
University of Twente
Formal Methods and Tools

Master’s Thesis

Model Validation for Stochastic
Hybrid Automata

Author:
Michiel Bakker

Supervisors:
Dr. Ir. Rom Langerak

Dr. Ir. André Kokkeler

August 24, 2020

Abstract

A hybrid automaton is a mathematical formalism used to model systems
with both discrete and continuous behaviour. The theory of hybrid automata
has been applied in a wide spectrum of research areas, including systems biology,
automotive and avionic control systems and other cyber-physical systems. One
of the available tools to model hybrid automata is Uppaal SMC, which uses a
simulation-based method named statistical model checking to verify properties
of a model. As models grow larger and more complex, it becomes more likely for
an error to be accidentally introduced to the system. The process of confirming
that a model is free of errors is called model validation. However, little research
has been done on model validation tools for hybrid automata. In this research,
we examined several methods for model validation, and put them into practice
in a tool for Uppaal SMC. The validation methods were examined using theo-
retical analysis and evaluated using case studies, which indicated that the tool
provides an effective way of performing model validation.

1

Contents

1 Introduction 4
1.1 Problem Statement . 4
1.2 Hybrid Automata . 5
1.3 Model Validation . 5
1.4 Research Questions . 6
1.5 Contributions . 6
1.6 Structure . 7

2 Background 8
2.1 Timed Automata . 8
2.2 Timed Automata in UPPAAL . 11
2.3 Stochastic Timed Automata . 13
2.4 Stochastic Hybrid Automata . 15
2.5 Hybrid Automata in UPPAAL SMC 16

3 Related Work 20
3.1 Validation of Timed Automata 20
3.2 Abstraction Refinement . 21
3.3 UPPAAL Slicing . 21

4 Method 23
4.1 Tool Design . 23
4.2 Evaluation Method . 23

5 Implementation 25
5.1 Architecture . 25

5.1.1 Model views . 25
5.1.2 Validation Specification 26

5.2 Separation of Model Checker and Property 27
5.3 UPPAAL Editor Integration . 27

6 Reachability Algorithms 30
6.1 Concrete Checking . 30
6.2 Symbolic Checking . 31

6.2.1 Abstraction Algorithm for Hybrid Automata 31
6.2.2 Abstractions of UPPAAL SMC Models 33
6.2.3 Time Bounding . 35
6.2.4 Constant Variable Overwrite 36

2

7 Validation Properties 38
7.1 Model Invariant . 38
7.2 Synchronisation Check . 38

7.2.1 Implementation . 39
7.2.2 Usage . 40

7.3 Synchronisation Post-Condition 41
7.3.1 Implementation . 41
7.3.2 Usage . 42

7.4 UrPal Checks . 42
7.4.1 Unwanted Deadlocks . 42
7.4.2 Template Location Reachability 43

8 Evaluation 44
8.1 Case Studies . 44

8.1.1 Cancer Immunotherapy Model 44
8.1.2 Tooth Wear Model . 48

8.2 Discussion . 50
8.2.1 Reachability Algorithms 50
8.2.2 Validation Properties . 52

9 Conclusion 53
9.1 Future Work . 53

9.1.1 Hybrid Reachability Checking 53
9.1.2 Improved Support for UrPal Checks 54

3

1 Introduction

Uppaal is a tool used for formal verification of timed systems. It has been used
in the development of various applications, ranging from communication proto-
cols to automotive systems [11, 13]. Uppaal is based on the theory of timed
automata [2], and has support for features such as custom data structures and
a specification language to aid in modelling. There are, however, limitations to
the expressiveness of timed automata. Extending the formalism with behaviours
such as variable clock rates make reachability checking of properties undecid-
able. This means that complex timed systems can only be approximated when
modelled with Uppaal.

In order to support modelling of complex timed systems, an extension to
Uppaal called Uppaal SMC was created. Uppaal SMC supports a more
general model, where, among other extensions, the clock rates can be described
using ordinary differential equations. Analysis of statistical properties of these
models is done using statistical model checking (SMC). This is a simulation
based approach, and can be seen as a compromise between testing and classical
model checking. Uppaal SMC has been used in research areas such as systems
biology, energy-centric systems, and recently, in modelling healthcare processes
[6].

1.1 Problem Statement
Uppaal SMC can be effectively used to model complex timed systems. Analysis
of the models using SMC can then be used to validate these systems. However,
system validation is only effective when the model itself accurately models the
system. Only a correct model can be used to verify properties of the system
under test. Any tool used for system validation must therefore have ways for the
modeller to find errors in their model, and to verify that the model is correct.

As models get larger and more complex, it becomes more likely for the
modeller to make a mistake. In other programming and modelling applications
this problem can be reduced using (automatic) analysis of the model, to spot
errors early in the process. For example, research has been done on automatic
validation of timed automata in Uppaal [14].

However, little similar research has been done on stochastic hybrid automata,
the underlying formalism of Uppaal SMC. At this moment, there are no effec-
tive tools in Uppaal SMC that enable model validation. When the modeller
suspects that there is an error in the model, one of the few ways to debug the
program is to add extra debug variables and execute debug queries. This process
can take a long time, and is also error-prone. There is therefore a clear need for
additional methods to perform model validation of Uppaal SMC models.

4

1.2 Hybrid Automata
A hybrid automaton is a finite state machine extended with a finite set of real-
valued variables. The values of the variables are described by ordinary differ-
ential equations. This combination of a discrete state (the nodes or ‘locations’
of the automaton) and a continuous state (the real-valued variables) allow the
modelling of hybrid systems with both digital and analogue behaviours.

A simple example of a hybrid automaton would be a thermostat regulating
the temperature of a room. This automaton could have two discrete states
for the thermostat being either off or on. The temperature over time in either
state can be modelled using differential equations derived from thermodynamics.
Transitions between the discrete states can be restricted using expressions over
the continuous state.

An effective method for the analysis of hybrid automata is stochastic model
checking, where simulations (also called runs) are used to determine properties
of the model. To achieve this, the definition of the model is extended such
that non-deterministic transitions between states are replaced by probabilistic
choices. This is the method used by Uppaal SMC to verify properties of its
models.

A notable sub-class of hybrid automata are timed automata. A timed au-
tomaton can be seen as a hybrid automaton where all variables (usually called
clocks) have a derivative over time of 1. In other words, all clocks are uniform
and grow at the same rate. These restrictions make the reachability problem
for timed automata decidable.

1.3 Model Validation
For this report, we define model validation in the context of formal verification
as follows:

Model validation is the process of confirming that a model is correct.

It is interesting to note that this definition can apply to models in a very
general sense. For example, consider a model in physics of material properties,
like the friction of an object. Confidence that this model is correct can be gained
by performing experiments, and confirming that the model accurately predicts
the outcomes. Similarly, creators of software models must perform some form
of validation to confirm correctness of the model.

In the field of formal methods, model validation is generally performed by
algorithmically checking if the model conforms to a formal specification. This
assumes that such a specification exists, and itself is complete and error-free.
Intuitively, as the system to be modelled increases in complexity, so does its
specification. This is especially true in timed systems, where behaviour of a
model may depend on complex interactions between automata or precise timing
constraints.

In this research, we consider the construction of a formal specification of a
model, as well as its verification, part of model validation. This implies that

5

model validation is equal parts a verification problem as a part of the develop-
ment process.

1.4 Research Questions
This research attempts to find a solution to the problem stated above. In order
to guide the research, the following research question is formulated:

In what ways is it possible to perform model validation of stochastic hybrid
automata?

The research question is answered through the implementation of a tool for
the model validation of Uppaal SMC models. It employs various methods to
achieve this, which are evaluated using case studies. In order to further structure
the research we define the following three sub-questions:

1. Which properties of stochastic hybrid automata can be used to validate
models?

2. How can properties of stochastic hybrid automata be verified?

3. How can the results of the validation best be communicated to the modeller?

Question 1 is answered by defining several properties related to the validity
of a model, and by implementing a method to verify these properties. The
implementation and evaluation of two distinct verification methods is used to
answer question 2. The evaluation of the validation properties and verification
methods is done using case studies, where the tool is applied to models used in
research. Here, errors in the models are attempted to be found and corrected
using the tool, which is used to form an answer to question 3.

1.5 Contributions
This research examines and evaluates several methods to perform model val-
idation for hybrid automata. These methods are implemented in a tool for
Uppaal SMC, which is subsequently subjected to a qualitative evaluation. Due
to the undecidability of the reachability checking problem for hybrid automata,
several approximative methods for verification were examined. One of these
methods is a novel technique where the hybrid automata is reduced to a timed
automata, of which reachability checking is decidable. To our knowledge, this
is the first time such a verification method has been applied to hybrid au-
tomata. Furthermore, it is also possible to perform verification using a simpler,
simulation-based method.

6

1.6 Structure
The structure of this report is as follows. Section 2 provides an overview of the
theory of timed automata and hybrid automata, and their respective implemen-
tations in Uppaal. Section 3 provides an overview of related research and its
application to our research. The evaluation method and metrics are discussed
in Section 4. Details of the implementation of the tool are discussed in Section
5, with the implemented verification methods and validation properties further
elaborated on in Sections 6 and 7 respectively. The results of the evaluation are
found in Section 8, and the report concludes in Section 9.

7

2 Background

2.1 Timed Automata
The formalism used by Uppaal is based on the theory of timed automata [2].
A timed automaton (TA) can be seen as a finite state machine extended with
a finite set of real-valued clocks. All clocks increase at the same rate, and
transitions between states may or may not be taken based on predicates over
clock values. This section will explain the basics of the theory of timed automata
and its analysis.

s1
s2

y ≤ 9

on
x ≥ 2
y := 0

off
y ≥ 9
x := 0

on
x ≥ 2
y := 0

Figure 1: An example of a timed automaton modelling a light switch.

Example

Figure 1 shows an example of a simple timed automaton modelling a light switch.
The light switch has two buttons, off and on. After 2 seconds of being off, the
light can be switched on by pressing the on button. The light stays on until
either the off button is pushed, or 9 seconds have elapsed. If the on button is
pressed again before the 9 seconds have elapsed, the timer is reset and the light
stays on for another 9 seconds. When the light turns off, it cannot be turned
on again for two seconds.

The model has two locations, s1 and s2, two labels, on and off and two
clocks, x and y. Location s2 has the invariant y ≤ 9. The two edges with the on
label have a guard with the clock constraint x ≥ 2 and {y} as the set of clocks
to be reset.

Syntax

A timed automaton is a tuple A = ⟨L,L0,Σ, X, I, E⟩ where

• L is the finite set of locations.
Note that in timed automata the term location is used instead of state.
This is to avoid confusion, because the state of a timed automaton is
described by the current location and by the valuation of the clocks.

8

• L0 ⊆ L is the set of initial locations.

• Σ is a finite set of labels.

• X is a finite set of clocks.

• I : L 7→ Φ(X) maps every location to an invariant. The definition of a
clock constraint Φ(X) is given below.

• E ⊆ L× Σ× 2X × Φ(X)× L is a set of switches.
A switch (s, a, ϕ, λ, s′) is an edge from location s to s′ with label a. ϕ is
the guard that enables the switch, i.e. the clock valuation that is required
to take the switch. λ is the set of clocks that is reset (valuation set to 0)
when the switch is taken.
Note again that the term switch is used instead of transition, as a transi-
tion in a timed automaton may change the current location as well as the
valuation of the clocks.

Clock constraints are used as invariants of locations and guards of switches.
For a set of clocks X, the set Φ(X) of clock constraints ϕ is defined by the
grammar

ϕ ::= x ≺ c | x− y ≺ c | ϕ ∧ ϕ

where clock x, y ∈ X, c is a constant in N and ≺∈ {=, >,≥, <,≤}.

Transition System

A timed automaton can take two kinds of transitions: time transitions, where
some amount of time passes, and switch transitions, where the discrete state
changes.

Let SA be the transition system of a timed automaton A. A state is noted
as a pair (s, v), where s is a location in A, and v is a clock valuation. A clock
valuation v is a mapping from the set of clocks X to the set of positive real
numbers R+. For a delay δ ∈ R+, let v + δ map every clock x to the value
v(x) + δ. A state of SA is a pair (s, v), where v satisfies the invariant I(s).

Delay transitions only affect the clock valuation, leaving the discrete state
unchanged. They are a transition (s, v)

δ−→ (s, v + δ), where δ ≥ 0, and for all
δ′ ∈ [0, δ], v + δ′ satisfies I(s).

With a switch transition the discrete state changes, while no time passes.
Given a switch (s, a, ϕ, λ, s′) and a state (s, v) where v satisfies ϕ, the transition
is noted (s, v)

a−→ (s′, v[λ = 0]). v[λ = 0] denotes the clock valuation where every
clock x ∈ λ is assigned the value 0, and the other clocks are unchanged.

As an example, the following transition sequence is possible in the automata
of Figure 1. Here, four delay transitions and three switch transitions are taken.

(s1, [x = 0, y = 0])
1−→

(s1, [x = 1, y = 1])
2−→ on−→

9

(s2, [x = 3, y = 0])
1−→ on−→

(s2, [x = 4, y = 0])
9−→ off−→

(s1, [x = 0, y = 9])

Product construction

A particularly useful feature of the analysis of timed automata is the product
construction of two automata, also known as parallel automata. This allows a
large and complex model to be made by composing multiple smaller models.
Given two timed automata A1 and A2, the product construction is noted by
A = A1 ∥ A2. The set of (initial) locations of A is the cartesian product of
the (initial) locations of A1 and A2. Switches that share a common label are
synchronised. The guard of the synchronised switch is the conjunction of the
two guards, and the set of clocks to be reset is the union of the clock resets of
the two switches.

s0
s1

x ≤ 2

a

x := 0

b
x ≥ 1

(a) A1

t0
t1

y ≤ 2

b

y := 0

c
y ≥ 1

(b) A2

(s0, t0)
(s1, t0)
x ≤ 2

(s1, t1)
y ≤ 2

(s0, t1)
y ≤ 2∧
x ≤ 2

a

x := 0

b
x ≥ 1
y := 0

c
y >= 1

c
y >= 1

a

x := 0

(c) A1 ∥ A2

Figure 2: Two timed automata and their product construction.

Figure 2 shows an example of the product construction of two automata.
Note that the set of locations of A1 ∥ A2 is the cartesian product of the locations
of the two automata. A1 and A2 both have a switch with label b, so these two
switches are synchronised.

10

Model checking

In model checking applications, the specification of the model is often formalised
using CTL. A CTL formula can, for example, specify that some property p must
hold in all reachable states, in at least one state or hold until some other property
q holds. Timed Computation Tree Logic (TCTL) is an extension of CTL where
the temporal operators can have time bounds [1]. With TCTL it is possible to
express properties such as “property p always leads to property q within 3 time
units”.

A brief overview of the subset of TCTL used in this report is given here.
TCTL has two quantifiers over paths, Aϕ and Eϕ, where ϕ must hold on all
paths or any path from the current state respectively. Path formulas are of the
form □ϕ or 3ϕ. With □ϕ, ϕ holds on all states of the current path and 3ϕ
notes that ϕ holds in any state of the path.

Clocks in a TA are real-valued, causing the transition system of a model to
have an infinite set of states and transitions. Because of this, model checkers for
TA must represent the model abstractly in order to have a decidable algorithm
to verify logical properties. This is done by transforming the timed automaton
to a region automata, which can represent the infinite set of clock values in a
finite set of states [2].

2.2 Timed Automata in UPPAAL
Amodel in Uppaal is a Network of multiple Timed Automata (NTA) in parallel.
To facilitate modelling the model is extended beyond the pure timed automata
formalism with a couple of extra features [3]. One of those features is the
inclusion of bounded discrete variables that are part of the state. These variables
can be read, written to and can be used in guards and invariants.

Uppaal terminology varies slightly from the standard terminology of timed
automata. For instance, switches are usually called edges, an automaton is often
called a process, and the term channel is used instead of label. An edge can
be fired, meaning that the system is in a state where that switch transition can
be taken. This report will in most cases use the terminology used in Uppaal
literature instead of standard TA terminology.

Discrete Variables

Uppaal extends the TA formalism by adding bounded discrete variables that
are part of the state. These variables can be used in expressions in guards
and invariants, and their values can change according to an update expression.
Uppaal also includes an extensive specification language that is used to observe
and change the discrete state of the model. This language is based on C, and
allows the user to model complex behaviours.

The discrete state is shared across all automata in the model. This allows it
to be used to transfer data between processes. The sending process can (tem-
porarily) assign values to discrete variables, which can be read by the receiving

11

process. This can, for instance, be used to model communicating nodes in a
computer network.

UPPAAL models

In Uppaal channels are declared using the syntax chan c. Two processes
can synchronise if one has an edge label with c! enabled, and other an edge
with c?. If the channel is marked as a broadcast channel (using the syntax
broadcast chan c), the sending edge labelled c! can synchronise with zero or
more receiving edges labelled c?. An edge with label c! can still fire even if no
edge with c? is enabled, which means that sending a broadcast is not blocking.

A location in a Uppaal system can be marked as urgent. When one of the
automata in the system is in an urgent location, no time is allowed to pass.
A location can also be marked as committed, which is similar but even more
restrictive. When one or more of the locations in the state is committed, no
time is allowed to pass, and the next transition must involve an edge moving
out of a committed location.

Syntax and Semantics

We use the following syntax for Uppaal models. Let Ai = ⟨Li, l
0
i ,Σ, X, Ii, Ei⟩

be an network of n timed automata where

• Li is the set of locations for TA Ai.

• li0 is the initial location vector.

• Σ = Σ!∪Σ? is the set of labels (or channels), where Σ! is the set of sending
labels, and Σ? the set of receiving labels.

• X is the set of clock and data variables.

• Ii is the mapping from a location to an invariant expression.

• Ei is the set of edges.
A switch (l, a, g, u, l′) is a switch from location l to l′, with label a ∈
{τ}∪Σ, guard expression g and update expression u. An update expression
is a set of expressions in the form v := e with v ∈ X and e an expression
if v is a data variable, or 0 if v is a clock.

For an expression e and valuation v, we write v |= e to mean that the
expression is satisfied with the given valuation. v[u] denotes the valuation v
changed according to update expression u. Given a location vector l̄, we use
I(l̄) to mean the conjunction of all invariants Ii(li) in l̄. We write l̄[l′i/li] to
mean the location vector where location li is replaced with location l′i.

A state in a NTA is a pair (l̄, v) with a location vector l, and valuation v
mapping clocks and data variables to their current values.

12

The definition of a delay transition remains mostly unchanged, being a tran-
sition (l̄, v)

δ−→ (l̄, v + δ) with δ ∈ R+ and for all δ′ ∈ [0, δ], v + δ′ |= I(l̄)
The definition of switch transitions are changed to account for blocking syn-

chronisations and changes to the discrete variable valuation. We distinguish two
cases:

• Internal transitions (l̄, v) τ−→ (l̄[l′i/li], v
′) iff there exists an edge (li, τ, g, u, l′i)

where v |= g and v′ = v[u].

• Binary synchronisation transitions (l̄, v) τ−→ (l̄[l′i/li, l
′
j/lj], v

′) iff there exists
edges (li, c!, gi, ui, l

′
i) and (lj , c?, gj , uj , l

′
j) where i ̸= j, v |= (gi ∧ gj) and

v′ = v[ui ∧ uj].

Templates

Processes are instantiated from templates as defined in the system declaration.
A template can have zero or more parameters of any type. These parameters can
be referenced anywhere in the model, and are replaced by their actual argument
as defined in the system declaration. Templates are a useful feature for models
with a number of almost-equal automata, such as a train-gate controller with n
trains.

Queries

The query language used by Uppaal is a simplified version of TCTL where
nested path formulas are not allowed. Queries fall in three different classes:
reachability, safety and liveness properties. Reachability properties can be seen
as questions in the form “does property p hold eventually?” and are written
using the syntax E<> p. A safety property states that some property always
holds, and are usually formulated to say that something bad never happens.
The query A[] p is satisfied when p holds in all reachable states. Liveness
properties state that something good will eventually happen. A useful operator
for specifying liveness properties is the leads to operator p --> q, which states
that whenever p is satisfied, q is eventually satisfied.

State formulas are boolean expressions over the discrete and clock variables
of the models, location expressions and the special deadlock expression. Loca-
tion expressions are of the form Process.Location, and evaluate to true if the
specified location is in the location vector of the current state. The deadlock
expression is only allowed in symbolic queries. It evaluates to true for state
(l̄, v) if for all δ ≥ 0, (l̄, v + δ) has no enabled action transition.

2.3 Stochastic Timed Automata
Timed automata can be effectively used for the modelling and analysis of cyber-
physical systems. But even though the formalism is powerful, many real world
complex systems depend on complex dynamics or stochastic behaviour. These
systems can only be approximated when modelled using TA. Furthermore, the

13

computation time of model checking a TA is heavily dependant on the size of
the state space. Extensions to the model can lead to an exponential increase
of computation time. This can make the analysis of models with a large state
space practically infeasible.

In answer to the above problems a new formalism, stochastic timed automata,
is proposed. STAs are an extension to the timed automata formalism, where
stochastic semantics are added to the model. The transition system of an STA
remains unchanged from its TA counterpart. The non-deterministic choices
of delay and switch transitions of TA are instead interpreted as probabilistic
choices. The added semantics allows for a richer analysis of the model. Instead of
asking whether a state is reachable, it is now possible to ask what the probability
of reaching a state is. Networks of STAs (NSTA) are created by composing
multiple STAs. Stochastic semantics for NSTAs are based on races between
components, and are used to efficiently generate simulations of the model.

The stochastic interpretation of the model allows for analysis using statis-
tical model checking instead of traditional model checking methods. SMC uses
simulations of the model to test a hypothesis, and uses the outcome of these
simulations as the statistical data for quantitative properties of the model. Be-
cause SMC is based on runs instead of searching the state space, it can be vastly
more efficient in terms of time and memory consumption compared to exhaus-
tive model checking methods. The rest of this section describes the stochastic
semantics of STAs and details of SMC methods for NSTAs. Full formal defini-
tions and semantics for NPTAs (of which NSTAs are a subset) can be found in
work by David et al. [5].

Delay distributions

With the stochastic interpretation of a TA, delays are chosen from a probability
distribution. Two cases to be distinguished: bounded or unbounded delay. If the
invariant of the current location of the automaton contains an upper bound on a
clock, that location is bounded, and a delay is chosen from a uniform distribution
up to the limit of said constraint.

If the location has no upper bound, the delay is chosen from an exponential
distribution. The model is extended with a function P : L 7→ R+ mapping
a location to an exponential rate. The probability density function of delay
δ ∈ [0,∞) is F (δ) = λe−λδ. During run generation, the concrete delay is
generated by −ln(u)

λ , where u is a uniform random real from the interval (0, 1].
For example, the delay of the transition to location End in Figure 3a is

chosen with an uniform distribution from the interval [2, 4]. Similarly, the delay
in Figure 3b is chosen from an exponential distribution with rate 1

2 .

Statistical Model Checking

The basis of SMC approaches for NSTAs is an algorithm that generates runs
of a model, an outline of which is given here. Inputs to the algorithm are an
NSTA A, consisting of automata A1...An, a clock bound c ∈ R and a clock C

14

(a) (b)

Figure 3: STAs with a bounded and an unbounded delay.

of automaton A. Runs are generated until the value of the clock v(C) ≥ c.
Starting from the initial state (l̄0, v0), let the current state be noted as (l̄, v).
Each automaton picks a delay δi ∈ R+ as described in the previous section. The
automaton Ak with the lowest delay δk is the ‘winner’ of the race. If multiple
automata have delays δi = min1≤i≤n(δi), an automaton is chosen uniformly out
of the possible automata. A switch a is chosen uniformly from the set of enabled
switch transitions in state (l̄, v + δk)

1. The transitions δk−→ (l̄, v + δk)
a−→ (l̄′, v′)

are added to the run, and (l̄′, v′) is assigned to the current state. This process
is repeated until v(C) ≥ c.

Runs of the model are used as the statistical evidence for SMC queries.
Probabilistic properties are expressed using the following syntax:

ψ ::= P(3C≤cϕ) | P(□C≤cϕ)

Where C and c are clock bounds as described above and ϕ a state property.
The expression denotes the probability that property ϕ is satisfied in either at
least one state of a run, or in all states of a run respectively. The notation
is a fragment of Probabilistic CTL (PCTL). Full semantics of PCTL applied
to NSTAs can be found in work by David et al. [5]. Since P(□C≤cϕ) ≡ 1 −
P(3C≤c¬ϕ), SMC algorithms only need a procedure to compute if the property
3C≤cϕ holds for an NSTA.

SMC queries can be either qualitative or quantitative. In the qualitative
case, the probability p = P(3C≤cϕ) is compared against some bound b ∈ [0, 1].
In the quantitative case, the value of p is approximated. In both cases, the user
supplies a number of parameters describing the interval in which p may lie, and
the allowable chances of false or true positives. These parameters are used to
determine the number of runs needed for the computation.

2.4 Stochastic Hybrid Automata
The formalism of timed automata is quite restricted because in general even
small extensions to the formalism (such as variable clock rates) lead to the loss of
decidability of reachability algorithms. However, because SMC uses simulations
of the model instead of reachability algorithms, the restrictions of TA can be
relaxed. If the formalism is extended such that clock rates and clock resets can

1This is possible because a valid NSTA is assumed to be input-enabled, i.e. in every state
a sending switch transition is possible.

15

be specified by an arbitrary expression over clocks, the formalism is generalised
to that of hybrid automata [8]. In this report, we refer to hybrid automata with
defined stochastic semantics as stochastic hybrid automata (SHA).

Standard terminology for hybrid automata differs slightly from that of timed
automata. For instance, the equivalent of clocks in HA are called variables, loca-
tions are control modes and guards are jump conditions. For clarity, this reports
uses timed automata terminology over HA terminology wherever applicable.

Hybrid automata is a powerful formalism suitable for the modelling of many
systems with both discrete and complex continuous dynamics. The reachability
problem of HA is not decidable in the general case, except for more limited
sub-classes such as initialized rectangular hybrid automata.

Syntax and Transition System

As with timed automata, the state space of a hybrid automata A is every pair
(s, v) where the clock valuation v satisfies the invariant I(s) of location s. The
notation of clock delay v+δ with δ ∈ R+ is extended to mean all clocks updated
according to clock rates in the current location.

With the generalised clock delay function, the definition of delay transitions
remains unchanged. Instead of only resetting clocks, switch transitions can
assign any real value to the clocks according to an expression over clocks.

Analysis

Model checking tools for hybrid automata are limited, but available. An early
tool for the analysis of HA is HyTech [9]. It is a symbolic model checker, and
limited to the class of linear hybrid automata.

To support the analysis of general hybrid automata, SMC techniques must
be used. Uppaal SMC is a notable tool capable of this. SMC algorithms for
(networks of) HA are similar to those of NSTAs. The difference is in the run
generation algorithm, which must be updated to support the richer formalism
of HA. Since clock rates are defined by general expressions over clocks, the rate
may be described by an ordinary differential equation (ODE). Thus, the clock
valuations after a delay transition must be computed using an ODE solver. Up-
paal SMC uses fixed time step Euler’s integration method. Note that this only
computes an approximation of the value of the clock, and results are sensitive
to the time step configured by the user.

2.5 Hybrid Automata in UPPAAL SMC
This section provides an overview of the extended formalism of Uppaal SMC
and its analysis methods. When verifying SMC queries, the Uppaal formalism
is extended to support the modelling of stochastic hybrid systems by allowing
clock rates to be defined by general expressions over clocks. Additionally, Up-
paal SMC models support branches with weighted edges to model probabilistic
behaviour on discrete state changes.

16

Branches

When multiple switch transitions are enabled in a TA model, the choice of which
transition to take next is non-deterministic. In an NSTA, this non-deterministic
choice is replaced by a probabilistic choice over the currently enabled edges.
Uppaal SMC allows the modeller to define branches, where outgoing edges are
labelled with a weight. If a switch transition has multiple enabled branches,
the chance that branch i is taken equals wi/Σjwj with wi being the weight of
branch i and Σjwj the sum of all enabled branches. Weights of branches are
defined by general expressions over the variables, and may thus change based
on the state of the model. As an example, the branch to L1 in Figure 4b is
taken with a probability of 1

4 .

(a) (b)

Figure 4: A TA with a non-deterministic choice and its STA counterpart.

Clock rates

In an NHA model, the rate at which clocks evolve may vary from each other.
These clock rates can be defined by simple constants, or by general expressions
involving clocks, allowing clock valuations to be defined by ordinary differential
equations.

Figure 5a shows an example of an HA with variable clock rates, with Figure
5b showing the result of a simulation of the HA. While in the Start location,
clock x increases by 2 units per time unit elapsed. After two time units, the
middle location is reached, and the value of x is defined by the differential
equation x′ = −4

x .

Query language

Uppaal SMC allows for the checking of queries related to the stochastic in-
terpretation of timed automata. Instead of verifying whether some property is
satisfiable, the additional queries allow for reasoning about the probability that
some property holds. These results of these queries are approximated using sta-
tistical model checking algorithms. This means that no exact answer is given.
Instead, an answer with a certain confidence is given.

For example, if we refer back to Figure 3a, we can ask what the probability
p is that after 3 time units the system is in the End location. The probability

17

(a)

(b)

Figure 5: An HA with variable clock rates and the result of its simulation.

estimation algorithm computes how many runs are needed to produce an interval
[p− ε, p+ ε] with confidence 1− a, where ε and a are user-provided constants.
Here, the term confidence is used to mean the chance that the true probability
of the query lies in the interval [p − ε, p + ε]. In Uppaal SMC syntax, this is
expressed using the following query:

Pr [<=3] (<> Process.End)

A result of this query is that p is in [0.46857, 0.568559] with a confidence
of 0.95. The statistical model checking algorithm determines the amount of
simulations required to compute an answer with the specified confidence a and
precision ε on the fly. In this case, 401 simulations were needed.

Additionally, it is possible to perform hypothesis testing, where the user asks
the question if the probability of a certain property is greater or equal than a
certain value. Also it is possible to test whether the probability of one property
is greater than the probability of a second property.

Synchronisation

Synchronisations in Uppaal SMC are restricted to broadcast synchronisations.
This means that synchronisations are never blocking, and that one process can
synchronise with zero or more processes. Multiple processes can synchronise
using channels and communicate using shared variables to generate a Network
of Stochastic Hybrid Automata (NSHA).

Floating-Point support

An additional type is added to the syntax to allow for double precision floating-
point variables. Variables of this type can be used in general expressions and

18

used to store arithmetic expressions. When the clocks are declared as hybrid
clock and the floating-point variables are not used for control of the automata
(i.e. not used in guards, invariants etc.) model checking of the system is still
possible. This means variables that track costs are able to be modelled while
still being able to model check the system.

19

3 Related Work

3.1 Validation of Timed Automata
Work by Onis [14] presents an approach for model validation of timed automata.
The research was limited to the validation of ‘pure’ Uppaal models, so Up-
paal SMC models were not considered. As part of the research, a tool called
UrPal was developed that automatically performed sanity checks of Uppaal
systems in an effort to spot errors early in the modelling process. The tool
supports a number of checks, including unwanted deadlock detection and reach-
ability analysis for all locations and edges in a system. The GUI of Uppaal
was extended to easily allow the modeller to execute the checks and intuitively
show any potential errors in the editor.

The quality of the sanity checks were evaluated using four metrics: sound-
ness, completeness, efficiency and effectiveness. Soundness meant that all re-
ported errors were actual errors, i.e. no false positives are shown to the user.
Similarly, completeness means the absence of false negatives, meaning that if
the model contains any errors, they are all reported. Efficiency was used to
mean the combined efficiency in both time and memory space. Lastly, effec-
tiveness indicates that the result of the check contains enough information to
find the error.

The research highlights some important qualities of validation tools. Espe-
cially the presence of false positives is very detrimental to the effectiveness of
a checker. This is because when a user encounters multiple false positives from
the tool, they no longer trust any of the results and starts ignoring them. Also
efficiency of the check is important, because the longer a check takes, the less
likely the modeller is to perform it regularly.

The tool was implemented as a plug-in and allows the modeller to intuitively
find the error by extending the Uppaal editor. For example, unreachable lo-
cations and edges are shown to the user by colouring them differently in the
editor. Also, if an unwanted state (such as a deadlocked state) is reachable, it
is possible to load a trace to this state into the editor, allowing the modeller to
find the cause of the error.

The plug-in that was developed was used as the basis of the implementation
for the model validation methods explored in this research. More specifically,
techniques for model transformations used to verify properties in UrPal were
used for properties of Uppaal SMC models in our research. Furthermore, a
method was explored to adapt the verification of the sanity checks to be appli-
cable to Uppaal SMC models.

20

3.2 Abstraction Refinement
Counterexample guided abstraction refinement (CEGAR) [4] is a technique for
the model checking of systems with large state spaces. Model checking these
systems with traditional methods is infeasible because of state space explosion.
The solution that CEGAR offers is to first create an abstraction of the original
model that over-approximates the original behaviour. This abstracted model
has a smaller state space, which enables regular model checkers to verify prop-
erties of it. If the abstracted model satisfies a property, then the concrete model
also satisfies the property. If not, the counterexample produced by the model
checker is used for further analysis. If the counterexample is also a counterexam-
ple for the concrete model, the property is unproven. If not, the counterexample
is spurious and the process continues. As long as the property is not proven or
unproven the abstracted model is continuously refined using information from
the counterexample.

In research by Dierks et al. the CEGAR technique is applied to timed au-
tomata model checking using Uppaal [7]. In their work, the model is abstracted
using variable hiding. In the coarsest abstraction, all variables are hidden, and
with every abstraction refinement loop one or more variables are removed from
the list of hidden variables. Counterexamples are analysed by transforming the
trace to a linear test automaton, and model checking the composition of the
test automaton and the concrete model.

A similar approach is used in research by Jha et al. [12]. Their research
proposes a method for reachability analysis of linear hybrid automata inspired
by the CEGAR technique. Their abstraction technique is similar to that of
Dierks et al., in that first all continuous variables are hidden, and with every
refinement loop a set of variables is chosen to be added to the set of used
variables.

We cannot directly apply the CEGAR technique for the validation of HAs
because the reachability problem for the model is in general undecidable. In-
stead, the abstraction technique using variable hiding is used as the basis for
the HA to TA abstraction method explored in this research. In our method, the
abstraction is not used to reduce the state space, but is instead used to trans-
form a model from an undecidable formalism (HA) to a decidable one (TA) by
hiding clock variables with a non-uniform rate. While not explored in this re-
search, the method for verifying whether a counter-example is spurious through
the use of a test automaton could be applied to check if a trace obtained from
the abstract TA model is part of the language of the original model.

3.3 UPPAAL Slicing
The implementation of variable-hiding abstractions for timed automata, as de-
scribed in the previous section, is relatively straight-forward using reductions of
expressions in guards and invariants. Doing the same for Uppaal models intro-
duces complications, since Uppaal extends the TA formalism by (among other
features) a C-like modelling language. The valuation of a hidden variable can

21

affect other variables in the model depending on the control flow of a function.
Automatic analysis of the modelling language to determine the dependencies of
such variables is a non-trivial problem.

Work by Sørensen and Thrane [16] introduces a method for automatic pro-
gram slicing [18] of Uppaal models. Program slicing is the (automated) method
of reducing a program to use a subset of its variables while preserving (a part
of) the behaviour of the original program. The work describes a program slicing
technique for Uppaal models that preserves reachability.

The intended use of the method was to reduce the state space for models,
in order to make verification practically possible, where previously it was not.
While the method was not used in our research, it could be applied in conjunc-
tion with the variable hiding abstraction method to produce a model with a
minimal abstraction of the discrete variables.

22

4 Method

Recall the research question: In what ways is it possible to perform model
validation of stochastic hybrid automata?. This research attempts to answer
this question by bringing potential model validation techniques into practice,
by implementing them as part of a tool for Uppaal SMC models. Next, the
techniques are evaluated in two ways. Firstly, a theoretical analysis of the
verification methods is made to determine whether the procedures are sound and
complete (i.e., unable to produce false positives or false negatives). Secondly,
a qualitative evaluation of the tool is performed using case studies. The cases
use Uppaal SMC models used in research, and attempt to replicate the model
validation process with the aid of our tool in a real-world context.

4.1 Tool Design
The tool is designed so that the three sub-research questions can be answered.
The first question ‘Which properties of stochastic hybrid automata can be used to
validate models?’ is answered in Section 7. It describes all implemented model
validation properties in detail. The practical utility of these properties as a tool
to specify a valid model is explored in the case studies.

Section 6 answers the second question, ‘How can properties of stochastic
hybrid automata be verified?’ by discussing two implemented algorithms. The
architecture separates the verification algorithms from the model specification
so that it becomes possible to compare them. Soundness and completeness
of the verification methods for properties of hybrid automata are determined.
A qualitative evaluation is performed as part of the case studies, the results
of which are used to make a comparison of the merits and demerits of both
methods.

The final research question, ‘How can the results of the validation best be
communicated to the user?’, is answered through implementation in the tool
and evaluation through case studies. The design of the user interface is such
that it allows the user to perform two aspects of model validation: finding faults
and verifying the absence of faults. The evaluation assesses the effectiveness of
this process by determining the use of the tool in finding and fixing faults in a
model.

4.2 Evaluation Method
In the case studies, the tool is used for the validation of Uppaal SMC models
used in research. For each model, a specification is made which is consequently
verified. The result of this is either that the model is valid (according to the
specification), or that it contains faults. If the model contains a fault, the
tool is used to alleviate the problem, and the steps required to produce a valid

23

model are noted. To structure the evaluation, several qualitative metrics for the
properties used for validation and the verification methods. For the verification
methods, we use the following metrics:

• Soundness – If the outcome of the procedure is that a model is valid,
then the model is valid in truth. In other words, the procedure does not
produce false positives.

• Completeness – If a model is valid, then the outcome of the procedure
is that the model is valid. In other words, the procedure does not produce
false negatives.

• Time performance – The time required for verification is measured.
Since these measurements can be highly dependent on characteristics of
the model (e.g. number of locations, edges, variables et cetera) the indi-
vidual measurements are not very meaningful. Instead, the measurements
are used to determine the practicality of the method. For instance, a pro-
cedure might produce correct outcomes, yet if the computations takes over
a day its practical utility is limited.

• Utility – The above metrics are used to make an assessment of the utility
of the verification method in the following three use cases: proving validity,
finding faults and fixing faults. This can be used to show the specific
strengths of a method in a particular use case.

For the evaluation of the validation properties we use the following qualita-
tive metrics:

• Ease of use – A measure of how easy it is to configure the property to
accurately specify correct behaviour of the model.

• Improvement over existing methods –What alternatives to this prop-
erty exist, and how much of an improvement is the property over said
alternatives?

• Applicability – What is the range of use cases where the property is
helpful?

24

5 Implementation

In order to evaluate model validation methods a plug-in for the Uppaal editor
was developed. When installed, an additional tab is present in the editor, in
which the modeller can configure the model validation procedure. This config-
uration can be manipulated using an user interface that visualises all available
options. Alternatively, this configuration can be specified with a textual format,
and verification can be performed using the command line. This option can be
used to automate the model validation procedure. The rest of this section will
go into further detail of the internal implementation of the tool.

5.1 Architecture
5.1.1 Model views

As mentioned above, the tool is mainly intended to be used as a plug-in for
Uppaal. This choice was made because it made for a user-friendly way of
installing and using the tool (requiring only the user to place a file in the Uppaal
installation directory). Furthermore, all of the various options for validation are
laid out in the GUI, allowing the modeller to try out various methods without
having to resort to reading a manual every time.

The tool is a heavily adapted version of the UrPal tool developed by Onis
[14]. Re-using this existing code base allowed for faster development, since it
already provided practical ways of manipulating the Uppaal editor, parsing
and transforming models and verifying queries on (transformed) models.

Plain text NSTA

Document UppaalSystem

Figure 6: Representations of Uppaal SMC models and their transformations.

Figure 6 gives an overview of the various representations of Uppaal SMC
models used internally. Plug-ins can read and modify models loaded in the
editor as a Document object. This view is a thin wrapper over the XML format
of models, and also includes ‘stylistic’ information such as positions of locations,
comments and node colours. Since this is a direct view of the model loaded in the
editor, invalid models (e.g. models with syntax errors) can also be represented
using this format.

A Document object can be compiled to an UppaalSystem object. Here, the
templates are instantiated into zero or more processes and the specifications

25

ValidationSpec PropertyConfig

Property

Parameter

Constant overwrite

Clock Bounds

*

*

0..1

1

*

Figure 7: Simplified class diagram of the validation specification.

and expressions are compiled to an intermediate format. Naturally, all stylistic
information such as text formatting and node positions is lost in the compi-
lation process. A successfully compiled UppaalSystem object can be used for
verification of applicable Uppaal queries.

In a Document object, all expressions and declarations of a model are stored
as plain text. In order to effectively manipulate the loaded models they are
first parsed to an NSTA 2 object. This interface is provided as a library with
Java code generated from EMF [17] metamodels, developed by Schivo et al.
[15]. The library represents Uppaal models in an object-oriented way, with
expressions and the specification language being parsed to an AST. Using the
library facilitates writing model transformations, since writing a custom parser
for Uppaal syntax is avoided, and any model generated from an NSTA object
will already be syntactically correct.

The transformations between Uppaal XML files and NSTA objects (and vice-
versa) only preserves structural information. Any comments or special format-
ting in the expressions and specification language are lost because of the conver-
sion to an AST. Furthermore, layout information such as positions of locations,
edges or labels and location colours is lost in the parsing and serialisation pro-
cess.

5.1.2 Validation Specification

The plug-in allows the modeller to create a simple specification for their model,
called the validation specification. The modeller constructs this specification
such that when all checks pass, the model is considered valid. This is a different
approach to the interface of validation tools when compared to UrPal. Whereas
UrPal provided a list of checks that required no configuration at all, our im-

2The class as used by the library is called NSTA. This is a slight misnomer since the model
supports clock rates defined by expressions over clocks, and thus is a hybrid automaton instead
of a (stochastic) timed automaton. This report refers to the class NSTA using a monospaced
font, being distinct from the formalism of Networks of Stochastic Timed Automata (NSTA).

26

plemented validation methods requires configuration of the checks according to
the desired behaviour of the model. This is a compromise in the user-interface
philosophy, trading ease and speed of setting up the tool for more powerful
verification methods.

The specification consists of a sequence of checks combined with a configu-
ration for model checking and a pre-processing step. Figure 7 shows a partial
class diagram of the validation specification. A ValidationSpec contains a list
of PropertyConfig objects, which have a reference to the actual property being
checked (further explained in Section 7) and its parameters. The parameter field
is a key-value mapping containing both mandatory and optional parameters, de-
pending on the property. A ValidationSpec optionally has clock bounds, and
zero or more constant variable overwrites, both related to pre-processing steps.
These options are further elaborated on in section 6.2.3 and 6.2.4 respectively.

The validation specification can be parsed from and serialised to a JSON
format. When using the plug-in, this allows the specification to be saved with
the Uppaal model, preserving the specification and allowing it to be easily
shared.

5.2 Separation of Model Checker and Property
As the reachability problem for hybrid automata is not decidable, some ap-
proximative method must be developed to verify properties of the model. This
research investigated two methods, a symbolic and a concrete checking method,
which are further elaborated on in section 6.

Furthermore, the tool uses several validation properties. Conceptually, a
validation property is a yes/no question over the model, with a positive an-
swer indicating validity. Section 7 goes into further detail on the implemented
properties.

For maximal flexibility, the tool can pair both model checking methods with
any validation property. Figure 8 gives an overview of the verification method
for the validation properties. First, a number of pre-processing steps are applied
to the model, related to reducing the verification time and restricting model be-
haviour (further discussed in sections 6.2.3 and 6.2.4). A validation property is
abstracted to a function that takes an Uppaal SMC model as parameter, and
returns a transformed model, and a state formula. The abstract view of a reach-
ability checker is a function with an Uppaal SMC model and a state formula
as parameters, which returns whether the model can reach a state satisfying the
given state formula. Optionally, a trace leading to such a state is produced, as
illustrated in Figure 9. This abstraction allows the verification algorithm to be
agnostic of the reachability checking method used, and thus easily allows the
modeller to choose the method that suits their use case optimally.

5.3 UPPAAL Editor Integration
Manipulation of the Uppaal editor is done using the recently supported plug-
in API. This API allows the currently loaded model to be read and modified

27

Uppaal SMC
Model

Pre-processing

Transform
model

Check query Show trace

Property valid

Property satisfiable

Property unsatisfiable

Figure 8: Schematic view of the verification method for validation properties.

using the Document interface. Additionally, traces obtained from the verification
of Uppaal queries can be loaded in the editor. However, only the loading of
symbolic traces is currently supported. These traces are tightly coupled to
the currently loaded model in the editor, which causes traces obtained from
transformed models not to be easily loaded in the editor without additional
transformations. In order to be shown in the editor, traces from transformed
models must be modified such that the general structure (number of variables,
template instantiations et cetera) matches the original loaded model. This is
the approach that was used for one of the sanity checks implemented in UrPal.

Since the intended usage of our tool involves showing both symbolic and
concrete traces, and these traces are obtained from queries over transformed
models, loading traces using the plug-in API is circumvented. Instead, traces
are shown using manipulation of UI elements in the editor. Effectively, this
emulates manually loading the transformed model, adding a query to the query
list, and pressing the button to show a trace in the editor.

This alternative approach has the benefit of working with any transformed
model, without the need to transform the trace. Also, concrete traces are sup-
ported without requiring any additional work. The drawback to this approach is
that trace view in the editor shows the transformed model, instead of the orig-
inal model. This causes auxiliary variables required for property verification
to be visible to the user. The formatting information of expressions (guards,
invariants et cetera) is lost in the conversion of a model to a NSTA view and
back. This causes the model shown in the trace view to differ visually from the
original model, and may lead to overlap of expression labels.

The NSTA model view does not contain the positions of locations, location

28

(a) UI component of an unsatisfied val-
idation property. Pressing the ‘Load
Trace’ button loads a trace leading to
the unsafe state in the editor, as seen
in Figure 9b. (b) A partial view of the trace window

in Uppaal. Selecting any of the states
of this trace shows the exact state of
the model at that time in the rest of
the window.

Figure 9: Example usage of showing a trace to an unsafe state. This property
configuration is part of the case study detailed in Section 8.1.1

names, edge segments or expressions as shown in the Uppaal editor view. The
tool implements an extended NSTA to Document transformation with the original
Uppaal model as additional parameter. The original model is used to set the
positions of elements in the transformed model. As a result, the model shown
in the trace view closely resembles the original model.

29

6 Reachability Algorithms

Some of the implemented validation properties can be generalised as either safety
properties (an unsafe state is never reached), or reachability properties (a desired
state is eventually reached). For greater flexibility in model validation methods,
the tool separates validation properties from model checking procedures. A
validation property is generalised to a procedure that performs some kind of
model transformation, and returns a state formula specifying either a desired
or unwanted state (i.e. a reachability property or a safety property).

In TCTL, safety properties can be expressed as A□¬ϕ, and reachability
properties can be expressed as E3ϕ . Since A□¬ϕ ≡ ¬E3ϕ, we only require
an algorithm that decides if an NHA M can reach a state satisfying ϕ.

The problem here is that reachability checking of hybrid automata is, in gen-
eral, undecidable. However, for the purposes of model validation, an algorithm
that is either unsound or incomplete could provide enough useful information
to the modeller. Presented below are the different approaches to reachability
checking that are used in this research.

6.1 Concrete Checking
The simplest way to perform reachability checking is to use a simulation-based
approach. Here, the simulation algorithm produces n runs of the model, and
terminates if at any time the state of the model satisfies ϕ, concluding that the
state is reachable. However, if the algorithm has not found a run satisfying ϕ
after n runs, no definitive conclusion can be made. This results indicates that
either the state is unreachable, or that, by chance, the state has not been visited
yet.

Even though the algorithm is not complete, it still provides useful infor-
mation to the modeller. For large enough n, if no accepting run is found, the
modeller gains confidence that the state is indeed unreachable.

Uppaal SMC provides a way to perform a number of simulations and filter
the runs using a state formula. The syntax of this query is as follows:

simulate [<=t;n] {expression+} : m : ϕ

Where t is the global time bound of the simulation and n is the number of
runs performed. The simulator plots the trajectories of one or more expressions
specified in expression+. The runs are limited to the predicate ϕ, meaning that
the simulation stops when ϕ is satisfied. If the run does not satisfy the predicate
at any point it is discarded and not shown in the results. The simulator stops
after m satisfying runs have been found.

We use the following query for reachability checking:

simulate [<=t;n] {0} : 1 : ϕ

30

Here, t and n are constants provided by the modeller, and ϕ is the state
formula specified by the validation property. Because at least one expression
must be provided, and we are not interested in plots of the simulation, we
simply give the constant 0 as the expression list. After one satisfying run has
been found it is known that ϕ is reachable, so the search can stop.

6.2 Symbolic Checking
Whereas the reachability problem is undecidable for hybrid automata, it is de-
cidable for timed automata. Because TA are a sub-class of HA, it is possible to
create a TA that is an abstraction of the original HA. Standard model checking
algorithms can then be used to determine reachability. The limitation is that
the abstract model is only an approximation of the original (concrete) model.
This section first discusses an abstraction algorithm for hybrid automata, and
the implication of model checking an abstraction instead of the concrete model.
Next, the implementation of the abstraction algorithm for Uppaal SMC mod-
els is discussed, along with other transformations required for practical model
checking.

The terminology used in this section is derived from CEGAR [4] terminology.
The original, untransformed model is called the concrete model, and is noted
as M . An abstraction, or the abstract model of the original is noted as M̂ .
The abstraction function h maps a model to its abstract counterpart. The
abstraction method presented here is derived from work on CEGAR techniques
for timed automata by Dierks et al. [7]. Recall that in their work the basis
of the abstraction function was variable hiding, where the abstract model only
uses a subset of the set of clocks, and guards and invariants are relaxed so that
they do not reference hidden clocks. The abstraction algorithm presented here
is similar, but differs in that it is an HA to TA transformation instead of TA to
TA.

6.2.1 Abstraction Algorithm for Hybrid Automata

If an HA contains a clock that can grow at a non-uniform rate (i.e. the derivative
of the clock over time is not 1), reachability checking is undecidable in the
general case [10]. The basis of our approach is to remove non-uniform clocks
from the model while relaxing the guards and invariants as little as possible.

First, a set H containing all non-uniform clock variables is created. A non-
uniform clock is a clock whose rate is defined and unequal to 1 in one or more
invariants. All clocks in H are removed from the set of clocks in M̂ . Next, all
invariants, guards and updates are changed so that they no longer reference a
variable in H. We define the abstraction function h over expressions as follows:

h(ϕ1 ∧ ... ∧ ϕn) ≡ h′(ϕ1) ∧ ... ∧ h′(ϕn)

h′(ϕ) ≡

{
true if ϕ ∈ EH

ϕ otherwise

31

Where EH is the set of all expressions containing a variable in H. The
expression abstraction h is chosen such that if ϕ is satisfied for some valuation
v, h(ϕ) is also satisfied for v.

Lemma 1. For any valuation v, v |= ϕ⇒ v |= h(ϕ).

Proof. To prove Lemma 1, we assume v |= ϕ and attempt to prove v |= h(ϕ).
For ϕ ≡ ϕ1 ∧ .. ∧ ϕn, since v |= ϕ, we have v |= ϕi for i ≤ n. For ϕi, we have
either:

• h(ϕi) ≡ ϕi. In this case, v |= ϕi implies v |= h(ϕi).

• Or h(ϕi) ≡ true. Trivially, in this case v |= h(ϕi).

Since we have v |= h(ϕi) for i ≤ n, and h(ϕ) = h(ϕ1) ∧ .. ∧ h(ϕn), we have
shown that v |= ϕ⇒ v |= h(ϕ).

Proof Sketch of Over-Approximation

A general contract for the abstraction function h is that the abstracted model
M̂ must be a strict over-approximation of the concrete model M . Formally, we
define this property as s → s′ ⇒ h(s) → h(s′). This means that for any state,
if M is able to take a transition, M̂ must be able to take the same transition.
To prove this, we consider both kinds of transition that an NHA or NTA may
take, delay- and action transitions.

For delay transitions, we have (L, v)
d−→ (L, v′), where d ∈ R+, L is the

location vector, and v and v′ are valuations of the clocks and data variables.
We have v′ = v + d, where v′ is obtained by delaying all clock valuations by d
(according to clock rates). Delay transitions are restricted by invariants, where
for all d′ ∈ [0, d], v + d′ |= Inv(L) must hold (where Inv(L) is the conjunction
of the invariants in L).

If we have s d−→ s′ in M , we must also have h(s) d−→ h(s′) in M̂ . If s d−→ s′ is a
valid transition, then the invariants hold for any delay up to d. Using Lemma 1,
we know that the abstracted invariants also hold, and therefore the transition
h(s)

d−→ h(s′) is valid in M̂ .
For action transitions, we can take a similar approach. An action transition

is a transition (L, v)
c−→ (L′, v′), with c either a channel or τ (signifying an

internal transition). Among other restrictions, the transition is enabled when
v satisfies all guards of the involved edges, and v′ satisfies the invariants in L′.
Using Lemma 1, we know that if an action transition is enabled inM , then h(v)
satisfies the relevant guards in M̂ , and h(v′) satisfies the abstract invariants.
The only updates that are removed are those assigning values to non-uniform
clocks, so the valuation of every ‘uniform’ clock is equal between v′ and h(v′).

32

s0
M ψ1 ψ2M̂

Figure 10: The reachable state space of a model M and its abstraction M̂ , and
state predicates ψ1 and ψ2.

Implications of Over-Abstractions

Since the abstract model M̂ is an over-abstraction of M , checking safety prop-
erties using this method is sound, but not complete. So for any safety property
ϕs ≡ A□ψ with ψ a state predicate, M̂ |= ϕs ⇒ M |= ϕs, but conversely
M |= ϕs ̸⇒ M̂ |= ϕs. Similarly, for reachability properties ϕr ≡ E3ψ, property
checking is complete since M |= ϕr ⇒ M̂ |= ϕr, yet not sound.

These implications are illustrated in Figure 10, where the regions marked
M and M̂ note the set of reachable states of a model and its abstraction re-
spectively, s0 being the initial state, and ψ1 and ψ2 note the sets of states that
satisfy the two state predicates. Here, checking the formula E3ψ1 using an
over-approximative model would result in the correct answer, seeing as a state
in ψ1 is indeed reachable from s0 (as shown using the solid transition sequence).
Using the same method to check E3ψ2 results in a false positive, since it is
only reachable through states in M̂ and not M (shown by the dotted transition
sequence).

6.2.2 Abstractions of UPPAAL SMC Models

We now describe how the abstraction method for NHAs is applied to Up-
paal SMC models. Since the Uppaal and Uppaal SMC formalisms are exten-
sions to NTAs and NHAs additional transformations are required. Specifically,
Uppaal SMC supports models with double-type floating-point variables, which
cannot be used with symbolic model checking. The abstraction algorithm is ex-
tended so that the set H of hidden variables not only contains clocks with a
non-uniform rate, but also all data variables of type double.

This causes complications because the model may contain functions whose
control flow is dependant on a hidden variable. Consider the model in Figure 11,
where a function may assign different values to a variable depending on a condi-
tion expression containing a double-typed variable. If the abstraction algorithm
were to simply remove the reference to d in the branch condition, changing d

33

double d;
int i;

void f() {
if (d < 0) {

i = 1;
} else {

i = 2;
}

}

Figure 11: An Uppaal SMC model with control flow dependant on a floating-
point variable.

< 0 to true, the resulting model would not be a strict over-approximation of
the concrete model. In this case, the A −→ B transition would always result in
i = 1, making location C unreachable. Since location C can be reachable in the
concrete model, this abstraction method does not always result in an abstract
model that is an over-approximation.

The abstraction method is extended to also hide functions, as well as clock
and data variables. To prevent the above problem, the implemented abstraction
method also hides all variables that may be written to by a hidden function.
The abstraction is defined so that none of the data variables in the model are
affected by the values of hidden variables.

The method has a black-box view of functions, only considering the set of
variables that a function references, and the set of variables whose value may
be updated. The algorithm creates a set of hidden variables HV , and a set of
hidden functions HF . HV and HF are defined as the minimal set of variables
and functions in a model that conform to the following rules:

1. All clock variables with a non-uniform rate and all data variables of type
double are in HV .

2. If a function contains any identifier expression of a variable in HV , that
function is in HF .

3. All variables on the left-hand side of an assignment expression 3 in a
function in HF are in HV .

4. All functions that appear in a function call expression in a function in HF

are also in HF .
3An assignment expression being any expression that may change the value of a variable.

In Uppaal this is either the statement v=e with e an expression (or v+=e, v*=e etc.), or a
post-/pre- increment/decrement expression (v++, v--, ++v or --v).

34

5. All functions that contain a function call expression to a function in HF

are in HF .

Rule 2 states that any function that has any reference to a hidden variable
is also hidden. Since the control flow of a hidden function depends on hidden
variables, any variable that the function may write to must also be hidden,
resulting in rule 3. If a hidden function f calls another function g, the variables
written to by g are affected by the hidden function f and must therefore also
be hidden, resulting in rule 4. Similarly, if a function calls a hidden function,
its control flow is dependant on a hidden function and thus must be hidden as
well, resulting in rule 5.

The algorithm is implemented using mutable sets HV , initially filled accord-
ing to rule 1, and HF , initially empty. For every function in the model, the
algorithm iterates over the nodes of its AST, adding any variable or function
that conform to rules 2 to 5 to the sets. This process repeats until no new
variable or function is added to HV or HF .

It can be seen that the proposed abstraction algorithm is coarse, and pro-
duces an abstract model which may hide more behaviour than is strictly re-
quired. Future work may research alternate approaches in an effort to produce
finer abstractions (i.e. abstractions where fewer variables are hidden). This
could be performed by analysis of the control-flow graph of the function, to
determine whether the values of data variables are affected by expressions over
hidden (double) variables.

The implemented abstraction algorithm supports a limited but significant
subset of Uppaal SMC models. One of the unsupported features of Up-
paal SMC is the dynamic creation of processes, where during runtime process
can ‘spawn’ an arbitrary amount of new processes to be added to the model.

6.2.3 Time Bounding

With Uppaal SMC, every query is bounded, meaning that the SMC algorithm
generates runs that end when the value of a clock x exceeds d. When no clock
is specified, x is used to signify global time, and is substituted for a new clock
that is never reset. The modeller might therefore rely on the fact that simula-
tions of the model will eventually terminate. This, however, presents a problem
when using our TA abstraction method, as TCTL formulas are not bounded.
For example, a cycle-based Uppaal SMC model might contain some counter
variable that keeps track of how often a certain event occurs. Since simulations
of the model are bounded, the value of this variable will never exceed some finite
value. If this model is subsequently abstracted to a TA and model checking is
performed, there is no end state of the system. The value of the counter variable
would thus grow indefinitely, making the state space of the model infinite.

Our tool provides a practical solution to this problem. When using TA
abstraction, the user has the option to specify an optional clock x and a time-
bound for said clock. If no clock is specified, x is assigned to a new global clock
that is never reset. When this option is enabled, an additional automaton is

35

Figure 12: A time-bounded automaton.

added to the network, as visualised in Figure 12. When x = n, an invariant
restricts further delay transitions and the automaton enters an urgent location
End. In this state, the model is not able to take delay transitions, but only
action transitions, ensuring that a state where x > n is unreachable.

Figure 13: The time bounding dialog in the Uppaal plug-in window.

6.2.4 Constant Variable Overwrite

As this method uses model checking methods over the abstract model, it is
subject to the problem of state-space explosion. Uppaal SMC queries are
simulation-based and therefore do not suffer from the same problem. As a
consequence, the creator of an Uppaal SMC model does not have a large in-
centive to reduce the state space of said model. This presents an obstacle for
symbolic checking of NHAs, as the abstract model might have a state space
too large to be checked in a practical amount of time. If this is the case, our
tool offers some simple methods to simplify the model enough to make model
checking feasible.

Uppaal models often contain multiple similar processes that are instantiated
from one template (the train-gate model is an example of this). The amount of
template instantiations is often determined by some constant N in the global
declarations of the model. The complex behaviour that occurs when a number of
processes interact is often of interest to the modeller. Every additional process
increases the symbolic state-space exponentially. However, for the purposes of
model validation, one or two instantiations might be enough to find errors or to
verify correctness.

Figure 14: The constant overwrite dialog in the Uppaal plug-in window.

36

To effectively allow the user to change the number of process instantiations
when using symbolic model checking, a pre-processing step is added to the
validation method. Figure 14 shows the UI dialog of this option in the Uppaal
editor. The user is able to specify zero or more global constants of the model,
and assign a new value to them. This changed model is then used for the
validation procedure.

37

7 Validation Properties

This section discusses the definitions and implementations of the validation
properties used in the model validation tool. Sections 7.1 through 7.3 discuss
the original properties developed for this work, and Section 7.4 describes how a
subset of the checks in UrPal were implemented in the tool.

7.1 Model Invariant
The simplest and most general validation property implemented is the model
invariant. This property states that all reachable states of the checked model
should satisfy the given invariant ϕ. Expressed in TCTL, the property is defined
asM |= A□ϕ, withM the model under test. The invariant is the only parameter
of this property, and can be noted as any valid Uppaal state predicate. This
makes it possible to express properties over the variables of the model (e.g.
x > 4) or the currently active location in a process (using the Process.Location
syntax). Additionally, the deadlock keyword can be used if the property is
verified using symbolic model checking (deadlock checking cannot be performed
using Uppaal SMC queries because it relies on finite runs of the model).

The modeller can use this property to ensure that states that should be
unreachable if the model is correct are indeed not reachable. If a state that
does not satisfy the invariant can be reached, the model is considered invalid.
Depending on the reachability checking method used, either a symbolic or a
concrete trace to such a state can be shown in the Uppaal editor. The trace
shows a transition sequence leading to the incorrect state, which can help the
user to determine the exact cause of the incorrect behaviour and resolve the
error.

7.2 Synchronisation Check
It was observed that a common pattern in Uppaal models is to have a process
that should be able to react to a synchronisation in every possible state. For
example, if a different process sends a reset signal, the receiving process should
always return to an initial location and state. Because the modeller has to
manually add the receiving transitions, it is not unlikely for a mistake to occur,
which would lead to incorrect behaviour of the model. In Uppaal SMC, this
can occur even more frequently, because only broadcast synchronisations are
allowed. Broadcast synchronisations are one-to-many, and are non-blocking,
meaning that the sending process can always take a synchronisation-sending
transition, even if there is no process ready to receive the synchronisation.

In order to find mistakes related to failing to synchronise, we added a mecha-
nism to check whether a process in an NHA is always capable of synchronisation
on a given channel. Expressed more formally, the checked property is satisfied

38

if all processes P instantiated from a given template T take a receiving-edge
transition when some other process takes a sending-edge transition, unless the
ignore condition ϕ is satisfied. The modeller can specify an ignore condition to
filter out false-negatives. For instance, a process would probably not have to
react to a reset signal if it already is in the initial state.

7.2.1 Implementation

Our approach works by transforming the model to count the number of
receiving-edge transitions taken, and checking if it equals the expected value.
Given a user-specified channel c and template T , let n be the number of processes
instantiated from this template. The model is extended with a global integer
variable m, representing the number of receiving-edge transitions ‘missed’. On
every edge in the model with the synchronisation c!, the update m := n is ap-
pended. On every edge of template T with the synchronisation c? or c!, the
update m := m − 1 is appended. Then, the property m ̸= 0 is checked for
reachability. If it is reachable, a process is unable to take the receiving-edge
transition in some state, and an error is reported to the user.

The above method is able to work because in Uppaal, updates are evaluated
sequentially, not concurrently. Furthermore, updates on the sending edge are
evaluated before updates on the receiving edge. This means that setting the
value of m to n always happens before the decrements. So, if all n receiving
processes are able to synchronise, m is decremented n times, and equals 0 again
after the transition. The decrement update is also added to a sending edge if it
belongs to template T , so that the check is still correct if the sending process is
one of the processes instantiated from T . This update must be evaluated after
the initial assignment of m to n.

However, incorporating an ignore condition ϕ requires additional model
transformations. It is not sufficient to simply check reachability for the state
m ̸= 0 ∧ ¬ϕ, because if a ‘missed’ synchronisation occurs while ϕ is true, the
model remains in a state where m > 0. It is then possible that the model can
reach a state where ϕ becomes true and the value of m remains unchanged,
which would lead to a false positive reported to the user.

To illustrate this, consider the example in Figure 15. Here, the goal is to
check if the reset? synchronisation is always taken in process P , unless the
process is already in the initial location Start, so ignore condition ϕ ≡ P.Start.
With the model transformation as described above, the predicate m ̸= 0 ∧ ¬ϕ
is reachable with the following transition sequence:

((Start,Q1),m = 0)
reset−−−→ ((Start,Q1),m = 1) −→ ((Work,Q1),m = 1)

It can be seen that this is a false positive, because the reset synchronisation
was taken while process P was in the Start location, even though the ignore
condition was meant to filter out this case.

To circumvent this incorrect behaviour, the model transformation must be
extended so that the searched property can only be true after a synchronising

39

(a) Process P . (b) Process Q.

Figure 15: An example of an NHA communicating with a broadcast channel.

transition, and that any action or delay transition after that makes the property
false. The model transformation is extended as follows:

• On every edge that does not synchronise over the specified channel c, the
update m := 0 is appended.

• An additional clock t is added, and the update t := 0 is appended to every
edge labelled with c!.

Now, the property ψ ≡ m ̸= 0 ∧ ¬ϕ ∧ t = 0 is checked for reachability. The
first additional model transformation ensures that any action transition resetm,
and thus the state m > 0 cannot persist between action transitions. The clock
reset of t and the additional condition t = 0 ensures that any delay transition
after c−→ invalidates the property.

(a) Process P . (b) Process Q.

Figure 16: The NHA of Figure 15 with model transformations supporting ignore
conditions.

Figure 16 shows the NHA of Figure 15 with the extended model transforma-
tions. It can be seen that the transition sequence that led to the false positive
earlier is now no longer possible, because the edge Start −→ Work now has the
update m := 0.

7.2.2 Usage

The results of the reachability check of ψ are reported to the user. If ψ is
unreachable, the model behaves according to the specification, and a positive
result is reported. If not, Uppaal generates a trace (either concrete or sym-
bolic), which is loaded in the editor for the modeller to inspect. The trace shows
the exact transitions taken to reach the invalid state, and allows the modeller
to deduce why the model was able to reach the undesired state.

40

broadcast chan a, u;
chan priority default < u;

Figure 17: The checker process for synchronisation post-condition verification.

7.3 Synchronisation Post-Condition
This property allows specifying an expression that should always be satisfied
directly after a synchronisation on a broadcast channel takes place. Expressed
formally, the property is valid if for a given state predicate ϕ and channel a, the
model cannot reach a state s where s′ a−→ s and s ̸|= ϕ. Essentially, the property
allows the modeller to specify a contract for channel synchronisations.

7.3.1 Implementation

Since the Uppaal query language provides no mechanism to specify a state
after a channel synchronisation, model transformations are required to verify
the property. Our approach works by adding a checker process to the model
that listens to the specified broadcast channel a. Figure 17 shows this template.

The process is constructed such that when a synchronisation over channel a
occurs, the only enabled transition sequence is the following:

((l1, ..., ln−1,Wait), v)
a−→ ((l′1, ..., l

′
n−1, Check), v

′)
u−→ ((l′1, ..., l

′
n−1,Wait), v′)

This specifies that the locations of the other processes and the clock valuation
cannot change when the system is in the Check location.

The process remains in the Wait location until an action transition with
channel a is taken, and the process enters the Check location. The model is
defined so that while the system is in the Check location, the only enabled
transition is the internal transition to the Wait location. Because the Check
location is marked as committed, no delay transitions can be taken, and only
edge transitions starting from a committed location are enabled.

To avoid the possibility of another process taking a transition from a com-
mitted location, another restricting mechanism is required. Channel priorities
are used to ensure that the Check −→ Wait transition is the only enabled tran-
sition. In the Uppaal formalism, a transition is enabled if no higher priority
transition is enabled. Channel priorities are defined in the global declarations
of an Uppaal model where, for example, the declaration chan priority a <
b means that channel b has a higher priority than channel a.

The model transformation adds an auxiliary channel u to the model, and
ensures that it has the highest priority. If no channel priority was earlier defined

41

in the model, the statement chan priority default < u; is appended to the
global declarations. If the model already contained a channel priority statement,
u is appended at the end so that all other channels have a lower priority. The
synchronisation u! is added to the Check −→ Wait edge, guaranteeing that its
transition takes precedence over all other transitions.

Unfortunately, channel priorities are not supported in the verification of Up-
paal SMC queries. When concrete reachability checking is used for verification,
the channel u is left out of the transformed model. As a result, it becomes pos-
sible for a false positive to occur if another process takes a transition leaving
a committed location while the checker process is in the Check location. Since
Uppaal SMC provides no other mechanism to prioritise a transition, this false
positive remains a possibility. As a work-around, the modeller can manually
relax the post-condition predicate ϕ such that the erroneous state is filtered out.

7.3.2 Usage

Like the two validation properties discussed above, this property can be checked
either symbolically or using concrete simulations. Again, a trace leading to the
invalid state can be loaded in the editor to determine the cause of the incorrect
behaviour.

7.4 UrPal Checks
Besides the validation properties described in the sections above, our tool also
supports a number of the sanity checks developed for UrPal. Since the sanity
checks are verified using symbolic model checking, the Uppaal SMC models are
first abstracted to a ‘pure’ Uppaal model before further verification. Using this
method, it takes little engineering effort to adapt the existing sanity checks to
support SMC models, only requiring changes to handle the updated architecture
and user interface changes. As a proof of concept, the model validation tool
currently supports two of the sanity checks, further discussed below.

7.4.1 Unwanted Deadlocks

In a timed automaton, a deadlocked state is a state for which no action tran-
sitions are enabled in the time-abstract transition system (i.e. a state s where
only delay transitions are enabled, and no state s′ with an enabled action tran-
sition can be reached from s). Since in some models a deadlocked state is part
of the intended behaviour of the model, UrPal defines a wanted deadlock as
a deadlocked state where one or more locations in the location vector has no
outgoing edges. The assumption is that these locations are intended to be dead-
lock locations, and a deadlock state containing one of these locations is therefore
not erroneous. Consequently, an unwanted deadlock is defined as a deadlocked
state where all of the locations in the location vector have one or more outgoing
edges.

42

The implementation first creates the set of locations in the model with no
outgoing edges. The following Uppaal query is checked symbolically on the
abstract model:

A[] deadlock imply (P1.L1 or ... or Pn.Ln)

With Pi.Li a location without outgoing edges. Similar to the validation
properties, if the property is satisfied, a positive result is reported to the user.
If not, a negative result is displayed, and the user has the option to load a trace
leading to the deadlock state in the Uppaal editor.

Since this property is a safety condition and the abstracted model is an over-
approximation, verification is sound but not complete. In other words, if the
result of the verification is positive, it is guaranteed that the concrete model is
unable to reach an unwanted deadlock state. If the outcome is negative either
the concrete model may indeed reach an unwanted deadlock state, or this state
is only reachable because of the relaxed guards and invariants of the abstract
model. If so, the user can inspect the symbolic trace, and determine whether
this transition sequence is indeed possible in the original model.

7.4.2 Template Location Reachability

This property is satisfied when every location of a template is reachable by one or
more of the processes instantiated from said template. To avoid having to verify
a reachability query for every location in the model, UrPals implementation
uses meta-declared variables to mark ‘visited’ locations during a state space
search. Using this method, the state space of the model only has to be searched
once. Full details of the implementation of this check can be found in work by
Onis [14]. If one or more locations were found to be unreachable, a negative
result is reported to the user. These locations are marked red in the editor to
communicate exactly which are unreachable.

Our work extends this procedure to work with Uppaal SMC models by
performing the above routine on an abstract over-approximation of the model.
Because the check is a reachability property, verification is complete but not
sound. Effectively, this means that no false positives can occur. However, false
negatives can occur when the relaxation of guards and invariants cause locations
that are unreachable in the concrete model to become reachable.

43

8 Evaluation

8.1 Case Studies
8.1.1 Cancer Immunotherapy Model

The first case study examines an Uppaal model used in research of cancer
immunotherapy healthcare processes. Specifically, it models side effects of the
therapy (immune-related adverse events, called toxics in the model), and studies
the impact of test accuracy on the progression of these toxics. The model was
constructed based on expert consultations and calibrated using empirical patient
data.

The system models the healthcare process of one patient, who can potentially
contract six different toxics, each with a grade of severity. According to a
formalised protocol, these toxics are periodically monitored and tested, where a
test has a certain chance of a false positive or false negative. Depending on test
outcomes and previous recovery steps, the protocol dictates either a recovery
phase or palliative care for the patient. The system has concurrent processes
for the protocol, the patient, a periodic check for disease progression, six toxic
processes with varying parameters, each with a corresponding test automaton,
and a monitor automaton used for statistical queries.

Three variants of the model are used in the case study, each representing
different points in the model development process. In the first model a bug is
present, which is partially fixed in the second model, and fully removed in the
third variant. We refer to these model variants with the label 1A, 1B and 1C.
Consultation with the model developer allowed the exact cause of the fault to be
known. As part of the study, we emulate the bug fixing procedure by creating a
specification that ‘captures’ the bug, and thus allows the evaluation of the tool
in bug finding and proving the absence of errors.

The bug was caused by a toxic process failing to synchronise correctly with
the protocol process. Behaviour of a toxic process changes if the protocol is
in a recovery phase, so broadcast channels are used to synchronise this state.
Erroneous behaviour occurred because the toxic process was able to reach a
state where a synchronisation over these channels was not enabled, leaving the
system in an invalid state.

Validation specification Synchronisation of the recovery state is done us-
ing the startrecov and endrecov channels for entering and exiting the state
respectively. The validation specification is configured to have ‘Synchronisation
Check’ properties for these channels on the toxic template. In two locations
of the template, PreG0 and G0 (indicating a toxic with grade 0, i.e. no toxic),
behaviour of the process is not dependant on the recovery state, so no synchro-
nisation is needed. To model this, the ignore condition exists (n: id_t)

44

Property Type Parameters
1 Synchronisation Check template = Toxic

channel = startrecov
2 Synchronisation Check template = Toxic

channel = endrecov
3 Model Invariant condition = Protocol.Palliative ==

ProgCheck.Palliative
4 Unwanted Deadlocks
5 Template Location Reach-

ability

Table 1: Overview of validation properties used in case study 1.

(Toxic(n).G0 or Toxic(n).PreG0) is configured for the properties. This ex-
pression is satisfied when one of the toxic processes is in the PreG0/G0 location,
avoiding any false negatives in the model validation.

Another property was configured in order to verify that two processes syn-
chronise properly. The protocol process and disease progression process both
have a state representing palliative care for the patient. Whenever one of these
processes is in such a state, the other should be as well. Furthermore, if one
of the processes is not in a palliative care state, the other must not be as well.
Since both processes can independently enter this state, it is possible that an
error in the model is made, causing the processes to be out of synchronisa-
tion. To verify the lack of this error, a model invariant with the condition
Protocol.Palliative == ProgCheck.Palliative is configured.

Lastly, two sanity checks adapted from UrPal were added to the specification.
These are the unwanted deadlock check and the template location reachability
check. Both checks are only verifiable using symbolic checking of the abstract
model. An overview and numbering of all properties is given in Table 1.

Verification Two configurations were investigated, one using symbolic check-
ing and one using concrete checking. In order to make symbolic checking pos-
sible, some changes to the model and validation specification were necessary.
Without any changes, the model contains six toxic and test processes. With a
cut-off time of 600 seconds no property could be verified due to the large state
space of the abstract model. The model was adapted to introduce a constant
variable ENABLED specifying the number of toxic and test processes that should
be instantiated. This allows the validation specification to include a ‘constant
overwrite’ to lower the number of instantiations to 1 or 2, which allowed sym-
bolic model checking in a practical amount of time due to the reduced state
space. Note that reducing the number of template instantiations may alter the
behaviour of the model, and therefore verification outcomes may not be repre-
sentative for the unaltered model. In this case, there is no direct communication
between the toxic and text processes, giving confidence that we can adequately

45

verify the properties on the reduced system.
It was also necessary to introduce a time bound on the system, as detailed

in Section 6.2.3. Without this time bound a discrete variable keeping track of
the number of monitoring cycles is able to increment indefinitely. This variable
is used as an index for an array of parameters, and increasing this variable
out of the expected range of cycles would lead to an out-of-bounds error when
indexing said array, terminating the verification. Introducing a time-bounding
automaton with an upper bound of 66 time-units (being 11 6-week periods,
which is the intended time bound of the model) made the state space finite and
thus allowed symbolic model checking.

In order to verify the properties using concrete simulations the only config-
uration required is the number of runs and the time bound of the runs. In this
case, 10,000 runs up to a time bound of 66 time-units were performed. This
highlights a practical benefit of the verification method, as no significant time
or expertise of the user is required to configure it.

Results As expected, the verification outcome of the ‘Synchronisation Check’
properties on the startrecov and endrecov channels showed that the process
was able to reach a state with no receiving synchronisation transition enabled,
meaning that the model variant 1A is invalid according to the specification. A
trace leading to this state was able to be shown in the editor, allowing the user
to quickly spot a location without the required synchronisation edges. This par-
allels the manual bug finding procedure used in the development of the model,
where this problem was alleviated by adding synchronising self-loops to the lo-
cation. This step was repeated in the case study, leading to model variant 1B,
after which the validation specification was verified again.

With this step applied, there was still a possibility for erroneous behaviour.
This could occur if the protocol exited the recovery state and then entered the
state again without any delay transitions between the actions. If this happened
while the toxic process was in a specific urgent location, it could not synchronise
over the startrecov channel, causing further erroneous behaviour. Verification
of the ‘Synchronisation Check’ property was able to confirm that this was pos-
sible, and provided a trace leading to the described state.

This second fault is a demonstration of the use of the automatic verification
of model validation properties. Whereas manual inspection and manipulation
of the model was eventually successful in finding and fixing the fault, consulta-
tion with the model developer did indicate that this was a time-consuming and
difficult process due to the complex interactions required to reach the invalid
state. With the use of our tool, the presence of the fault was able to be shown
quickly, and using traces was a practical way of finding the exact cause of the
problem.

The fault was resolved by changing a location in the toxic process to be
marked as committed instead of urgent. With this change, creating model
variant 1C, it was possible to verify that the synchronisations were able to
be received in all reachable states of the model. Notably, this outcome was

46

1A 1B 1C
Property Satisfied Time (s) Satisfied Time (s) Satisfied Time (s)
1 No 1.430 No 2.082 Yes 26.323
2 No 0.551 No 0.557 Yes 26.883
3 Yes 29.628 Yes 54.617 Yes 23.906

Table 2: Verification outcomes and computation time for case study 1 using
symbolic model checking.

1A 1B 1C
Property Satisfied Time (s) Satisfied Time (s) Satisfied Time (s)
1 No 1.743 No 3.298 Yes 8.664
2 No 0.387 No 0.661 Yes 7.608
3 Yes 7.201 Yes 6.562 Yes 7.369

Table 3: Verification outcomes and computation time for case study 1 using
concrete model checking.

verifiable using both concrete and symbolic model checking, both having equal
results and similar traces to invalid states.

With every iteration of the model the model invariant of property 3 was
satisfied. Since it is a safety property, symbolic verification is sound. This
allows the conclusion that, at least in the reduced model, states satisfying the
expressions are indeed unreachable. The same outcome was achieved using the
concrete checking method.

Property 4 was also satisfied in all model variants, meaning that no un-
wanted deadlocked state is reachable. Again, because the deadlock check is a
safety property verification through symbolic model checking of the abstraction
is sound. Verification of property 5 indicated that one location in the monitor-
ing process was unreachable. Closer inspection of the model indicates that this
location was only reachable as part of a debug mechanism which was disabled
in the analysed models. Therefore, the unreachability of this location was part
of the intended behaviour of the model.

Tables 2 and 3 show the outcomes and computation times for the verification
using both verification methods. The benchmarks were run on a Intel Core i5-
3230M CPU, using Uppaal version 1.23. It can be seen that computation time
with symbolic checking is significantly increased if the property is satisfied.
This can be attributed to the fact that safety properties are verified, and to
show the absence of an invalid state the entire state space must be searched.
The same observation applies to the concrete checking method, where all runs
of the system (in this case, 10,000 runs) must be performed if the unsafe state
is not found.

Using 50,000 simulations, the probability of a run of model variant 1B
entering the unsafe state described by property 1 was determined to be
0.027%± 0.015% with a confidence of 95%. This highlights the classical down-
side of the monte carlo method for model checking, being that rare events are
hard to verify. In this case the number of runs required to verify the property
with a false positive chance of 5% is ln(95%)

ln(1−0.027%) ≈ 11, 093.

47

Figure 18: Partial view of the Patient template of the Tooth Wear Model.

8.1.2 Tooth Wear Model

The second case study uses an Uppaal model developed for research of tooth
wear monitoring [19]. It models a periodic counselling and treatment protocol
over the entire life span of a patient. Analysis of the model was used to determine
the benefits of a one-year monitoring cycle compared to a five-year cycle. Several
aspects of the dental health of a patient such as enamel thickness and dietary
influences on tooth wear are modelled using discrete variables. Depending on
the stages of tooth wear, counselling or restorative treatment may be performed,
each with a corresponding cost and effect on the tooth wear.

Compared to the first case study, the model contains fewer processes, only
having a single instantiation of the three templates, being a process for the
patient Patient (illustrated in Figure 18), the monitoring system Twes and a
process marking the end of the simulation period End. Whereas in the first
model non-uniform clocks were only used for monitoring costs, in the tooth
wear model a non-uniform clock representing tooth wear is used in guards.
This implies that in the abstract model used for symbolic model checking this
clock must be hidden, and therefore the reachable state space is larger.

Validation Specification Cyclically, the Twes process checks the grade of the
tooth wear and starts either a counsel or treatment. Synchronisation of this state
with the Patient process happens using the counsel or treatment broadcast
channel respectively. To validate whether the Patient process is able to take a
receiving synchronising transition in all reachable states ‘Synchronisation Check’
properties are configured for the two channels.

After a treatment the tooth wear is restored, causing the patient to have
a tooth wear classification score or ‘grade’ g of one. This behaviour is spec-
ified using a ‘Synchronisation Post-condition’ property, where the channel is
treatment and the post-condition is g == 1.

The tooth wear grade is represented in two ways in the model: as one of four
locations in the Patient process, and using a integer variable g. For correct
behaviour of the model, it is important that these two mechanisms stay synchro-
nised (i.e. if g equals 2, Patient is in the G2 location). This is specified using
a model invariant with the condition Patient.G2 == (g == 2). Similar model

48

Property Type Parameters
1 Synchronisation Check template = Patient

channel = counsel
2 Synchronisation Check template = Patient

channel = treatment
3 Synchronisation Post-condition channel = treatment

condition = g == 1
4 Model Invariant condition = Patient.G2 == (g

== 2)
5 Unwanted Deadlocks
6 Template Location Reachability

Table 4: Overview of validation properties used in case study 2.

invariants could be configured for the other possible grades, but are omitted for
brevity.

Again, the unwanted deadlock and template location reachability checks
were added to the specification, requiring no further configuration. All specified
properties are enumerated in Table 4.

Verification Again, two configurations for the verification were made, one
using symbolic model checking and one using concrete simulations. Similarly
to the first case some additional configuration was required in order to be able
to use symbolic model checking. A time bound of 74 time-units was introduced
to limit the state space, being the age in years of the patient at the end of the
modelled monitoring period.

In order to reduce the state space of the abstract model, and therefore reduce
the verification time to a practical amount, additional work was required. In the
original model enamel thickness was modelled using an integer variable. During
the initialisation of the model, the value of this variable was randomly chosen
from an uniform range using a select label. This select label picked an integer
value l uniformly from the range [0, 100]. With SMC verification, this value is
chosen stochastically. However, with symbolic verification this select causes 100
distinct transitions to be enabled, increasing the state space significantly.

In an effort to reduce the verification time the discretisation size was in-
creased. This was done by replacing l with l′ chosen with a select label with a
range of [0, 20]. Every occurrence of l in the update statements was replaced
with l′ × 5, ensuring that the same range of values could be chosen, but the
amount of possible values was reduced with a factor 5.

For the verification using concrete model checking an upper bound of 10,000
runs was configured, with a time limit of 74 units. Again, no further configura-
tion was required for the concrete method.

49

Symbolic Concrete
Property Satisfied Time (s) Satisfied Time (s)
1 No 1.441 Yes 2.052
2 Yes 15.900 Yes 1.192
3 Yes 27.038 Yes 0.882
4 Yes 16.890 Yes 1.030
5 Yes 27.823 N/A
6 Yes 16.892 N/A

Table 5: Verification results and computation time for case study 2.

Results Table 5 summarises the verification outcomes for all validation prop-
erties using both verification methods, together with the computation time re-
quired to produce the outcome. Notably, all outcomes are in agreement with
each other except for property 1. Recall that property 1 was a ‘Synchronisation
Check’ property for the counsel channel.

The symbolic trace leading to the unsafe state of property 1 includes a
transition of the Patient process from the G3 to the G4 location while the
Twes process is in a location leading to a counsel! transition. Since counsels
only happen with a wear grade of 2 or 3 the Patient process does not have a
receiving synchronisation transition, leading to the invalid state. In the abstract
model, the G3 −→ G4 transition is always enabled due to the hiding of tooth wear
variable w, whereas in the concrete model this transition is only enabled when
w exactly equals a constant. Further verification of the property using 500,000
runs indicates that either the unsafe state is unreachable in the concrete model
or that reaching it is exceedingly improbable.

We conclude that the negative outcome of property 1 is a false negative with
the current iteration of the model. It is however not unlikely for a change in the
constant values of the model to enable the specific timing constraints leading to
the error in the concrete model. A change in the marking of locations in Twes
from urgent to committed would guarantee that the Patient process cannot
take transitions before a counsel signal, alleviating the problem. Symbolic
verification of the model with said change indicates that the property is valid,
guaranteeing that the problem is no longer present.

8.2 Discussion
Based on the observations of the case studies, an evaluation of the implemented
reachability algorithms and validation properties is performed. Each method is
evaluated using the qualitative metrics detailed in Section 4.2.

8.2.1 Reachability Algorithms

Soundness and Completeness Table 6 provides an overview of the sound-
ness and completeness of the reachability algorithms. Due to the over-
approximative nature of the symbolic checking method, it is sound but not

50

Safety Properties Reachability Properties
Sound Complete Sound Complete

Symbolic Abstraction Yes No No Yes
Concrete Simulations No No Yes No

Table 6: An overview of the soundness and completeness of the reachability
algorithms.

complete for safety properties, and inversely, complete but not sound for reach-
ability properties. The theoretical analysis of these statements is detailed in
Section 6.2.1.

The concrete checking method is sound for reachability properties, since the
presence of a trace leading to the specified state proves the property. However,
for sufficiently rare events, the algorithm may not find a trace before the run
limit is reached, so the method is not complete for reachability problems. For
the same reason, the method is not sound for safety properties. A positive result
indicates that either the specified state is unreachable, or that due to chance,
the state was not reached by the run generation algorithm. As such, the method
is also not complete for safety properties.

Time performance In both case studies it was necessary to reduce the state
space of the models in order to reduce the computation times of the symbolic
method to a practical amount. Even so, the symbolic method had higher com-
putation times for nearly all cases compared to the concrete method. Only in
cases where the state space did not have to be fully explored could the symbolic
method perform roughly equally.

This results highlights the effectiveness of the statistical model checking
method, since it can offer dramatically reduced computation times compared to
symbolic model checking methods. The result can also be partially explained by
the fact that the models were developed to be only analysed using Uppaal SMC
queries. As such, no particular effort was made to reduce the state space, since
it would not have a large impact on the computation times of statistical queries.

Utility Based on the results, it can be argued that the symbolic checking
method is most effective in the verification of safety properties, since a positive
result definitively proves that the property is valid. The concrete method cannot
give the same guarantee for safety properties. During model development, the
concrete checking method has distinct advantages in the reduced computation
time, reduced configuration required, and lack of false negatives when verifying
safety properties. Both methods proved capable of providing useful information
to alleviate errors through providing traces to unsafe states.

51

8.2.2 Validation Properties

Here, we evaluate the three implemented validation properties used in this re-
search. We refer the reader to [14] for an in-depth evaluation of the checks used
in UrPal. The qualitative evaluation metrics are ease of use, improvement over
existing methods, and applicability.

Model Invariant This is the simplest property to configure, requiring only
one parameter, the safety condition. Since standard Uppaal expression syntax
is used, it should prove easy for most users to configure the property. Fur-
thermore, the contract of the property (all reachable states must satisfy the
expression) is simple.

The Model Invariant property could also be checked manually, without the
use of our tool, using simple Uppaal or Uppaal SMC queries. The added ben-
efit of the use of our tool to verify model invariants is that pre-processing steps
such as constant overwrites or the TA abstraction method are automatically
applied.

The property can be used as a general way to specify safety properties. Due
to the expressiveness of Uppaal predicate expressions, this property can be
used in a wide range of use cases depending on the configuration.

Synchronisation Check This property requires more configuration, since
the user has to specify a channel, a template and an optional ignore condition.
Verifying this property using standard Uppaal queries would require manual
model transformations, which would be time-intensive and error-prone. The use
of our tool improves on this by automating the process, eliminating potential
mistakes.

This check can be applied in a large range of cases because of the fact that
only broadcast synchronisations are allowed in Uppaal SMC models. Because
of this, a failure of two processes to synchronise does not result in blocking, and
may therefore be challenging to detect. In these cases, this check is an effective
way to verify validity.

Synchronisation Post-Condition This property also requires some config-
uration, since the user has to specify a channel and a post-condition expression.
This expression can be seen as a specialised form of the model invariant, where
the condition must hold in all states after a synchronisation, instead of in all
reachable states. The check is useful because using Uppaal state predicate
expressions, it is not possible to specify a state after an action transition. To
verify this property without the use of our tool would, again, require manual
model transformations.

Like the model invariant property, the general form of the synchronisation
post-condition property allows it to be used in a wide range of use cases. It
can be used as a general way to specify safety properties related to process
synchronisations.

52

9 Conclusion

In this work we examined methods for model validation of stochastic hybrid
automata. The methods were implemented in a tool for Uppaal SMC models.
Next, the tool was evaluated using practical case studies.

The case studies showed that the examined validation properties effectively
allowed for the specification of a model. Using the tool, it is possible to create
a formal specification which can be automatically verified. This is an improve-
ment over the state of the art, since previously these properties could only be
verified using manual model transformations. Use of our tool allows for an im-
proved development process of models, where a formal specification is created
and verified continuously. This work flow allows errors to be found early, and
ensures that the model is valid throughout development.

As part of the research, a novel verification method using abstract over-
approximations of hybrid automata was examined. The method uses a trans-
formation from a hybrid automaton to a timed automaton to be able to use
symbolic verification of properties. The case studies showed the effectiveness of
the method, at the cost of requiring extra configuration to limit the state space
of a model. It can be concluded from the case studies that the method is most
effective when verifying safety properties, where a positive outcome definitively
proves that unsafe states are unreachable.

Previously, no tools related to model validation of hybrid automata existed,
and thus validation would have to be performed manually. We have improved
on the state of the art by the introduction of a tool that provides an automated
work flow to verify that the model under development is valid. Based on the
case studies, we conclude that the examined methods provide an effective way
of performing model validation.

9.1 Future Work
We consider the following research directions to be of interest for future work.

9.1.1 Hybrid Reachability Checking

With the symbolic and concrete reachability checking methods studied in this
research both having specific advantages and disadvantages, the intuitive next
step could be to combine the two methods. This ‘hybrid’ method could poten-
tially share advantages of both methods while reducing the disadvantages.

A possible approach would be to adapt the procedure used to check if a
trace is spurious, as detailed in work by Dierks et al. [7]. Here, it will be
verified whether the trace obtained from the abstract over-approximation of the
model is part of the language of the concrete model (i.e. check if the trace is
spurious). This could be done using the same technique proposed by Dierks

53

et al., in which a test automaton that only allows transitions from the trace
is constructed. The product of the test automaton and the concrete model
is then used for simulation-based verification. Because the traces obtained by
symbolic model checking are themselves symbolic, i.e. describing sets of states
transitioning to sets of states, a number of runs may be required to reach the
specified state. If the symbolic trace is found to be spurious another trace may
be computed and checking in the concrete model, which would be repeated until
no unique traces remain.

The hybrid method has two main advantages. For one, if the abstract model
cannot reach the specified state it is certain that it is unreachable. If not, the
traces are used to ‘guide’ concrete runs, making it more likely that rare states
are reached.

The proposed hybrid method was briefly explored as part of this research.
However, assumptions of the Uppaal run generation algorithm made it difficult
to create a practical implementation of the method. This is because every
process in a Uppaal SMC model must not be time-locked, i.e. always able to
take a delay or action transition. Because of this assumption it was not possible
to construct a model transformation where exactly one process is able to take
a transition in a given state according to the symbolic trace.

9.1.2 Improved Support for UrPal Checks

For this research, 2 out of the 8 sanity checks of the UrPal tool were adapted for
Uppaal SMCmodels. The checks were adapted so that the Uppaal SMCmodel
is first abstracted to a TA, after which the rest of the verification procedure is left
unchanged. For extended functionality of our tool the rest of the sanity checks
could be implemented using the same method. This is largely an engineering
effort, requiring little research of new techniques.

However, verification using an abstract over-approximation can lead to false
positives due to the fact that most sanity checks are reachability problems. A
possible research direction could be to adapt the checks to use concrete simula-
tions instead of symbolic model checking. A concrete verification method avoids
some of the problems associated with symbolic checking, such as explosion of
the abstract state space.

The concrete verification method of the checks could use a similar approach
as the original method, where meta variables were used to store results between
queries. Here, the SMC run generation algorithm is used to explore (most of)
the state space, instead of the symbolic verifier.

54

References

[1] R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time.
Information and computation, 104(1):2–34, 1993.

[2] R. Alur and D. L. Dill. A theory of timed automata. Theoretical computer
science, 126(2):183–235, 1994.

[3] G. Behrmann, A. David, and K. G. Larsen. A tutorial on uppaal 4.0.
Department of computer science, Aalborg university, 2006.

[4] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement. In International Conference on Computer
Aided Verification, pages 154–169. Springer, 2000.

[5] A. David, K. G. Larsen, A. Legay, M. Mikučionis, D. B. Poulsen,
J. Van Vliet, and Z. Wang. Statistical model checking for networks of
priced timed automata. In International Conference on Formal Modeling
and Analysis of Timed Systems, pages 80–96. Springer, 2011.

[6] K. Degeling, S. Schivo, N. Mehra, H. Koffijberg, R. Langerak, J. S. de Bono,
and M. J. IJzerman. Comparison of timed automata with discrete event
simulation for modeling of biomarker-based treatment decisions: an illus-
tration for metastatic castration-resistant prostate cancer. Value in health,
20(10):1411–1419, 2017.

[7] H. Dierks, S. Kupferschmid, and K. G. Larsen. Automatic abstraction
refinement for timed automata. In International Conference on Formal
Modeling and Analysis of Timed Systems, pages 114–129. Springer, 2007.

[8] T. A. Henzinger. The theory of hybrid automata. In Verification of digital
and hybrid systems, pages 265–292. Springer, 2000.

[9] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: A model checker for
hybrid systems. In International Conference on Computer Aided Verifica-
tion, pages 460–463. Springer, 1997.

[10] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable
about hybrid automata? In Proceedings of the twenty-seventh annual ACM
symposium on Theory of computing, pages 373–382, 1995.

[11] A. Hessel and P. Pettersson. Model-based testing of a wap gateway: an in-
dustrial case-study. In International Workshop on Parallel and Distributed
Methods in Verification, pages 116–131. Springer, 2006.

55

[12] S. K. Jha, B. H. Krogh, J. E. Weimer, and E. M. Clarke. Reachability
for linear hybrid automata using iterative relaxation abstraction. In Inter-
national Workshop on Hybrid Systems: Computation and Control, pages
287–300. Springer, 2007.

[13] J. H. Kim, K. G. Larsen, B. Nielsen, M. Mikučionis, and P. Olsen. Formal
analysis and testing of real-time automotive systems using uppaal tools. In
International Workshop on Formal Methods for Industrial Critical Systems,
pages 47–61. Springer, 2015.

[14] R. Onis. Does your model make sense? : Automatic verification of timed
systems. Master’s thesis, University of Twente, Formal Methods and Tools,
December 2018.

[15] S. Schivo, B. M. Yildiz, E. Ruijters, C. Gerking, R. Kumar, S. Dziwok,
A. Rensink, and M. Stoelinga. How to efficiently build a front-end tool
for uppaal: a model-driven approach. In International Symposium on De-
pendable Software Engineering: Theories, Tools, and Applications, pages
319–336. Springer, 2017.

[16] U. Sørensen and C. Thrane. Slicing for uppaal. Master’s thesis, Aalborg
University. Department of Computer Science, 2007.

[17] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro. EMF: eclipse
modeling framework. Pearson Education, 2008.

[18] F. Tip. A survey of program slicing techniques. Centrum voor Wiskunde
en Informatica Amsterdam, 1994.

[19] P. Wetselaar, F. Lobbezoo, P. de Jong, U. Choudry, J. van Rooijen, and
R. Langerak. A methodology for evaluating tooth wear monitoring using
timed automata modelling. Journal of oral rehabilitation, 47(3):353–360,
2020.

56

	Introduction
	Problem Statement
	Hybrid Automata
	Model Validation
	Research Questions
	Contributions
	Structure

	Background
	Timed Automata
	Timed Automata in UPPAAL
	Stochastic Timed Automata
	Stochastic Hybrid Automata
	Hybrid Automata in UPPAAL SMC

	Related Work
	Validation of Timed Automata
	Abstraction Refinement
	UPPAAL Slicing

	Method
	Tool Design
	Evaluation Method

	Implementation
	Architecture
	Model views
	Validation Specification

	Separation of Model Checker and Property
	UPPAAL Editor Integration

	Reachability Algorithms
	Concrete Checking
	Symbolic Checking
	Abstraction Algorithm for Hybrid Automata
	Abstractions of UPPAAL SMC Models
	Time Bounding
	Constant Variable Overwrite

	Validation Properties
	Model Invariant
	Synchronisation Check
	Implementation
	Usage

	Synchronisation Post-Condition
	Implementation
	Usage

	UrPal Checks
	Unwanted Deadlocks
	Template Location Reachability

	Evaluation
	Case Studies
	Cancer Immunotherapy Model
	Tooth Wear Model

	Discussion
	Reachability Algorithms
	Validation Properties

	Conclusion
	Future Work
	Hybrid Reachability Checking
	Improved Support for UrPal Checks

