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Management Summary 
HAVI is the logistics provider of various customers in the food industry. McDonald’s is HAVI’s largest 

customer and the only customer in scope of this research. HAVI NL manages the inventories of all 250 

restaurants. This research focuses on the integration of the disciplines of transport and inventory 

management. Because McDonald’s is a VMI (vendor managed inventory) customer, HAVI can 

determine the most efficient delivery patterns for them. 

Customers’ demand has a weekly distribution with increasing volumes towards the weekend. In the 

weekend, HAVI pays salary supplements, which is included in the labor costs. Furthermore, there are 

workload peaks in the week as a result of HAVI’s previous projects in which the delivery frequency is 

reduced. These workload peaks result in unnecessary costs. 

To determine feasible and efficient delivery patterns, capacities of storages has to be known. HAVI is 

currently not able to translate the inventory data into restrictions that could be used to optimize the 

routing schedule. Therefore, the transport planning and inventory management are separated in 

operations and organizational structure, in the current situation. The goal of this research is to 

integrate the two disciplines. In this research, we deduced lower bounds for the capacities of the 

customers’ storage locations, expressed in delivery units that can be stored simultaneously. The lower 

bounds are based on historical data together with the current routing schedule to which we applied 

forecasted volumes with historical hourly sales distributions. Efficiencies of delivery patterns have to 

consider geographical optimizations as well as avoiding unnecessary workload at the most expensive 

shifts with salary supplements (i.e., in the weekend). This research also considers the shelf life 

agreements for different temperature zones that are made with customers. 

This research focuses on (i) reducing the operational costs and (ii) improving the balance of the 

workload within a week. The main research question is as follows: 

How can HAVI save on operational costs by balancing the workload within a week, without violating 

customers’ restrictions including storage capacities at the customers’ locations? 

In literature, models to optimize routing problems considering inventory policies, are classified as 

inventory routing problems (IRP). Soysal, Bloemhof-Ruwaard, Haijema and van der Vorst (2015) say 

that the shelf life restriction is one of the main obstacles to apply IRP models in the food sector. We 

were not able to identify the literature that optimizes the routing problem and the inventory control 

simultaneously. The approach suggested in literature is to decompose the problem into subproblems: 

inventory control and routing. This research is unique, because we determine the delivery patterns 

and quantities in a single optimization step, which integrates the routing problem and inventory 

control. 

In this research, we both model the tactical as well as the operational routing. We first create a tactical 

routing schedule, which is a weekly repetitive routing schedule that states which routes are driven 

each day. This tactical routing schedule is based on deterministic forecasted volumes. After the new 

tactical routing schedule is built, we model the operational routing, by using historical data from three 

different weeks. In the operational routing we first determine the delivery quantities given the fixed 

set of routes from the tactical routing schedule. Second, we improve the operational routing. 

In this research, we only use data of customers from the eastern part of the Netherlands, for which 

we use a maximum of 6 vehicles. we use the tactical routing schedule that is driven from the 6th of 

July until the 6th of September as the current situation. HAVI uses 22 vehicles for the total distribution 

network in this period. 
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To construct the new tactical weekly repetitive routing schedule, we build an algorithm. This algorithm 

is an improvement heuristic using the current situation as initial solution. We minimize the operational 

costs, while inventory is included as restrictions. Instead of planning deliveries and determining 

delivery quantities, we determine the delivery window for each delivery unit. These delivery windows 

consider storage capacities, shelf life, consumption periods, hourly sales distributions and time 

windows for the specific customer. An allocation procedure is used to allocate all delivery units to a 

route. In this procedure we distinguish between focusing on costs first and balancing workload first. 

We find that the difference between the results is not significant. With our model we have built input 

for the transportation optimization software, which solves rich vehicle routing problems (RVRP), to 

optimize the routing schedule. 

We experiment with five interventions to improve the tactical routing schedule. Two of the 

interventions have a significant impact on improving the workload balancing, from which one 

intervention also significantly contributed to reducing costs. The most effective intervention is to force 

the RVRP solver to reduce the fleet size. 

We find that reducing costs and balancing workload is not a tradeoff. Instead, these are significantly 

positively correlated. The best tactical routing schedule has the lowest costs and the best workload 

balancing. In this research, we measure the results in how they contribute to the total network. By 

changing the distribution network for one fifth of the network, we realized to reduce the fleet size of 

the total network from 22 to 20 vehicles. The utilization of the trucks is increased from 86% to 89%. 

Costs are reduced by more than €5000 per week. Additionally, almost €1000 per week can be saved 

by allowing consecutive deliveries to be within 18 hours of each other. We created a variable to 

measure the workload balancing. This measure is a penalty stating a normalized value (unitless; score 

of zero would imply perfectly balanced workload) of the sum of the squared deviations from the 

required workload balance. By the adjustments made in the eastern part of the Netherlands, in our 

new tactical routing schedule, we reduced this penalty for the total network from 234,0 to 214,9. 

We perform a sensitivity analysis by applying an operational policy that we created, to test how the 

new tactical routing schedule performs based on actual volumes of three different weeks (volumes 

deviate from -8,2% to +8,0% in those weeks). We find the new routing schedule being more sensitive 

to volume deviations. When volumes are 8,0% higher than forecasted, the fleet size of the new tactical 

routing schedule is equal to the current situation. The operational savings vary from €705 in a week 

with +8,0% volume to €5406 in a week with -8,2% volume. With the new created routing schedule, 

more operational adjustments are made in the delivery times and number of routes per shift. We 

advise HAVI to minimize the number of deliveries that are switched to another shift than they were 

planned in the tactical routing schedule to minimize the changed delivery times and changes in 

number of routes per shift.  

In the new routing schedule, 18 stockouts occurred in a period of three weeks, compared to 3 

stockouts in the current situation. Costs to add extra deliveries are already included in the results 

mentioned above. Further research should be done on the impact of basing the delivery windows on 

other volumes. While determining the delivery windows, we consider that the delivery patterns 

should also be feasible when actual volumes seems to be 110% of the forecasted volumes. To reduce 

stockouts, this percentage could be increased, at the expense of smaller delivery windows. 

Furthermore, in this research we consider the shelf life agreements while making the tactical routing 
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schedule. Further research should also be done to incorporate the waste of perishable goods into the 

objective into the operational IRP with fixed routes. 

With our model and research, we helped HAVI to operate more efficient. We have helped HAVI to 

quantify the capacities of their customers’ storage locations. We developed a tactical model, which 

enables HAVI to take the lead in determining the delivery patterns. This model saves on costs and 

simultaneously balances the workload more even within a week. We have provided an operational 

model for HAVI, which guides them to spread the volume over the deliveries, utilizing the existing 

routes. The VMI partnership with McDonald’s is more utilized 

We contribute to existing literature with our model and research in several ways. We were not able 

to identify the literature that jointly optimizes the routing problem and the inventory control. By 

developing a method in which delivery patterns and quantities are optimized in a single phase, while 

considering capacity restrictions, we have achieved to integrate the routing problem and inventory 

control. Simultaneously, we considered shelf life restrictions, which is one of the main obstacles to 

apply basic IRP models in the food sector. We even managed to include the possibility that shelf life 

differs per temperature zone. Furthermore, we have achieved to let the delivery quantities be 

dependent on the delivery times (hour), because we have determined the delivery windows on the 

level of delivery units. We created this model such that an extended IRP can be solved by an RVRP 

solver. 
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Abbreviations and definitions 
3PL: third-party-logistics: Execution of logistic processes by external company. 

4PL: fourth-party-logistics: Execution and management of logistic processes by external companies. 

CVRP: Capacitated vehicle routing problem: A VRP with a fleet of trucks with given capacities. In this 

research, we always use a CVRP when discussing a VRP. We use VRP and CVRP interchangeably. 

DC: Distribution centre: Warehouse where HAVI stores the goods of its customers before they are 

being delivered to the customers’ locations. Interchangeably we also use depot. 

Delivery pattern: A weekly repetitive sequence of days (and times) that represents the delivery days 

and times for subsequent deliveries for a specific customers’ location. 

IRP: Inventory routing problem: Routing problem in which inventory levels and possibly costs are 

included in the objective and/or constraints. 

JIT: Just in time: A method within logistics to minimize inventory levels by delivering goods just before 

the customer needs them. 

MLS: McDonald’s logistics provider. 

Paragon: Transport optimization software used for simulations with deterministic input. 

PRP: Periodic routing problem: Routing problem in which a periodic schedule is made, which repeats 

itself. 

Pulling volume: A task executed by a restaurant planner to move a part of the to be delivered volume 

from a specific delivery to a preceding delivery of the same customer. 

Restaurant planner: HAVI employee that represents a set of restaurants from McDonald’s and is 

responsible for making the orders and building a strong relationship with the customers. 

RVRP solver: Rich vehicle routing problem solver: Software that is being used to solve VRP problems 

with a lot of extra restrictions. 

Transport planner: HAVI employee that is responsible for planning the day-by-day routes on an 

operational level. 

TSP: Traveling salesman problem. Problem in which the shortest route must be found that visits every 

point in a given set exactly once. 

VMI: Vendor Managed Inventory: A method in which the vendor is responsible for managing the 

inventory (levels) of its customers. 

VRP: Vehicle routing problem: Routing problem in which a given set of orders must be delivered as 

efficient as possible. 
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1. Introduction 
In Section 1.1 we introduce HAVI first, followed by a description of the main businesses. We continue 

by stating what transformation HAVI went through the last year. We close the first section with the 

project description as stated by the project owner within HAVI. In Section 1.2 we formulate the 

problem from our research perspective, followed by the requirements from HAVI’s perspective and 

the customers’ perspective. We continue in Section 1.3 by stating the problem cluster. We explain 

how the problems relate to each other in Section 1.4. Section 1.5 is used to decide which core 

problems should be within our scope. In Section 1.6, we decide upon the scope of this research. In 

Section 1.7 formulate our research goal. In Section 1.8 we conclude with the research approach in 

which the research questions and research design are discussed. 

1.1 HAVI 

Worldwide 

This research is done at HAVI, named after the founders’ wives Harriette and Vivian. HAVI is a 

worldwide company, executing and managing the supply chains of its customers as a third-party-

logistics (3PL) and fourth-party-logistics (4PL) provider. HAVI has grown in the past decades expanding 

geographically as well as extending to a broader range of services. In 1974, Perlman Rocque first 

started delivering McDonald’s restaurants in the Chicago Metropolitan Area. In 1975, Perseco first 

started packaging orders from McDonald’s. In 1976 HAVI, was formed bundling the services of 

Perlman Rocque (the two founders) and Perseco to serve McDonald’s in the United States. 

The Netherlands 

In 1986, McDonald’s logistics & services (MLS) started to deliver the McDonald’s restaurants in the 

Netherlands from a warehouse managed by MLS. Until 2005, McDonald’s was the only customer. MLS 

was growing fast because of the growth in volume of McDonald’s and because it expanded the services 

with a focus of distressing McDonald’s of all activities that were not a core activity for them. Services 

that MLS has taken over are, a.o., waste and garbage recycling, managing utilities contracts and IT 

systems. In 2005, British Petroleum (BP) signed as the second customer. Four years later, in 2009, MLS 

changed its name to HAVI Logistics BV and became part of the worldwide firm HAVI Group. Over the 

world, HAVI has different customers, but everywhere HAVI operates, it at least delivers McDonald’s 

restaurants. 

Next to the core businesses, warehousing and distribution, HAVI offers services in marketing analytics, 

data analytics, forecasting and packaging solutions to its customers. In the Netherlands, where the 

research for this master thesis takes place, HAVI has two warehouses, in Amersfoort and Barendrecht. 

From those locations, mostly food products are delivered to ten customers with a total of around six 

hundred locations. 

In this research, we focus only on the distribution from the warehouse in Amersfoort. The warehouse 

in Amersfoort delivers to all McDonald’s restaurants, which is the most interesting customer for this 

research. The reason for this is that HAVI has the most influence on this customer because to 

McDonald’s, HAVI is a 4PL provider (i.e., HAVI is taking over a large part of the supply chain of 

McDonald’s including next to transport and warehousing also inventory management and forecasting) 

in a vendor manages inventory (VMI) partnership. From Amersfoort, HAVI delivers to 250 locations of 

McDonald’s and 120 locations of BP. The goods for the other customers are stored in the warehouse 
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in Barendrecht. Since 2020, HAVI also delivers some of these customers’ locations from the warehouse 

in Amersfoort after the products are cross-docked from the Warehouse in Barendrecht to Amersfoort. 

The total distribution from Amersfoort is executed with 22 own trucks. 

HAVI’s structure change in 2019 

In the year 2019, HAVI went through an organizational structure change. Instead of a separation by 

discipline (i.e., transport and warehousing were separate pillars), the new structure separates the 

company on decision making level. Therefore, the disciplines are taken together on strategic, tactical 

and operational level. As stated by Potter, Towill and Disney (2007), transportation is often optimized 

on its own, within the constraints enforced by the supply chain. Although, there has been an increased 

recognition that transport needs to be integrated into the supply chain. As the structure change within 

HAVI is still recent, the first steps are taken to align the disciplines on the strategic level. The next step 

is to integrate the disciplines on the tactical level. 

Project Description 

HAVI has given the assignment to design a model or procedure that is able to guide them to balance 

the workload for transportation and warehouse within a week. The peaks experienced result in 

unnecessary costs because a larger fleet is needed and inefficiencies in the warehouse occur. When 

HAVI is in the lead of the delivery patterns of their customers, which enables them to influence the 

balancing of workload, large potential benefits in terms of operational costs can be achieved. 

1.2 Problem statement 

HAVI wants to integrate the disciplines of transport and inventory management to gain more benefits 

from their VMI partnership with McDonald’s. More specific, HAVI wants to include the knowledge and 

insights of inventory management at their customers’ locations into the transport optimization. 

Waller, Johnson and Davis (1999) state that in a VMI partnership, the vendor makes the main 

inventory replenishment decisions. The vendor is responsible for the buyer’s inventory levels. The 

benefits of VMI are categorized in reduced costs and improved service. Costs are reduced at the 

inventory of the supplier as well as the locations of the consuming organization. Also, transportation 

costs are reduced. 

So far, HAVI has not been able to translate the implications of the inventory limitations to constraints 

and restrictions within the routing process. The customers of HAVI expect HAVI to become more 

efficient every year. In 2019, a project with the headquarters of the customers took place to create a 

better routing schedule, which is summarized as follows: 

- Simulation studies showed potential annual savings of €500.000. 

- Delivery patterns chosen by HAVI instead of the customer. 

- Simplistic by the assumptions that were made. 

- Either the potential savings or the customers’ wishes were fulfilled, not both. 

The main reason HAVI is not able to create a routing schedule that fulfils customers’ wishes and results 

in comparable annual savings as in the simulation studies, is that they do not know how to include the 

data and knowledge about the inventories of their customers, into the transport optimization model. 
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Integrating transport and inventory management 

HAVI is a 3PL provider for all its customers and a 4PL provider for its largest customer, McDonald’s. 

From the warehouse in Amersfoort, McDonald’s accounts for 84% of volume transported (Measured 

in delivered roll containers in 2019). HAVI as a vendor, manages the inventory of every restaurant of 

McDonald’s in the Netherlands. HAVI should be able to integrate the transportation and inventory 

management for its largest customer. Although HAVI manages the transport and the inventory of 

every McDonald’s restaurant, these two disciplines are not managed together, but separately. Potter 

et al. (2007) describe the potential benefits of integrating transport into the supply chain: 

- Improved customer service levels. 

- Lower transport costs. 

- Improved vehicle utilization. 

HAVI’s requirements 

HAVI’s requirements for this research, is split in transportation requirements, warehouse 

requirements and management requirements. Many of the requirements for this model are the same 

requirements that apply to making the tactical routing schedule. Therefore, we will state them briefly. 

Transport requirements 

- Time windows are used (see Appendix I). 

- Routes should not be optimized on duty time (i.e., departure from depot until arrival at depot, 

increased with one and a half hour for (un)loading and administration) alone, but also include 

clustering based on geography. 

- A buffer time must be included between the arrival of the day shift and departure of the 

evening shift, such that delays during the day do not have an impact on the evening deliveries 

- Mitigate workload peaks (more elaborated in Section 1.4, see Figure 3). 

The routes should be (i) cost efficient and (ii) be distributed such that when volume increases or 

decreases, the transport planners can adjust the routes without too many changes. Besides these 

standard requirements, the requirements specified for this research are the following: 

- The demand should be balanced such that storage capacity restrictions are met. 

- There should be an operational policy that guides the restaurant planners in which volume to 

pull to earlier deliveries. 

Warehouse requirements 

- The workload peaks are mitigated. 

The most important goal for the warehouse is to mitigate the peaks, because volumes that are higher 

and lower, both have their reasons why they bring inefficiencies, explained further in Section 1.4. 

Management requirements 

- The workload peaks are mitigated. 

- HAVI is in the lead of determining delivery patterns instead of the customer. 

- Save on operational costs. 

- Reduce pollution. 
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From a management perspective, there are multiple reasons to mitigate the peaks of workload. With 

a more even workload, the inefficiencies in the warehouse decrease, and a smaller fleet size is needed 

(which is a large cost component) to execute the distribution. To lower the operational costs, workload 

should be minimized on the days on which salary supplements apply. Instead of letting the customers 

determine the delivery patterns, HAVI should determine the delivery patterns that results in the most 

efficient operations. This way, HAVI can save on operational costs. 

Customers’ requirements 

- Time windows are used. These time windows exclude the times that deliveries are 

interrupting in such a way that either the core operations or the customers are hindered. 

- The delivered quantity should always fit in the storage. 

- The delivered goods should always have a shelf life with a minimum of what is agreed upon. 

- When a stockout is likely to happen, an extra delivery has to be planned to replenish the stock. 

Furthermore, from the customers perspective, the less changed delivery times, the better. HAVI 

measures changed delivery times, by counting the number of deliveries that are planned in the 

operational route more than 30 minutes earlier or later than it was planned in the tactical routing 

schedule. 

1.3 Problem cluster 

To get an overview of all the related problems, a problem cluster is created, which is shown in Figure 

1. The red problems are the end problems (i.e., the effects). The yellow problems are the problems 

that we cannot influence or are obviously out of scope. The blue problems are the problems for which 

we do not have a further cause upstream in the cluster, or they only have causes that we cannot 

influence on or are out of scope. Therefore, the blue problems are the core problems, when being 

solved will result in a chain reaction to the problems further down the stream. The white problems 

are the rest of the problems. They have a cause that can be treated and they also cause another 

problem. With green rectangles we highlight the problems that we are going to use to measure the 

impact of the solution of this research and which are the action problems. The end problems are quite 

trivial; almost every company in the same branch wants to improve on them. It is the causal problems 

that differ per company. The end problems are divided into categories based on the main problem 

owner: 

HAVI 

- Unnecessary high costs. 

- The mistrust from the transport department towards the restaurant planners to balance 

volume amongst the days within a week. 

- The restaurant planners being busy with non-core tasks. 

Customer 

- The restaurant planners being busy with non-core tasks. 

- Changed delivery times. 

- More pollution. (Both McDonald’s as BP have impact on the environment high on the 

agenda) 
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The main problems, as the project owner defines it, are high operational costs and uneven workload 

balance. When moving more downstream from ‘uneven workload’, the end problem is again higher 

costs. 

  

Figure 1: Problem cluster 

Performance 
Measure / 

Action 
problem 
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1.4 Core problems 

Nine core problems are detected. The nine core problems are as follows: 

1. The available inventory data is not sufficient to determine the actual storage capacity and 

construct feasible and efficient delivery patterns. 

2. On tactical and operational level, the transport and customers’ inventory are executed and 

managed by different departments. 

3. The optimization of demand balancing is not visualized, nor quantified. 

4. The tactical routing schedule is fixed for a period of months. 

5. Wishes per restaurant are highly influencing the current delivery patterns, although HAVI 

should be in the lead to create more efficiencies. 

6. The transport planners and the restaurant planners act day-by-day. 

7. Having restaurants of multiple restaurant planners within one route, makes it cumbersome to 

discuss which volume (i.e., part of an order) must be pulled to preceding deliveries. 

8. The restaurant planners expect input from the transport department on which volume to pull, 

but do not get that input. 

9. The tool that is developed to balance volume has bugs and does not consider transport 

optimization. 

We must choose one or multiple of these core problems, which we want to solve to have an impact 

on the end problem(s). The end problems as stated by the project owner are directly or indirectly 

higher operational costs. The problem cluster in Figure 1 shows a clear overview of all the problems. 

To focus on one or multiple core problems, it is necessary to know the significance of the problems 

and some more details of their context. In the coming paragraphs, we discuss the problems and 

explain how they relate to each other. We group the problems based on the subject they are related 

to. We first discuss the problems directly relating to higher costs, because that is related most closely 

to the overall goal. Then we discuss the problems from an organizational view (i.e., how the 

management structure contributes to the problem). Following, a discussion of the problems relating 

to an uneven workload. Thereafter, we discuss the lack of insight in balancing volume, followed by 

why volume is not balanced to maximum potential, first by the system, and second by human actions. 

Next, we discuss the problems that HAVI has faced at earlier attempts to solve this problem. We end 

with discussing the causes of failing to include the information about the inventories at the customers’ 

locations (i.e., why it is so complex to create feasible and efficient delivery patterns). 

Unnecessary high costs 

HAVI wants to lower the transport costs without having a negative effect on the customer service 

levels. Song and Savelsbergh (2007) state that the best measure to compare different solution 

approaches for instances dealing with routing problems considering the inventory levels at the 

customers, is the volume per kilometer. This measure can be improved by either: 

- Increase volume per route (higher utilization). 

- Decrease distance traveled per route (geographical efficiency). 

Therefore, utilization is not the only cost driver, but it is often a good indicator of the relative 

transportation costs given the volume transported. To be more specific, the transportation costs are 

split in the two main factors, namely: the amount of fuel used, and the time needed for the driver to 

execute the route. These two are highly positively related to each other. The distance traveled, which 
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has the largest influence on the fuel used as well as the duty time of the truck driver, therefore are 

good indicators for the transportation costs. Another major cost factor for HAVI’s operations is the 

costs relating to owning trucks (i.e., lease contracts, insurance a.o.). These costs are relevant for this 

research because mitigating workload is one of the main requirements and the fleet size is dependent 

on the shifts with the largest volume. 

Organizational view 

Looking at integrating the transport and inventory 

management, we must determine who is responsible for which 

activities and how these disciplines are managed. The transport 

planners and restaurant planners are physically separated, 

because they have their own office. Looking at the 

organizational chart (see Figure 2), the restaurant planners and 

transport planners are related to each other via the Managing 

director NL. The departments have daily contact, to solve 

issues. However, to deal with conflicting goals, agreements on 

higher levels in the organization structure must be made. The 

managing director cannot be involved in those matters and the 

two disciplines do not cooperate intensively when it comes to 

long-term solutions. This results in two disciplines that blame 

each other for acting in their own favors. To align the 

departments, a role is needed lower in the organization that is 

responsible for both departments, or they have to work 

together in projects with stakeholders who make agreements 

and discuss progress in meetings. 

Uneven workload 

One of the main goals for HAVI in this research, is to flatten the workload within a week. An uneven 

balance has many disadvantages, from which the biggest impact on costs is that fleet size is based on 

maximum number of trucks needed during a shift. In Figure 3 we show the balance of the consumption 

volume of all McDonald’s restaurants. We also show that the volume that is being delivered from 

Monday to Friday is higher than what is consumed. Saturday and Sunday, the delivered volume is 

smaller than the consumed volume.  

In Figure 3 we show what intuitively would be the ideal balance considering an even workload 

throughout the week with decreasing volume in the weekend because of the salary supplements (i.e., 

150% pay on Saturday and 200% pay on Sunday).  

Figure 2: Organizational chart 
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Figure 3: Volume balancing McDonald's across the week 

We take volume of goods (measured in delivery units) as indicator for workload. For transportation 

this is a good indicator, because the characteristics of HAVI and its customers are such (routes with 

few and relatively large stops) that the capacity of the truck is the main limitation instead of the 

maximum duty time. When volume increases, the number of routes needed increases approximately 

linearly. In the warehouse, workload also increases practically linearly with volume. Therefore, volume 

is a good indicator for workload, and balancing workload and balancing volume are used 

interchangeably in our case. The main implications of the different balances are: 

- Fleet size can be decreased. 

- Storage spaces at the customers’ locations are being filled more in the beginning of the week 

and emptied more in the end of the week. 

To quantify the impact on the customers’ storage, we introduce the term Center of Gravity (𝐶𝑜𝐺). The 

𝐶𝑜𝐺 for deliveries is the weighted average delivery moment in the week. The center of gravity in this 

context is defined to be 

Equation 1 

𝐶𝑜𝐺 =
1

𝐷
∗ ∑ 𝑖 ∗ 𝑛𝑖

7

𝑖=1
 

where 𝑖 is the day number of the week in which Monday equals 1 and Sunday equals 7. The number 

of delivery units that are delivered on day 𝑖 is denoted by 𝑛𝑖 and the total demand in the week is 

denoted by 𝐷. The choice of setting Monday equal to 1 and Sunday to 7, is not arbitrary. On Monday, 

consumption is lowest, and increases throughout the week. Determining the 𝐶𝑜𝐺 for deliveries, we 

find a 𝐶𝑜𝐺 of 4.06. Determining the 𝐶𝑜𝐺 for consumption we find a 𝐶𝑜𝐺 of 4.59. This means that 

consumption takes place more later in the week compared with the deliveries. For the customer it is 

favorable that the 𝐶𝑜𝐺 of consumption and the 𝐶𝑜𝐺 of delivery are closer to each other, such that 

they do not store the goods longer than needed. In Appendix II, we elaborate more on the 𝐶𝑜𝐺, and 

how it is influenced by choosing other delivery patterns. 
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Besides the extra costs related to transport and the customers’ storage, the peaks in the workload 

also results in extra costs in the warehouse: 

- Limited space in the chilled and frozen area causes order pickers to block each other’s paths. 

- In the dry area the workload is limited by the capacity of the forklift trucker to replenish the 

pick locations with new materials from the bulk storage. 

- The pickers more often see empty pick locations and must wait or must pick later to complete 

the order.  

- With low volumes still one FTE forklift trucker is needed, but his utilization is much lower. 

Not balancing to full potential 

After introducing the importance of balancing the workload, we now discuss the various reasons why 

the workload is not being balanced to full potential: 

- The system of HAVI that proposes the orders uses Just-In-Time (JIT) delivery. 

- The actions that are (not) taken. 

- There is no insight in which part of demand can be delivered earlier, and how much capacity 

per storage space is available to deliver more than strictly needed. 

- Volume balancing tool does not integrate transport. 

- McDonald’s is the only VMI customer for which the order quantities are determined by HAVI. 

- Lack of knowledge when volume deviates from forecast. 

- Day by day planning instead of looking ahead. 

- Complexity of delivery patterns. 

The system 

The system of HAVI that proposes the orders uses JIT delivery. This means that the delivery quantity 

is totally dependent on the amount of forecasted consumption between two consecutive delivery 

moments. As shown in Figure 3, the balancing of consumption differs from the ideal balance, and thus 

delivery quantities should not be determined solely by the consumption amount. In Appendix III we 

show what the impact is of the utilization of routes given that the system uses JIT order calculations. 

The actions 

The restaurant planners are able to adjust the orders that are proposed by the system. They can pull 

volume to an earlier delivery than the system has planned. The effect is shown in Figure 3 because the 

delivered balance is more flattened relative to the consumption balance. Because the task of pulling 

volume to earlier deliveries is time consuming, the restaurant planners do not do this when it is not 

directly necessary. Pulling demand is time consuming because (i) an order contains about two hundred 

different products. For every product must be determined to pull the volume to an earlier delivery 

and (ii) the restaurants within a route can be represented by different restaurant planners, thus they 

must consult with each other which volume to pull to earlier deliveries. Furthermore, there is no real-

time insight in the result of pulling volume to earlier deliveries. 

Insight  

HAVI has no insight in what the potential is of flattening the delivery balance further. Figure 3 shows 

how the ideal balance would look like, but it is not known whether this can be achieved or how close 

this can be matched. 
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Volume balancing tool 

The supply chain department has designed a tool that is called ‘Volume Balancing’, which could be 

used by the restaurant planners. The tool ‘Volume Balancing’ is made by the IT team at the 

headquarters of HAVI in Germany. The orders proposed by the tool are not based only on JIT, but also 

incorporates volume balancing throughout the week. The tool is tested but proposes orders that were 

not as they should have been and therefore is not used anymore. Besides, this tool is an example of 

how transport and ordering are two separated disciplines within HAVI. Because transport optimization 

is not incorporated in this tool. The volume is balanced only based on volume per customer, 

independent on how the routes are organized. Therefore, this tool is not used in this research. 

McDonald’s as only VMI customer 

The delivered goods for McDonald’s and the other customers are delivered in the same routes. 

Because the other customers determine the delivery quantities themselves, HAVI is not able to fully 

utilize the capacity of the truck, because the rational used by the customers, is not easy to understand.  

Deviation from forecast 

When actual volumes are higher than forecast, the restaurant planners do not know whether to pull 

volume to earlier deliveries or not. Pulling volume can result in an extra route that must be created. 

Not pulling can result in problems later on in the week. When volumes are lower than forecasted, the 

restaurant planners do not have the urge to pull volume to earlier deliveries; the potential of saving a 

route can be achieved be either pulling or not pulling demand, dependent on the rest of the routes.  

Day by day planning 

When deciding on whether to pull volume to earlier deliveries, the restaurant planners only look at 

the deliveries of tomorrow and the consecutive deliveries. However, for most goods stored in the 

frozen and dry area, the shelf life is longer and thus potentially more volume can be balanced amongst 

deliveries when looking further ahead. Sometimes it is even necessary as can be seen in the following 

example and shown in Table 1. The capacity of the trucks is 60 delivery units. Before any demand is 

pulled to earlier deliveries, the routes have a planned utilization as can be seen in the initial situation. 

The Friday route is planned above capacity. Therefore, demand must be pulled to an earlier delivery. 

When only looking one delivery ahead, the result is the second line, and the Friday route is still planned 

above capacity. When looking multiple deliveries ahead, the restaurant planner can pull volume from 

the Friday delivery to the Monday delivery. 

Table 1: Horizon of the restaurant planners, looking ahead from Sunday 

Situation Route Monday Route Wednesday Route Friday Action required 

Initial situation 45 55 75 Pull volume 

Acting day by day 45 60 70 Split Friday route 

Looking ahead 55 60 60 None 
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Complexity of delivery patterns 

The delivery patterns for McDonald’s are determined by the restaurant planners. The other customers 

determine their delivery patterns themselves. The delivery patterns of the other customers are out of 

scope for this research and are assumed to be fixed, equal to the current situation. Most of the 

decisions are based on intuition and preferences from the customers, instead of data analysis. The 

objectives for HAVI and the restaurants are different. 

HAVI 

- Flatten workload. 

- Geographical efficient routes. 

McDonald’s Restaurants 

- Receive deliveries at convenient moments. 

- Minimize the storage utilization fluctuations. 

- Minimize number of interruptions in their core business. 

- Not too large gaps between two deliveries. 

- Storage capacity restrictions are met. 

Proposals for new delivery patterns are often refused by restaurants with arguments based on 

intuition and feelings. Because the restrictions are not stated in writing, and the data HAVI uses is not 

sufficient, HAVI is not able to verify whether the arguments of the restaurants are legit. Delivery 

patterns must be created feasible and efficient, both are influenced by many factors. We sum up the 

most important factors. 

Feasible delivery patterns: 

- Capacity per temperature storage (hard restriction). 

- Time windows (hard restriction; see Appendix I). 

- Demand balancing curve (input). 

Efficient delivery patterns: 

- Balance of volume over all customers within a week (objective: balancing). 

- Positive correlation with neighboring delivery locations (objective: costs). 

In this research, we must create feasible delivery patterns. The objective is to create efficient delivery 

patterns. The objectives of HAVI are considered in combination with the storage restrictions of the 

customers’ locations. 

In the simulation studies that are mentioned in Section 1.2, HAVI used the following data to determine 

the delivery patterns: 

- Surface of storage location per temperature zone per restaurant. 

- Hourly demand forecast distribution per restaurant. 

Because this data turned out to be insufficient, the delivery patterns are not yet determined based on 

data, but highly influenced by customers’ wishes. 
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1.5 Decision on Core Problem 

We started Section 1.4 with stating the nine core problems. After the elaboration of the problems, we 

understand the context and significance of the different problems and how they relate to each other. 

In our opinion it all comes together in the fact that transport optimization and the ordering process 

are dealt with separately. A volume balancing tool (Core problem 9) would work for making orders or 

planning multiple days ahead (6) can help to improve the processes, but it will not be effective when 

the two disciplines are still dealt with separately. A visualization or quantification of how workload 

can be balanced (3) is helpful to get insights, but on its own it will not change the way of working. 

Because we focus on the combination between the tactical and operational level, the organizational 

structure (2) is out of scope for this research. The tactical routing is being fixed for a period of months 

(4). Changing this aspect, also requires major organizational changes, which is out of scope for this 

research. The core problems we focus on are: 

1. The available inventory data is not sufficient to determine the actual storage capacity and 

construct feasible and efficient delivery patterns. 

5. Wishes per restaurant are highly influencing the current delivery patterns, although HAVI 

should be in the lead to create more efficiencies. 

7. Having restaurants of multiple restaurant planners within one route, makes it cumbersome to 

discuss which volume (i.e., part of an order) must be pulled to preceding deliveries. 

8. The restaurant planners expect input from the transport department on which volume to pull, 

but do not get that input. 

The first and fifth core problem relate to the tactical level and are related to each other. Both imply 

that the way in which delivery patterns are constructed is not good. The model we build should 

construct the delivery patterns while meeting the storage capacity restrictions. The seventh and eight 

core problem relate to the operational level. When making the operational policy we must guide the 

restaurant planners how to balance the volume. 

1.6 Scope 

The primary scope of this research is the process of making a tactical routing schedule, which is a 

weekly repetitive schedule determining which routes to be driven each day. This weekly routing 

schedule serves as a basis for the operational routes every week within the planning horizon. In this 

research, the planning horizon is the period from the 6th of July until the 6th of September. The 

operational policy is used to check the results with historical data.  

McDonald’s is the only customer in scope for this research because HAVI is a 4PL provider to them. 

We must consider the other customers, because they are distributed in the same set of routes, but 

the other customers are treated the same way as in the current situation. For them, the delivery 

patterns and quantities are being fixed and equal to the current situation. 

We selected 79 customers that are located in the east of the Netherlands, which is approximately one 

fifth of the total network. First, we selected all customers in the city of Enschede. Then we selected all 

customers who are in the current situation at least once routed together with one of those selected 

customers. We then again selected all customers who are at least once routed together with one of 

the selected customers. After these two iterations, 50 McDonald’s locations and 29 locations of other 

customers are selected. The rest of the locations are out of scope. When looking at the results of the 

experiments we do score the routing schedule based on their contribution to the total network. 
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We do not optimize the algorithm that is currently used by HAVI to solve the rich vehicle routing 

problem (RVRP). We define the input to escape from local optima, and input extra restrictions to 

include the objective of balancing workload.  

1.7  Research goal 

HAVI wants to balance the workload within a week. To do so, they must improve their tactical 

transport planning as well as the operational policies used in the daily planning. The tactical routing 

schedule should be such that workload is more balanced while meeting customers’ storage capacities 

restrictions. The next section states the research questions that need to be answered to know how 

HAVI can utilize the sales forecasting data, to minimize the total relevant costs, while meeting all the 

restrictions such as inventory levels at the stores. The main research question is stated below. 

How can HAVI save on operational costs by balancing the workload within a week, without violating 

customers’ restrictions including storage capacities at the customers’ locations? 

1.8 Research approach 

To answer the main research question, we formulated eight research questions and twelve sub 

questions. 

Research questions 

1. How does the current situation of HAVI look like? 

a. How does HAVI execute the transport optimization? 

b. How does the order process of HAVI look like? 

2. How is volume or workload balancing dealt with in the models in literature (i.e., PRPs and 

IRPs)? 

a. Which solution approaches are used to solve the models? 

b. How do these approaches deal with volume or workload balancing? 

3. How can the requirements be translated into restrictions or inputs that can be used in routing 

optimization software? 

4. How can workload balancing be applied in the tactical routing process of HAVI? 

a. What is the objective of HAVI that should be used in this research? 

b. What input is required to set up the model that will be implemented into the 

processes of HAVI? 

5. How to build a model to optimize the transport and inventory in an integrated way on the 

tactical level? 

a. How does the model differentiate relative to the known models from literature? 

b. Which steps are used in the model? 

6. How can the tactical model be tested using experiments? 

a. Which scenarios must be tested? 

b. How to compare the results of the experiments? 

7. What operational policy should be followed after implementing the new tactical routing 

schedule? 

a. What operational policy should the restaurant planners follow? 

b. What operational policy should the transport planners follow? 

8. What performance can be achieved by applying the new tactical model and operational 

policies into practice at HAVI? 
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Research design 

Before doing any research, we have to understand the business, therefore, the first research question 

is stated to understand the current situation. The current situation is split in transport optimization 

and the ordering process, because these two aspects together determine how workload in balanced 

for HAVI. In our research we want to build upon existing literature, therefore, the second research 

question is to perform a literature study. In this study we focus on the workload balancing in different 

approaches used. The first of four core problem that we focus on is about the data from customers’ 

storages that is not translatable for the purpose of routing optimization. The third research question 

is to facilitate this translation. The second core problem in our focus, is about taking the lead in 

determining the delivery patterns to create efficiencies. These efficiencies have to result in a workload 

that is more balanced. Therefore, the fourth research question is about achieving the balancing of 

workload within the tactical routing schedule. We then continue with the fifth and sixth research in 

which we build and test the model that we are going to use for the tactical routing schedule. The third 

and fourth core problem in our focus are about deciding on an operational level, which volume to pull 

to earlier deliveries. The seventh research is therefore to define the operational policies that should 

be applied to gain the most efficiencies. The eighth research question is to combine the tactical routing 

schedule with the operational policy to know what results can be achieved when both are in place. 

Research approach 

RQ1. This question will be answered in Chapter 2 by describing the current situation. 

RQ2. This question will be answered in Chapter 3, by carrying out a literature review. 

RQ3. This question will be answered by translating the verbal requirements into mathematical 

formulated restrictions. This question will be answered in Chapter 4. 

RQ4. Part a will be answered through a combination of input from the management of HAVI and the 

findings from the literature study. Part b is answered building further on the results of RQ3. Based on 

the requirements we determine which input is needed to meet those requirements. This question will 

be answered in Chapter 4. 

RQ5. Based on the results of RQ3 and RQ4, we develop a model. We first determine the delivery 

windows for the delivery units. We then develop a method to deduce the capacity of the storages 

based on two criteria. Furthermore, we adjust the input data such that the current situation is a 

feasible situation. We build an algorithm which optimizes the routes while the inventory restrictions 

are considered. This question will be answered in Chapter 4. 

RQ6. Paragon, the routing software HAVI uses, will be used to execute the experiments. Based on the 

results of RQ3, we develop spreadsheets models, which will be used to generate input for Paragon. 

Based on the specific requirements and objective that results from RQ2 and RQ3 we determine the 

set of experiments that will be executed. At least a re-optimization of the current situation within 

Paragon must be included in the experiments to make well founded conclusions. To answer part b, we 

use an efficient frontier to tradeoff costs and balancing workload. Part a will be answered in Chapter 

4. Part b will be answered in Chapter 5.  

RQ7. To answer this question, we need to determine which volume is pulled to earlier deliveries. We 

define a set of rules, when followed determine which volume is pulled to earlier deliveries. These 
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policies are used to examine the operational results of the routing schedules that lie on the efficient 

frontier. The policy c applied when actual order and consumption volumes are known. We will use 

historical data to test how the new created tactical routing schedule would have performed. This 

question will be answered in Chapter 4. 

RQ8. To answer this question, we need to combine the results of the tactical routing schedule of 

Chapter 5 and apply the operational policy we constructed in Chapter 4. We perform a sensitivity 

analysis with historical data as an example of what the volumes in a certain period will be. Although 

we have all information available in advance, we need to apply the operational policy that results from 

RQ7 and act only on data that was available at that time. Furthermore, we apply the operational policy 

on the base case scenario. This question will be answered in Chapter 5.  
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2. Current Situation Analysis 
In this chapter, we answer research question 1: ‘How does the current situation look like?’. To 

understand the problem in more detail, in Section 2.1 we give some figures and numbers of HAVI’s 

network in the Netherlands. Followed by a description of the current transport and its optimization 

software and inventory management processes of HAVI in Section 2.2 and 2.3 respectively. In Section 

2.4 we discuss how the delivery patterns for McDonald’s are determined in the current situation. In 

this chapter we discuss the current situation of the transport and ordering/inventory management 

activities and the integration between those disciplines. 

2.1 Network and Figures 

In Figure 4, we show all customers’ locations. The yellow triangles represent the DCs. The black circles 

represent the customers from which the goods are stored in the DC in Amersfoort (Centre of the 

Netherlands). The pink circles represent the customers from which the goods are stored in the DC in 

Barendrecht (South-West of the Netherlands). Since the Covid-19 crisis some of the customers, which 

goods are stored in Barendrecht, are 

delivered from Amersfoort after they have 

been transported from Barendrecht to 

Amersfoort. 

Figure 5 shows an example of all the routes in 

one shift. The red lines represent the routes 

departed from Amersfoort and the green 

lines the ones departed from Barendrecht. 

From Amersfoort, routes in the dayshift 

depart on average around 5 :30 am and arrive 

at 2:35 pm. In the evening shift, routes depart 

on average around  4:20 pm, and arrive 12:05 

am. On average seven customers are in a 

route from Amersfoort, for Barendrecht the 

average number of customers is around 4. 

This difference is due to the capacity of the 
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truck. The distribution in Amersfoort is executed by own drivers, in Barendrecht the distribution is 

outsourced. Figure 6 shows the seasonality of the volume throughout the year. The summer months 

are the busiest months. Another remarkable month is December, which is a special month with a lot 

of discounts, which increases volume. Especially the first months of the year, volume is low. Due to 

Corona, the utilization rate during 2020 is exceptional. The average utilization in 2018 and 2019 was 

between 84% and 85%. Besides the volume changes within a year, we also cope with volume changes 

within a week, which we already discussed in Chapter 1 (see Figure 3). 

2.2 Transport optimization 

The transport department of HAVI is separated in employees who are responsible for the daily 

operation (i.e., operational planning), and employees who are responsible for the tactical and 

strategical time horizons. The future is split into two horizons. The first horizon is a period of weeks to 

months. This period is the tactical planning period. The second horizon is a period of months to years. 

This period is called the strategic horizon. For this horizon simulation studies are executed to get 

answers to what-if scenarios for example. 

Tactical Planning 

HAVI uses a standard routing schedule, consisting of one week, which forms the basis for a certain 

period (i.e., a periodic schedule). This schedule is repeated every week, until the standard routing 

schedule is changed again. The standard routing schedule is adjusted when volumes are expected to 

change, about four to six times a year. For example, after the summer, both customers decrease in 

volume, because they are both positively correlated to the weather. The procedure of adjusting 

delivery frequencies per store, merging and splitting routes, which are based on a seasonal change, is 

the tactical planning. We made an overview of the process of developing a new tactical routing 

schedule and present it in Figure 7. The process of creating a new tactical routing schedule starts with 

gathering input from various stakeholders represented by the green cells in Figure 7. Thereafter an 

engineer starts with making an initial solution for a new tactical routing schedule. When specific input 

results in severe impact, the engineer consults with the input giver. After the initial solution is build, 

the engineer and a transport planner adjust the schedule together after which the plan is 

communicated internally. The various stakeholders give feedback, and this will be processed. After 

communicating the plan internally for the second time, the customers are also being informed about 

the new routing schedule. Feedback from the customers is also being processed after which the 

changes are communicated to the customer again. 

Operational Planning 

Next to the seasonality, the volume is affected by much more factors, which are not all predictable. 

The demand of a set of customers, that form a route, can be more than the capacity of a truck in some 

weeks. Then, a customer must be transferred to another route, a new route must be created, or a 

customer must be delivered by an external carrier. Other weeks, the demand of the same set of 

customers is less than the capacity of a truck. If multiple routes in the same region have overcapacity, 

these routes must be merged to avoid inefficiencies. These daily adjustments, after the orders of the 

customers have been approved, is the operational planning. The importance of an accurate tactical 

planning is the minimization of needed adjustments in the operational planning. 
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Figure 7: Process of developing a new tactical routing schedule 

Simulation studies 

The transportation processes as described in the two paragraphs above, are executed by the 

operational transport planners. The tactical routing schedule is being made by the engineer together 

with the transport planner. The last years, HAVI uses a transport software system to deal with strategic 

questions. An example of such a question is: ’How would a new business partner fit in the transport 

network?’ or ‘Where to locate a new distribution center (DC) if the current DC would be too small in 
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the future?’. This software system, called Paragon, optimizes the routing schedule given deliveries 

with a fixed volume. In the last year, Paragon is also used to plan the holidays and the December 

month in which McDonald’s has a special discount for every day, which results in enormous volume 

fluctuations. Since the beginning of 2020, Paragon is used to propose a new tactical routing schedule. 

The quantities and delivery days are determined in spreadsheets, based on the forecasted sales and 

the capacity of the storage locations of the restaurants. The restaurant planners had a lot of feedback 

on the proposed delivery patterns. In practice the opinion of the restaurant planners overrules the 

analysis made, because HAVI knows that the analysis is based on insufficient data. Paragon already 

supports in creating routing schedules but is not able to determines the delivery patterns. 

Transportation software 

Paragon is the optimization software, HAVI uses to optimizes their transportation planning. HAVI has 

used Paragon for strategical simulation studies and is starting to use it for their tactical transportation 

planning (i.e., proposing tactical routing schedules). Paragon splits the input in four different levels, (i) 

master data, (ii) routing data, (iii) input for a specific optimization and (iv) the objective settings. The 

input is too extensive to cover completely, but we will state the most important. 

Master data 

Within the master data we define all data that is likely to be equal for all optimizations. In the master 

data all DCs are defined and all possible truck types to be used. We also define the possible loading 

rates (i.e., a fixed loading time plus a variable time per delivery unit) from which we can choose later 

on. We define the possible driver types. We also define all customers. For every customer we define 

the location, opening times, loading rates, possible vehicles to use to delivery this customer. In this 

research, we only use one type of truck (i.e., a combination truck with a capacity of sixty roll 

containers). We also define the minimum time that has to be between consecutive deliveries. Within 

the master data a matrix is constructed that determines the distances between pairs of customers. A 

map of the Netherlands is used on which areas are drawn, which apply rush hours and speed 

adjustments. Within the master data for every pair of customers, the expected driving time is 

calculated. While the routing process is running, the map with adjustment speeds is considered to 

calculate the precise driving time based on the time of the day. 

Routing data 

In the routing data we define data that is more likely to vary between multiple optimizations. 

However, in this research all optimizations are performed with the same settings. In the routing data 

we partly add new data and partly add information to the data stored in the master  data. We add 

information to the DCs, for example the possible times to load and unload. We define the number of 

trucks that can be used from each type of truck. As said, we only use one type, and in the routing data 

we define that we have six trucks of that type. We define the type of products that we use. In our 

research we use two products. With simple rules we tell the software that some products are not 

compatible with other products (i.e., they may not be delivered in the same truck). We use this in our 

experiments to separate regular customers, from some dummy customers. Furthermore, we define 

the shifts that can be worked by drivers. In this research, we have only defined one shift, although 

HAVI operates with two shifts a day. However, we have set the possible departure times at the DC 

such that drivers only depart within the shift times used by HAVI. In the routing data we also tune the 

algorithm of the optimizer. Many settings can be changed, which often are a trade-off between result 
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and running time. An example is how many customers to include in a k-swap, or how many different 

options to try before determining the best swap(s).  

Input optimization 

The input given for a specific optimization is uploaded via csv-files. The most important data are the 

calls (i.e., the stops that have to be performed in the optimization). For every call, we state many 

attributes of which the most important ones are: the customer, whether it is a delivery or a collection, 

the volume, the delivery window, which product, from which DC, in which route, and execute by which 

driver type and vehicle type. We see that we also include the route number. Therefore, what we input, 

is actually a routing schedule stating the routes with all necessary data. Some data is being fixed 

throughout the optimization and some is only used for the upload. For example, the route and DC are 

only used while uploading to initiate the routing schedule. Other data is being fixed also while 

optimizing, for example, the customer and the delivery window.  

Objective settings 

We can choose the objective of the routing optimization. We can choose to minimize either the 

distance traveled, or the duty time needed, which includes driving time, loading and unloading, 

waiting time and extra time defined for administration. Because the customers of HAVI often have 

time windows with gaps in between (e.g., no delivery during lunch time), minimizing distance traveled 

often results in more waiting time within the schedule. Therefore, we choose to minimize duty time. 

Furthermore, we can choose to apply clustering, which means that the distance and time from the DC 

to the first customer and from the last customer back to the DC are excluded from the objective value. 

This way, the optimizer constructs the routes such that the customers within a route are closer to each 

other. In the transport requirements in Section 1.2 it is stated that the routes should be constructed 

such that when volume increases or decreases, the transport planners can adjust the routes without 

too many changes. The experience is that this task is easier when routes are created such that 

customers within a route are close to each other. Therefore, the objective in the RVRP solver is to 

minimize the duty time, excluding the times travelling to the first customer, and travelling from the 

last customer back to the depot, this objective is called ‘clustering based on duty time’. 

2.3 Order Process 

For each location, there are fixed delivery days in the week. The order must be placed before 10:30 

am on the day before delivery. So, for a delivery on Wednesday morning the order must be placed 

before Tuesday 10:30 am. Orders for deliveries in the afternoon must be placed before 3 pm the day 

before. 

The sales forecast for the near future (i.e., at least covering the coming few deliveries) is filled in by 

the restaurant. The system of HAVI, HAVI Core, proposes an order that will be sufficient to meet 

demand between the delivery moment and the next delivery moment and bring stock back to safety 

levels (i.e., JIT delivery). Eight restaurant planners, that are responsible for a region of McDonald’s 

locations, can adjust those orders. They can choose to pull volume from the subsequent delivery to 

the first delivery. The two main reasons for doing this are (i) overcoming uncertainty (i.e., because of 

some circumstances, the safety stock level is probably not sufficient), and (ii) removing the peaks in 

delivery volumes. The former is to deal with exceptions. The focus in this research is on the latter. 
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2.4 Delivery patterns of McDonald’s 

The delivery patterns of McDonald’s customers are largely influenced by an earlier attempt of 

reducing the delivery frequency. In 2013, the average delivery frequency per store was 5,5 deliveries 

per week. To minimize costs, the delivery frequency is lowered in the years after. The average delivery 

frequency was 4,5 deliveries per week in 2015. In 2019 the average delivery frequency at 4,6 deliveries 

per week. Because of the decreasing delivery frequency and meanwhile an increasing volume per 

store, the volume per delivery is increased. Because consumption is highest in the weekend and 

restaurants also prefer a delivery right after the weekend, most deliveries that were removed were 

Tuesday deliveries. Most restaurants that have a delivery on Monday but not on Tuesday want a 

delivery on Wednesday. This created peaks in delivery volumes, which are still present. Nowadays, 

HAVI copes with peaks on Monday, Wednesday, Friday and Saturday, and quieter days on Tuesday, 

Thursday and Sunday. 

The delivery patterns are fixed, because then the stores can consider the delivery in their staff 

planning. Because of this staff planning, amongst other reasons, it is often the preference of the store 

to have all deliveries in the morning or all deliveries in the evening (they often have one or two 

employees, who are responsible for the delivery). Next to these preferences, we cope with legislations 

of loading and unloading in the cities, which result for example in stores having all their deliveries in 

the early morning. These preferences and the overall way of thinking of HAVI and their customers, 

requires a standard routing schedule that is repetitive every week. The impact of applying all available 

data to make a routing schedule that is not repetitive each week would be the next step in research. 

For this research this is out of scope. It is important to have a good standard routing schedule because 

adjustments in the operational planning are minimized and workload can be flattened within the 

week. 

2.5 Conclusion 

In this chapter we answer research question 1: ‘How does the current situation look like?’. The first 

sub question is: How does HAVI execute the transport optimization? First, HAVI has a standard weekly 

routing schedule that is repetitive over the weeks. This is the tactical planning, which is used to change 

the routing schedule when the circumstances change, including seasonality changes. The standard 

routing schedule is the basis for the operational planning. When exact volumes are known, the routes 

are adjusted for the following day. For strategic questions, simulation studies are executed. Paragon, 

the optimization software, is used to create hypothetical routing schedules. Last year, Paragon is also 

used more intensively to help creating the standard routing schedule. It is experienced that the 

proposed patterns, which are determined in spreadsheets, are not accepted by the restaurant 

planners. The potential of Paragon is not yet utilized. 

The second sub question is: How does the order process of HAVI look like? Given the delivery moment, 

there is a fixed order moment. HAVI’s system, proposes the order. The restaurant planners can adjust 

the orders to remove the peaks in delivery volumes. 

The delivery patterns result in peaks, which are the result of earlier projects with the goal of 

minimizing the number of deliveries per restaurant. Improving the tactical planning, flattens the 

workload peaks and minimizes the number of adjustments needed in the operational planning. 
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3. Literature study 
In this chapter, we answer research question 2: ‘How is volume or workload balancing dealt with in 

the models in literature (i.e., PRPs and IRPs)?’. In Section 3.1 the processes of HAVI are related to 

known models in literature. These models are explained in Section 3.2 to 3.5. After elaborating on the 

models, they are again related to the processes of HAVI in Section 3.6. In Section 3.7 we discuss various 

solution approaches used in literature and discuss which aspects are essential for us to consider. 

3.1 Literature models related to HAVI processes 

HAVI uses a tactical routing plan that consists of routes for seven consecutive days. This routing plan 

serves as a basis for every single week within a period of months. Every day, the transport planners 

are planning the exact routes for the following day. At this moment, the quantities to be delivered are 

fixed. The transport planners’ job is to solve a vehicle routing problem (VRP) with as little adjustments 

as possible from the tactical routing plan, whilst eliminating inefficiencies. A few times per year, a new 

tactical routing plan is made to adjust for seasonality and changes in the market. While creating a 

tactical routing plan, the delivery patterns are not fixed and can be redetermined. The new created 

tactical routing plan serves again as a basis for seven consecutive days that is repeated every week. In 

this aspect, this is a periodic routing problem (PRP). While making the tactical routing plan, the 

quantities to be delivered are not known yet. In the current way of working, a forecast for a relatively 

high-volume week, is taken as if demand is fixed. Therefore, this literature study also focuses on 

models that are based on deterministic volumes. 

The aim of this study is to research how HAVI can integrate the tactical transport planning and the 

inventory management of their customers’ locations. This points us into an inventory routing problem 

(IRP). The IRP is meant to deal with the situation where routing problems and inventory problems are 

combined into one model. 

In the next part of this literature study, we elaborate on the PRP and IRP models and how they are 

developed. Both PRP and IRP are established after further development of the VRP. Therefore, we first 

discuss the VRP. 

3.2 Vehicle Routing Problem with side constraints 

Laporte, Toth and Vigo (2013) describe the vehicle routing problem as a problem consisting of 

designing least costs delivery routes through a set of geographically scattered customers, subject to 

several side constraints. The vehicle routing problem is one of the most studied combinatorial 

optimization problems. Golden, Raghavan and Wasil (2008) say vehicle routing may be the single 

biggest success story in operations research. The type of constraints that are added to the model, 

results in many special cases and varieties of the vehicle routing problem. In our research we must 

deal with the following: 

- Capacity constraints of the vehicles. 

- Capacity constraints of the inventories at the customers’ locations. 

- Constraints regarding the perishability of the goods delivered. 

- Uncertainty in demand at the customers’ locations. 

- Delivery time windows. 

- Periodic schedule of one week. 

- Largest customer VMI managed. The rest of the customers place their orders themselves. 
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3.3 Capacitated vehicle routing problem 

The capacitated vehicle routing problem (CVRP) is the most common extension of the standard VRP. 

In the CVRP, a fleet of trucks, possibly with different capacities, is used to carry out the routes. The 

CVRP was for the first time formulated in a mathematical way in 1959 by Dantzig and Ramser. They 

called it “The truck dispatching problem”. In this research, we denote it by CVRP or even VRP for 

consistency. Dantzig and Ramser take the traveling salesman problem (TSP) as starting point. A TSP is 

a special case of the VRP in which only a single truck with enough capacity is used to deliver all 

customers in one trip and the shortest route had to be found visiting every location exactly once. 

The VRP as described by Dantzig and Ramser (1959) deals with a single bulk product (i.e., gasoline). 

Given is the demand per station and the shortest route between any two points within the system. 

We elaborate on their method with an example in Appendix IV. Dantzig and Ramser (1959) are the 

first to formulate the VRP in a mathematical way. Their method does not necessarily lead to the 

optimal solution, but the methods used are, although not totally straightforward, relatively easy to 

follow. In Laporte (2009), fifty years of development of the VRP is discussed. Most algorithms used in 

practice are heuristics. Lenstra and Rinnooy Kan (1981) state that VRPs are NP-hard problems. 

Therefore, exact algorithms can only solve small instances. Laporte (2009) says, instances of up to one 

hundred vertices can be solved in reasonable time. 

3.4 Periodic Routing Problem 

In 1974 the PRP is for the first time introduced by Beltrami and Bodin (1974). A PRP is a special case 

of a VRP. The PRP is defined by Beltrami and Bodin (1974) such that a set of customers requiring a 

fixed number of deliveries in the planning period of days, finding the best allocation of customers to 

the schedules, minimizing the costs of visiting the customers. Since a PRP, or also called PVRP, is a 

special case of a VRP, mostly heuristics and rarely exact algorithms are used. Lahyani, Khemakhem 

and Semet (2015) say that in a PVRP all the input data is available at the beginning of the planning 

period. In a PRP, the decision maker must decide when to visit each customer and how to construct 

the routes to deliver the customers. For each customer, a set of delivery patterns exists from which a 

pattern is chosen, as also described by Carotenuto, Giordani, Massari and Vagaggini (2015). Choosing 

the patterns first and without considering routing, this results in a VRP per day that must be solved. 

The decision maker chooses the delivery patterns and routes separately, which results in a suboptimal 

solution. This could be related to the fact that delivery quantities are being fixed after determining the 

delivery frequency 𝑓𝑖 for customer 𝑖. Francis, Milowitz and Tzur (2008) state that in the PVRP literature 

it is assumed that a fraction 1/𝑓 of the total demand must be delivered to customer 𝑖 each visit. 

Campbell and Wilson (2015) are more generic, stating that for every customer 𝑖 there is a set of 

feasible visit options Ʌ𝑖 (i.e., delivery patterns). They state that if a product is to be delivered or 

collected, the quantity will be known and will be fully satisfied by a single vehicle. Therefore, the 

delivery quantities are a consequence of the delivery pattern. 

HAVI schedules the deliveries different from how deliveries are scheduled within a PRP. Within a PRP, 

the quantity to be delivered is dependent on the delivery pattern that is chosen. A pattern only states 

the delivery days and not the delivery times. However, for HAVI, delivery quantities are dependent on 

delivery times. The volume consumed within the period of a day is significant relative to the average 

delivery size. Some locations have a small storage, which does not allow us to define delivery 

quantities independent of the delivery time. Because we have to include the storages into the model, 

we look at IRPs in the next section. 
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3.5 Inventory Routing Problem 

The basis of IRPs is clearly discussed in Cordeau et al. (2006). They define an IRP as an extension of the 

VRP in which inventory control is restricted to ensuring that no stockouts occur at the customers. IRPs 

arise in VMI environments. The vendor can choose the timing and size of deliveries to a set of 

customers. The vendor agrees to ensure that its customers do not run out of product. The vendor also 

decides which routes to travel to deliver the customers. Inventory costs may or may not be included 

in the optimization. IRPs are also NP-hard (Adulyasak, Cordeau and Jans, 2013) and at least as difficult 

to solve as PRPs. Therefore, they are mostly approached with heuristics and only exact solutions are 

used in small instances.  

Bell et al. (1983) are the first to describe an IRP problem. They explain the benefit of an IRP by use of 

an example that is often referred to by others in literature. We elaborate on this example in Appendix 

IV. 

One fundamental difference between PRP and IRP is that in PRP the size of deliveries is known in 

advance, whereas the delivery size in an IRP is a decision variable. It is essential for an IRP to include 

long-term optimization because optimization over the planning horizon only, results in postponing as 

much demand as possible to the period after the planning horizon (Cordeau et al. , 2006). 

3.6 Relating to HAVI 

At the operational level, the transport planners are solving VRPs. At the tactical level HAVI has its own 

way of working in which we see some similarities with PRPs and IRPs as well. The aim of IRPs is to 

integrate the transport planning with inventory management. Both PRP and IRP take the delivery day 

per customer as a decision variable. 

For the operational planners this is not the case because the set of customers to be delivered is fixed 

on forehand. For making the tactical routing plan, the set of customers to be delivered at each stage 

is free to be chosen. Although the decision space for HAVI is the same as for an IRP, there are some 

fundamental differences. After the tactical routing plan is made, this routing plan must serve as basis 

for multiple consecutive weeks that can differ significantly from each other. The timing of the 

deliveries in the basis must be sufficient for every single week in the period when the tactical routing 

plan is active. The decision, when to deliver each customer is dependent on the volume fluctuations 

over the weeks. Furthermore, it is necessary to do the inventory stock calculation right before and 

after delivery, to avoid stockouts or exceeding capacity. In some models the sequence of operations 

is fixed. For example, in Bertazzi and Speranza (2013), it is assumed that delivery always takes place 

before consumption. They use the logic from the lot sizing literature. These models are not applicable 

for us, since delivery can take place after some part of consumption of that day has taken place. 

One of the most important aspects is to adjust the delivery quantities based on the delivery times. We 

did not succeed in identifying applicable literature that addressed this. The dependencies are 

illustrated in Figure 8.  

The complexity arises because the quantity delivered to a customer is dependent on the delivery time, 

which depends on the routes constructed. The routes depend on the set of customers that are chosen 

to deliver on a specific day. However, the decision to deliver a specific customer depends on the rest 

of the customers, with whom it can form a route. Even a set of customers that can form a route is 

complex to define on forehand because the set of customers that fit in a route, depends on the 
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quantities that must be delivered to each customer, which is again dependent on the delivery time. 

Because of this circular reasoning, it is hard to find the order of steps that must be performed to find 

a good solution. 

Summarizing, there are four aspects that make this research unique: 

1. Creating the tactical routing schedule, the transport and inventory is integrated in a single 

optimization phase, instead of a decomposition by the two disciplines. 

2. The tactical routing schedule is combined with an operational policy using IRP in which the 

operational IRP is bounded by the tactical routing schedule. 

3. The tactical PRP considers that volume to deliver is dependent on the delivery time. 

4. The tactical PRP considers that volume balancing can be adjusted using the operational policy. 

3.7 Solution approaches 

We now discussed two main classes of models that are used to deal with multi-day routing 

optimizations, namely PRPs and IRPs. In this paragraph we elaborate more on the various approaches 

used in the literature, and especially zooming in on the aspects that can help us with balancing the 

workload. 

PRP 

Bertazzi and Speranza (2013) explain that within a PRP, the quantities of delivery are being fixed now 

that the days of delivery are determined. Baptista, Oliveiro and Zúquete (2002) elaborate on various 

solution approaches for the PRP used in earlier research. They conclude that just a few solution 

procedures are described in literature. One approach first makes routes, following by assigning those 

routes to the days of the planning period. The second approach first selects the delivery days for the 

customers and then creates the routes, which is equal to solving VRPs, because in a PRP delivered 

quantities are fixed when the delivery pattern is chosen. 

Russell and Igo (1979) assign customers sequentially to delivery days. Based on customers already 

assigned, more customers are being assigned to a day. The chosen delivery day is based on different 

spatial factors, such as closest customer, which is already assigned to a day, average distance and 

variance of distance to customers in a cluster (i.e., which could form a route) on each day. 

Delivery 
quantity

Possible set of 
customers to 
form a route

Set of 
customers 

delivered on 
the same day

Route

Delivery time

Figure 8: Complexity of delivery quantities based on delivery times 



27 
 

The characteristic of a PRP, which states that delivery quantities are known when delivery days are 

chosen (Campbell and Wilson, 2014), does not satisfy our needs. Because we believe in an approach 

in which we can shift volume in the same phase as we are optimizing the routes, we focus in the rest 

of this chapter on the IRP model. 

IRP 

Before we elaborate on the various approaches to solve an IRP, we will narrow our scope down by 

using a classification of the IRP as stated by Bertazzi and Speranza (2012) and describe some of the 

characteristics and often made assumptions of various IRPs. Bertazzi and Speranza (2012) classify the 

IRP based on the decision space as follows: 

1. Decisions over time only. The timing and quantities of the deliveries must be decided, while 

the routes are given. 

2. Decisions over time and space. The timing and quantities of the deliveries must be decided as 

well as the routes to be traveled. 

Bertazzi and Speranza (2012) focus on IRPs with decisions over time only. In our research we also focus 

on an IRP with decisions over time and space. Both the timing of the deliveries as well as the routes 

are crucial in our research to create a more efficient solution. 

Bertazzi, Savelsbergh and Speranza (2008) say that the basic characteristics that have a large influence 

on the formulation of the IRP are the following: 

- the planning horizon can be finite or infinite. 

- inventory holding costs may or may not be considered. 

- inventory holding costs may be charged at the supplier only, at the supplier and the 

customers, or at the customers only. 

- the production and consumption rates can be deterministic or stochastic. 

- production and consumption take place at discrete time instants or take place continuously. 

- production and consumption rates are constant over time or vary over time. 

the optimal delivery policy can be chosen from among all possible policies or must be chosen from 

among a specific class of policies 

In our research, we focus on an IRP with a finite horizon, in which inventory costs are not considered. 

Production is not within the model and consumption rates are assumed to be deterministic. 

Consumption takes place at discrete time instants and vary over time. The optimal delivery policy 

should be such that the final inventory levels equals the inventory levels at the beginning of the 

planning horizon. 

Since the IRP is mentioned in literature, technology has evolved with huge steps. Data is being 

transferred between vendor and retailer for on a larger scale. The vendor is often able to access the 

data needed to have a clear view (after some statistics possibly) on the pattern of the inventory during 

a day of each retailer. However, most models in literature are still based on the assumption that 

consumption takes place at one specific moment of the day. Bertazzi and Speranza (2013) assume that 

in an IRP several operations takes place in a specific order. The order of the operations each day is 

assumed to be ‘delivery-consumption-calculation of inventory’. The choice of the order in which these 

operations take place is always of great influence of the mathematical formulations. Bertazzi et al. 

(2008) elaborate on the example constructed by Bell et al. (1983) as illustrated in Appendix IV. Bertazzi 
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et al. (2008) assume that delivery takes place before all consumption of that day. They say that the 

discrete time model with the assumption of delivery taking place before consumption of that day, is 

too restrictive for many environments. For example, environments where products are used 

continuously, as it is in our case study. There are several cases in which consumption is not assumed 

to be consumed at one specific moment of the day. In these cases, either the assumption is made that 

demand is constant (e.g., Coelho, Cordeau and Laporte, 2012; Archetti, Bertazzi, Hertz and Speranza, 

2012), or that demand is stochastic (e.g., Trudeau and Dror, 1992). With a constant demand, balancing 

workload is not necessary. For us, a stochastic demand is out of scope, because the software that is 

available only takes deterministic input. 

A few more assumptions are often made, which are worth mentioning before we elaborate on the 

solution approaches. Initial inventory levels are often assumed to be known. They are often either 

zero or equal to maximum capacity. In Bertazzi et al. (2008), both cases are used as well as the case in 

which the initial inventory levels are decision variables. Another common assumption in an IRP is 

unlimited shelf life. Soysal et al. (2015) say this is one of the main obstacles for the application of the 

basic IRP models the food sector. They do include the shelf life themselves in a model with stochastic 

demands. They penalize the expected waste per customer per period. In their research they build an 

algorithm, which has to solve the routing problem. For our research the algorithm of the solver used 

is out of scope, and we deal with deterministic volumes when creating a tactical routing schedule. 

Therefore, we do not have expected waste in the tactical routing schedule. Waste has to be considered 

in our research in the operational planning only. 

Within IRP models, different approaches are used to determine the delivery quantities. There are 

several approaches that determine the delivery quantities independent from the routing process. The 

simplest forms are the ones in which the inventory of the customer is always fully utilized after 

delivery. Fisher, Greenfield, Jaikumar and Kedia (1982) applied this logic in the gas oil industry where 

the quantities are fixed such that the tank for gas oil is fully filled after delivery. Bertazzi, Paletta and 

Speranza (2002) use the order-up-to-level policy to determine the quantities. Every time a retailer is 

visited, the quantity of each product delivered by the supplier is such that the maximum level of the 

inventory is reached at the retailer (Bertazzi et al. 2002). 

In Dror, Ball and Golden (1985) and Dror and Ball (1987), the delivery quantities follow from the 

decision of delivery days instead of the delivery quantities being a decision variable. In this aspect this 

is the same as in a PRP, except that the delivery patterns are not chosen from a set of patterns that 

are created in advance. Some of the earlier researches, such as Anily and Federgruen (1990), use EOQ 

formulations to determine the delivery frequency. They construct regions of customers that are 

geographically close to each other. Each region is a subproblem. A route is made to visit all the 

customers in the region. With an EOQ based formula, it is determined what quantity is economically 

most efficient to deliver every time that route is driven. The drawback is that every customer within a 

region must get the same number of deliveries. 

All the approaches as described above determine the delivery quantities, either after the routes are 

being fixed or the routes are not even considered yet. These approaches have laid the foundations for 

further research, but these approaches will not be used in our research because we are aiming for 

integrating the determination of delivery quantities and constructing the routes into one phase. 
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Moin and Salhi (2007) state the categorization of the solution techniques as follows: “Solution 

techniques for the IRP can be classified into two categories namely the theoretical approach, where 

the derivation of the lower bounds to the problem is sought and a more practical approach, where 

heuristics are employed to obtain the near-optimal solutions.”. In the theoretical approach, most 

papers split the problem into two phases: the inventory and the traveling salesman problem. They 

choose for a two-phase approach in which they start with one of the problems, followed by the other. 

Most algorithms iterate between finding the routes and solving the corresponding inventory problems 

until the stopping criterium is met. 

Since we are doing a case study, we want to obtain a near-optimal solution instead of a lower bound. 

Therefore, we focus on the practical approach where we probably need a heuristic to find a near-

optimal solution. However, in the practical approaches, not only heuristics are used. Often 

mathematical formulations such as integer problems (i.e., ILP or MIP for example) are used for sub-

problems. Campbell and Savelsbergh (2004b) use an ILP model to determine the delivery days and 

quantities. Lee, Bozer and White III (2003) use an MIP to determine the optimal inventory levels per 

route. Bell et al. (1983) use an MIP to determine, after the routes are created, which routes are driven 

each day. 

Also, within the practical approach, many researches choose for a decomposition of the IRP into sub 

problems (i.e., multiple phase approaches). Hulshof (2008) states that a decomposed approach (i.e., 

routing problem and inventory problem separated) is better than an integrated approach. The reason 

therefor is that the integrated approach increases the problems complexity and therefore requires 

prohibitively large computation times. Hulshof has researched a case study at ORTEC in which a two-

phase approach is used in which first the orders are created based on forecast, and second the VRP is 

solved. In Dror et al. (1985) and Dror and Ball (1987), first the delivery days are determined for each 

customer. The delivery quantities follow from the fact that the inventory of the customer must be full 

after delivery. This results in a VRP. Bell et al. (1983) first create a set of routes. Afterwards they choose 

which routes are driven each day. Lei, Liu, Ruszczynski and Park (2006) use a two-phase approach in 

which the first phase is about determining the timing and quantities of the deliveries. The second 

phase solves an associated consolidation problem to make more efficient routes than the direct 

shipments that were created in the first phase. Campbell and Savelsbergh (2004b) use a two-phase 

model. In the first phase they determine the delivery days and quantities. In the second phase the 

distribution plan is created. Lee et al. (2003) also use a decomposition into a VRP and inventory 

control. The vehicle routes are generated using a simulated annealing method. Given a set of routes, 

they use linear programming to determine the optimal inventory levels per route. Based on these 

inventory levels, they reschedule the routes after which they solve the linear program again. This 

process is iterative with a predefined number of iterations. 

Earlier this section, we stated the basic characteristics as mentioned by Bertazzi et al. (2008). The first 

characteristic is about the planning horizon. For infinite horizon models, often a selection of customers 

is set as a region. The regions are chosen such that the demand of the customers is roughly equal to a 

full truck load. Infinite horizon models only cause asymptotic results, which can be misinterpreted in 

practice according to Moin and Salhi (2007). In our research, we focus on finite horizon models. When 

dealing with a finite horizon, however, we cannot ignore the long term. Ignoring the long term makes 

it possible to postpone as much as possible to the period after the planning horizon, which has a 

negative effect on the costs in the future. Cordeau et al. (2006) say that the long-term effect of short-
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term decisions needs to capture the costs and benefits of delivering to a customer earlier than 

necessary. Fisher et al. (1982) and Bell et al. (1983) pioneered in an approach of incorporating long-

term costs in a short period planning period. They assign an expected cost per unit for a delivery 

beyond the planning horizon. Dror et al. (1985) and Dror and Ball (1987) are the first to study the 

effect of short-term decisions on the long term. They first calculate the optimal delivery day. If this 

delivery day is within the short term, the customer is visited in the short-term planning period. If the 

optimal delivery day falls outside the short-term planning period, they apply a future benefit when 

they do deliver the customer within the short-term planning period. Bard, Huang, Jaillet and Dror 

(1998) introduced the approach in which two different horizons are used. The planning problem is 

defined for the first two weeks, but only implemented for the first week. After the first week, the 

problem is defined again for the coming two weeks, of which the first week is implemented. Campbell 

and Savelsbergh (2004a) also use the principal of the rolling horizon. The distribution plan is created 

for one month, but only implemented for the coming few days. Hulshof (2008) also distinguishes 

between two horizons. Hulshof (2008) mitigates the peaks in a planning horizon of a whole year. 

However, the routes are only created for customers that need a delivery in the short term using a 

planning horizon of a few days. 

Research question 1b is about balancing the workload. Waller et al. (1999) say that many suppliers 

are attracted to VMI, because of the mitigation of the uncertainty of demand. However, as in our case 

study appears, even in a VMI environment, the uncertainty of demand is not the only factor that 

influences the peaks in workload. The sales patterns of the customers contribute the most to these 

peaks. We can say that VMI mitigates demand peaks because the data is more transparent (Andel, 

1996). The vendor can forecast the volume of the coming period based on actual sales of the previous 

days. In a customer managed inventory environment (CMI), the volume of the coming period is more 

uncertain and can be based on actual orders.  

We now discuss how we can deal with balancing the workload. Campbell and Savelsbergh (2004c) 

have discussed efficient implementations of insertion heuristics to handle situations where the 

delivery quantity must lie between a lower and an upper bound. In this implementation phase they 

use estimated delivery costs for a large set of possible clusters. They define the customers that must 

be visited in the short-term planning horizon as must-go visitors. In the basis, a cluster is formed of a 

group of must-go customers. Additional customers are added based on geography and capacity. This 

will not directly balance the workload over all customers aggregated, but it can be used to balance the 

workload. Hulshof (2008) uses the separation of the planning period in a short-term and long-term 

planning horizon, as described in the previous paragraph, to deal with volume balancing. Hulshof 

(2008) developed an algorithm that selects delivery days for every customer. The algorithm selects 

the customers that require a delivery in the short-term planning period. Following by adding 

customers, that do not necessarily require a delivery in the short-term planning period, but who can 

receive a relatively large delivery compared to their capacity. Simultaneously they also tradeoff the 

extra costs of adding the extra customers to the distribution costs. The main concern with volume 

balancing is balancing the volume over a year. Additionally, volume balancing on short term is 

incorporated. The balancing of the volume on the short term is indirectly done based on balancing 

workload. To balance the workload, the number of clusters visited on a day has a lower and an upper 

bound. Clusters are made using seeds. The seeds are located such that the sum over all customers of 

the distances between the customer and the closest seed is minimized. The short-term workload is 

balanced using a maximum and minimum workload per day. The maximum and minimum workload is 
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dependent on the available capacity of a given day, relative to the total capacity of the complete 

period. This ratio determines the optimal volume delivered on that day. A factor β is used to be added 

and subtracted from this optimum to make the problem feasible. The problem is solved using an ILP 

problem in which clusters of customers are selected per delivery day. 

In the previous paragraph we showed how workload balancing can be incorporated within a heuristic. 

Volume balancing can also be accomplished by including inventory costs. Bertazzi et al. (2008) start 

with a simplistic model, after which more complexity is added to study the effects of some 

characteristics. For example, they add inventory costs, to study how the solution changes. When 

studying their examples, we learn that when inventory costs at the customers’ locations become 

higher, the goods are stored at the customers’ locations no longer than needed. With higher inventory 

costs, the system looks like a JIT system in which every customer is being delivered every day. The 

examples are too simplistic to be translated to our case study because demand and production are 

assumed to be constant. We can use the same logic and intuitively argue that when high inventory 

costs at the supplier are used, the goods will not be stored longer than necessarily at the supplier’s 

location. When a constant production rate is assumed, this results in an even distributed volume every 

day, which balances the workload. Lei et al. (2006) include production into their IRP, which becomes 

a production, inventory, and distribution routing problem (PIDRP). In the first phase of their approach 

they solve a restricted problem in which they keep all the constraints except that the transporter 

routings are limited to direct shipments. In the second phase they improve the routing. The approach 

as used by Lei et al. (2006) could help us with workload balancing. However, we do not use their 

approach because we believe in an approach in which the timing and sizing of the deliveries is decided 

upon in the same phase as making the routes. 

We close this chapter by addressing an aspect that is almost neglected in literature, namely, time 

dependent delivery quantities. Bertazzi et al. (2008) and Campbell and Savelsbergh (2004b) study the 

time dependent delivery quantities. Given a route (i.e., sequence of customer visits), they determine 

the optimal delivery times, to maximize the total quantity delivered to the customers. The maximum 

quantities that can be delivered are dependent on the storage left at the customer, and the 

discharging time. For our research, the discharging time is out of scope when determining the possible 

delivery quantity. Bertazzi et al. (2008) use these time dependent delivery quantities to maximize the 

utilization, given the route. We do not aim at utilizing the capacity of the truck when routes are given, 

but we want to use the time dependent delivery quantities to make the routes simultaneously with 

determining the delivery quantities and determining the set of customers that will form the route. 

3.8 Conclusion 

This chapter answers research question 2: ‘How is volume or workload balancing dealt with in the 

models in literature (i.e., PRPs and IRPs)?’. The first sub question is: Which solution approaches are 

used to solve the models? The tactical and operational transport planning at HAVI can be described by 

an IRP model. The VMI environment HAVI works in, has benefits regarding accessibility to data, which 

is needed to feed accurate data into the IRP. We focus on practical approached IRPs with decisions 

over time and space. The sequence in which different operations (for example, delivery-consumption-

calculation of inventory) takes place is highly influencing the mathematical formulations of the model. 

The assumption of such a sequence is, especially in the food industry, a reason why the IRP is hardly 

applied, as well as the assumption of unlimited shelf life. 
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In earlier research, delivery quantities and the routes created are often determined independently. 

We were not able to identify the literature that jointly optimizes the routing problem and the 

inventory control. The approach is to decompose the problem into subproblems: inventory control 

and routing. These are considered in several phases one after the other, sometimes with multiple 

iterations. The reason of this research is to integrate both the disciplines. In the current way of working 

this decomposition leads to inefficiencies. 

The second sub question is: How do these approaches deal with volume or workload balancing? 

Workload balancing can be included, by first selecting customers that require a delivery in the short-

term planning period. Thereafter customers that not necessarily require a delivery in the short-term 

planning period, can be added to the routes based on the workload of the already planned 

customers/routes whilst including geographical criteria. Also, including a constant production rate in 

combination with a high inventory cost at the suppliers’ warehouse, forces the volume to be delivered 

in a constant rate resulting in mitigation of peaks. 

Time dependent delivery is addressed sparsely in literature, and where discussed, it is used to utilize 

the truck capacity given a route, instead of optimizing the set of customers that form a route. In Figure 

8 the complexity of the timing of the deliveries is visualized. Because of this complexity this research 

will use a method in which (i) the routes or (ii) the delivery quantities are not based on the other 

aspect being determined in a previous phase. We build a model in which they are integrated in a single 

phase. 

Concluding, for the creation of the tactical routing schedule, we must use the insight and the same 

kind of restrictions as with an IRP. The mathematical formulation of the model should be adjusted 

such that shelf life restrictions are included. This makes the model suited for the food industry. To get 

rid of the dependencies of decisions in different disciplines (i.e., transport and inventory) we must 

formulate the model such that the transport and inventory are dealt with simultaneously.  
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4. Model building 
In this chapter we answer research questions 3, 4, 5, 6b and 7. These research questions are as follows: 

Research question 3: ‘How can the requirements be translated into restrictions/input that can be used 
in routing optimization software?’ 

Research question 4: ‘How can workload balancing be applied in the tactical routing process of HAVI?’ 

Research question 5: ‘How do we build the model to optimize the transport and inventory integrated?’ 

Research question 6b: ‘How to compare the results of the experiments?’ 

Research question 7: ‘What operational policy should be followed after implementing the new tactical 
routing schedule?’ 

In Chapter 2, we described the current situation, for which we will develop a model such that the 

routing and inventory management are integrated into one system. In Chapter 3, we elaborated on 

the literature, which provides us with models that are used in optimization studies for routing and 

inventory management. 

We concluded in Chapter 3 that the assumption of unlimited shelf life is one of the main obstacles in 

the basic IRP model. The assumption is not valid in the food sector and not at HAVI. The different 

studies in literature mostly apply a multiple phase approach. In this chapter we build a model in which 

we use a single phase in which the delivery pattern and delivery quantities are being optimized 

simultaneously in the tactical routing schedule. 

 The main characteristics that we must include into our tactical model are: 

- Delivery quantity is dependent on the exact timing of the delivery, not only the delivery day. 

- Multiple groups of products are considered in storage as well as shelf life. 

- The delivery patterns are optimized simultaneous with optimizing the routes. 

- Workload balancing should be considered. 

- We should steer on minimizing the workload on more expensive days. 

We first build a model to improve the tactical routing schedule. Afterwards, we build a model for the 

operational policy. For the tactical model, we discuss in Section 4.1 the process of optimizing the 

routing schedule. We follow by discussing why and how we are going to optimize the delivery patterns 

and quantities simultaneously in Section 4.2. In Section 4.3, we discuss the input that we use. We 

continue with deducing lower bounds for the storage capacities in Section 4.4. Followed by how we 

determine the delivery windows for every delivery unit in Section 4.5. In Section 4.6 we use the 

assumption that the current routing schedule is a feasible solution, to find higher lower bounds. 

Finally, we build the model consisting of an allocation procedure and two improvement heuristics in 

Section 4.7. We use Section 4.8 to verify and validate the model we have built. In Section 4.9 we build 

the operational policy that is used to execute a sensitivity analysis. 

For this research to be beneficial for HAVI, they first need to know the capacities of the customers’ 

storage locations.  If capacities are already known, Sections 4.3, 4.4 and 4.6 can be skipped. In this 

research, we use an RVRP solver, which performs better when an initial solution is provided. In the 

case that there is no initial solution available or an RVRP solver is used who does not need an initial 

solution, Sections 4.6, 4.7.2 and 4.7.3 can be skipped. In those cases, the RVRP solver is used to 

construct routes out of the delivery units belonging to customers. However, the rest of this research 
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is formulated for the scenario in which we use an initial solution, because that is the case for HAVI. 

The experiments and results are also based on the use of an initial solution.  

4.1 Process of routing schedule optimization 

Because we want to jointly determine the delivery patterns and the delivery quantities in our model, 

which we did not find in models in literature, we need a revolutionary approach. To separate the 

determination of the delivery patterns and delivery quantities, we step back from the idea that we 

create deliveries and that those deliveries should be assigned a quantity. Instead we create all delivery 

units and for each delivery unit we determine when to deliver. From the result, we can see what 

delivery patterns are created and how many delivery units are assigned to the delivery moments, 

determining the delivery quantity. Therefore, the output are the delivery patterns and delivery 

quantities, but these are not the decision variables. 

In this section, we discuss the process of optimizing the tactical routing schedule. The model we build 

is an improvement heuristic. For this research we use an RVRP solver. HAVI uses Paragon as their 

transportation software, which is able to solve RVRP problems. Other RVRP solvers can be used with 

all kind of extra restrictions that are necessary for the specific application. Because of the complexity 

and asymmetric aspects of the routing problem (see Appendix V), optimization often results in a local 

optimum. By changing the input for the RVRP solver, we help the RVRP solver escape from local 

optima.  

 shows the process of our improvement heuristics and the use of an RVRP solver. In this research, we 

build the improvement heuristics that changes the input data for the RVRP solver. We then use an 

existing RVRP solver to optimize the routing schedule. In this research, the algorithm used to optimize 

the RVRP is out of scope. 

Because we build an improvement heuristic and no construction heuristic, we need an initial solution. 

In this research, we take the current tactical routing schedule as the initial solution for our model. As 

the current tactical routing schedule, we take the routing schedule HAVI executes the period from the 

6th of July until the 6th of September 2020. In this research, we use the term ‘current (tactical) routing 

schedule’ which can be replaced by ‘initial (tactical) routing schedule’. The volumes we use for the 

new tactical routing schedule, are also the same as HAVI used for the current routing schedule. 

Therefore, this research is used to find how the new tactical routing schedule performs compared to 

the current situation. In the future, for creating new tactical routing schedules, the initial solution 

should be set equal to the routing schedule that is active at that time, but volumes are forecasted for 

the period for the next tactical routing schedule. 

 

Figure 9: Diagram improvement heuristic 

The initial solution is a set of routes for seven consecutive days that determines the sequences of 

customers within each route, but without any volumes determined. In improvement heuristic A, we 

use an allocation procedure to allocate all delivery units to the routes. The result is the same set of 
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routes as the initial solution but filled with delivery units. This is the input for the RVRP solver. The 

RVRP solver is used to optimize the routing schedule. The result of the RVRP solver is a new set of 

routes in which the same delivery units are routed. However, for improvement heuristic B we only 

need the set of routes, without the delivery units. Because in heuristic B we allocate all the delivery 

units again using an allocation procedure. We now have filled the new routes. This is the input for the 

RVRP solver, which again solves the routing schedule. 

Figure 10 shows the process diagram in a more elaborated version. First, we briefly explain the 
diagram. The rest of this chapter discusses this process regarding the optimization of the tactical 
routing schedule in more detail. The main input for integrating transport and inventory management 
is the capacity of the customers’ storage locations. The tactical routing schedule will be made with 
fixed volumes, which are equal to the forecast. Based on this forecast, we make a list of all delivery 
units that we must plan in the tactical routing schedule. This list is used later multiple times, marked 
with a star in Figure 10. For a restaurant with forecasted volume of 𝐷 per week, the list contains 𝐷 
lines for that restaurant. Every line states which restaurant, temperature zone and unique ID 
corresponds to the delivery unit. For each delivery unit, we determine the delivery window. These 
delivery windows are added to the list of delivery units so that it forms the input for the RVRP solver. 
Before sending the input to the RVRP solver we execute heuristic A in which we allocate all delivery 
units from the list to the routes from the initial solution. The settings in the allocation procedure 
determine the priorities used, resulting in some shifts to be more utilized than others. We then use 
the RVRP solver to optimize the routing schedule, given the input. The output is a new routing 
schedule. With heuristic B, we again allocate all the delivery units from the list to the new routing 
schedule. In this heuristic we use other settings determining which shifts to be more utilized than 
others. Then the RVRP solver is again used to optimize the routing schedule, which is the final stage 
of our algorithm. We have now created a routing schedule and determined how much delivery units 
to be delivered for each customer. These delivery quantities are based on the forecasted volumes and 
serve as a target volume, we can deviate from when actual volumes deviate from forecast. 

 

Figure 10: Process of optimizing the tactical routing schedule 

Because HAVI does not know the capacities of the customers’ storage locations, the data preparation 

phase is more extensive. In Figure 11 we show the data preparation phase when storage capacities 

have to be determined. Lower bounds for the capacities are first determined based on historical data. 

The process of creating the list of all delivery units, which is based on the forecasted demand is the 
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same as the process shown in Figure 10. However, the delivery windows are determined in a different 

way. We add the assumption that the current routing schedule consists of only feasible delivery 

patterns. Because of this assumption we know that every delivery unit should have at least one 

possible delivery moment in which it can be delivered. When it is found that a delivery unit has no 

feasible delivery moment, we conclude that the input for our model is too restrictive, because we 

assumed that current routing schedule consists of only feasible delivery patterns. After adjusting the 

input data, we update the delivery window and check whether there is a feasible delivery moment 

again. After all delivery units have at least one feasible delivery moment, we continue the same 

process as shown in Figure 10 from heuristic A and further. 

 

Figure 11: Data preparation including capacity determination 

4.2 The unique approach of this model 

We build a model in which the delivery days and quantities are determined in one phase, by 

determining the possible delivery moments for each delivery unit. The RVRP solver has the freedom 

to spread the delivery units over different delivery moments. In this research, we construct the model 

for HAVI, but the logic behind the model is applicable for comparable problems. Before we continue, 

we explain some terminology: time and delivery windows.  
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- Time windows: The periods of time a customer can receive deliveries (see Appendix I) 

- Delivery windows: the periods in which a delivery unit can be delivered. The following factors 

determine the delivery windows for a specific delivery unit: 

o Weekly demand volume for the specific temperature zone. 

o Balance of demand during the week. 

o Storage capacity for the specific temperature zone. 

o Shelf life agreements with customer. 

o Time windows of the specific customer (The delivery windows are always a subset of 

the time windows of the corresponding customer). 

To make a better comparison with the traditional approach we show differences in Table 2. Appendix 

VI shows an example of how switching partial deliveries can obtain results that could not be achieved 

with traditional approaches. 

Table 2: Comparison approaches 

Traditional approaches from literature Our approach 

Delivery frequency is either fixed or flexible Delivery frequency is flexible 

Delivery days and quantities are being 

determined in different phases 

Delivery days and quantities are being 

determined in a single phase 

Improvements by switching complete deliveries Improvements by switching delivery units 

Shelf life is sparsely applied Shelf life agreements are included 

Inventory policy should be given Inventory limits are included, but there is no 

inventory policy 

 

4.3 Input to determine customers’ storage capacities 

If capacities are already known, this section can be skipped. In this section we discuss which data we 

use to determine the capacities of the customers’ storages. Before we continue, we first assume that 

we always deliver full roll containers. In reality, this is not always the case. The input data required for 

our model consists of the following: 

- Historical deliveries data. 

- Forecast for the near future. 

- Sales distributions. 

Historical deliveries data 

We assume that what has been delivered in the past has fit in the storage. Therefore, we need the 

number of delivery units per temperature zone per delivery. HAVI uses roll containers and dollies. In 

a truck, three roll containers take as much space as four dollies. We assume in the rest of our research 

that a dolly is always 0.75 roll container. 

In the system we can look back for five years. However, data on temperature zone level, can only be 

downloaded for the past hundred days. To increase the performance of the model, we advise HAVI to 

extent the data by downloading the historical data at least every hundred days. As an example, we 

show the first eight lines of the data download in Table 3. For every delivery there is one line per 

temperature zone and two lines within the frozen area, one line for the roll containers (Code 911) and 
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one line for the dollies (Code 903). The first column represents the date of departure of the route, 

which in our case is the same as the delivery day. The second column represents the ID of the 

customer. The third column is the number of pick units. The fifth column represents the abbreviation 

of the business. The sixth column represents the code of the type of pick unit. The right-most column 

represents the temperature zone. 

Table 3: Example of historical deliveries data 

Departure 

date 

Cust 

ID 

Quantity CUST 

Business ID 

Unit 

Code 

Temp Zone 

Description 

27-01-2020 1025 1 MCD 903 Frozen 

27-01-2020 1025 1 MCD 911 Chilled 

27-01-2020 1025 1 MCD 911 Dry 

27-01-2020 1025 2 MCD 911 Frozen 

27-01-2020 1033 2 MCD 903 Frozen 

27-01-2020 1033 1 MCD 911 Chilled 

27-01-2020 1033 1 MCD 911 Dry 

27-01-2020 1033 2 MCD 911 Frozen 

 

Forecast for near future 

The tactical routing schedule that we build will be active for a period of months. The period should be 

chosen such that the volumes over the weeks do not differ too much. Although the forecasting of 

volumes is out of scope for this research, we explain the following factors that influence the volume 

forecast: 

1. Near past. 

2. Budget. 

3. Sales forecast restaurant. 

4. Growth factor. 

We look at the near past to see what the weighted average demand over the past three weeks is, in 

which the week with highest volumes gets the highest weight. We use this weighting because we want 

the routes to have sufficient capacity in most of the weeks. The budget also influences the forecast, 

because the agreements with the customer are made that they are responsible to give this input. We 

also use the expected forecast for the coming weeks that is filled in by every restaurant. Finally, we 

apply a growth factor. This factor is based on (i) seasonality, and in this specific time, (ii) on changing 

legislations regarding the Covid-19 measures. We take a weighted average of all these factors to 

conclude are forecast. The volumes for McDonald’s are, despite Covid-19, at this moment already near 

the volumes of 2019. However, volumes per store fluctuate a bit more. 

Sales distribution 

The sales distribution indicates the fraction of sales per hour of the week per restaurant. This hourly 

demand distribution is based on historical sales data. An example of such a distribution is shown in 

Table 4. The data used is based on sales from July 2018 until June 2019. Every restaurant has its own 

hourly sales distribution. In this example we see the sales fractions from Monday 6 am till Monday 1 
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pm. The first hour of the table, the restaurant is closed, or sales per hour is lower than 0,05% of weekly 

volume. The hours after that, sales increase every hour. 

Table 4: Example of hourly sales distribution 

Day Mon Mon Mon Mon Mon 

t (hour) 5 6 7 8 9 

From 8:00 am 9:00 am 10:00 am 11:00 am 12:00 pm 

To 9:00 am 10:00 am 11:00 am 12:00 pm 1:00 pm 

% of weekly sales 0,0% 0,1% 0,3% 0,4% 1,1% 

Cumulative 0,0% 0,1% 0,4% 0,8% 1,9% 

 

4.4 Deducing capacity of storage locations 

If capacities are already known, this section can be skipped. In the previous section we discussed the 

input needed to deduce the capacity of storage locations. In this section we are going to determine 

lower bounds for the capacities.  

In earlier simulation studies HAVI used the surface of the storage as indicator of the storage capacity. 

However, this is not accurate. For example, some freezers are only accessible via the fridge, therefore, 

more space in the fridge must be reserved as a walking path. This is just one out of many examples 

why the surface of the storage location is a poor indicator for the capacity. In this research, we deduce 

the storage capacity based on historical data as well as on expected forecasted volumes. We define 

two criteria for which we assume that they are true in practice. Based on these assumptions we 

deduce lower bounds for the storage capacities. The two criteria are as follows: 

1. The capacity is at least as big as the largest delivery that is received in the past. 

2. The capacity is at least as big as the largest amount that is expected to be consumed 

between two deliveries within the planning horizon. 

Using these criteria, we know the lower bound of the capacity. In practice, the capacity can be higher. 

Therefore, we do not utilize the full potential. Further actions or research needs to be done to increase 

the knowledge of the storage locations’ capacity. 

Criterium 1 

We assume that the obtained historical data of the deliveries is correct. This leads to knowing the size 

of the largest delivery that has taken place in history. In this criterium we assume that the capacity of 

the storage location is at least enough to have received the largest delivery.  

One reason why the capacity is not at least the size of the largest delivery, is that the delivery in the 

past maybe did not fit in the storage. This could be when delivery took place before a huge sales peak, 

and not all goods had to be placed in storage, but a part was directly placed in the kitchen to be used. 

On the contrary, at arrival of a delivery, there are always still some products in storage. Therefore, the 

capacity is bigger than what is added to storage. To combine the delivery data with the data stating 

how much goods were already in storage upon delivery, is left for further research. Furthermore, 

because we have data of the past hundred days, the period we are looking at are either winter months 

or months in which Covid-19 had its impact. Therefore, we take the largest delivery from this period. 
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In the future, HAVI has to think of a method how to exclude the outliers. For example, on king’s day, 

deliveries can grow so large, that it is uncomfortable for the restaurants but accepted as an exception. 

Criterium 2 

In this criterium, we assume that all consumption between two deliveries (i.e., delivery A and B) fits 

in storage. All goods that are being consumed between delivery A and B, were delivered in delivery A 

or earlier. Because they are in storage just after delivery A, but not yet consumed, they were in the 

storage all at the same time. 

The exception to this logic is when a restaurant also has received goods between delivery A and B that 

were not delivered by HAVI. Since HAVI is the only external supplier, the only option is that they 

received goods from other neighboring restaurants (i.e., mutual delivery). If a restaurant did receive 

a mutual delivery between delivery A and B, it is not true that the capacity of the storage is at least as 

big as the amount that is consumed between delivery those deliveries. 

However, we do assume that the volume consumed between two deliveries fits in the storage. If two 

deliveries are planned such that the sales forecast between the two deliveries is greater than the 

capacity of the storage, the restaurant planner must adjust the order such that it fits in the storage. 

The delivery is then smaller than needed to cover all sales to the next delivery. Therefore, a mutual 

delivery is needed. The assumption that the volume being consumed between two deliveries fits in 

the storage, can lead to the restaurant needing a mutual delivery, in the case that they in practice also 

needed a mutual delivery. 

In this research, we use the timing of deliveries in the current situation in combination with the 

forecasted volumes and historical sales distribution to determine the maximum volume that is being 

consumed between two deliveries. For example, based on the data in Table 4, the maximum amount 

between two deliveries is 40% of the weekly volume. We assume that 40% of the expected weekly 

volume fits in the storage. For this statement we use the fact that in the current situation the delivery 

patterns are determined or approved by the restaurant planners. Therefore, we assume that the 

delivery patterns in the current situation are feasible, given the forecasted volumes. From this 

assumption it follows that the largest expected volume consumed between two deliveries, fits in the 

storage. We do not take the actual maximum amount being consumed between two deliveries, 

because the sales data that is available is expressed in euros. This cannot be translated to storage 

space. To determine the corresponding storage space that is being consumed between two deliveries, 

we need to know for each article how often it is sold and how much storage space is used for that 

article. We do not have data on this detail level. 

Summarizing 

We defined two criteria and assume them to be true in practice. Therefore, the storage capacities in 

practice are at least as big as the criteria are stating. We therefore have determined lower bounds for 

the capacities. In practice, the storages may be larger.  



41 
 

4.5 Determining delivery windows 

The basis of our approach is to determine the delivery window for every delivery unit. A delivery 

windows is subset of the time windows corresponding to the specific customer bounded by an earliest 

and latest delivery moment. The earliest and latest delivery moment possible for delivery unit 𝑈 will 

be denoted by 𝐸𝑎𝑟𝑙𝑖𝑒𝑠𝑡(𝑈) and 𝐿𝑎𝑡𝑒𝑠𝑡(𝑈), respectively. 

Earliest possible delivery moment 

The earliest possible moment of delivery is affected by the following aspects: 

- Period of consumption. 

- Shelf life agreements. 

- Storage capacity for specific temperature zone. 

- Possible delivery moments of previous delivered delivery units. 

We distinguish the limits by two categories. The first category contains the first two aspects and are 

related to the shelf life. The other category contains the last two aspects and are related to the storage 

capacity. Before elaborating more on these categories, we look at the consumption period of a 

delivery unit. 

Consumption period 

The consumption period of a delivery unit is the time that is used to consume the goods on a delivery 

unit. Without losing generality, we assume that consumption periods of delivery units are strictly 

disjunctive (i.e., do not overlap). Furthermore, we assume that the start of the consumption period of 

the first delivery unit in a week, is exactly at the beginning of the week (i.e., Monday 4 am).  

- The weekly demand for customer 𝐶 for temperature zone 𝑇 is denoted by 𝐷𝐶,𝑇. 

- The nth delivery unit of customer 𝐶 for temperature zone 𝑇 is denoted by 𝑈𝐶,𝑇,𝑛. 

- The start of the consumption of 𝑈𝐶,𝑇,𝑛 is when 𝑛 − 1
𝐷𝐶,𝑇

⁄  part of weekly volume is consumed, 

and this is denoted by 𝑡𝐶,𝑇,𝑛
𝑠𝑡𝑎𝑟𝑡. 

- The end of the consumption of 𝑈𝐶,𝑇,𝑛 is when 𝑛 𝐷𝐶,𝑇
⁄  part of weekly volume is consumed, and 

this is denoted by 𝑡𝐶,𝑇,𝑛
𝑒𝑛𝑑 . 

𝑡𝐶,𝑇,𝑛
𝑠𝑡𝑎𝑟𝑡 and 𝑡𝐶,𝑇,𝑛

𝑠𝑡𝑎𝑟𝑡 are both being expressed in hours, starting with Monday 4 am = 0, Monday 5 am = 1 

until Monday 3 am = 167. For example, when 𝐷𝐶,𝑇 = 4 , the start of the consumption period of the 

2𝑛𝑑 delivery unit for customer 𝐶 in temperature zone 𝑇 is when 2 − 1
4⁄ = 25% of weekly volume is 

consumed. From the cumulative data as in Table 4, we know which hour corresponds to that 

percentage.  

Shelf Life 

For frozen and dry goods, the shelf life is longer than a week. Since we assume that we do not deliver 

goods more than a week earlier, the minimum shelf life agreement (𝑆𝐿𝐴) for frozen and dry goods is 

set at seven days. The minimum shelf life agreement for chilled goods is four days, including the day 

of delivery (e.g., Monday delivery until Thursday consumption). In our study we define the start of a 

day as 4 am. Every time between midnight and 4 am will belong to the previous day. We set the earliest 

delivery moment possible, regarding the shelf life, based on the end of the consumption period. If the 
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end of the consumption period for the nth delivery unit of customer 𝐶 for temperature zone 𝑇 is during 

day 𝑑, the earliest delivery moment, regarding the shelf life, is at the start of day  𝑑 − (𝑆𝐿𝐴 −  1) 

and expressed in Equation 2. 𝑡𝐶,𝑇,𝑛
𝑒𝑛𝑑  is expressed in hours. To know at which day this hour is, we divide 

by 24 and round down. We subtract three days and multiply by 24 again, to get the hour representing 

the start of the day, 𝑆𝐿𝐴 −  1 days before the end of the consumption period.  

Equation 2 

𝐸𝑎𝑟𝑙𝑖𝑒𝑠𝑡(𝑈𝐶,𝑇,𝑛)𝑆ℎ𝑒𝑙𝑓 = (⌊𝑡𝐶,𝑇,𝑛
𝑒𝑛𝑑 /24⌋ − 𝑆𝐿𝐴) ∗ 24 

Capacity 

The second category limiting the earliest delivery moment possible is related to the storage capacity.  

- The capacity of the storage location for temperature zone 𝑇 for customer 𝐶 is denoted by 

𝐶𝑎𝑝𝐶,𝑇. 

- We assume that the delivery units are being delivered in the same order as in which they are 

being consumed. 

- Capacity should be enough also in a scenario where all volumes are equal to 110% of 

forecasted volume. 

We take 110% of forecasted volume because it is reasonable that the actual volumes will deviate less 

than 10% of forecasted volume. On average the deviation for the total market sales per day is about 

4%. The safety of 10% is on customer level per delivery. A delivery contains possibly multiple days of 

sales. Based on correlation factors of sales of consecutive days and including a weighting how many 

days are between two consecutive deliveries, the percentage could be determined, for which holds 

true that 95% of all deviations are smaller than this percentage. However, we have taken this 10% as 

a rule of thumb, which is reasonable looking at the numbers. 

Because of the assumption of the order of delivery, we know that upon delivery of delivery unit 𝑈𝐶,𝑇,𝑛 

at time 𝑡 all delivery units {𝑈𝐶,𝑇,𝑖 | 𝑖 < 𝑛 ˄ 𝑡𝐶,𝑇,𝑖
𝑠𝑡𝑎𝑟𝑡 > 𝑡} are in storage (i.e., at the moment of delivery, 

every delivery unit that is already delivered, but not yet consumed, is still in storage). Here, 𝑡 is also 

expressed in hours. We state that the earliest delivery moment regarding the capacity restriction is: 

Equation 3 

𝐸𝑎𝑟𝑙𝑖𝑒𝑠𝑡(𝑈𝐶,𝑇,𝑛)𝐶𝑎𝑝 = 𝑡𝐶,𝑇,(𝑛−𝐶𝑎𝑝𝐶,𝑇)/1.1)
𝑒𝑛𝑑  

To deliver a delivery unit, there should be a place available in storage. 𝑈𝐶,𝑇,(𝑛−(𝐶𝑎𝑝𝐶
𝑇)/1.1) is the delivery 

unit 𝐶𝑎𝑝𝐶,𝑇 places before delivery unit 𝑈𝐶,𝑇,𝑛 in the 110% volume scenario. In Equation 3 we say that 

the earliest possible delivery moment of 𝑈𝐶,𝑇,𝑛, regarding the capacity, is equal to the end of the 

consumption period of 𝑈
𝐶,𝑇,(𝑛−

𝐶𝑎𝑝𝐶,𝑇
1.1

)
. An example with capacity set at two, determining the delivery 

window for the second delivery unit of four delivery units per week is as follows: 

𝐸𝑎𝑟𝑙𝑖𝑒𝑠𝑡(𝑈𝐶,𝑇,2)𝐶𝑎𝑝 = 𝑡𝐶,𝑇,0.18
𝑒𝑛𝑑  is when 0.18

4⁄ = 4.5% of weekly volume is being consumed. 
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The shelf life and the capacity both have a limitation on the earliest delivery moment possible. 

Therefore, we conclude from Equation 2 and Equation 3: 

Equation 4 

𝐸𝑎𝑟𝑙𝑖𝑒𝑠𝑡(𝑈𝐶,𝑇,𝑛) = 𝑚𝑎𝑥(𝐸𝑎𝑟𝑙𝑖𝑒𝑠𝑡(𝑈𝐶,𝑇,𝑛)𝑆ℎ𝑒𝑙𝑓 , 𝐸𝑎𝑟𝑙𝑖𝑒𝑠𝑡(𝑈𝐶,𝑇,𝑛)𝐶𝑎𝑝) 

Latest possible delivery moment 

The latest possible delivery moment is easier than the earliest possible delivery moment. The latest 

possible delivery moment is limited by the consumption period. It is trivial; the delivery must take 

place before consumption starts, concluding: 

Equation 5 

𝐿𝑎𝑡𝑒𝑠𝑡(𝑈𝐶,𝑇,𝑛) =  𝑡𝐶,𝑇,𝑛
𝑠𝑡𝑎𝑟𝑡 

Appendix VII contains an example of how delivery windows are determined. This example also 

discusses how to deal with the following: 

- Crossing the borders of a week. 

- Periods in which no volume is consumed. 

4.6 Further relaxation of lower bounds 

If capacities were already known, this section can be skipped. Also, when is chosen that a routing 

schedule is constructed from scratch instead of using an initial solution, this section can be skipped. 

In Section 4.4, we stated two criteria, which determined lower bounds for the capacity of the storages. 

In this section we show that if we assume that the current routing schedule consists of feasible delivery 

patterns, we can further relax those lower bounds. 

4.6.1 Infeasible situations 

The delivery patterns in the current situation are determined or approved by the restaurant planners. 

We therefore assume that the delivery patterns are feasible in practice. However, it is possible that 

they are not yet feasible in our model. There are two situations why the current routing schedule 

according to the input data is not feasible: 

1. The capacity we deduced is too restrictive. 

2. The consumption period we determined is too restrictive. 

Situation 1 

It is possible that the capacity that we discussed in Section 4.4 is not sufficient. There are two reasons 

why this could be the case: 

a. The consumption periods are not in sync with the delivery moments. 

b. The delivery window is smaller than the time between two deliveries 

Reason a 

We give an example of a delivery window that lies between two consecutive delivery moments. 

Therefore, the delivery unit cannot be delivered in any of the two delivery moments. Suppose that in 

Section 4.4 we deduced the capacity of a specific storage to be 𝐶𝑎𝑝𝐶,𝑇, which is the maximum amount 
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being consumed between two deliveries. Suppose that the delivery moments in the current schedule 

are such that the first delivery (delivery A) takes place after 0.5 delivery units are being consumed and 

the second delivery (delivery B) takes place after 𝐶𝑎𝑝𝐶,𝑇 + 0.5 delivery units are being consumed. We 

will show that the delivery window of 𝑈𝐶,𝑇,(𝐶𝑎𝑝𝐶,𝑇+1), which is 𝑈𝐶,𝑇,𝑛 with 𝑛 = 𝐶𝑎𝑝𝐶,𝑇 + 1 lies between 

those two boundaries. From Equation 3 it follows that  

𝐸𝑎𝑟𝑙𝑖𝑒𝑠𝑡(𝑈𝐶,𝑇,(𝐶𝑎𝑝𝐶,𝑇+1))𝐶𝑎𝑝 = 𝑡𝐶,𝑇,((𝐶𝑎𝑝𝐶,𝑇+1)−(𝐶𝑎𝑝𝐶,𝑇)/1.1)
𝑒𝑛𝑑  > 𝑡𝐶,𝑇,1

𝑒𝑛𝑑 . Therefore, the start of the 

delivery window is later than delivery A. From Equation 5 it follows that  

𝐿𝑎𝑡𝑒𝑠𝑡(𝑈𝐶,𝑇,(𝐶𝑎𝑝𝐶,𝑇+1)) = 𝑡𝐶,𝑇,(𝐶𝑎𝑝𝐶,𝑇+1)
𝑠𝑡𝑎𝑟𝑡 = 𝑡𝐶,𝑇,(𝐶𝑎𝑝𝐶,𝑇)

𝑒𝑛𝑑 . Therefore, the end of the delivery window is 

earlier than delivery B. Therefore, this delivery unit cannot be allocated to any of the routes in the 

current situation and therefore, no feasible delivery moment exists. 

Reason b 

Suppose that the result of criterium 2 is that the capacity of a specific storage is 𝐶𝑎𝑝𝐶,𝑇, because that 

is the maximum expected amount to be consumed between two deliveries (i.e., there are 𝐶𝑎𝑝𝐶,𝑇 

consumption periods between delivery A and B). When we determine the delivery window, the 

earliest delivery moment is determined in Equation 3 and set equal to 𝑡𝐶,𝑇,(𝑛−(𝐶𝑎𝑝𝐶,𝑇)/1.1)
𝑒𝑛𝑑 . The latest 

delivery moment is determined in Equation 5 and set equal to 𝑡𝐶,𝑇,𝑛
𝑠𝑡𝑎𝑟𝑡, which also equals 𝑡𝐶,𝑇,(𝑛−1)

𝑒𝑛𝑑 . 

Therefore, the width of the delivery window is (𝑛 − 1) − (𝑛 −
𝐶𝑎𝑝𝐶,𝑇

1.1
) =

𝐶𝑎𝑝𝐶,𝑇

1.1
− 1 consumption 

periods, which is smaller than the 𝐶𝑎𝑝𝐶,𝑇 consumption periods between delivery A and B. Both 

reasons explained how it can be that the capacity that we determined is too restrictive. Apparently, 

the capacity in practice is larger than we stated in the model. When this is the case, we increase the 

value of the capacity with 10%. How this is applied is explained in Section 4.6.2. 

Situation 2 

We assumed that all delivery units are full (i.e., we assumed every delivery unit to contain products 

covering the same amount of sales). However, in practice the utilization of delivery units can differ. 

When a delivery unit is not fully utilized, its consumption period covers less sales. Especially in the 

restaurants with small storages, restaurant planners do not utilize the delivery units fully. Suppose 

that three deliveries are spread such that 1.2 roll container is consumed between delivery A and B, 

and 0.9 delivery unit between delivery B and C. When, the storage is not much larger than 1.2 roll 

containers, the restaurant planner will not make the order larger than the 1.2 roll container that is 

strictly needed. The first delivery consists of two delivery units that are 60% utilized on average. The 

next delivery consists of one delivery unit, that is 90% utilized. The consumption period of the last 

delivery unit contains 50% more sales than the first two. Because we assumed only full delivery units 

are being delivered, we also assumed the consumption periods to contain equal amounts of sales. 

We see that the sales per delivery unit can differ in practice, but we have assumed that every delivery 

unit represent equal amount of sales. Therefore, it is possible that some delivery units can be delivered 

in practice, but not in our model. To adjust for this effect, we shorten the consumption periods for 

these delivery units. Because the delivery window is dependent on the start of its own consumption 

period, we shorten the consumption period by adjusting the start of the consumption period (i.e., 

setting it to a later moment). When the start of the consumption period is at hour ℎ and the 

consumption period’s duration is 𝑑, we adjust the start of the consumption period to ℎ + 0.1 ∗ 𝑑. The 
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consumption period is now decreased with 10%. This 10% is chosen arbitrarily. We know that the 

consumption period is too long, but not how much too long. This 10% is used in the algorithm in the 

next section. This algorithm now runs in about two minutes. Decreasing the 10% makes the algorithm 

more accurate at the expense of calculation time. 

4.6.2 Algorithm feasibility 

In Section 4.6.1 we gave some situations in which it is possible that due to the input being too 

restrictive, some delivery units cannot be delivered in any of the delivery moments, although the 

delivery pattern is feasible in practice. For all delivery patterns from the current routing schedule to 

become feasible in our model, all delivery units should have at least one possible delivery moment in 

the current routing schedule. To do this, we need an algorithm to adjust the input data (i.e., capacities 

and shelf life agreements that are too restrictive). We show the process diagram of the algorithm in 

Figure 12. Using the list with all delivery units, we loop over all customers and all temperature zones, 

to check whether there is a delivery unit without a feasible delivery moment in the current routing 

schedule. If there is a delivery unit without a feasible delivery moment, we check whether it is due to 

the capacity constraints, or the shelf life constraint.  

  

Figure 12: Process Diagram Algorithm Feasibility 
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From Equation 4 it follows that at least 𝐸𝑎𝑟𝑙𝑖𝑒𝑠𝑡(𝑈𝐶,𝑇,𝑛) = 𝐸𝑎𝑟𝑙𝑖𝑒𝑠𝑡(𝑈𝐶,𝑇,𝑛)𝑆ℎ𝑒𝑙𝑓  or                  

𝐸𝑎𝑟𝑙𝑖𝑒𝑠𝑡(𝑈𝐶,𝑇,𝑛) = 𝐸𝑎𝑟𝑙𝑖𝑒𝑠𝑡(𝑈𝐶,𝑇,𝑛)𝐶𝑎𝑝. If the capacity of the customers storage is the limiting 

factor, we know that the derived capacity is lower than the actual capacity. Therefore, we increase 

the input value of the capacity with 10%. Otherwise, the shelf life is the limiting factor and we reduce 

the consumption period with 10% by adjusting the start of the consumption period and setting it to a 

later moment.  

4.7 Algorithm for optimization 

We now develop our main algorithm. We are done with the data preparation phase and continue with 

the improvement heuristics. In Figure 10, we see how this relates to the overall process. Improvement 

heuristic A and B are used to escape from local optima. Heuristic A emphasizes the removal of 

unnecessary deliveries in the most costly or largest (based on workload) shifts and adding deliveries 

in the less costly and smaller shifts. Heuristic B emphasizes the utilization of the least costly and 

smallest shifts. In Chapter 5, we experiment with applying either one or both the improvement 

heuristics.  

4.7.1 Tradeoff costly shifts vs workload balancing 

In this section, the terminology ‘priorities of shifts’ is important to understand. The priority of the 

shifts is defined such that the shifts with the lowest costs and/or lowest workload have the highest 

priorities. We want to utilize the shifts having a high priority more than in the current situation. Several 

times in our algorithm an allocation procedure will be used. The allocation procedure emphasizes 

either on the shifts with the lowest priorities or the shifts with the highest priorities. 

Some delivery units have a small delivery window and must be delivered on a specific day. Other 

delivery units have a broader delivery window and in the allocation procedure we determine on which 

route they are delivered. In Figure 13 we see that an emphasis on the shifts with the lowest/highest 

priorities results in routes on the most/least expensive shifts to be utilized most. In different stages of 

the algorithm, the focus is either on the low or high priorities. These allocation procedures are used 

to escape from local optima. Afterwards the RVRP solver optimizes the routing schedule.  

Figure 13a: Emphasize on low priority              Figure 13b: Emphasize on high priority 

Giving priorities to the shifts we consider two factors: 

- Costs related to a shift (in the weekends salary supplements are in place). 

- Workload of a shift. 
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Costs 

The costs of a tactical routing schedule consist of the following: 

- Labor costs. 

- Marginal costs for distance. 
- Costs for the vehicles. 

Labor costs 

Labor costs are split into costs related to transport and costs related to warehouse. Labor costs related 

to transport exists of the duty time of a driver. The duty time for a route is measured from departure 

from the DC, until arrival at the DC, increased with one and a half hour. The increment of one and a 

half hour is used because this time is needed for loading, unloading and the administration of a route. 

We set the hourly costs at €30. Labor costs related to the warehouse are determined based on the 

number of delivery units that must be picked. The total costs of all handlings are set at €4 per delivery 

unit. For both transportation and warehousing, salary supplements are included as stated in Table 5. 

The weighted average is based on the approximation that one third of the costs is warehouse related 

and two third is transport related.  

Table 5: Costs factor per shift in the weekend 

Delivery moment Pick moment Weighted average 

Saturday daytime (150%) Friday evening (100%) 133% 

Saturday evening (150%) Saturday daytime (150%) 150% 

Sunday daytime (200%) Saturday evening (150%) 183% 

Sunday evening (200%) Sunday daytime (200%) 200% 

Monday daytime (100%) Sunday evening (200%) 133% 

 

Marginal costs for distance 
The main components of the marginal costs for distance traveled are (i) the fuel used and (ii) the 

maintenance costs that are allocated to mileage. These costs together are set at €1 per kilometer. 

Costs for the vehicles 

The main components for the costs related to the fleet size are the costs for leasing the trucks, 

insurance, and maintenance for damage that is not covered and allocated to aging. These costs 

together are set at €2000 per week per truck. In our results we measure the deviation in costs with 

respect to the current situation (e.g., 22 trucks have zero costs).  

Summarizing, the costs used for this research are as follows: 

- €1 per kilometer traveled. 

- €30 per hour for a driver. 

- €4 per delivery unit handled in the warehouse. 

- €2000 per truck per week. 

Workload balancing 

Besides reducing costs based on supplementary salary, we also aim at balancing the workload. In 

Figure 14 we show the number of routes that are planned per shift. When focusing on workload 

balancing, we prioritize based on these numbers. When two shifts have the same score, the 
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prioritization is based on secondary arguments (e.g., a day shift is often more efficient to schedule). 

Workload balancing is scored based on penalizing deviations from the preferred workload per shift.  

Subnetwork 

Because in this research we only consider data from a fifth part of the total network, we need to 

measure the workload balancing in how it contributes to the balance of the total network. If this study 

would be applied to the total network, the part until Table 6 doesn’t have to be executed, but it is 

good to read for terminology. The workload balance for the selection that is within the scope of this 

research is not the same as the  workload balance in the total network. The preferred workload 

(delivered delivery units) per shift is determined such that it contributes to balancing the workload in 

the total network.  

- The current workload of shift 𝑠 in the Netherlands is denoted by 𝑊𝑠
𝑁𝐿. 

- The current workload of shift 𝑠 in the east of the Netherlands is denoted by 𝑊𝑠
𝐸𝑎𝑠𝑡. 

- The target workload of shift 𝑠 in the Netherlands is denoted by 𝑇𝑠
𝑁𝐿. 

- The target workload of shift 𝑠 in the east of the Netherlands is denoted by 𝑇𝑠
𝐸𝑎𝑠𝑡. 

Figure 14: Routes per shift 

We determine the target workload for shift 𝑠 in the east of the Netherlands as follows: 

Equation 6 

𝑇𝑠
𝐸𝑎𝑠𝑡 = 𝑊𝑠

𝐸𝑎𝑠𝑡 − (𝑊𝑠
𝑁𝐿 − 𝑇𝑠

𝑁𝐿) 

The results of Equation 6 for each shift are stated in Table 6 (D = Day, E = Evening). We now have 

determined targets for the workload for each shift. If we used data of the total network instead of 

only a part (as we do in this research with the eastern part of the Netherlands), we could just have 

filled in the preferred workload balance for the total network. In the remainder of this calculations 

this preferred values have to be filled into the variables 𝑇𝑠
𝐸𝑎𝑠𝑡 although it applies for the total 

network.  
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Table 6: Target workload East of the Netherlands 

 

Table 6: help 

 

 

 

The workload of shift 𝑠 in experiment 𝑒 is denoted by 𝑊𝑠,𝑒. The total penalty of the workload 

distribution (𝑊𝑃) of experiment 𝑒 is calculated as follows: 

Equation 7 

𝑊𝑃𝑒 = √∑ (𝑊𝑠,𝑒 − 𝑇𝑠
𝐸𝑎𝑠𝑡)

2
𝑠=1 𝑡𝑜 14

14
⁄  

The delta between 𝑊𝑠,𝑒 and 𝑇𝑠
𝐸𝑎𝑠𝑡 is being squared because the larger the difference, the larger the 

marginal extra costs we assume. We divide this by 14 and take the square root to normalize the value 

of the penalty. It is not equal to the average deviation because the higher the deviation, the more 

severe the penalty due to the square. When 𝑊𝑃𝑒 equals zero it means that the workload in each shift 

is exactly equal to the target level. 

4.7.2 Improving tactical routing schedule 

When is chosen that a routing schedule is constructed from scratch instead of using an initial solution, 

this subsection can be skipped. We now explain the algorithm to improve the tactical routing schedule. 

Remember that this is not a construction heuristic and we thus need an initial solution. For HAVI, we 

use the current routing schedule as initial solution. The algorithm is split in improvement heuristics A 

and B. Both based on the following allocation procedure. This allocation procedure is needed to 

escape from local optima while steering on which shifts to utilize most. 

Allocation procedure 

The allocation procedure is used to determine to which routes the delivery units are being allocated, 

as is visualized in Figure 13. The priority of the shifts is already determined. In Section 4.6, we ensured 

that each delivery unit can be assigned to at least one possible route (i.e., delivery moment). The 

delivery units that can be delivered in only one route must be allocated first, because they have no 

other option. For delivery units that can be delivered to multiple routes, we must prioritize which 

delivery units to allocate first. The delivery units with the least number of options, and the delivery 

units for which the alternative options are more expensive should be routed earlier than delivery units 

with multiple inexpensive options. The  To prioritize this way, we build the following allocation 

procedure: 

(i) Assign points to the shifts such that shifts that needs to be utilized most, have the highest 

number of points. An example is presented in Table 7, here we focus on reducing costs 

first and balancing workload second. The priorities follow from Table 5 and Figure 14. In 

this example, the higher the priority, the higher the number of points. Therefore, we 

emphasize on high priority as in Figure 13b. All other combinations to assign points are 

presented in Appendix VIII. 
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Table 7: Points assigned to priorities of shifts 

 

(ii) For all delivery units, determine to which routes and corresponding shifts it can be 

allocated to. 

(iii) Assign points to all delivery units. The points are being equal to the summation of all shifts 

the delivery unit can be allocated to. For example, a delivery unit with a delivery window 

from Tuesday 8 am until Wednesday 6 pm, where the customer has only a delivery (in the 

current routing schedule) in a route on Wednesday daytime, gets 80 points. 

(iv) Loop over all routes 𝑟 = 1 𝑡𝑜 𝑅 starting with the routes in the shifts with the highest 

points. r is the counter, and R is the total number of routes. 

(v) For all delivery units that can be assigned to route 𝑟, determine how many delivery units 

can be delivered to route 𝑟, have less or equal number of points. Delivery units that are 

already allocated to another route are excluded. 

(vi) Determine the number of available places (𝐴𝑃𝑟) in the route for McDonald’s delivery units. 

The delivery quantities of other customers are being fixed, as assumed in Section 1.6.  

(vii) Number the delivery units from lowest to highest points, all delivery units get a unique 

number 𝑛𝑟 . Therefore, delivery unit 𝑛𝑟 is the 𝑛𝑟𝑡ℎ delivery unit that will be allocated. 

(viii) Delivery unit 𝑛𝑟 is allocated to route 𝑟 if 𝑛𝑟 ≤ 𝐴𝑃𝑟.  

With this allocation procedure it is possible that there are delivery moments to which no delivery units 

are being allocated. Likely, the delivery moments not being used are in shifts we do not emphasize. If 

the emphasis was on high priority shifts, we remove the delivery moments that are not being used 

from the current routing schedule. However, if the emphasis was on low priority shifts, we do not 

remove those delivery moments, but add a dummy delivery unit to this delivery moment. This dummy 

delivery unit is explained in Section 4.7.3 at step 5. 

We now explain heuristic A and B. It is possible to either execute only one of the heuristics without 

the other, or to first execute heuristic A followed by heuristic B. If heuristic B is executed after heuristic 

A, then the result of heuristic A will be input for heuristic B. If we do not first execute A, then the 

current routing schedule is the input for heuristic B. 

Heuristic A 

The goals of heuristic A are: 

(i) Avoid unnecessary deliveries in the most costly or largest shifts (i.e., shifts with the lowest 

priorities). 

(ii) Add deliveries to the shifts that are less costly or which workload is lower (shifts with 

highest priorities).  

We want to avoid that we use a delivery moment, just because it is in the current routing schedule. 

Especially delivery moments in shifts with lowest priority we want to avoid. Therefore, we start filling 

routes in the shifts with the highest priorities as much as possible. Only when some delivery units 

cannot be allocated to the shifts with the higher priorities, we must deliver it in the shift with the 

lower priority. When no delivery units are allocated to a certain delivery moment, apparently this 

delivery moment is not needed to meet customers’ storage restrictions. These deliveries are removed 
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from the current routing schedule. All routes are emptied, and again all delivery units are being 

allocated, but this time with emphasis on low priority shifts. The advantage of emphasizing on the low 

priority shifts is that the routes in these shifts have spare capacity such that new delivery moments 

can be added in these routes. To prevent the RVRP solver to merge routes, we add a dummy customer 

in each route. These dummy customers are defined such that they cannot be delivered in the same 

route. 

Heuristic B 

The purpose of heuristic B is to move the workload as much as possible to shifts with the highest 

priorities. In the allocation method the delivery units are assigned as much as possible to the shifts 

with the highest priorities. The goals of heuristic B are: 

(i) Use the opportunities to merge routes in the shifts with the lowest priorities because they 

have a low utilization. This way, we reduce the number of routes in those shifts. 

(ii) Increasing the utilization of the shifts that (i) have a low workload or (ii) are less costly. 

The steps of the algorithm 

The Algorithm we use to improve the current tactical routing schedule consists of nine steps. The first 

seven steps belong to heuristic A and the last two steps belong to heuristic B. The algorithm contains 

the following steps: 

Heuristic A 

1. Set the order of the shifts such that the highest priority is given to the shift that we want to 

utilize the most. 

2. Use the allocation procedure with emphasis on high priority. 

3. Remove the unused of the current routing schedule. 

4. Use the allocation procedure with emphasis on low priority. 

5. Add a dummy delivery unit to every delivery to which no delivery unit is assigned. 

6. Add a dummy customer to each route, preventing the RVRP solver to merge routes. 

7. Using the RVRP solver, optimize the routing schedule based on duty time. 

Heuristic B 

In some experiments we already applied heuristic A. The outcome of step 7 (without the dummy 

customers) serves as input for heuristic B. Otherwise, we take the current routing schedule as input. 

8. Use the allocation procedure with emphasis on high priority. 

9. Using the RVRP solver, optimize the routing schedule based on duty time. 

4.7.3 The algorithm elaborated 

When is chosen that a routing schedule is constructed from scratch instead of using an initial solution, 

this subsection can be skipped. In the previous section we mentioned the steps of our algorithm on 

how to optimize our routing schedule. In this section we elaborate more on some step. 

Step 1 and 2 

In these steps we set the priorities of the shifts and assigned points as in the example of Table 7. In 

this research, we are using four different scenarios, which are stated in Appendix VIII.  
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Step 5 

In step 4 the emphasis was on filling the routes within the shifts with low priority. Possibly, to some 

delivery moment (especially in shifts with higher priority) no delivery units are being allocated. Since 

it is not the goal to reduce the number of deliveries in the shifts with higher priority, we add a dummy 

delivery unit to these deliveries. We decide to set the delivery window of the dummy delivery unit 

equal to the adjacent days in such a way that no other delivery moment from the current routing 

schedule can be chosen for this delivery unit. In Table 8 we show the delivery window for a dummy 

delivery unit that corresponds to a delivery on Tuesday, given the current delivery pattern. We see 

that the dummy delivery unit can be delivered anytime from Monday until Thursday. 

Table 8: Delivery windows Dummy delivery unit 

Day Mon Tue Wed Thu Fri Sat Sun 

Current pattern  x   x  X 

Dummy delivery windows ---------- ---------- ---------- ----------    

 

Step 6 

In this step we add a delivery to a dummy customer to every route. We do not deliver any delivery 

units, so this customer does not impact the utilization of the truck. The dummy customer is located 

near to the DC and is visited first in the route. The loading time for the dummy customer is one minute, 

which makes sure it does not impact the routing options. We set a rule in the RVRP solver that two 

delivery units of the dummy customer can never be delivered in the same route. This way, the delivery 

units remain separated while optimizing and no routes are merged. 

We must prevent that routes are transferred to shifts with a lower priority. Therefore, the delivery 

window of the dummy customer is set equal to the possible departure times of all the shifts that have 

a priority at least as high as the shift in which the route is currently driven. The possible departure 

times are taken because the customer is close to the DC and is visited first. The possible departure 

times are between 4 am and 8:30 am for day shifts and between 1 pm and 6 pm for evening shifts. 

Step 9 

Since we left out the dummy customers, the RVRP solver may now merge routes if necessary. 

4.7.4 Interventions 

We define multiple interventions for the algorithm we constructed. We first state them all five, we 

then give some introducing statements that are used for all the interventions. Afterwards we explain 

the interventions one by one. The application of the interventions and the numbers used in this 

research are discussed in Appendix IX.  

(i) Execute either heuristic A, B or both. 

(ii) Prevent the balance of number of routes per shift to get worse. 

(iii) Force the RVRP solver to improve the balance based on number of routes per shift. 

(iv) Force the RVRP solver to reduce the fleet size. 

(v) Allow consecutive deliveries to be within 18 hours. 

  



53 
 

For all interventions, we use the following: 

- In Paragon, we limit the number of vehicles because we cannot limit the number of routes. A 

vehicle may drive only one route per shift, so the vehicle and route are used interchangeably. 

- Limit the number of vehicles available to 𝑉𝑚𝑎𝑥, which is the maximum used vehicles at the 

same time. In our case six vehicles are used, because at Monday and Wednesday evening we 

need six trucks at the same time. 

- For shift 𝑠 currently 𝑉𝑠
𝑐𝑢𝑟 vehicles are used. 

- The limit of number of vehicles used in shift 𝑠 is set at 𝑉𝑠
𝑚𝑎𝑥. 

Intervention (i) 

Experiment with executing only heuristic A, which is steps 1-7; only heuristic B, which is steps 8 and 9, 

and heuristic A and B, which are all nine steps. 

Intervention (ii) 

In some experiments we prevent the balance of the number of routes over the shifts getting worse. 

We do this by creating deliveries to the dummy customer: 

- Make 𝑉𝑚𝑎𝑥 − 𝑉𝑠
𝑚𝑎𝑥 deliveries to this customer in shift 𝑠. 

- These deliveries should be visited as only customer in the route. 

- The delivery windows of these dummy deliveries should be such that they can only be 

delivered in shifts with lower priority. 

Intervention (iii) 

By forcing the RVRP solver to improve the workload balance, at least one route must change from shift 

to a shift with a higher priority. We do this as follows: 

- Decide from which set of shifts a route must be transferred to a shift with higher priority.  

- Set 𝑉𝑠
𝑚𝑎𝑥  = 𝑉𝑠

𝑐𝑢𝑟 + 𝑖 for shifts 𝑠 for which the number of routes can increase with at most 𝑖. 

- 𝑖 must be equal to zero for the set of shifts with the lowest priority to ensure an improvement. 

- Create deliveries to the dummy customer the same way as in intervention (ii). 

- Remove deliveries from the set of shifts with the lowest priorities until it is possible to save a 

route within these shifts with the RVRP solver. 

- Add an extra delivery to the dummy customer in shift 𝑠 with priority 𝑝 in which the RVRP 

solver saved a route. 

- Remove a delivery to the dummy customer in the shift with priority 𝑝 − 1. 

- Reoptimize the routing schedule with the RVRP solver by routing all deliveries that were 

removed earlier. 

Intervention (iv) 

Because we deal with a subnetwork, the fleet size is not determined by the maximum number of 

vehicles used in this subnetwork, but the fleet size is determined based on the impact this sub network 

has on the larger network. Here we explain the logic applied when we deal with the total network. In 

Appendix IX we explain how we deal with the sub network in this research. 

- Set 𝑉𝑠
𝑚𝑎𝑥  =  𝑉𝑚𝑎𝑥 − 1 for all shifts 𝑠 for which 𝑉𝑠

𝑐𝑢𝑟 < 𝑉𝑚𝑎𝑥. 

- Set 𝑉𝑠
𝑚𝑎𝑥  =  𝑉𝑚𝑎𝑥 for all shifts 𝑠 for which 𝑉𝑠

𝑐𝑢𝑟 = 𝑉𝑚𝑎𝑥. 

- Remove deliveries from the set of shifts for which 𝑉𝑠
𝑐𝑢𝑟 = 𝑉𝑚𝑎𝑥 until it is possible to save a 

route in each of these shifts with the RVRP solver. 
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- Set 𝑉𝑠
𝑚𝑎𝑥  =  𝑉𝑚𝑎𝑥 − 1 for all shifts in which a route is saved. 

- Reoptimize the routing schedule with the RVRP solver by routing all deliveries that were 

removed earlier. 

Intervention (v) 

When creating tactical routing schedules, HAVI keeps at least 18 hours between two consecutive 

deliveries to a specific customer. This is a setting within Paragon. With this intervention we switch this 

setting off such that consecutive deliveries can take place within 18 hours of each other. In this 

research, this option is even more interesting than in the current situation because we split deliveries 

on the level of delivery units. 

4.8 Verification and validation 

Before going to the operational policies, we verify and validate our model for the tactical routing 

schedule. With verification we check whether the model in the RVRP solver (Paragon in our case) 

satisfies all mentioned restrictions. With validation we check whether the routing schedule in Paragon 

represents reality accurately. 

Verification 

Verifying the model, we check whether what we see is as we expected it to be. To do this, in all 

spreadsheets we use, we add a unique identifier to every delivery unit. So, we can always use 

backtracking through the spreadsheets to see which input resulted in a specific output. After a test 

experiment, we made an overview of all the delivery patterns that were being changed with the 

optimization as is shown in Figure 15. 

To verify the model, we used non-random sampling in combination with the backtracking with the 

unique identifiers per delivery unit. This means that we first aggregate the data into overviews that 

give insights in what the result of the model is. We then search for interesting deviations from the 

current situation and check through all the spreadsheets how the model resulted in this deviation. For 

example, we see that after optimization, customer 1068 has a larger gap between the deliveries than 

in the current situation. We verified which delivery units were moved from and to which routes. 

Furthermore, we checked whether all restrictions regarding capacity and shelf life were met. Because 

we use a unique identifier for each delivery unit and  we use this unique identifier in all spreadsheets 

and in the RVRP solver, we check exactly which delivery units are transferred from delivery moment. 

We know for each delivery unit exactly what restrictions apply regarding shelf life, and delivery 

window. Manual calculations as well as input/output cross checking has led to the belief that the 

model holds the restrictions that we inputted. 

  

Customer IDMon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun

1009 x x x x x x x x

1020 x x x x x x x x

1033 x x x x x x x x

1038 x x x x x x x

1046 x x x x x x x x

1050 x x x x x x x x x x x x x x

1058 x x x x x x x x x x

1068 x x x x x x x

1076 x x x x x x x x x

Current Experiment

Figure 15: Verification example 
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Validation 

Because we only consider the eastern part of the Netherlands, the validation process cannot be done 

by exactly comparing the base case scenario within Paragon with reality. We do not have the same 

routes as HAVI drives in practice. We included a set of customers in our scope, instead of a set of 

routes. To validate the routing schedule that Paragon proposes we asked the transport planners to 

check whether the schedule is realistic. From practice HAVI already knows that the error in the times 

proposed is in the range of 20 minutes on average per route. The main concern the transport planners 

have on the proposed schedule is that the routes in the evening shift all depart quite early. It is 

Paragons nature to plan everything as early as possible. However, in practice HAVI wants the day 

routes to depart as early as possible and the evening routes as late as possible, to have a buffer 

between the two shifts. Furthermore, we found that Paragon can deliver one customer twice in a 

route, although one of the settings we putted into Paragon is that deliveries at the same customer 

should always be 18 hours apart. The situation was such that a delivery unit must be delivered before 

9 am and another delivery unit must be delivered after 1 pm. In between the truck had to go to other 

customers. This happened only occasionally, and when seen, we tried to manually place the delivery 

unit in another route, by making as little changes as possible to the rest of the schedule. To compare 

the results of the various experiments, we compare with the base case scenario, which is the set of 

customers we selected, rerouted as if it is the total network. 

4.9 Operational policies 

The second model is for the operational policy. This policy is used to test which results are achieved 

with the new created routing schedule when volumes deviate from the forecasted volumes. We first 

give an overview of the operational policy with the requirements. Then we determine the minimum 

and maximum quantity that can be delivered. Based on the utilization of the routes we determine 

which part of volume should be added or removed from every delivery. 

4.9.1 Operational policy overview 

The tactical routing schedule is optimized using deterministic volumes. The volumes used in our 

model, are the same volumes that are being used by HAVI to create the tactical routing schedule that 

is driven from the 6th of July 2020. To test the performance of the tactical routing schedule with 

deviating volumes (i.e., performing a sensitivity analysis), we apply volumes of three different weeks. 

One week with a lower (week 22), one week equal to (week 27) and one week above (week 30) 

forecasted volume. Most important is that, although we know in advance which volume is input for 

the tests, we create the policy such that we only act upon data that was available at that time. 

We test the operational policy on the current situation as well as on the best created new tactical 

routing schedule in which we didn’t apply intervention (v). This operational policy must describe the 

following: 

- How to determine the quantity to order for a delivery? 

- How to re-optimize the routes of each day? 

Using the following data: 

- Actual sales per restaurant per day (to determine inventory levels). 

- Forecasted volumes (to forecast utilization of routes of coming days). 

- Hourly sales distribution (to determine which part of sales of a day took place before delivery). 

- Capacities of storage locations as determined in Section 4.4 and 4.6. 
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Before we start with importing the volumes of the three chosen weeks, we decide which initial 

inventory levels we assume. Therefore, we add another week that we execute first, which results in 

an ending inventory, which is the starting inventory of the following week. We thus execute four 

weeks, and the ending inventory of a week determines the starting inventory of the following week. 

For the start-up period, 7 days are used, followed by 21 days from the three weeks that are used for 

the operational results. Because we only act upon the data that was also available at that time, we do 

the calculations chronologically over time. For every day we execute the algorithm of Section 4.9.2. 

4.9.2 Algorithm of the operational policy 

In contrast to the rest of this research we assume for the operational policy, that we do not have to 

deliver full delivery units. For the first day we assume the starting inventory being equal to 50% of 

the capacity of the storage. For all other days, the starting inventory is equal to the ending inventory 

of the prior day. Therefore, the inventory for customer 𝐶 and temperature zone 𝑇 at the start of day 

𝑑 is as follows: 

Equation 8 

𝐼𝐶,𝑇,𝑑
𝑠𝑡𝑎𝑟𝑡 =  {

0,5 ∗  𝐶𝑎𝑝𝐶,𝑇   𝑓𝑜𝑟 𝑑 =  1

𝐼𝐶,𝑇,𝑑−1
𝑒𝑛𝑑          𝑓𝑜𝑟 𝑑 >  1

 

The expected sales for customer 𝐶 at day 𝑑 is denoted by 𝐸𝑆𝐶,𝑑. If that customer gets a delivery at day 

𝑑, the expected sales that takes place before delivery is denoted by 𝐸𝑆𝐶,𝑑
𝑏𝑒𝑓𝑜𝑟𝑒

. This data is retrieved 

from the data as presented in Table 4. To determine the inventory level just before delivery takes 

place, we use a constant that states how many sales corresponds to the consumption of one delivery 

unit. Assuming this constant to be equal for all temperature zones and is denoted by 𝑆𝑈. For each 

customer the ratio of delivered units in each temperature zone is determined. We denote the 

percentage of delivered units for customer 𝐶 that belongs to temperature zone 𝑇 by 𝑃𝐶,𝑇. From this, 

we determine for customer 𝐶 that gets a delivery at day 𝑑 what the expected consumption at day 𝑑 

is before delivery takes place from temperature zone 𝑇. Which is denoted as follows: 

Equation 9 

𝐶𝑜𝑛𝑠𝐶,𝑑
𝑏𝑒𝑓𝑜𝑟𝑒

=  
𝐸𝑆𝐶,𝑑

𝑏𝑒𝑓𝑜𝑟𝑒

𝑆𝑈
 ∗  𝑃𝐶,𝑇 

The inventory level just before delivery takes place at day 𝑑 for customer 𝐶 and temperature zone 𝑇 

is as follows: 

Equation 10 

𝐼𝐶,𝑇,𝑑
𝑏𝑒𝑓𝑜𝑟𝑒

=  𝐼𝐶,𝑇,𝑑
𝑠𝑡𝑎𝑟𝑡  −  

𝐸𝑆𝐶,𝑑
𝑏𝑒𝑓𝑜𝑟𝑒

𝑆𝑈
∗ 𝑃𝐶,𝑇 

Using the source data of Table 4, the expected sales between the delivery at day 𝑑 for customer 𝐶 and 

the next delivery and is denoted by 𝑆𝑁𝐶,𝑑. The consumption of goods belonging to temperature zone 

𝑇 for customer 𝐶 between the delivery at day 𝑑 and the next delivery is as follows: 

Equation 11 

𝐶𝑁𝐶,𝑇,𝑑 =  
𝑆𝑁𝐶,𝑑

𝑆𝑈
 ∗  𝑃𝐶,𝑇 
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To determine the maximum quantity that can be delivered we must consider the capacity of the 

storage as well as the shelf life. Considering the capacity of the storage, the maximum quantity that 

can be delivered at day 𝑑 to customer 𝐶 for temperature zone 𝑇 is as follows: 

Equation 12 

𝑄𝐶,𝑇,𝑑
𝑚𝑖𝑛 =  𝐶𝑁𝐶,𝑇,𝑑  − (𝐼𝐶,𝑇,𝑑

𝑠𝑡𝑎𝑟𝑡  − 𝐶𝑜𝑛𝑠𝐶,𝑑
𝑏𝑒𝑓𝑜𝑟𝑒

) 

To determine the maximum quantity that can be delivered we must consider the capacity of the 

storage as well as the shelf life. As we consider the capacity of the storage, the maximum quantity 

that can be delivered at day 𝑑 to customer 𝐶 for temperature zone 𝑇 is as follows: 

Equation 13 

𝑄𝐶,𝑇,𝑑
𝑚𝑎𝑥,𝑐𝑎𝑝

= 𝐶𝑎𝑝𝐶,𝑇  −  (𝐼𝐶,𝑇,𝑑
𝑠𝑡𝑎𝑟𝑡  −  𝐶𝑜𝑛𝑠𝐶,𝑑

𝑏𝑒𝑓𝑜𝑟𝑒
) 

For the shelf life criteria, we need to know the expected sales during the period of the shelf life 

agreement. As mentioned in Section 4.5, for the chilled goods, the agreement is four days, for the 

other temperature zones we set the shelf life at seven days. We denote the expected sales for 

temperature zone 𝑇 for customer 𝐶 during the shelf life period (including the whole day of delivery) 

by 𝑆𝑆𝐶,𝑇. Considering the shelf life, the maximum quantity that can be delivered at day 𝑑 to customer 

𝐶 for temperature zone 𝑇 is as follows: 

Equation 14 

𝑄𝐶,𝑇,𝑑
𝑚𝑎𝑥,𝑠ℎ𝑒𝑙𝑓

=
𝑆𝑆𝐶,𝑇

𝑆𝑈
 ∗  𝑃𝐶,𝑇 

We conclude, the maximum quantity that can be delivered at day 𝑑 to customer 𝐶 for temperature 

zone 𝑇 is as follows: 

Equation 15 

𝑄𝐶,𝑇,𝑑
𝑚𝑎𝑥  =  𝑚𝑖𝑛(𝑄𝐶,𝑇,𝑑

𝑚𝑎𝑥,𝑐𝑎𝑝
 , 𝑄𝐶,𝑇,𝑑

𝑚𝑎𝑥,𝑠ℎ𝑒𝑙𝑓
) 

To determine the quantities that we are going to deliver, a target is set. This target is based on the 

quantity, which is used in making the tactical routing schedule. We adjust this quantity such that it fits 

between the minimum and maximum quantity determined in Equation 12 and Equation 15. The 

procedure is slightly different for the base case and the new tactical routing schedule. 

Base case 

The base case scenario is built in the same way as HAVI creates their tactical routing schedules in 

practice. This means that when a delivery quantity is determined, this is not specifically allocated to 

temperature zones. Therefore, we assume in the base case, that for all deliveries the delivered 

quantity per temperature zone is as follows: 

Equation 16 

𝑄𝐶,𝑇,𝑑 = 𝑃𝐶,𝑇  ∗  𝑄𝐶,𝑑 

In which 𝑄𝐶,𝑑 is the delivered quantity for customer 𝐶 at day 𝑑 and 𝑄𝐶,𝑇,𝑑 is the delivered quantity for 

customer 𝐶 for temperature zone 𝑇 at day 𝑑. 
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New tactical routing schedule 

In the new tactical routing schedule, we used a list of specific delivery units to deliver. For each delivery 

unit we know to which temperature zone it belongs. Therefore, we know exactly how much delivery 

units per temperature zone are included in a delivery and this is denoted by 𝑄𝐶,𝑇,𝑑. We adjust the 

target quantity to fit between the minimum and maximum quantity as follows: 

Equation 17 

𝑇𝐶,𝑇,𝑑 =  𝑚𝑖𝑛(𝑚𝑎𝑥(0 , 𝑄𝐶,𝑇,𝑑  , 𝑄𝐶,𝑇,𝑑
𝑚𝑖𝑛 ) , 𝑄𝐶,𝑇,𝑑

𝑚𝑎𝑥 ) 

For all other customers than McDonald’s we use the target quantity 𝑇𝐶,𝑇,𝑑 being equal to the average 

of the past 3 weeks that is delivered to that customer on the specific day of the week, increased by 

10%. Because we know which customers are delivered together in a route we sum all adjusted targets 

𝑇𝐶,𝑇,𝑑 that are delivered in route 𝑟 to obtain the target level of the route denoted by 𝑇𝑅𝑟.  

Optimizing utilization 

At this point the goal is to utilize the existing routes as much as possible. All routes have a maximum 

capacity of sixty delivery units. Using the set targets, route 𝑟 is filled with 𝑇𝑅𝑟 delivery units. If 𝑇𝑅𝑟 <

60 there is overcapacity and if 𝑇𝑅𝑟 > 60 there is capacity shortage. 

Overcapacity 

If 𝑇𝑅𝑟 < 60, there is space left in the truck, which we fill by pulling some delivery units from following 

deliveries. To determine which delivery units to add to route 𝑟, we determine for all deliveries within 

that route (on day 𝑑) if there is overcapacity for customer 𝐶 and temperature zone 𝑇 and this is 

denoted as follows: 

Equation 18 

𝑂𝐶𝐶,𝑇,𝑑 =  𝑄𝐶,𝑇,𝑑
𝑚𝑎𝑥  − 𝑇𝐶,𝑇𝑑 

We take the sum of all temperature zones and all customers that are being delivered in route 𝑟 to 

obtain the total quantity of delivery units that can be added to route 𝑟 and denoted by 𝑂𝐶𝑟. Important 

to notice that 𝑂𝐶𝑟 has nothing to do with the capacity that is left in a truck, but it is the capacity that 

is left within the storages of the customers. The fraction of the overcapacity for the customers and 

temperature zones used in route 𝑟 is denoted by 𝑓𝑟 and determined as follows: 

𝑓𝑟 =  𝑚𝑖𝑛(
(60 −  𝑇𝑅𝑟)

𝑂𝐶𝑟
 , 1) 

The fraction used cannot be larger than one because then we would have delivered more than the 

maximum quantity as determined in Equation 15. We determine the number of delivery units that we 

deliver to customer 𝐶 for temperature zone 𝑇 at day 𝑑 as follows: 

Equation 19 

𝐷𝐶,𝑇,𝑑 =  𝑇𝐶,𝑇,𝑑  +  𝑓𝑟  ∗  𝑂𝐶𝐶,𝑇,𝑑 
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Capacity shortage 

If 𝑇𝑅𝑟 > 60, we have a shortage of space in the truck, which needs to be freed if possible. The 

calculation has an analogy with the scenario of overcapacity. Some variables are the same, but this is 

possible because a route can never have overcapacity and capacity shortage at the same time. To 

determine which delivery units from route 𝑟 we must delay to the following delivery, we determine 

for all deliveries within that route (on day 𝑑) if there are delivery units for customer 𝐶 and temperature 

zone 𝑇 that can be delayed and denoted: 

Equation 20 

𝐷𝐷𝐶,𝑇,𝑑 =  𝑇𝐶,𝑇,𝑑  − 𝑄𝐶,𝑇,𝑑
𝑚𝑖𝑛  

We take the sum of all temperature zones and all customers that are being delivered in route 𝑟 to 

obtain the maximum quantity of delivery units that can be delayed from route 𝑟 and denoted by 𝐷𝐷𝑟. 

The fraction of the delivery units that can be delayed for the customers and temperature zones in 

route 𝑟 that we use is denoted by 𝑓𝑟 and determined as follows: 

Equation 21 

𝑓𝑟 =  𝑚𝑖𝑛(
(𝑇𝑅𝑟  −  60)

𝐷𝐷𝑟
 , 1) 

The fraction used cannot be larger than one because then we would have delivered less than the 

minimum quantity as determined in Equation 12.  We determine the number of delivery units that we 

deliver to customer 𝐶 for temperature zone 𝑇 at day 𝑑 as follows: 

Equation 22 

𝐷𝐶,𝑇,𝑑 =  𝑇𝐶,𝑇,𝑑  −  𝑓𝑟  ∗  𝐷𝐷𝐶,𝑇,𝑑 

So far, we only used expected sales to determine the delivery quantities. Before the process repeats, 

we determine the end inventory of the day based on the actual sales. The actual sales of customer 𝐶 

at day 𝑑 is denoted by 𝐴𝑆𝐶,𝑑. The inventory at customer 𝐶 in temperature zone 𝑇 at the end of day 𝑑 

is denoted as follows: 

Equation 23 

𝐼𝐶,𝑇,𝑑
𝑒𝑛𝑑 =  𝐼𝐶,𝑇,𝑑

𝑠𝑡𝑎𝑟𝑡  + 𝐷𝐶,𝑇,𝑑   

It is possible that 𝐼𝐶,𝑇,𝑑
𝑒𝑛𝑑  becomes negative, then there is a stockout. In this case an extra delivery needs 

to be created that must be delivered at day 𝑑 to customer 𝐶 with −𝐼𝐶,𝑇,𝑑
𝑒𝑛𝑑  delivery units in temperature 

zone 𝑇. Including this extra delivery 𝐼𝐶,𝑇,𝑑
𝑒𝑛𝑑  is set equal to zero. In practice, this volume is not accurate 

because we must consider 𝐶𝑜𝑛𝑠𝐶,𝑑
𝑏𝑒𝑓𝑜𝑟𝑒

, which increases the size of the extra delivery. We also must 

consider the fact that a buffer storage is in place, which reduces the size of the extra delivery.  

For every day for which we execute the operational policy, we repeat everything in Section 4.9.2. The 

policy described, determines for every delivery how much delivery units to deliver.  

We advise HAVI to develop/adjust the system to automatically create the orders with the above 

determined quantities. Further research is needed to translate the model to the level of products 

instead on delivery units. For the time being, the restaurant planners adjust the orders, so they comply 

with the determined volumes. The orders made by the system of HAVI are based on JIT delivery and 

match the minimum quantities as computed in Equation 12.  
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4.9.3 Optimizing the operational routing, using the RVRP solver 

In Section 4.9.2, we determined the delivery quantities for the operational deliveries. The order 

quantities are always determined the day before they are delivered. After the confirmation of the 

orders, the transport planners optimize the routes. They aim to (i) minimize the number of 

adjustments and (ii) avoid inefficiencies. At this moment, the customers that get a delivery are fixed 

and the delivery quantities are being fixed. Therefore, we solve a VRP problem.  

In practice, the transport planners solve this problem manually, by transferring deliveries between 

routes within a single day, for the deliveries of tomorrow. In this research, we use Paragon, our RVRP 

solver, to have the most consistent approach. We cannot minimize the number of adjustments made, 

but we can limit the complexity of adjustments that Paragon can make. The more complex the 

adjustments that are allowed, the better the result, at the expense of calculation time. With our 

settings the calculation time is on average shorter than five seconds. Furthermore, we limit all 

deliveries to be delivered within three hours of the delivery time in the tactical routing schedule. The 

time windows from the master data still apply. 

We advise HAVI to do further research to adjust the routes a few days in advance. With help of the 

operational policy and forecasted volumes, we can predict which routes will be overloaded even after 

the operational policy will be executed. By acting a few days in advance, it is managed where extra 

volume should be delivered. If for example multiple routes on Friday are overloaded and we anticipate 

early enough, we can add a route or extra deliveries on Thursday. This way more volume could be 

delivered on Thursday instead of Friday. 

4.10 Conclusion 

In this chapter we answered research questions 3, 4, 5, 6b and 7. 

3. How can the requirements be translated into restrictions/input that can be used in routing 

optimization software? 

Some of the requirements are met by using some settings within Paragon. Paragon uses time 

windows, optimizes based on ‘clustering based on duty time’ and adds extra duty time to a route to 

have a buffer time between two shifts. Setting the priorities can be used in the same way to minimize 

workload on the days to which salary supplements apply. Shelf life restrictions and storage restrictions 

are included by Equation 2 and Equation 3 respectively. The reduction in operational costs and 

operational adjustments needed will be tested in Chapter 5. 

4. How can workload balancing be applied in the tactical routing process of HAVI? 

a. What is the objective of HAVI that should be used in this research? 

Workload balancing can be achieved when HAVI takes the lead in determining the delivery patterns 

instead of following the wishes of the customers. Balancing the workload is made easier by planning 

every delivery unit instead of planning deliveries. The allocation procedure can also be used to balance 

the workload by giving the highest priorities to the shifts with the lowest workload. Intervention (ii), 

(iii) and (iv) promote workload balancing. Dummy customers are used to prevent routes to transfer to 

shifts with lower priority. 
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b. What input is required to set up the model that will be implemented into the processes 

of HAVI? 

The most important input for our model is the storage capacity per temperature zone per restaurant. 

These capacities are deduced based on two criteria, which determine a lower bound. To calculate this 

lower bound we used three sets of data: 

- Historical deliveries data. 

- Forecast for the near future. 

- Sales distributions. 

After determining the lower bound based on these criteria, we used the fact that the current routing 

schedule consists of feasible delivery patterns to relax the lower bounds further, such that for every 

delivery moment there is at least one possible delivery moment. 

5. How do we build the model to optimize the transport and inventory integrated? 

a. How does our model differentiate relative to the known models from literature? 

Some of the main differences between our model and the traditional approaches from literature are 

mentioned earlier and are stated in Table 2. Our model includes the following characteristics, which 

are not frequently covered in the known models from the literature: 

- Delivery quantity is dependent on the exact timing of the delivery, not only the delivery day. 

- Multiple groups of products are considered in storage as well as shelf life. 

- The delivery patterns are optimized simultaneous with the routing process. 

- Workload balancing is considered. 

- Salary supplements are used, and a tradeoff can be made with balancing workload. 

 

b. Which steps are used in the model? 

This research is unique because we determine the delivery patterns and delivery quantities in a single 

phase (see Section 4.2) in contrast to almost all models in literature who determine the two aspects 

in different optimization phases. We first determine for each delivery unit the delivery window (see 

Section 4.5), based on the expected hourly sales given a historical distribution, considering shelf life 

agreements and the capacity of storages. We built an allocation procedure (see Section 4.7.2), which 

we use to steer on which shifts to utilize most. Furthermore, we built an algorithm consisting of nine 

steps (see Section 4.7.2). Step 1 to 7 is heuristic A, which aims at removing unnecessary workload in 

shifts with low priorities. Step 8 and 9 is heuristic B, which aims at utilizing the routes in the shifts with 

high priorities and reducing workload in shifts with low priorities. 

6. How can the tactical model be tested using experiments? 

b. How to compare the results of the experiments? 

The main goals following from the main research question are (i) reducing costs and (ii) improving the 

balance of the workload. Therefore, we compare the experiments mainly on these aspects. How the 

costs and the balancing of the workload are measured is explained in 4.7.1. In Chapter 5, the main 

results are discussed. Explanatory results are stated in Appendix X. 
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7. What operational policy should be followed after implementing the new tactical routing 

schedule? 

a. What operational policy should the restaurant planners follow? 

In Section 4.9.2 we first determine the minimum and maximum quantity that can be delivered. We 

use the targets, which are based on the tactical routing schedule to determine whether a route is 

planned above or under capacity. We then adjust the targets such that we more utilize the capacity 

of the trucks or postpone delivery units where possible if a truck is planned above capacity. 

The system that HAVI uses calculates the minimum quantities that should be ordered. The restaurant 

planners should adjust the orders by pulling volume from subsequent deliveries, such that the order 

quantity is increased to the volumes determined in Equation 22. 

b. What operational policy should the transport planners follow? 

The transport planners solve VRP problems after orders are being confirmed. We advise to minimize 

the number of deliveries to switch from shift. Further research must be done to anticipate on 

overloading routes, so HAVI can manage where extra volume should be delivered. 
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5. Experiments 
In this chapter we answer research questions 6a and 8. These research questions are as follows: 

Research question 6a: ‘Which scenarios must be tested?’ 

Research question 8: ‘What performance can be achieved by applying the new tactical model and 
operational policies into practice at HAVI?’ 

In Chapter 4 we built the model that we use to improve the current tactical routing schedule. In Section 

5.1 we determine which experiments to execute. The experiments differ on multiple factors: 

- Primary focus on either cost reduction or balancing workload. 

- Choice of heuristics applied in intervention (i). 

- Either applying interventions (ii) to (v) or not. 

The experiments are compared with each other in Section 5.2 based on the following criteria: 

- Routes per shift. 

- Delivery units per shift and warehouse related costs. 

- Utilization per shift. 

- Total duty time per shift and corresponding costs. 

- Total traveled distance per shift and corresponding costs. 

- Impact on fleet size and corresponding costs. 

- Average delivery size per shift. 

- Centre of Gravity. 

The criteria above are explanatory results, which influence the main results which are: 

- Total costs (costs for trucks, fuel and labor). 

- Contribution to balancing the workload in the total network. 

The main results are mentioned in this chapter. The rest of results are used to support the findings 

and are mentioned in Appendix X. From all the experiments, we choose the best tactical routing 

schedule which we use to perform a sensitivity analysis in Section 5.3 using operational data, with 

historical volumes. 

5.1 Experimental design 
Before elaborating on the experiments, we discuss the base case, which is used as a reference. 

5.1.1 Base case scenario 

Unfortunately, we cannot take the current situation as the base case scenario. At the expense of 

computation and research time, we choose to only include the eastern part of the Netherlands in this 

research, which contains about 50 restaurants of McDonald’s and 29 locations of other customers. 

We take all routes from the current routing schedule that contains any of these customers. We 

inserted the routes with only the in-scope customers into Paragon. We inserted deliveries with fixed 

volumes, which are also used to build the current tactical routing schedule. Because we only imported 

the customer in scope, some of the routes had a low utilization. We re-planned the routing schedule 

as if it were the complete network we were looking at, and as if it were going to be the next routing 

schedule that would be implemented by HAVI. We now have a tactical routing schedule, with the same 

delivery patterns as in the current situation, but with other routes. 
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5.1.2 Experiments 

In Table 9 we show the experiments we execute. The third column is used to state the choice made in 

the first intervention. The fourth column is used to state all other interventions. Intervention (iii) and 

(iv) can be executed multiple times in row. We choose to execute an intervention at most two times. 

The experiments are executed in three stages, in Table 9 separated by black lines. The experiments in 

the first stage are fully determined in advance. The experiments in the second stage are only executed 

for the best option of intervention (i) per primary focus. The third stage consists of an experiment in 

which we will add intervention (v) to all experiments that are on the efficient frontier (measuring costs 

vs. balancing workload). The results that support these decisions are discussed in the next section. The 

calculation times of the experiments can differ. 

Table 9: List of experiments 

Experiment Primary focus Intervention (i) Interventions (ii) to (v) 

I Cost reduction A  

II Cost reduction B  

III Cost reduction A & B  

IV Balance workload A  

V Balance workload B  

VI Balance workload A & B  

VII Cost reduction A & B (ii) 

VIII Cost reduction A & B (iii) 

IX Cost reduction A & B 2x (iii) 

X Cost reduction A & B (iv) 

XI Cost reduction A & B 2x (iv) 

XII Balance workload B (ii) 

XIII Balance workload B (iii) 

XIV Balance workload B 2x (iii) 

XV Balance workload B (iv) 

XVI Balance workload B 2x (iv) 

XVII Cost reduction A & B 2x (iv) & (v) 
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5.2 Experimental results tactical 
In this section we discuss the results of the tactical routing schedule. We first discuss the 

performance of the experiments in terms of running time. We then discuss the performance of the 

experiments in terms of output.  

The experiments vary large with respect to running time (i.e., CPU time needed). Executing the 
experiments without interventions we needed between five and thirty minutes CPU time. By applying 
the interventions, the CPU time is most influenced by the number of times we optimized the routing 
schedule using the RVRP solver. For example, in the experiment where we reduce the fleet size with 
two vehicles, we have to remove deliveries until it is possible to save a route in each of the required 
shifts. In experiment XVI we had to remove 27 deliveries before we were able to save a route in each 
of the required shifts. That also means 27 times running the RVRP solver, which has cost a whole day, 
of which estimated 4 hours CPU time.  

The main results of the experiments are the total costs of the tactical routing schedules and how 
they contribute to balancing the workload of the total network, expressed in a penalty (the lower, 
the better). In Section 4.7.1 we discussed how these aspects are computed. We calculate for all the 
experiments the costs and the workload penalty 𝑊𝑃𝑒. The results are stated in Table 10 and 
visualized in Figure 16. 

From the first three experiments it resulted that experiment III was the best performing on costs as 

well as workload balancing. Therefore, the rest of the experiments with a primary focus on cost 

reduction are executed with heuristic A & B. From the fourth to sixth experiments, experiment V 

performs better on costs as well as balancing workload compared to experiment IV. Experiment V 

performed much better than experiment VI on costs, but slightly less on workload balancing. 

Therefore, the rest of the experiments with a primary focus on workload balancing are executed with 

heuristic B. From all experiments from the first two stages, experiment XI performed best on costs as 

well as workload balancing. Therefore, experiment XVII is the same as experiment XI with additional 

intervention (v). 

We see in Figure 16 that the efficient frontier, the green circle, consists of only one experiment. 

Looking at the trend line, we see that in general, costs and workload balancing is not a tradeoff but is 

correlated positively to each other. The correlation factor 𝑟(𝐶𝑜𝑠𝑡𝑠, 𝑊𝑃) is computed as follows: 

Equation 24 

𝑟(𝐶𝑜𝑠𝑡𝑠, 𝑊𝑃) =  
∑ (𝐶𝑜𝑠𝑡𝑠𝑒𝑒 − 𝜇𝐶) ∗ (𝑊𝑃𝑒  −  𝜇𝑊𝑃)

√∑ (𝐶𝑜𝑠𝑡𝑠𝑒 − 𝜇𝐶)2
𝑒 ∗ ∑ (𝑊𝑃𝑒  −  𝜇𝑊𝑃)2

𝑒 )
=  0.760 

in which 𝐶𝑜𝑠𝑡𝑠𝑒 are the costs related to experiment 𝑒, 𝜇𝐶  are the average costs over all experiments 

and 𝜇𝑊𝑃 is the average workload penalty over all experiments. To test for significance of the 

correlation we compute the 𝑡 value as follows, using an 𝛼 of 0.05: 

𝐻0: The null hypothesis states that the correlation factor 𝑟 is equal to zero. 

𝐻1: The alternate hypothesis states that the average costs when focusing on costs first, is lower than 

the average costs when focusing on balancing workload first. 

Equation 25 

𝑡 =  
𝑟 ∗  √𝑛 − 2

√1 − 𝑟2
=  4.68 
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The critical 𝑡 − 𝑣𝑎𝑙𝑢𝑒 with 16 (i.e., 𝑛 − 2, in which n is the number of experiments) degrees of 

freedom is 2.12. Because the 𝑡 − 𝑣𝑎𝑙𝑢𝑒 we found is higher than the critical t-value, we reject the null 

hypothesis and conclude that the correlation between costs and workload balancing is significant. 

Table 10: Experiments main results 

Experiment Total € 𝑾𝑷𝒆 

Base € 38.615 234,0 

I € 39.585 259,8 

II € 40.869 248,2 

III € 37.713 232,9 

IV € 38.742 252,7 

V € 38.008 241,3 

VI € 39.686 240,9 

VII € 37.359 238,1 

VIII € 36.758 239,8 

IX € 38.146 234,9 

X € 35.686 243,2 

XI € 33.395 215,7 

XII € 38.513 225,0 

XIII € 37.574 241,1 

XIV € 37.866 243,3 

XV € 35.744 236,7 

XVI € 33.608 218,6 

XVII € 32.641 214,9 
 

  

Figure 16: Costs vs. Workload balancing 
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The best tactical routing schedules are in the bottom-left part of Figure 16. The three experiments 

with the lowest costs and penalties all have in common that they have applied intervention (iv) twice 

and thus the fleet size in the total network is reduced with two trucks. In Section 5.2.2 we test the 

significance of the fleet size on the results.  

The best routing schedule without intervention (v) is experiment XI, in which €5007 is saved compared 

to the base case. With intervention (v) an additional saving of €967 can be achieved. In experiment 

XVII are 10 deliveries that have a consecutive delivery within 18 hours. 

Interpreting the results, we see in Table 39 in Appendix X, that the costs directly related to the fleet 

size vary from - €2000 to +€4000 , which means a spread of €6000. The warehouse related costs have 

a spread of €590 as is shown in Table 34 in Appendix X. The labor costs related to transport have a 

spread of €1351 as is shown in Table 36 in Appendix X. The costs related to the distance traveled have 

a spread of €1364 as is shown in Table 37 in Appendix X. The spread of costs related to the fleet size 

has a larger spread, than all other spreads summed together. Therefore, the fleet size has the largest 

impact on the costs. Another explanatory result is the utilization of the trucks, which is, according to 

Song and Savelsbergh (2007), often a good indicator for the transportation costs, given the volume 

that is delivered. In Table 35 in Appendix X, we see that in experiment XI, the utilization has increased 

to 89% compared to 86% in the base case. 

5.2.1 Paired T-tests 

To test whether the primary focus of the algorithm (i.e., either we focus on cost reduction first, or we 

focus on balancing workload first) has the intended outcome is verified with paired T-tests. In Table 

11 we state which experiments are paired for the T-test. We use an 𝛼 of 0.05. We assumed equal 

variances in the sets. 

Costs 

𝐻0: The null hypothesis states that the average costs when focusing on costs first, is equal to the 

average costs when focusing on balancing workload first. 

Table 11: Pairs from T-test 

𝐻1: The alternate hypothesis states that the average costs when 

focusing on costs first, is lower than the average costs when focusing on 

balancing workload first. 

Applying the T-test on the costs, we find a P-value of 0.49, meaning that 

we cannot reject the null hypothesis. Therefore, there is no significant 

difference between the average costs when focusing on costs first and 

the average costs when focusing on balancing workload first. 

Balancing workload 

𝐻0: The null hypothesis states that the average 𝑊𝑃𝑒 when focusing on 

balancing workload first, is equal to the average 𝑊𝑃𝑒 when focusing on 

costs first. 

𝐻1: The alternate hypothesis states that the average 𝑊𝑃𝑒 when 

focusing on balancing workload first, is lower than the average 𝑊𝑃𝑒 

when focusing on costs first. 

Experiment 
Costs 

Experiment 
Balancing 
workload 

I IV 

II V 

III VI 

VII XII 

VIII XIII 

IX XIV 

X XV 

XI XVI 
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Applying the T-test on the costs, we find a P-value of 0.39, meaning that we cannot reject the null 

hypothesis. Therefore, there is no significant difference between the 𝑊𝑃𝑒 when focusing on costs first 

and the 𝑊𝑃𝑒 when focusing on balancing workload first. 

Concluding, we show that the various settings of priorities as stated in Appendix VIII do not have a 

significant impact on the relation between costs and workload balancing. 

5.2.2 One-way ANOVA 

To verify whether the fleet size has indeed a significant impact on our results we perform One-way 

ANOVA test. We use an 𝛼 of 0.05. 

Costs 

𝐻0: The null hypothesis states that the average costs do not depend on the fleet size. 

𝐻1: The alternate hypothesis states that the average costs depend on the fleet size. 

With a one-way ANOVA we do not find which of the sample means differs significantly from others. 

We find the following results: 

Table 12: One-way ANOVA, fleet size impact on costs 

Impact fleet size Count Sum Average Variance 

-2 3 99643 33214 257921 

-1 2 71430 35715 1711 

0 11 418879 38080 589102 

+1 2 80554 40277 699449 

 

Performing a variance analysis, we find an F-value of 52.2 with a critical F-value 3.34. Therefore, we 

reject the null hypothesis. We show that there is a significant relation between fleet size and the total 

costs. Table 12 shows that the costs rise when the fleet size increases. In our research we cannot 

decrease the fleet size with more than two trucks. In the total network the largest shift is Friday 

daytime. During that shift, in the eastern part of the Netherlands three trucks are used in the current 

situation. Some of the delivery units must be delivered on Friday daytime, due to their small delivery 

windows. Therefore, at least one route should be remained in the east. 

In Table 13 we see that even when we exclude the costs directly related to the fleet size, the costs still 

increase with the fleet size. However, we find an F-value of 1.39 with a critical F value of 3.34. 

Therefore, we cannot reject the null hypothesis. The relation of fleet size to the operational costs, 

where costs directly related to the fleet size are excluded, is not shown to be significant. 

Table 13: One0way ANOVA, fleet size impact on operational costs 

Impact fleet size Count Sum Average Variance 

-2 3 111643 37214 257921 

-1 2 75430 37715 1711 

0 11 418879 38080 589102 

+1 2 76554 38277 699449 
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Workload balancing 

𝐻0: The null hypothesis states that the average 𝑊𝑃𝑒 does not depend on the fleet size. 

𝐻1: The alternate hypothesis states that the average 𝑊𝑃𝑒 depends on the fleet size. We find the 

following results: 

Table 14: One-way ANOVA, fleet size impact on balancing workload 

Impact fleet size Count Sum Average Variance 

-2 3 649 216 3,88 

-1 2 480 240 21,2 

0 11 2643 240 90,8 

+1 2 489 245 26,4 

 

Performing a variance analysis, we find an F-value of 7.36 with a critical F-value 3.34. Therefore, we 

reject the null hypothesis. We show that there is a significant relation between fleet size and workload 

balancing. Table 14 shows that the 𝑊𝑃𝑒 rises when the fleet size increases. 

5.2.3 Linear regression 

We use linear regression models to test the significance of the interventions on the results. We first 

test for the impact on costs. We use an 𝛼 of 0.05. The result of the linear regression is stated in Table 

15. We see that only intervention (iv) has a significant impact on reducing the costs (i.e., intervention 

(iv) is the only intervention having a P-value below 0.05).  

Table 15: Significance of impact interventions on costs 

intervention Coefficient Standard error t Stat P-value Lower 95% Upper 95% 

ii -932 780 -1,20 0,25 -2631 766 

iii -685 379 -1,81 0,10 -1511 140 

iv -2778 379 -7,33 0,00001 -3603 -1952 

v -672 1149 -0,58 0,57 -3176 1832 

 

We also test the impact of the interventions on the workload balancing measured by 𝑊𝑃𝑒. The result 

of the linear regression is stated in Table 16. We see that intervention (ii) and (iv) have a significant 

impact on reducing the penalty for workload balancing. 

Table 16: Significance of impact interventions on WP 

intervention Coefficient Standard error t Stat P-value Lower 95% Upper 95% 

ii -15,2 6,24 -2,43 0,032 -28,8 -1,57 

iii -4,30 3,03 -1,42 0,18 -10,9 2,31 

iv -13,2 3,03 -4,34 0,001 -19,8 -6,55 

v -5,50 9,20 -0,60 0,56 -25,5 14,5 
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5.3 Operational results 
The operational policy is applied to the tactical routing schedule that we created with experiment XI, 

to test the following: 

- Number of shifted routes. 

- Number of changed delivery times > 30 minutes. 

- Number of extra deliveries needed. 

- Impact on costs. 

- Sensitivity analysis with deviating volumes. 

The results from the criteria above are discussed in this section. The explanatory results are stated in 

Table 40 to Table 46 in Appendix X. The tactical routing schedule is based on a forecast with a total of 

2567 delivery units per week. The operational policy is applied on three different weeks. The volumes 

measured in delivered delivery units per week are stated in Table 17. 

Table 17: Weeks used for testing operational policy 

Week Number of delivery units Deviation from forecast 

Forecast (see Section 4.3) 2567  

22    (25/05/2020 – 31/05/2020) 2357 - 8,2% 

27    (29/06/2020 – 05/07/2020) 2596 +1,0% 

30    (20/07/2020 – 26/07/2020) 2799 +8,0% 

 

Shifted routes 

Counting the number of shifted routes is important for the workforce planning. When the number of 

routes in a shift deviates from the planning, drivers are cancelled or arranged lastminute. The number 

of changes is stated in Table 18. 

Table 18: Number of shifted routes 

Week Current situation New routing schedule 

22 1 8 

27 0 9 

30 1 13 

 

According to Table 18, the new routing schedule is more unstable when looking at the number of 

changes that are made in the workforce scheduling. Also, when volume is closest to forecasted 

volume, nine changes must be made. We advise HAVI, when optimizing the operational transport 

planning, to minimize the number of deliveries to switch from one shift to another. In practice, the 

transport planners rarely switch deliveries from shifts. While using the RVRP solver, we did not restrict 

deliveries to be switched from shift. Therefore, in the new routing schedule more deliveries are 

delivered in another shift than they were planned in the tactical routing schedule. The base case is 

made as much as possible in the same way as the tactical routing schedules made in practice by HAVI. 

Evening routes depart such that the last delivery takes place around 11 pm. In the new situation the 

RVRP solver had the freedom to choose the departure times. Paragon always schedules everything as 

early as possible. The average departure time of evening routes in the current situation is 4:40 pm. 

The average departure time of evening routes in the new routing schedule is 2:51 pm. This contributes 

to the ability to switch deliveries from shift. 
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Changed delivery times 

When volume deviates from forecast, is it necessary to change some routes to either make routes 

feasible or gain efficiencies. In Table 19, we count deliveries that are changed more than 30 minutes. 

The current situation is not measuring how many changed delivery times actually have taken place, 

but how many changed delivery times take place if the operational policy we created is applied to the 

base case routing schedule. 

Table 19: Number of changed delivery times (greater than 30 minutes) 

Week Current situation New routing schedule 

22 54 58 

27 65 67 

30 49 113 

 

From this result we conclude that the number of changed delivery times is not much impacted, unless 

volumes are higher than forecasted. Remarkable is that the RVRP solver shifted some routes from 

Tuesday evening to Tuesday daytime in the high-volume week, for the new schedule, as is shown in 

Table 40 in Appendix X. The underlying reason for this shift can be concluded from Table 42 in 

Appendix X where we see that the utilization of Tuesday daytime is 99% and Tuesday evening 68% 

with forecasted volumes. When volumes increase, the routes on Tuesday daytime overflow, but 

Tuesday evening has still spare capacity. Therefore, some of the deliveries originally delivered in the 

Tuesday daytime routes, should be combined with some deliveries from the Tuesday evening routes. 

Apparently, in this specific example, it was most efficient to plan those routes in the day shift. 

Intuitively, we argue that the utilization of the truck has an influence on the number of changes made 

in number of routes per shift and delivery times. In the new routing schedule, the utilization is 

increased to 89% compared to 86% in the base case as is shown in Table 35 in Appendix X. 

Stockouts 

When a stockout occurs, an extra delivery is needed to replenish the storage with enough goods until 

the next regular delivery. On any given moment, it can be discovered that the storage at a specific 

customer is not enough to meet demand until the next delivery. We assume that we know in time 

enough that a stockout occurs, so we are able to schedule the extra deliveries in regular routes. If in 

practice the stockout is discovered too late, a carrier is needed who drives dedicated to this customer. 

The number of extra deliveries needed are stated in Table 20. These extra deliveries are also given as 

input for the RVRP solver, and thus the extra deliveries are already included in al results. 

Table 20: Number of extra deliveries needed 

Week Current situation New routing schedule 

22 0 0 

27 0 3 

30 3 15 

 

With higher volumes, more stockouts occur in the new tactical routing schedule. Intuitively this is 

because in the new tactical routing schedule we determined the boundaries using a 110% scenario. 

However, when the market has a plus of 8%, some specific customers will have sales plusses of more 

than 10%. The customers, for whom the delivery pattern is chosen close to the boundaries, will face 

a stockout in this situation. It is an exceptional situation that in week 30 sales were 8% above forecast. 
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Due to Covid-19, volumes are harder to predict. Further research should be done to test the impact 

of determining the delivery windows based on other volumes instead of 110%. The correlation can be 

found between total costs and stockout occurrences. 

Impact on costs 

The costs associated with the experiment of a tactical routing schedule is an indicator for the 

operational costs. In practice volumes always deviate from forecast and thus costs will be different. In 

Table 21 we mention the costs after applying the operational policy. 

Table 21: Costs applying the operational policy 

Week Volume deviation Current situation New routing schedule 

Forecast  €38.615 € 33.608 

22 -8,2% € 35.747 € 30.341 

27 +1,0% € 37.677 € 34.570 

30 +8,0% € 40.079 € 39.374 

 

We see that the new routing schedule is more efficient in all scenarios. The lower the volume, the 

greater the difference. In Section 5.2 we found that the fleet size has the largest impact on costs. In 

the new tactical routing schedule, we forced the RVRP solver to decrease the fleet size with two trucks. 

In week 22, the same fleet size could be remained. In week 27 and 30, volumes increase and 

respectively one and two extra trucks are needed. In week 30 no more trucks were saved compared 

with the current situation. Therefore, costs of the new routing schedule are more sensitive to volume 

deviations compared to the current situation. Summarizing from earlier results, we conclude that this 

sensitivity is caused by the higher utilization in the new routing schedule together with the extra 

deliveries that have to delivered due to stockouts. Costs for delivering extra deliveries for extra 

deliveries can be more expensive than the average deliveries, because the extra deliveries are not 

considered in the tactical routing schedule. Therefore, the extra delivery can be located geographically 

inefficient. 

5.4 Conclusion 
In this chapter we answered research questions 6a and 8.  

6. How can the tactical model be tested using experiments? 

a. Which scenarios must be tested? 

We executed 17 experiments in which we varied the primary focus of the allocation procedure and 

the interventions applied. The experiments executed are listed in Table 9. The experiments are divided 

in three stages. The first six experiments are used to find the best combinations of primary focus and 

the choice of intervention (i). Experiment VII to XVI build upon the best experiments from I to VI, which 

are used to test the impacts of interventions (ii), (iii) and (iv). The last experiment is used to improve 

the best experiment so far by applying intervention (v). 
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8. What performance can be achieved by applying the new tactical model and operational 

policies into practice at HAVI? 

The main performances measured, are the costs and the workload balancing. We find that these two 

measures are significantly positively correlated. Two out of the five interventions have a significant 

impact on the results. The intervention that added deliveries to dummy customers to prevent the 

balance of number of routes per shift to get worse, contributes significantly to improve the balance 

of the workload. Forcing the RVRP solver to reduce the fleet size contributes significantly to reducing 

costs as well as improving the balance of the workload. In the best tactical routing schedule, we 

reduced the fleet size with two vehicles, which is the maximum that can be achieved, because only 

the eastern part of the Netherlands is in scope.  

The best tactical routing schedule in which consecutive deliveries are 18 hours apart, saves €5007 per 

week compared to the current situation. Allowing consecutive deliveries to take place within 18 hours, 

saves another €967 per week. The contribution of workload balancing for the total network is 

expressed in a penalty. How this penalty is computed is explained in Section 4.7.1. This penalty is in 

the best tactical routing schedule reduced from 234 to 218.6, and to 214.9 with consecutive deliveries 

within 18 hours allowed. 

We find that there is no significant difference in the results obtained with different primary focuses. 

Either focusing on costs first or focusing on workload balancing first can both improve the costs and 

the workload balancing.  

We performed a sensitivity analysis of the best-chosen tactical routing schedule. We choose the 

tactical routing schedule from experiment XI, in which we forced the RVRP solver to reduce the fleet 

size with two vehicles. This routing schedule has the best results without allowing consecutive 

deliveries within 18 hours apart. We applied the operational policy with deviating volumes from three 

different weeks from historical data. We find that the new routing schedule is more sensitive to 

volume deviations than the current routing schedule. The savings achieved, are shown in Table 21. 

In the new routing schedule, more changes are made in delivery times (238 instead of 168) and 

number of routes per shift (30 instead of 2) in a period of three weeks. We advise HAVI to research 

whether these numbers will decrease when the transport planners minimize the number of deliveries 

that are switched to another shift. The number of stockouts are increased from 3 to 18 in a period of 

three weeks. We advise HAVI to do further research whether the number of stockouts can be reduced 

by determining the delivery windows based on higher volumes. 
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6. Conclusions and recommendations 
In Section 6.1 we present the conclusions from our research and our contributions to theory. In Section 

6.2 we mention our recommendations for HAVI and provide options for further research. Most 

importantly, in this chapter we answer the main research question of this research, which is as follows: 

How can HAVI save on operational costs by balancing the workload within a week, without violating 

customers’ restrictions including storage capacities at the customers’ locations? 

6.1 Conclusions 
Background and literature 

One of the main underlying problems is that transportation and inventory management are separated 

within HAVI. First, we performed a literature study. In this study, where we studied VRP and IRP 

models. On an operational level, HAVI deals with an IRP model with fixed routes. The order quantities 

must be determined. The transport planners then solve a VRP model every day. On a tactical level 

HAVI also deals with an IRP model. The delivery patterns and quantities are both decision variables. 

We were not able to identify the literature that jointly optimizes the routing problem and the 

inventory control. In one phase, the delivery patterns are determined. In the other phase the delivery 

quantities are determined. This is the same as HAVI operates in the current situation. However, in this 

research, we strongly believe in an approach in which these two phases are combined in a single 

phase. 

Contributions to theory 

With our model and research, we have built upon existing literature. We found some gaps in literature 

for which we provided solutions. We were not able to identify the literature that jointly optimizes the 

routing problem and the inventory control. The method we created is build such that the RVRP solver 

simultaneously optimizes the delivery patterns and delivery quantities. Restrictions regarding the 

capacities of the customers’ storage locations are included. Therefore, our model integrated the 

routing problem with the inventory control. With spreadsheet models we have constructed the input 

that the RVRP solver requires. This input consists of all delivery units with a corresponding delivery 

window. Because this delivery window considers, the capacities, we designed the model such that an 

extended IRP can be solved by an RVRP solver. Because of these delivery windows, which we have 

determined for each delivery unit, we achieved to let the delivery quantities be dependent on the 

delivery times (hour). Furthermore, we have included shelf life restrictions, which is one of the main 

obstacles to apply basic IRP models in the food sector. The fact that the goods consumed are divided 

in multiple temperature is included. Shelf life is different for different temperature zones, which 

largely influences the delivery windows of the different goods. Furthermore, the goods are stored in 

different storages, which all have their own capacity. We have created an algorithm that is used to be 

able to check how a routing schedule would have performed when actual volumes deviate from 

forecasted volumes.  
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Requirements 

The main research question states that the objective is to save on operational costs by balancing the 

workload. Therefore, the model built, measures costs as well as balancing the workload as objective. 

The main research question also states that the restrictions regarding the customers’ storage locations 

should be respected. Our model includes the storage capacities as restrictions. 

To determine the delivery patterns and delivery quantities in a single phase, we build a model that 

determines a delivery window for every single delivery unit. The delivery window considers: the 

storage capacities, shelf life agreements, consumption periods and hourly sales distributions.  

Storage capacities 

The storage capacities are not determined earlier by HAVI. Earlier attempts of HAVI to include the 

inventories capacity in their models resulted in the conclusion that the surface of storage locations is 

a poor indicator for their capacity to store goods. We use two criteria to deduce the capacity of the 

storages locations by determine lower bounds:  

1. The capacity is at least as big as the largest delivery that is received in the past. 

2. The capacity is at least as big as the largest amount that is expected to be consumed 

between two deliveries within the planning horizon. 

The second criterium builds on the assumption that the restaurant planners are aware of the expected 

volumes and that their conclusion is that the delivery pattern in the current situation is feasible. 

Furthermore, we used the fact that the current routing schedule consists of feasible delivery patterns 

to relax the lower bounds such that every delivery unit has at least one possible delivery moment in 

the current situation. 

Delivery windows 

For every delivery unit, we determine when it will be consumed. Therefore, we use the hourly sales 

distribution per restaurant. This distribution is based on historical data.  

To determine the earliest possible delivery moment regarding the capacity restriction, we use the 

consumption periods in combination with the capacities of the storage locations. Besides this capacity 

restriction, there is also a shelf life agreement, which limits the possible delivery moment given the 

period of consumption. These two limitations together determine the earliest possible delivery 

moment. The latest possible delivery moment dependents on the start of the consumption period. 

We then have determined the complete delivery window. 

Improvement heuristic 

The model  built to optimize the tactical routing schedule is an improvement heuristic that takes the 

current routing schedule as initial solution. The model is split in heuristic A and heuristic B. 

Allocation procedure 

In both heuristic A and B, we use an allocation procedure to determine for each delivery units in which 

route it will be delivered. The allocation procedure is based on setting priorities to the shifts. The shifts 

with the highest priority, are the shifts we want to utilize the most. We experiment with different 

settings of the priorities. Either we focus on cost reduction first, or we focus on balancing workload 

first. We found that there is no significant difference in the results for the different approaches. 
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The goals of heuristic A are: 

(i) Avoid unnecessary deliveries in the most costly or largest shifts (i.e., shifts with the lowest 

priorities). 

(ii) Add deliveries to the shifts that are less costly or which workload is lower (shifts with 

highest priorities).  

The purpose of heuristic B is to move the workload as much as possible to shifts with the highest 

priorities. In the allocation method the delivery units are assigned as much as possible to shifts with 

the highest priorities. The goals of heuristic B are: 

(i) Use the opportunities to merge routes in the shifts with the lowest priorities because they 

have a low utilization. This way, we reduce the number of routes in those shifts. 

(ii) Increasing the utilization of the shifts that (i) have a low workload or (ii) are less costly. 

Experiments 

We define five interventions, which we use in our experiments to improve the tactical routing 

schedule: 

(i) Execute either heuristic A, B or both. 

(ii) Prevent the balance of number of routes per shift to get worse. 

(iii) Force the RVRP solver to improve the spread based on number of routes per shift. 

(iv) Force the RVRP solver to reduce the fleet size. 

(v) Allow consecutive deliveries to be within 18 hours. 

Based on the best results from the first intervention (i), we experiment with applying interventions 

(ii), (iii) and (iv). The best result is used to improve further by applying intervention (v).  

We found that when focusing on costs first, the best solution is found by applying heuristic A and B. 

Focusing on balancing workload first, the best solution found is by applying only heuristic B. 

Furthermore, we found that interventions (iv) contributed significantly in reducing the costs. 

Intervention (ii) and (iv) contributed significantly in improving the workload balance (i.e., they reduced 

the workload penalty 𝑊𝑃𝑒). 

Results tactical routing schedule 

Using a hypothesis test, we found that reducing costs and improving workload balancing is not a 

tradeoff, but they are significantly positively related. The largest influence on this effect is intervention 

(iv) in which the RVRP solver is forced to reduce the fleet size. By reducing the fleet size, costs are 

directly reduced by €2000 per week due to lease costs, insurances and maintenance related to aging. 

Furthermore, when reducing the fleet size, automatically the largest shift(s) has also to be reduced in 

size, which improves the workload balancing. When the direct costs of €2000 per week are excluded 

from the model, we do not find a significant relation between fleet size and costs. 

The best tactical routing schedule is the schedule that resulted from experiment XI in which we forced 

the RVRP solver to reduce the fleet size with 2 vehicles from 22 to 20 vehicles for the total network.  

With this tactical routing schedule, weekly costs are reduced by €5007. Additionally, €967 is saved by 

applying intervention (v). Workload balancing is measured using a penalty stating a normalized value 

of the sum of the squared deviations from the required workload balance. In our new tactical routing 

schedule, we reduced this penalty for the total network from 234,0 to 214,9. 
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Results operational policy 

We performed a sensitivity analysis to test how the new routing schedule performs with deviating 

volumes.  We find the new routing schedule being more sensitive to volume deviations. The savings 

are lower than the savings achieved in the tactical routing schedule that was based on forecasted 

volumes. The operational savings vary from €705 in a week with +8,0% volume, and €5406 in a week 

with -8,2% volume. The main reason is the impact of the fleet size. With the highest volume, the fleet 

size in the new tactical routing schedule is equal to the fleet size in the current situation. When volume 

decreases, in the new tactical routing schedule, we manage to reduce the fleet size, in contrast to the 

current situation, in which the fleet size remains the same as with the higher volume. 

There are three measures, stating that the new routing schedule is less stable compared to the current 

situation. First, we found that the new routing schedule has 238 deliveries that changed more than 30 

minutes from their originally planned time in the tactical routing schedule in a period of three weeks, 

compared to 168 changed delivery times in the current situation. Second, in the new routing schedule, 

in the period of three weeks, there are 30 changes in the number of routes per shift (i.e., a route being 

added or removed from a shift), compared to 2 changes in the current situation. Third, in the new 

tactical routing schedule, 18 stockouts occurred compared to 3 in the current situation However, the 

costs associated with the additional deliveries to replenish inventory are already included in the cost 

results shared above. The two explanatory results for this, are (i) the higher utilization of the trucks in 

the new routing schedule and (ii) the preference of Paragon to plan as early as possible. However, 

further research should be done regarding these issues, which we mention in Section 6.2. 

Reflection on Core problems 

In Section 1.5 we selected four out of nine core problems which we focus on: 

1. The available inventory data is not sufficient to determine the actual storage capacity and 

construct feasible and efficient delivery patterns. 

We achieved to determine the capacities of the customers’ storage locations. 

5. Wishes per restaurant are highly influencing the current delivery patterns, although HAVI 

should be in the lead to create more efficiencies. 

The model we created, determines which delivery patterns are most efficient. HAVI can now take the 

lead in deciding on the delivery patterns. It has to be managed how to communicate this with the 

customers. 

7. Having restaurants of multiple restaurant planners within one route, makes it cumbersome to 

discuss which volume (i.e., part of an order) must be pulled to preceding deliveries. 

The operational policy we created, determines which volume must be delivered each delivery (in 

terms of HAVI, which volume is pulled to earlier deliveries). The restaurant planners have to adjust 

the orders such that they have the size proposed by our model. 

8. The restaurant planners expect input from the transport department on which volume to pull, 

but do not get that input. 

Instead of the transport department providing the input for the restaurant planners, the input now 

comes from our model. 
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6.2 Recommendations 
In this section we provide recommendations for (i) practice and (ii) further research. 

6.2.1 Recommendations for practice 

We first give some recommendations that are a result of this research, on which we advise HAVI to 

implement our findings. We then give some recommendations, to improve the results and fully utilize 

the benefits from this research. 

All the spreadsheets that are used for this research are based on the eastern part of the Netherlands. 

All spreadsheets should be extended to cover the total network. A benefit for this research is that the 

eastern part of the network does not consist any back-haulage customers. However, incorporating 

these customers, should be only minor changes to the spreadsheet, and they do not impact the logic 

of this research. 

We advise HAVI to use the following recommendations by creating their new tactical routing 

schedules: 

- Update the capacity values by updating the input data sources that are mentioned in Section 

4.3. The capacities are updated by following Section 4.4.  

- For all delivery units, determine the delivery windows by following Section 4.5. 

- When it is known that the then active routing schedule is feasible, execute Section 4.6. 

- Use the same settings as we used for experiment XI, because that delivered the best results. 

o While using the allocation procedure, use the priorities that have a primary focus on 

workload balancing. 

o Apply all nine steps of the algorithm of Section 4.7.2 (i.e., heuristic A and B) 

o When creating the routing schedule for the total network, intervention (iv) (i.e., 

reducing the fleet size) should be applied a minimum of two times, the first time a 

new tactical routing schedule will be created. It can be experimented if another 

execution of intervention (iv) will result in even better results. The following times the 

routing schedules will be created, again it should be experienced how often 

intervention (iv) can be executed. Maybe, when volumes increase due to seasonality, 

it is not even possible to reduce the fleet size, but it should be increased.  

We advise HAVI to use the following recommendations in their daily business: 

- Every day before the restaurant planners are starting to make orders, a system should run the 

algorithm of Section 4.9.2. 

- Restaurant planners should adjust the orders such that the order quantities are the same as 

they are determined by Section 4.9.2. 

- The transport planners should minimize the number of deliveries that are being delivered in 

another shift than they were planned in, in the tactical routing schedule. 

Improvements 

We advise HAVI to extent the historical data that is being used to determine lower bounds for the 

storage capacities. The more data is available, the better the lower bound that we can deduce. 

We advise HAVI to develop a way of working in which the transport planners must look a few days in 

advance. The operational policy can be used to forecast the utilization of the routes. To help the 

restaurant planners to also act further in advance, we can use the operational policy that we created 

to guide them how to adjust the order quantities. Instead of the historical volumes that we used in 
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this research to perform the sensitivity analysis, the operational policy will then be run with forecasted 

volumes. We then have an insight in what the utilization of the routes for the coming days will be after 

the utilization of the routes are being optimized. If, even after optimizing the utilization, the routes 

are planned above capacity, or way beneath capacity, the transport planners have an extra influence 

on the balancing of the workload. For example, if routes on a certain day are overloaded, but the 

restaurants have spare capacity, it is possible to insert an extra delivery on the prior day.  

HAVI must decide whether they find the additional savings of intervention (v) enough to deliver 

consecutive deliveries within 18 hours apart from each other. 

6.2.2 Recommendations for extended application 

Thawing period 

In Section 4.4 we determined the consumption period for each delivery unit. We assumed that goods 

can be consumed immediately after delivery. However, for the buns for example, they can only be 

consumed after a certain thawing period. We advise to research the impact of the assumption of direct 

consumption. 

Product level 

In Section 4.9.2 we developed the operational policy in which we determine per temperature zone 

how many delivery units should be delivered. The restaurant planners must make the orders manually 

by pulling products from consecutive deliveries to the first delivery. We advise to extend this model, 

so it states per product whether it must be delivered, and if so, how much it should be delivered. The 

translation of this model can be used to automate the process of making orders considering the 

utilization of the routes. 

Routing of stockout deliveries 

We assumed that stockouts are known sufficiently in time to be able to plan the extra deliveries within 

regular routes. No carriers are considered in this research. However, in practise, when a stockout takes 

place, sometimes, there is no time to wait until the next shift of departing routes. In those situations, 

carriers are hired. We advise to do further research about the impact of the carriers costs instead of 

the ability to plan the routes together with regular routes. If the impact is significant it can be 

considered to invest in a system or procedure that is able to more accurately predicts when a stockout 

is going to take place 

6.2.3 Recommendations for further research 

Approach comparison 

In this research we used a revolutionary approach in which we jointly optimized the delivery patterns 

and delivery quantities. In our approach, the delivery patterns and delivery quantities are not decision 

variables  but are a result from optimizing a routing schedule in which delivery units with 

corresponding delivery windows were optimized. We suggest further research in which this approach 

will be compared to existing heuristics for IRP models in which either (i) the delivery patterns and 

delivery quantities are the decision variables or (ii) each day will be determined which customers to 

deliver and which quantities to allocate. To have a fair comparison, at least the capacities of the 

customers’ storage locations should be included. First, shelf life can be ignored, later it can be 

included. The comparison can be executed by applying the various approaches to multiple example 

instances, which are present in literature. 
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Stock out tracking 

In Section 4.9.2 we stated that a stockout occurred when the inventory at the end of a day is below 

zero. However, two factors are not considered. Between the end of the day and the next delivery 

consumption can take place. Therefore, a stockout can take place, even if the inventory is not empty 

at the end of the day. Furthermore, every restaurant has a safety buffer in storage. This safety buffer 

is not considered in our research. Therefore, it is possible that we determined a stockout in this 

research, which in practice wouldn’t be a stockout. We suggest further research can be done to include 

buffer storages into the model such that stockouts can be modelled more accurately. A sensitivity 

analysis can be executed to find the correlation between the buffer amount and the stockout 

occurrences. 

Another variable that influences the stockout probabilities, is the volume that is used to make the 

tactical routing schedule. In our research the delivery windows are determined based on 110% of 

forecasted volumes. Increasing this percentage, will reduce the chance of stockouts, at the expense 

of smaller delivery windows.  

Waste in the objective 

In this research, the objective is to reduce costs and balance workload. Capacity and shelf life 

agreements are considered, but as restrictions. Because we create the tactical routing schedule based 

on fixed volumes, in practice, shelf life agreements can be violated when volumes deviate. Further 

research should be done to incorporate the waste reduction into a model in which delivery patterns 

and quantities are being optimized simultaneously. 
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Appendix I 
Time windows 

The time windows are already filled in within the master data of Paragon. The time windows are 

constructed in accordance with the transport planners and restaurant planners. The factors 

influencing the time windows are the following:  

- Presence of employees (often one hour before opening). 

- Legislation (e.g., city centers only early in the morning). 

- Severe hinder for the operations or driver. 

- Severe hinder for the customer. 

The time windows are set such that times are excluded for which a penalty is risked, or operations of 

the customer or the driver are hindered severely. An example of time windows of McDonald’s 

‘Laakhaven’ is shown in Table 22. 

Table 22: Example time windows McDonald's ‘Laakhaven’ 

Day Time windows 

Monday 07:00-10:00 14:00-19:45 

Tuesday 07:00-10:00 14:00-19:45 

Wednesday 07:00-10:00 14:00-19:45 

Thursday 07:00-10:00 14:00-19:45 

Friday 07:00-10:00 14:00-19:45 

Saturday 07:00-19:45 

Sunday 09:00-19:45 

 

We see that from Monday to Friday, the available delivery times are between 7 am and 10 am and 

between 2 pm and 7:45 pm. Between 10 am and 2 pm it is busy in this restaurant because it is located 

near a high school and the students get their lunch at the McDonald’s. The weekend days have other 

time windows because there are no students studying those days. Like this restaurant, every 

restaurant has its own time windows, specific to its characteristics. 
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Appendix II 
Center of Gravity 

From different interviews with the operations manager, the manager of Restaurant Consulting 

McDonald’s and a restaurant planner, it follows that there are various reasons why the workload is 

not always balanced to maximum potential. We must get an understanding why workload balancing 

must be dealt with, also when a better routing schedule is in place. For our example we assume the 

following: 

- Deliveries takes place at Monday, Wednesday, Friday and Sunday. 

- Delivery takes place before any consumption of that day. 

- We deliver volume according to JIT. 

- Demand is constant at 5 delivery units per day. 

We use the term ‘center of gravity’ to have a simple measure of the volume balancing quantified in a 

single number. The 𝐶𝑜𝐺 is important because the demand increases during the week. When HAVI 

would deliver according to JIT, there would be even greater peaks in the weekend.  

In our example, assuming a demand of 5 delivery units per day, this results in 𝐶𝑜𝐺 =  
1

35
∗ (1 ∗ 10 +

3 ∗ 10 + 5 ∗ 10 + 7 ∗ 5), which equals 125
35⁄ . Now consider the change of Friday delivery to 

Thursday delivery, while the Monday and Sunday deliveries remain unchanged in volume. The impact 

on the storage Utilization is shown in Figure 17.  

 

Figure 17: Storage levels for different delivery patterns 

This results in a center of gravity of 𝐶𝑜𝐺 =  
1

35
∗ (1 ∗ 10 + 3 ∗ 5 + 4 ∗ 15 + 7 ∗ 5), which equals 

120
35⁄ . Changing the delivery pattern has lowered the 𝐶𝑜𝐺. Changing a delivery to an earlier day, 

does not always decrease the 𝐶𝑜𝐺. For example, starting with a delivery pattern of Monday, Thursday, 

Friday and Sunday and changing the Thursday delivery to a Wednesday delivery increases the 𝐶𝑜𝐺 

from 120
35⁄  to 125

35⁄ . 
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In Figure 17, we assumed JIT delivery. Consider the same delivery pattern as the blue line, but now we 

do not deliver according to JIT, but deliver some delivery units earlier than needed. The order 

quantities for the different ordering policies are as stated in Table 23. The impact on the storage levels 

is shown in Figure 18. 

Table 23: Center of Gravity for different ordering policies 

Ordering policy Monday Wednesday Friday Sunday CoG 

JIT 10 10 10 5 125/7 

Earlier 13 12 7 3 105/7 

 

 

Figure 18: Storage levels for different ordering policies 

Looking again at Figure 17, the blue pattern has a lower 𝐶𝑜𝐺. However, Pattern 2 gives the opportunity 

to pull some demand from the Wednesday delivery to the Monday delivery resulting in an even better 

𝐶𝑜𝐺 as we see in Table 23. In general, the 𝐶𝑜𝐺 can always be improved by setting the first delivery in 

the week as early as possible. However, when applied to all restaurants, this will result in a peak on 

Monday, which is unpreferable. Concluding, there are two main factors influencing the 𝐶𝑜𝐺. 

1. Changing the delivery pattern. 

2. Changing the ordering policy (e.g., JIT). 

In this research, we develop a method in which both the delivery patterns as the ordering policy is a 

decision variable. The 𝐶𝑜𝐺 is measure that is important for the customers’ perspective, because a 

lower 𝐶𝑜𝐺 means that the average storage levels in the beginning of the week are higher. 
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Appendix III 
JIT vs. Delivery balance 

Because HAVI uses a system that proposes the orders for McDonald’s based on JIT delivery, the 

restaurant planners must adjust those orders such that volume delivered is better balanced than 

volume consumed. These balances are shown in Figure 3. HAVI uses a dashboard that gives insight in 

the expected utilization of the shifts of the coming days when JIT delivery is applied. The planned 

utilization is shown in Figure 19 represented by the blue bars. We see that the routes on Sunday in 

the day shift, are planned above capacity. The restaurant planners should pull demand to earlier 

deliveries, resulting in the grey bars. Overloading the routes on the largest shifts is a tool for HAVI to 

force the restaurant planners to pull demand to earlier deliveries, such that delivered volume is better 

balanced. This is necessary because the system itself uses JIT delivery to propose the initial orders. 

  

Figure 19: Rolling forecast utilization routes 
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Appendix IV 
Examples from literature 

Dantzig and Ramser (1959): First to describe VRP 

The method of Dantzig and Ramser (1959) 

starts with carrying out sub optimizations by 

making pairs of delivery points. This phase is 

illustrated in Figure 20. Making a pair from 

𝑃3 to 𝑃4, means that we include the trip from 

𝑃3 to 𝑃4 into our routing schedule. The 

capacity of the truck is divided by equal 

parts. The size of the parts depends on the 

number of stages in the method. With two 

stages for example, at most half of the 

capacity of a truck can be used in the first 

stage making pairs. In the second stage the 

pairs are combined to sum up to at most the 

full capacity of the truck. The initial part size 

is set as follows: 
𝐶

2𝑠 in which 𝐶 is the capacity of a truck and 𝑠 is the number of stages. The number of 

stages is dependent on the maximum number of locations within a route and is determined as follows: 

𝑠 = 𝑅𝑜𝑢𝑛𝑑𝑈𝑝(
𝐿𝑛(𝐿𝑚𝑎𝑥)

𝐿𝑛(2)
), in which 𝐿𝑚𝑎𝑥 is the maximum number of locations within a route. It is also 

possible that a point is paired to the terminal (i.e., the DC in our case), more precise, even multiple 

points can be paired to the terminal point. The pairs are chosen such that the total distance to travel 

all pairs is minimized. In the second stage, the pairs made in the first stage, are combined in such a 

way that the total demand of points will not exceed the trucks capacity. Some extra procedures are 

included to improve the best solution found. For example, at each stage it is allowed that a pair is 

included only fractional. When such a situation occurs, we must determine which fractional pairs are 

placed in the best solution and which not, based on minimizing a sub problem. Based on this decision, 

the stage is recomputed with the pairs that we determined to be in the best solution being fixed, and 

the rest of the network as it was at the beginning of the stage. It is conjectured that the best solution 

found approaches the true optimal solution when the number of stations to be delivered increases 

and when the demand per station does not differ too widely. 

Bell et al. (1983): First to describe IRP 

In an IRP, at each stage a decision is made, which customers to deliver and what quantities to deliver. 

This problem is first described by Bell et al. (1983). They used a simple example to illustrate the 

benefits of dealing with the routing problem whilst the decision maker can make the route and 

simultaneously determine the delivery days and delivery quantities. The problem is illustrated in 

Figure 21. For four customers a periodic schedule must be determined which fulfils the demand of the 

customers.  

Figure 20: Pairing phase Dantzig and Ramser (1959) 
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The trivial solution would be to deliver customer 1 

and 2 in one route every day with a total volume of 

4000, and customer 3 and 4 in one route every day 

with a total volume of 3500. Every day there are two 

routes of each 210 miles. The average mileage per 

day is 420 miles. A better solution can be found 

when making a periodic schedule of two days. On 

the first day, customer 2 and 3 are being delivered 

with quantities of 3000 and 2000, respectively. On 

the second day two routes are made. These routes 

are the same as in the trivial solution. The first day 

340 miles are driven, and the second day again 420 

miles. The average mileage is decreased from 420 

miles to 380 miles per day. The customers’ demand 

is still fulfilled, and the average delivery frequency is 

decreased (customer 1 and customer 4 are delivered 

once per two days instead of every day). 

  

Figure 21: Simple example IRP from Bell et al. 
(1983) 
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Appendix V 
Paragon as RVRP solver 

In this research, we use Paragon as RVRP solver because HAVI already uses Paragon in creating their 

tactical routing schedules. An RVRP solver is a routing optimization software that is able to solve VRP 

problem with a lot of practical constraints. In this appendix the characteristics of Paragon are 

discussed. 

The objective within Paragon can be chosen. The options are as follows: 

- Minimize duty time 

- Minimize distance 

- Minimize duty time (clustered) 

- Minimize distance (clustered) 

Minimizing distance is straightforward. Minimizing duty time is the minimization of driving time, 

waiting time, loading and unloading time and an extra duty time that corresponds to the 

administration of a route. This extra duty time is set at one and a half hour.  

The other two options do the same, but then clustered. Which means, that the distance and driving 

time, from and to the DC is excluded. This results in a routing schedule in which most routes consist 

of customer that are closer to each other than with the other objectives. The experience is that the 

objective with clustering results in a routing schedule in which it is easier to adjust routes when some 

routes are above or way below capacity. Therefore, in this research, when we say that we optimize 

using the RVRP solver, we use Paragon the minimize the duty time (clustered). Other characteristics 

of Paragon are: 

- Paragon considers asymmetric driving times and distances, that are time dependent. 

- For some customers there is a penalty incorporated when the customer is visited within some 

time boundaries.  

- Paragon has loading times that are dependent on the delivered quantity. The delivery time is 

always a fixed time, plus a variable time per delivery unit. 

- Paragon uses depot smoothing, which means that within some time intervals there is a 

maximum number of trucks that can depart from the depot. This is in place to balance the 

workload of loaders.  



 
 

Appendix VI 
Example improving by shifting partial deliveries 

Looking at a simplistic example, we show the benefits of our new approach. Consider Figure 22 

showing six customers with their initial assignment. Customer 1 to 5 have a fixed delivery day. The 

goods for customer 6 are split in two parts: The first part should be delivered on Monday or Tuesday; 

the second part should be delivered on Tuesday or Wednesday. In the initial solution, every customer 

gets one delivery. Every day, one route is driven. The number next to the arrow is the duration to 

travel from one to the other customer. The initial solution has a driving time of 12 hours and 45 

minutes. Assuming a delivery time of 30 minutes per stop, the total duration is 15 hours and 45 

minutes.  

In a traditional approach, we cannot switch the volume of a customer to another delivery day in the 

improvement stage. Often the delivery days are being determined in a previous phase. Because we 

now determined for every delivery unit a delivery window, it is possible to find an improvement. The 

demand of customer 6 is split over two routes on two different days. We show the improved solution 

in Figure 23. The improved solution has a driving time of 11 hours and 30 minutes. The total duration 

is 15 hours because we added 30 minutes per stop for seven stops (two for customer 6). The improved 

solution saves 45 minutes by adding a delivery moment for customer 6. 

  

Figure 22: Initial solution simplistic example 
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Figure 23: Improved solution simplistic example 
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Appendix VII 
Example determining delivery windows 

We look at an example of how delivery windows are determined. For this example, we use McDonald’s 

‘Winterswijk’. To keep the example simple, assume the following: We only look at the fridge; the 

demand for chilled products is three roll containers per week and the capacity of the fridge is equal to 

two roll containers. This restaurant gets his deliveries at Monday, Wednesday, Friday, and Sunday. 

Every day the delivery takes place at 12 am. Expressed in hours in the week, the deliveries take place 

at hour 8, 56, 104, 152 resp. In Figure 24 we show the usage of the fridge over the span of a week. The 

blue line is the actual usage expressed in roll containers stored. The consumption per hour is based 

on the historical hourly sales distribution, with a total of three roll containers in the week. To 

determine the delivery windows, we first look at the limitations of the capacity.  

The initial storage is set at one roll container. The orange line shows the usage of the fridge in case 

that the first roll container is not yet delivered. The first roll container cannot be delivered after the 

87th hour (i.e., Thursday 3 pm), because the usage of the fridge would have reached zero. When the 

first delivery unit would be delivered at the 87th hour, it would immediately be used for consumption. 

From Equation 5 it follows that 𝐿𝑎𝑡𝑒𝑠𝑡(𝑈𝐶,𝑇,𝑛) as well as 𝑡𝐶,𝑇,𝑛
𝑠𝑡𝑎𝑟𝑡 are being equal to 87. 

Because the initial inventory is set at one roll container, the inventory level at the end of the previous 

week is also one roll container. The first roll container cannot be delivered earlier than Sunday after 

all sales, because the usage of the fridge would have been above capacity. From Equation 2 it follows 

that  

𝐸𝑎𝑟𝑙𝑖𝑒𝑠𝑡(𝑈𝑊𝑖𝑛𝑡𝑒𝑟𝑠𝑤𝑖𝑗𝑘,𝐶ℎ𝑖𝑙𝑙𝑒𝑑,1)𝐶𝑎𝑝 = 𝑡𝑊𝑖𝑛𝑡𝑒𝑟𝑠𝑤𝑖𝑗𝑘,𝐶ℎ𝑖𝑙𝑙𝑒𝑑,(1−(𝐶𝑎𝑝𝑊𝑖𝑛𝑡𝑒𝑟𝑠𝑤𝑖𝑗𝑘,𝐶ℎ𝑖𝑙𝑙𝑒𝑑))
𝑒𝑛𝑑 =

 𝑡𝑊𝑖𝑛𝑡𝑒𝑟𝑠𝑤𝑖𝑗𝑘,𝐶ℎ𝑖𝑙𝑙𝑒𝑑,(−1)
𝑒𝑛𝑑 . 

Because we deal with a repetitive schedule, we take the last delivery unit of the previous week as 

delivery unit 0. Delivery unit -1 would the delivery unit before delivery unit 0, which is delivery unit 2 

of the previous week. This makes 𝑡𝑊𝑖𝑛𝑡𝑒𝑟𝑠𝑤𝑖𝑗𝑘,𝐶ℎ𝑖𝑙𝑙𝑒𝑑,(−1)
𝑒𝑛𝑑 = 𝑡𝑊𝑖𝑛𝑡𝑒𝑟𝑠𝑤𝑖𝑗𝑘,𝐶ℎ𝑖𝑙𝑙𝑒𝑑,2

𝑒𝑛𝑑 .  
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Given that the first roll container is being delivered on Monday morning, the second roll container 

cannot be delivered on Wednesday Morning at the 56th hour. Because the usage of the fridge is still 

above one, and added with the roll container being delivered, the usage would be higher than capacity 

of two. The second roll container cannot be delivered earlier than the 87th hour (i.e., Thursday 7 pm), 

and not later than the 135th hour (i.e., Saturday 7 pm). The third roll container cannot be delivered 

earlier than the 135th hour, and not later than the 9th hour (i.e., Monday 1 pm following week). The 

second roll container is being consumed until Sunday before midnight. However, there are no sales 

between Sunday midnight and Monday 9 am (this is not true, but it then shows a feature of our 

method of determining the consumption period). Therefore, we can say that the end of the 

consumption period is Monday 9 am. We use this difference in our favor. We choose the end of a 

consumption period as early as possible and the beginning of a consumption period as late as possible. 

Now we found the delivery windows in the case of unlimited shelf life. We show the delivery windows 

without shelf life limitation in Table 24. 

Table 24: Delivery windows without shelf life limitation 

Roll Container Earliest delivery moment Latest delivery moment 

1 Sunday end of day Thursday 7 pm 

2 Thursday 7 pm Saturday 7 pm 

3 Saturday 7 pm Monday 1 pm 

 

In this specific example, without limitation of the shelf life and a capacity of two roll containers, the 

consumption period of a roll container is equal to the delivery window of the next roll container 

(except for the cases in which there is no sales in the hours following the consumption period). In 

Figure 25 we show the Consumption periods in combination with the delivery periods for a period of 

two weeks. We see that the delivery periods are equal to the consumption period of the previous roll 

container (except for the period in which no goods are consumed). We see a gap between the 

consumption period of roll container 2 and 3. This is because no goods are consumed between Sunday 

night and Monday morning. In other words, a roll container cannot be delivered earlier than the end 

of the consumption period of the roll container two places earlier.  

Now, we continue by determining the delivery windows including the shelf life limitations. We know 

that the end of the consumption period of a roll container is equal to the end of the delivery window 

of the next roll container. The exception is that the delivery ends with a period of no sales, then the 

consumption period ends at the last moment of sales. The ends of the consumption periods of the roll 

containers are at hours 135, 168 and 87 resp. The 135th hour is on Saturday. The minimum shelf life 

Figure 25: Consumption and delivery periods without shelf life limitation 
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agreements with the customer states that upon delivery, the goods should have a minimum shelf life 

left of four days (including the delivery day). Therefore, the first roll container cannot be delivered 

earlier than Wednesday (4 am). We already knew that the roll container could not be delivered earlier 

than Monday 4 am, but this changes to Wednesday 4 am. We show the impact of the shelf life 

limitation on the delivery period in Figure 26.  

Continuing with the second roll container, the 168th hour is on Sunday (Monday before 4 am is counted 

as Sunday), which means that the second roll container cannot be delivered earlier than Thursday 4 

am. We already knew that the roll container could not be delivered earlier than Thursday 3 pm, this 

remains the same, because this is already more restrictive than the shelf life limit. The 87th hour is on 

Thursday. Therefore, the third roll container cannot be delivered earlier than Monday 4 am. Now we 

see the benefits of choosing the beginning of the consumption period being Monday 9 am instead of 

Sunday before midnight. We show the delivery windows with shelf life limitation in Table 25. We see 

that two out of the three delivery windows are more restricted by adding the shelf life limitations. The 

delivery window gives us the boundaries wherein the delivery time is chosen. Therefore, the possible 

delivery moments of the first roll container, is part of the time windows of the specific customer 

(McDonald’s ‘Winterswijk’) that lies between Wednesday 4 am and Thursday 3 pm. 

Table 25: Delivery windows with shelf life limitation 

Roll Container Earliest delivery moment Latest delivery moment 

1 Wednesday 4 am Thursday 3 pm 

2 Thursday 3 pm Saturday 3 pm 

3 Monday 4 am Monday 9 am 

 

The first roll container must be delivered at the Wednesday delivery. The second roll container must 

be delivered on Friday. The third roll container must be delivered at the Monday delivery. It is not 

necessarily the case that a roll container only fits in one delivery moment. From this example we see 

that it is not the case that the first roll container is also being delivered first. The first roll container is 

the roll container that is consumed first in the week. Therefore, the first roll container of a week is 

delivered in the previous week. 

  

Figure 26: Consumption and delivery periods with shelf life limitation 
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Appendix VIII 
Setting priorities and assigning points to the shifts 

In our algorithm we use the allocation procedure several times. We distinguish between emphasizing 

on low priority shifts and high priority shifts. We also distinguish between either focusing on cost 

reduction first or focusing on balancing workload first. Therefore, four scenarios are defined. 

Focus on costs first, emphasizing high priority shifts 

In this scenario the points assigned to the shifts are as in Table 26. We always start with the allocating 

delivery units to the shift with the highest number of points. Delivery units with the least points are 

being allocated first. When allocating the delivery units to the Tuesday Evening shift, all delivery units 

that can be allocated have at least 100 points. The first delivery units that will be allocated are the 

ones that can only be delivered in a Tuesday evening route. Then the delivery units will be allocated 

that can be delivered on a Tuesday evening route as well as a Sunday evening route. This way, Sunday 

evening is avoided as much as possible. The more alternatives and the worse the alternatives are, the 

higher the chance that we allocate the delivery unit to the Tuesday evening. Assigning the points is 

quite arbitrary. We have for example a large gap between Tuesday daytime and Thursday daytime 

because adding workload to the shifts from Tuesday daytime and lower  

Table 26: Points - Costs first, emphasize high priority 

 

Focus on costs first, emphasizing low priority shifts 

Table 27: Points - Costs first, emphasize low priority 

Priority #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 

Shift Tue 

E 

Thu 

E 

Wed 

D 

Wed 

E 

Fri 

E 

Mon 

E 

Thu 

D 

Tue 

D 

Fri 

D 

Mon 

D 

Sat 

D 

Sat 

E 

Sun 

D 

Sun 

E 

Points 1 2 4 5 9 11 15 40 50 75 100 150 200 250 

 

Focus on balancing first, emphasizing high priority shifts 

Table 28: Points - Balancing first, emphasize high priority 

Priority #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 

Shift Sun  

E 

Tue 

E 

Thu 

E 

Sat 

E 

Wed 

E 

Wed 

D 

Sun 

D 

Fri  

E 

Mon 

E 

Thu 

D 

Tue 

D  

Mon 

D 

Sat 

D 

Fri 

D 

Points 100 90 80 70 60 50 40 20 12 7 4 3 2 1 

 

  

Priority #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 

Shift Tue 

E 

Thu 

E 

Wed 

D 

Wed 

E 

Fri 

E 

Mon 

E 

Thu 

D 

Tue 

D 

Fri 

D 

Mon 

D 

Sat 

D 

Sat 

E 

Sun 

D 

Sun 

E 

Points 100 90 80 70 60 50 40 15 12 7 4 3 2 1 
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Focus on balancing first, emphasizing low priority shifts 

Table 29: Points - Balancing first, emphasize low priority 

Priority #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 

Shift Sun  

E 

Tue 

E 

Thu 

E 

Sat 

E 

Wed 

E 

Wed 

D 

Sun 

D 

Fri  

E 

Mon 

E 

Thu 

D 

Tue 

D  

Mon 

D 

Sat 

D 

Fri 

D 

Points 1 2 3 5 7 10 15 20 25 50 80 100 120 250 
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Appendix IX 
Interventions 

Intervention (i) and (v) do not need further elaboration. We elaborate on intervention (ii), (iii) and 

(iv). 

Intervention (ii) 

For this intervention we determine the number of routes in the current situation in the East of the 

Netherlands. Also, we decide what the maximum routes allowed is for each shift. The number of 

routes per shift (𝑉𝑠
𝑐𝑢𝑟) in the current situation is stated in Table 30. 

Table 30: Number of routes in the current situation 

Shift Mon 
D 

Mon 
E 

Tue 
D 

Tue 
E 

Wed 
D 

Wed 
E 

Thu 
D 

Thu 
E 

Fri 
D 

Fri  
E 

Sat 
D 

Sat 
E 

Sun 
D 

Sun 
E 

𝑽𝒄𝒖𝒓
𝒔  4 6 3 2 3 6 3 3 3 5 4 4 4 0 

 

When determining the maximum number of routes (𝑉𝑠
𝑚𝑎𝑥) allowed for each shift, we distinguish 

between focusing on costs first, or focusing on balancing workload first. The priorities of the shifts 

for these scenarios are stated in Appendix VI. The maximum number of routes allowed for each shift 

are stated in Table 31 and Table 32. 

Focusing on costs first 

Table 31: Maximum number of routes per shift, when focusing on costs first 

Shift Mo
n D 

Mo
n E 

Tue 
D 

Tue 
E 

We
d D 

We
d E 

Thu 
D 

Thu 
E 

Fri 
D 

Fri  
E 

Sat 
D 

Sat 
E 

Sun 
D 

Sun 
E 

𝑽𝒎𝒂𝒙
𝒔  4 6 4 6 6 6 6 6 3 6 4 5 4 0 

 

Focusing on balancing first 

Table 32: Maximum number of routes per shift, when focusing on balancing first 

Shift Mon 
D 

Mon 
E 

Tue 
D 

Tue 
E 

We
d D 

We
d E 

Thu 
D 

Thu 
E 

Fri 
D 

Fri  
E 

Sat 
D 

Sat 
E 

Sun 
D 

Sun 
E 

𝑽𝒎𝒂𝒙
𝒔  4 6 3 2 3 6 3 3 3 5 4 4 4 6 

 

Example of delivery window for dummy customer 

The dummy customer is used as an occupier. A dummy customer routed in a shift decreases the 

possible number of normal routes in that shift with one. The delivery windows for the dummy 

customer are constructed such that they can only be delivered in shifts with equal or lower priority. 

When a dummy customer is transferred to a shift with lower priority, another route can be transferred 

from the lower priority to the higher priority shift. For the priorities of the shifts, see the example of 

Table 7. The dummy customer is located near to the DC. Therefore, the dummy customer is delivered 

within the time windows that departure of routes is possible. For a dummy customer initially delivered 

on Tuesday daytime for example, the delivery window is as follows: 

Mon 04:00-08:30 & Tue 04:00-08:30 & Sat 04:00-08:30 13:00-18:00 & Sun 04:00-08:30 13:00-18:00 
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Intervention (iii) 

For intervention (iii) we take the same 𝑉𝑠
𝑚𝑎𝑥 as in intervention (ii) as stated in Table 31 and Table 32. 

We distinguish between either focusing on costs first or focusing on balancing workload first. When 

focusing on costs first, the set of shifts from which a route must be transferred to a shift with higher 

priority is all shifts on which salary supplements apply. When focusing on balancing workload first, the 

set of shifts from which a route must be transferred to a shift with higher priority is all shifts except 

for the lowest priority (i.e., Sunday night). 

We randomly select a delivery unit that is being delivered within the determined set of shifts. The 

whole delivery is removed from the routing schedule, thus also all other delivery units that are being 

delivered to the same customer in the same route. We then reoptimize the routing schedule and check 

whether the RVRP solver has saved a route. If a route is saved within shift with priority 𝑝 that is within 

the determined set of shifts, we add a delivery to the dummy customer in that shift and we remove a 

delivery to the dummy customer from the shift with priority 𝑝 − 1. For example, when focusing on 

costs after some delivery moments are being removed, the RVRP has saved a route in the Saturday 

evening shift. We add a delivery to the dummy customer on Saturday evening (priority 12 See Table 

26) with the following time windows: Sat 13:00-18:00 & Sun 04:00-08:30 13:00-18:00. We also remove 

a delivery to the dummy customer. This delivery is removed from Saturday daytime (priority 11) with 

the following time windows: Sat 04:00-08:30 13:00-18:00 & Sun 04:00-08:30 13:00-18:00. 

Intervention (iv) 

In Section 4.7.4 we gave the method that can be applied for intervention (iv) applied on the total 

network. In this research, a part of the total network is in scope and we therefore need an adjusted 

procedure for intervention (iv). The procedure is as follows: 

To reduce the fleet size, we must know what the maximum number of vehicles needed is in the current 

situation. As we see in Figure 14 in Section 4.7.1, a maximum of 22 vehicles are needed in the current 

situation. To reduce the fleet size with 1 vehicle, the maximum vehicles for the total network allowed 

is 21. We use the same variables as in Section 4.7.4, but add a superscript stating whether the variable 

applies to the total network (NL) or a part of the network (East). 

- Set 𝑉𝑠
𝑚𝑎𝑥,𝐸𝑎𝑠𝑡 =  𝑉𝑠

𝑐𝑢𝑟,𝐸𝑎𝑠𝑡 + (𝑉𝑚𝑎𝑥,𝑁𝐿  − 𝑉𝑠
𝑐𝑢𝑟,𝑁𝐿) –  1 for all shifts 𝑠 for which          

𝑉𝑠
𝑐𝑢𝑟,𝑁𝐿 < 𝑉𝑚𝑎𝑥,𝑁𝐿 

- Set 𝑉𝑠
𝑚𝑎𝑥,𝐸𝑎𝑠𝑡 =  𝑉𝑠

𝑐𝑢𝑟,𝐸𝑎𝑠𝑡 + (𝑉𝑚𝑎𝑥,𝑁𝐿  − 𝑉𝑠
𝑐𝑢𝑟,𝑁𝐿) for all shifts 𝑠 for which                    

𝑉𝑠
𝑐𝑢𝑟,𝑁𝐿 = 𝑉𝑚𝑎𝑥,𝑁𝐿 

- Remove deliveries from the set of shifts for which 𝑉𝑠
𝑐𝑢𝑟,𝑁𝐿 = 𝑉𝑚𝑎𝑥,𝑁𝐿 until it is possible to 

save a route in each of these shifts with the RVRP solver. 

- Set 𝑉𝑠
𝑚𝑎𝑥,𝐸𝑎𝑠𝑡 =  𝑉𝑠

𝑐𝑢𝑟,𝐸𝑎𝑠𝑡 + (𝑉𝑚𝑎𝑥,𝑁𝐿  − 𝑉𝑠
𝑐𝑢𝑟,𝑁𝐿) –  1 for all shifts in which we saved a 

route. 

- Reoptimize the routing schedule with the RVRP solver by routing all deliveries that we 

removed earlier. 

 



 
 

Appendix X 
Experimental results 

In this appendix we state the explanatory experimental results. In Section 5.2, the main results are discussed. First, we mention the results for the tactical 

routing schedule. Thereafter, we mention the results of the operational policy. 

Results tactical routing schedule 
Table 33: Routes per shift 

Experiment Mon 

D 

Mon 

E 

Tue 

D 

Tue 

E 

Wed 

D 

Wed 

E 

Thu 

D 

Thu 

E 

Fri 

D 

Fri 

E 

Sat 

D 

Sat 

E 

Sun 

D 

Sun 

E 

Total 

Base 4 6 3 2 3 6 3 3 3 5 4 4 4 0 50 

I 4 6 4 2 3 6 3 3 3 5 4 4 5 1 53 

II 6 4 3 2 3 6 4 2 3 5 3 5 4 0 50 

III 4 6 3 2 3 6 3 3 3 5 4 4 5 0 51 

IV 5 6 3 2 3 5 3 4 3 4 4 4 4 1 51 

V 5 4 3 2 3 6 3 3 3 5 4 4 4 1 50 

VI 6 4 3 2 3 5 3 4 2 5 4 4 5 0 50 

VII 4 6 3 2 3 6 3 3 3 5 4 4 4 0 50 

VIII 4 5 3 2 3 6 3 3 3 5 3 4 4 0 48 

IX 5 4 3 2 3 5 3 5 3 6 3 4 3 0 49 

X 4 6 3 2 3 6 3 3 2 5 4 4 4 0 49 

XI 3 6 2 3 3 6 3 4 1 6 3 4 4 0 48 

XII 4 6 3 2 3 6 3 3 3 5 4 4 4 1 51 

XIII 4 4 3 2 3 6 3 3 3 5 4 4 5 0 49 

XIV 4 3 3 1 4 6 2 4 3 5 3 5 6 0 49 

XV 4 6 3 2 3 6 3 3 2 5 4 4 5 0 50 

XVI 3 5 2 3 4 5 3 4 1 5 3 6 5 0 49 

XVII 3 6 2 2 4 4 3 4 1 6 3 5 4 0 47 
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Table 34: Delivery units per shift and warehouse related costs 

Experiment 200% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 150% 150% 200% 
 

€ 4 

Base Mon 

D 

Mon 

E 

Tue 

D 

Tue  

E 

Wed 

D 

Wed 

E 

Thu 

D 

Thu  

E 

Fri    

D 

Fri     

E 

Sat   

D 

Sat   

E 

Sun 

D 

Sun  

E 

Total Warehouse 

€ 

I 183 284 164 117 162 293 175 137 151 279 192 229 201 0 2567 € 11.860 

II 239 346 153 25 104 273 138 97 162 296 231 237 253 25 2579 € 12.352 

III 264 161 156 109 167 332 223 117 133 242 166 258 239 0 2567 € 12.318 

IV 164 291 159 97 164 310 174 177 119 270 223 205 214 0 2567 € 11.762 

V 265 314 163 78 127 237 164 153 156 233 233 217 235 6 2581 € 12.312 

VI 246 161 131 114 175 299 174 163 124 274 219 240 224 23 2567 € 12.272 

VII 229 212 149 78 135 264 170 219 101 252 233 238 287 0 2567 € 12.234 

VIII 182 268 146 94 143 318 166 167 162 293 215 196 223 0 2573 € 11.858 

IX 186 272 172 71 143 305 169 170 170 280 179 226 230 0 2573 € 11.948 

X 257 226 149 86 155 272 173 245 105 341 170 214 180 0 2573 € 12.108 

XI 215 266 153 75 150 296 180 174 116 294 230 197 227 0 2573 € 12.000 

XII 175 307 115 111 135 313 153 198 60 350 180 236 240 0 2573 € 11.944 

XIII 150 237 158 120 168 333 176 173 110 256 199 240 221 26 2567 € 11.894 

XIV 214 182 141 105 152 312 167 178 146 236 227 228 279 0 2567 € 12.138 

XV 220 177 177 58 190 294 117 200 141 249 174 249 321 0 2567 € 12.288 

XVI 204 178 160 115 173 329 174 172 100 253 224 223 262 0 2567 € 12.054 

XVII 176 213 119 123 225 263 179 180 51 260 173 323 282 0 2567 € 12.182 

 166 297 118 109 218 211 167 221 38 350 168 274 236 0 2573 € 11.976 
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Table 35: Utilization per shift 

Experiment Mon 

D 

Mon 

E 

Tue 

D 

Tue  

E 

Wed 

D 

Wed 

E 

Thu     

D 

Thu      

E 

Fri    

D 

Fri  

E 

Sat  

D 

Sat   

E 

Sun 

D 

Sun 

E 

Average 

Base 76% 79% 91% 98% 90% 81% 97% 76% 84% 93% 80% 95% 84% 
 

86% 

I 100% 96% 64% 21% 58% 76% 77% 54% 90% 99% 96% 99% 84% 42% 81% 

II 73% 67% 87% 91% 93% 92% 93% 98% 74% 81% 92% 86% 100% 
 

86% 

III 68% 81% 88% 81% 91% 86% 97% 98% 66% 90% 93% 85% 71% 
 

84% 

IV 88% 87% 91% 65% 71% 79% 91% 64% 87% 97% 97% 90% 98% 10% 84% 

V 82% 67% 73% 95% 97% 83% 97% 91% 69% 91% 91% 100% 93% 38% 86% 

VI 64% 88% 83% 65% 75% 88% 94% 91% 84% 84% 97% 99% 96% 
 

86% 

VII 76% 74% 81% 78% 79% 88% 92% 93% 90% 98% 90% 82% 93% 
 

86% 

VIII 78% 91% 96% 59% 79% 85% 94% 94% 94% 93% 99% 94% 96% 
 

89% 

IX 86% 94% 83% 72% 86% 91% 96% 82% 58% 95% 94% 89% 100% 
 

88% 

X 90% 74% 85% 63% 83% 82% 100% 97% 97% 98% 96% 82% 95% 
 

88% 

XI 97% 85% 96% 62% 75% 87% 85% 83% 100% 97% 100% 98% 100% 
 

89% 

XII 63% 66% 88% 100% 93% 93% 98% 96% 61% 85% 83% 100% 92% 43% 84% 

XIII 89% 76% 78% 88% 84% 87% 93% 99% 81% 79% 95% 95% 93% 
 

87% 

XIV 92% 98% 98% 97% 79% 82% 98% 83% 78% 83% 97% 83% 89% 
 

87% 

XV 85% 49% 89% 96% 96% 91% 97% 96% 83% 84% 93% 93% 87% 
 

86% 

XVI 98% 71% 99% 68% 94% 88% 99% 75% 85% 87% 96% 90% 94% 
 

87% 

XVII 92% 83% 98% 91% 91% 88% 93% 92% 63% 97% 93% 91% 98% 
 

91% 
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Table 36: Total duty time per shift and corresponding costs 

Experiment 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 150% 150% 200% 200% 
 

€ 30 

Shift Mon 

D 

Mon 

E 

Tue 

D 

Tue  

E 

Wed 

D 

Wed 

E 

Thu 

D 

Thu  

E 

Fri    

D 

Fri     

E 

Sat   

D 

Sat   

E 

Sun 

D 

Sun  

E 

Total Driver     

€ 

Base 35,3 45,5 32,1 16,7 27,7 43,5 28,0 22,9 30,2 40,3 30,4 35,2 31,7 0,0 419,517 € 14.520 

I 37,0 46,3 36,6 9,3 24,6 43,8 26,7 20,5 28,3 42,3 37,4 33,9 33,5 7,2 427,217 € 15.106 

II 48,7 28,5 32,1 14,6 26,8 45,3 40,1 17,9 28,1 39,4 25,2 47,4 31,5 0,0 425,567 € 14.801 

III 31,1 45,6 30,5 11,8 26,5 44,5 27,2 24,7 27,1 41,5 36,6 32,1 30,6 0,0 409,55 € 14.233 

IV 42,3 45,6 30,0 12,4 24,3 38,4 28,5 24,3 28,3 34,9 37,1 34,9 32,5 3,1 416,567 € 14.644 

V 40,8 27,8 26,8 14,0 24,8 43,2 27,1 21,9 27,3 41,4 37,7 35,5 30,4 9,0 407,667 € 14.508 

VI 42,7 31,4 27,6 11,1 21,5 40,3 27,5 25,8 24,9 40,4 33,4 32,8 40,6 0,0 399,717 € 14.201 

VII 31,6 42,4 28,6 13,4 21,2 47,3 30,0 22,7 28,6 42,1 35,9 31,7 30,4 0,0 405,8 € 14.100 

VIII 31,9 40,4 30,7 11,2 20,7 45,9 27,9 23,2 29,8 41,8 28,3 33,4 31,2 0,0 396,417 € 13.755 

IX 43,6 31,0 28,1 12,8 21,2 40,3 30,7 39,5 24,7 52,7 27,6 33,9 30,5 0,0 416,433 € 14.330 

X 33,1 42,2 28,9 11,7 24,2 44,1 32,8 23,4 26,0 43,0 37,5 31,8 30,5 0,0 409 € 14.224 

XI 25,5 47,2 22,8 18,0 21,1 44,8 27,4 30,4 10,0 58,4 25,9 35,6 33,7 0,0 400,817 € 13.959 

XII 32,3 45,0 30,8 15,6 25,8 47,0 27,7 23,3 27,9 39,6 32,4 33,6 32,4 4,8 418,117 € 14.650 

XIII 37,7 30,8 27,3 14,8 23,7 44,0 26,2 24,6 29,6 37,4 32,6 32,1 39,1 0,0 399,75 € 14.136 

XIV 36,9 29,3 30,4 8,0 30,5 40,7 17,5 31,9 26,6 39,8 24,9 39,9 44,5 0,0 400,817 € 14.333 

XV 34,8 36,3 29,4 13,9 26,3 45,7 27,7 23,2 23,6 41,4 37,1 32,3 34,3 0,0 405,9 € 14.246 

XVI 31,2 37,9 20,4 19,9 33,6 35,4 27,5 29,1 12,3 44,3 23,7 46,8 37,7 0,0 399,633 € 14.176 

XVII 26,6 46,7 23,3 16,3 34,1 28,9 26,5 32,2 9,3 51,5 26,6 41,1 31,6 0,0 394,383 € 13.794 
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Table 37: Total traveled distance per shift and corresponding costs 

Experiment Mon 

D 

Mon 

E 

Tue 

D 

Tue 

E 

Wed 

D 

Wed 

E 

Thu 

D 

Thu 

E 

Fri 

D 

Fri   

E 

Sat 

D 

Sat  

E 

Sun 

D 

Sun 

E 

Total Distance 

€ 

Base 1022 1359 1009 496 772 1325 731 586 980 1210 743 1125 877 0 12235 € 12.235 

I 1022 1357 1062 290 721 1328 720 562 826 1236 906 1015 833 249 12127 € 12.127 

II 1408 825 929 366 747 1379 911 570 829 1210 564 1179 833 0 11750 € 11.750 

III 834 1382 880 310 721 1315 708 754 829 1244 920 1011 810 0 11718 € 11.718 

IV 1054 1339 919 331 676 1203 740 648 865 1057 913 1073 884 84 11786 € 11.786 

V 1163 737 800 368 609 1269 716 577 798 1246 732 1058 820 335 11228 € 11.228 

VI 1139 935 834 258 585 1164 712 648 859 1198 808 1029 1082 0 11251 € 11.251 

VII 883 1227 880 331 567 1361 848 610 830 1246 775 1011 832 0 11401 € 11.401 

VIII 855 1170 941 242 540 1340 674 646 852 1258 704 995 838 0 11055 € 11.055 

IX 1230 798 823 322 572 1228 642 1104 697 1676 679 995 942 0 11708 € 11.708 

X 869 1226 909 244 682 1300 809 673 858 1283 827 950 832 0 11462 € 11.462 

XI 695 1321 725 433 562 1350 685 926 250 1877 633 1117 918 0 11492 € 11.492 

XII 919 1358 936 449 690 1371 717 586 870 1210 813 1032 892 126 11969 € 11.969 

XIII 1143 866 827 415 709 1287 668 627 839 1155 778 1010 976 0 11300 € 11.300 

XIV 1066 871 934 207 912 1152 440 883 691 1236 585 1078 1190 0 11245 € 11.245 

XV 979 1037 838 366 700 1343 717 586 764 1340 903 1008 863 0 11444 € 11.444 

XVI 909 1134 615 512 950 989 698 818 385 1360 555 1335 990 0 11250 € 11.250 

XVII 726 1283 737 405 862 906 647 875 279 1572 646 1098 835 0 10871 € 10.871 
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Table 38: Average delivery size per shift 

Experiment Mon 

D 

Mon E Tue D Tue E Wed 

D 

Wed E Thu 

D 

Thu E Fri D Fri E Sat D Sat E Sun D Sun E Total 

Base 7,6 8,9 7,5 9 7,7 9,8 8 9,1 8,4 10 8,7 10 8,4 
 

8,7 

I 10 10,8 5,3 3,6 5 8,5 6,3 6,9 9,5 10,2 9,2 10,8 12 5 8,6 

II 7,3 8,1 7,1 9,9 8,8 11,1 8,3 11,7 6,3 9,3 8,7 9,2 10,9 
 

8,8 

III 7,1 9,1 6,9 12,1 7,8 10 7,9 10,4 6,6 9 8,6 9,8 11,3 
 

8,8 

IV 10,6 10,5 7,4 7,1 6 8,2 7,1 9,6 9,2 10,1 9 9,9 10,2 6 8,9 

V 7,7 7,7 6,6 10,4 8,8 10,3 8,3 12,5 6,2 9,1 9,5 10,9 11,2 3,8 8,9 

VI 6,9 10,1 7,5 9,8 7,9 8,5 8,5 13,7 5,3 9,7 9,3 11,9 10,6 
 

9,1 

VII 7,9 8,6 7,7 9,4 9,5 9,4 6,9 10,4 9 10,1 8,6 9,3 11,2 
 

9 

VIII 7,8 8,8 8,2 8,9 9,5 9,8 7,7 12,1 8,1 10 7,8 9,8 10,5 
 

9,1 

IX 7,8 9,4 7,8 9,6 9,1 9,4 8,7 9,8 6,2 9,5 7,7 8,9 7,5 
 

8,6 

X 8,6 8,9 8,5 8,3 8,3 9,3 6,9 10,9 5,8 9,8 8,8 9,4 11,4 
 

8,8 

XI 9,7 8,5 7,2 9,3 9,6 9,2 7,3 11,6 6 8,8 9 9,8 9,2 
 

8,9 

XII 6,5 7,2 7,2 9,2 8,8 9,3 8 11,5 5,8 9,1 8,3 10,9 10 8,7 8,5 

XIII 7,6 7,9 7,1 8,8 8,9 9,8 8,8 11,1 6,1 9,4 8,7 11,4 11,6 
 

9 

XIV 7,9 8 7,7 8,3 10,6 9,5 8,4 10 6,4 8,9 9,2 10,8 11,1 
 

9 

XV 7 7,7 7 10,5 8,7 9,7 7,9 11,5 5,6 9 8,6 11,2 11,4 
 

8,8 

XVI 6,3 8,2 7 9,5 9,8 9,7 8,5 10,6 4,6 8,7 9,6 10,4 11,3 
 

8,9 

XVII 8,3 9 6,9 10,9 8,4 9,6 7,3 12,3 5,4 10 8,8 9,1 10,7 
 

9,1 
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Table 39: Impact on fleet size and corresponding costs / Centre of Gravity 

Experiment Fleet impact Truck   € CoG 

Base 0 €0 7,10 

I 0 €0 7,30 

II 1 €2000 7,19 

III 0 €0 7,16 

IV 0 €0 7,04 

V 0 €0 7,40 

VI 1 €2000 7,48 

VII 0 €0 7,25 

VIII 0 €0 7,24 

IX 0 €0 7,08 

X -1 - €2000 7,20 

XI -2 - €4000 7,29 

XII 0 €0 7,36 

XIII 0 €0 7,47 

XIV 0 €0 7,52 

XV -1 - €2000 7,37 

XVI -2 - €4000 7,54 

XVII -2 - €4000 7,34 
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Results operational policy 
Table 40: Routes per shift 

Experiment Mon 
D 

Mon 
E 

Tue D Tue  E Wed 
D 

Wed 
E 

Thu D Thu  E Fri   D Fri    E Sat  D Sat   E Sun D Sun  E Total 

Base 4 6 3 2 3 6 3 3 3 5 4 4 4 0 50 

Base 22 4 6 3 2 3 6 3 2 3 5 4 4 4 0 49 

Base 27 4 6 3 2 3 6 3 3 3 5 4 4 4 0 50 

Base 30 4 6 3 2 4 6 3 3 3 5 4 4 4 0 51 

XVI 3 5 2 3 4 5 3 4 1 5 3 6 5 0 49 

XVI 22 3 6 2 2 3 6 3 4 1 6 3 4 4 0 47 

XVI 27 3 6 2 2 3 6 3 4 1 6 4 4 4 0 48 

XVI 30 3 6 4 0 5 4 3 4 2 6 4 4 5 0 50 

 

Table 41: Delivery units per shift and warehouse related costs 

Experiment Mon 
D 

Mon 
E 

Tue 
D 

Tue 
E 

Wed 
D 

Wed 
E 

Thu 
D 

Thu 
E 

Fri D Fri E Sat D Sat E Sun 
D 

Sun 
E 

Total Warehouse 
€ 

Base 183 284 164 117 162 293 175 137 151 279 192 229 201 0 2567 € 11.860 

Base 22 156 283 141 63 137 245 144 114 114 245 165 157 186 0 2150 € 9.910 

Base 27 169 307 147 69 157 269 164 134 142 267 205 234 217 0 2481 € 11.502 

Base 30 216 343 163 118 197 313 177 155 157 279 201 240 224 0 2783 € 12.924 

XVI 176 213 119 123 225 263 179 180 51 260 173 323 282 0 2567 € 12.182 

XVI 22 132 276 109 64 107 282 144 154 59 318 149 176 185 0 2155 € 9.870 

XVI 27 142 282 119 68 122 308 161 174 58 358 180 239 239 0 2450 € 11.324 

XVI 30 179 344 225 0 282 228 164 200 68 349 203 227 240 0 2709 € 12.486 
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Table 42: Utilization per shift 

Experiment Mon 
D 

Mon 
E 

Tue D Tue E Wed 
D 

Wed 
E 

Thu D Thu E Fri   D Fri    E Sat  D Sat   E Sun D Sun E Total 

Base 76% 79% 91% 98% 90% 81% 97% 76% 84% 93% 80% 95% 84% 
 

85,6% 

Base 22 65% 79% 78% 53% 76% 68% 80% 95% 63% 82% 69% 65% 78% 
 

73,1% 

Base 27 70% 85% 82% 58% 87% 75% 91% 74% 79% 89% 85% 98% 90% 
 

82,7% 

Base 30 90% 95% 91% 98% 82% 87% 98% 86% 87% 93% 84% 100% 93% 
 

90,9% 

XVI 98% 71% 99% 68% 94% 88% 99% 75% 85% 87% 96% 90% 94% 
 

87,3% 

XVI 22 73% 77% 91% 53% 59% 78% 80% 64% 98% 88% 83% 73% 77% 
 

76,4% 

XVI 27 79% 78% 99% 57% 68% 86% 89% 73% 97% 99% 75% 100% 100% 
 

85,1% 

XVI 30 99% 96% 94% 
 

94% 95% 91% 83% 57% 97% 85% 95% 80% 
 

90,3% 

 

Table 43: Total duty time per shift and corresponding costs 

Experiment Mon 
D 

Mon 
E 

Tue 
D 

Tue 
E 

Wed 
D 

Wed 
E 

Thu 
D 

Thu 
E 

Fri   
D 

Fri   
E 

Sat  
D 

Sat  
E 

Sun 
D 

Sun 
E 

Total Driver € 

Base 35,3 45,5 32,1 16,7 27,7 43,5 28,0 22,9 30,2 40,3 30,4 35,2 31,7 0,0 419,517 € 14.520 

Base 22 33,6 45,7 30,6 14,0 25,7 43,5 26,8 18,5 28,8 40,6 29,6 33,8 30,1 0,0 401,167 € 13.889 

Base 27 33,6 45,8 30,9 14,2 26,9 44,0 27,6 21,7 27,6 40,5 30,7 35,5 31,8 0,0 410,583 € 14.264 

Base 30 35,9 46,4 30,9 16,3 34,8 44,4 28,0 22,7 30,1 40,5 30,6 35,7 31,9 0,0 428,2 € 14.798 

XVI 31,2 37,9 20,4 19,9 33,6 35,4 27,5 29,1 12,3 44,3 23,7 46,8 37,7 0,0 399,633 € 14.176 

XVI 22 22,7 46,8 23,4 12,2 20,1 45,5 25,8 29,0 10,0 56,5 25,0 34,7 31,0 0,0 382,6 € 13.304 

XVI 27 23,9 46,1 24,8 12,6 21,5 45,1 27,4 29,6 9,9 58,1 27,8 36,2 33,2 0,0 396,05 € 13.837 

XVI 30 25,3 51,1 42,0 0,0 42,0 31,5 28,2 30,5 14,4 55,6 32,9 35,5 36,3 0,0 425 € 14.864 
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Table 44: Total traveled distance per shift and corresponding costs 

Experiment Mon 
D 

Mon 
E 

Tue 
D 

Tue 
E 

Wed 
D 

Wed 
E 

Thu 
D 

Thu 
E 

Fri   
D 

Fri    
E 

Sat   
D 

Sat   
E 

Sun 
D 

Sun 
E 

Total Distance 
€ 

Base 1022 1359 1009 496 772 1325 731 586 980 1210 743 1125 877 0 12235 € 12.235 

Base 22 1000 1359 955 437 754 1325 728 503 980 1234 743 1125 805 0 11948 € 11.948 

Base 27 972 1321 955 437 768 1325 731 585 852 1235 743 1125 862 0 11911 € 11.911 

Base 30 1017 1359 932 492 1002 1316 725 586 980 1218 743 1125 862 0 12357 € 12.357 

XVI 909 1134 615 512 950 989 698 818 385 1360 555 1335 990 0 11250 € 11.250 

XVI 22 607 1355 728 301 562 1350 686 922 250 1819 636 1117 834 0 11167 € 11.167 

XVI 27 658 1319 793 303 556 1366 715 922 250 1839 657 1117 914 0 11409 € 11.409 

XVI 30 685 1434 1203 0 1077 898 776 902 365 1748 881 1119 936 0 12024 € 12.024 

 

Table 45: Average delivery size per shift 

Experiment Mon 
D 

Mon 
E 

Tue D Tue  
E 

Wed 
D 

Wed 
E 

Thu 
D 

Thu   
E 

Fri   D Fri    
E 

Sat   
D 

Sat   
E 

Sun D Sun  
E 

Total 

Base 7,6 8,9 7,5 9 7,7 9,8 8 9,1 8,4 10 8,7 10 8,4 
 

8,7 

Base 22 6,8 8,8 6,1 5,3 6,9 8,2 6,5 7,6 6,3 8,8 7,5 6,8 7,8 
 

7,4 

Base 27 7,3 9,6 6,4 5,8 7,5 9 7,5 8,9 7,9 9,5 9,3 10,2 9 
 

8,5 

Base 30 9 10,7 7,4 9,1 9 10,8 8 10,3 8,7 10 9,1 10,4 9,3 
 

9,5 

XVI 6,3 8,2 7 9,5 9,8 9,7 8,5 10,6 4,6 8,7 9,6 10,4 11,3 
 

8,9 

XVI 22 7,8 7,7 6,1 7,1 7,6 8,3 7,2 9,1 5,9 8 7,5 7,3 7,1 
 

7,6 

XVI 27 7,9 8,1 6,6 6,8 8,1 9,1 7,7 10,2 5,8 9 9 10 9,6 
 

8,5 

XVI 30 9,9 9,3 7,8 
 

9,1 11,4 8,2 11,1 6,2 8,9 8,5 9,5 9,2 
 

9,1 
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Table 46: Impact on fleet size and corresponding costs / Centre of Gravity 

Experiment Fleet impact Truck € CoG 

Base 0 €0 7,10 

Base 22 0 €0 7,01 

Base 27 0 €0 7,24 

Base 30 0 €0 6,97 

XVI -2 - €4000 7,54 

XVI 22 -2 - €4000 7,24 

XVI 27 -1 - €2000 7,50 

XVI 30 0 €0 7,10 

 


