
Finding Notes Within Boomwhackers Recordings

Anıl Özen

Faculty of Electrical Engineering, Mathematics and Computer
Science, University of Twente

1

Abstract

This work finds notes within audio recordings of boomwhackers play.
The project can find combinations of up to 4 notes within input signals.
This is done by comparing the input signal with the recordings of the
notes within its library through cross correlation check of both signal’s
fourier transforms. The system yields results with high accuracy on the
signals of combinations of up to 4 notes.

Keywords— Boomwhackers, note finding, fft analysis, notes correlation

2

Contents

1 Introduction 4

2 State of Art 5
2.1 Beat Extraction From Percussion . 5

3 Requirements 8
3.1 Must have requirements . 8
3.2 Should have requirements . 8
3.3 Could have requirements . 9
3.4 Won’t have requirements . 9

4 Ideation 10
4.1 How to gather data . 10
4.2 Processing of the data . 11

5 Realisation 13
5.1 Peak Finding . 13
5.2 Correlation Check . 13

5.2.1 Narrowing the signal down to the bandwidth 13
5.2.2 Matching signal length for correlation check: 15
5.2.3 Final Proposed Method . 19

5.3 Calibration . 20

6 Conclusion 23
6.1 Results . 23

7 Discussion and Future Work 26
7.1 Data . 26
7.2 Running online . 26
7.3 Calibration . 26
7.4 Noise . 26
7.5 Target hardware . 27

Appendices 28

A Results 28
A.1 Same note to same not comparison . 28
A.2 Notes to different notes comparison . 28

3

1 Introduction

In the Netherlands, primary school teachers, often without thorough musical education
themselves, are given the task of teaching music to children. As teachers lack the
formal training on music they also lack the self-efficacy to teach what they know [1].
This project aims to assist teachers by identifying notes from recordings within the
classroom.

In this project I will focus on the percussion instruments, boomwhackers1 in par-
ticular. Boomwhackers are the color coded hollow tubes with varying lengths with
each having unique sound properties. Boomwhackers are getting more popular within
the classroom as they are easy to use and have low price. Despite these advantages,
there are not many researches around this instruments on processing signals. Also,
there are no repositories open to public for researchers to develop and validate systems.
Boomwhackers signal processing is still an emerging field. The target is to gather au-
dio from microphone and extract higher meaning from raw data. In this case, the
extraction is the notes contained within the signal.

To find notes within boomwhackers recordings, I propose two research questions
with two sub questions:

– How can we find notes within a recording of boomwhackers

– How can we classify a single note within boomwhacker recordings

– How can we classify up to 4 concurrent notes

– How can this system be robust, so it can work in different environments

The proposed method searches for the notes within the given recording, by compar-
ing the notes it has within its database. Input signals are taken to frequency domain
through fast fourier transform (FFT) and compared with each note’s FFT product by
cross correlation check (CCC). If the signal has enough similarity it is considered to
contain the note. It can find singular notes within the recordings without any problem.
With multiple notes (3 and 4), it can find the notes if they are not neighbours with
each other (e.g. Fa is a neighbour of Mi and Sol).

1www.boomwhackers.com

4

www.boomwhackers.com

2 State of Art

2.1 Beat Extraction From Percussion

One way to extract the beats is through building neural networks. Sun et. al. used a
long short-term memory neural network approach to extract beats from a recording[2].
Such system consists of three layers; forgetting information, update status, and deci-
sion output. Forgetting gate is being used to eliminate (forget) unwanted information
over time. Update status has two parts, the incoming input and the current state of
the network. Both are used to update the network. Each cells initially performs a
filtering on the current cell state. Current cell state is processed by a sigmoid layer
and its output multiplied by a tanh function that was applied on a previous cell. The
layer involving these operations is called the decision layer. The overall system can
be seen in Figure 1. To obtain the music beats, this system requires music database.
Each file obtained from the songs provided by Echo Nest, has the feature analysis and
metadata of the songs, not the audio itself. While this approach has high accuracy
(0.946) and can work online, it relies on training through a database. This can prove
troublesome to find the songs played by boomwhackers as they are not mainstream
instruments in the music industry.

While previous work quantify the beats among 5 power levels to distinguish the
beats, another approach works in frequency domain on harmonics[3]. The signal is
converted to frequency from 100 to 900 Hz (the target instrument in this project is
Mridanga, an ancient percussion instrument used in Carnatic music). In boomwhack-
ers this frequency range would be 256 to 512Hz2 as seen in table 1. This operation
creates a filter of energy in harmonics. The 100 to 900 Hz range is grouped by adding
the base, first and the second harmonic frequencies. The filter bank by applying
harmonic grouping cepstral coefficients creates two overtones as seen in formula 1.
Transforming the frequency this way creates distinct beans for different strokes as
seen in 4. The weights and biases are found out from training an artificial neural
network with 3 layers. There is no mention on whether this system can work in real
time or not.

equation 1

B(x) =

n=3∑
n=1

Feq(x ∗ n) + Bias(n) (1)

Another project do the beat tracking in a predictive manner with memoization to
decrease the computational cost, as its one metric is the project to be able to run on
a Raspberry Pi[4]. This system can run in real-time with an average continuity score
(AMLt) of 0.67. The system starts with 4 seconds of audio as input to initialize, and
subsequently predicts and updates the estimation every 1 second. How the system
works can be see in Figure 2. The system’s output can be seen in Figure 3. As the
results show, the accuracy of this system is less than a neural network. Also this
system relies on a prediction where the beats do not vary much whereas a novice
player’s percussion can be highly irregular due to errors. Yet, this project is open
source and can be tested without implementing straight from the start.

2https://asc-mag-media.s3.amazonaws.com/datasheet/P7-7400 DS.pdf

5

https://asc-mag-media.s3.amazonaws.com/datasheet/P7-7400_DS.pdf

Figure 1: Overview of ltsm layers, on the left forgetting information, at the
middle update status, on the right decision output

C 256 Hz E 320 Hz G 384 Hz
D 288 Hz F 341.3 Hz A 426.7 Hz
B 480 Hz C 512 Hz

Table 1: boomwhacer note frequencies

Figure 2: The flowchart of real time beat tracker RTBT

6

Figure 3: The output of RTBT

Figure 4: a) Strokes before transformation. (b) Stokes after transformation
using Harmonic grouping.

7

3 Requirements

The main stakeholder Benno Spieker proposed multiple projects that I could pick
one from. One of the problems was to track boomwhackers within the classroom
when played by children. In Pabo environment, the target group who would play the
instruments is the people who do not know how to play it, the novices including adults.

This project consists of multiple requirements. However, not all requirements are
of the same importance. To prioritize the requirements, MoSCoW method is used [5].
With respect to the hierarchy of needs (must have at top, and won’t have bottom)
they are as follows:

3.1 Must have requirements

I focused on a single feature within the project, note recognition of boomwhacker
recordings. Since the goal was focused around this problem, I wanted the solution
to work well with high accuracy and be responsive to different environments I can
simulate. Mr. Spieker gave me a playlist of different recordings with up to 3 different
notes of boomwhackers being played concurrently. So, the project should be able
to annotate the input signals that includes up to 3 notes.

Another requirement arose from the unique situation in which the project was
being developed. As Covid-19 pandemic arrived to Netherlands, using the facilities
within the university ceased to be possible and ordering hardware could be trouble-
some. To reduce the risks with the project, we decided to use common hardware we
already have for the data acquisition as well as processing. So, any idea that would
use external electronics such as accelerometer was discarded. This project should
use only available hardware without a need for ordering new parts.

3.2 Should have requirements

As mentioned in Section 1, initial problem stemmed from the lack of budgets (employ-
ing class teachers instead of music teachers for music classes) so, the solution had to in
a reasonable price. There was no hard price limit, but it had to be reasonable.

A classroom environment is a highly dynamic environment with many variables to
consider. The amount of students within the classroom at a given time, the class-
room layout, noise, windows being open, how students play the instruments all change
the data within the recording. It is a good idea to be mindful about the dynamism
within the problem and create a robust solution if possible. An over optimized solu-
tion can work in one scenario, and can fail in all the other scenarios. Such solution
would be useless to the end user, if over optimization is rigid and integral to the
product. The Covid-19 pandemic interfered with gathering data about the end user’s
work environment (the consevatorium). That is why, the simulation of different
environments had to be substitution within the limits of my home.

8

3.3 Could have requirements

There are different possible scenarios how this project can be useful for the end users
(the classroom teachers). An ideal product would pass through different developers
so the interaction between the product and end-user is easy. Since classroom teachers
would not know how to code, any tweaking within the program should not be through
the code. This is especially important as the project required calibration from the user
to be able to work with different environments. Hence, using the product should
not be a hassle for end user if possible.

3.4 Won’t have requirements

We can simulate the dynamism of the classroom through few controlled parameters.
However, classrooms are highly dynamic and noisy environments and there is a big
disparity between a classroom and a room in the house. A field test is necessary to
see the performance and shortcomings of any project. Despite the necessity, it is not
possible to do so, due to the Covid-19 pandemics. The real life tests will not be
conducted at this point.

The system might benefit greatly from working online. If it were to work online,
it can provide real time feedback on which notes are being played. However, it is out
of scope at this point.

9

4 Ideation

At the start of the project we had a lot of freedom to explore possibilities on what we
can develop. The base requirements was to create a system that would class teachers
become better in teaching music. The other requirements, both internal and external,
arrived later by talking to the stakeholder, as well as through introspection on how to
build the system. Such iterative process is similar to the one explained in the manual
created by our study [6].

We narrowed down the problem towards tracking and processing data from boomwhack-
ers early. How the data would be gathered and how it would be processed was still an
open question, allowing a wide design space.

4.1 How to gather data

One way to gather data was to utilize special hardware already in the market. There
are products in the shelves such as SENSTROKE 3 that has built in sensors to track
the quality of drum play. Such sensor is attached to the drumsticks and the play is
recorded through sensors and communicates to its own app via bluetooth. While this
sensor works on actual drumming experience, there are other products that works by
airdrumming. One such product is PocketDrum 4. Both devices can be seen in Figure
6. This device also communicates the data to its own app. Regardless of the scenario,
these kinds of devices pose multiple problems. They are essentially blackboxes giving
no control to user to tinker its innerworks, so there are no API’s the users can use to
create their own apps to fit into their unique needs. Also, the data is only accessible
through the user interface of their own unique apps. It is not possible to access and
process the data. Finally, they are not cheap, a single SENSTROKE sensor is e69
and $138 for a pair of PocketDrum sensor. Such price makes the project hard to be
scalable.

One of the alternatives to 3rd party devices is to buy the sensors such as accelerom-
eters and drive them through a micro controller such as Arduino Nano5. Even though
the price is still not that cheap in the official store, there are many alternatives much
cheaper from Chinese suppliers.

Opensource or propriety, I opted out of using such hardware with the concerns
over limited both availability and shipment options due to Covid-19 pandemic. With
such reality, I considered other more conventional options, chiefly using microphones
to gather data. With microphones, the domain of data changes from mechanical side
(orientation, speed, acceleration) to auditory side. In this domain it might be harder to
infer how the tubes travel in the air and hit the target (handling of the instrument), it
becomes easier to observe the outcome of the motion (the note that is being played).
When it comes to music, auditory data has massive advantages. There are plenty
of data on the internet open to public (not the case for boomwhackers but a general
situation), libraries stemming from music information retrieval (commonly called MIR
within its community), and research.

Microphones are easy to come by with hardware such smartphones and laptops.
Third item I considered was raspberry pi with USB dongle for microphone. Smart-
phones have a unique advantage over other hardware. They are ubiquitous and is

3https://www.senstroke.com/
4https://aeroband.net/pages/pocketdrum
5https://store.arduino.cc/usa/arduino-nano

10

https://www.senstroke.com/
https://aeroband.net/pages/pocketdrum
https://store.arduino.cc/usa/arduino-nano

Figure 5: When the child whacks the boomwhacker smartphone blinks its flash
in the back.

acquired by a large percentage of the population (92% of the children have smart-
phone in Netherlands6). Smartphones also has camera flash in the back. I considered
the possibility of creating a system that tracks when the player creates a beat with
boomwhacker and the smartphone (which is doing the tracking) flash its camera flash
in the back which would be visible to teacher. The idea illustration can be seen in
Figure 5

4.2 Processing of the data

There are many possibilities within the audio signal to process. We could process beat
timings, tempo, play quality, the note that is being played. In the end we went for
note annotation from the audio. To achieve this, I decided to code on Python as it has
many libraries, easy to work on data, and has built-in plotter (handy for debugging).
One big advantage of processing audio signals on boomwhackers is that it does not
have many harmonics making the procession easier.

6https://www.statista.com/statistics/946021/share-of-children-having-a-smartp

hone-mobile-phone-in-the-netherlands-by-age/

11

https://www.statista.com/statistics/946021/share-of-children-having-a-smartphone-mobile-phone-in-the-netherlands-by-age/
https://www.statista.com/statistics/946021/share-of-children-having-a-smartphone-mobile-phone-in-the-netherlands-by-age/

Figure 6: SENSTROKE on top, PocketDrum on bottom

12

5 Realisation

As mentioned before boomwhackers have really distinct patterns in terms of harmonics.
Each tube has multiple harmonics and between the harmonics most of the signal is
negligible. Boomwhackers have base harmonics only in the [200 600] Hz range as can
be inferred from Figure 9. For each tube, the base harmonic is distinct and visible
on frequency domain, but the higher harmonics are not always visible and are more
dependent on how the tube is played. To test the harmonics 5 samples were taken
for each note with reasonable play without emphasis on trying to play differently and
their frequency analysis depicted in Figure 11. As seen in the signal even without
deliberation the higher harmonics vary significantly. In some notes higher harmonics
can disappear completely as seen in Figure 12.

Since higher harmonics are not always present, the focus shifted solely towards
base harmonics of each boomwhacker. Base harmonics and their rise and fall stays
within [200 600] Hz range further decreasing the analysed spectrum.

5.1 Peak Finding

Each note has a mountain like shape within the frequency domain around their base
harmonics. With peak finding algorithms it is possible to find each peak. Python
already has a peak detection library function (scipy.signal.find peaks) with multiple
parameters to limit the definition on peaks. With fine tuning the parameters, it is
possible to find harmonics through the peak locations in the spectrum. Such a run
can be seen in Figure 8

Since the peak heights vary massively from note to note, finding a threshold that
encapsulates all the notes proved troublesome. This is an even bigger problem when
the algorithm tries to distinguish the notes C (Do low and Do high). The first of
harmonic of Do low peaks around 512 Hz, same as Do high. Just looking at signal
peaks, the algorithm gets confused over the existence or non existence of Do low when
Do high is present.

5.2 Correlation Check

Iterating and troubleshooting peak detection proved troublesome. Each note’s peak
heights vary both between the other notes and within the same note being played
slightly differently. Despite high variance on peaks, the shapes stay similar. That
is why a correlation check is performed on the test signals to test if base harmonics
shapes exist within the signal. Correlation check compares two signals within set
range and provides a result on [-1 1] with -1 negative correlation, 0 no correlation,
and 1 complete correlation. Python has a library function under numpy to check the
correlation (numpy.corrcoef)

Comparing signals through cross correlation check exploits the similarities within
the note samples and differences between the notes. For this method to work, the
base harmonics of each note need to be consistently similar to each other. Also, the
correlation between different signals should stay low.

5.2.1 Narrowing the signal down to the bandwidth

In this project the notes are classified through their base harmonics. The samples
outside the base harmonics bandwidth are not necessary to consider when doing the

13

Figure 7: All the variations of note Mi played with its fourier transform in [200-
600] Hz range. X axis is the type of play (cross legged, sitting, hitting on hand,
hitting on tube by hand). Y axis is the type of the room the recording is taken
(small room, mid size room, living room)

Figure 8: All the notes within the [200-600] Hz range with their peak values
using a threshold of 1000000

14

Figure 9: All the notes within the [200-600] Hz range

comparison with this approach. Each note’s base harmonics frequency along with their
bandwidth is depicted in Table 2. The bandwidths for each note is found through
testing. The testing method will be mentioned in this chapter further ahead.

Leveling the signal: If both signals have similar shapes but their FFT values
are different by a factor (e.g. signal A peaks on 1000 units and signal B peaks on 2000
units) cross correlation check produces low value, meaning the signals are different. So
if we compare two of the same notes but are on different level they are also different
according to the cross correlation check. To overcome such problem, one signal is taken
to other signal’s level using the peak value as a reference. The check is performed
afterwards. The flow of operation can be seen in Figure 10.

5.2.2 Matching signal length for correlation check:

Correlation check requires the compared signals to be the same length. The notes
vary on how many samples they have on the recording. When the signals combined
together on Audacity, the combined signal has much more samples than singular notes.

To overcome the disparity, the first approach was to add zeros to the shorter signal
until the lengths are the same. This simplistic method works fast and works good
enough for comparing singular notes. However, when the difference is high adding
zeros change the shape too much and correlation drops down for similar but highly
different length signals.

The second approach was to expand the shorter signal to the length of longer
signal by interpolation. The frequency side in interpolated linearly meanwhile the
FFT side on y axis is interpolated in cubic. This method increased the performance
on annotation of both singular and multiple notes.

To test the performance of two different methods using the methods multiple test
are applied. The first test involves whether the method considers each recording played
in the same session with same notes as similar enough. The second test is comparing
different notes with each other to see if the method confuses the notes with each other.
Finally, the third test is to check if the method can find all the notes within the triple

15

note name
base
harmonics
frequency

base
harmonics
frequency
bandwidth

Do low (C) 256 [240-280]
Re (D) 288 [260-340]
Mi (E) 320 [320-380]
Fa (F) 341.3 [340-430]
Sol (G) 384 [380-460]
La (A) 426.7 [400-500]
Si (B) 480 [450-550]
Do high (C) 512 [450-550]

Table 2: the list of notes, their harmonics, and the bandwidth that encapsulates
their shape with the rise and fall around the base harmonics

Figure 10: Flowchart of cross correlation check (bw stands for bandwidth of
each harmonic.

16

Figure 11: Frequency analysis of C (Do low) played 5 times

Figure 12: Frequency analysis of B (Si) played 5 times

17

Figure 13: Comparing the combination of Do low, Sol, and Si (S1) with Do
low (S2) to see that note exists within the combination. Top two graphs are
the original signals within [200 600] Hz. Bottom graphs are the results of the
process of signals, and those two signals are compared. The result for this run
is 0.96 correlation. S1 has S2 within.

Note 1 \Note 2 Do low 1 Do low 2 Do low 3 Do low 4 Do low 5
Do low 1 0.97 0.98 0.97 0.97
Do low 2 1.00 0.99 1.00
Do low 3 1.00 1.00
Do low 4 0.99
Do low 5

Table 3: Comparing 5 samples of Do low on frequency range [220 280] Hz with
correlation check and zero padding

notes (triple notes are synthesized taking 3 note recordings and merging them together
in Audacity).

Same note to same note comparison All 8 notes are compared with the notes
in the same group (Do low with Do low, Re with Re, Mi with Mi and so on). To
illustrate how the comparison is made the Table 3 and 4 is displayed. Among all the
comparison minimum correlation is 0.16 and average correlation 0.87 for zero padding.
The results for interpolation is minimum correlation 0.98 and average correlation 0.99.
While both approach work well on average, zero padding can yield poor results when
the notes have high sample count difference

Different notes to different notes comparison In this test each note recording
is compared with all the other notes. Ideally the maximum correlation within this
comparison should be low along with the average correlation. Zero padding method
has maximum correlation of 0.68 and average correlation -0.20. With interpolation
method maximum correlation is 0.65 and average correlation is -0.20

Finding the notes within the given input recording For this test three

18

Note 1 \Note 2 Do low 1 Do low 2 Do low 3 Do low 4 Do low 5
Do low 1 1.00 1.00 1.00 1.00
Do low 2 1.00 1.00 1.00
Do low 3 1.00 1.00
Do low 4 0.99
Do low 5

Table 4: Comparing 5 samples of Do low (C) on frequency range [220 280] Hz
with correlation check and interpolation

Triple Note Input Found Notes
Do low, Fa, La Fa, La
Do low, Mi, Sol Mi, Sol
Do low, Sol, Si Sol, Si
Re, Sol, Si Re, Sol, Si

Table 5: Results on finding which notes exist within given input signal with
triple notes. Using the zero padding to match sample lengths

different notes are merged together in Audacity and both methods checks which notes
are in the signal. Results can be seen in Table 5 and 6. Zero padding struggles with
finding the note Do low as its recording has much less samples than the one in the
input signal. The complete tests are displayed at Section 6

5.2.3 Final Proposed Method

In the end, we present a project that is able to annotate boomwhackers notes by
comparing the input recording (Sinput) with the notes that were recorded to create
a database of notes (Sn e.g. S1 = Dolow, S2 = Re ... S8 = Dohigh). In or-
der to achieve this, the algorithm, as a start, does a fast fourier transform (FFT by
scipy.fftpack.fftfreq) and takes the Sinput to the frequency domain from time domain.
The result of this step is depicted at Figure 14. The product of FFT is smoothed
using convolution based smoothing (numpy.convolve[7]). From there, the transform’s
frequencies outside the base harmonics range ([200-600] Hz) are discarded. The prod-
uct of these operations can be seen in Figure 15. Then, the remaining chunk of the
transform is compared with each note. The comparison is done between the narrowed
down FFT of Sinput and FFT of Sn and is done around base harmonics of Sn (for

Triple Note Input Found Notes
Do low, Fa, La Do low, Fa, La
Do low, Mi, Sol Do low, Mi, Sol
Do low, Sol, Si Do low, Sol, Si
Re, Sol, Si Re, Sol, Si

Table 6: Results on finding which notes exist within given input signal with
triple notes. Using the interpolation to match sample lengths

19

Do low check, the range is [240-280] Hz so both the signal and Do low within the
library is compared on this range, same is applied with other notes on their respective
base harmonics range). Two signals which has the same shapes but on different scales
results in low correlation.

The purpose of the comparison is to find out which note is played, not how the note
is played. FFT analysis of the signals that was shown before with Figure 11 and Figure
12 as examples showed that the samples keep their shapes but not their scale along the
y axis (Fourier Transform Constants). That is why we match the scales of the signals
before comparing them. This is done by finding local maxima of each signal within the
target range and scaling up all the samples of the signal with lower maxima. To clarify,
let us call the signal with higher maxima on the target range Shigh and the other one,
with lower maxima, Slow. Slow is scaled up by a factor of max(Shigh/max(Slow).
Scaling is not enough for cross correlation check (CCC is done by numpy.corrcoef [8]),
it also requires both signal to have same amount of samples, and it compares the signal
on their shape similarity with a result of a range [-1.0-1.0] with -1.0 being reverse of
the signal, 0 no correlation, and 1.0 maximum likeness. Between the signals, the one
which has less samples within the target range is expanded to match the sample count
of others by cubic interpolation (linear interpolation along x axis by numpy.linspace
[9] and cubic interpolation along y axis by scipy.interpolate.interp1d [10]). Using cubic
interpolation in this manner maintains the shape of the signal, it simply adds more in
between points within the given range. In the end, both signals are ready for CCC.
The steps are shown in Figure 16.

Now, CCC produces a high value (The algorithm consider 0.75 and up as a high
value, [0.75-1.0]) if the signals are similar. This means, if Ssignal has Do high in
recording along with other notes, and is compared with Do low from the library (S1),
the correlation is high. Same operation is done with all 8 notes to figure out all the
possible notes within the Ssignal.

5.3 Calibration

To see how much the recording vary due to how the instrument is played and the
room it is being played an experiment is conducted. The first variable is the room
type, living room, a small room, and a mid size room. The second variable is the
play type with, hitting the tubes on knee when cross-legged, while sitting, hitting the
tubes on hand, and hitting on the tubes by hand (there are more variables to consider,
but these were convenient to simulate during the Covid-19 lock down period). Using
these 2 variables 12 recordings were taken and their fourier transform around the base
harmonics is depicted in Figure 7. As can be seen, both the peaks and shape of the
signal vary plenty. CCC on these signals yield the graph on Figure 17. In this set
the minimum value is 0.19 with average 0.81. We set the threshold as 0.75 when two
signals are considered the same. 21 comparison out of 79 in the set are below the
value, meaning they are considered different. So, 0.265 percent of the comparisons are
considered different while comparing the signals with different contexts (room and/or
play type).

All the experiments were conducted in the same computer (Thinkpad p51). Here
are the specs: CPU 6th Generation Intel R© CoreTM i7-6820HQ with vProTM (2.70GHz,
up to 3.60GHz with Turbo Boost, 4 Cores, 8MB Cache), RAM 16 GB DDR4 2133
MHz, hard disk 256 GB PCIe SSD OPAL2.0. Using this hardware, it takes 0.58 second
to find all the notes within the given signal.

20

Figure 14: On top, there are recordings of 5 Do low notes and are displayed on
time domain (time versus amplitude of audio). The bottom is the FFT of these
5 notes, transforming the signal to frequency domain. This is a demonstration,
as each notes are exported separately (Do low 1, Do low 2 etc.)

Figure 15: Top signal (Do low 1) is narrowed down to [200-600] Hz range and
smoothed out, resulting in the bottom image

21

Figure 16: In each graph the circles are the actual data points and lines are
put to emphasize the shape of the signal. First column is always the input
signal (the combination of Do low, Sol, and Si in this case. Second column is
the variations of Do low 1. First row is narrowed down signals on bandwidth.
The second row is the further narrowing down around base harmonics range
([240-280] Hz for Do low). Third row is the scaling of the signals to match the
levels on y axis. The last row is the result of cubic interpolation to match both
signals on data size.

Figure 17: Sorted plot of comparison of variation pairings

22

6 Conclusion

This project went through iterations with each iteration being tested on how good it
performs. In the end, the proposed method requires notes to be recorded to a sound
database for comparison. The input signals (consisting of multiple notes) along with
note recordings within the database, goes through multiple phases (FFT, smoothing
,narrowing down the bandwidth, scaling up or down, sample length match by cubic
interpolation) and are compared by CCC (cross correlation check).

Besides people speaking in the classroom there can be other sources of noise such
as other instruments being played at the same time, background audio being played
for the practice session, or ambient noise within the background. It is important to
accommodate for all the scenarios so the note annotation works in different environ-
ments. As it stands, it was not possible to test how the reverberations within the
classroom change from context to context (time of day, amount of people, layout,
windows open etc.).

As mentioned in Section 5 the shapes of notes when recorded can vary from room
to room as well as from play type to play type. For this project, simulation of variation
on room types and play types were rather limited. If we are to ignore this shortcoming,
with proper calibration the algorithm has high performance for annotating the notes.
For calibration, each note has to be recorded separately and extracted to the right
folder with the agreed file naming conventions. This does not require high technical
skills such as programming.

The most essential experiment, finding notes within a given boomwhackers record-
ing takes 0.58 seconds in the setup I used.

6.1 Results

The proposed method went through three different tests.
Same note to same note comparison: This test was done to see if any note that

was recorded within the same environment is a substitute for checking other signals.
It also checks if these notes are considered the same from algorithm’s standpoint.
Doing this test by pairing same notes with same notes (e.g. Re 1 with Re 2 and many
other pairings for all the notes) the average value is 0.99 with lowest value being 0.98.
This means all the different instance (within the same context) of the same notes are
considered the same. The full results are put in Appendix A

Different note to different note comparison: The purpose of this test is to
find if algorithm gets confused over two notes. In these comparisons any value above
0.75 is a confusion as values above them considered to be same for the notes. It should
not be the case for two different notes. If note A is compared with note B, note B
is not compared with note A. That is why the list keeps getting shorter and shorter
for the list. The average CCC result is -0.19 with the maximum result being 0.65.
This means on average the notes are distinctly different. Also, none of the notes are
confused over each other. At Appendix A the full results of CCC on comparing two
different notes can be found.

Finding notes in multiple concurrent signals: This test is done to find which
notes the input signal contains. The input signal is compared with each note within
the database by CCC and any results above 0.75 correlation means the signal contains
that note. The test results for common chords can be found in Table 7.
To see where the algorithm can fail, unusual combinations were also added. In the
first set of unusual set all three notes are consecutive neighbours. The results are

23

chord name file name found notes
A minor (Am). A - C - E LA DO low MI LA, DO low, MI
B diminished (Bdim). B - D - F SI RE FA SI, RE, FA
C major (C). C - E - G DO low MI SOL DO low, MI, SOL
C major (C7) C - E - G - B DO low MI SOL SI DO low, MI, SOL, SI
D minor (Dm). D - F - A RE FA LA RE, FA, LA
D minor (Dm7) D - F - A - C RE FA LA DO low DO low, RE, FA, LA
E minor (Em). E - G - B MI SOL SI MI, SOL, SI
F major (F). F - A - C FA LA DO low FA, LA, DO low
G major (G). G - B - D SOL SI RE SOL, SI, RE
G major (G7) G - B - D - F SOL SI RE FA RE, SOL, SI

Table 7: The results of finding notes within input signal for common chords

input notes file name found notes
C - D - E DO low RE MI Do low, MI
D - E - F RE MI FA MI, FA
E - F - G MI FA SOL MI, SOL
F - G - A FA SOL LA LA
G - A - B SOL LA SI SI
A - B - Cc LA SI DO high SI

Table 8: The results of finding notes within the combination of three neighbour-
ing notes

depicted in Table 8. As can be seen in the table the algorithm has faulty outputs on
all instances. In the second unusual set, there are two neighbouring notes and a single
non-neighbouring note within the input signal. The results of that test is depicted in
Table 9. Only 1 out of 6 output is correct. In both cases the outputs are unreliable.

In conclusion the algorithm can find trip and even quadruple notes combinations
reliably if there are no neighbouring notes within the signal. On the other hand, If
there are neighbouring notes within the input signal, the algorithm fails

Reflection on research questions

– How can we find notes within a recording of boomwhackers

input notes file name found notes
C - D - F DO low RE FA DO low, RE, FA
D - E - G RE MI SOL MI, SOL, SI
E - F - A MI FA LA MI, LA
F - G - B FA SOL SI SOL, SI
G - A - Cc SOL LA DO high LA, DO high
F - A - B FA LA SI FA, SI

Table 9: The results of finding notes within the combination of two neighbouring
notes and one distant note

24

– How can we classify a single note within boomwhacker recordings

– How can we classify up to 4 concurrent notes

With this project it is possible to find out which boomwhacker notes are present
in a given signal. This is done by checking similarities with the signal, as shape
of the signals kept consistent with each note if the environment is fixed. There
are database notes within the system and those notes as signals are compared
with the input signal. The system can find single notes without any problems. It
can find notes within triple and quadruple notes recordings (tested using typical
chords as inputs) played concurrently. When neighbouring notes are included
in the signal, the system starts to fail.

– How can this system be robust, so it can work in different environments

The classrooms are highly dynamic environments that can affect the sound
recording of the notes. I simulated the environments I can simulate from my
home to see how the signals might vary. The signal shapes vary from envi-
ronment to environment. Tests within the project showed that the shapes of
the signals stay similar so long as the context remains the same (how notes are
played, which room they are being played). Hence, by updating the database
notes (recording notes in the new environment and putting into database) and
comparing those notes with the signal ensure the note annotation. This process
was called calibration throughout the project. It does not require coding skills
to achieve it.

25

7 Discussion and Future Work

7.1 Data

On gathering data, there were assumptions and limited possibilities. I only tested four
kinds of play (while cross legged, sitting, hitting on hand, and hitting on tube) and
just three rooms (small, mid and large size). It is possible there might be much more
variations, especially when it comes to children as they do not have firm control over
motor skills and motions can be erratic, as well as classrooms layout changing from
day to day, week to week, even by the minute as children are forming and reforming
groups and walking around. It is essential to test the system in real world and see
how it performs. Maybe, the classroom is too dynamic and requires too frequent
calibration. If that is the case, this system might be not feasible. To fix this issue,
one can increase the robustness of the system without calibration by default or change
the base approach entirely. A switch to a data driven approach like machine learning
may prove to be more feasible. Whatever is the case, too frequent calibration issue
would need to rework on the project. On the other hand, this project can be useful
on creating a repository of boomwhackers with right annotations. Such repositories
are required for supervised learning algorithms. In music information retrieval (called
MIR commonly) domain repositories open to public to test and train algorithms exist.
Such was not the case for boomwhackers.

7.2 Running online

The project would be more useful if it worked online and provide output in real time.
However, this is an assumption and needs confirmation by the main stakeholder. If
it is indeed the case (increased usability due to online processing), there would be a
trade-off between accuracy and usability. This would be a new requirement and focus
point, how to reconcile accuracy with usability and which one to prioritise.

7.3 Calibration

Current product requires recording boomwhacker notes, and exporting them as .wav
files to right directories (with set names) as well as notes being recorded with right
names convention. This process does not require coding skills, but can still take time
and reading guidelines. It is possible, the teachers can get confused by what to do,
and also simply lack the time for such extra steps to use the product. It is unfeasible
(an open question, but common sense says unfeasible) to dedicate someone who would
take care of the calibration. Although, making calibration easier is out of scope at
this point, it still makes sense to document the requirements on how to calibrate as
well as the shortcomings, and notify the people (future developers or end users) the
shortcomings (requiring manual labor) of the product.

7.4 Noise

At the current stage the recordings of notes are taken without anybody speaking or
any loud background noise. This is an unlikely scenario, not a good substitute for a
classroom setting. Human speech, on the fundamental frequency, has an overlap with
the boomwhacker notes. For the children’s speech the fundamental frequency is 262
Hz for boys and 281 Hz for girls [11]. For adults it is on the lower side, 120 Hz for

26

men and 210 for women [12]. The fundamental frequency of children’s speech has an
overlap in the bandwidth of Do low and Re. The first harmonic has an overlap with
Si and Do high. For adults there is also an overlap on the fundamental frequency as
well as first harmonic. If the system is to be tested within Pabo, both the teach and
student would be adults. However, if the system is meant to be used in classroom the
students would be toddlers, whereas the teacher an adult. I think whatever the future
for this project is, it has to address noise at some point (high accuracy of annotation
in a noisy environment).

7.5 Target hardware

The test system was a Thinkpad P51. It is a workstation from 2018 and currently, at
2020, is still sold for more than 1000 euros. With this setup finding the notes within
a given recording takes 0.58 second. The run time is not a problem if the purpose is
to find the notes after recordings are taken. However, it can become a problem if the
project is taken towards online processing route. With online processing, the run time
matters much more compared to former approach. With such future for the project,
the future developers would need to discuss what hardware is available in the field
(e.g. classroom) the project would run on.

References

[1] B. Spieker, This thing called ”handelingsverlegenheid”: Teachers’ lack of confi-
dence in teaching music in Dutch primary schools: a problem that could be over-
come by applying supportive technology? Rat für Kulturelle Bildung e.V., 2019,
pp. 30–35.

[2] Y. Sun, C. Jin, W. Zhao, and N. Wang, “Design of real-time rhythm tracking
system based on neural network,” 11 2018, pp. 356–360.

[3] S. G. Vishnu and S. G. Koolagudi, “An approach for mridanga stroke transcrip-
tion in carnatic music using hgcc,” in TENCON 2019-2019 IEEE Region 10 Con-
ference (TENCON). IEEE, 2019, pp. 2392–2397.

[4] I. Al-Hussaini, A. I. Humayun, S. Alam, S. I. Foysal, A. Al Masud, A. Mahmud,
R. I. Chowdhury, N. Ibtehaz, S. U. Zaman, R. Hyder et al., “Predictive real-time
beat tracking from music for embedded application,” in 2018 IEEE Conference
on Multimedia Information Processing and Retrieval (MIPR). IEEE, 2018, pp.
297–300.

[5] D. Clegg, “MoSCoW Method - wikipedia page,” https://en.wikipedia.org/wiki/
MoSCoW method, [Online; accessed 11 August 2020].

[6] A. Mader and W. Eggink, “A design process for creative technology,” in DS 78:
Proceedings of the 16th International conference on Engineering and Product De-
sign Education (E&PDE14), Design Education and Human Technology Relations,
University of Twente, The Netherlands, 04-05.09. 2014, 2014.

[7] Community, “numpy.convolve - reference guide,” https://numpy.org/doc/stable
/reference/generated/numpy.convolve.html, [Online; accessed 11 August 2020].

[8] ——, “numpy.corrcoef - reference guide,” https://numpy.org/doc/stable/referen
ce/generated/numpy.corrcoef.html, [Online; accessed 11 August 2020].

27

https://en.wikipedia.org/wiki/MoSCoW_method
https://en.wikipedia.org/wiki/MoSCoW_method
https://numpy.org/doc/stable/reference/generated/numpy.convolve.html
https://numpy.org/doc/stable/reference/generated/numpy.convolve.html
https://numpy.org/doc/stable/reference/generated/numpy.corrcoef.html
https://numpy.org/doc/stable/reference/generated/numpy.corrcoef.html

[9] ——, “numpy.linspace - reference guide,” https://numpy.org/doc/stable/referen
ce/generated/numpy.linspace.html, [Online; accessed 11 August 2020].

[10] ——, “scipy.interpolate.interp1d - reference guide,” https://docs.scipy.org/doc/s
cipy/reference/generated/scipy.interpolate.interp1d.html, [Online; accessed 11
August 2020].

[11] D. N. Sorenson, “A fundamental frequency investigation of children ages 6–10
years old,” Journal of Communication Disorders, vol. 22, no. 2, pp. 115–123,
1989.

[12] H. Traunmüller and A. Eriksson, “The frequency range of the voice fundamental
in the speech of male and female adults,” Unpublished manuscript, 1995.

[13] Community, “scipy.fftpack.fftfreq - reference guide,” https://docs.scipy.org/d
oc/scipy/reference/generated/scipy.f ftpack.f ftfreq.html, [Online; accessed 11
August 2020].

Appendices

A Results

A.1 Same note to same not comparison

A.2 Notes to different notes comparison

28

https://numpy.org/doc/stable/reference/generated/numpy.linspace.html
https://numpy.org/doc/stable/reference/generated/numpy.linspace.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.fftfreq.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.fftfreq.html

Note 1 \Note 2 Do low 1 Do low 2 Do low 3 Do low 4 Do low 5
Do low 1 1.00 1.00 1.00 1.00
Do low 2 1.00 1.00 1.00
Do low 3 1.00 1.00
Do low 4 0.99
Do low 5

Table 10: Comparing 5 samples of Do low on frequency range [220 280] Hz with
correlation check and interpolation

Note 1 \Note 2 RE 1 RE 2 RE 3 RE 4 RE 5
RE 1 1.00 0.99 1.00 0.99
RE 2 0.99 1.00 0.99
RE 3 1.00 0.99
RE 4 0.99
RE 5

Table 11: Comparing 5 samples of RE on frequency range [260 340] Hz with
correlation check and interpolation

Note 1 \Note 2 MI 1 MI 2 MI 3 MI 4 MI 5
MI 1 1.00 1.00 0.99 0.99
MI 2 0.99 0.99 0.98
MI 3 1.00 0.99
MI 4 0.99
MI 5

Table 12: Comparing 5 samples of MI on frequency range [320 380] Hz with
correlation check and interpolation

Note 1 \Note 2 FA 1 FA 2 FA 3 FA 4 FA 5
FA 1 1.00 0.98 0.98 0.99
FA 2 0.98 0.98 0.98
FA 3 0.99 0.98
FA 4 0.99
FA 5

Table 13: Comparing 5 samples of FA on frequency range [340 430] Hz with
correlation check and interpolation

29

Note 1 \Note 2 SOL 1 SOL 2 SOL 3 SOL 4 SOL 5
SOL 1 1.00 1.00 0.99 1.00
SOL 2 1.00 1.00 1.00
SOL 3 1.00 1.00
SOL 4 0.99
SOL 5

Table 14: Comparing 5 samples of SOL on frequency range [380 460] Hz with
correlation check and interpolation

Note 1 \Note 2 LA 1 LA 2 LA 3 LA 4 LA 5
LA 1 0.99 0.99 0.99 1.00
LA 2 1.00 1.00 0.99
LA 3 1.00 0.99
LA 4 0.98
LA 5

Table 15: Comparing 5 samples of LA on frequency range [400 500] Hz with
correlation check and interpolation

Note 1 \Note 2 SI 1 SI 2 SI 3 SI 4 SI 5
SI 1 1.00 1.00 0.99 0.99
SI 2 1.00 0.99 1.00
SI 3 1.00 1.00
SI 4 1.00
SI 5

Table 16: Comparing 5 samples of SI on frequency range [450 550] Hz with
correlation check and interpolation

Note 1 \Note 2 DO high 1 DO high 2 DO high 3 DO high 4 DO high 5
DO high 1 0.99 0.99 1.00 0.99
DO high 2 0.99 0.99 0.99
DO high 3 1.00 1.00
DO high 4 0.99
DO high 5

Table 17: Comparing 5 samples of DO high on frequency range [450 550] Hz
with correlation check and interpolation

30

Figure 18: CCC results for Do low with all the other notes

Figure 19: CCC results for Re with all the other notes

31

Figure 20: CCC results for Mi with all the other notes

Figure 21: CCC results for Fa with all the other notes

Figure 22: CCC results for Sol with all the other notes

32

Figure 23: CCC results for La with all the other notes

Figure 24: CCC results for Si with all the other notes

33

	Introduction
	State of Art
	Beat Extraction From Percussion

	Requirements
	Must have requirements
	Should have requirements
	Could have requirements
	Won't have requirements

	Ideation
	How to gather data
	Processing of the data

	Realisation
	Peak Finding
	Correlation Check
	Narrowing the signal down to the bandwidth
	Matching signal length for correlation check:
	Final Proposed Method

	Calibration

	Conclusion
	Results

	Discussion and Future Work
	Data
	Running online
	Calibration
	Noise
	Target hardware

	Appendices
	Results
	Same note to same not comparison
	Notes to different notes comparison

