
Geometric state estimator tightly-coupling force
and pose estimation for interaction in

vision-denied environments

 M. (Michiel) Bongertman

MSC ASSIGNMENT

Committee:
A. Franchi, Ph.D

R.A.M. Rashad Hashem, MSc
dr. D. Bicego

dr. ir. R.G.K.M. Aarts

 September, 2020

038RaM2020
Robotics and Mechatronics

EEMathCS
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

Abstract

In recent years, UAVs showed promising capabilities for different applications. In the public,
UAVs proved to be useful in applications such as logistics and inspection. As new advance-
ments are being made by the robotics community, UAVs can also be used for interaction tasks.
For such tasks, the employment of UAVs establishes ‘safe for humans’ working environments
in critical operations. Examples of such physical tasks and environments are urgent or regu-
lar maintenance tasks on wind turbines, assistance at nuclear plants in case of a catastrophe,
safety assessments of newly-blast generated voids into mines, or even assistance during natural
disasters such as earth-quakes.

To accomplish stable and controlled interaction, both a controller guaranteeing stability and
knowledge about the interaction is needed. The interaction force and torque could be measured
using a sensor. However, this limits the applicability by size, costs, and weight, which conse-
quently limits the battery time. Besides, force and torque sensors can only measure contacts
at the point where they are mounted.

A common alternative is to use observers based on the nonlinear dynamics of the robot. This
allows for estimating external forces and torques. Nonetheless, these methods only work well
for practical situations if the forces are large and the noise is small. State estimators suffer less
from this problem as they are designed to consider process and measurement noise.
Recently a work has been published which proposes to tightly-couple dynamics and pose estima-
tions into a state estimator. Intuitively, this adds information to the pose estimation resulting
in an accuracy increase for the estimated pose.

This thesis proposes a tightly coupled pose wrench estimator intended for physical interaction
using an aerial robot. The state estimator can estimate the pose and external force by using
known actuation inputs and the robot’s dynamics. In previous work, the benefits of such an
approach have been shown for disturbances instead of controlled contact interactions. This the-
sis uses the estimated external force for interaction scenarios where a UAV engages in physical
contact with its environment.
Furthermore, the state estimator exploits measurements from a Global Positioning System
(GPS) and Inertial Measurement Unit (IMU). Also, the estimator is able to estimate states
belonging to the Lie group SO(3). This makes the state estimator geometric, thus invariant
of changes of inertial frame. Besides, parametrization of orientation in SO(3) avoids the well-
known singularity called gimbal lock.

The estimator is validated through realistic Gazebo simulations and a dataset of an experi-
ment where a UAV physically interacts with a static object. The estimator has been tuned
and estimations have reached an accuracy in the same order of magnitude as the simulated
accelerometer and gyroscope. Also, the simulations and experiments show that the UAV is
capable of accurately estimating the contact force while simultaneously estimating the UAVs
pose. Recommendations on future work are to integrate Visual Inertial Odometry (VIO) to
realize GPS-Aided VIO and to make use of an automated tuning scheme, as the quality of the
estimation is highly dependent on the set of tuning parameters given to the estimator.

2

Acronyms

DOF Degree of freedom
EKF Extended Kalman filter
ECEF Earth-centered earth fixed coordinate frame
ECI Earth-centered inertial coordinate frame
IMU Inertial measurement unit
GNSS Global navigation satellite system
GPS Global positioning system
GUI Graphical User Interface
NED North East Down coordinate frame
NGDC Nation Geophysical Data Center
MoCap Motion-capture system
ROS Robot Operating System
RMS Root Mean Square (error)
SLAM Simultaneous localization and mapping
UAV Unmanned aerial Vehicle
UKF Unscented Kalman filter
VIO Visual inertial odometry
VO Visual odometry
V-SLAM Visual simultaneous localization and mapping
WGS-84 World geodetic system 1984
WMM World Magnetic Model

3

Nomenclature

(̄.) Raw measurement

(̆.) Predicted variable

(̂.) Estimated variable

M General Manifold

X State belonging to a Manifold X ∈M
ω Angular velocity [rad

s
]

ψb Body fixed frame, defined in the center of mass of the UAV

ψi Inertial- or world fixed frame

a Linear Acceleration [m
s2

]

f(x, u) State function, denotes a non-linear system model used by the state estimator to predict
the next state

h(x̆) Observation mapping, function used to map states to the observation space of the cor-
responding observation

m Magnetic field

u Measurement input, sensor measurement used in prediction step of state estimator

x State vector in real space x ∈ Rn

y Observation vector, sensor measurement used in correction step of state estimator

4

Contents

1 Introduction 8
1.1 Related Work . 9

1.1.1 Pose estimation . 9
1.1.2 Force and torque feedback for interaction 11

1.2 Research Goal . 13
1.3 Proposed method . 14
1.4 Thesis Structure . 16

2 Background 17
2.1 State Estimation . 18

2.1.1 Linear Kalman Filter . 19
2.1.2 Nonlinear Filtering Techniques . 19
2.1.3 Formulating the state estimator . 23

2.2 Lie Theory . 24
2.2.1 Manifolds & Lie Groups . 24
2.2.2 Group Actions . 25
2.2.3 Mapping to spaces . 25
2.2.4 Rotation group SO(3) . 26
2.2.5 Homogeneous Matrices . 27
2.2.6 Twists and Wrenches . 28

3 Sensors & Navigations Systems 29
3.1 Inertial Measurement Unit (IMU) . 29

3.1.1 Accelerometer Measurement Model . 29
3.1.2 Gyroscope Measurement Model . 30
3.1.3 Magnetometer . 30

3.2 Global Positioning System (GPS) . 31
3.2.1 Reference Frames . 31
3.2.2 Measurement Model . 32

4 State Estimation on Manifold 33
4.1 The plus and minus operator . 33
4.2 Probability . 34
4.3 Partial derivatives . 35
4.4 Unscented Kalman Filter on Manifold . 36

5 Filter Formulation 37
5.1 Rigid Body Kinematics . 37
5.2 Rigid Body Dynamics . 38
5.3 Geometrical pose estimator . 39

5.3.1 IMU based Prediction . 40

5

5.3.2 GPS based correction . 41
5.4 Geometrical pose wrench estimator . 42

5.4.1 Dynamics based Prediction . 42
5.4.2 Dynamics based Correction . 44

6 Simulation: Tuning state estimators 45
6.1 Simulation 1: Tuning geometrical pose estimator 46

6.1.1 Description of the Scenario . 46
6.1.2 Tuning parameters analysis . 46
6.1.3 Description of the results . 47
6.1.4 Discussion on the results . 53

6.2 Simulation 2: Force estimation for a static interaction 54
6.2.1 Description of the scenario . 55
6.2.2 Analysis of tuning parameters . 55
6.2.3 Description of the results . 56
6.2.4 Discussion of the results . 58

7 Experimentation: Validation on manipulated real-world data 60
7.1 Experiment setup . 60

7.1.1 Dataset analysis . 61
7.1.2 Global Positioning System (GPS) signal simulation 62

7.2 Experiment 1: Geometrical pose estimator on manipulated dataset 63
7.2.1 Description of the result . 64
7.2.2 Discussion on the result . 68

7.3 Experiment 2: Geometrical pose wrench estimator on manipulated dataset . . . 70
7.3.1 Description of the result . 70
7.3.2 Discussion on the results . 76

8 Conclusion 78
8.1 Conclusions . 78
8.2 Recommendations on Future work and limitations 79

Appendices 81

A Derivation of Linear Kalman Filter 82

B Derivation exponential map identities 85

C Derivation of Lie group partial derivatives 86

D Software implementation of state estimators 88
D.1 Define a state . 88
D.2 Prediction functions . 89
D.3 Correction functions . 90
D.4 Execute Prediction and Correction . 91

E Simulation Seup 92
E.1 Controlling the UAV . 92
E.2 Simulated sensors . 93
E.3 ROS architecture . 94
E.4 Simulation parameters . 95

6

F Data from simulation & experiments 96
F.1 Simulation 1 . 96

F.1.1 Case 1 . 96
F.1.2 Case 2 . 98
F.1.3 Case 3 . 98

F.2 Simulation 2 . 99
F.2.1 Case 1 . 100
F.2.2 Case 2 . 100

F.3 Experiment 1 . 100
F.3.1 Case 1 . 101
F.3.2 Case 2 . 101
F.3.3 Case 3 . 102

F.4 Experiment 2 . 102
F.4.1 Case 1 . 102
F.4.2 Case 2 . 102

7

Chapter 1

Introduction

In past years Unmanned Aerial Vehicles (UAVs) have gained lots of attention due to their high
flexibility. UAVs have been used in logistics to deliver packages and medicine and they have
also shown promising capabilities for inspection. For example, they can be used to patrol areas
such as harbors or help to find wildfire hot-spots.
Recently, UAVs are also starting to be employed for applications that involve physical contact
of the aerial robot with its environment. Interactive UAVs can be of significant assistance,
as they can perform physical tasks remotely with a maximum range and minimum reaching
time. Besides, the employment of UAVs establishes ’safe for humans’ working environments in
critical operations [David et al., 2017]. Examples of such physical tasks and environments are
urgent or regular maintenance tasks on wind turbines, assistance at nuclear plants in case of
a catastrophe, safety assessments of newly-blast generated voids into mines, or even assistance
during natural disasters such as earth-quakes.

Nevertheless, the employment of UAVs for physical contact interaction remains very challenging
considering that aerial robots can not rely on a fixed-base but have to deal with a floating one.
Additionally, most multi-rotors suffer from inherent under-actuation complicating their control,
since exerting horizontal forces can only be accomplished with additional tilting motion.
However, in recent years controllers are emerging that allow exerting contact forces while also
achieving stable flight during interaction. In many of these control schemes, the controller uses
a combination of motion control and force/torque control to achieve a controlled interaction.
To close the loop, knowledge has to be collected about how much force the UAV exerts into its
environment. Naturally, one could use force and torque sensors to obtain knowledge about the
interaction. However, integrating such sensors for controlled interactions comes at the expense
of size, costs, and weight which consequently limits the battery time.
A more sophisticated solution would be to use an algorithm estimating the forces and torques
between the UAV and the object of interaction. This also comes at the benefit of achieving a
more versatile solution, as estimators can estimate general external forces and torques, instead
of contact forces and torques at the point where the sensor is mounted.

Recently, a work has been published [Nisar et al., 2019] which proposes to tightly-couple wrench
estimation with pose estimation for scenarios with interactions, contacts, or disturbances. This
method allows both pose estimation as the perception of external forces acting on the aerial
robot.
Commonly, external forces are recovered using loosely-coupled estimators in conjunction with
an odometry system. Adding dynamics to pose estimation using a tightly coupled state esti-
mator aids both the odometry and the external force estimation. Intuitively, the knowledge
from the external forces adds information to the estimator, leading to an increase in odometry

8

accuracy [Nisar et al., 2019].
Also, loosely-coupled estimators estimate external forces based on a deterministic formulation.
This results in that these approaches only work well when the forces are large and the sensor
noise is small [McKinnon and Schoellig, 2016]. State estimators are designed to properly take
process noise and measurement noise into account. Therefore, state estimators will be able to
adequately handle noisy measurement when estimation external forces.

Furthermore, this thesis will give special attention to the sensor suite used by the state esti-
mator. In general, UAVs contain Inertial Measurement Units (IMUs), which are cheap, light-
weights sensors capable of making accurate measurements. However, using them for pose
estimation as stand-alone inevitably leads to drift caused by integration. A common solution
is to use them side-by-side with sensors measuring positional information.
A common choice is to fuse IMU measurements with Visual Odometry, achieving Visual Inertial
Odometry (VIO). Global Positioning System (GPS) signals are usually ignored as GPS signals
are notorious to be lost during operation. Besides, GPS is not available indoors or in dense
urban environments, so-called GPS-denied environments.
Nevertheless, UAVs can operate in a wide range of environments, which also poses challenges
to VIO algorithms, such as drastically varying lighting conditions, uneven illumination, low
texture scenes, and abrupt changes in attitude due to wind gusts or aggressive maneuvering
[Sun et al., 2018]. These conditions ask for a robust VIO algorithm.
Though GPS is prone to signal losses, it is freely available in outdoor environments. Con-
sidering GPS in conjunction with VIO will increase the robustness of the solution, especially
in environments challenging for vision-aided estimation algorithms. Therefore, this thesis will
work towards GPS-aided VIO.

1.1 Related Work

This section will review two fields related to this thesis. First, advancements in the field of
pose estimation for flying robots will be presented. Next, solutions able to estimate external
forces and torques are shown. Later on, both the topics will come together. Both subsections
will first examine the literature and next summarize the works using a table.

1.1.1 Pose estimation

The aim of [Duflos et al., 2006] is to develop a GPS/IMU multisensor fusion algorithm for un-
manned land vehicles. The method achieves the estimation of both position and velocity using
a Kalman Filter. Next to this, the algorithm considers so-called ’contextual information’ that
can be used to favor certain measurements or minimize the importance of others depending on
the context. This method increases the reliability in case of bad data or signal loses. Besides,
the algorithm is presented for GPS and IMU fusion, but it is able to integrate a high number
of sensors.
Another work using IMU and Global Navigation Satellite Systems for position estimation is
[Grip et al., 2012]. Instead of only estimating position and velocity, the authors present an
observer that can also estimate orientation and gyroscope biases. The observer represents the
estimated orientation by a rotation matrix R ∈ SO(3), which prevents well-known obstructions
caused by Euler angles.
The observer has been verified in simulation, but has not been tested for potential errors such
as: accelerometer bias, magnetic disturbances and GNSS failure. The latter is a well-known

9

drawback of GNSS-based estimation. GNSS measurements, such as GPS, are notorious for
signal losses or their unavailability in so-called GPS-denied environments (specifically indoors
or in dense urban environments).

To avoid the unreliability of GPS, [Mourikis and Roumeliotis, 2007] proposes to use visual Iner-
tial Odometry (VIO). Their method, called the multi-state Constraint Kalman Filter (MSCKF),
is one of the first VIO algorithms to achieve real-time vision aided inertial navigation. The al-
gorithm uses an EKF where the observation model can express the geometric constraints that
appear when a static feature is observed from multiple camera poses.
In [Li and Mourikis, 2012] an observability analysis was performed and it was shown that the
standard way of computing Jacobians in the filter inevitably results in inconsistency and there-
fore a loss of accuracy. The performance of the MSCKF was improved by ensuring correct
observability properties without incurring additional computational cost.
Though the MSCKF is a relatively more outdated VIO algorithm, the method still achieves
a respectable accuracy and computation time, as shown in [Delmerico and Scaramuzza, 2018].
Furthermore, the MSCKF forms the basis for many of the modern VIO algorithms.

The work [Lynen et al., 2013] presents a generic framework, dubbed the Multi Sensor-Fusion
Extended Kalman Filter (MSF-EKF). The MSF-EKF is able to process delayed, relative and
absolute measurements from a theoretically unlimited number of different sensors and sensor
types while allowing self-calibration of the sensor-suite online.
The modularity of this sensor fusion algorithm allows seamless handling of additional/lost sen-
sor signals during operation. Due to the modularity of MSF-EKF, GPS can still be considered
even in GPS-denied environment. This comes with the benefit of more robustness and accuracy.

In [Bloesch et al., 2015] a highly robust monocular VIO is achieved by using pixel intensity
errors of image patches directly. After detection, the tracking of the multilevel patch features
is closely coupled to an EKF by using the intensity error as innovation term. The method
achieves accurate tracking performance and high robustness, specifically in difficult situations
with very fast motions.
The work [Sun et al., 2018] also considers robustness for VIO. The authors acknowledge that
UAVs operate in a wide range of environments that pose challenges to VIO algorithms, such
as drastically varying lighting conditions, uneven illumination, low texture scenes, and abrupt
changes in attitude due to wind gusts or aggressive maneuvering. To increase the robustness
of VIO for these challenging environments, the authors propose to use a stereo-vision config-
uration. Besides, the stereo-vision VIO is achieved using filtering-based estimation, as these
approaches are generally much more efficient over optimization-based algorithms.

Opposed to the previously called algorithms, the work [Brossard et al., 2018] presents a Un-
scented Kalman Filter (UKF) implementation of VIO. The method is based on a stereo config-
uration of the MSCKF which is called the S-MSCKF. The use of the unscented transform, in
the state estimator, spares the computation of Jacobian. This makes the method more versatile
and allows for fast prototyping.
Next to this, the method makes use of a UKF on Lie groups, which was presented earlier in
[Brossard et al., 2017]. Instead of making use of quaternions, as the formerly seen algorithms
do, the UKF on Lie groups allows VIO to estimate orientations expressed as rotation matrix.

Nonlinear optimization is able to estimate states while retaining high accuracy. However, real-
time optimization quickly becomes infeasible as the trajectory grows over time. This problem
gets even worse since IMU measurements come in at a high rate, which leads to a fast growth

10

of the number of variables in the optimization.
In [Forster et al., 2016] this issue is addressed by pre-integrating inertial measurements between
selected keyframes into a single relative motion constraint.
This paper brings the preintegration theory to maturity by properly addressing the manifold
structure of the rotation group.
Furthermore, it is also shown that the preintegrated IMU model can be seamlessly integrated
into a visual-inertial pipeline, under the unifying assumption of factor graphs. The method
is evaluated on simulated and real data-sets. The evaluation shows that the method leads to
accurate state estimation in real-time.

A VIO state estimator that uses the pre-integration technique is called VINS-MONO
[Qin et al., 2018]. VINS-MONO achieves highly accurate VIO by using a tightly coupled, non-
linear optimization-based method that fuses pre-integrated IMU measurements and feature
observations. The approach is said to be reliable, complete, and versatile for different applica-
tions that require high accuracy in localization.
In [Nisar et al., 2019] it is acknowledged that the external forces and torques can also serve
a purpose in VIO through additional information. The work adds the robot’s dynamics
to a VIO estimation problem effectively providing more information for the pose estima-
tion, which increases the accuracy of the odometry. They apply the theory of preintegration
[Forster et al., 2016] to formulate a tightly coupled, sliding-window estimator suitable for real-
time applications. The additional external force has been implemented in the VIO pipeline
VINS-MONO [Qin et al., 2018]. It was shown that the tightly-coupled approach increases the
accuracy of the estimator up to 29 % as compared to the original pipeline VINS-MONO.

Table 1.1: Overview literature pose estimation. First column cites the publication, second
column denotes the sensor used in conjunction with the IMU, third column denotes what
estimation algorithm is used, fourth column denotes how orientation is expressed.

Publication
Sensor Suite
(excl. IMU)

Estimation
Algorithm

Orientation pa-
rameterization

[Duflos et al., 2006] GPS KF -
[Grip et al., 2012] GPS Observer SO(3)
[Li and Mourikis, 2012] VIO EKF SU(2)
[Lynen et al., 2013] Fusion EKF SU(2)
[Bloesch et al., 2015] VIO UKF SU(2)
[Sun et al., 2018] VIO EKF SU(2)
[Brossard et al., 2018] VIO UKF SO(3)
[Qin et al., 2018] VIO Optimization SO(3)

1.1.2 Force and torque feedback for interaction

This subsection looks into how force and torque feedback is achieved in the literature for phys-
ical interacting using UAVs. The methods encountered in the literature can be organized in
three categories. The first are direct methods, which use force and torque sensors to directly
measure contact forces and torques. The second category of indirect methods, exploit the UAV’s
dynamics in order to estimate external forces and torques. After estimation, the external forces
and torques are used as a measure for the interaction. Next to this, methods combining force
and torque sensors with estimation algorithms will be examined. In such cases, the sensors
measure the interaction forces and torque and the algorithm is used for other purposes.

11

Instead of utilizing force and torque sensors, the work [Yüksel et al., 2014] proposes a non-linear
force observer that can be used as indirectly to estimate contact forces and torques. A non-
linear wrench observer is based on the Langrangian dynamics of a quadrotor. The estimated
force is exploited to achieve contact interaction. The force observer gives a good approximation
if the external forces are not rapidly varying.
A benefit of the indirect force feedback is, that the avoidance of force and torque sensors at-
tached to the UAV reduces equipment costs and weight carried by the robot. Besides, a sensor
can only measure the force/torque applied to the point it is mounted in, while the observer is
able to estimate general external contacts of the UAV.
Another work exploiting estimated force feedback is [Ryll et al., 2017]. Instead of using an un-
deracted quadrotor, the paper presents a fully-actuated UAV intended for physically interactive
tasks. By utilization of a tilted propeller design, full-actuated is achieved. The full-actuation
allows full and dexterous 6D force control. The control is achieved by, using pose estimations,
from a state estimator, in conjunction with a momentum-based wrench observer. A benefit of
this system is that due to the full-actuation the UAV can counteract any wrench during the
contact with the environment

Another work [Tomić and Haddadin, 2014] uses external wrench estimation for collision de-
tection. The authors make use of a hybrid estimation method combining acceleration-based
estimation with momentum-based estimation. The acceleration-based estimation allows to
estimate translational velocity in a drift-less manner. However, for the rotational domain,
angular acceleration can only be obtained through numerical differentiation. Since this is un-
desired, a momentum-based estimation is used for the rotational domain in conjunction with
the acceleration-based estimation for the translational domain.
This work also realizes a limitation of indirect force/torque feedback. The estimated external
wrench will not only consist of contributions due to the interaction, but it will also contain
modeling errors and disturbances, such as aerodynamic effects. This problem is addressed in
[Tomić and Haddadin, 2015], where the collision detection is extended by aerodynamic models.
The models allow to simultaneously estimate aerodynamic forces and contact forces online.
The discrimination between the two is achieved by identifying the natural contact frequency
characteristics for both ”interaction” cases. This can be used to filter the external wrench and
separate it into the contribution by the collision and by aerodynamic effects.
They mention that collisions show high frequent effects and the aerodynamic forces are mostly
dominant in the low frequency area. Because of this, the discrimination of the two can be
achieved with well-designed filters. However, controlled contact interactions are not exclusively
dominated by high frequent behavior. This means that for those scenarios, the discrimination
might not be as simple as for collisions.
In [Rajappa et al., 2017], the momentum-based estimation from [Tomić and Haddadin, 2014]
is used in conjunction with a sensor. The authors deploy a sensor ring to separate human
contributions from disturbances, such as wind and parameter uncertainties. This allows the
system to reject disturbances that are not simply measured by sensors, while also being able
to let humans change the desired trajectory by simply applying forces on the UAV.
The inability to discriminate interaction forces is also acknowledged in [Nava et al., 2020]. The
work presents an optimization-based method for controlling aerial manipulators in physical con-
tact with the environment. The authors mention that indirect feedback methods, exploiting
the robot dynamics, are prone to errors in case of parameter uncertainties. Furthermore, when
the system is affected by external disturbances, it might not be possible to discriminate them
from interaction forces. These drawbacks are resolved by using an onboard force/torque sensor
mounted at the end effector. Naturally, this comes at the price of weight, size and equipment
costs, but when using an onboard manipulator this is already of consideration.

12

In some previous works, the estimation of interaction forces has been accomplished by uti-
lizing non-linear observers. This works well in cases where forces are large and sensor noise
is small [McKinnon and Schoellig, 2016]. Otherwise, inputs and outputs of the nonlinear ob-
servers must be carefully filtered, as the algorithm is based on a deterministic formulation that
does not account for sensor noise or process noise. It is mentioned that nonlinear stochastic
state estimation algorithms are designed to properly handle sensor and process noise. There-
fore, they present an external force and torque estimator which specifically takes sensor noise
and model imperfections into account. This is achieved by using an Unscented Kalman Filter
(UKF). The force estimations have been used in conjunction with an admittance controller to
enable a quadrotor to hold position relative to a wind source.

Table 1.2: Overview literature force/torque feedback. First column cites publication, second
column denotes how feedback is achieved, third column denotes UAV actuation and fourth
column for what interaction forces method is used.

Publication
Force/Torque
feedback

UAV actuation Sensed Signal

[Gioioso et al., 2014] Off-board sensor Underactuated Physical contact
[Wopereis et al., 2017] Off-board sensor Underactuated Physical contact
[Yüksel et al., 2014] Observer Underactuated Physical contact
[Ryll et al., 2017] Observer Fully actuated Physical contact

[Tomić and Haddadin, 2015] Observer Underactuated
Collisions and Aero-
dynamic

[Rajappa et al., 2017]
On-board sensor
& observer

Underactuated
Human contact and
disturbances

[Nava et al., 2020] On-board sensor Fully actuated Physical contact
[McKinnon and Schoellig, 2016] State estimator Underactuated Wind
[Nisar et al., 2019] State estimator Underactuated Disturbances

Table 1.2 compares how force and torque feedback is achieved in the reviewed literature. It can
be seen that none of the encountered works use a state estimator to engage in physical contact
interaction with a fully actuated UAV. Works that estimate contact forces and torques mostly
use deterministic formulated observers, which only works well in cases of high signal-to-noise
ratios. As seen in [McKinnon and Schoellig, 2016], stochastic formulations, such as state esti-
mators, are designed to properly handle measurement noise and process noise.
The works considering state estimators for estimating external forces and torques, present their
work for wind disturbances or programmatically introduced disturbances. However, neither of
them engage in physical contact with the environment. Besides, the nonlinear dynamics of a
quadrotor have been exploited. Fully actuated aerial robots can exert a full wrench without the
need to tilt. This is beneficial for contact interaction, as horizontal forces can easily be exerted
into objects and surfaces.

1.2 Research Goal

This thesis aims to design a state estimator which tightly couples a fully-actuated hexarotor’s
dynamics into pose estimation. Besides, the estimations should comply with the UAV’s nonlin-
ear geometric structure. Therefore, the estimation problem should be formulated geometrically

13

and the state estimator should be able to deliver estimates which are subject to the mathe-
matical constraints of their underlying Lie group. Furthermore, the performance of the tightly
coupled state estimator will be validated for an interaction scenario. Additionally, special at-
tention will be given to the effects of a loss of signal. The goals of this thesis result into the
following research questions:

1. How can force estimation be tightly-coupled with pose estimation for a geometric state
estimator?

2. What are the limitations of external force estimation for the tightly-coupled state esti-
mator for physical contact interaction using a UAV?

3. How does a state estimator tightly-coupling force estimates into the pose estimation
compare against a state estimator exclusively estimating the pose for physical contact
interaction using a UAV?

Note that the aim of this research has similarities with [Nisar et al., 2019]. The most im-
portant difference between this thesis and the literature is that this thesis will consider the
tightly-coupled estimation for physical interaction, instead of a self-introduced disturbance. It
is much simpler to estimate a self-introduced disturbance, as the characteristics of the external
force can be altered such that they are easily estimated. A real-world interaction however can
be a more complicated signal more challenging to estimate. Thus, applying a tightly-coupled
state estimator on a real-world interaction will give more insight into the true limitations of
the method for realistic scenarios.
Moreover, this thesis proposes to utilize a GPS-aided VIO. The use of VIO remains challenging
in environments with drastically varying lighting conditions, uneven illumination, low texture
scenes, and abrupt changes in attitude [Sun et al., 2018]. Besides, GPS becomes freely available
outdoors. The employment of GPS in addition to VIO will improve the overall robustness of
the state estimator.
Also, VIO has four unobservable degrees of freedom (DOFs), namely the three DOFs corre-
sponding to the global position, and one corresponding to the rotation about the gravity axis.
Utilization of GPS for state estimation does achieve full-observability for the global position
[Chagas and Waldmann, 2015]. Therefore, the incorporation of GPS will lead to improvements
in the observability of the solution.

1.3 Proposed method

In this work, a state estimator tightly-coupling external force estimation with pose estimation
will be proposed. To achieve this coupling, a model for the motion prediction will be formu-
lated which specifically takes the forces acting on the body into account. Figure 1.1 shows
an overview of the proposed state estimator. This section will first explain how the proposed
method estimates both the pose and the external force. Next, the choices made for the pro-
posed method will be elaborated.

The State estimator uses two measurement systems, the UAV’s IMU, and a GPS. The IMU
contains acceleration measurements āb,ib and angular velocity measurements ωb,ib . The GPS

measures the position of the UAV ξib and its velocity vb,ib .
In addition to these sensors, an Electronic Speed Controller is needed for the solution. As de-
scribed in [Rashad et al., 2019a] by using each propeller’s spinning velocity, the drag-to-thrust
ratio and the internal configuration of all propellers, one can calculate the wrench inserted into
the UAV by the controller via the propellers. In order to obtain knowledge about the propeller’s
spinning velocity, the ESC is needed.
The proposed method uses an UKF to estimate both the UAV’s pose and the external force
acting on the body f̂ bext. The UKF uses a system model to predict each state and it corrects

14

the states using observations obtained from sensors. The external force can be predicted by
using a model and it can be correction by mapping the forces acting on the body towards the
expected acceleration. Subsequently, f̂ bext and f̄ bpr will be used to predict the pose of the UAV.
This method achieves a state estimator where the external force estimation is tightly-coupled
with the pose estimation. Next to the tightly-coupled estimator, a estimator exclusively esti-
mating the robot’s pose will be formulated as well. The benefits of having two estimators are
twofold. First, the geometrical pose estimator will contain a very similar approach, but without
the external force estimation, allowing to more easily verify the estimator. Besides, the geomet-
rical pose estimator allows to compare with the estimator tightly-coupling the robot’s dynamics.

The tightly coupled state estimator will be implemented by using a filtering-based estimator.
Optimization-based estimators are more accurate but in general filtering-based estimators are
computationally more efficient than competing optimization-based methods [Sun et al., 2018].
Besides formulating a filtering-based estimator provides an alternative research direction which
can later be compared with [Nisar et al., 2019].
The filtering-based algorithm chosen is the UKF. The EKF is a bit more lightweight computa-
tionally but the UKF shows superior performance for highly nonlinear problems, as the EKF
is only optimal up to first-order non-linearities. Besides, the UKF spares the error-prone com-
putation of Jacobians which makes the method more versatile.

Next to this, the state estimator makes use of a GPS to correct the position. Most of the litera-
ture, such as [Nisar et al., 2019], uses VIO odometry to estimate the UAV’s pose. However, as
acknowledged by [Sun et al., 2018] using VIO is challenging in environments with drastically
changing lighting conditions, uneven illumination, low texture scenes and, abrupt changes in
attitude due to wind gusts. Their solution contains a stereo-vision setup for VIO, which com-
plicates the UAV system design by size, weight, and computational costs. Besides, outdoors
GPS is available freely. To not ignore GPS signals once they are available, this thesis proposes
to use a GPS-aided VIO. However, to keep the work tractable for the time of a Master thesis,
this thesis will use a GPS/IMU fusing as a first step.

Figure 1.1 General overview of the proposed state estimator. The ‘UAV’ block denotes signals
needed from the aerial robot, and the ‘Tuning Parameters’ block denotes the parameters to be
set by the user.

Another goal of the project is to obtain geometric estimations. To accomplish this, it is first
needed to formulate the state estimator’s models such that they comply with rigid body kine-

15

matics and dynamics. This causes the predictions, made by the state estimator, to be geometric.
Secondly, a geometric state estimator outputs states belonging to a Lie group. For a state to be
an element of a Lie group, it will be subject to certain mathematical constraints. Traditional
state estimators will use operations that break the conditions imposed by the Group. There-
fore, an alternative state estimator will be used which ensures states belonging to a Lie group
will be estimated such that they satisfy the imposed constraints.

The purpose of this state estimator is to be used for aerial physical interaction applications.
This can be accomplished by using the external force, estimated by the algorithm, as the in-
teraction force and feeding the estimated interaction force back to the control scheme.
The interaction estimation can be achieved using the fully-actuated Hexarotor named BetaX,
which can be seen in figure 1.2. BetaX uses an energy tank-based wrench/impedance controller
to accomplish closed-loop position- and wrench control [Rashad et al., 2019b]. The concept
of energy tanks is used to guarantee the system’s overall contact stability to arbitrary passive
environments. Besides, BetaX has a tilted-propeller design that achieves full-actuation. Under-
actuated UAVs, such as quadrotors, need to tilt before moving horizontally. This complicates
interactions as horizontal forces can only be exerted into the environment with the additional
tilting. Fully-actuated UAVs don’t suffer from this complication, as they can exert the full
6d wrench without the need for additional motion. Nevertheless, the fully-actuated UAV is
employed solely to simplify the interaction. The proposed state estimator is independent of the
full-actuation of the UAV.
To find the limitations of the tightly coupled state estimator a software implementation will be
made in C++. The code will be executable as a ROS node such that a Gazebo simulation of
BetaX can be used to experiment with.

1.4 Thesis Structure

The rest of this thesis will be organized as follows. Chapter 2 will give the background theory
needed to understand the core chapters of this thesis. The chapter will be divided into two
sections. The first section shares relevant basics on state estimation and the second section
presents some mathematical concepts of Lie theory. Chapter 3 describes the used sensors and
their models. Chapter 4 will use the concepts taught in chapter 2 to formulate operations that
can be used to redefine state estimators. These operations will accomplish that the redefined
state estimators can estimate states belonging to a Lie group. Chapter 5 will formulate two
geometric state estimators. The first one fuses information from an IMU with a GPS. The
second one also couples the UAV’s dynamics into the estimator. In chapter 6 simulations are
being done to validate estimator. Chapter 7 will experiment with the state estimator using
(manipulated) real-world data. And lastly, chapter 8 will come to a conclusion.

Figure 1.2 Fully-actuated hexarotor hovering at a non-zero pitch and roll angle
[Rashad et al., 2019a]

16

Chapter 2

Background

Sensor fusion is the process of combining measurements from sensors or algorithms into a
combined estimation. Sensor fusion aims to improve measurement accuracy or precision. For
instance, IMUs are typically very accurate but suffer from drift or bias if used for pose esti-
mation. Therefore, these sensors are typically fused with measurement systems providing less
accurate but bias-free pose information.

Sensor fusion can be achieved by state estimation. In general, two state estimation methods
are considered: Filtering-based estimation or optimization-based estimation. Filtering-based
methods make use of (non-linear) Kalman Filters. The states are predicted using models and
corrected by observations. Optimization-based algorithms are mainly gradient-based, such as
Newton’s method or Gauss-Newton’s method [Gui et al., 2015].
In general optimization-based estimation is more accurate but comes with higher computational
demands. Filtering approaches are more suited to real-time applications [Brossard et al., 2018].
Nevertheless, methods to consider optimization-based estimation for real-time applications are
emerging. One of these methods is called pre-integration [Forster et al., 2016].

One can recognize specific names denoting which sensor suite is used in a state estimator. Vi-
sual Odometry (VO) denotes the motion estimation of a system using only the input of a single
or multiple cameras attached to it [Scaramuzza and Fraundorfer, 2011]. A fusion between IMU
data and VO is called Visual Inertial Odometry (VIO). Sensor fusion can also be encountered
in synchronous localization and mapping (SLAM) literature. The SLAM problem is concerned
with estimating a robot’s pose while also building a map of the environment. In SLAM, state
estimation or sensor fusion strategies can be applied to improve the estimation of the robot’s
pose which consequently also improves the quality of the map. SLAM algorithms such as visual-
SLAM (V-SLAM) can also be coupled in the state estimator. In such cases SLAM provides the
robot’s pose which can be used to correct biases and counteract drift caused by integration.

Depending on how the sensors or algorithms are fused, the fusion is either loosely-coupled or
tightly coupled. For loosely-coupled systems, the incorporated estimators can estimate states
as stand-alone, but the information is fused to improve the performance. In tightly-coupled
estimators, the estimation in one step is dependent on variables estimated in another step.

In state estimation for robotics, typical states to be estimated are the robot’s: position, velocity,
orientation and the sensor bias. For states belonging to real space, the estimation can simply
be achieved by traditional state estimation algorithms. However, orientation is parameterized
on a manifold. This is done because parameterization in real space leads to singularities known
as gimbal lock [Hertzberg et al., 2011]. States expressed on a manifold can not be handled

17

similarly to states expressed in real space. Therefore, redefined operations will be needed to
correctly estimate the states expressed on a manifold.

The remainder of this chapter will be used to further explain filtering based techniques for state
estimation and Lie theory.

2.1 State Estimation

A kalman filter is a discrete estimation process. The filter uses two steps to estimate the state
vector xk ∈ Rn, where n denotes the number of states and k the current sample. The first
step is to predict the state x̆k by using knowledge of the system and measurement inputs. The
second step is to correct the state prediction using observations obtained by sensors.

The knowledge of the system during the prediction can be obtained by a linear state space
model:

xk = Axk−1 +Buk + ηk (2.1)

Where xk+1 denotes the next state, A is the system matrix, u is a measurement input, B is the
input matrix, and ηk is measurement noise. The measurement noise is injected via the input
and can be modeled as additive zero mean Gaussian noise ηk ∼ .N (0, σ2

η).

The correction step is formulated as follows:

yk = Cxk + nk (2.2)

Where yk ∈ Rm denotes the observation vector with m observations,C ∈ Rm×n is a noiseless
observation mapping from the (predicted) states to the observations and nk denotes observation
noise coming from sensors used during the correction step.

The Kalman filter uses operations on vectors and matrices. Therefore, the noise will be for-
mulated using covariance matrices. The covariance matrices are defined by the expectation
E(.):

Q = E[ηnη
T
n]

R = E[nkn
T
k]

(2.3)

Where Q is the measurement covariance matrix and R is the observation covariance matrix.
Both covariance matrices are similar in the sense that both denote noise injected via sensors.
However, Q is a measure for the sensor noise in the prediction step and R for the correction step.

Finally, the Kalman Filter uses the Kalman Gain K ∈ Rn×m to estimate the value of the states:

x̂k = x̆k +K(yk − Cx̆) (2.4)

Where x̆ denotes a predicted state. The Kalman gain is an optimal gain as it tries to minimize
the process noise in the estimator. The Kalman gain and the equations of the filtering process
are derived in appendix A.
Depending on whether equation (2.1) is formulated continuously or discrete, x̆ is obtained with
or without integration.

18

The process error ek denotes the differences between the actual state and the estimated state:
ek = xk− x̂k. The error can be used to define the process covariance matrix, which is a measure
for the uncertainty in the estimation:

P = E[eke
T
k] = E[(xk − x̂k)(xk − x̂k)T] =

E [ek−1e
T
k−1

]
E
[
eke

T
k−1

]
E
[
ek+1e

T
k−1

]
E
[
ek−1e

T
k

]
E
[
eke

T
k

]
E
[
ek+1e

T
k

]
E
[
ek−1e

T
k+1

]
E
[
eke

T
k+1

]
E
[
ek+1e

T
k+1

]
 (2.5)

In the last equality, it can be recognized that the process covariance matrix describes the ex-
pectation or variance between the previous- current- and next error sample.

The remainder of this section will be used to explain the general process of the Kalman Filter
in 2.1.1. The Kalman Filter will be derived for a linear case. Naturally, there is no promise
that models needed for real-world applications are linear. Therefore 2.1.2 will show some non-
linear alternatives which are commonplace in filtering literature. Lastly, some final matters will
be explained regarding consistency and observability. These are topics frequently discussed in
literature since they are associated with sufficient estimation accuracy.

2.1.1 Linear Kalman Filter

The Kalman Gain and the process covariance functions have been derived in appendix A.
The linear Kalman Filter needs the following equations to make (optimal) estimations: State
prediction (2.1), Process Covariance prediction (A.13), Kalman gain (A.9), state correction
(2.4) and process covariance update (A.10). This leads to the following algorithm:

Algorithm 1 Linear Kalman Filter (xk−1, Pk−1, uk, yk)

1: x̆k = Axk−1 +Buk + ηk
2: P̆k = APk−1A

T +Q
3: Kk = P̆kC

T (CP̆kC
T +R)−1

4: x̂k = x̆k +Kk(yk − Cx̆k)
5: P̂k = (I −KkC)P̆k
6: return x̂k,P̂k

The algorithm returns x̂k+1 and P̂k+1 which can be used as the next input. By doing so, the
algorithm iteratively returns new estimates. Of course, the user should choose an initial xk and
Pk for the first iteration. The choice of Pk will influence the Kalman gain K. Inspection of
the estimation equation (2.4) shows that when K is close to 1, the prediction cancels and the
estimator puts lots of trust in the observation yk. As the Kalman filter proceeds, P will have
less uncertainty and therefore smaller values. Consequently, a small P will result in a K close
to 0. This cancels the residual such that more trust is put into the prediction x̆. When this
happens the filter is said to be ”converging”.

Formulating, the Kalman Filter is a matter of choosing the appropriate system model. Thus,
A,B, and uk will depend upon the model the user chooses. Furthermore, depending on the
sensors used for the correction step yk, the observation mapping H should also change. The
measurement covariance matrices Q and R will contain the noise or uncertainty in u and y.

2.1.2 Nonlinear Filtering Techniques

As seen in subsection 2.1.1, the linear Kalman filter relies on linear system models for the
state prediction and observation mapping. Needless to say, there is no promise that the states

19

to be predicted behave linearly for real-world situations. For instance, rotations are notorious
nonlinear states. Nonlinear system models and observation mappings can be denoted as follows:

x̆k = f(xk−1, uk + ηk) (2.6)

yk = h(x̆k) + nk (2.7)

Note that the noise in the system model comes from uk. Since f(xk, uk + ηk) is nonlinear the
noise will also be non-additive. For the observation mapping, the noise nk can be captured
using an additive model.

The nonlinear functions pose a problem for propagating the process noise. The linear Kalman
filter assumes that the noise is Gaussian distributed. This is true because the filter handles
the estimation (or prediction) as mean and the involved noise as the variance. However, the
assumption does not hold for non-linear system models, since the noise ηk is mapped through
f(xk, uk + ηk) resulting in colored noise. This means that the predicted process noise can not
be calculated with equation A.13

Two common solutions to the non-Gaussian distributions are linearization of the states, as
done by the extended Kalman Filter, or approximation of the distribution which is done for
the Unscented Kalman Filter.

Extended Kalman Filter (EKF)

The nonlinear functions (2.1) and (2.2) can be linearized by a first order taylor expansion with
respect to the states [Stachniss, 2013a]:

f(xk−1, uk) ≈ f(x̂k−1, uk) +
∂f(x̂k−1, uk)

∂xk−1︸ ︷︷ ︸
:=Fk

(xk−1 − x̂k−1) (2.8)

h(xk) ≈ h(x̆k) +
∂h(x̆k)

∂xk︸ ︷︷ ︸
:=Hk

(xk − x̆k) (2.9)

Where Fk and Hk are the Jacobian matrices of the functions. The previous expansion disregards
the effects the non-additive noise. In most cases the contribution due to noise can be separated:
x̆k = f(xk−1, uk) + g(xk−1, ηk). This allows to introduce a Jacobian for the noise:

Gk :=
∂g(x̂k−1, ηk)

∂ηk
(2.10)

The separation might not be possible for every function. In such a case the partial derivatives
can also be taken from f(x̂k−1, uk+ηk), since the purpose of the separation is mostly to simplify
the derivation of the derivatives.

Using the Jacobian matrices the algorithm for the extended kalman filter is as follows
[Chadaporn Keatmanee, 2015]:
An error state representation of the EKF also exists [Gui et al., 2015]. The error state repre-
sentation is similar to the standard EKF, but the difference is that it aims to estimate the error
of state instead of the full state x̃ = x− x̂. In general, this method is a bit more precise since
the magnitude of the estimated quantity is decreased consequently decreasing the linearization
error is well.

20

Algorithm 2 Extended Kalman Filter (xk−1, Pk−1, uk, yk)

1: x̆k = f(x̂k−1, uk + ηk)
2: P̆k = FkPk−1F

T
k +GkQG

T
k

3: Kk = P̆kH
T
k (HkP̆kH

T
k +R)−1

4: x̂k = x̆k +Kk(yk −Hkx̆k)
5: P̂k = (I −KkHk)P̆k
6: return x̂k,P̂k

Since the error state Extended Kalman Filter doesn’t come at the cost of complexity or com-
putational power, it is advised to always use this formulation when considering an EKF.

Unscented Kalman Filter (UKF)

The UKF aims to approximate a non-Gaussian distribution by means of the Unscented trans-
form. The unscented transform uses a number i of sigma points S [i] and a weighting w[i] for
the approximation. A sketch is shown in figure 2.1.

Figure 2.1 The Non Gaussian Distribution (Dashed line) is approximated to a Gaussian
distribution (solid line) by using sigma points (red dots). X-axis denotes the possible value of
state x, y-axis denotes the probability of the value p(x)

The sigma points can be collected as follows [Stachniss, 2013b]:

S [0] = x

S [i] = x+ (
√

(n+ λ)P)i for i = 1,..,n

S [i] = x− (
√

(n+ λ)P)i−1 for i = 1+1,..,2n

(2.11)

Where n denotes the dimensionality of the state x ∈ Rn, λ can be used as scaling parameter, i
denotes the column in the vector S [i] and

√
(.) is the matrix square root. A common definition

of the matrix square root is the Cholesky Matrix square root.
The first sigma point is the mean of the distribution. The mean is always chosen as the most-
likely state. For every dimension in the state vector, two additional sigma points are needed: a
sigma point left of the mean and a sigma point to the right of the mean. The three total sigma
points per dimension are enough to fit the Gaussian distribution.

21

Not every sigma point should be emphasized equally in the approximation. For instance, the
first sigma points, denoting the estimated mean, is most important for the fit. Therefore, a
weighting w[i] is introduced for each sigma points. In principle, the weighting could be chosen
arbitrarily as long as it doesn’t amplify the approximation. This can be accomplished if the
sum equals one:

2n∑
i

w[i] = 1 (2.12)

Using the weights and the collected sigma points an approximated mean x̂ and covariance
matrix P̂ can be obtained as follows:

x̂ ≈
2n∑
i=1

w[i]S [i] (2.13)

P̂ ≈
2n∑
i=1

w[i](S [i] − x̂)(S [i] − x̂)T (2.14)

A common choice for the weighting is the following [Stachniss, 2013b]:

w[0]
m = x̂

w[i]
c = w[0]

m + (1− α2 + β)

w[i]
m = w[i]

c = w[0]
m + (1− α2 + β) for i = 1,..,2n

(2.15)

Where w
[i]
m denotes a weighting used for estimating the mean or state and w

[i]
c is used for

estimation the covariance matrix. The tuning parameter α and β can be chosen as follows:

κ ≥ 0 Influences how far the sigma points are away from the mean

α ∈ (0, 1]

λ = α2(n+ κ)− n
β = 2 Optimal choice for Gaussian

(2.16)

Now the algorithm for the UKF is as follows:

Algorithm 3 Unscented Kalman Filter (xk−1, Pk−1, uk, yk)

1: S [i]
k−1 = (xk−1 xk−1 + (

√
(n+ λ)Σ)i xk−1 + (

√
(n− λ)Σ)i

2: S̆ [i]
k = f(S [i]

k−1, uk)

3: x̆k =
∑2n

i=1w
[i]
mS̆ [i]

k

4: P̆k =
∑2n

i=1w
[i]
m(S̆ [i]

k − x̆k)(S̆
[i]
k − x̆k)T +Q

5: Y̆ [i]
k = h(S̆ [i]

k)

6: y̆k =
∑2n

i=1 w
[i]
mY̆ [i]

k

7: Sk =
∑2n

i=1w
[i]
m(Y̆ [i]

k − y̆k)(Y̆
[i]
k − y̆k)T +R

8: P̆ x,y
k =

∑2n
i=1w

[i]
m(S̆ [i]

k − x̆k)(Y̆
[i]
k − y̆k)T

9: Kk = P̆ x,y
k S−1

k

10: x̂k = x̆k +Kk(yk − y̆k)
11: P̂k = P̆ −KkSkK

T
k

12: return x̂k+1,P̂k+1

22

In the first line, the sigma points are collected using the previous states. The prediction (lines
2 to 4) is based on the traditional prediction but it is implemented for Sigma point. Note that
the correction (lines 5 to 9) is more extensive.
Line 5 denotes the states mapped to the observation space. This is done in a separate line
conversely to the previous algorithms. In line 6 the predicted observations are estimated by
means of the unscented transform. Line 7 introduces Sk as the residual covariance and line
8 introduces P̆ x,y

k as the predicted cross-covariance between observation space and the states.
Line 9 shows that these two are introduced to obtain the Kalman Gain. Using the Kalman
Gain equation (A.9), one can see why line 9 holds:

Kk = P̆k+1C
T︸ ︷︷ ︸

Px,y
k

(CP̆k+1C
T +R)−1︸ ︷︷ ︸

S−1
k

(2.17)

The estimation is made straightforwardly in line 10. The process covariance matrix is updated
using an alternative equation. This equation can be proven as follows:

Pk = (I −KkCk) P̆k

= P̆k −KkCkP̆k

= P̆k −Kk(P̆
x,y
k)T

= P̆k −Kk(P̆
x,z
k S−1

k Sk)
T

= P̆k −Kk(KkSk)
T

= P̆k −KkS
T
kK

T
k

= P̆k −KkSkK
T
k

(2.18)

2.1.3 Formulating the state estimator

Using a state estimator contains a couple of choices to be made. One should choose what type
of state estimator to use and which sensors to involve.

Previously one linear and two non-linear kalman filter have been shows. Using such a filter
involves formulation of system model (2.1) or (2.6) and an observation mapping (2.2) or (2.9).
The models shown have been formulated for discrete system, but one can also formulate for
continuous systems. Naturally this would involve discrete integration.

Next to the formulation either the EKF or UKF can be chosen for the filter implementation.
In general, the EKF is easier to implement (on the algorithmic side) and converges faster. The
UKF is slightly more accurate and reliable [Qasem and Reindl, 2007]. Also, the UKF spares
the error-prone computation of Jacobians. This also makes the UKF a more modular choice
since a different sensor suite can be handled without any further calculations.

An important consideration for state estimation is the observability of the states. Observabil-
ity is the possibility to estimate the state based on input/output data [Gui et al., 2015]. The
observability of a linear system can be analyzed straightforwardly. However, for non-linear
systems the observability should be found using observability analysis.
Well known unobservable states for VIO are the orientation around the gravity axis and the
global position. The intuition behind this is that the visual odometry only provides bearing
information and the IMU is a double integrator for the position. This causes error for the
unobservable states to grow without bounds.
Another problem for the state linearization of the EKF is that the yaw is unobservable but

23

it appears to be observable for the linearized system [Li and Mourikis, 2012]. This causes the
estimator to believe that is has more information than it actually does have. Therefore it will
return a covariance matrix for the state that underestimates the actual uncertainty.

In conclusion, when choosing a state estimation strategy it is important to consider which states
might be unobservable. If a state proves to be unobservable adding a sensor to correct for this
state is beneficial to bound the otherwise unrestrained error.

2.2 Lie Theory

The use of Lie theory shows many advantages for parametrization of motion in robotics. Ap-
plying Lie theory results into systems which are geometric, meaning that they are invariant for
a change of coordinates of the inertial frame.
Next to this, expressing orientation in a Lie group avoids singularities that arise when using lo-
cal parametrizations such as Euler angles. These singularities appear in the form of gimbal lock.

Some Lie groups commonly encountered in robotics are the: the rotation group SO(3) ∈ R3×3

, the group of rigid body motion SE(3) ∈ R4×4 and the quaternion group SU(2) ∈ R4.
Similar to SO(3), Quaternions can be used to express rotation. However, SO(3) is consid-
ered to be the true parametrization of rotations, and SU(2) is the minimal singularity-free
parametrization of SO(3). This results into SU(2) being a double covering of SO(3). That
means that for every single rotation there are two different Quaternions with different values.

Now that some groups used in robotics have been examined, the remainder of this section will
be used to: Define Manifolds & Lie groups, define group actions, and show how to map between
different spaces. Next SO(3) and SE(3) will be examined more closely and twist and wrenches
will be examined.

2.2.1 Manifolds & Lie Groups

A smooth manifold is a topological space that locally resembles linear space [Joan Solá, 2019].
The state or variable moves on the surface of the manifold. Since the manifold is smooth there
should exist a tangent space for every point on the manifold.
Next a group G is a set G and an (composition) operation ◦ that satisfies the following
axioms[Stramigioli, 2018]:

Associativity : (χ1 ◦ χ2) ◦ χ3 = χ1 ◦ (χ2 ◦ χ3) ∈ G (2.19)

Identity : χ ◦ I = I ◦ χ = χ (2.20)

Inverse : χ−1 ◦ χ = χ ◦ χ−1 = I (2.21)

For elements χ, χ1, χ2, χ3 ∈ G.
Now a lie group M can be defined as both a smooth manifold and a group.
Figure 2.2 illustrates what this would look like graphically. Do note that this is a simplification
since most manifolds are not bounded by a dimension of three. The figure shows a manifold
M where a tangent space TXM is drawn at point X on the surface of the manifold.

Due to the smoothness of the Manifold structure, a local linear space on the Lie group can be
defined. This flat space is called the ”Lie Algebra” and it is tangent to the Lie group at the
identity of TχM. The linear nature of the lie algebra allows one to do calculus while respecting

24

the nature of the Manifolds. This shows one important benefit of the Lie group structure. One
can associate a point expressed in the linear space to the much more complex non-linear space
on the manifold’s surface.

Figure 2.2 Manifold M with tangent space TXM at X . Sidecut visualises that velocity
element Ẋ belongs to tangent space TXM and not to the manifold M [Joan Solá, 2019].

2.2.2 Group Actions

Different Lie groups all have different actions in order to make transformations such as rotation
and translation. These transformations are also known as group actions. For a Lie group M
and a set V , the action X ·v can be defined as the action of X ∈M on v ∈ V [Joan Solá, 2019]:

· :M×V → V ; (X , v) 7→ X · v (2.22)

The action · can be considered as a group actions if it satisfies the following axioms:

Identity : I · v = v

Compatibility : (X1 ◦ X2) · v = X1 · (X2 · v)
(2.23)

For the commonly encountered Lie group in robotics, the groups actions are defined as follows:

SO(n) : Rotation Matrix R · x , Rx

SE(n) : Euclidean matrix H · x , Rx+ ξ

SU(2) : unit quaternion q · x , qxq∗
(2.24)

Where: R ∈ SO(n) denotes a rotation matrix, x ∈ Rn represents a state or variable, H
is a homogeneous matrix (Further explained in subsection 2.2.5), ξ denotes a position, q a
quaternion and q∗ is the quaternion inverse.

2.2.3 Mapping to spaces

As previously described, the manifold structure gives the ability to map from and to different
spaces. A variable or state living in real space x ∈ R can be associated to the Tangent Space
(Lie algebra) using the tilde map (̃.). In order to map from a Lie algebra to real space, the vee
map (.)V will be used. Both maps are defined as follows:

25

Tilde : Rn → TXM; x 7→ x̃ =
n∑
i=1

xiEi

Vee : TXM→Rn; x̃ 7→ (x̃)∨ = x =
n∑
i=1

x̃iei

(2.25)

Where Ei and ei are the vector bases which map to the corresponding vector space.
In order to map from the tangent space (Lie algebra) to the Lie group and back, the exponential
map exp and logarithmic map log can be used. These operations provide mapping as follows:

exp : TχM→M ; x̃ 7→ χ = exp (x̃) (2.26)

log : M→ TχM; χ 7→ x̃ = log(χ) (2.27)

By using the Taylor series, closed forms of the exponential map can be obtained [Joan Solá, 2019]:

exp(x̃) = I + x̃+
1

2
x̃2 +

1

3!
x̃3 + ... (2.28)

In appendix B it is shown that the Taylor expansion of the expontial map can be used to derive
the following identities:

1. lim
ε→0

exp(ε̃) ≈ I + ε̃

2. lim
ε→0

exp(−̃ε) ≈ I − ε̃

3. exp(X x̃X−1) = X exp(x̃)X−1

(2.29)

2.2.4 Rotation group SO(3)

The special orthogonal group SO(n) is a group whose elements are rotation matrices R ∈
SO(n). A rotation matrix R1

2 changes the orientation of a coordinate system ψ1 towards the
orientation of ψ2. This group is also known as the rotation group. The number n denotes
the dimension of the rotation. This thesis will be concerned with three-dimensional motion.
therefore rotation matrices from SO(3) will be used.

The elements of a rotation matrix R1
2 are the inner product 〈, 〉 between coordinate system ψ1

and ψ2 for the unit vectors x̂, ŷ, ẑ [S. Stramigioli, 2001]:

R1
2 =

x̂2 ŷ2 ẑ2

x̂1 〈x̂1, x̂2〉 〈x̂1, ŷ2〉 〈x̂1, ẑ2〉
ŷ1 〈ŷ1, x̂2〉 〈ŷ1, ŷ2〉 〈ŷ1, ẑ2〉
ẑ1 〈ẑ1, x̂2〉 〈ẑ1, ŷ2〉 〈ẑ1, ẑ2〉

(2.30)

Element of the special orthogonal group have some important properties. These properties are
as follows [S. Stramigioli, 2001]:

1. det(R2
1) = 1

2. R2
1 = (R1

2)−1 = (R2
1)T

3. The columns and rows vector of R2
1 have length 1 and are orthogonal

(2.31)

26

The first and third properties are important in order to use an element of SO(3) as rotation.
The first property ensures that the distance in rotated vectors is preserved. The third element
preserves the inner configuration between the axes of the rotated vectors (the angles between
the axes will remain). The second property states that the transpose can be used as inverse.
This is a beneficial property since transposing is computationally more efficient than inversion.

As seen in the previous sections, Lie groups have tangent spaces and operations in order to
map towards or from the tangent spaces. In the case of SO(3) the Lie algebra is a space of

skew symmetric matrices ω̃ ∈ so(3). The tilde map (̃.) maps an angular velocity vector ω ∈ R3

to a skew-symmetric matrix and the Vee map maps back to R3:

Tilde : R3 → so(3); ω 7→ ω̃

Vee : so(3)→ R3; ω̃ 7→ (ω̃)∨ = ω
(2.32)

where the skew-symmetric form (̃.) of an arbitrary vector in real space x ∈ R3 is defined as
follows:

x̃ = x∼ :=

 0 −xz xy
xz 0 −xx
−xy xx 0

 (2.33)

Throughout this thesis either (̃.) or (.)∼ will be used. The second notation is more convenient
terms containing more than one variable.
A help-full property of the skew-symmetric matrix is that is equals the outer product or cross
product ∧. For two arbitrary vector x1x2 ∈ R3:

x1 ∧ x2 = x̃1x2 = −x1x̃2 = −x2 ∧ x1 (2.34)

The exponential map of SO(3) maps a skew-symmetric matrix of unit length ˜̂ω ∈ so(3) by an
angle θ ∈ R3 towards the corresponding rotation matrix R = exp(θ ˜̂ω) ∈ SO(3). This map is
well known as the Rodriquez formula [S. Stramigioli, 2001]:

exp(θ ˜̂ω) = I + ˜̂ωsin(θ) + ˜̂ω2(1− cos(θ)) (2.35)

2.2.5 Homogeneous Matrices

General motion does not exclusively contain rotation. In order to consider the full motion,
translation will also be considered. The Special Euclidean group SE(n) is a group of Homoge-
neous matrices or H-Matrices in short. This group can be used as general transformation for
rigid body motion.
Element of SE(3) can transform vectors expressed in homogeneous coordinates towards differ-
ent coordinate frames. For a position vector p1 expressed in ψ1, the homogeneous coordinates
can be obtained by introducing the number 1 in the fourth index [S. Stramigioli, 2001]:

p1 =

x1

y1

z1

⇔ P 1 =

x1

y1

z1

1

 (2.36)

Where the capital letter of the vector denotes the homogeneous coordinates. Now the general
transformation H2

1 ∈ SE(3) can be used to map towards ψ2:

27

P 2 = H2
1P

1 =

[
R2

1 ξ2
1

0 1

] [
p1

1

]
=

[
R2

1p
1 + ξ2

1

1

]
(2.37)

Where R2
1 ∈ SO(3) denotes the rotation and ξ2

1 ∈ R3 the distance from ψ1 to ψ2.

consequently due to the fact that H-matrices can be used to transform between coordinate
frames, the transformations can be stacked using the chain rule:

H0
n = H0

1H
1
2 ...H

n−1
n (2.38)

2.2.6 Twists and Wrenches

Velocity Vectors can also be considered geometrically. The geometrical vector for (angular)
velocity is called ”twist” and it contains the following components:

T =

[
ω
v

]
(2.39)

Where ω, v ∈ R3. Using the formerly defined H-matrices the twist can be defined. The twists
can be considered in the Lie Algebra of SE(3). Depending on the transformation either a left
twist or a right twist can be defined:

Left twist: T̃ 1,2
1 := H1

2Ḣ
2
1

Right twist: T̃ 2,2
1 := Ḣ2

1H
1
2

(2.40)

Where: T̃ =

[
ω̃ v
0 1

]
. Similar to the transformations seen in the subsection 2.2.5 H-matrices

can be used transform twists T̃ 2,2
1 = H2

1 T̃
1,2
2 .

In some cases it is simpler to transform the twist in vector form. Hence, the Adjoint matrix
AdjH of a H-matrix can used used to execute these transformations [S. Stramigioli, 2001]. The
Adjoint matrix is square and contain six rows and columns AdjH ∈ R6×6. The transformation
of ψ1 to ψ2 using adjoint matrices can be achieved as follows:

AdjH2
1

=

[
R2

1 0

ξ̃2
1R

2
1 R2

1

]
(2.41)

The transformation between twists T 2 and T 1 can now be considered using the Adjoint:

T 2 = AdjH2
1
T 1 (2.42)

Similar to the twist, a special vector can also be defined for forces f and torques τ . A wrench
W is a sixdimensional co-vector with the following elements:

W =

[
τ
f

]
(2.43)

A wrench is called a co-vector because it transforms differently. For instance, a change of
coordinates for wrenches using the adjoint can only be obtained as follows:

W 2 = AdjT(H2
1)TW

1 (2.44)

28

Chapter 3

Sensors & Navigations Systems

The most commonly encountered sensors in state estimation for UAVs is the inertial measure-
ment unit (IMU). IMUs are cheap sensors capable of making accurate measurements. However,
IMUs generally suffer from an inevitable bias or drift. In order to compensate for this bias,
the IMU measurements are usually considered together with a sensor measuring positional in-
formation of the system. Examples of such systems are: global navigation satellite systems
(GNSS) and visual odometry (VO).

3.1 Inertial Measurement Unit (IMU)

Typical IMUs contain the following sensors: Accelerometers, gyroscopes and magnetometers.
These sensor correspondingly measure the: acceleration (ā), angular velocity (ω̄) and magnetic
field (m̄). It will be assumed that the IMU is perfectly fixed to the body frame ψb. By means
of this assumption, all measurements captured by the IMU are measured in the ψb with respect
to the inertial frame ψi expressed in ψb. Furthermore, the bar notation (̄.) is used to denotes a
raw sensor measurement. Figure 3.1 shows a block diagram representation of an IMU and its
measurements.

Figure 3.1 Block Diagram showing IMU assembly and its measurements [Nøkland, 2011]

3.1.1 Accelerometer Measurement Model

Using an accelerometer one can measure the linear acceleration ab,ib ∈ R3 of the body. However,
this measurement is affected by gravity in the vertical axis. By incorporating this constant
deviation, the accelerometer measurements can be modelled as follows:

āb,ib = Rb
i(ξ̈

i
b − gibe3) + bba + ηba (3.1)

The measured acceleration āib is modelled as the linear acceleration vector ξ̈ib corrected by the
gravity gib acting on ψb expressed in ψi and rotated by Rb

i ∈ SO(3) from ψi to ψb. Furthermore

29

the measured acceleration is corrupted by an additive bias bba ∈ R3 expressed in ψb and an
additive white noise ηa ∼ N (0, σ2

a) ∈ R3.

The bias can be assumed to be slowly time-varying [Kok et al., 2017]. In that case the bias can
be modelled as a random walk:

ḃba = ηba (3.2)

Where ηba ∼ N (0, σ2
ba

) . By manipulating the variance σ2
ba

one can manipulate how quickly the
bias is deviating. By using larger values for the variance, more quickly changing random walks
are expected. Vice versa, by using smaller variances more slowly changing random walks are
expected.

3.1.2 Gyroscope Measurement Model

Gyroscopes measure the angular velocity of the rigid body it is attached to. Since these mea-
surements do not feel the pul by gravity, the measurements can be modelled straightforwardly:

ω̄b,ib = ωb,ib + bbω + ηbω (3.3)

The measured angular velocity ω̄b,ib is modelled as the actual angular velocity ωb,ib with additive
bias bbω expressed in ψb and additive white noise ηω ∼ N (0, σ2

ω). Similar to the accelerometer
the additive bias of the gyroscope can be modelled as a random walk:

ḃbω = ηbω (3.4)

Where the bias noise ηbω is assumed to be Gaussian ηbω ∼ N (0, σ2
bω

).

3.1.3 Magnetometer

According to [Lim et al., 2012] a magnetometer is a sensor commonly encountered in UAV
flight avionics. Most UAVs posses magnetometers to measure the three directional magnetic
field intensity in a body frame mb. This measurement can be used to obtain the orientation,
in yaw direction, of a rigid body. If one knows the magnetic field intensity in an inertial frame
mi, the difference between the mi and mb is caused by a rotation of the body. This can be
modelled as follows: [Wang et al., 2018]:

m̄b,i
b = Rb

im
i (3.5)

The earth’s magnetic field intensity differs per region. According to [Wang et al., 2018] the
magnetic field intensity mi in most regions of the earth can be calculated according to World
Magnetic Model (WMM). The Nation Geophysical Data Center (NGDC) has a online calcu-
lator which can be used to calculate the magnetic field intensity for different regions. For
the University of Twente ”Drienerlolaan 5” in Enschede the magnetic field is calculated to be:
mi =

[
18952.2 775.2 45580.2

]
nT .

It will be assumed that the magnetometer can be modelled with an additive measurement
model. By means of this assumption equation (3.5) can be rewritten:

m̄b = Rb
im

i + ηmag (3.6)

Where an additive white noise ηmag ∼ N (0, σ2
mag) is considered.

30

https://www.ngdc.noaa.gov/geomag/calculators/magcalc.shtml?#igrfwmm
https://www.ngdc.noaa.gov/geomag/calculators/magcalc.shtml?#igrfwmm

3.2 Global Positioning System (GPS)

GPS has the advantage that it can be implemented in a simple manner. Though the measure-
ments are not as accurate as IMU measurements, GPS does show to have a limited drift. This
characteristic makes it a good companion for the IMU.
A disadvantage of GPS is that is has a limited reliability [Duflos et al., 2006]. It is possible
that GPS loses its signal for a certain amount of time. The quality for GPS data suffers most
indoors or in dense urban environments. Due to this potential loss of information, it is still
advantageous to use an additional sensor system capable of correcting IMU biases next to the
GPS for certain applications.

The rest of this section will be concerned with: the coordinate systems used in GPS navigation
and the measurement model.

3.2.1 Reference Frames

In Satellite navigation systems different coordinate frames can be encountered. Some of these
frames are fixed to references in space while others are fixed to the earth. The following are
examples of frames which be used to express coordinates received by satellites [Nøkland, 2011]:

• Earth-Centered Inertial (ECI) frame: is an inertial frame where the origin is fixed to the
center of the earth. The x-axis is pointed towards the vernal equinox (vector denoting
the earth’s position relative to the sun when Spring arrives for the northern hemisphere).
The z-axis points along the Earth’s rotation axis.

• Earth-Centered Earth Fixed (ECEF) frame: is also an inertial frame where the origin is
fixed to the Earth. However, conversely to the ECI frame, the ECEF frame’s orientation
is also fixed to the earth. The x-axis is fixed to 0°longitude (Greenwich meridian) and
the y-axis is fixed to 0 °latitude (equator). This makes that transforming from the ECI
frame to the ECEF frame involves rotation by the angular velocity of the earth.

• North East Down (NED) frame: denotes a frame fixed to the surface of the earth. The
x-axis points to the true North of the earth, the y-axis points eastwards and the z-axis
points down to the center of the earth.
One can also use the East North Up frame, which is the same as the NED frame but the
z-axis points up.

The World geodetic system 1984 (WGS84) is an ECEF frame which is considered as a standard
for working with GPS messages. The coordinate system uses modeled and defined parameters
of the earth, such as its angular velocity and radius. The defined parameters are used to make
the coordinate changes for different frames. For example, the earth’s angular velocity is used
to transform from the ECI to the ECEF frame.

For local navigational applications, it is most convenient to work with the NED frame. This
is true since this frame can be fixed to the initial position of a system. The following rotation
can be applied to transform to the NED frame from an ECEF frame: [Nøkland, 2011]:

R(θecefned) =

−sin(µ)cos(l) −sin(l) −cos(µ)cos(l)
−sin(µ)sin(l) cos(l) −cos(µ)sin(l)

cos(µ) 0 −sin(µ)

 (3.7)

Where θecefned =
[
l µ

]T
denotes the longitude l and latitude µ.

31

3.2.2 Measurement Model

GPS is capable of tracking the position ξib and the linear velocity vb,ib of a rigid body. The
GPS signal is measured from an antenna placed on the system to track. However, it is no
promise that the antenna is fixed to ψb. For that reason the antenna will be considered in the
measurement model:

ξ̄ib = ξ,ib +Ri
br
b
ant + ηgps,p (3.8)

v̄i,ib = vi,ib +Ri
bω̃

b,i
b r

b
ant + ηgps,v (3.9)

Where rbant is the distance from the GPS antenna to the body frame, Ri
b denotes the rotation

from ψb to ψi, ω̃b,ib denotes the tilde mapped angular velocity from ψb to ψi expressed in ψb.
An additive white noise is considered for the positional measurement ηgps,p ∼ (0, σ2

gps,p) and the
velocity measurement ηgps,v ∼ (0, σ2

gps,v).

32

Chapter 4

State Estimation on Manifold

This chapter will be concerned with estimating states belonging to a Lie group. In order to
make use of state estimators for states on a manifold, traditional state estimators should be
redefined. This must be done because state estimator use operators which ’break’ the mathe-
matical constraint imposed by the Lie group.

To demonstrate this, an example will be given for a estimating R ∈ SO(3). One of the
constraints for SO(3) can be seen in equation 2.31: det(R) = 1. The Kalman filter corrects
predictions using equation 2.4. In this equation the innovation K(yk − Cx̆) will be replaced
with δR ∈ SO(3) for the sake of simplicity. Now if one would naively use equation 2.31 for
estimation R, this would lead to the following

x̂k = R̆k + δRk (4.1)

Naturally det(R̆k) = 1 and det(δRk) = 1 thus:

det(x̂k) = det(R̆k + δRk) 6= 1 (4.2)

Which shows for this approach x̂k 6∈ SO(3).

In order to define state estimators which do respect the constraints, the plus ”+” should be re-
placed by an operator that maps to a Lie group. Also in order to calculate residuals K(yk−Cx̆)
for states on a manifold, the ”−” should be replaced as well.

In section 4.1 the plus- and minus operator will be introduced. These are operators composed
of the mappings encountered in section 2.2.6. This allows doing calculus while respecting the
structure of the Lie group one would like to use. Section 4.2 shows how these operators can
be used to handle uncertainty on a manifold. Section 4.3 will redefine partial derivatives for
elements of manifolds. This can be used in case one wants to implement a state estimator
which linearizes the state, such as an EKF. Section 4.4 will present an UKF which uses section
4.1 and 4.2 to estimate states belonging to a Lie group.

4.1 The plus and minus operator

State estimation requires operations to map perturbations onto the space a state belongs to.
This becomes more involved when considering states belong to a non-additive space such as
SO(n) or SE(n). If one uses states belonging a manifold, there is the need to add perturbations
from real space: M◦Rn −→M.

33

The plus operator ⊕ and minus operator 	 allows to introduce increments between elements
of a (curved) manifold and express them in its (flat) tangent vector space. Both ⊕ and 	 are
introduced in [Joan Solá, 2019]. The operators can be defined by using the exponential map
exp(.) (2.26) and logarithmic map log(.) (2.27). Depending on the order of operation, either
right- or left operators can be defined:

right-⊕ : X2 = X1 ⊕ τX1 , X1 ◦ exp
(
τX1
)
∈M (4.3)

right-	 : xτ = X2 	X1 , log
(
(X2)−1 ◦ X1

)
∈ TXM (4.4)

Note that for (4.3) the exponential map exp(τX1) is composed from the right and that the
argument is the tangent space at X . This should be considered as the frame in which τ is
expressed. Since τX is at expressed at X , it said to be in the local frame.
Now for the left operators:

left- ⊕ : X2 = τ I ⊕X1 , Exp (Iτ) ◦ X ∈ M (4.5)

left- 	 : τ I = X2 	X1 , log
(
X1 ◦ X−1

2

)
∈ TIM (4.6)

In (4.6) there result obtained is at the tangent space at Identity. Therefore the 	 is said to be
in a global frame. It is most convenient to increment locally and subtract globally, thus (4.3)
and (4.6) will be used as default.

The definition of ⊕ and 	 holds for general Lie groups. Therefore one can use the exponential-
and logarithmic functions of a specific Lie group, such as SO(n), to define ⊕ and 	 respecting
the constraints of the corresponding group.

4.2 Probability

Sensor fusion/state estimation relies on the use of probability distributions to represent uncer-
tainty and noisy sensor data. When expressing states in lie groups the uncertainty and noise
should also respect the constraint of the groups. Therefore this section will redefine probabilis-
tic measures using ⊕ and 	.

For state estimation processes one always considers a state x ∈ Rn with uncertainty η assumed
as white noise η ∼ N (0, σ2). This uncertainty is commonly being referred to as process noise.
The estimatio with its process noise can be described as follows:

N (x, σ2) = x̂+N (0, σ2) (4.7)

Where x̂ denotes the (estimated) mean and x denotes the full state.

The general approach for expressing uncertainty in Lie groups is to lift the uncertainty to the
Lie group. This method is advocated similarly in [Hertzberg et al., 2011] and [Joan Solá, 2019].
A similar approach is taken in [Brossard et al., 2017] but in their work, the perturbation is
expressed globally (increment from the left).
In order to accomplish the uncertainty for a state in a Manifold X ∈ M, the uncertainty η
should be expressed in the tangent space of X :

τ = η̃ ∈ TX (4.8)

Now the plus operator can be used to add the uncertainty:

34

N (X , P) = X ⊕ τ ∈M (4.9)

The lifting approach is visualized in figure 4.1.
Similar to errors in real space, the errors in the tangent space can be found by considering the
difference between the true state X and estimated mean X̂ : τ = X 	 X̂ . This can be used to
define a covariance matrix in the tangent space:

P = E[ττT] = E[(X 	 X̂)(X 	 X̂)T] ∈ TX (4.10)

The covariance matrix definition from (4.10) can be used for both states and measurements.

Figure 4.1 Uncertainty around X ∈ M. The uncertainty is expressed in the tangent space
TXM (red) and lifted to the group (blue) [Joan Solá, 2019]

.

4.3 Partial derivatives

As explained in subsection 2.1 the EKF solves the non-linearity by means of linearizing the
state. In order to accomplish this a Jacobian matrix with respect to the states and noise is
applied. In other to define the Jacobian partial dirivatives for Lie groups should be found. The
well known partial derivative for real numbers is as follows:

∂f(x)

x
= lim

ε→0

f(x+ ε)− f(x)

ε
(4.11)

where f(x), x ∈ Rn. As is known by many, the idea of differentiation is to introduce a small
increment in the function f(x+ ε) an calculate the rate of change with respect to the original
function f(x).

Whenever the state is an element on a manifold the standard definition doesn’t hold. One
cannot add a perturbation in real space ε ∈ Rn to a state on a manifold X ∈ M. However,
using ⊕ the perturbation can be lifted in order to still considering small differences on the
manifold:

∂f(X)

X
= lim

ε→0

f(X ⊕ ε)− f(X)

ε
(4.12)

By inspecting of the definition one can see that the idea of differentiation has not changed for
elements on manifolds.A small increment is still added to the original function f(X ⊕ ε), but
now it is added in the Lie group.

If one of the states in the state estimator is a manifold element, then there probably also exists
a function: X −→ X2 = f(X). In such a case, the difference in the perturbed function should be

35

considered on the manifold. Thus the partial derivative can be altered to consider difference
on manifold by using 	:

∂f(X)

X
= lim

ε→0

f(X ⊕ ε)	 f(X)

ε
(4.13)

Lastly for state estimation one can also encounter mappings from real space to the manifold
x −→ X = f(x). In such a case the result of f(x) is a manifold element but small changes are
still defined relative to x. For situation the following partial derivative can be used:

∂f(x)

x
= lim

ε→0

f(x+ ε)	 f(x)

ε
(4.14)

4.4 Unscented Kalman Filter on Manifold

Using the operators from section 4.1 and 4.2, the UKF can now be formulated to handle states
in Lie groups X ∈M. The algorithm is as follows [Hertzberg et al., 2011]:

Algorithm 4 Unscented Kalman Filter (Xk−1, Pk−1, uk, yk)

1: S [i]
k−1 = (Xk−1 Xk−1 ⊕ (

√
(n+ λ)Pk−1)i Xk−1 ⊕ (

√
(n− λ)Pk−1)i

2: S̆ [i]
k = f(S [i]

k−1, uk)

3: X̆k =
∑2n

i=1w
[i]
mS̆ [i]

k

4: P̆k =
∑2n

i=1w
[i]
m(S̆ [i]

k 	 X̆k)(S̆
[i]
k 	 X̆k)T +Q

5: S̆Y [i]
k = h(S̆ [i]

k)

6: Y̆k =
∑2n

i=1w
[i]
mS̆Y

[i]

k

7: Sk =
∑2n

i=1w
[i]
m(Y̆ [i]

k 	 y̆k)(Y̆
[i]
k 	 y̆k)T +R

8: P̆ x,y
k =

∑2n
i=1w

[i]
m(S̆ [i]

k 	 X̆k)(Y̆
[i]
k 	 y̆k)T

9: Kk = P̆ x,y
k S−1

k

10: δ = Kk(yk 	 y̆k)
11: P ′k = P̆ −KkSkK

T
k

12: X ′t =
(
Xk ⊕ δ Xk ⊕ (δ + (

√
(n+ λ)P ′k) Xk ⊕ (δ − (

√
(n+ λ)P ′k)

)
13: X̂k =

∑2n
i=1w

[i]
m(X ′t)

14: P̂k =
∑2n

i=0w
[i]
m(X ′t 	 X̂)(X ′t 	 X̂)T

15: return X̂k,P̂k

Some differences can be observed relative to the UKF from 2.1. First of all, the sigma points
gathered in line 1 are now obtained using ⊕. Line 4 shows that the process covariance matrix
is now obtained using equation 4.10. This equation is also used in line 7 and line 8. Line 10
shows that the innovation is now calculated using 	. This allows the observation to be real
yk ∈ Rn and obtain a real number for the innovation. Line 12 adds the innovation from line 10
to the prediction and gather the sigma points. In line 13, these sigma point are summed with
the weight to obtain the final estimation. Lastly the P̂k is obtained in line 14.

36

Chapter 5

Filter Formulation

This chapter will formulate two estimators. As is explained in chapter 2 this is a matter of
formulating two sets of functions. The first set are the state equations f(x, u) that will be used
to predict the next value of the states. The second set will be the observation mapping h(x̆)
to map the predicted states towards the observation space.

Before the estimators are formulated, equations of motion will be derived. Section 5.1 will de-
rive equations of motion purely based on kinematics. Section 5.2 derives similar equations but
these equations are based on dynamics instead of exclusively kinematics. Both sets of equations
will be derived geometrically and in accordance with chapter 2. This allows the estimators to
be free of coordinate changes and avoids singularities.
Section 5.3 will formulate a geometrical state estimator where the prediction is driven by ac-
celerometer and gyroscope measurements. Section 5.4 will build upon this estimator but the
prediction will be formulated such that it tightly-couples an estimated external force.

5.1 Rigid Body Kinematics

The motion of a UAV can be tracked by using two frames: An inertial frame ψi and a body
frame ψb. The body frame considered is the frame fixed to the center of mass of the UAV. The
rigid body motion can be described by considering the twist between the frames. For the left
twist, this looks as follows:

T̃ b,ib = Hb
i Ḣ

i
b =

[
Rb
i ξbi

0 1

] [
Ṙi
b ξ̇ib

0 0

]
=

[
Rb
iṘ

i
b Rb

i ξ̇
i
b

0 0

]
=

[
ω̃b,ib vb,ib
0 0

]
(5.1)

This definition can be worked out component-wise:

vb,ib = Rb
i ξ̇i

i

b (5.2)

ω̃b,ib = Rb
iṘ

i
b (5.3)

By straightforward algebraic manipulation, the equation can be written as follows:

ξ̇ib = Ri
bv
b,i
b (5.4)

Ṙi
b = Ri

bω̃
b,i
b (5.5)

By taking the time derivative of vb,ib (5.2), an analytic expression for linear acceleration can be
derived.

37

v̇b,ib =
d

dt
(Rb

i ξ̇i
i

b)

= Ṙb
i ξ̇i

i

b +Rb
i ξ̈i

i

b

= ω̃b,bi R
b
i ξ̇iξ

i
i +Rb

i ξ̈i
i

b

= −ω̃b,ib v
b,i
b + (Ri

b)
−1ξ̈i

i

b

(5.6)

The equations of motion (5.4),(5.5) and (5.6) can be used to fully describe the motion of a rigid
body.

5.2 Rigid Body Dynamics

To track motion of a rigid body, one can also relate dynamic effects on the rigid body motion.
This thesis will consider three wrenches acting on the body:

W b = W b
g +W b

pr +W b
ext (5.7)

Where wbg denotes a wrench caused by gravity, wbpr a wrench injected by the controller via the
propellers and wbext is an external wrench.

The gravity wrench can be modelled straightforwardly, since it is a wrench oriented in the same
direction as ψi: Rg

b = Ri
b. However, the origin of this frame is fixed to ψb. Thus, considering

gravity in the body frame is to transform the gravity contribution −mg to the body frame:

W b
g = AdTRg

b

[
05

−mge

]
=

[
03

−Ri
b(mge3)

]
(5.8)

The wrench caused by the propellers is acting in the body frame W b
pr. This effect can be mod-

elled by considering the thrust from each propeller λ =
[
λ1 ... λ6

]T
and a control allocation

matrixM mapping the propeller thrust to the wrench acting on the body [Rashad et al., 2019b].

W b
pr = Mλ (5.9)

External effects acting on the model will be captured within the external wrench W b
ext. Since

the behaviour of wbext is generally not known beforehand, no underlying dynamics are assumed.
In order to still capture the behaviour of the external wrench, it will be modelled as a random
walk [McKinnon and Schoellig, 2016]:

Ẇ b
ext = ηWext (5.10)

Where ηWext ∼ N (0, σ2
Wext

) is a White noise. This method leaves σ2
Wext

as a tweaking parameter.
By choosing larger values the external wrench will change more quickly and smaller values result
into a more slowly varying external wrench.
The wrench Wb acting on the body will be a sum of the previously described wrenches, which
components look as follows:

f b = f bg + f bpr + f bext

τ b = τ bpr + τ bext
(5.11)

The effects of a wrench on the motion of a rigid body can be described by the Euler Equation
for rigid body’s [S. Stramigioli, 2001]:

38

IkṪ k,ib =

(
−ω̃k,ik −ṽk,ik,i

0 −ω̃k,ik

)
IkT k,ik +

(
W k
)T

(5.12)

Where Ik denotes the inertia matrix in the principal inertial frame ψk. Due to the fact that it
is expressed in the principal inertial frame, the inertia matrix is a diagonal matrix dependent
on the moment of inertia J ∈ R3 and mass m in the following manner: I = diag

[
J mI3x3

]
.

For simplification purposes it will be assumed that the body frame aligns with the principal
inertia frame ψb = ψk. Now the terms will be written component-wise. First the upper row
will be considered:

Jω̇b,ib = ω̃b,ib Jω
b,i
b + τ b

Jω̇b,ib = Jω̃b,ib ω
b,i
b + τ b

ω̇b,ib = ω̃b,ib ω
b,i
b + J−1τ b

ω̇b,ib = ω̃b,ib ω
b,i
b + J−1(τ bpr + τ bext)

(5.13)

The first step is to move the inertia matrix J forward. This is allows as the J is diagonal.
Lastly the torque can be expanded by the torque contributions considered.
Now for the lower row:

mv̇b,ib = − ˜
ωb,ib mv

b,i
b + f b

mv̇b,ib = −m ˜
ωb,ib v

b,i
b + f b

v̇b,ib = −ω̃b,ib v
b,i
b +m−1f b

v̇b,ib = −ω̃b,ib v
b,i
b +m−1

(
f bg + f bpr + f bext

)
(5.14)

Similar to the rotational case, first the mass m is moved, then divided and last the force
contribution is expanded.
Both equations (5.13) and (5.14) result into an expression which can be used the describe the
motion of a rigid body. Conversely the previous section, these equations are based on dynamics
instead of exclusively kinematics.

5.3 Geometrical pose estimator

In order to track the UAV’s pose, the following states will be considered:

x =

ξib
vb,ib
Ri
b

bb

 (5.15)

Where ξib ∈ R3 denotes the position, vb,ib ∈ R3 denotes the velocity and a rotation matrix
Ri
b ∈ SO(3) is considered. In section 3.1 it is seen that accelerometer- and gyroscope measure-

ments are often affected by biases. Generally, state estimators can correct for these distortions
if they are added to the state vector. For that reason, depending on the number of sensors s,
a bias vector bb ∈ R3s will be added. It is expected that the biases are expressed in the body
frame.
Furthermore, note that the rotation matrix belongs to the Lie group SO(3). therefore, the state
estimator should be redefined as shown in chapter 4.

39

5.3.1 IMU based Prediction

A common encountered state estimator uses IMU measurements to predict the UAV’s motion.
This can be accomplished by using the measured acceleration āb,ib and the measured angular

velocity ω̄b,ib as measurement input. Equation 3.1 and 3.3 show the measurement models of
the accelerometer and the gyroscope. The measurement can be incorporated into the state
estimator as follows:

u =

[
āb,ib
ω̄b,ib

]
=

[
Rb
i(ξ̈

i
b − (gibe3) + bba + ηba
ωb,ib + bbω + ηbω

]
(5.16)

The first three states from the state estimator can be predicted by using the kinematic relations
(5.4),(5.5) and (5.6). The biases involved in this estimator are the accelerometer bias bba and

the gyroscope bias bbω. The bias vector will be redefined to capture these effects: bb =
[
bba bbω

]T
.

The biases are predicted by means of their model (3.2) and (3.4). Incorporating all of these
equations, the states can be predicted as follows:

ξ̇ib
v̇b,ib
Ṙi
b

ḃba
ḃbω

 =

Ri
bv
b,i
b

−ω̃b,ib v
b,i
b +Rb

i ξ̈
i
b

Ri
bω̃

b,i
b

ηba
ηbω

 (5.17)

In order to incorporate the measurements correctly, a distinction will be made between actual
variables and their measured value. Using that distinction, variables can be restored from for
instance biases. The measurement inputs u can be manipulated as follows:

āb,ib = Rb
i(ξ̈

i
b − (gibe3) + bba + ηba

= Rb
i ξ̈
i
b −Rb

ig
i
be3 + bba + ηba

Rb
i ξ̈
i
b = āb,ib +Rb

ig
i
be3 − bba − ηba

(5.18)

And for the gyroscope:
ωb,ib = ω̄b,ib − b

b
ω − ηbω (5.19)

Now these equations can be substituted in (5.17) resulting into the state equations:
ξ̇ib
v̇b,ib
Ṙi
b

ḃba
ḃbω

Ri
bv
b,i
b

−(ω̄b,ib − bbω − ηω)∼vb,ib + āb,ib +Rb
ig
i − ba − ηa

Ri
b(ω̄

i
b − bbω − ηω)∼

ηba
ηbω

 (5.20)

It can be seen that the state equations are non-linear and contain non-additive noise. The
measurement noise involved in the state equations will be defined within the noise vector:
η =

[
ηba ηbω ηba ηbω

]
∈ R12. Naturally there is no way one can estimate the value of the

noise. Hence a distinction will be made between a contribution due to noise and a contribution
due to the state changes.

ξ̇ib
v̇b,ib
Ṙi
b

ḃba
ḃbω

︸ ︷︷ ︸

ẋ

=

Ri
bv
b,i
b

−(ω̄b,ib − bbω)∼vb,ib + āb,ib + (Ri
b)
Tgi − bba

Ri
b(ω̄

i
b − bbω)∼

0
0

︸ ︷︷ ︸

f(x,u)

+

0

η̃ωv
b,i
b − ηa
−Ri

bη̃ω
ηba
ηbω

︸ ︷︷ ︸

g(x,η)

(5.21)

40

The correctness of the formulation can be checked by rewriting it in terms of the states and

inputs. The state vector will be rewritten to: x =
[
x1 x2 x3 x4 x5

]T
, the measurement

input to: u =
[
u1 u2

]T
and the noise vector to η =

[
η1 η2 η3 η4

]
. Now the state functions

can be rewritten as follows:
ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

︸ ︷︷ ︸

ẋ

=

x3x2

−(u2 − x5)∼x2 + u1 + (x3)Tgi − x4

x3(u2 − x5)∼

0
0

︸ ︷︷ ︸

f(x,u)

+

0

η̃2x2 − η1

−x3η̃2

η3

η4

︸ ︷︷ ︸

g(x,η)

(5.22)

This shows that every predicted state is purely based on other states, measurement input or
noise. The only parameter still written as a variable is gi. However, this is a known constant
that can be predefined. Therefore it can be concluded that the state equations are formulated
correctly.

5.3.2 GPS based correction

In the case of this estimator, the accumulated errors caused by integration drift will be con-
tained by using GPS measurements.

As seen in section 3.2 a GPS is able to provide the position ξib and the velocity vi,ib of a rigid
body. Involving especially the position into the correction helps to contain most of the accu-
mulated drift since the position integrates measurement noise twice. Furthermore, the velocity
and the magnetometer will be used to limit drift for the velocity and for the rotational domain.
As seen in subsection 3.1.3 the magnetometer measures the magnetic field intensity in the body
frame.

Using all of these measurements, the observation vector y becomes the following:

y =

 ξ̄ibv̄i,ib
m̄b

 (5.23)

As seen in chapter 3 the measurement models (3.6), (3.8) and (3.9) are as follows:

ξ̄ib = ξ,ib +Ri
br
b
ant + ηgps,p

v̄i,ib = vi,ib +Ri
bω̃

b,i
b r

b
ant + ηgps,v

m̄b = Rb
im

i + ηmag

(5.24)

The antenna distance rbant and the magnetic field intensity in the inertial frame mi are constants
which can be known beforehand. By considering these as parameters the measurements can
be reconstructed by only using the states of the estimator. Thus, for each observations, the
observation mapping can be formulated as follows: ξ̄ibv̄i,ib

m̄b

︸ ︷︷ ︸

y

=

 ξib +Ri
br
b
ant

Ri
b(v

b,i
b + ω̃b,ib r

b
ant)

(Ri
b)
Tmi

︸ ︷︷ ︸

h(x̆)

+

ngps,pngps,v
nmag

︸ ︷︷ ︸

n

(5.25)

41

Note that every state encountered in the observation mapping h(x̆) are predicted states.
The first observation ξ̄ib can be reconstructed straightforwardly since all variables in the mea-
surement model are already in the states.
Mapping of the second observations v̄i,ib can be accomplished by transforming to ψi: vi,ib = Ri

bv
b,i
b .

To simplify, the rotation matrix can be factored out: Ri
bv
b,i
b +Ri

bω̃
b,i
b r

b
ant = Ri

b(v
b,i
b + ω̃b,ib r

b
ant).

The third observation m̄b already contains only a state if the rotation matrix is transposed.
Lastly, note that all noise is additive noise. Therefore no functions are needed to deal with the
noise.

Similar to the prediction step in subsection 5.3.1, the correctness of the formulation will
be checked by rewriting such that the mapping is only dependent on state parameters and
inputs. The observations will be rewritten to y =

[
y1 y2 y3

]
and the observation noise

n =
[
n1 n2 b3

]
: y1

y2

y3

︸ ︷︷ ︸
y

=

 x1 + x3r
b
ant

x3(x2 + ũ2r
b
ant)

(x3)Tmi

︸ ︷︷ ︸

h(x̆)

+

n1

n2

n3

︸ ︷︷ ︸

n

(5.26)

Where rbant and mi can be found beforehand.

5.4 Geometrical pose wrench estimator

The second estimator to be formulated in this chapter is the state estimator tightly coupled
with forces and torques. This estimator will use the same sensor suite as the geometrical pose
estimator from section 5.3, but it will use the equations of motion based on dynamics derived
in section 5.2. For this estimator the states are similar to the previous but extended:

x =

ξib
vb,ib
Ri
b

bb

f bext

 (5.27)

The state vector is extended by f bext. This enables the estimator to also estimate external
influences and to involve this estimation into the pose estimation as well.

5.4.1 Dynamics based Prediction

In order to couple the dynamics it is assumed that the components of the wrench caused by
propellers τ bpr and f bpr are known. This assumption is reasonable if the UAV contains an Elec-
tronic Speed Controller (ESC). Equation 5.9 shows that the wrench contribution can be found
by considering the thrust per propeller and the internal mapping M . The assumption can be
met by performing an identification procedure on the propellers to obtain the trust.

Next to τ bpr and f bpr the angular velocity ωb,ib will be involved as well. The measurement inputs
becomes:

u =

[
f̄ bpr
τ̄ bpr

]
=

[
f bpr + ηbfpr
τ bpr + ηbτpr

]
(5.28)

42

f bpr is the force component from the propeller wrench, τ bpr is the torque component. Next to this
noise is added as well. The noise represents the uncertainty for the (identified) force and torque
and they can be modelled as zero mean Gaussian noise: ηfpr ∼ (0, σ2

fpr
) and ητpr ∼ (0, σ2

τpr)

Using the component-wise Euler equations for rigid bodies (5.13), (5.14) and the force compo-
nent of the modelled external wrench (5.10) ,the state prediction becomes:

ξ̇ib
v̇b,ib
Ṙi
b

ḃa
ḃω
ḟ bext

=

Ri
bv
b,i
b

−ω̃b,ib v
b,i
b +m−1(f bpr + f bg + f bext)

Ri
bω̃

b,i
b

ηba
ηbω
ηfext

 (5.29)

The state equations for the position ξ̇ib and orientation Ṙi
b and the biases remain unaffected

relative to the geometrical pose estimator from section 5.3. The state equations for v̇b,ib is now
set to the equation of motion (5.14).
Now the distinction between actual variables and their measurement value will be made:

ξ̇ib
v̇b,ib
Ṙi
b

ḃa
ḃω
ḟ bext

=

Ri
bv
b,i
b

−(ωb,ib − bbω − ηω)∼vb,ib −Rge3 +m−1(f̄ bpr − ηbfpr + f bext)

Ri
b(ω

b,i
b − bbω − ηbω)∼

ηba
ηbω
ηfext

 (5.30)

In order to derive the final state equations, the noise contribution η =
[
ηbfpr ηbω ηbba ηbbω ηbfext

]T
will be decoupled from the state contribution:

ξ̇ib
v̇b,ib
Ṙi
b

ḃa
ḃω
ḟ bext

︸ ︷︷ ︸

ẋ

=

Ri
bv
b,i
b

−(ωb,ib − bbω)∼vb,ib −Rge3 +m−1(f̄ bpr + f bext)

Ri
b(ω

b,i
b − bbω)∼

0
0
0

︸ ︷︷ ︸

f(x,u)

+

0

η̃bω −m−1ηfpr
−Ri

bη̃
b
ω

ηba
ηbω
ηfext

︸ ︷︷ ︸

g(η)

(5.31)

As standard procedure that last step remaining is to check the correctness of the formulation.
The vectors encountered will be rewritten their numbered version. The state vector becomes:
x =

[
x1 x2 x3 x4 x5 x6

]T
, the measurement input will be u =

[
u1 u2

]T
and the noise

vector is η =
[
η1 η2 η3 η4 η5

]T
. Now the state equations become:

ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

︸ ︷︷ ︸

ẋ

=

x3x2

−(u2 − x5)∼x2 − x3ge3 +m−1(u1 + x8)
x3ũ2

0
0
0

︸ ︷︷ ︸

f(x,u)

+

0

η̃2 −m−1η1

−x3η̃2

η3

η4

η5

︸ ︷︷ ︸

g(η)

(5.32)

Expect the mass m, which can be known beforehand, equations can be formulated using states,
noise or measurement inputs. Therefore it will be concluded that the formulation is correct.

43

5.4.2 Dynamics based Correction

Now the accelerometer can be used to correct the external force. By involving the linear
acceleration the observation vector y becomes:

y =

ξ̄ib
v̄i,ib
m̄b

āb.ib

 (5.33)

The GPS measurements ξ̄ib, v̄
i,i
b and magnetometer measurements m̄b can be involved equally

to the correction in section 5.3. In order to map towards the acceleration, Newton’s second law
will be used:

ab,ib = m−1(f b)

= m−1(f bpr + f bg + f bext)
(5.34)

Now the accelerometer measurement model (3.1) can be used to obtain ab,ib . But first the model

will be algebraically manipulated as follows: āb,ib = Rb
i(ξ̈

i
b−gibe3)+bba+ηba = ab,ib −Rb

ig
i
be3+bba+ηba.

This allows to rewrite equation 5.34 to consider the raw measurements, biases and noise:

āb,ib +Rb
ig
i
be3 − bba − ηba = m−1(f̄ bpr + ηfpr +Rb

i(mg
i
be3) + f bext)

āb,ib − b
b
a − ηba = m−1(f̄ bpr + ηfpr + f bext)

āb,ib = m−1(f̄ bpr + f bext) + bba +m−1ηba + ηfpr

(5.35)

This formulation allows to correct the external force. This enables the estimator to estimate
both the external force and the pose of the UAV.
Note that the gyroscope measures the angular velocity and not the angular acceleration. Since
the current sensor configuration doesn’t allow to measure the angular acceleration directly,
there can be no correction for the external torque. The observation mapping will now become
the following:

ξ̄ib
v̄i,ib
m̄b

āb,ib

︸ ︷︷ ︸

y

=

ξib +Ri

br
b
ant

Ri
b(v

b,i
b + ω̃b,ib r

b
ant)

(Ri
b)
Tmi

m−1(f bpr + f bext) + bba

︸ ︷︷ ︸

h(x̆)

+

ngps,p
ngps,v
nmag

m−1ηba + ηfpr

︸ ︷︷ ︸

n

(5.36)

The correction noise for the accelerometer is now affected by m and ηfpr . Thus na = m−1ηba +
ηfpr . But note that in this case na doesn’t denote the accelerometer noise, but the mixture.
As is common practise by now, the correctness will be checked. The observation vector is
rewritten to: y =

[
y1 y2 y3 y4

]
, the observation noise to n =

[
n1 n2 n3 n4

]
and the state

vector is rewritten the same as for the prediction step.
y1

y2

y3

y4

︸ ︷︷ ︸
y

=

x1 + x3r

b
ant

x3(x2 + ũ2r
b
ant)

(x3)Tmi

m−1(u1 + x6) + x4

︸ ︷︷ ︸

h(x̆)

+

n1

n2

n3

m−1η1 + η5

︸ ︷︷ ︸

n

(5.37)

Since rbant,m and mi are parameters known beforehand, the observation mapping h(x̆) is also
formulated correctly in terms of only the states and known parameters.

44

Chapter 6

Simulation: Tuning state estimators

This chapter will show all results obtained from validating the state estimator using Gazebo
simulations. The simulation setup is explained in appendix E.
For each simulation, the scenario will be described first. Next, the parameters relevant to the
simulation scenario will be analyzed. After that, the plots and graphs of the results are shared
and examined. Lastly, results will be discussed and a conclusion will be made.

The simulation environment used is Gazebo with the RotorS simulator[Furrer et al., 2016]. In
Gazebo, the fully-actuated hexarotor called BetaX is simulated as seen in figure E.1. To in-
terface all needed software, the middleware Robot Operating System (ROS) has been used.
ROS interfaces the simulation with the: state estimation software, simulated sensors, and the
controller. The state estimators have been implemented in C++ using the Manifold Toolkit
(MTK) [Hertzberg et al., 2011]. The software implementation of the state estimators is being
described in D. Both the geometrical pose estimator and the geometrical pose wrench estima-
tor have their node, which can be launched for each simulation. Moreover, both ROS nodes
contain two source files. One source file implements the algorithmic part of the software, while
the other file interfaces the state estimator to ROS.
The simulation setup is described in more detail in appendix E.

The first simulation, shown in section 6.1, aims to tune the geometrical pose estimator. This
simulation only considers pose estimation to reduce the complexity in tuning parameters. The
found set of parameters will serve as a baseline for tuning the following simulations. However, it
is important to realize that some variables are used differently for the geometrical pose wrench
estimator than for the geometrical pose estimator.
During the second simulation, in section 6.2, the UAV will engage in a static interaction with
a wall. The interaction is static in the sense that the UAV will not move. However, the inter-
action wrench will change while performing the interaction.

45

6.1 Simulation 1: Tuning geometrical pose estimator

This simulation Will aim to validate the geometrical pose estimator. The estimator will be
tuned and it will be checked in the estimator show a higher accuracy and precision than the
raw measurements (especially, the GPS measurements).
The geometrical pose estimator is validated first, as this also simplifies the validation for the
geometrical pose wrench estimator. This is true because the geometrical pose wrench esti-
mator shows similarities with the geometrical pose estimator but also considers the dynamics
additionally. However, note that the accelerometer is used differently for both estimators.

6.1.1 Description of the Scenario

In this scenario, the geometrical pose estimator will be tuned in an empty world. To fully
explore the pose estimation every state should be triggered by the trajectory. That means that
next to translation the UAV should also rotate.
Furthermore, notice the fictitious force term ω̃b,ib from equation 5.6. In order to also obtain
effects from the fictitious force, the UAV should rotate while translating.

A trajectory that satisfies the above-mentioned requirements is a helix. The helix trajectory
with one of the simulation results, which will be discussed later, is shown in figure 6.1 (The
parameters in this figure are the favorite parameters for a GPS with 1 Hz). The UAV will
move in the shape of a helix while pointing inwards. This makes sure the UAV translates while
simultaneously rotating in the z-axis.
The helix can be automated using the GUI and the parameters are set as follows: Radius is 3,
freq is 0.5, climbR is 0.25. The flight mode to trigger the helix is ”Neg. Helix”. The parame-
ters aim to resemble the size of an operating space which could be encountered for real-world
interactions in small environments.

Figure 6.1 Estimation, ground truth and GPS measurement of the helix trajectory.

6.1.2 Tuning parameters analysis

In section 5.3 the geometrical pose estimator has been formulated. It was shown that equation
6.1 can be used to predict the position deterministically and equation 6.2 corrects the position

46

using the GPS:

ξ̇ib = Ri
bv
b,i
b (6.1)

ξ̄ib = ξib +Ri
br
b
ant + ngps (6.2)

The velocity is obtained by using IMU measurements (6.3). This injects sensor bias and white
noise of both the gyroscope and the accelerometer:

v̇b,ib = −(ωb,ib − b
b
ω − ηbω)∼vb,ib + āb,ib +Rb

ig
i − bba − ηa (6.3)

The orientation can be predicted based on gyroscopic measurements (6.4) and the magnetome-
ter can correct it (6.5):

Ṙi
b = Ri

bω̃
b,i
b (6.4)

m̄b = (Ri
b)
Tmi + nmag (6.5)

The challenge for the tuning is that some tuning parameters affect multiple states. This could
lead to difficult situations since influencing a tuning parameter could lead to a performance
increase in one state while decreasing the performance for another. For instance, if ηω is influ-
enced the ratio between nmag and ηω will change while also changing the ratio between ηa and

ηω. This affects both the estimation performance of Ri
b and vb,ib

In other to tune while avoiding the tuning parameter coupling as much as possible, Ri
b will be

tuned first. This is done since Ri
b is not influenced by any other states. This allows to only

focus on changing nmag and ηω. The position correction is only affected by ngps,p. Therefore,
the parameter ngps,p will be tuned secondly.

Lastly, ηa will be tuned. This affects both ξib and vb,ib . It is expected that a proper tuning for

Ri
b and ηbω is already found. This suggests that the best ξib and vb,ib should be found by solely

tuning ηa.

6.1.3 Description of the results

As previously mentioned the tuning strategy is to first tune Ri
b by altering ηbω and nmag. This

will be done within case 1. Next in case 2 ngps will be changed to find the best ξib error. Lastly

ηba will be tuned in case 3 which should result into a good tuning for ξib and vb,ib .
This subsection will present the results using plots and error bar graphs contain the mean error
and variance in the error. The exact values can be found in F.1.

Figure 6.2 Region of the error is defined
by finding the first local maximum and
second local minimum for the y-position.

In all cases. the error is obtained from subtraction
with ground truth. However, the orientation error
is calculated using quaternion and then transformed
to Euler angles. This is done to avoid large peak in
the error due to a change from −π to π.
All last remark is that sometimes the duration of the
simulation is longer than others. This is the case
because when the simulation is started some param-
eters have to be set, such as the trajectory param-
eters. However, preferably errors are calculated for
the same simulation time.
This is solved by finding the first local maximum and
second local minimum for the y-position. As seen in

47

figure 6.2, the y position behaves like a sine func-
tion. This makes is simple to find a relatively large
region for the error calculations. The vertical lines
in the presented plots will denote the region used to
calculate the error.

Case 1: tuning Rotation

Figure 6.3 shows the simulation result of tuning the angular velocity measurement noise ηω
(gyroscope) and orientation observation noise nmag (magnetometer). Each bar represents a
simulation for a certain tuning parameter. Figure 6.3a shows an error bar graph for tuning the
gyroscope, 6.3c shows the same plot but showing standard deviation instead of variance, 6.3b
is the error bar graph of the magnetometer tuning, and 6.3d is again similar but shows the
standard deviation.
The reason that two similar error bar graphs are shown is that the mean error is a lot larger
than the variance, resulting into that differences among the variances are hard to observe.
Therefore, plots using the standard deviation (square root of variance) are shown as well.
Lastly, all error bar graphs shown for case 1 are of all axes summed. The only axis which is
excited is the z-axis. Therefore, the z-axis shows larger errors than the x-axis and y-axis, as
can be seen in table F. In order to keep the number of plots low but still involve the other axis,
the values are summed.

Figure 6.3a shows that the lowest mean error is observed for the ηω = 0.005 with a value of
eR,µ = 0.0238rad. Note that the differences among the simulations are small. Furthermore, it
shows that all mean errors are relatively close to each other, indicating a static error.
In order to compare the variation of the error data, one can look at figure 6.3c. This figure
also shows that ηω = 0.005 is the simulation with the best performance. For this simulation
the variance showed to be eR,σ2 = 0.000032rad. Similar to the mean error, do note that the
differences among simulations are small.
Figure 6.3b shows the error bar graph for tuning the magnetometer used for correcting the
orientation. For tuning the magnetometer, the ηω was fixed to 0.005. In this case, the value
nmag = 0.0005 shows the lowest mean error, with the value of eR,µ = 0.0222rad. Figure 6.3d
shows that the lowest standard deviation is not observed for nmag = 0.0005 (eR,σ2 = 0.000039),
but for nmag = 0.5 (eR,σ2 = 0.000026). Nevertheless, since eR,µ is significantly lower, the upper
bound of nmag = 0.0005 is still the lowest. Therefore, nmag = 0.0005 is the preferred value for
the orientation observation noise.

In order to observe what causes the standard error, figure 6.4a shows the error for the yaw
angle. It can be observed that is a standard error for the yaw estimation around the mean
eR,µ = 0.0222. The estimated yaw versus the actual yaw is shown in 6.4b, and a zoomed-in
version of the first jump is shown in 6.4c. It this version, it becomes clearly visible that the
estimation is delayed. This delay causes the estimation to always have an error, while the
rotation axis is changing.

48

Figure 6.3 Simulation 1: case 1. Results of tuning rotation prediction and correction. Bar
error plots show mean error between ground truth and estimation and variance of the error for
each noise parameter value.

(a) Bar error of orientation mean error and
variance for tuning ηω with nmag = 0.05.

(b) Bar error of mean error and variance for
tuning nmag with ηω = 0.005.

(c) Bar error oforientation mean error and
standard deviation for tuning ηω with nmag =
0.05.

(d) Bar error of mean error and standard de-
viation for tuning nmag with ηω = 0.005.

49

Figure 6.4 Yaw error, and estimation plotted with ground truth (obtained from simulation).
The error is calculated

(a) yaw in Euler angles (radians). Obtained by quaternion subtraction q 	 q̂ and transforming to
Euler angles.

(b) Plot of estimated yaw and ground truth
in Euler angles (radians).

(c) plot of figure 6.4b focused between 26.5s
and 27.5s.

Case 2: Tuning the GPS correction

In this case the GPS position correction is tuned. The results are shown in figure 6.5.
For all axes, there is a considerable variation for the mean error. This is likely because the
update rate of the GPS is 1 Hz and the simulation time is approximately 30 seconds. As the
noise variance of the GPS is simulated to be 0.2m, it is likely the mean errors deviate a lot for
the low amount of samples.
Nevertheless, for all axes the variance is lowest for ngps,p = 0.2m. Besides, there seems to be a
large improvement on the variance of the simulated GPS.

In order to check that the variance should be trusted more than the mean error, figure 6.5d and
6.5e are added. It can be seen that the estimation for ngps,p = 0.2m shows less deviation from
ground truth than ngps,p = 0.5m. However, the deviations for ngps,p = 0.5m are both above and
under the ground truth. As there is an error for both the plus and minus direction, the mean
will result into a lower value than if both deviations would be in the same direction.

50

Figure 6.5 Simulation 1: case 2. Result of tuning position correction ngps = 0.5m

(a) Error bar graph of x-position. (b) Error bar graph of y-position.

(c) Error bar graph of z-position. (d) Plot of y-position for ngps = 0.2m

(e) Plot of y-position.

Tuning the accelerometer

The accelerometer affects the velocity directly. As all other parameters are tuned now, the best
ηa should also result in the best position estimation. The results are shown in figure 6.6.

Figure 6.6a, 6.6b and 6.6c show the error bar graphs of the velocity for this case. The lowest
value seems to appear for ηa = 0.05 for the mean error. The lowest variance is found for
ηa = 0.005, 0.05 and 0.5. The RMS seems to be affected by both the mean and variance. The
best value is found for ηa = 0.05

51

Figure 6.6a, 6.6b and 6.6c show the velocity estimation errors for tuning with ηa. First of all,
for the velocity, the lower values seem to lead to fewer estimation errors than the high values
for the x-axis and the y-axis. Conversely to the horizontal axes, the z-axis shows the lower
mean error for the higher values of ηa. The differences can be explained as the trajectory of z
is linear, while the trajectory of the horizontal axes is sinusoidal. The lowest variance if found
for ηa = 0.005m/s2.
Opposed to the velocity, the lowest variance found for the position is ηa = 0.05m/s2. Note that
the jump to the second best estimation (ηa = 0.005m/s2) is relatively large. As the difference
from ηa = 0.005 to ηa = 0.05 is relatively smaller, ηa = 0.05 is considered to be the best
estimation.

52

Figure 6.6 Simulation 1: case 3. Results of tuning ηa for both the velocity and position
estimation.

(a) Error bar graph for x velocity. (b) Error bar graph for y velocity.

(c) Error bar graph for z velocity. (d) Error bar graph for x position.

(e) Error bar graph for y position. (f) Error bar graph for z position

6.1.4 Discussion on the results

In this subsection, it will be discussed what the best tuning parameters where. If it differs from
the simulated variance, it will be analyzed what causes the difference.

For case 1, the best tuning is found for ηω = 0.005rad/s and nmag = 0.0005rad. This is a slight
deviation from the simulated variance of 0.007rad/s for the accelerometer and 0.007rad for the
magnetometer.

53

The noise function of the orientation prediction is g(η) = −Ri
bη̃ω, while the UKF on a manifold

algorithm presented in section 4.4 is as follows: P̆k =
∑2n

i=1w
[i]
m(S̆ [i]

k 	 X̆k)(S̆
[i]
k 	 X̆k)T + Q. As

seen, the measurement noise is added using the diagonal measurement covarance matrix Q.
However, the function g(η) does not result into a diagonal matrix in real space.
The fact that g(η) is not implemented directly into the UKF is no large issue, as the UKF
solves the non-linearity by means of the sigma points. Nevertheless, it could still be that due
to the constant addition of the measurement covariance matrix Q, the estimation accuracy can
be higher for deviating values.
Nevertheless, for the simulation where ηω = 0.005rad/s and nmag = 0.0005rad, the mean error
for the z-axis is 0.0240rad and the variance is 3.2314e(−5)rad (This can be found in appendix
F). The z-axis shows the largest errors and the variance is substantially lower than the simulated
noise for the magnetometer 0.007rad. Therefore, it will be concluded that the implementation
and tuning parameters lead to a proper estimation of the orientation

For case 2, the optimal value was found for the true simulated variance. This conclusion had
been based on the variance, as the variance was the lowest for ngps,p. The mean error was not
lowest for this axis. It is expected that the mean errors are not a trustworthy indicator for the
best estimation. In order to check this expectation, one plot of the favorite ngps,p = 0.2m and
a plot for ngps,p = 0.5m was added. This last plot had a lower mean error but a larger variance
compared to ngps,p = 0.2m. The plot shows that the estimations for ngps,p = 0.5m deviate more
from ground truth, but in both the plus- and minus direction. Therefore, the mean resulting
mean error is lower than it should be.
The mean errors found for the ngps,p = 0.2 are 0.04, 0.0286 and 0.0448 m correspondingly for
x,y and z. The variance found is 0.0093m, 0.0093m and 0.0039m for x,y and z. Especially the
variance is considerably lower than the simulated GPS signal.

For case 3, the optimal value was found differently for the velocity and the position. The value,
resulting in the lowest error variance for the velocity is ηa = 0.005m/s2 and for the position
ηa = 0.05m/s2. This indicates that another value might not be optimal. It is suspected that
ηω is not the optimal value, as that value deviates from the true value.
Nevertheless, the difference between the variance for ηa = 0.005m/s2 and ηa = 0.05m/s2 are
small
Lastly, it should be remarked that the GPS velocity signal has not been used for this simu-
lation. When using a magnetometer and GPS position signal, the full pose can be corrected
for integration drift. However, in real-world applications magnetometer are not very robust,
since they are easily disturbed by for instance magnetic distortions. Since the GPS velocity is
expressed in the inertial frame v̄i,ib and the velocity in the state is expressed in the body frame

vb,ib , the GPS velocity measurement could be used to correct the orientation.
However, in simulation it was observed that the estimation performance decreased whenever
GPS velocity signals were considered. It was later found that this was due to a mistake in the
observation mapping. It turned out that the rotation matrix in the velocity part of equation
5.25 was implemented as (Ri

b)
T instead of Ri

b. This mistake was corrected when discovered, but
this was done after all simulations where performed.

6.2 Simulation 2: Force estimation for a static interac-

tion

In this scenario, the UAV will statically interact with a wall. The UAV will not move but
the interaction force will increase. The estimator to tune will be the geometrical pose wrench

54

Figure 6.7 BetaX in gazebo simulation environment. The world used for this scenario is called
”wall of int”, which is an empty world with a wall. The side of the wall is placed at x = 0.45
and the wall is equipped with a force sensor which measurements can be used as ground truth
for the interaction scenario.

estimator.

6.2.1 Description of the scenario

Figure 6.7 shows the betaX in the gazebo simulation environment. The object of interactions
is a flat wall. The wall is equipped with a force sensor from the gazebo library. As soon as an
object interacts with the wall, the force sensor provides the location of the interaction and the
associated force and torque.
A side note is that the force measurements are twice as large as the actual force. Also, the
measurements jump between zero and the measured value. In order to work with the measure-
ments more easily, a measurement is set to the previous measurement if it equals zero. Also,
the measurements are multiplied with 0.5 in order to obtain the true force.

During this scenario the UAV will go to a position right in front of the wall. In this case that is[
x y z yaw

]
=
[
0.45 0 1 0

]
. The rosbag recording will start as soon as the UAV stands

still at that position. From then the setpoint will be placed behind the wall. This will let the
UAV apply a force against the wall. The setpoints chosen are x =

[
0.55 0.65 0.85 1.05

]
and

the other coordinates stay the same. After 10 seconds wall clock time the next setpoint will be
chosen untill none are left.

6.2.2 Analysis of tuning parameters

Section 5.4 formulates the pose wrench estimator. It was shown that the following equations
are used for force estimation:

55

ḟ bext = ηfext (6.6)

āb,ib = fext + f bpr + bba + nba (6.7)

Equation 6.6 predicts the external force based on ηfext , where ηfext can be chosen to tell how
quickly the external force is expected to change. The external force is corrected using (6.7).
The accelerometer measurements are used as observation. The propeller force f bpr is used as
measurement input. In this case f bpr already has gravity compensation. Therefore the previ-
ously encountered gravity term can be neglected. f bpr and f bext can be used to map towards the
accelerometer measurements.

The equations show that the tuning parameters involved in the force estimation are: ηfext , η
b
pr

and nba. These parameters will be changed in this scenario to study their effects on the force
estimates and to find a favorite set.
Note that bba is estimated similarly to fext. Both use similar models (of course with a different
tuning) and both are corrected by the same observation. This complicates their estimation
as both estimates can easily be mistaken for each other. In order to simplify the estimation
process bba will not be considered for this scenario.

6.2.3 Description of the results

For this scenario, results are obtained for two cases. In the first case, the effects of tuning
parameter ηfext are studied. Next, the parameter na will be tuned to investigate effects of the
accelerometer noise tuning on the wrench estimation.

Case 1: Effects of ηfext

Figure 6.8 shows the external force estimations for different values of ηfext .
In figure 6.10a and 6.10b it is very clear to observe that the estimation can’t follow the ground
truth quick enough. As the value for ηfext is too low, the estimator expects the external force
to change more slowly than it does. This causes large deviations relative to ground truth,
especially during the interaction force change.
In figure 6.8c and 6.8d the estimation seems to change more quickly. However, for ηfext =
0.05N/s, deviations are still observed whenever the interaction force changes. Furthermore, it
can be seen that the estimation is more noisy than for the lower values.
In figure 6.8e and 6.8f most noise can be observed. This shows that as ηfext increases, the
estimation indeed changes more quickly, but this also causes the estimation to capture noise
instead of only the force contribution.

56

Figure 6.8 Simulation result for simulation 2 case 1. Plots show the estimated external force
against ground truth.

(a) ηfext = 0.0005N/s (b) ηfext = 0.005N/s

(c) ηfext = 0.05N/s (d) ηfext = 0.5N/s

(e) ηfext = 5N/s (f) ηfext = 50N/s

Case 2: Effects of ηa

Figure 6.9 shows a the bar graphs for the tuning of na. The first bar graph contains the mean
error, the second one contain the variance in the noise and the last one contains the root mean
square error (RMS)

For smaller values of na there is a relatively low mean error. na = 0.005m/s2 and na = 0.5m/s2

shows the lowest mean error. For na = 0.5 the mean error seems to show a local peak. This peak

57

https://www.mathworks.com/help/signal/ref/rms.html
https://www.mathworks.com/help/signal/ref/rms.html

is approximately equal to the mean error observed for na = 1 na = 5m/s2 and na = 10m/s2.
For na = 50m/s2 the mean error is very high. A glance at the plot in figure 6.10 shows that
for the high value the estimation shows a slow following behaviour similar to those observed
for low ηfext .
The bar graph for the error variance shows that higher values for na result into less variance.
Specifically for na = 5m/s2 , 10m/s2 and 50m/s2 the variance is relatively low. The variance
is a bit higher for na = 0.05m/s2 and 1m/s2. A smaller peak is observed for na = 0.5m/s2 and
a high peak is observed for na = 0.005m/s2. The RMS shows to mimic the variance.
Figure 6.10 shows two plots, where one is given for na = 1m/s2 and one for 50m/s2. As sug-
gested before, the lower value shows more noise but quickly reacts to a change of interaction
signal. The second plot contains less noise but shows a small error whenever the interaction
force changes.

Figure 6.9 Error Bar graph of result for simulation 2 case 2. ηfext is chosen The static
interaction has been performed for different values of na.

Figure 6.10 Two plots indicating the difference for a relatively low na, namely na = 1m/s2

and the relatively high na = 50m/s2

(a) na = 1m/s2 (b) na = 50m/s2

6.2.4 Discussion of the results

From the plot in figure 6.8 it becomes clear the ηfext indeed affects how quickly the estimator
think the external force changes. When the external force is following the ground truth slowly
a relatively high mean error was observed. For ηfext values of 0.5, 5 and 50N/s the mean error

58

is relatively low.
However, these higher values also contain more noise than lower values. This is because for
higher values the external force is expected to change more quickly. This cause the estimation
to fit on noise. For the lower values, the estimation is less noisy, but too low values causes the
external force estimation to change too slowly.
A remark is that the optimal value for ηfext is dependent on the trajectory of the desired inter-
action force. If the actual interaction force changes more slowly, ηfext can be lowered. However,
for this simulation, the interaction force changed drastically (almost like a step). This means
that the value for ηfext will also need to be relatively large, causing it to also capture some noise.

It shows from the bar graph in figure 6.9 that a higher value for na result into a more precise
estimation. Where the best value are observed for na = 5m/s2, 10,m/s2and50m/s2.
Nevertheless higher na results into less accuracy as the mean error increases. This can particu-
larly be observed in the plot in figure 6.10. The plot with the highest na = 50m/s2 shows that
the force estimation is behind relative to the ground truth. As can be seen in equation 6.7 the
accelerometer correct the estimation. By putting to less trust in the accelerometer the external
force estimation cannot react to rapid changes.
The values for na favored for the geometrical pose wrench estimator are na = 5m/s2and10m/s2.

59

Chapter 7

Experimentation: Validation on
manipulated real-world data

7.1 Experiment setup

In this chapter, the state estimator will be used to manipulated real-world data. Note that this
thesis is conducted during the restrictions of the COVID-19 pandemic. Therefore, a dataset of
an earlier conducted experiment has been used and manipulated to also include GPS measure-
ment data.

The conducted experiment is described in [Rashad et al., 2019a]. During this experiment, a
fully-actuated hexarotor UAV applies a contact force onto a vertical surface rigidly connected
to an ATI mini40 force/torque sensor (ATI Industrial Automation), as seen in figure 7.1. This
experiment aims to exert a contact force up to the UAV’s rotor limits. The UAV flight is done
in an indoor lab environment equipped with a motion-capture system (MoCap). The dataset of
this experiment contains all IMU data, information about the involved forces and torques, and
pose ground truth obtained from a motion-capture system. As will become evident in the re-
mainder of this section, the data from the MoCap will be manipulated to resemble a GPS signal.

Figure 7.1 [Rashad et al., 2019a]

60

7.1.1 Dataset analysis

Figure 7.2a in 7.2 shows the measurements obtained by the MoCap and the IMU. First, it
can be observed that the robot ascends. Next, the robot moves in the x-direction and around
t ≈ 60s the robot reaches the vertical surface. At approximately t ≈ 250s the robot moves
away from the surface and descend back to the initial position.
The plots on the right-hand side in figure 7.2 shows the acceleration per axis. Note that it is
difficult to observe the exact acceleration and noise. Likely, the observed behavior of the accel-
eration is not due to a high noise but due to the UAV’s oscillations. Up to t ≈ 8s accelerometer
measurements without motion can be observed. The variance observed during the non-moving
measurements is σ2

a ≈ 1.0003e− 04m/s2.

Figure 7.2 Data on the robot’s motion. Plots to the left shows the position obtained from the
MoCap. Plot to the right shows accelerometer measurements obtained from the IMU.

(a) Ground truth position ξib measured my MoCap (b) Linear acceleration āb,ib measured by IMU

Besides motion, the dataset also provides estimated propeller wrench W̄ b
pr and an estimated

external wrench Ŵ b
ext. The force components can be seen in figure 7.3a and figure 7.3b. f̄ bpr can

be used as measurement input for the geometrical pose wrench estimator.
Besides, z component seen in figure 7.3a can be used to calculate the mass m = µfz(t1 : t2) =
1.7kg and all components can be used to analyse the noise variance: σfpr = 0.1N .
Next to this, the interaction wrench W b

int measured by the force/torque sensor is available as
well. The force component of this signal is seen in figure 7.3c, and this signal can be used
as ground truth. Though the signal is noisy, it has no components due to aerodynamics or
modelling errors. For instance, it can be observed in figure 7.3b that between t ≈ 15s and
t ≈ 60s, a positive force is estimated. since the UAV has not reached the vertical surface at
this point and no interaction force is measured, this is contribution is likely a aerodynamic effect.

Lastly, the orientation of the UAV during this experiment is more or less equal to zero. There-

61

fore, the focus of the estimation performance will mostly be the position. //

Figure 7.3 Forces acting on the UAV’s body. Control force and external force are estimated
by the observer in [Rashad et al., 2019a]. The interaction force is measured by a force/torque
sensor attached to the vertical surface the UAV interactions with.

(a) Control force f̄pr. (b) External force f̂ext.

(c) Interaction force f bint obtained by ATI
mini40 force/torque sensor

7.1.2 Global Positioning System (GPS) signal simulation

To obtain GPS measurements, the ground truth from the MoCap has been manipulated using
the Matlab object gpsSensor . This object returns a simulated longitude, latitude and altitude
from a GPS, using a positional signal. The object allows to set a desired update rate, reference
location, and both horizontal and vertical accuracy.

As will become evident in 7.3, the update rate of standard GPS (approximately, 1 hz), will
not suffice for the state estimator using this dataset. Therefore, a GPS real-time kinematics
(GPS-RTK) will be simulated. GPS-RTK uses a second base station will operating to increase
its accuracy. GPS-RTK can generally measure up to centimeter accuracy. Thus, the desired
accuracy will be set to σ2

gps,p = 0.01m. To show the update rate limitations, two versions will be
simulated. In one version the update rate is set to 1hz and in the other to 5hz. Furthermore,
the GPS signal will only contain white noise and no biases. This provides more simplistic
situations as there is no need to estimate the GPS bias. Note, that for real-world situations,
GPS might suffer from biases.

62

https://www.mathworks.com/help/fusion/ref/gpssensor-system-object.html

The simulated signal is shown in figure 7.4. The longitude and latitude show a similar trajectory
as the horizontal position from the Mocap (figure 7.2a). Note that the altitude is negative
conversely to the MoCap data. This is no miscalculation, as the WGS-84 expresses the altitude
as a negative value for heights above ground level.

Figure 7.4 Simulated GPS measurements based on the Mocap measurement in figure 7.2a,
using the gpsSensor Matlab object.

7.2 Experiment 1: Geometrical pose estimator on ma-

nipulated dataset

In this section, the geometrical pose estimator will use the signals from the dataset. The aim is
to use the result for comparison with the geometrical pose estimator and to find limitations on
estimating the position based on real-world IMU measurements and simulated GPs measure-
ments.
As the performance of the estimation is dependent on the tuning parameters, the tuning param-
eter will be altered to find the best performance. Initially, the observation noise for the GPS
ngps,p will be set to 0.01m, as this is the true variance. As seen in section 7.1, it is indicated
that the accelerometer noise ηa is at least σ2

a ≈ 1.0003e− 04m/s2. However, this is not certain
as it is difficult to observe the true variance in the data.

63

https://www.mathworks.com/help/fusion/ref/gpssensor-system-object.html

Figure 7.5 shows involved ROS nodes in this setup. The rosbag of the dataset contains all mes-
sages to be used for this experiment. The data does not contain magnetometer measurements
or GPS velocity measurements appropriate to correct for the rotational drift. Therefore, the
orientation is corrected using the MoCap ground truth from the message \betaX\pose. Sim-
ilar to the simulation, the node \GPS conversion converts the GPS data to the ENU-frame,
using the simulated GPS position textbackslash gps data pos and the IMU measurements
\mavros \imu \data raw. The GPS reference is set using the node \GPS reference and the
message \gps init. The \State Estimation node denotes the geometretrical pose estimator.
The node subscribes on \mavros \imu \data raw for the prediction and both \gps position

and betaX \pose are used for the correction.

Figure 7.5 ROS nodes (ellipsoids) and messages (squares) used for experimentation with the
geometrical pose estimator

7.2.1 Description of the result

The result description is divided in three parts. As it is not precisely known what the variance
in the noise of the accelerometer is, the accelerometer will be tuned first. This will be done for
a GPS update rate of 1 hz and 5 hz. Lastly, the observation noise ngps,p of the GPS position
will be changed to check if the setup up is optimal.
The position obtained from the MoCap is used as ground truth for the error calculations. This
chapter will show plots and bar graphs containing the mean error and variance in the error.
The exact values can be found in appendix .

Case 1: Tuning accelerometer with GPS update rate of 1 hz

Figure 7.6 shows the result of tuning the accelerometer, where GPS signal corrects the posi-
tion at a rate of 1 hz. For the x-axis, shown in figure 7.6a, the mean error is relatively small
compared to the variance of the error. The variance decreases as ηa increases. In figure 7.6b, it
can be seen that the mean error in the y-axis is relatively high compared to the variance and
compared to the x-axis. Both the variance and mean error for the y-axis decrease for higher
values of ηa. The z-axis, shown in 7.6c, doesn’t show a clear preference for ηa and the errors
are relatively small.

The observed preference for a higher ηa suggests that the true variance in the noise of the
accelerometer is approximately 0.5 to 1. However, when looking at the plots of the estimation,
GPS measurements, and ground truth, it is revealed that the estimation error is higher than

64

the error in the position measured by the GPS. This is very dominantly observed for the x-axis
(figure 7.6d) and the y-axis (figure 7.6e). The effect is also observed in figure 7.6f, but the blue
peaks are relatively small for this axis.

Figure 7.6 Position correction ngps,p fixed to 0.01 m, where measurements come in at 1 Hz.
The left-hand side shows error bar graph. The blue bar denotes the mean error and the line
denotes the variance. The right-hand side shows three plots, with the estimated position, GPS
position and the ground truth, for the simulation with an acceleration variance ηa = 0.5m/s2.

(a) Error bar graph for x position. (b) Plots of x position.

(c) Error bar graph for y position. (d) Plots of y position.

(e) Error bar graph for z position. (f) Plots of z position

65

Case 2: Tuning accelerometer with GPS update rate of 5 hz

Figure 7.7 shows the result of tuning the accelerometer while position measurements from the
GPS come in at 5 hz.
For this situation, figure 7.7a and figure 7.7e show that both the lowest mean error and variance
are found for ηa = 0.01m/s2 for the x-axis and z-axis. Similar to case 1, figure 7.7c shows a de-
creasing mean error for higher values of ηa. However, the variance is lowest for ηa = 0.01m/s2.
Especially plot 7.7b and plot 7.7f show a significant improvement of the estimated position
relative to the position as measured by the GPS. This is also the case for the y-axis in figure
7.7d, but that plot shows the estimation has a slight static error. This can be observed as most
blue line are slightly above the red lines.

66

Figure 7.7 Position correction ngps,p fixed to 0.01 m, where measurements come in at 5 hz.
The left-hand side shows error bar graph. The blue bar denotes the mean error and the line
denotes the variance. The right-hand side shows three plots, with the estimated position, GPS
position and the ground truth, for the simulation with an acceleration variance ηa = 0.01m/s2.

(a) bar x (b) ηa = 0.01

(c) bar y (d) ηa = 0.01

(e) bar z (f) ηa = 0.01

67

Case 3: Tuning GPS

Lastly, it will be checked if the observation noise ngps,p is set to the correct value. As previously
shown, the measurement noise ηa shows the best performance for 0.01m/s2. Therefore, ηa will
be fixed to that value.

Figure 7.8a shows that the lowest variance is found for ngps,p = 0.01 in the x-axis. The mean
error is the same for each situation, except when ngps,p = 0.05, where the mean error is signifi-
cantly lower. Nevertheless, the variance is significantly higher for this situation.
Figure 7.8b and figure 7.8c show that the best variance is found for ngps,p = 0.01. The mean
error increase for higher values of ngps,p.

Figure 7.8 ηa fixed to 0.01 m/s2 and position measurement come in from a GPS at 5 hz.

(a) error bar graph of x position (b) error bar graph of y position

(c) error bar graph of z position

7.2.2 Discussion on the result

In this section, the geometrical pose estimator used signals from the dataset to estimate the
UAV’s position. The aim was to find limitations on the position estimation using real-world
IMU measurements and simulated GPs measurements.

In the first case, the accelerometer was altered for a situation where GPS measurement came
in at 1 Hz. The variance seemed to decrease for the x-axis and y-axis when ηa was set higher.
Especially for the y-axis, the mean error decreased for higher ηa values. This shows that less
trust in the accelerometer leads to an increase in performance.

68

Nevertheless, the estimation performance showed to be very poor, as lots of large spikes in the
estimated position were observed. Moreover, the estimated position showed to be further from
the ground truth than the position measured by the GPS.
During the second case, GPS measurement came in at 5 Hz. The variance in the x-axis and
y-axis seemed to be lowest for ηa = 0.01m/s2. Considering both the mean error and the vari-
ance, ηa = 0.01m/s2 leads to the lowest error in the z-axis. Besides, during this case the plots
do show that the estimation lies closer to the ground truth than the GPS measurements.
It will be concluded that an update rate of 1 Hz for the GPS is too low to correct for inte-
gration drift in this situation. Figure 7.9 shows that most of the spikes appear in between
GPS measurements (be mindful of the delay while observing). Moreover, figure 7.6 shows that
higher ηa values, thus less trust in the IMU, leads to less errors. This indicates that the spikes
are caused by integration drift. Besides, the increasing only the GPS update rate significantly
improved the performance, making the estimation closer to the ground truth than the GPS
measurements. This shows a limitation of the GPS/IMU sensor suite, as the GPS update rate
needs to be high enough to correct for the integration drift.

Next, it is was tested if the combination of ηa = 0.01m/s2 and ngps,p = 0.01m indeed leads to
the best estimation. This is done by fixing ηa to 0.01m/s2, and changing ngps,p in case 3. The
results are shown in figure 7.8c. It was observed that the lowest variance in the x-axis and y-
axis is found for ηa = 0.01m/s2. In the z-axis the variance is slightly better for ηa = 0.05m/s2.
However, ηa = 0.01m/s2 shows lower mean error and more importantly, the error in z is smaller
than the error in the x and y direction.
It is concluded that the best values are found for ηa = 0.01m/s2 and ngps,p = 0.01m. The accu-
racy indicated by variance of the error is 4.9, 5.0and3.3mm for x, y and z, for a situation where
the accelerometer accuracy is probably σ2

a = 0.01m/s2 and the GPS position accuracy is 0.01m.

A peculiarity left is that there still seems to be a high mean error in the y-axis. The mean error
decreases by less trust in ηa. This error is probably not caused by the GPS, since figure 7.8b
shows that less trust in the GPS leads to more errors, and figure 7.7c shows that more trust in
the IMU leads to more errors.

Figure 7.9 Zoomed in plot of x position for ηa = 0.01, where GPS signals come in at 1 hz.

69

7.3 Experiment 2: Geometrical pose wrench estimator

on manipulated dataset

This experiment estimates the position and external force of the dataset using the geometrical
pose wrench estimation. It is aimed to find limitations of the force estimation, tightly-coupling
and observe differences with the geometrical pose estimator. The exact values encountered in
the bar graph are presented in appendix F.4.

Figure 7.10 shows the ROS nodes for experimation with the geometrical pose wrench estima-
tors. The setup up is very similar to figure 7.5, however the geometrical pose wrench estimator
also subscribes on \etank imp control signals. As explained before, this message comes
from the observer described in [Rashad et al., 2019a], and it contains the control force f̄pr to
be used for the dynamics-based prediction.

The interaction force obtained from the force/torque sensor will be used as ground truth. As
seen in figure 7.3c, this measurement is polluted by a considerably noise. The measurements
are still meaningful for calculating the mean error, but since the measurement noise is close the
noise in the estimation (as will become evident in the proceeding of this section), the signal is
less useful for calculating the variance in the error.

Lastly, the geometrical pose wrench estimator estimator is set using the equations (5.31) and
(5.36). That means that if one changes ηfpr , the tuning parameter must be altered as using:
gv̇ = η̃bω −m−1ηfpr and ya(η) = m−1ηba + ηfpr

Figure 7.10 ROS nodes (ellipsoids) and messages (squares) used for experimentation with the
geometrical pose wrench estimator

7.3.1 Description of the result

As the pose estimation for the geometrical pose wrench estimation is dependent on the external
force, first the external force will be estimated in case 1. Next, in case 2 the pose will be
estimated.

70

Case 1: Estimating external force

Figure 7.11 shows the results of the estimated external force, for different values of ηfext . The
parameter ηfext is used to denote how quickly the external force, modelled as a random walk,
is varying.

Figure 7.11a,7.11b and Figure 7.11c show the result for simulations with relative low values
for ηfext . It can be seen that the noise is relatively large compared to the ground truth. The
estimation in figure 7.11d shows comparable noise with the ground truth and figure 7.11e shows
less noise than observed in the ground truth. Nevertheless, as can already be observed by the
plot, the situation where ηfext = 0.0001N/S shows that the estimation doesn’t change quickly
enough to follow the actual interaction force.
The bar graph in 7.11f compares the mean error for each situations. It can be seen that the
lowest mean error is found for ηfext = 0.0005N/S, indicating that the estimated external force
is changing quickly enough to follow the actual interaction, while also showing the least amount
of noise.

Lastly, note that each plot estimates and positive external force up to approximately t ≈ 60s.
This estimation error can also be observed for the mean errors, as all situations show a consid-
erable mean error in the bar graph. As concluded earlier, this positive external force is probably
disturbance from for instance aerodynamics.

71

Figure 7.11 Force estimation compared for five different values of ηfext

(a) Estimated external force for ηfext =
0.1N/S

(b) Estimated external force for ηfext =
0.01N/S

(c) Estimated external force for ηfext =
0.001N/S

(d) Estimated external force for ηfext =
0.0005N/S

(e) Estimated external force for ηfext =
0.0001N/S (f) Bar graph denoting mean errors

Case 2: tightly-coupled force and position estimation

Figure 7.12 shows three scenarios for different values of nfpr . As described in 7.1, the value ηfpr
is used to change tuning parameters for the gv̇ and ya.
Figure 7.12a shows the estimated external force and figure 7.12b shows the estimated position
for ηfpr = 0.01N/s. It can be seen that the estimated force is more filtered than seen in 7.11d.
The positional errors observed are relatively high. Especially, at approximately t ≈ 130s and

72

t ≈ 160s, two large positional error peaks can be seen. Notice that the first peak happens
simultaneously while the interaction force rises. When looking very closely, the force deviates
from the ground truth around t ≈ 130s, due to the delay in the estimation. Also, at t ≈ 160s
the force is estimated relatively poorly, which immediately causes the positional errors.
The plot 7.12c shows the external force estimation for ηfpr = 0.001N/s. Note that the position
is presented later in 7.15. For this value, the external force is estimated with as much noise as
the measured interaction force.
Figure 7.12d shows the estimation force and figure 7.12e shows the estimated position for
ηfpr = 1N/s. For this value, the external force is estimated similar to 7.12a, but relatively a
higher amount of noise is observed in the estimated position.
The bar graph 7.12d compares the estimated position position of the three experiments. Note
that the value ηfpr = 0.1N/s leads to be lowest variance. The mean error seems to increase for
high values. What can be observed in the plots is that ηfpr indeed changes how much of the
forces is taking into account for the estimation.

73

Figure 7.12 Force and position estimation plots, and bar graph comparison (plot of best
position estimation will be shown next)

(a) Estimated external force for ηfpr =
0.01N/S

(b) Estimated x position for ηfext = 0.01N/S

(c) Estimated external force for ηfpr =
0.1N/S (d) Error bar graph of estimated position/

(e) Estimated external force for ηfext = 1N/S (f) Estimated x position for ηfext = 1N/S

At last, it is checked whether the ratio between the prediction and correction is sufficient. In
order to check that, two additional simulations will be performed. Simulation 1, observed in
figure 7.12c, will be the same. In simulation 2, nfpr will be set too nfpr = 0.01 for gv̇, but it
will be kept equal for ya. In simulation 3, nfpr will be set too nfpr = 0.01 for ya, but it will be
kept equal for gv̇.

Figure 7.14 shows the result of the ratio comparison. Figure 7.13a shows the already en-

74

countered situation. For the external force in both figure 7.13b and figure7.13c, less noise is
encountered (with also the error caused by the overfiltering). The error bar graph in 7.13d
shows that situation 1 (the already encountered situation), leads to the best estimation perfor-
mance.

(a) Simulation 1: Estimated external force for
ηfext = 0.1N

(b) Simulation 2: Estimated external force,
where nfpr = 0.01N/s for prediction and
nfpr = 0.01N/s for correction

(c) Simulation 3: Estimated external force,
where nfpr = 0.1N for prediction and nfpr =
1N/s for correction

(d) Error bar graph comparing the position
error for among the situations.

The best position estimates for both the geometrical pose wrench estimator and the geometrical
pose estimator are plotted in figure 7.15.
Figure 7.14a shows that the best position estimation for the tightly-coupled estimator is pol-
luted with more noise than the geometrical pose estimation in 7.14b.

75

Figure 7.15 Best position estimator for geometrical pose estimator.

(a) Best x position estimation for geometrical
pose wrench estimator. Mean error is 4.5mm,
variance in the error is 7.2mm

(b) Best position estimator for geometrical
pose estimator. Mean error is 3.1mm, vari-
ance in the error is 4.9mm

7.3.2 Discussion on the results

During this experiment the geometrical pose wrench estimator was used on manipulated real-
world data. It was aimed to find limitations of the external force estimation, find limitations
of the tightly-coupled pose estimation and to compare with the geometrical pose estimator.

First of all, it was showed that lowering ηfext resulted into external force estimations less pol-
luted by noise. Up to ηfext = 0.0005N/s, estimations without significant errors where found.
Naturally, the value of ηfext is dependent on the slope of desired interaction force. For instance,
note that in 7.3c, the highest slope is observed between t ≈ 397s and t ≈ 408s. The slope here
is approximately ∆f ≈ 0.05N/s (Note that the best estimation is found for ηfext = 0.05N/s.
This is probably since the slope is much lower during most of the interaction). In cases where
a different slope is desired, the value for ηfext will likely be different for the best estimations.
The estimations in figure 7.11 also showed a drawback of indirectly obtained the interaction
force by estimating external forces. Up to t ≈ 60s, the UAV didn’t engage in interaction,
but forces where observed. Using the external force as interaction force will inevitable lead to
undesired force, or the need for workarounds, as disturbances will be fed into the force controller.

In figure 7.12b, both the external force estimation and pose estimation was considered. It was
found that indeed best performance of the pose estimation was found for the identified variance
of nfpr = 0.1N . This value leads to a mean error in the estimated x position of 4.5mm and a

76

variance of 7.2mm, for a situation where the accelerometer noise was ηa = 0.01m/s2 and the
GPS noise ngps,p = 0.01m. It was showed that geometrical pose wrench estimator can indeed
increase the accuracy of the position measured by the GPS.
However, it was also shown that the geometrical pose estimator was able to estimate the position
with a mean error of 3.1mm and an accuracy of 4.9mm. This is a better improvement compared
to the tightly-coupled geometrical pose wrench estimator.
It is expected that the lower mean error of the geometrical pose wrench estimator is likely
caused by an additional delay. In order to make estimations, the geometrical pose wrench
estimators estimates one additional state compared to the geometrical pose estimator. It is
expected that the decrease is accuracy is caused by the propeller force. For the geometrical
pose estimator the noise is injected into the velocity using the function gv̇ = η̃ωv

b,i
b − ηa and for

the geometrical pose wrench estimator the function is gv̇ = η̃ωv
b,i
b −m1ηfpr . For this scenario,

−ηa = 0.01 and −m−1ηfpr = −1.7−10.1 = 0.0588. This shows the more noise is inserted by the
geometrical pose wrench estimator than by the geometrical pose estimator.

77

Chapter 8

Conclusion

8.1 Conclusions

In this thesis, a state estimator tightly coupling force and pose estimation has been proposed.
The research questions are as follows:

1. How can force estimation be tightly-coupled with pose estimation for a geometric state
estimator?

2. What are the limitations of external force estimation for the tightly-coupled state esti-
mator for physical contact interaction using a UAV?

3. How does a state estimator tightly-coupling force estimates into the pose estimation
compare against a state estimator exclusively estimating the pose for physical contact
interaction using a UAV?

The formulated estimator uses components of a control wrench injected via the propellers as
measurement input. The external force is estimated using a model of a random walk. After the
external force has been predicted, it can be corrected by using measurements obtained from an
accelerometer.
To accomplish a geometric state estimator, the plus operator ⊕ and minus operator 	 have
been introduced. These operators allow considering increments and differences while not break-
ing the constraints imposed by the Lie group a state belongs to.
In total two state estimators have been formulated. The geometrical pose estimator is based
on rigid body kinematics. It uses accelerometer and gyroscopic measurements to predict its
states. Using a GPS, the prediction can be corrected to contain drift caused by integration.
The geometrical pose wrench estimator is based on the geometrical pose estimator, but it adds
rigid body dynamics to the prediction.
Both state estimators have been implemented in C++ using software from the Manifold Toolkit
[Hertzberg et al., 2011]. The state estimators are validated using a realistic Gazebo simulation.
During the experimentation, it was shown that when exploiting a GPS, the update rate should
be high enough to correct the drift. For a situation where the update rate was 1 Hz, significant
deviations where observed. This caused the position estimations to show a larger error than
the raw GPS measurements did. For the same GPS accuracy with an update rate of 5 Hz, the
estimations were better than the raw GPS measurements.

The limitations of the external force estimation are tested on a manipulated real-world data.
The used dataset is from an experiment where a fully-actuated UAV interactions with a
vertical surface in an indoor lab environment. This experiment was intended for the work
[Rashad et al., 2019a]. The dataset contains position measurements from a MoCap, measure-
ments from an IMU, an estimated propeller wrench, and the interaction force measured by a
force/torque sensors. The data from the Mocap is used to simulate GPS data, by changing the

78

reference frame to ECEF and introducing additional noise with a variance σ2
gps,p = 0.01m.

The geometrical pose wrench estimator can estimate external forces up to a similar accuracy as
the ground truth from the force/torque sensor. However, because both the ground truth and
estimation contain noise in the same range, it is difficult to present the exact accuracy.
Furthermore, it was noted that the estimation accuracy of the external force is dependent on
the desired interaction force. If a more drastically changing interaction force is desired, the
estimated external force should also change more quickly. Consequently, this will cause the
force estimation to contain more noise.
Next to this, the state estimator estimated a positive external force before the UAV came into
contact with the vertical surface. Naturally, this is not the interaction force but it is a distur-
bance. This shows a well-known downside of estimating the interaction force using external
force estimation. The external force will be a product of the interaction force, parameter errors
and unmodelled effects. Significant deviations from the true interaction force will decrease the
performance of the force control, as disturbances and errors will be sent to the controller.

The best estimated position of the geometrical pose wrench estimator (the state estimator
tightly-coupling pose and force estimation), showed a mean error of 4.5mm and a variance in
the error of 7.2mm. For the geometrical pose estimator, the mean error of the position is 3.1mm
and the variance is 4.9mm. This performance was achieved by exploitation of measurements
with the following noise variance: Acceleration noise 0.01m/s2, position noise 0.01m, and pro-
peller/control force 0.1N . Both estimators improved the position accuracy relative to the GPS
measurements, as the estimations are more accurate than the raw position measurements from
the GPS.
However, the geometrical pose wrench estimator showed to have less accuracy than the geomet-
rical pose estimator, while exploiting more information. The expectation is that the degrade in
accuracy is caused by the propeller wrench. It was shown that the measurement noise injected
into the velocity by the geometrical pose estimator is gv̇ = η̃ωv

b,i
b − ηa and by the geometrical

pose wrench estimator gv̇ = η̃ωv
b,i
b −m1ηfpr . The differences for this situation is −ηa = 0.01 and

−m−1ηfpr = −1.7−10.1 = −0.0588. This shows that a larger amount of noise is injected into
the velocity prediction for the geometrical pose wrench estimator than for the geometrical pose
estimator. Based on this explanation, it is concluded that the pose estimation accuracy of the
proposed state estimator tightly-coupling pose and force estimates is limited by the accuracy
of the propeller/control force.

8.2 Recommendations on Future work and limitations

During this thesis, limitations regarding external force estimation and accuracy have been found
for a state estimator tightly-coupling dynamics with pose estimation.
It was found that the position estimation performance was lower for the geometrical pose
wrench estimator than for the pose estimator. This is due to the fact that the propeller force
contains more noise than the measured acceleration. The most obvious approach to improve
the position estimation for the geometrical pose wrench estimator is to improve propeller force
accuracy. Nevertheless, for most situations, this might not be possible.
Another possibility is to reformulate the state estimator such that the acceleration measure-
ments influence the position estimation more directly. In the current design, the measured
acceleration is used to estimate an external force āb,ib = h(f bext, ..). Subsequently, the external
force is used in conjunction with the propeller force to predict the velocity v̇b.ib = f(f̄ bpr, f

b
ext)+ ...

And next, the velocity is used to predict the position ξ̇ib = f(vb.ib , ..). If one formulates the filter

79

such the acceleration is not out-weighted by the propeller force, then the position estimation
will be estimated with additional information. This might improve the geometrical pose wrench
estimator, such that it can estimate with more accuracy than the geometrical pose estimator.

A drawback of estimating the interaction force indirectly, by using the external force, is that
the external can be polluted by disturbances and modeling errors, such as wind, friction, or pa-
rameter deviations. As shown in chapter 7, the external force from the experiment was polluted
with a disturbance before the UAV engaged in interaction. Using such a signal as feedback to
a force controller will lead to undesired actuation. Therefore, either the external force should
be separated or the feedback should be enabled whenever a contact is detected.
The work [Tomić and Haddadin, 2015] proposes a collision detection based on the frequency
characteristics of the external force. If one were to use an indirect interaction force estimation
method, such a contact detection procedure would improve the robustness of the control scheme,
as disturbances won’t affect the control before contact. Whenever the UAV is in contact with
an object or surface, aerodynamic effects up to the magnitude of friction will be diminished.
Thus, when the contact is detected, the UAV can freely use the interaction scheme.
Another option is to equip the UAV with a force/torque sensor and use interaction force mea-
surements in conjunction with an external force estimator. Of course, this comes at the expense
of size, weight and equipment costs, but it can help to improve the performance of the interac-
tion control while being able to attenuate disturbances. For example, such an approach would
be helpful for interactions in outdoor environments with lots of disturbances from for instance
wind.

A limitation of the proposed state estimator is that it is prone to parameter uncertainties.
Naturally, the mass should be known, but to obtain the propeller force, the parameter of the
propellers should be known as well. However, there can always be deviation in these parame-
ters. For instance, the amount of trust per propeller might be different due to deformations.
Another limitation of this research is that the state estimators have not been tested for com-
plete real-world scenarios. The dataset did contain real-world data, but the GPS signal was
obtained by altering the Mocap signal. Therefore, effects such as GPS biases have not been
considered during the experimentation.

80

Appendices

81

Appendix A

Derivation of Linear Kalman Filter

In this appendix the linear Kalman Filter will be derived mathematically. The derivation is
based on the calculations encountered in [N.A.Thacker, 1998].
To get started the observation model (2.2) will be considered in the estimator (2.4) by substi-
tution:

x̂k = x̆k +Kk(Hxk + nk −Hx̆k)
= x̆k +KkHxk −KkHx̆k +Knk

= x̆k + (KkH)(xk − x̆k) +Knk

= x̆k + (KkH)(xk − x̆k) +Knk

(A.1)

This equation can be substituted in the definition of the process error:

ek = xk − x̂k
= xk − x̆k − (KkH)(xk − x̆k)−Kknk

= (I −KkH)(xk − x̆k)−Kknk

(A.2)

The process error can be substituted in (2.5) to obtain the process covariance matrix:

Pk = E[eke
T
k] = E[((I −KkH)(xk − x̆k)−Kknk)

((I −KkH)(xk − x̆k)−Kknk)
T]

(A.3)

The term (xk − x̆k) can be considered as a process error obtained during the prediction step.
Also nk is the error from the observation sensors. Clearly these two errors are uncorrelated.
Therefore we can factorize the two (thus not considering cross-correlation between the two):

P = (I −KkH)E[(xk − x̆k)](xk − x̆k))T)(I −KkH)T +KkE[nkn
T
k]KT

k

= (I −KkH)P̆ (I −KkH)T +KkRK
T
k

(A.4)

In the last step P̆ is introduced as covariance matrix of the process error for the predicted
states P̆ = E[(xk − x̆k)]. Furthermore the E[nkn

T
k] is recognised from (2.3). Now the term can

be expanded:

P = P̆ −KHP̆ − P̆HTKT +KHP̆KTHT +KRKT

= P̆ −KHP̆ − P̆HTKT +K(HP̆HT +R)KT
(A.5)

82

This term can be used to update the process covariance matrix after the Kalman gain has been
calculated. Nevertheless this version is lengthy and will be simplified later.
Using process covariance update equation, the Kalman gain ’K’ can be obtained. The Kalman
gain should be an optimal gain for the filter. This can be achieved by minimizing the process
error vector e. In order to do this, first the proces covariance matrix update function will be
expanded:

P = P̆ −KHP̆ − P̆HTKT +KHPHTKT +KRKT

= P̆ −KHP̆ − P̆HTKT +K(HP̆HT +R)KT
(A.6)

As seen in (2.5) The process covariance matrix describes Expectation between the error samples
ek−1, ek and ek+1. For the next steps the Kalman filter is most concerned about the auto-
correlation, the variance, of ek. Therefore, the trace Tr(.) can be taken:

Tr(P) = Tr[P̆]− Tr[KkHP̆]− Tr[P̆HTKT
k] + Tr[Kk(HP̆H

T +R)KT
k]

= Tr[P̆]− 2Tr[KkHP̆] + Tr[Kk(HP̆H
T +R)KT

k]
(A.7)

The last simplification can be made since the trace is equal to the trace of its transpose.
The Kalman gain is meant to be an optimal gain which minimizes the (process) error of the
filter. The previous equation is a straightforward equality for a term which posses as process
error. Therofore, one can obtain the Kalman gain by minimizing the the previous term with
respect to the Kalman Gain:

dTr(P)

dKk

=
d

dKk

Tr[P̆]− 2
d

dKk

Tr[KkHP̆] +
d

dKk

Tr[Kk(HP̆H
T +R)KT

k]

= 0− 2(HP̆)T + 2Kk(HP̆H
T +R) = 0

(A.8)

And now to solve for Kk:

0 = −2(HP̆)T + 2Kk(HP̆H
T +R)

2Kk(HP̆H
T +R) = 2(HP̆)T

Kk = P̆HT (HP̆HT +R)−1

(A.9)

Now the Kalman gain (A.9) can be substituted in (A.6). This leads into cancelling the term
to:

P = P̆ − P̆HT (HP̆HT +R)−1HP̆

= P̆ −KkHP̆

= (I −KkH)P̆

(A.10)

This leads to the process covariance matrix update function, which is able to correct P̆ .
The last equation to derive is the process covariance prediction P̆ . The term for the error during
the prediction step has been defined before ĕk = xk − x̆k. The next error can be calculated as
follows:

ĕk+1 = xk+1 − x̆k+1

= (Axk +Buk + ηk)− (Ax̂k +Buk)

= A(xk − x̂) + ηk

(A.11)

83

And now as covariance matrix:

P̆k+1 = E[ĕk+1ĕ
T
k+1] = E[(A(xk − x̂) + ηk)(A(xk − x̂) + ηk)

T] (A.12)

The process noise ek is not correlated with ηk which is the noise from the sensors used as
measurement input u. Therefore the term can be factorized:

P̆k+1 = E[(A(xk − x̂) + ηk)(A(xk − x̂) + ηk)
T]

= E[(A(xk − x̂))(A(xk − x̂))T] + E[ηkη
T
k]

= APkA
T +Q

(A.13)

84

Appendix B

Derivation exponential map identities

The paper [Joan Solá, 2019] shows how to derive the well known ”Rodrigues Formula” using a
Taylor series. The Rodrigues Formula looks as follows:

R = exp(ω̃θ) = I + ω̃sin(θ) + ω̃2(1− cos(θ)) (B.1)

The series can also be used to derive edge cases where, for instance, a variable on the lie algebra
is small in magnitude:

exp(ε̃) = I + ε̃+
1

2
ε̃2 +

1

3!
ε̃3...

ε→0
= I + ε

(B.2)

This edge case can also be derived for the same case but negative:

exp(−ε̃) = I + ˜(−ε) +
1

2
˜(−ε)

2
+

1

3!
˜(−ε)

3
...

= I − ε̃− 1

2
ε̃2 − 1

3!
ε̃3...

ε→0
= I − ε̃

(B.3)

A last Identity that will be derived is for the case exp(τ̃ ω̃τ̃−1) where τ̃ ∈ so(3). Note that this
derivation is also true for R ∈ SO(3):

exp(τ̃ ω̃τ̃−1) = τ̃ τ̃−1 + τ̃ ω̃τ̃−1 +
1

2
(τ̃ ω̃τ̃−1)2 +

1

3!
(τ̃ ω̃τ̃−1)3...

= τ̃ τ̃−1 + τ̃ ω̃τ̃−1 + τ̃
1

2
(ω̃)2τ̃−1 + τ̃

1

3!
(ω̃)3τ̃−1...

= τ̃(I + ω̃ +
1

2
ω̃2 +

1

3!
ω̃3 + ...)τ̃−1

= τ̃ exp(ω̃)τ̃−1

(B.4)

These identities will prove to be useful in derivations that make of an exponential map of a
small value.

85

Appendix C

Derivation of Lie group partial
derivatives

∂Rx

∂x
= lim

ε→0

R(x+ ε)−Rx
ε

= lim
ε→0

Rx+Rε−Rx
ε

= lim
ε→0

Rε

ε
= R

∂Rx

∂x
= R

(C.1)

∂Rx

∂R
= lim

ε→0

(R⊕ ε)x−Rx
ε

= lim
ε→0

exp(ε̃)Rx−Rx
ε

= lim
ε→0

(I + ε̃)Rx−Rx
ε

= lim
ε→0

ε̃(Rx)

ε

= lim
ε→0

− ˜(Rx)ε

ε
= − ˜(Rx)

∂Rx

∂R
= − ˜(Rx)

(C.2)

∂R−1x

∂R
= lim

ε→0

(R⊕ ε)−1x−R−1x

ε

= lim
ε→0

(exp(ε̃)R)−1x−R−1x

ε

= lim
ε→0

(R−1exp(−ε̃))x−R−1x

ε

= lim
ε→0

(R−1(I − ε̃)x−R−1x

ε

= lim
ε→0

−R−1ε̃x

ε

= lim
ε→0

R−1x̃ε

ε
= RT x̃

∂R−1x

∂R
= RT x̃

(C.3)

86

∂(Rω̃)

∂R
= lim

ε→0

(R⊕ ε)ω̃ 	Rω̃
ε

= lim
ε→0

exp(ε̃)Rω̃ 	Rω̃
ε

= lim
ε→0

log(exp(ε̃)Rω̃(Rω̃)−1)V

ε

= lim
ε→0

log(exp(ε̃))V

ε
= I3

∂(Rω̃)

∂R
= I3

(C.4)

∂ω̃R

∂R
= lim

ε→0

ω̃(R⊕ ε)	 ω̃R
ε

= lim
ε→0

ω̃exp(ε̃)R	 ω̃R
ε

= lim
ε→0

log(ω̃exp(ε̃)RR−1ω̃−1)V

ε

= lim
ε→0

log(ω̃exp(ε̃)ω̃−1)V

ε

= lim
ε→0

log(exp(ω̃ε))V

ε
= ω̃

∂ω̃R

∂R
= ω̃

(C.5)

87

Appendix D

Software implementation of state
estimators

This appendix shows how the Manifold Toolkit (MTK) [Hertzberg et al., 2011] has been used
to implements the state estimators. Some important code of the geometrical pose wrench
estimator will be shown. The geometrical pose wrench estimator is showed because it is more
elaborate than the geometrical pose estimator. But the implementation is very similar to each
other. In order to keep the code clear, irrelevant programming details have been replaced by
dots.

D.1 Define a state

Before defining a state, the MTK should know which state belongs to which group. This allows
the state estimator to use correct operators for each state. In order to accomplish this, the MTK
uses wrappers. To simplify the code, these wrappers are implemented using type definitions:

typedef MTK: : vect <3, double> vec3 ;
typedef MTK: : SO3<double> SO3 ;

The wrapper defines the operators which correspond to the group a state belongs to. For in-
stance, vec3 denotes Rn. The wrapper defines plus and minus as the regular ’+’ and ’-’. SO3

denotes a state ∈ SO(3). This means that the wrapper defines plus and minus as ⊕ and 	, as
seen in chapter 4.

Now that the types have been declared, the state vector can be declared:

MTK BUILD MANIFOLD (State ,
((vec3 , pos))
((vec3 , v e l))
((SO3 , o r i e n t))
((vec3 , b a))
((vec3 , b w))
((vec3 , f e x t))
) ;

This defines the state vector for the geometrical pose wrench estimator 5.27. Note that
MTK BUILD MANIFOLD defines the type State as an object with all individual states.
The state vector for the geometrical pose estimator looks similar but without the state fext.

88

D.2 Prediction functions

The prediction model can be programmed as a function. The function will take the latest
estimated state x̂k−1 with measurement input u and returns the predicted state x̆k.

The geometrical pose wrench estimator is formulated in equation 5.31. The software imple-
mentation is as follows:

State DynamicsEstimator : : process mode l (
const State& s , const vec3& F prop , const vec3& w) {
. . .
State s2 ; // Pred ic ted s t a t e

// Apply Rotat ion
vec3 s c a l e d a x i s = (w − s . b w) ∗ dt ;
SO3 rot = SO3 : : exp (s c a l e d a x i s) ;

// S ta t e f unc t i on s
s2 . pos = s . pos + s . o r i e n t ∗ s . v e l ∗ dt ;
s2 . v e l = s . v e l + dt ∗ (

s . v e l . c r o s s (w) + m inv ∗(F prop + s . f e x t)
− s . o r i e n t . i n v e r s e ()∗ g) ;

s2 . o r i e n t = s . o r i e n t ∗ ro t ;
s2 . b a = s . b a ;
s2 . b w = s . b a ;
s2 . f e x t = s . f e x t ;

. . .

return s2 ;
}

The return type of the function process model is of type State. The measurement input taken
by the function are fpr coded as F prop and ωb,ib coded as w.
Before the prediction model is implemented the rotation must be applied separately. The func-
tion SO3 :: exp effectively accomplishes ω̃b,ib . After that the state can be predicted in accordance
with the equations from 5.31.
Note that the integration has been implemented using Euler integration. Thus the prediction
models are programmed as x̆k = x̂k−1 + ∆t(f(x, u)). The time step ∆t is programmed as dt

and should be known beforehand. In the case of the geometrical pose wrench estimator the
time step is equal to the time step at which f bpr comes in. For the geometrical pose estimator
the time step is equal to the time step of the IMU measurements.

Now the process covariance matrix P̆k will be programmed. The only knowledge needed for
an UKF implementation of P̆k is the measurement covariance matrix Q. As seen in section 2.1.2.

The measurement noise vector for the geometrical pose wrench estimator is as follows: η =[
ηbfpr ηbω ηbba ηbbω ηbfext

]
.

Matrix P̆k will also be programmed as a function. The return type is of ukfom::ukf<UkfState>::cov.
This type is a template which defines a square matrix P with the dimension equal to the size
of the state vector. the function for P̆k takes no arguments:

ukfom : : ukf<UkfState > : : cov DynamicsEstimator : : p r o c e s s n o i s e c o v () {

89

. . .
// Declare covar iance matrix
ukfom : : ukf<UkfState > : : cov cov = ukfom : : ukf<UkfState > : : cov : : Zero () ;

// Set covar iance matrix e lement f o r each s t a t e
se tDiagona l (cov , &State : : pos , 0) ;

s e tDiagona l (cov , &State : : ve l ,
n f p r ∗ dt) ;

s e tDiagona l (cov , &State : : o r i en t ,
n w ∗ dt) ;

s e tDiagona l (cov , &State : : b a ,
n ba ∗ dt) ;

s e tDiagona l (cov , &State : : b w ,
n bw ∗ dt) ;

s e tDiagona l (cov , &State : : f e x t ,
n f e x t ∗ dt) ;

. . .

return cov ;

}

In the code, first an empty covariance matrix is declared cov with the same return type of the
function. Next cov is set to zero. After the declaration of cov the values of Q will be set for
each state. This is done using the function setDiagonal.
The value of each element of Q are programmed without considering g(η) from equation 5.31.
This is done so the user can set the values in accordance with g(η). This avoids the need to
reprogram in case of a modelling error.

D.3 Correction functions

The correction will be demonstrated only for ab,ib in order to keep it short. The implementation
it the same for other states but with different equations of course.

Similar to the prediction, the correction h(x, u) is also programmed as a function. The function
takes the x and u and returns y in the corresponding type, which is vec3 for ab,ib :

vec3 DynamicsEstimator : : a c c e l e r a t i o n o b s e r v a t i o n m o d e l (
const State& s , const vec3& F prop){

return m inv ∗(s . f e x t + F prop) + s . b a ;
}

Furthermore an implementation for h(x, u) needs knowledge about R. this is needed to deal
with the correction noise n:

Eigen : : Matrix<double , 3 , 3>
DynamicsEstimator : : a c c e l e r a t i on measur ement no i s e cov () {

return n a ∗ Eigen : : Matrix<double , 3 , 3> : : I d e n t i t y () ;
}

90

D.4 Execute Prediction and Correction

Now that all functions for the prediction and correction are defined, it will be shown how to
call them. The functions for the prediction and correction are called in a sensor callback. The
prediction function for the geometrical pose wrench estimator is called in the callback of the
message received for f bpr. This callback is called predictionCallback, and it is programmed
as follows:

void DynamicsEstimator : : p r ed i c t i onCa l l back (const spc uav comm : : Cont ro lS i gna l s& msg) {
// Store p r o p e l l e r wrench

F prop <<
msg . contro l wrench . f o r c e . x ,
msg . contro l wrench . f o r c e . y ,
msg . contro l wrench . f o r c e . z ;

. . .
// Ca l l p r e d i c t i on model

k f . p r e d i c t (
boost : : bind(&DynamicsEstimator : : process model , this , 1 , F prop , gyro) ,
p r o c e s s n o i s e c o v ()) ;

. . .

}

First the message for f bpr will be read and the content will be stored within F prop. This variable
is passed to the function predict. The function predict is a member function of a kalman
filter object. The instantiation of this object is kf . The arguments passed to the predict
function are the function bind and the process noise cov(). bind handles the arguments
needed for process model().

The correction is also called in the callback of the corresponding observation. For ab,ib the
callback sensor is the IMU.

void DynamicsEstimator : : imuCallback (const sensor msgs : : Imu& msg){

acc << msg . l i n e a r a c c e l e r a t i o n . x ,
msg . l i n e a r a c c e l e r a t i o n . y ,
msg . l i n e a r a c c e l e r a t i o n . z ;

. . .

k f . update (
acc ,
boost : : bind (

&DynamicsEstimator : : acce lerat ion measurement model ,
this ,
1 ,

F prop
) ,
a c c e l e r a t i on measur ement no i s e cov ()) ;

. . .
}

Whenver a new message comes in, the contect is read and stored to acc. The update is called
similar to the prediction, but now for acceleration measurement model() and
acceleration measurement noise cov()

91

Appendix E

Simulation Seup

The simulation environment used is Gazebo with the RotorS simulator[Furrer et al., 2016].
In Gazebo, the fully-actuated hexarotor called BetaX is simulated as seen in figure E.1. To
interface all needed software, the middleware Robot Operating System (ROS) has been used.
ROS interfaces the simulation with the: state estimation software, simulated sensors, and the
controller. The state estimators have been implemented in C++ using the Manifold Toolkit
(MTK) [Hertzberg et al., 2011]. The software implementation of the state estimators is being
described in D. Both the geometrical pose estimator and the geometrical pose wrench estimator
have their node, which can be launched for each simulation. Moreover, both ROS nodes contain
two source files. One source file implements the algorithmic part of the software, while the other
file interfaces the state estimator to ROS.
Lastly, the parameters used for the simulation are denoted in appendix E

Figure E.1 BetaX next to a wall in the Gazebo simulation environment

In the remainder of this section the controller, sensors and the used ROS nodes will be described.

E.1 Controlling the UAV

In order to control the UAV an energy tank-based impedance/wrench controller is used
[Rashad et al., 2019b]. The impedance controller extended with energy tanks guarantees that
the UAV remains stable while interacting with the wall.
Next to this the offboard controller provides the message etank imp control signals. This
message returns the propeller wrench Wpr and an estimated external wrench Ŵext obtained

92

from a loosely coupled estimator using ground truth information. The propeller wrench will be
used as a measurement input for the geometric pose wrench estimator.

The setpoints to the controller are given by the Graphical User Interface (GUI) shown in figure
E.2. The interfaces in the colored boxes can be used to control the UAV. The position and yaw
can be manually controlled by using the interface in the red box. The green box can be used
for automated flight. One can use the automated flight by setting the windows radius, freq,
and climbR, and then tick the box of the desired pattern. Lastly, the blue box can be used for
some additional abilities of the controller. For instance, the loosely-coupled external wrench
estimation from the controller can be enabled by pushing ’enable Dist. Observer

Figure E.2 GUI to control UAV. The green box highlights the automated trajectory interface,
the red box highlights the interface to manually command position setpoints and the blue box
shows buttons to use additional functionalities of the off-board controller.

E.2 Simulated sensors

To simulate sensors, the plugin ”Hector Gazebo” has been used. The documentation of this
plugin can be found on their wiki . The sensors implemented are ”GazeboRosImu” and ”Gaze-
boRosGps”. Both sensors use the ground truth and introduce noise and biases in accordance
with the models in chapter 3.

Besides the IMU and GPS, a force/torque sensor has been implemented. The sensor can be used
as ground truth for the force estimation. The force/torque plugin is called ”libgazebo ros bumper”
which can be found in the Gazebo library. The force sensor gives measurements when in contact

93

http://wiki.ros.org/hector_gazebo_plugins

with an object. In the simulation shown in figure E.1, the sensor has been attached to the wall.
A small remark is that the raw force/torque measurements are not very intuitive as they jump
between zero and the measured force/torque value. Also, the measurement value is twice as
large as the actual force or torque. Therefore, some processing is required before the sensor can
be used.

The GPS plugin provides GPS messages expressed in the ECEF-frame, as explained in 3.2.1.
Because this is unsuitable for local applications, a GPS conversion package is used. This pack-
age is called geodetic utils and it allows to convert GPS messages to the desired frame. In the
case of the interactive UAV, the most convenient frame is the ENU frame, as the ENU frame
aligns with the notation in chapter 5.

E.3 ROS architecture

Now that the used nodes have been introduced the architecture is shown in E.3.

Figure E.3 Visualization of ROS architecture. The oval shapes are nodes and the squared
shapes are messages. The graph is obtained using the command \rqt graph.

The node \gazebo is seen in the left of the graph. Gazebo uses this node to publish information,
such as ground truths, to other nodes. In the upper left the node \graph user interface is
shown. This is the control GUI which publishes the message the \offboard controller uses
to control the UAV.
In the below center part of the graph, the \GPS reference node is shown. This node sets the
initial GPS location, which is sent by the message \GPS2. For real-world experimentation, the
initial GPS coordinate should to be found precisely, as deviations in the initial GPS coordinate
will also lead to deviations in \gps position. After the initial GPS coordinate is received, the

94

https://github.com/ethz-asl/geodetic_utils

converted GPS message is published from \GPS conversion.
The node \State estimation is the implementation of the state estimators seen in chapter
5. The name is the same for both estimators. The \State Estimation node subscribes on
the following messages: \IMU \Hector, \gps position and \etank imp controls signals,
which are the measurement inputs and observations.

E.4 Simulation parameters

IMU
parameter value unit
Accelerometer noise (σ2

a) 0.05 m
s2

Gyroscope noise (σ2
ω) 0.007 rad

s

Accelerometer bias (σ2
ba

) 0 m
hzs4

Gyroscope bias (σ2
bω

) 0 rad
hzs2

Magnetometer noise (σ2
mag) 0.007 rad

Magnetometer bias (σ2
bmag

) 0 rad
hzs2

Update rate 200 Hz
GPS

Latitude 52.2393971 ◦

Longitude 6.8508709 ◦

Altitude 0 m
Position noise (σgps,p) 0.2 m
rate 1 and 10 Hz

UAV
Mass(m) 1.85 kg
Moment of Inertia - x (Jx) 0.05 kg.m2

Moment of Inertia - y (Jy) 0.05 kg.m2

Moment of Inertia - z (Jz) 0.094 kg.m2

gravity constant (g) 9.81 m
s2

95

Appendix F

Data from simulation & experiments

F.1 Simulation 1

F.1.1 Case 1

Table F.1: Raw data of tuning orientation by changing ηω for simulated environment. Errors
are calculated on Ri

b in radians. nmag = 0.05

ηω axis µR σR RMSR

0.5
x -377.5354e-006 12.5662e-009 393.8216e-006
y -11.1040e-006 443.5541e-012 23.8060e-006
z 23.9892e-003 44.7973e-006 24.9051e-003

0.05
x -408.6279e-006 27.5098e-009 440.9974e-006
y -39.4537e-006 3.3755e-009 70.2217e-006
z 23.6447e-003 44.7016e-006 24.5715e-003

0.005
x -359.0322e-006 34.9201e-009 404.7393e-006
y -66.0110e-006 5.7945e-009 100.7484e-006
z 23.3782e-003 32.2658e-006 24.0582e-003

0.007
x -342.5967e-006 35.5174e-009 390.9983e-006
y 49.8436e-006 2.9823e-009 73.9312e-006
z 24.3845e-003 104.5037e-006 26.4401e-003

0.0005
x -355.2900e-006 26.5983e-009 390.9236e-006
y 79.8152e-006 6.7115e-009 114.3677e-006
z 27.9147e-003 58.1944e-006 28.9380e-003

96

Table F.2: Raw data of tuning orientation by changing nmag for simulated environment. Errors
are calculated on Ri

b in radians. ηa = 0.005

nmag axis µR σR RMSR

0.5
x -347.5803e-006 11.3189e-009 363.4940e-006
y -1.9672e-006 121.8556e-012 11.2112e-006
z 20.5482e-003 37.9309e-006 21.4511e-003

0.05
x -347.5803e-006 11.3189e-009 363.4940e-006
y -1.9672e-006 121.8556e-012 11.2112e-006
z 20.5482e-003 37.9309e-006 21.4511e-003

0.005
x -356.0877e-006 12.1396e-009 372.7390e-006
y 7.0023e-006 3.5766e-009 60.2044e-006
z 24.2749e-003 26.0047e-006 24.8045e-003

0.007
x -252.2787e-006 5.1074e-006 2.2737e-003
y -352.2569e-006 4.1537e-006 2.0680e-003
z 31.6302e-003 80.1846e-006 32.8730e-003

0.0005
x -330.0505e-006 13.0448e-009 349.2482e-006
y -59.1876e-006 2.5623e-009 77.8764e-006
z 23.9707e-003 32.3136e-006 24.6353e-003

Other tuning parameters for case 1:
• ηa = 0.05m/s2

• ηba = 0.000005m/s3

• ngps,p = 0.05m

97

F.1.2 Case 2

Table F.3: Raw data tuning simulation position. Errors are calculated on ξib in meters. ηω =
0.005rad/s nmag = 0.0005rad

ngps axis µp σp RMSp

0.005
x -0.0923 0.1106 0.3451
y 0.0918 0.0596 0.2607
z -0.0485 0.1246 0.3562

0.05
x -0.0726 0.0529 0.2411
y 0.0097 0.0208 0.1446
z -0.0466 0.0567 0.2427

0.2
x 0.0400 0.0093 0.1043
y 0.0286 0.0093 0.1006
z 0.0448 0.0039 0.0768

0.5
x 0.0185 0.0292 0.1718
y -0.0669 0.1010 0.3248
z -0.0210 0.0283 0.1696

1
x 0.0542 0.0690 0.2682
y 0.1009 0.0529 0.2511
z 0.0105 0.0270 0.1645

5
x -0.0201 0.1067 0.3273
y -0.0471 0.0541 0.2372
z 0.0659 0.0054 0.0988

10
x -0.0338 0.0590 0.2452
y 0.1208 0.0185 0.1820
z 0.1077 0.0066 0.1347

F.1.3 Case 3

Other tuning parameters for case 3:
• ηω = 0.005rad/s
• ηba = 0.000005m/s3

• ηbω = 0.000005rad/s2

• ngps,p = 0.2m
• nmag = 0.0005rad

98

Table F.5: Raw data tuning simulation position. Errors are calculated on ξib in meters.

ηa axis µp σp RMSp

0.0005
x 0.0441 0.0904 0.3039
y -0.0475 0.1007 0.3208
z 0.0131 0.0064 0.0812

0.005
x 0.0111 0.0331 0.1823
y -0.0500 0.0260 0.1687
z -0.0293 0.0288 0.1721

0.05
x 0.0161 0.0063 0.0807
y 0.0264 0.0096 0.1015
z -0.0318 0.0029 0.0626

0.5
x 0.0053 0.0868 0.2947
y -0.0355 0.0384 0.1992
z 0.1437 0.0334 0.2324

1
x 0.0201 0.0374 0.1945
y -0.0078 0.0756 0.2750
z -0.0665 0.0638 0.2611

5
x 0.0220 0.0666 0.2589
y -0.0333 0.0443 0.2132
z 0.0423 0.0508 0.2292

Table F.4: Raw data tuning simulation velocity. Errors are calculated on vb,ib in meters per
second.

ηa axis µv σv RMSv

0.0005
x 0.0093 0.0007 0.0289
y -0.0557 0.0006 0.0611
z 0.0277 0.0003 0.0324

0.005
x -0.0116 0.0002 0.0184
y -0.0316 0.0005 0.0387
z 0.0062 0.0015 0.0393

0.05
x -0.0437 0.0016 0.0594
y 0.0338 0.0015 0.0514
z 0.0124 0.0007 0.0291

0.5
x -0.1518 0.0129 0.1895
y 0.0673 0.0087 0.1151
z 0.0084 0.0079 0.0895

1
x -0.0636 0.0252 0.1709
y 0.0469 0.0120 0.1192
z 0.0012 0.0218 0.1475

5
x -0.1117 0.0337 0.2149
y 0.0647 0.0430 0.2171
z 0.0251 0.0352 0.1894

F.2 Simulation 2

Other tuning parameters during simulation 2:

99

• ηa = 0.05m/s2

• ηba = 0.000005m/s3

• ngps,p = 0.05m
• ηω = 0.005rad/s
• nmag = 0.0005rad

F.2.1 Case 1

ηfext efext,µ efext,σ2 efext,rms
0.0005 0.2636 0.0628 0.3635
0.005 0.1094 0.0412 0.2303
0.05 0.0453 0.0273 0.1712
0.5 0.0143 0.0495 0.2226
5 0.0097 0.0499 0.2234
50 -0.0102 0.0843 0.2903

F.2.2 Case 2

na efext,µ efext,σ2 efext,rms
0.005 0.0008 0.1236 0.3511
0.05 0.0143 0.0495 0.2226
0.5 -0.0018 0.0723 0.2686
1 -0.0222 0.0527 0.2304
5 0.0155 0.0304 0.1748
10 0.0175 0.0226 0.1511
50 0.0651 0.0275 0.1779

F.3 Experiment 1

Parameter during this experiment:

ηω = 0.01rad/s
ηba = 0.000005m/s2

ηbω = 0.000005m/s2

nmag = 0.001rad

100

F.3.1 Case 1

ngps,p axis engps,p,µ engps,p,σ2 engps,p,rms

0.01
x -0.0016 0.0255 0.1596
y 0.1822 0.0211 0.2330
z 0.0019 0.0027 0.0523

0.05
x 0.0013 0.0105 0.1026
y 0.0863 0.0106 0.1343
z 0.0003 0.0026 0.0509

0.1
x 0.0031 0.0055 0.0745
y 0.0674 0.0063 0.1039
z 0.0019 0.0019 0.0431

0.5
x 0.0033 0.0037 0.0610
y 0.0361 0.0043 0.0751
z 0.0017 0.0023 0.0479

1
x 0.0037 0.0035 0.0595
y 0.0276 0.0042 0.0708
z 0.0013 0.0028 0.0529

F.3.2 Case 2

ngps,p axis engps,p,µ engps,p,σ2 engps,p,rms

0.005
x -0.0038 0.0053 0.0732
y -0.0489 0.0055 0.0887
z -0.0023 0.0029 0.0541

0.01
x -0.0031 0.0049 0.0700
y -0.0361 0.0050 0.0795
z -0.0016 0.0033 0.0578

0.05
x -0.0052 0.0056 0.0753
y -0.0178 0.0052 0.0744
z -0.0013 0.0048 0.0691

0.1
x -0.0049 0.0064 0.0802
y -0.0134 0.0060 0.0788
z -0.0012 0.0056 0.0750

0.5
x -0.0053 0.0097 0.0985
y -0.0070 0.0090 0.0952
z -0.0009 0.0089 0.0943

1
x -0.0056 0.0110 0.1048
y -0.0055 0.0106 0.1030
z -0.0010 0.0104 0.1020

101

F.3.3 Case 3

ngps,p axis engps,p,µ engps,p,σ2 engps,p,rms

0.005
x -0.0033 0.0062 0.0791
y -0.0261 0.0059 0.0809
z -0.0014 0.0050 0.0708

0.01
x -0.0031 0.0049 0.0700
y -0.0361 0.0050 0.0795
z -0.0016 0.0033 0.0578

0.05
x 0.0003 0.0071 0.0841
y -0.0756 0.0075 0.1151
z -0.0022 0.0027 0.0518

0.1
x -0.0033 0.0082 0.0904
y -0.0757 0.0067 0.1117
z -0.0026 0.0029 0.0542

F.4 Experiment 2

F.4.1 Case 1

Mean errors are already given in figure 7.11
Parameters:
ηa = 0.05m/s2

ηω = 0.01rad/s
ηba = 0.000005m/s2

ηbω = 0.000005m/s2

nmag = 0.001rad
ngps,p = 0.01m

F.4.2 Case 2

case axis µp σp RMSp

ηfpr = 0.1
x -0.0045 0.0072 0.0851
y 0.0409 0.0177 0.1392
z 0.0044 0.0062 0.0791

prediction lower, correction equal
x 0.0018 0.0162 0.1274
y 0.0480 0.0177 0.1416
z 0.0158 0.0191 0.1392

prediction equal, correction lower
x -0.0060 0.0107 0.1034
y 0.0275 0.0207 0.1465
z 0.0052 0.0110 0.1051

102

Bibliography

[Bloesch et al., 2015] Bloesch, M., S. Omari, M. Hutter and R. Siegwart (2015), Robust visual
inertial odometry using a direct EKF-based approach, in 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 298–304.

[Brossard et al., 2018] Brossard, M., S. Bonnabel and A. Barrau (2018), Unscented Kalman
Filter on Lie Groups for Visual Inertial Odometry, in 2018 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pp. 649–655.

[Brossard et al., 2017] Brossard, M., S. Bonnabel and J. Condomines (2017), Unscented
Kalman filtering on Lie groups, in 2017 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pp. 2485–2491.

[Chadaporn Keatmanee, 2015] Chadaporn Keatmanee, Junaid Baber, M. B. (2015), Simple
Example of Applying Extended Kalman Filter.

[Chagas and Waldmann, 2015] Chagas, R. and J. Waldmann (2015), Observability Analysis
for the INS Error Model with GPS/Uncalibrated Magnetometer Aiding, pp. 235–257, doi:
10.1007/978-3-662-44785-7 13.

[David et al., 2017] David, W., D. Kominiak, E. Fresk and G. Nikolakopoulos (2017), A Ge-
ometric Pulling Force Controller for Aerial Robotic Workers * *This work has received
funding from the European Unions Horizon 2020 Research and Innovation Program un-
der the Grant Agreement No 644128 AEROWORKS, IFAC-PapersOnLine, vol. 50, pp.
10287–10292, doi:10.1016/j.ifacol.2017.08.1487.

[Delmerico and Scaramuzza, 2018] Delmerico, J. and D. Scaramuzza (2018), A Benchmark
Comparison of Monocular Visual-Inertial Odometry Algorithms for Flying Robots, in 2018
IEEE International Conference on Robotics and Automation (ICRA), pp. 2502–2509.

[Duflos et al., 2006] Duflos, E., D. Pomorski and P. Vanheeghe (2006), GPS/IMU data fusion
using multisensor Kalman filtering: Introduction of contextual aspects, Information Fu-
sion, vol. 7, pp. 221–230, doi:10.1016/j.inffus.2004.07.002.

[Forster et al., 2016] Forster, C., L. Carlone, F. Dellaert and D. Scaramuzza (2016), On-
Manifold Preintegration for Real-Time Visual-Inertial Odometry, IEEE Transactions on
Robotics, vol. PP, doi:10.1109/TRO.2016.2597321.

[Furrer et al., 2016] Furrer, F., M. Burri, M. Achtelik and R. Siegwart (2016), Robot
Operating System (ROS): The Complete Reference (Volume 1), Springer International
Publishing, Cham, chapter RotorS—A Modular Gazebo MAV Simulator Framework, pp.
595–625, ISBN 978-3-319-26054-9, doi:10.1007/978-3-319-26054-9 23.
http://dx.doi.org/10.1007/978-3-319-26054-9 23

[Gioioso et al., 2014] Gioioso, G., M. Ryll, D. Prattichizzo, H. H. Bülthoff and A. Franchi
(2014), Turning a near-hovering controlled quadrotor into a 3D force effector, in 2014
IEEE International Conference on Robotics and Automation (ICRA), pp. 6278–6284.

[Grip et al., 2012] Grip, H. F., T. I. Fossero, T. A. Johansent and A. Saberi (2012), A
nonlinear observer for integration of GNSS and IMU measurements with gyro bias
estimation, in 2012 American Control Conference (ACC), pp. 4607–4612.

[Gui et al., 2015] Gui, J., D. Gu, S. Wang and H. Hu (2015), A review of visual inertial
odometry from filtering and optimisation perspectives, vol. 29, no.20, pp. 1289–1301,

103

http://dx.doi.org/10.1007/978-3-319-26054-9_23

doi:10.1080/01691864.2015.1057616.
https://doi.org/10.1080/01691864.2015.1057616

[Hertzberg et al., 2011] Hertzberg, C., R. Wagner, U. Frese and L. Schröder (2011),
Integrating Generic Sensor Fusion Algorithms with Sound State Representations through
Encapsulation of Manifolds.

[Joan Solá, 2019] Joan Solá, Jeremie Deray, D. A. (2019), A micro Lie theory for state
estimation in robotics.

[Kok et al., 2017] Kok, M., J. D. Hol and T. B. Schön (2017), Using Inertial Sensors for
Position and Orientation Estimation.

[Li and Mourikis, 2012] Li, M. and A. I. Mourikis (2012), Improving the accuracy of
EKF-based visual-inertial odometry, in 2012 IEEE International Conference on Robotics
and Automation, pp. 828–835.

[Lim et al., 2012] Lim, H., J. Park, D. Lee and H. J. Kim (2012), Build Your Own Quadrotor:
Open-Source Projects on Unmanned Aerial Vehicles, vol. 19, no.3, pp. 33–45.

[Lynen et al., 2013] Lynen, S., M. W. Achtelik, S. Weiss, M. Chli and R. Siegwart (2013), A
robust and modular multi-sensor fusion approach applied to MAV navigation, pp.
3923–3929.

[McKinnon and Schoellig, 2016] McKinnon, C. D. and A. P. Schoellig (2016), Unscented
External Force and Torque Estimation for Quadrotors, 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) Daejeon Convention Center
October 9-14, 2016, Daejeon, Korea.

[Mourikis and Roumeliotis, 2007] Mourikis, A. I. and S. I. Roumeliotis (2007), A Multi-State
Constraint Kalman Filter for Vision-aided Inertial Navigation, in Proceedings 2007 IEEE
International Conference on Robotics and Automation, pp. 3565–3572.

[N.A.Thacker, 1998] N.A.Thacker, A. (1998), Tutorial: The Kalman Filter.
[Nava et al., 2020] Nava, G., Q. Sablé, M. Tognon, D. Pucci and A. Franchi (2020), Direct

Force Feedback Control and Online Multi-Task Optimization for Aerial Manipulators,
vol. 5, no.2, pp. 331–338.

[Nisar et al., 2019] Nisar, B., P. Foehn, D. Falanga and D. Scaramuzza (2019), VIMO:
Simultaneous Visual Inertial Model-Based Odometry and Force Estimation, vol. 4, no.3,
pp. 2785–2792.

[Nøkland, 2011] Nøkland, H. (2011), Nonlinear Observer Design for GNSS and IMU
Integration, Master’s thesis, Norwegian University of Science and Technology
Department of Engineering Cybernetics.

[Qasem and Reindl, 2007] Qasem, H. and L. Reindl (2007), Unscented and Extended Kalman
Estimators for non Linear Indoor Tracking Using Distance Measurements, in 2007 4th
Workshop on Positioning, Navigation and Communication, pp. 177–181.

[Qin et al., 2018] Qin, T., P. Li and S. Shen (2018), VINS-Mono: A Robust and Versatile
Monocular Visual-Inertial State Estimator, vol. 34, no.4, pp. 1004–1020.

[Rajappa et al., 2017] Rajappa, S., H. Bülthoff and P. Stegagno (2017), Design and
implementation of a novel architecture for physical human-UAV interaction, The
International Journal of Robotics Research, vol. 36, p. 027836491770803,
doi:10.1177/0278364917708038.

[Rashad et al., 2019a] Rashad, R., F. Califano and S. Stramigioli (2019a), Port-Hamiltonian
Passivity-Based Control on SE(3) of a Fully Actuated UAV for Aerial Physical
Interaction Near-Hovering, vol. 4, no.4, pp. 4378–4385.

[Rashad et al., 2019b] Rashad, R., J. B. C. Engelen and S. Stramigioli (2019b), Energy
Tank-Based Wrench/Impedance Control of a Fully-Actuated Hexarotor: A Geometric
Port-Hamiltonian Approach, pp. 6418–6424.

[Ryll et al., 2017] Ryll, M., G. Muscio, F. Pierri, E. Cataldi, G. Antonelli, F. Caccavale and

104

https://doi.org/10.1080/01691864.2015.1057616

A. Franchi (2017), 6D physical interaction with a fully actuated aerial robot, in 2017
IEEE International Conference on Robotics and Automation (ICRA), pp. 5190–5195.

[S. Stramigioli, 2001] S. Stramigioli, H. B. (2001), Geometry and screw theory for robotics,
ICRA 2001.

[Scaramuzza and Fraundorfer, 2011] Scaramuzza, D. and F. Fraundorfer (2011), Visual
Odometry [Tutorial], vol. 18, no.4, pp. 80–92.

[Stachniss, 2013a] Stachniss, C. (2013a), SLAM03 - EKF.
http://ais.informatik.uni-freiburg.de/teaching/ws13/mapping/pdf/slam05-ekf-slam.pdf

[Stachniss, 2013b] Stachniss, C. (2013b), SLAM06 - UKF.
http://ais.informatik.uni-freiburg.de/teaching/ws13/mapping/pdf/slam06-ukf.pdf

[Stramigioli, 2018] Stramigioli, S. (2018), Modern Robotics.
[Sun et al., 2018] Sun, K., K. Mohta, B. Pfrommer, M. Watterson, S. Liu, Y. Mulgaonkar,

C. J. Taylor and V. Kumar (2018), Robust Stereo Visual Inertial Odometry for Fast
Autonomous Flight, vol. 3, no.2, pp. 965–972.

[Tomić and Haddadin, 2014] Tomić, T. and S. Haddadin (2014), A unified framework for
external wrench estimation, interaction control and collision reflexes for flying robots, in
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
4197–4204.

[Tomić and Haddadin, 2015] Tomić, T. and S. Haddadin (2015), Simultaneous estimation of
aerodynamic and contact forces in flying robots: Applications to metric wind estimation
and collision detection, in 2015 IEEE International Conference on Robotics and
Automation (ICRA), pp. 5290–5296.

[Wang et al., 2018] Wang, Y., T. Zhang, Y. Wang, J. Ma, Y. Li and J. Han (2018), Compass
Aided Visual-Inertial Odometry, Journal of Visual Communication and Image
Representation, vol. 60, doi:10.1016/j.jvcir.2018.12.029.

[Wopereis et al., 2017] Wopereis, H. W., J. J. Hoekstra, T. H. Post, G. A. Folkertsma,
S. Stramigioli and M. Fumagalli (2017), Application of substantial and sustained force to
vertical surfaces using a quadrotor, in 2017 IEEE International Conference on Robotics
and Automation (ICRA), pp. 2704–2709.

[Yüksel et al., 2014] Yüksel, B., C. Secchi, H. H. Bülthoff and A. Franchi (2014), A nonlinear
force observer for quadrotors and application to physical interactive tasks, pp. 433–440.

105

http://ais.informatik.uni-freiburg.de/teaching/ws13/mapping/pdf/slam05-ekf-slam.pdf
http://ais.informatik.uni-freiburg.de/teaching/ws13/mapping/pdf/slam06-ukf.pdf

106

	1 Introduction
	1.1 Related Work
	1.1.1 Pose estimation
	1.1.2 Force and torque feedback for interaction

	1.2 Research Goal
	1.3 Proposed method
	1.4 Thesis Structure

	2 Background
	2.1 State Estimation
	2.1.1 Linear Kalman Filter
	2.1.2 Nonlinear Filtering Techniques
	2.1.3 Formulating the state estimator

	2.2 Lie Theory
	2.2.1 Manifolds & Lie Groups
	2.2.2 Group Actions
	2.2.3 Mapping to spaces
	2.2.4 Rotation group SO(3)
	2.2.5 Homogeneous Matrices
	2.2.6 Twists and Wrenches

	3 Sensors & Navigations Systems
	3.1 Inertial Measurement Unit (IMU)
	3.1.1 Accelerometer Measurement Model
	3.1.2 Gyroscope Measurement Model
	3.1.3 Magnetometer

	3.2 Global Positioning System (GPS)
	3.2.1 Reference Frames
	3.2.2 Measurement Model

	4 State Estimation on Manifold
	4.1 The plus and minus operator
	4.2 Probability
	4.3 Partial derivatives
	4.4 Unscented Kalman Filter on Manifold

	5 Filter Formulation
	5.1 Rigid Body Kinematics
	5.2 Rigid Body Dynamics
	5.3 Geometrical pose estimator
	5.3.1 IMU based Prediction
	5.3.2 GPS based correction

	5.4 Geometrical pose wrench estimator
	5.4.1 Dynamics based Prediction
	5.4.2 Dynamics based Correction

	6 Simulation: Tuning state estimators
	6.1 Simulation 1: Tuning geometrical pose estimator
	6.1.1 Description of the Scenario
	6.1.2 Tuning parameters analysis
	6.1.3 Description of the results
	6.1.4 Discussion on the results

	6.2 Simulation 2: Force estimation for a static interaction
	6.2.1 Description of the scenario
	6.2.2 Analysis of tuning parameters
	6.2.3 Description of the results
	6.2.4 Discussion of the results

	7 Experimentation: Validation on manipulated real-world data
	7.1 Experiment setup
	7.1.1 Dataset analysis
	7.1.2 Global Positioning System (GPS) signal simulation

	7.2 Experiment 1: Geometrical pose estimator on manipulated dataset
	7.2.1 Description of the result
	7.2.2 Discussion on the result

	7.3 Experiment 2: Geometrical pose wrench estimator on manipulated dataset
	7.3.1 Description of the result
	7.3.2 Discussion on the results

	8 Conclusion
	8.1 Conclusions
	8.2 Recommendations on Future work and limitations

	Appendices
	A Derivation of Linear Kalman Filter
	B Derivation exponential map identities
	C Derivation of Lie group partial derivatives
	D Software implementation of state estimators
	D.1 Define a state
	D.2 Prediction functions
	D.3 Correction functions
	D.4 Execute Prediction and Correction

	E Simulation Seup
	E.1 Controlling the UAV
	E.2 Simulated sensors
	E.3 ROS architecture
	E.4 Simulation parameters

	F Data from simulation & experiments
	F.1 Simulation 1
	F.1.1 Case 1
	F.1.2 Case 2
	F.1.3 Case 3

	F.2 Simulation 2
	F.2.1 Case 1
	F.2.2 Case 2

	F.3 Experiment 1
	F.3.1 Case 1
	F.3.2 Case 2
	F.3.3 Case 3

	F.4 Experiment 2
	F.4.1 Case 1
	F.4.2 Case 2

