM Equal Interval 78.38% 0.5489 0.8744 81.16% 0.4993 0.8831

CapsuleNet + LSTM Most Changes 74.67% 0.6140 0.8308 74.53% 0.6143 0.8263
XceptionNet + LSTM Most Changes 77.44% 0.5345 0.8659 80.52% 0.4915 0.8843

TABLE VII: Model performance on Public Test Set and Private Test Set

In Figure 11ii, (b) focuses below the eyes region, (c) focuses
on the lower face, (d) focuses on the eyes, (e) focuses on the
region around the eyes. (f) and (g) are the output of Guided
Grad X Image in grayscale and color. It can be seen that the
capsules mostly focus on facial regions around the eyes, nose,
and mouth when identifying the given sequence of frames as
real.

Hence, the model’s predictions are based on different facial
regions of the face for both real and fake videos. Most capsules
focus on facial areas like eyes, nose, mouth, and regions
around them, some capsules miss to detect these facial regions
and some fail to detect the manipulated regions. However,
with multiple capsules, these features are collected, combined,
and captured as spatial features. Using these spatial features
detected in each frame and combining them across multiple
frames to get temporal features, the model detects inconsisten-
cies across spatial and temporal domains. Therefore, predicting
a given video as real or fake.

(i) Fake frame

(ii) Real frame

Fig. 11: Capsule visualizations of CapsuleNet + LSTM model
for a real and fake frame. (a) is the input mage. (b)-(e) are
the Grad-CAM vis of different capsules, each capsule learn a
different feature. (f) and (g) are the output of Guided Grad X
Image in grayscale and color.

V. CONCLUSIONS

With the ongoing rise in Deepfake videos, this paper pro-
vides an exhaustive survey of the recent advancements in fake
media generation and their threat towards authenticity and
trustworthiness of online information. We describe the deep-
fake generation methods and the inconsistencies introduced by
the AI, available data-sets, and how current deepfake detection
techniques exploit these inconsistencies.

This paper provides a new spatio-temporal hybrid model
using CapsuleNet integrated with LSTM. CapsuleNet is used
to identify spatial inconsistencies from a single frame that are
introduced by the computer while generating deepfake videos.
Using Grad-CAM and Guided Back-propagation, we visualize
the activation of capsules when a fake video and a real video
are given as input. From these visualizations, we can see
that each capsule learns a different facial feature and focuses
mostly on facial regions like eyes, outside eyes, nose, mouth,
and whole face excluding eyes for both real and fake videos.
Hence, Capsule Network extracts these facial features and
combines to create a feature vector which consists of spatial
inconsistencies in the frame. These feature vectors consisting
of spatial inconsistencies are collected for 10 frames and
then given as input to our LSTM model to identify temporal
inconsistencies within these frames and predict whether the
video, from which these 10 frames are extracted is real or
fake. CapsuleNet alone by just detecting spatial inconsistencies
achieves good performance with an accuracy score of 80.98%
(average of multiple frames) but fails to outperform the state-
of-the-art model XceptionNet by the accuracy of ~5.8% on
DFDC Test Set.

CapsuleNet when integrated with LSTM to detect both
spatial and temporal inconsistencies improves the performance
by ~2.5% and achieves an accuracy score of 83.42% on the
DFDC Test Set. On comparing with the XceptionNet model
and XceptionNet integrated with the LSTM model, our model
although fails to outperform both the state-of-the-art model



by ~3.3% and state-of-the-art model integrated with LSTM
by ~1.7%, the difference between them is almost compa-
rable in DFDC Test Set. When comparing the performance
on Public Test Set, our model, XceptionNet and Xception
integrated with LSTM have similar accuracy of ~78%, the
significant drop in XceptionNet based models possibly be
due to heavy augmentations and a new never-seen-before
deepfake generation technique in Public Test Set, whereas
our model has a smaller drop of ~5% showing CapsuleNet
integrated with LSTM is more robust towards new generation
techniques and augmentations. On comparison with the top-
performing models shared by Facebook, both state-of-the-art
XceptionNet and CapsuleNet+LSTM lacks behind by ~4%
on Public Test Set. When considering the model size and
the number of parameters, Capsule Network integrated with
LSTM (~4M parameters) is much smaller than XceptionNet
(~22M parameters), almost 1/5th and XceptionNet integrated
with LSTM (~27M parameters), almost 1/7th. Therefore,
CapsuleNet integrated with LSTM can achieve comparable
accuracy with the advantage of being a lighter model and
hence, reduced computational cost, focusing more on being
state-of-the-art efficiency than state-of-the-art accuracy. Hence,
the model requires fewer resources and power and is more
suitable to be used in distributed systems and online social
media platforms, like Facebook and Instagram, to classify an
uploaded video as real or deepfake in real-time and watermark
them to avoid the spread of fake videos.

We also see that the frame selection method has a significant
impact on the performance in every model. CapsuleNet inte-
grated with the LSTM model when using the Equal Interval
method improved by ~5.65% when compared to the First 10
method and ~1.88% when compared to the Most Changes
method on DFDC Test Set. In other words, Equal Interval
achieves the best performance followed by Most Changes and
First 10 and is also seen for Public Test Set and Private
Test Set. The reason behind this increase in performance is
probably due to the differences between multiple frames is
highest in Equal Interval followed by Most Changes and is
least in First 10. Therefore, higher differences capture higher
inconsistencies across multiple frames improve the detection
of fake videos. Therefore, a frame selection technique does
have a significant impact on the detection of fake videos, and
the Equal Interval method achieves the best results.

With these promising results, we can finally answer our
research question: ”Can the performance of detecting incon-
sistencies in a video to identify deepfakes be improved by
combining a long short-term memory network with a cap-
sule network to create a spatio-temporal hybrid model?”
CapsuleNet integrated with LSTM creates a spatio-temporal
hybrid model that improves the performance of deepfake
detection in videos in comparison to CapsuleNet and achieves
comparable results to state-of-the-art XceptionNet while being
a lighter model and having the number of parameters 1/5th

of XceptionNet. Future work could include the ensemble of
models, heavy augmentations, and attention mechanisms for
the improvement of deepfake detection.
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