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ABSTRACT 

 

The attainment of an accurate diagnosis is key in treatment planning in pediatric neuro-
oncology, because treatment and prognosis are based on tumor location, histopathology 
and staging. Magnetic resonance (MR) spectroscopy during routine scanning could 
improve diagnostic value of imaging and aid in differentiation of pediatric brain tumors 
earlier in the diagnostic stage. Imaging at cellular level remains impossible, but MR 
spectroscopy provides direct insight into biochemical processes in cells. Metabolism in 
cancer cells differs for different tumor types. Several studies showed the added value of 
MR spectroscopy in differentiating tumors types. Therefore we aim at developing a tool 
based on machine learning (ML) that can help radiologists with assessing brain tumor type. 

Since raw data is saved since June 2019 in the Princess Máxima Center (PMC), a lot of raw 
data from MR spectra before June 2019 are missing. Therefore, the value of the use of 
screenshots is being evaluated. From these two data sources, in total four datasets were 
obtained to cluster the data; 1) vectors of the original raw data, 2) concentrations 
determined by automatic quantification of the raw data, 3) a line segmented from 
screenshots,  and 4) peak/height ratios determined from screenshots. 

After performing quality control, three different classes were formed with a total of 32 
screenshots and 17 raw datasets. Three tumor types (medulloblastomas (10 screenshots; 
5 raw datasets), DIPGs (11 screenshots; 8 raw datasets) and pilocytic astrocytomas (11 
screenshots; 4 raw datasets)) were classified with different classifiers.  

Feature reduction was performed with feature selection and feature extraction methods 
(principal component analysis (PCA)/linear discriminant analysis (LDA)). Five different 
machine learning algorithms were applied (Linear Discriminant Classifier (LDC), Quadratic 
Discriminant Classifier (QDC), K-nearest neighbor (KNNC), support vector machine (SVM), 
feed forward neural networks (FFNN)). Error rates were determined with help of a cross 
validation method. The lowest error rates after a PCA were as followed: raw data vector 
(0.2000); raw data concentration quantification (0.1294); segmented line 
from  screenshots (0.2000); peak/height ratios from screenshots (0.2562). The lowest error 
rates after an LDA were: segmented line from  screenshots (0.0000); peak/height ratios 
from screenshots (0.2188).  

Because of a high suspicion for overfitting, the dataset with the segmented line was trained 
and tested with different training and test sets. The error rates varied from 33% to 66% for 
the test set. KNNC and FFNN provided the lowest error rates. The simpler, more robust, 
classifiers (LDC and QDC) were less accurate in the classification of the test set. More 
freedom from the KNNC and FFNN provided better results, but overfitting should be 
avoided by creating different test sets, or by applying cross validation. 

For now, the datasets were based on the amount of features. But medulloblastomas, DIPGs 
and pilocytic astrocytomas are already easier to distinguish than other tumors by 
neurological examination and MR imaging. More data should be collected to create 
datasets with a higher clinical impact. 
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The results demonstrate the possibility of using screenshots as a replacement for raw data. 
This could give many centers the possibility of using their screenshots and broaden their 
dataset. The amount of data should be increased to further examine the potential of 
differentiating pediatric brain tumors based on MR spectroscopy with machine learning to 
become a clinical relevant classification tool. 
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1. INTRODUCTION 
 

The most common solid tumors in children are located in the central nervous system 

(CNS), accounting for nearly 25% of all childhood cancer. [1, 2] Brain tumors comprise 

many different diagnoses, varying from benign to malignant. High grade tumors have a 

worse mortality rate compared to low grade tumors, but the morbidity rate is very high 

for both these types. [2] The mortality rate for all CNS tumors remains worse compared 

to other pediatric solid tumors. The 5-year survival rate for all brain tumor types combined 

has been increased to 70% over the past decade, which is still worse compared to the 

survival rate for all pediatric solid tumors, which is 80%. [3-5]  

 

 

 

 

 

 

An accurate diagnosis is key in treatment planning for children with brain tumors, because 

treatment and prognosis are based on tumor location, histology and staging. [6] A non-

invasive, cost effective tool would be valuable for brain tumor characterization. [7] 

Characterizing pediatric brain tumors based on solely magnetic resonance (MR) imaging 

is difficult. Histopathology remains necessary to derive a complete diagnosis based on the 

tumor’s histologic and biologic behavior and to determine the treatment strategy. 

Therefore, histopathology is the gold standard to classify tumor types. However, research 

has been performed to investigate new techniques to capture the physiological processes 

within the tumor to accelerate the diagnosis and treatment planning.  

Proton magnetic resonance spectroscopy (MRS) is a non-invasive technique, able to 

provide biochemical information about tissue. [7] Multiple studies show the possibility to 

differentiate brain tumors with the help of MR spectroscopy. [7-10] High and low grade 

gliomas can be distinguished, based on MR spectroscopy data, but also different tumor 

types can be differentiated as well. These researches have shown the added value of MR 

spectroscopy in the non-invasive evaluation of tumor tissue. The diagnostic value of 

imaging might be higher when MR spectroscopy is included in routine scanning. (Figure 

1.1) 

Unfortunately, interpretation of the spectra can be difficult. [11] Therefore, an algorithm 

to differentiate tumor types as performed in other studies may be useful. [8, 11, 12] 

Machine learning (ML) makes it possible to classify medical images. [13] This can also be 

applied to the MR spectra. [14, 15] Next to this, ML is able to recognize patterns that have 

not been discovered yet. Patterns that seem to be meaningless for radiologists, could play 

 Imaging 

(CT&MRI)

  

  Treatment 

plFFNNing 
Biopsy 

Determining 

histology 
Physical 

examination 

 

Figure 1.1: The clinical pathway, undertaken by pediatric patients is displayed in this figure. At time of the 

second arrow, MR spectroscopy could aid in differentiation of tumor types. 
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an important role in the differentiation of tumors. This could enable accurate non-invasive 

brain tumor diagnoses. 

Datasets, containing raw data and automatically generated bitmap images from 

processed data, from here on called screenshots, are obtained from the Princess Máxima 

Center (PMC). These images are generated by the MRI host and saved in .jpeg format. 

Using the screenshots an effort is made to recreate raw data if it is lost, since raw data 

has not been saved in previous years. Histology of the brain tumors has been verified by 

biopsies or cerebrospinal fluid (CSF) analysis. These datasets can be used in a ML 

algorithm. [13] With histology-based diagnosis, the ML algorithm can be based on labels 

(i.e. the diagnosis), and not on given features by radiologists. This makes it possible for 

the ML algorithm to search for new features, recognizable by a computer. 

Pattern recognition can result in rapid differentiation of pediatric brain tumors and might 

be able to filter out human diagnostic misinterpretations by radiologists. This research 

aims to obtain MRS data from screenshots and MRS raw data from the Princess Máxima 

Center and classify pediatric brain tumors based on this MRS data. The proof of concept 

is to classify three pediatric brain tumor types, and a long term goal would be to develop 

a tool with diagnostic value to help differentiate pediatric brain tumors during routine 

scanning. 
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2. BACKGROUND INFORMATION 

 

2.1 Magnetic Resonance Spectroscopy 

MR spectroscopy can be used to analyze the chemical composition of tissue by obtaining 

signal from nuclei which possess magnetic properties. These nuclei have a magnetic 

moment (spin) and when they are positioned in an external magnetic field, they will start 

to spin around their axis with a MR frequency (known as the Larmor frequency). By 

applying a radiofrequency (RF) pulse (with the same MR frequency as the Larmor 

frequency) to the tissue, the protons flip and they send out an echo when they are 

returning to their steady-state position (known as T1/longitudinal relaxation). After an RF 

pulse has been applied, the protons start dephasing in the transversal direction as well 

(known as T2/transversal relaxation). A refocusing pulse is applied to help rephasing 

protons and recover the transverse magnetization. With the obtained echo, MR 

spectroscopy is able to detect molecules with relatively low molecular weight and the 

ability to move within intra- and extra-cellular spaces. Since many of these molecules are 

part of a metabolic pathway, MR spectroscopy is sensitive to detect aspects of 

metabolism within tissue. [16, 17] Figure 2.1 shows a healthy example of an MR 

spectroscopy spectrum from the brain and its metabolic aspects. The area under the curve 

of a certain peak is related to the concentration of that metabolite. 

[18] Figure 2.1: An example of an MR spectrum, obtained from brain tissue. Different metabolites and their 

function are shown with the corresponding peaks in the spectrum. [18] 
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1H, 31P, 19F, 13C or 23Na are various nuclei which can be used to obtain in vivo MR spectra 

of metabolites. 1H MRS is widely used, because 1H nuclei are present in many metabolites 

and this technique can be performed on clinical MR systems. [16] 

The frequencies most common used in clinical MR spectroscopy are 64 (1.5T), 128 (3T) 

and 298(7T) MHz. Metabolites in an MR spectrum can be recognized because of the 

chemical shift. The chemical shift effects are related to the electrons which surround the 

proton and affects the magnetic field that is sensed by the nucleus, and thus its Larmor 

frequency. Therefore, different metabolites resonate at a different frequency and this 

information can indicate which molecules are present. The chemical shift is expressed in 

parts per million (ppm). A proton with a dense cloud of electrons will resonate more 

upfield in the spectrum (lower ppm), while the MR frequency of a less shielded proton 

will shift downfield in the spectrum (higher ppm). [19] J-coupling results in peak splitting, 

due to neighboring protons within the same molecule. Due to bad resolution, these peaks 

cannot be resolved from each other. This can also appear as peak broadening.  [19-21] 

Because of the low absorption of electromagnetic radiation, NMR (nuclear magnetic 

resonance) is an insensitive technique. But the low energy absorption results in a 

noninvasive technique, perfect for in vivo measurements. The properties of 1H nuclei in 

different tissues have shown different NMR properties. Reports mention different 

properties (relaxation time) for malignant tissue, when compared to normal tissue. [19] 

Next to this, the different levels of metabolites help to distinguish brain tumors. [10] 

   

[22] 

 

A Point RESolved Spectroscopy (PRESS) sequence is used for clinical MR spectroscopy. 

Figure 2.2 shows one excitation pulse and two refocusing pulses to select a voxel. An RF 

pulse (90o – 180o – 180o) is applied in all three orthogonal gradients (x, y and z direction) 

and only the protons which have experienced all three RF pulses, within the cubic-shaped 

voxel, produce a signal at the echo time (TE). This technique is used for single voxel 

spectroscopy (SVS), and can be used for chemical shift imaging (CSI) as well. This 

technique derives a signal from multiple voxels and can be performed 2D and 3D. 

SVS is most widely used in clinical setting. This setting provides a high signal-to-noise in a 

relatively short scanning time. This technique is also used in the PMC. The voxel is placed 

Figure 2.2: A simplified diagram of the PRESS sequence. A 90o RF pulse is given in the Z direction, followed 

by two 180o RF pulses in de X and Y direction. The protons in the voxel, excited by all three pulses, produce 

an echo at time TE. [22] 
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in tumorous brain tissue, in the solid part. The cystic components of a tumor as well as 

surrounding bone, epidural fat or liquor are avoided as much as possible. [23, 24] 

 

2.2 Metabolites 

The following metabolites have shown to differ between various pathologies and brain 

tumors: 

Alanine (Ala, 1.47 ppm)      

Ala is a nonessential amino acid, present in the brain of mammals. An increase of this 

metabolite has been observed in meningiomas. The peak can be overshadowed by 

resonance of lactate and lipids. Longer echo times, or spectral editing is needed when 

differentiating the Ala peak from lipids. [19, 24]  

Choline (Cho, 3.21 ppm)     

An increase of the choline signal is seen in cancer. Cho is involved in the synthesis and 

degradation of the phospholipids pathway. Therefore, it is involved in the cell membrane 

turnover. At short echo times the peak overlaps mI, glucose and Tau. [19]  

Citrate (Cit, 2.57 ppm - 2.72 ppm)    

Cit helps generating energy and biosynthesizes lipids. Due to high cell proliferation in 

certain brain tumors, the metabolism in the cell changes. A decrease of a Cit peak for 

diffuse intrinsic pontine gliomas (DIPGs) during or after treatment, compared to 

pretreatment MRS data, might indicate worsening of the malignancy grade. [7] 

Perturbation in citrate levels occurs in pediatric brain tumors and can be imaged with MR 

spectroscopy. The spectra of these tumors show an increased level of Cit. The resonances 

can partially overlap with resonances from creatine and glutamine. [7, 19, 25, 26] 

Creatine (Cr, 3.03 ppm, 3.93 ppm)   

Together with phosphocreatine (PCr), Cr plays an important role in the energy metabolism 

of tissue. This metabolite is present in neurons and glial cells.  The concentration is higher 

in gray matter, than in white matter. Within tumorous tissue, the Cr levels can be 

decreased. [19]   

Glx (2.0 - 2.46 ppm, 3.6 ppm - 3.8 ppm)    

Glutamine (Gln) is synthesized from glutamate (Glu) in astroglia cells and is broken down 

again to Glu in neural cells. Therefore, it plays a role in regulation of neurotransmitters. 

Glu is known to be the major excitatory neurotransmitter in the brain and contributes to 

the mitochondrial metabolism. [24] GABA functions as a neurotransmitter. [27] Glx is the 

sum of both, and is used to quantify the presence of Gln and Glu separately. Gln, Glu and 

GABA are difficult to distinguish at low magnetic fields. [19] 

Lactate (Lac, 1.3 ppm, 4.1 ppm)     

The presence of Lac in the brain is normally around 0.5 mM. The metabolite is the end-

product of anaerobic glycolysis, but in cancer cells increased levels of Lac are caused by 

lactic acid fermentation after high rate aerobic glycolysis. [19] This phenomenon is called 
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the Warburg effect. [28] An increase in Lac is shown in spectra of low grade tumors, due 

to this different metabolism in cancer cells and in necrotic tumors, due to ischemia. [7, 

28, 29] Lac can overlap resonances of macromolecular structures and lipids. [19] 

Lipids (Lip, 1.3 ppm, 0.9 ppm)     

The lipids form the myelin sheaths, surrounding healthy neurons. Higher levels of Lip are 

seen in multiple tumors, among which are meningiomas and glioblastomas. After damage 

or disruption of tumorous tissue, the macromolecules (MM) transform into mobile lipids. 

[29] An increase of Lip could represent necrotic areas within tumors. [19, 24]  

Myo-Inositol (mI, 3.55 ppm)  

Although the exact function of mI is unknown, it is suspected to be a glial marker and may 

play a role in the osmotic regulation of the cell. This cyclic sugar alcohol has six detectable 

protons and gives rise to multiple groups of resonances. [19]  

N-Acetyl aspartate (NAA, 2.01 ppm, 2.5ppm)   

The exact function of NAA remains unknown, but it might play a role in storing acetyl 

groups for myelin or fatty acids syntheses. It could also be involved in osmoregulation, or 

be one of the breakdown products of the neurotransmitter NAAG. The peak is found to 

be a marker of neuronal cells and gives information about the neuronal density or 

neuronal dysfunction. [7] The concentration NAA is slightly higher in gray matter when 

compared to white matter. [19] MR spectra from tumorous tissue are related to a 

decrease in NAA, due to neuronal cell loss. This metabolite is only located in the nervous 

system and peaks at 2.01 ppm. Smaller doublet-of-doublets occur at different values in 

the spectrum.  

Taurine (Tau, 3.25 ppm, 3.42 ppm)   

Taurine is an amino acid in the brain and plays a role in cytoprotection. An increase of this 

metabolite has been observed in medulloblastomas. [7, 14, 30, 31] The signals from Tau 

should be taken into account when quantifying the Cho peak, because the taurine peak 

forms a significant part of this peak. Especially when obtaining spectra with lower 

magnetic fields, mI, Cho and Tau overlap. [19]  

 

2.3 Machine Learning 

Machine learning can be used to classify the spectra of different tumors. [8-10] The 

algorithm uses datasets provided by the user. The amount of given features (datapoints) 

determine the dimensions which are used by the algorithm to classify data. Each extra 

feature, means an extra dimension in which the data is classified. With unsupervised ML, 

an algorithm determines the labels. It is able to classify a dataset, based on features. 

When supervised ML is used, data is classified based on the given labels. This means, 

labels are already given to the data with prior knowledge and these labels indicate which 

object belongs to which class. Since the ground truth is already determined for all the 

images by biopsies, the data is labeled (based on the ground truth) and a supervised ML 

can be applied. [12] 
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The amount of information has to contain enough variance to classify the data, but too 

much information can result in overfitting. Chances of overfitting increase when there is 

a high number of features and a small number of samples. The classification will be based 

on that specific data, but the algorithm is not capable of learning with new data. When 

using a small sample size dataset, it is best to use the amount of features necessary to 

provide enough variance. Since every feature adds an extra dimension, too many features 

within a dataset results in too many dimensions. To decrease the amount of features (and 

the dimensionality), feature selection or feature extraction can be used. Feature selection 

does not alter the original features, but selects the most significant features based on 

some criterion, such as level of variance. [32] Another manner to reduce dimensionality 

is feature extraction. Both principal component analysis (PCA) and linear discriminant 

analysis (LDA) are linear transformation techniques (Figure 2.3). LDA is supervised, 

whereas PCA is unsupervised. PCA ignores class labels when reducing features, but LDA 

does not. LDA helps to determine useful features by projecting the data and detect when 

classes are well separated. Since LDA outperforms PCA, it is preferred to use an LDA. [33]  

 

 

 

 

 

  

 

 

 

Different algorithms can be implemented to use pattern recognition on MR spectra. A 

Linear Discriminant Classifier (LDC) is a classification method which separates the classes 

by a linear vector. A Quadratic Discriminant Classifier (QDC), relies on the same method, 

but it divides the classes with the use of a quadratic decision surface. These two methods 

have assumptions about the dataset and they are simpler than other classifiers. (Figure 

2.4) They have less computational time and less internal parameters. There are also 

distribution free classifiers, that do not depend on prior knowledge about the distribution 

of the data. Important supervised distribution free classifiers used in different researches 

are artificial neural networks (ANN), support vector machine (SVM) and k-nearest 

neighbor classifier (KNNC). [10, 12, 13] These classifiers can be used for labeled data, to 

generate correct labels for prospective datasets, based on discovered features in the 

training data.  

B 

Figure 2.3: A PCA and LDA are visualized. (A) Visualization of a PCA. Classes are not taken into account, the 

PCA searches for features with the most variance. (B) Visualization of an LDA, a supervised dimensionality 

reduction method. On the Y-axis a bad projection is seen, while on the X-axis a good projection is seen. 

With the projection on the X-axis, the two classes can be distinguished.  

 

A 
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A KNNC provides classification on the principle of a plurality vote of its neighbors. K is a 

hyper parameter, which determines how far away to search for neighbors. Figure 2.5.A 

shows an example of KNNC. An unclassified datapoint has to be classified. When k is 

chosen to be three, the three nearest neighbors vote for Class A, but when k is chosen to 

be seven, the seven nearest neighbors vote for Class B. SVM helps with classification by 

creating the best line that segregates the classes in an n-dimensional space (Fig 2.5.B). A 

feed forward neural network (FFNN) is a type of an ANN. FFNN have units, also called 

neurons. They are arranged in at least three layers, an input layer, hidden layer and output 

layer. With back propagation this network gains new knowledge and adapts the weight 

given to the neurons. This ML algorithm is flexible, able to solve difficult tasks and with it, 

accessible software frameworks have been produced. However, training a FFNN is 

computationally expensive (Figure 2.6). [12]  

 

 

 

 

 

 

 

 

 

Cross validation is used to measure the performance of the algorithm. It makes multiple 

smaller datasets and one of them becomes the test set, while the others become the 

Figure 2.5: A KNNC and SVM are visualized. (A) Visualization of a KNNC, where K = 3 and K = 7 have been 

proposed as hyperparameters. (B) Visualization of an SVM, where the distance from three datapoints 

orthogonal to the line is the same. 

 

A B 
Class A 

Class B 

Figure 2.4: A visualization of an LDC and QDC. 

The straight line dividing the two classes is 

provided by the LDC. The circles are the decision 

boundaries provided by the QDC.  

 

A 
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training set. Every time the algorithm trains, another sample becomes the test set. The 

average of the error rate is provided as a result. [30] 

 

 

  Figure 2.6: A FFNN with back propagation. The layers 

have different weights, based earlier obtained results 

and their feedback.  
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3. DATA ACQUISITION 

 

The output of a machine learning algorithm is determined by the given input. Therefore, 

the manner of obtaining data reflects on the outcome. Because this was an important part 

of the research, a separate chapter about data acquisition is included. 

Raw data is preferred when collecting MR spectroscopy data. Unfortunately, within the 

PMC, raw data for MR spectroscopy has not been saved till June 2019. Another way of 

collecting MR spectroscopy data is through the use of screenshots. Within this chapter an 

effort was made to recreate the raw data from screenshots. A method to obtain this data 

will not only be helpful to recreate data, but may also be used for an easy accessible tool 

for medical personnel. Working with raw data is harder to implement in clinical routine 

than working with the screenshots seen by radiologists daily. 

 

3.1 Methods 

3.1.1 Study design 

This retrospective, single-center, study was performed during 2019 and 2020 and 

included pediatric patients who presented with a (suspicion of a) brain tumor to the 

institution from 2016 to 2020. Ethical committee approval was waived. Patients were 

selected through a search of an in-house clinical neuro-oncology database. Patients, 21 

years of age or younger, with a clinical diagnosis of a brain tumor based on analysis of a 

biopsy or CSF sample, and an acquired MR spectrum during MRI scanning, were included. 

3.1.2 Clinical Data 

The electronic medical record for each patient was reviewed for the following: 1) 

demographic information, including age and sex, 2) tumor histology (e.g. low grade 

glioma, high grade glioma, medulloblastoma, ependymoma, pilocytic astrocytoma, germ 

cell tumors (GCT), DIPG), 3) tumor site (pineal, suprasellar, midline, posterior fossa, purely 

intraventricular), and 4) treatment history, including prior surgery (date and biopsy versus 

debulking), chemotherapy (date and type), and radiation planning dose. 

3.1.3 Scanner Hardware and sequence parameters 

All pediatric brain tumor spectra were acquired with the following MR systems; two 1.5T 

(Achieva and Ingenia, Philips Healthcare, Best, The Netherlands) and four 3T (Ingenia, 

Ingenia CX, Achieva and Elition, Philips Healthcare, Best, The Netherlands). Standard 

imaging protocol consists out of T1 and T2 weighted brain images, and T1-weighted post 

contrast. Single voxel MR spectra were acquired with Point RESolved Spectroscopy 

(PRESS), 64 – 128 averages, TE= 35 - 40 ms, TR=2 seconds. Cubic voxels varied from 0.6 

cm³ to 6 cm³.  
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3.1.4 Imaging protocol 

Data was acquired in accordance with current clinical protocol, this included a pre-

gadolinium sagittal 3D T1, axial DTI, ASL, and a SV PRESS sequence. Following an 

intravenous injection of gadovist at 0.1 mL/kg, a sagittal 3D T1 and T2 was obtained. Scan 

parameters such as voxel placement and size were optimized per patient. 

3.1.5 Datasets 

Different methods were used for data acquisition. The data collection started with two 

different data sources. Raw data was obtained directly from the MRI scanner and 

screenshots were generated by the MR machine and send to the archive system (PACS). 

From these two data sources, four different datasets were created: 

1. The raw dataset, referred to as RawD.  

2. Concentrations of the metabolites obtained from the raw data. This dataset will 

be called concentration dataset (ConcD). 

3. Array data, obtained from the screenshot. This is a segmentation of the line 

representing the spectrum, referred to as line segmentation dataset (LineSD). 

4. Peak/height ratios of different peaks from the screenshots, from here on named 

peak/height dataset (Peak/HeightD).  

An example of the four different datasets is shown in Figure 3.1. This dataset will be 

denoted as Case I., and corresponds to data of a patient with a medulloblastoma in the 

posterior fossa. 

 

  

Figure 3.1: Two different data sources (raw data and screenshots) result in four different datasets from 

Case I. (A) A plot of the vector of raw data (RawD). (B) The fit of Choline is displayed to show the 

quantification of one metabolite for the concentration dataset (ConcD). (C) The line segmentation to 

recreate raw data out of screenshots (LineSD). (D) A screenshot where two peaks are highlighted, from 

which a ratio can be calculated (Peak/HeightD). 

 

D 
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3.1.5.1 Data source 1: RawD and ConcD 

The raw data consists of complex numbers resembling the free induction decay signals 

(FIDs). The FIDs consist of multiple overlapping signals and are superimposed compared 

to the background noise. Fourier transformation of a FID results in a spectrum, where 

every peak represents a certain metabolite. The spectrum also contains a large (residual) 

water signal. [34] The RawD has been collected from the MRI scanner. Since protocols are 

different on MRI scanners with different field strength (1.5T; 512 datapoints, 3T; 1024 

datapoints), the same array size was obtained with zero-filling. [35] [36]  

From the raw data, the concentrations of the metabolites were determined with software 

for automatic quantification (LCModel). This automatic quantification determines the 

concentrations for different metabolites present in the brain, based on a linear 

combination of simulated signals. These simulated signals are basissets, pre-installed in 

LCModel, to provide prior knowledge. A short TE = 38 ms simulated basisset is pre-

installed for 1.5T acquired MR spectra and a short TE = 35 ms simulated basisset is pre-

installed for 3T acquired MR spectra. The method fits individual metabolite signals in the 

spectra and calculates the area under the curve. The area under the curve in relation to 

the unsuppressed water signal, quantifies the concentration. Multiple metabolites which 

peak at almost identical frequencies can be distinguished and quantified by their signals 

from other parts in the spectrum. [37] If one metabolite is presented as multiple peaks at 

different frequencies, the quantification takes all peaks from that metabolite (the entire 

simulated spectral pattern per molecule) into account. A selection of the metabolites will 

be determined for the ConcD, to evaluate which dataset has the best ability to 

differentiate tumor types (Table 3.1). The following options are possible: 

1. Include all twenty-two metabolites quantified with LCModel. 

2. Include a selection of metabolites based on prior knowledge. 

3. Include metabolites when over 50% of the cases have a Cramer Rao Lower Bound 

under 50%. 

Based on prior knowledge is meant for metabolites which are already correlated to 

pediatric brain tumors. [7-10, 30, 31] The Cramer Rao Lower Bound (CRLB) is a measure 

of the uncertainty of the fit. A lot of different factors influence the result, so this 

percentage is not very trustworthy when measuring the uncertainty for one fit, but it is a 

good method to do group comparisons between groups of metabolites. [38] The dataset 

with the lowest error rate after ML will be selected and will function as the ConcD. 
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A. All Metabolites B. Selected Metabolites C. Metabolites CRLB ≤ 50 

Alanine Alanine Creatine + Phosphocreatine 

Aspartate Aspartate Glutamine 

Creatine Creatine + Phosphocreatine Phosphocholine 

Phosphocreatine GABA Choline + Phosphocholine 

GABA Choline + Phosphocholine Glutamine+Glutamate 

Glucose Glutamine+Glutamate Glutathione 

Choline Glutathione Myo-Inositol 

Phosphocholine Myo-Inositol+Scyllo NAA 

Glutathione  NAA + NAAG NAA + NAAG 

Myo-Inositol Lactate MM09 

NAA Taurine MM20 

NAAG MM09+Lip09 Lip13a+b 

Scyllo MM13+Lip13a+b MM09+Lip09 

Taurine MM20+Lip20 MM13+Lip13a+b 

-CrCH2  MM20+Lip20 

Glutamine+Glutamate   

Lipide09   

Lipide13a   

Lipide13b   

Lipide20   

Macro Molecules 09   

Macro Molecules 12   

Macro Molecules 14   

Macro Molecules 17   

Macro Molecules 20   
. 

3.1.5.2 Data source 2: LineSD  and Peak/HeightD  

Since the radiologists has easy access to screenshots of the data, using these screenshots 

could possibly result in an accessible tool. To derive information out of the screenshots, 

two different methods were used.  

Firstly, an effort was made to recreate the raw data by segmenting the yellow line from 

the spectrum. This line is meant to show the raw spectral data from 0 to 4.2 ppm. The red 

line shows the baseline and the blue line represents the fit, produced by software from 

the MR vendor. To decrease the amount of information provided by the screenshot, the 

spectral part of the image was cropped and used for analysis (Figure 3.2). Because there 

was a small change in the location of the spectra vertically on the image, the beginning of 

the x-axis was manually determined for every screenshot by locating the y-axis.  

Because the image had to be transferred to a grayscale image for a segmentation 

algorithm, the maximum of contrast had to be created for the specific yellow line. Additive 

Table 3.1: The three possible datasets for ConcD. (A) All metabolites from which concentrations were 

quantified in the spectra with LCModel. (B) Selected metabolites based on prior knowledge. (C) Metabolites 

with more than 50% of the data with a 50% CRLB or lower. 
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color mixing helped with preserving the yellow line, while removing other colors from the 

image (Fig 3.2.C). [39] After preserving the line, the image could be transferred to 

grayscale and a relief map of the image could be created for the algorithm. After following 

this path, an array of the segmentation was obtained and shown in Figure 3.2.D. 

The line segmentation was performed with a Viterbi algorithm. This algorithm is based on 

the probability density for different paths. White pixels indicate a larger height than black 

pixels, and the path follows the ridges. The algorithm determines the likelihood for every 

step and it finds the path from left to right. [40] 

The parameter σ changes the size of the steps the algorithm takes. When σ is set high, 

the algorithm is not allowed to take jumps across datapoints. The parameter σ varied 

between 5 and 10, depending on the amount of noise present in the spectrum. If there 

seemed to be a more straight line, with less peaks, σ was chosen to be 5. The parameter 

σ was chosen to be 10, if the yellow line (Figure 3.2) in the screenshot had a path with a 

lot of noise present to segment.  

 

 

 

Figure 3.2: (A) The original screenshot from Case I. (B) The cropped image. (C) The yellow line is extracted 

and a grey value image is created, while other information is removed. (D) A Viterbi algorithm follows the 

path based on the probability density. 

.  
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The second dataset from the 

screenshot data consists out of 

peak/height ratios. The following 

metabolites were included; Lip and 

MM (0.9 and 1.3 ppm), NAA (2.01 

ppm), Cre (3.01 ppm),  Cho (3.2 ppm) 

and mI (3.55 ppm) (Table 3). [10] The 

ratios were determined by an in-

house developed MATLAB program 

where manual detection of the peak 

and baseline were needed. (MATLAB 

ver. R2019b (MathWorks; Natick, 

Massachusetts, USA)). This was done 

for all selected metabolites for every screenshot. With the measured length between the 

height of the peak and the baseline, the ratios were determined. An example can be seen 

in Figure 3.1.D, where the red lines simulate the measured distance between the peak 

height and baseline. 

3.1.6 Statistical  Analysis 

SPSS v. 25.0 (IBM Corp. Released 2017. IBM SPSS Statistics for Windows, Version 25.0. 

Armonk, NY: IBM Corp.) was used to perform statistical analysis. The correlation between 

the LineSD and Peak/HeightD was determined to observe a relation between an increase 

and decrease of metabolite concentration from both datasets. The interclass correlation 

coefficient (ICC) was determined to assess the test-retest reliability between 

measurements from different reviewers for determining peak/height ratios. The 

intraclass correlation coefficient (ICC) was determined to assess the test-retest reliability 

between measurements from the same examiner for determining peak/height ratios. Two 

different examiners determined the peak/height ratios for six different cases and one of 

the examiners repeated this operation six times for the same case. Both were determined 

based on a 95% confident interval, with absolute agreement. The interpretation of the 

results is as follows, results below 0.5 indicate a poor reliability, values between 0.5 and 

0.75 indicate a moderate reliability, values between 0.75 and 0.9 show good reliability, 

results above 0.9 show an excellent reliability and 1.0 demonstrates perfect reliability. 

[41] 

  

Table 3.2: The measured ratios of the chosen metabolites 

for the Peak/HeightD 

Metabolites 

Cre/Cho 

NAA / Cho 

mI / Cho 

NAA / Cre 

mI / Cre 

mI / NAA 

Lip + MM (0.9 ppm) / Cho 

Lip + MM (1.3 ppm) / Cho 

Lip + MM (0.9 ppm) /  Lip + MM (1.3 ppm) 
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3.2 Results 

3.2.1 Patient data 

A total of 85 screenshots were included. Raw data was available for 45 of the screenshots. 

The dataset contains different tumor types, which are represented in Table 3.3. 

 

Tumor type Number of 
screenshots 

Number 
raw data 

Medulloblastoma 11 5 

Ependymoma 6 3 

Pylocytic astrocytoma 17 8 

High grade glioma 8 3 

Low grade glioma 22 11 

DIPG 14 10 

GCT 3 2 

Pineoblastoma 2 2 

ATRT 2 2 

TOTAL 85 46 
 

3.2.2 Data source 1: Raw data 

Raw data (i.e. act.sdat) files could be used to generate the RawD. All items in the RawD 

consists out of 1024 complex numbers, and contain the full spectrum from -3.5 ppm to 

12.5 ppm (Figure3.1.A). The residual water peak (at 4.7 ppm) remains visible when the 

spectrum is visualized. 

 

 

Table 3.3: The number of cases for different tumor types. 

.  

 

Figure 3.3: The total fit of LCModel of Case I. On the right the different amount of metabolite 

concentrations are seen. 
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Figure 3.3 and 3.4 show the different fits the LCModel program appoints to the peaks of 

the spectrum. The peak in Figure 3.3 at 3.2 ppm consists out of two metabolites, 

quantified with a concentration of 6.275 mM GPC and 0.509 mM PCh. After a summation 

of the two peaks the total choline concentration is 6.784 mM. 

3.2.3 Data source 2: Screenshots 

Line segmentation was visually approved 

for all cases and contained 970 data points. 

Figure 3.5 and 3.6 show the segmentation 

in the screenshot. A relief image is seen in 

Figure 3.5, the line follows the path of the 

highest grayscale values. The full 

screenshot is shown in Figure 3.6, but 

during the segmentation the image was 

cropped as seen in Figure 3.5. Since values 

as ppm and concentration levels are not 

part of the segmentation, they disappear 

when the line is visualized.  

 

 Figure 3.6:  A segmented line, following the 

original yellow line. 

 

Figure 3.5: A relief map of the screenshot shows 

the height of the different datapoints. The 

algorithms follows the path which has the highest 

value. 

 

Figure 3.4: (A) The fit of GPC in the spectrum of Case I by LCModel. (B) The fit of PCh in the spectrum of 

Case I by LCModel.  

 

B A 

Figure 3.7: Segmented line from Case I (blue 

line) and two other medulloblastomas 
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Figure 3.7 visualizes the plot of the 

segmented arrays for three different 

cases of medulloblastomas. As can be 

seen, the highest and lowest value 

overlap and the segmentations have the 

same length. 

The peak/height ratios were determined 

and noted in Excel. An example of the 

results are shown in Table 3.4. 

 

 

 

3.2.1 Statistical analysis 

 

Figure 3.8: Correlation of different metabolite ratios between measurements from the screenshots 

(peak/height ratios (Peak/HeightD)) and LCModel (concentrations (ConcD)). (A) Correlation of Cre/Cho, (B) 

correlation of NAA/Cho, (C) mI/NAA, (D) Lip/MM. 

Figure 3.8 visualizes the correlation of different metabolites for the Peak/HeightD and 

ConcD. As can be seen in Figure 3.8.A, the correlation between the Peak/HeightD and 

ConcD for Cre/Cho is 0.934. All of the Peak/HeightD Cre/Cho results remain below 2.0, 

while ConcD results show an increase up till 5.0. Also, within the results of other 

metabolite ratios a likewise difference can be seen. As shown in Table 3.5, most 

Table 3.4: Example of results from a 

measurement of the peak/height ratios for 

case I. 
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correlations are higher than 0.5 and even higher than 0.7 when the ratios were divided 

over Cho. When observing the distribution of mI/NAA or Lip/MM, the correlation is poor. 
 

 

Metabolites Correlation 
Peak/HeightD - ConcD 

Cre / Cho 0.934 

NAA / Cho 0.892 

mI / Cho 0.543 

NAA / Cre 0.667 

mI / Cre 0.303 

mI / NAA 0.345 

Lip + MM (0.9 ppm) / Cho 0.749 

Lip + MM (1.3 ppm) / Cho 0.860 

Lip + MM (0.9 ppm) / Lip + 
MM (1.3 ppm) 

0.295 

 

Table 3.6 shows the inter- and intraclass correlation coefficient for determining 

peak/height ratios. Table 3.6.A shows the ICC for multiple tests performed by two raters. 

The result shows an ICC of 0.999 for single measures. Table 3.6.B shows the ICC for 

multiple tests performed by one rater. The outcome shows an ICC of 0.998 for single 

measures. Both these results indicate an excellent result. 

 

 

 

Table 3.6:  Inter- and intraclass correlation coefficient for the measurement tool to determine peak/height 

ratios. (A) The interclass correlation coefficient. (B) The intraclass correlation coefficient. 

 

Table 3.5: Metabolite with the correlations between Peak/HeightD 

and ConcD. 

 

 



 
20 

3.3 Discussion 

In this chapter, data was acquired through two data sources and transformed into four 

different datasets. Each data source provided two datasets. Data obtained directly from 

the MR scanner, the raw data, resulted in a dataset with a vector of the full spectrum 

(RawD) and concentrations of the metabolites through fits by LCModel (ConcD). The data 

obtained using MR vendor software, are the screenshots. They resulted in a dataset with 

a vector of the yellow line/“raw spectral data” out of the image (LineSD) and peak/height 

ratios of metabolites present in the screenshot (Peak/HeightD).  

3.3.1 Data source 1: Raw data 

The strength of the RawD is the amount of features (1024), which provide a machine 

learning algorithm with a lot more freedom, compared to nine (Peak/HeightD) or twenty 

(ConcD) features. With so many features the algorithm has more freedom to identify 

distinctive features by feature selection and extraction. A lot of the data provided by the 

RawD might be indistinctive, but possible unknown features of MRS can be determined. 

The features from the Peak/HeightD or ConcD have been chosen based on literature, but 

this means the algorithm has less freedom in identifying distinctive features itself, since 

they already have been determined. This aspect of the raw data is important to take into 

account and it is exactly the reason why no post-processing has been performed. 

However, it also increases the risks for overfitting when implementing in a ML algorithm, 

especially when there are noisy features. Noise can be identified as high variance features 

and contribute to classification, hence the increased chance of overfitting. 

The basissets used for quantification were pre-installed within the library of LCModel. As 

described in the method the 1.5T 38 ms TE basisset was provided to LCModel, while the 

MR parameters of the MRS data had a TE between 35 - 40 ms. As described in the method 

the 3T 35 ms TE basisset was provided to LCModel, while the MR parameters of the MRS 

data had a TE between 35 - 40 ms. Therefore, some data did not correspond to the 

simulated basisset. The program LCModel did not give an error for this mismatch, but a 

better match could be generated with a sequence specific basisset. This could improve 

accuracy of the quantification of metabolite concentrations. 

For this research, different metabolites were selected to create different datasets for the 

ConcD. It remains unclear which dataset gives the lowest error rate. Brain tumors are 

known for the presence of uncommon increase of metabolites in healthy brain tissue, for 

instance Tau or Lac. These metabolites can be taken into account in the data collection of 

metabolite concentrations, but this information is not useful if the CRLB presents a very 

high uncertainty. Then the question remains what the algorithm will do with these 

features. Further exploration is done in Chapter 5, Data Analysis.  

3.3.2 Data source 2: Screenshots 

The segmented lines from the LineSD exists out of 970 datapoints. Since this line is 

segmented from an image, the datapoints contain real numbers. As can be seen in Figure 

3.7, the lowest and highest datapoint for all three array plots overlay. The interest of this 
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study is focused on the ratios, therefore, no correction has been performed. This could be 

performed easily when correcting for the y-axis, but the concentrations depend on voxel 

size. Exact voxel sizes are only known when there is raw data. Since this is not present for 

all screenshots, this correction cannot be performed on the whole dataset. 

The measurements of the peak/height ratios were performed in a research by Manias et 

al. [10] Within their research they invented a flowchart which was used to differentiate 

between three different tumor types. With this research the value of using screenshots 

with help of the peak/height ratio was shown. The same metabolites used in Manias et 

al. were used in the current research. The different ratios of metabolites were successfully 

determined with measurements in the screenshots, but only the metabolites named in 

paragraph 3.1.5.2 were measured. These metabolites are also fitted by software from 

Philips and result in a clear fit. Other metabolites are harder to indicate on the 

screenshots. As mentioned in the previous paragraph, Tau and Lac are big indicators of a 

disturbance in the metabolism of cells, especially in brain tumors. These metabolites are 

not included in the fit provided by the MRI scanner. This might become a problem when 

the algorithm shows a large contribution of these metabolites in differentiation tumor 

types in the other datasets. The fit, provided by the Philips software on the MRI host, 

could be altered in future research to pick up these metabolites and report them back to 

medical personnel. 

3.3.3 Statistical analysis 

The correlation between the Peak/HeightD and ConcD demonstrated a very good 

correlation between the Cre/Cho ratios from both datasets. As shown in Table 6, all ratios 

with choline result in a correlation above 0.5. Low correlation between ratios from both 

datasets can be explained by the shapes of some peaks. The linewidth and presence of 

peaks of mI, Lip and MM(0.9 and 1.3) can be very capricious. With a bigger linewidth, 

LCModel might account a different metabolite concentration than with peak/height 

ratios. This is because LCModel quantifies the area under the curve, but peak/height ratios 

only take the height of the peak into account. Height can be related to the concentration, 

but this is not the case when the peak is broadened. In general, Cho, Cre and NAA have a 

narrow peak, while mI, Lip and MM tend to have a more broadened peak.  

As described in the results section, most of the Peak/HeightD results remain below 1.0. 

This causes a different interpretation from the ascertained presence of metabolites. 

LCModel is a well-known and widely used program to quantify metabolites and the 

Peak/HeightD ratios deviate from corresponding LCModel ratios. To improve the 

interpretation of the peak/height ratios, it would be useful to develop correction factors. 

The ICC for the performance with multiple raters gave an excellent score. If an examiner 

reads the instructions, the test can be performed in a reliable manner. The ICC for the 

performance of one rater gave an excellent score as well. This means that if an examiner 

knows how to conduct the test, this can be performed in a reliable manner.  
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4. PHANTOM STUDY: CORRECTION FACTOR PEAK/HEIGHTD - 

CONCD 

 

In the previous chapter, a correlation was found between the Peak/HeightD and the 

ConcD for multiple metabolites. However, interpretation of these results in a clinical 

context might be difficult. A ratio for Cre/Cho with LCModel resulted in many ratios above 

one. This means a higher presence of Cre than Cho in the sample. A lot of the ratios in 

Peak/HeightD remained below one. This means a lower presence of Cre than Cho in the 

sample. These results have a different meaning, since a ratio below one indicated a 

sample with a higher concentration of Cho than Cre. Therefore, a correction factor was 

determined to be able to compare results from peak/height ratios and LCModel with MR 

spectroscopy data from a phantom. 

 

4.1 Method 

As described in 3.4.4 Statistical analysis, the relationship between concentration ratios 

from ConcD and Peak/HeightD are different for each metabolite. This indicates that a 

different correction factor is needed for the different metabolites. Since the exact 

metabolite concentration in vivo is unknown, a phantom was used from which the 

concentrations are known. The Brain-O phantom was used to obtain scans with prior 

knowledge of these metabolite concentrations. 

Three scans were obtained with the same sequence applied for routine scanning of 

pediatric brain tumors. The raw data and screenshots were both saved and two types of 

data (described in 3.1.B and 3.1.D) were derived. The average metabolite ratios from both 

data sources were compared. Dividing the average concentration through the result of 

the peak/height ratios provided correction factors for the different metabolites. With the 

determined correction factor, the peak/height ratios can be interpreted as the LCModel 

ratios. 

 

4.2 Results  

After determining the peak/height ratios from the screenshots and the ratios for the 

corresponding metabolites from LCModel, a correction factor was determined. The 

correction factors are shown in Table 4.1.  
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Peak/Height 
ratios 

LCModel 
ratios 

Correction 
factor 

Cre/Cho 1.14 (± 0.04) 2.76 (± 0.02) 2.41 

NAA/Cho 1.66 (± 0.08) 3.70 (± 0.03) 2.23 

mI/Cho 0.41 (± 0.05) 2.95 (± 0.09) 7.17 

NAA/Cre 1.46 (± 0.01) 1.34 (± 0.02) 0.92 

mI/Cre 0.36 (± 0.03) 1.07 (± 0.02) 2.97 

mI/NAA 0.25 (± 0.02) 0.80 (± 0.03) 3.23 

Lip/Cho 0.01 (± 0.00) - - 

MM/Cho 0.18 (± 0.09) - - 

Lip/MM 0.05 (± 0.03) - - 

 

 

4.3 Discussion 

With the determined correction factor, the peak/height ratios can be interpreted as the 

LCModel results. These correction factors have better results when there is a good 

correlation between both datasets. When looking at Table 4.1, the correction factor for 

Cre/Cho is 2.41, and this works well for this correlation. For instance the blue dots in the 

orange circle in Figure 3.1.A, 1.3 ∗ 2.41 = 3,133. This comes close to 3.5. The correction 

factor for NAA/Cho is 2.23, which results in 1.7 ∗ 2.23 = 3.8. (Figure 3.1.B) 

 

 

 

 

 

 

Unfortunately not all metabolites were present in the phantom. Therefore, some 

correction factors could not be determined. Next to this, not all correction factors work 

as well for the ratios from the two datasets, this is because of a low correlation between 

the two datasets for these metabolites. An explanation for this difference in correlation 

might be the broadening of these peaks. But despite this flaw, it still helps with better 

interpretation of the results from peak/height ratios where a good correlation is present. 

The use of correction factors could be useful when looking at peak/height ratios, when 

raw data has not been saved, but there is still the need for interpretation of the 

concentrations. The missing correction factor could be calculated by obtaining data from 

a phantom in which all metabolites are present. 

  

Table 4.1: Peak/height 

ratios and LCModel ratios 

of the phantom. The 

correction factors are 

shown in the right column 

to improve interpretation 

of Peak/Height ratio 

results. 

 

Figure 3.1: (A) Correlation of Cre/Cho ratios between Peak/HeightD (Screenshots) and ConcD (LCModel). 

(B) Correlation of NAA/Cho ratios between Peak/HeightD (Screenshots) and ConcD (LCModel). 

 

B A 
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5. DATA ANALYSIS 

 

5.1 Method 

As mentioned in chapter 3 Data Acquirement, it is important to guarantee quality of data 

when working with machine learning. Therefore, a quality control was performed before 

creating the datasets. In the following chapter, the methods of the quality control and 

machine learning is described.  

5.1.1 Quality control 

After collecting the data, quality control of the data took place. Based on literature, a 

voxel size of 3 cm³ was used as cut off value for this research for the raw data. Estimations 

of voxel size were made for screenshot data, since the selected voxel is visible on the 

screenshots. Spectra with small voxel sizes contained much noise. Poor water suppression 

resulted in an ascending baseline from 3.0 to 4.2 ppm. These spectra were rejected based 

on visual inspection. The amount of collected cases which passed the quality control are 

shown in Table 5.1. A total of 63 cases with screenshots, from which 34 cases with raw 

data was available.  

The most samples were collected for medulloblastomas, DIPG and pilocytic astrocytomas. 

These three tumor types were labelled and used for classification in an algorithm. 

 

Tumor type Number of 
screenshots 

Number 
raw data 

Medulloblastoma 10 5 

Ependymoma 6 3 

Pilocytic astrocytoma 11 4 

High grade glioma 6 3 

Low grade glioma 13 6 

DIPG 11 8 

GCT 3 2 

Pineoblastoma 1 1 

ATRT 2 2 

Total 63 34 
 

5.1.2 Machine Learning 

Down sampling was performed on RawD and LineSD, and 1/3 of the data was maintained. 

To prevent overfitting, the most significant features were selected. Therefore, after down 

sampling, feature selection was used to filter the most useful features and implement 

them in the algorithm. Feature selection was applied to the RawD (20 features) and 

LineSD (30 features). After feature selection, feature extraction was applied with a PCA or 

LDA. 

Table 5.1:  Total database after quality control. 
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The LDA was used when N ≥ 10 for at least three classes, otherwise PCA was used. Since 

at least three classes of N ≥ 10 were needed, the data from screenshots could be used for 

this specific dimensionality reduction algorithm, because the three selected classes have 

ten or more samples. With LDA, the dimensions are reduced to classes –1. This indicated 

two dimensions for the use of three classes. When four classes are used, the dimensions 

are reduced to three. When using PCA, the amount of features for the maximum variance 

is determined. A PCA is applied to all four datasets, while an LDA is applied to the LineSD 

and Peak/HeightD. 

The optimal hyperparameters for KNNC and SVM were determined on trial-and-error 

base with the use of cross validation. After dimension reduction, the dataset was 

implemented in LDC, QDC, KNNC, SVM and FFNN. Cross validation prevented undetected 

overfitting and provided a more reliable error rate. The performance of the classifiers was 

based on the error rates. 

The error rates were evaluated for the three different datasets for ConcD, to determine 

which selection of metabolites would provide the best classification. The dataset with the 

lowest error rate was selected to be the final ConcD. The ML algorithms could not perform 

with complex numbers, therefore the magnitude for all datapoints from the RawD was 

determined. 

Error rates for all datasets were calculated, and also distinctive components were made 

visible. An overview of these calculations can be seen in Figure 5.1. The classifiers LDC and 

QDC are not visualized in this figure, but an error rate was obtained for these classifiers 

as well. The algorithms mentioned above were implemented in MATLAB with the toolbox 

PRTools (MATLAB R2016b (MathWorks; Natick, Massachusetts, USA)). [42] 

 

 

 

Figure 5.1:  The paths that are taken by the different datasets are made visible within this flowchart. They 

all end with cross validation, which provides an error rate. Peak/HeightD and LineSD produce two error 

rates for every machine learning algorithm, because feature reduction in both datasets is performed by a 

PCA and an LDA. 
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Because of the small datasets, it is more difficult to obtain reliable error rates for the 

classifiers. The error rates might be too positive, because there was no separate test set. 

Despite the size of the datasets, five different training and test sets were created for the 

LineSD. 2 samples were taken randomly from every class. This resulted in five different 

training sets with 26 samples and five different test set with 6 samples. The same feature 

selection and LDA was performed for both datasets. After training the classifier, the 

datasets were combined and the classifier was tested.  

 

5.2 Results 

5.2.1 Cumulative variance 

The cumulative variance was calculated to determine the amount of needed features. 

After a certain amount of features, the cumulative variance equals 1. From this point 

onwards, addition of other features does not improve variance. The amount of features 

was chosen as follows: RawD (12 features), ConcD (10 features), LineSD (30 features), 

Peak/HeightD (8 features). Plots can be found in Appendix A. 

5.2.2 Feature selection 

After determination of the cumulative variance, feature selection was performed. To 

compare the original dataset and the down sampled dataset, a feature selection of 30 

features was compared. Figure 5.2.A shows which features were selected during the 

feature selection performed on the original LineSD, while Figure 5.2.B shows the selected 

features after feature selection performed on the down sampled LineSD.  

 

. 

 

During the feature selection on the original LineSD, selected features remained in the 

same range. The selected features could be divided into five groups; 106 – 116, 126 – 137, 

152 – 157, 381 – 386, 826 – 833. When looking at the ppm range, these features range 

from 3.7 – 3.8 ppm, 2.65 ppm and 0.65 ppm. Glutamate and glutamine peak around 3.7 

– 3.8. Aspartate peaks around 2.65. The feature selection on the down sampled LineSD 

show a more distributed selection of features. The features selected in the down sampled 

A B 

Figure 5.2:  30 selected features after feature selection. (A) The selected features in the original dataset, 

consisting out of 970 datapoints. (B) The selected features in the down sampled dataset, consisting out of 

324 datapoints. 
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data are selected at more evenly distributed ppms. Some peaks of metabolites which are 

selected are Cho, Cre, NAA, mI, MM and Lip. 

  

 

 

This was also performed for the RawD. The selected features were mostly distributed 

from 600 to 900, which correlate with a 0.4 – 3.4 ppm range (Figure 5.3.A). After down 

sampling, most of the features were still selected between this range, especially between 

2.9 – 3.3 ppm, where Cre and Cho peak (Figure 5.3.B). A few features were selected 

around 2.0 ppm, where NAA peaks. 

5.2.3 Feature extraction PCA 

A PCA was performed to decrease the amount of data for all four datasets. The PCA 

determines distinctive components and these patterns help with the differentiation of 

data. The y-axis demonstrates the deviation of different data point for a component. The 

peaks indicate a deviation for this data point for the three different classes. The deviation 

of the first two components of the PCA are presented in Figure 5.4. 

The RawD components show an increase of the Cho peak, while other peaks decrease in 

the spectrum. When inspecting the screenshots, Cho peaks tend to go up for all three 

tumor types. For the LineSD the area between NAA and Lip + MM (1.3 ppm) increases. 

The 1.3 ppm area remains very low for medulloblastomas after inspection of the 

screenshots. DIPGs show a higher peak at mI and Lip + MM (1.3 ppm), compared to the 

other two.  

 

  

Figure 5.3:  Feature selection on RawD before and after downsampling. (A) The feature selection algorithm 

selected 20 features, mostly between 600 and 900 (3.4 – 0.4 ppm). (B) After down sampling it was more 

distributed, but most of the features were still selected between 200 and 300 (3.4 – 0.4 ppm). 

 

B A 
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Figure 5.5 shows the first two components for the ConcD. The data points for ConcD in 

Figure 5.5 are shown in Table 5.4. The LCModel concentrations show a much higher 

concentration for all the MM + Lip (0.9 ppm, 1.3 ppm, 2.0 ppm) for medulloblastomas. 

Deviation of these peaks is also seen in Figure 5.5. The concentrations also show a lower 

Cre concentration for pilocytic astrocytomas, as well as a lower Cho concentration 

compared to medulloblastomas. DIPGs show the lowest mI, GSH and Cho concentrations. 

 

 

 

 

 

 

Figure 5.4: The deviation of the first two components of the RawD and LineSD after a PCA. (A) Deviation of 

RawD: The blue line shows a correlation between Cho and Cre decreasing.  The red line shows a correlation 

between a part of the Cho peak increasing, while peaks decrease. The peak of Cre decreases, while the 

peaks around NAA increase. (B) Plot RawD with selected features. (C) The deviation of LineSD: The blue 

line shows a correlation between an increase of mI, increase of Cre, NAA and around 1.7 ppm. The red line 

shows a correlation between a decrease of most of the peaks in the spectrum (mI, Cho, Cre, NAA and Lip), 

but an increase around 1.7 ppm. (D) Plot LineSD with selected features. 

B D 

C A 
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Figure 5.6 shows the first two components for the Peak/HeightD. The data points for 

Peak/HeightD in Figure 5.6 are shown in Table 5.5. The spectra show higher mI and a 

higher Lip + MM (1.3 ppm) peaks for DIPGs, compared to medulloblastomas and pilocytic 

astrocytomas. DIPGs have a higher value for mI/Cho than medulloblastomas or pilocytic 

astrocytomas after inspecting the ratios in the dataset. Medulloblastomas show lower 

values for NAA/Cho compared to the other two tumor types. 

 

 

 

 

 

 

 

 

 

 

Data point Metabolite 

1 Lac 

2 NAA + NAAG 

3 Cr+PCr 

4 MM13+Lip13a+b 

5 MM09+Lip09 

6 MM20+Lip20 

7 Tau 

8 GPC+PCh 

9 GSH 

10 mI+Scyllo 

11 Glu+Gln 

12 GABA 
 

Data point Ratio 

1 Cre/Cho 

2 NAA / Cho 

3 mI / Cho 

4 NAA / Cre 

5 mI / Cre 

6 mI / NAA 

7 Lip + MM (0.9 ppm) / 
Cho 

8 Lip + MM (1.3 ppm) / 
Cho 

9 Lip + MM (0.9 ppm) /  
Lip + MM (1.3 ppm) 

 

Table 5.5: Data points with corresponding 

metabolites ratios. 

Figure 5.6: First two components of Peak/HeightD: 

The blue line shows a correlation between a lower 

NAA/Cre ratio, a higher mI/NAA and a lower 

Lip+MM(1.3 ppm)/Cho ratio. The orange line shows 

a correlation between a higher mI/Cre, a higher 

mI/NAA ratio and a lower Lip+MM(1.3 ppm)/Cho 

ratio. 

 

Figure 5.5: First two components of ConcD: The 

blue line shows a correlation between a higher 

concentration for MM and Lip at 0.9 ppm, 1.3 

ppm and 2.0 ppm, while other metabolites show 

less deviation in this component. The orange line 

shows a correlation between a higher 

concentration for MM and Lip at 1.3 ppm, a 

lower concentration of MM and Lip at 2.0 ppm 

and a lower concentration for Cho. 

 

Table 5.4: Data points with 

corresponding metabolites. 
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5.2.4 Classifiers after PCA 

The values for the hyperparameters k, r and C were chosen based on the lowest error 

rates determined with a cross-validation method. Plots can be found in Appendix B. The 

following classifiers were trained: LDC, QDC, KNNC, SVM and FFNN. Their performances 

were examined with cross-validation and based on the error rates. 

The ConcD exists out of metabolite concentration based on prior knowledge. This dataset 

provided the lowest error rate. A table with all the ConcD error rates can be found in 

Appendix C. 

The error rates for the datasets with the classifiers can be found in Table 5.6. The LineSD 

and RawD have comparable results with a KNNC.  

 

 Peak/HeightD LineSD ConcD RawD 

LDC 0.4250 (± 0.0574) 0.4437 (± 0.0751) 0.2118 (± 0.1392) 0.3765 (± 0.1045) 

QDC 0.4719 (± 0.0758) 0.4344 (± 0.0344) 0.5824 (± 0.0585) 0.3706 (± 0.0588) 

KNNC 0.3937 (± 0.0264) 0.2031 (± 0.0593) 0.1412 (± 0.0304) 0.2000 (± 0.0186) 

SVM 0.2562 (± 0.0506) 0.1656 (± 0.0331) 0.1294 (± 0.0372) 0.5118 (± 0.0186) 

FFNN 0.3775 (± 0.0836) 0.3594 (± 0.0695) 0.4765 (± 0.0937) 0.4882 (± 0.0736) 

 

5.2.5 Feature extraction LDA 

There was enough data to perform an LDA to decrease the numbers of features for both 

screenshot datasets. The LDA determined two distinctive discriminants, which help with 

differentiation of data. The distribution of the data after application of an LDA is shown 

in Figure 5.7. A clear distribution is seen for the LineSD (Figure 5.7.A). The distribution for 

the Peak/HeightD is less clear distributed (Figure 5.7.B). 

 

 

 Figure 5.7: Distribution of two datasets. (A) The distribution of the LineSD after an LDA. (B) The distribution 

of the Peak/HeightD after an LDA. 

 

Table 5.6: Error rates for all datasets after a PCA and cross-validation, for the three multiple classifiers.  
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Figure 5.8 shows the discriminants by the LDA that help with classification of the LineSD. 

The x-axis show the 30 selected features that were selected, plotted on the ppm scale, 

and the y-axis shows the deviation of these features. Figure 5.8.B shows the correlated 

features, visualized on the spectrum. There is not much deviation in the Cho peak (3.2 

ppm). A lot of features were selected around 2.0 ppm. When observing the spectra, there 

is more deviation around 1.7 and 2.3 ppm for DIPGs and pilocytic astrocytomas, compared 

to medulloblastomas.  

 

 

 

 

 

 

 

 

 

 

 

 

 

B 

A 

Figure 5.8: (A) The deviation between the two discriminants of LineSD: The blue line shows a correlation 

between an increase of the spectral line around 4 ppm, a decrease around 3.2 and 3.0 ppm (Cho and Cre), 

a decrease around 1.1 ppm and a lot of deviation around 2.0 ppm (NAA). The red line shows a correlation 

between a lot of deviation around 2.0 ppm (NAA), and a decrease around 1.2 ppm (MM + Lip). (B) Plot 

LineSD with selected features. 
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Figure 5.9 shows the first two components for the Peak/HeightD. The data points for 

Peak/HeightD in Figure 5.9 are shown in Table 5.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Data point Ratio 

1 Cre/Cho 

2 NAA / Cho 

3 mI / Cho 

4 NAA / Cre 

5 mI / Cre 

6 mI / NAA 

7 Lip + MM (0.9 ppm) / Cho 

8 Lip + MM (1.3 ppm) / Cho 

9 Lip + MM (0.9 ppm) /  Lip 
+ MM (1.3 ppm) 

 

Table 5.7: Data points corresponding to the 

metabolite ratios. 

Figure 5.9: Discriminants of the Peak/HeightD 

after LDA: The blue line of the two discriminants 

of Peak/HeightD shows a correlation between a 

higher Cre/Cho ratio, a higher NAA/Cho and a 

lower Lip + MM (0.9 ppm/Lip + MM (1.3 ppm) 

ratio. The orange line shows a correlation 

between a higher NAA/Cho ratio, mI/Cre and a 

higher Lip + MM (0.9 ppm)/Lip + MM (1.3 ppm) 

ratio, while the other ratios have deviation below 

zero. 
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5.2.6 Classifiers after LDA 

All hyperparameters were optimized by examining different values for k, r and C. This was 

done with cross-validation (Appendix B). Figure 5.10 and 5.11 shows the distribution of 

the Peak/HeightD and different classifiers (LDC, QDC, KNNC, SVM and FFNN). The black 

lines show the final decision boundaries for the classifiers. The black lines of the SVM and 

FFNN classifier show very smooth lines, while the line of KNNC is less smooth.  

 

 

 

 

 

 

 

 

 

 

Figure 5.11: Distribution and classification of Peak/HeightD with different classifiers. (A) Classification of 

Peak/HeightD with a QDC. (B) Classification of Peak/HeightD with a KNNC. (C) Classification of 

Peak/HeightD with a SVM. (D) Classification of Peak/HeightD with an ANN. 

 

 

Figure 5.10: Classification of Peak/HeightD with a LDC. 

 

 

A B 

D C 
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Table 5.8 shows the error rates for both datasets, for the three different classifiers. The 

results for the Peak/HeightD after classification with feature reduction by an LDA are 10% 

lower compared to classification with feature reduction by a PCA. The KNNC shows an 

error rate of 0.1718. The error rate for the LineSD shows an error rate of 0.000 for the 

KNNC and SVM, while FFNN shows an error rate of 0.0181. The SVM shows a very high 

error rate compared to error rates provided by other classifiers. 

 

 

 Peak/HeightD LineSD 

LDC 0.2188  (± 0.0255) 0.000  (± 0.000) 

QDC 0.2406  (± 0.0418) 0.000  (± 0.000) 

KNNC 0.2375  (± 0.0124) 0.000  (± 0.000) 

SVM 0.1844  (± 0.0231) 0.3000 (± 0.0264) 

FFNN 0.2875  (± 0.0321) 0.0063 (± 0.0198 ) 

 

  

 

 

 

The error rates in Table 5.9 show the results for multiple tests with a different training 

and test sets. Results vary from 0.0944 to 0.0622 for the KNNC and FFNN, and from 0.0944 

to 0.1259 for LDC and QDC. 2 out of the 6 samples were correctly classified for a 

classification with an error rate of 0.1259, 3 for an error rate varying from 0.0944 to 

0.0930 and 4 for an error rate varying from 0.0629 to 0.0622. The SVM shows the same 

error rate as before. Medulloblastomas are not classified correctly by this classifier and it 

only provides labels for pilocytic astrocytomas or DIPGs. This happened for all training and 

testing data. 

 

  

 Test 1 Test 2 Test 3 Test 4 Test 5 

LDC 0.1259 0.1259 0.1259 0.0944 0.1259 

QDC 0.1259 0.1259 0.1259 0.0944 0.1259 

KNNC 0.0944 0.0930 0.0622 0.0629 0.0944 

SVM 0.3706 0.3077 0.3706 0.3706 0.3706 

FFNN 0.0937 0.0622 0.0622 0.0937 0.0944 

Table 5.8: Error rates for the Peak/HeightD and LineSD after an LDA and cross-

validation for multiple classifiers. 

 

 

Table 5.9: Error rates for the LineSD after an LDA for multiple classifiers with 

a training (26 samples) and test (6 samples) set. 
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5.3 Discussion 

A lot of different results were obtained from the acquired data. Different feature 

reduction techniques and multiple classifiers resulted in many options for a classification 

tool. With these results, and especially the amount of data, such a tool could not be 

developed yet. But results are promising, especially since error rates are comparable 

between the raw and screenshot data. This means the inclusion of screenshot data to 

replace raw data is possible. As mentioned earlier, it is important to guarantee the quality 

of data when implementing it in an ML algorithm. Therefore, quality control was 

performed first.  

5.3.1 Quality Control 

After quality control, 63 screenshots and 34 raw datasets remained. 22 screenshots were 

excluded due to the voxel size, or a remaining water signal. This is a loss of 26% of the 

data. MR spectra obtained with a small voxel size, resulted in spectra with a lot of noise 

and peak broadening. Maybe voxel sizes should be bigger when obtaining MRS data from 

small tumors, since it is believed that tumorous cells could have infiltrated in normal-

appearing tissue. [43] This is thought to be the difference between the brain being the 

original site of the tumor and metastases. After communication with the University 

Hospital in Frankfurt about a collaboration, there was told that the whole hemisphere 

where the tumor is located is denoted as tumorous tissue, because of the possibility for 

infiltration. [44, 45] They use 2D CSI MR spectroscopy, where more voxels are selected. 

These ideas might make it possible to select a bigger voxel size for SVS as well. But before 

implementation of such a method, this should be tested first. Spectra from the voxels in 

the same hemisphere, located within the tumor (as seen on MR imaging) and voxels 

located within healthy tissue, should be compared. Because it might be possible to image 

tumor infiltration with MR spectroscopy, but there is also signal from metabolites from 

healthy brain tissue cells. The signal from healthy brain tissue, or even low grade parts of 

a tumor, might average the metabolite levels. [7]   

During voxel placement, peripheral fat (skull, scalp), or water signal from the ventricles 

should be avoided, because of water/lipid signal which will distort the MRS signal. 

Avoiding these areas is especially difficult when a smaller tumor is located at the 

demarcation of brain tissue.  

Next to this, voxel placement is highly user dependent. Therefore, it remains important 

to train medical personnel for obtainment of spectra and how to judge spectral data. 

There is also the possibility of automatic recognition of artefacts in a spectra after 

obtainment with help of another ML algorithm. This could help medical staff to judge the 

quality of the spectra directly after acquiring and if needed, they are able to obtain a new 

MR spectra. [46]  
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5.3.2 Feature Extraction 

RawD 

A lot of features which were selected during feature selection of the RawD were in the 

range between 600 and 900. After down sampling, the range changed from 600 – 900 to 

200 – 300. Most of the features ranged between 0.6 – 3.4 ppm, this included peaks from 

Cho, Cre and NAA and confirms the ppm range where peaks are used for clinical 

interpretation. Also 1.1 ppm was selected, and this feature lies between Lip + MM 0.9 

ppm and Lip + MM 1.3 ppm. The deviation of this area shows a small decrease in both 

components (Figure 5.4.A). It remains unclear why this feature is selected in the raw data, 

as it remains unclear why the other seven from  the twenty features were selected outside 

of the 0.6 – 3.4 ppm range. But when observing the plot of the components, a very small 

deviation is noticeable at the selected features outside of this range, while the features 

inside the range cause for much higher deviation. 

LineSD 

When feature selection took place for the LineSD, features were selected in a close range, 

around 3.7 – 3.8 ppm, 2.65 ppm and 0.65 ppm. These results could not be linked to 

metabolites used in other datasets of this analysis, although these ppm values are very 

similar to the ones where Gln and Asp peak. These metabolites are significant features for 

pilocytic astrocytomas in a study by Andronesi et al. [47]  

After down sampling, feature selection was repeated. The new features were more 

spread over the spectrum and highlighted peaks used in other datasets (mI, Cho, Cre, 

NAA, Lip and MM). The earlier selected features could be noisy features which cause a lot 

of variance to the spectrum, or they could be features to distinguish pilocytic 

astrocytomas. But the error rate improved when a down sampled dataset was used. 

Therefore, it is supposed that the features did not necessarily distinguish pilocytic 

astrocytomas, but were most likely noise. Next to this, since more data samples also add 

computational time, it is better to use the less data samples. 

The area between NAA and Lip + MM (1.3 ppm) increases, when looking at the two 

components (PCA). This might be a distinguishment between medulloblastomas and the 

other two tumor types, since this area remains very low when inspecting the screenshots 

of medulloblastomas. DIPGs show a higher peak at mI and Lip + MM (1.3 ppm), compared 

to the other two. Therefore, the decrease at this ppm might indicate a component that is 

helpful to classify DIPGs. 

The two deviations (LDA) show the Cho peak remaining around zero (Figure 5.8). This can 

be explained because the Cho peak is almost always the highest point in the spectrum and 

this causes it to be the almost always the same value. The decrease of mI, Cre and Lip + 

MM (1.3 ppm) can contribute to the differentiation of DIPGs from the other tumors. 

Figure 5.8 also shows a lot of deviation between 1.7 and 2.3 ppm. The lowest value of the 

plots is seen for medulloblastomas, but there is also a question in most spectra about the 
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presence of Glu/Gln. The signal looks a bit noisy sometimes, or have effect of peak 

broadening of the NAA peak. 

ConcD 

Both components, shown in Figure 5.5, provide the classifier information for classification. 

The blue line shows a connection between an increase of all MM + Lip. Only 

medulloblastomas have a much higher concentration of all these three MM + Lip, and this 

line helps differentiating the classes based on this knowledge. Also the orange line of the 

first two components helps differentiating medulloblastomas. The orange line shows a 

decrease of Cr, and while the deviation of Lip + MM at 1.3 ppm goes up, the deviation of 

Lip + MM at 2.0 ppm decreases a lot, together with Cho. This is what differentiates 

medulloblastomas from DIPGs and pilocytic astrocytomas when observing the ConcD. 

DIPGs have the lowest concentrations of MM + Lip at 1.3 according to the ConcD. Also mI 

and GSH and Cho show the lowest results for DIPGs, but that is not particularly shown in 

these two components. 

The possible role of Gln and Asp was suggested earlier, but when observing data point 10 

Glx + Gln), there is nearly no deviation seen. Although this was suggested to be a feature 

helping to classify pilocytic astrocytomas. [47] Another suggested feature was the 

presence of Tau, since this is also seen as an indicator for medulloblastomas. A small 

decrease is seen, but a more reliable result should be obtained with a bigger data 

collection. [7]  

Peak/HeightD 

A lower NAA/Cre and Lip + MM (1.3 ppm)/Cho ratio with a higher mI/NAA ratio are 

expected when observing an MR spectra from tumorous tissue. NAA decreases and Cho 

increases for all three tumor types, while mI mostly increases for DIPGs. When looking at 

the screenshots, there is also an increase in Lip + MM (1.3 ppm) for DIPGs. This can also 

be seen as a decrease for medulloblastomas and pilocytic astrocytomas in comparison to 

DIPGs. 

The orange line (Figure 5.6) shows a correlation between a higher mI/Cre, a higher 

mI/NAA ratio and a lower Lip + MM(1.3 ppm)/Cho ratio. But since these components 

derived from a PCA, the results are not specific for one class.  

The LDA reduces the dataset to two dimensions and helps with supervised classification 

of the data. As decribed in the result section, the blue line of the two discriminants of 

Peak/HeightD in Figure 5.6 showed a correlation between a higher Cre/Cho ratio, a higher 

NAA/Cho and a lower Lip + MM (0.9 ppm/Lip + MM (1.3 ppm) ratio. The highest Cre peaks 

are seen with pilocytic astrocytomas, which also explains there decrease of NAA/Cre ratio. 

Compared to DIPGs, pilocytic astrocytomas and medulloblastomas have lower results for 

mI/NAA, caused by the higher mI peaks in the DIPG screenshots. The orange line (Figure 

5.6) showed a correlation between a higher NAA/Cho ratio, mI/Cre and a higher Lip + MM 

(0.9 ppm)/Lip + MM (1.3 ppm) ratio, while the other ratios have deviation below zero. 
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Overall, DIPGs have a highest value for mI/Cho, and medulloblastomas show lower values 

for NAA/Cho compared to the other two tumor types. So, the algorithm is able to use 

these features to classify the data and distinguish these three tumor types. 

5.3.3 Classifiers 

The lowest error rates after application of a PCA for the datasets were 0.2000 for RawD, 

0.2031 for LineSD, 0.1274 for ConcD and 0.2562 for Peak/HeightD. The ConcD had the 

lowest error rate after a PCA of all four datasets. Since LDA is a preferable feature 

reduction method, it is expected that after more data acquiring, the error rate could 

become even lower after application of an LDA over ConcD. A KNNC resulted in the lowest 

error rate for the RawD and LineSD. Since the recreated raw data resulted in the same 

error rate as the original raw data, screenshots can be used to recreate this. SVM resulted 

in the lowest error rate for ConcD and Peak/HeightD. 

The lowest error rates after application of a LDA for the two datasets were 0.00% for 

LineSD and 0.22% for Peak/HeightD. Since the distribution of the LineSD was so clear, only 

the classification lines for the Peak/HeightD were plotted. The error rate for the QDC was 

worse, compared to other error rates. When looking at the lines of the classifier, a 

different gaussian function might have improved the result. The error rate of the LDC 

resulted in the lowest error rate for the Peak/HeigtD, which indicates that a more robust 

classifier performs well for this classification problem as well. This algorithm accounts for 

less computational time, but remains more simple than the other classifiers. For now, 

there might not be enough data to determine which classifier performs best for a 

classification tool.  

The error rate for the LineSD turned out to be very low for most of the classifiers. Even 

though a cross-validation method was applied, it was expected that this method would 

not function as well with new data. Therefore a new experiment was run, where five 

different training set and test set were obtained from the dataset. The experiment was 

run five times. The results show very low error rates, but when examining the wrongly 

classified labels, an error rate of 33%, 50% and 66% is seen for data samples from the test 

set. KNNC and FFNN show the most promising results, but further training should be 

performed after more data acquisition.  

The SVM did not seem to function on this dataset, since it only divided the set into two 

classes (pilocytic astrocytomas and DIPGs). The feature space might be too big for this 

type of classifier. Many different hyperparameters were given as input, but none of them 

seemed to improve the error rate. 

  



 
39 

6. Discussion 

 

6.1 Overall discussion 

From the raw data and screenshots, four different datasets were derived. After quality 

control, 63 screenshots and 34 raw datasets were collected. Training sets with 

medulloblastomas, DIPGs and pilocytic astrocytomas were acquired from the four 

datasets.  

When observing the error rates for the different classifiers after a PCA, the results for the 

LineSD and RawD were almost the same. The results show the possibility of including 

screenshots and recreating raw data with this data source. This might be of great value 

for a lot of clinical centers, since a lot of raw data has never been saved. This method is 

used on screenshots from a Philips MR system. When using screenshots from different 

vendors, the new data should be examined closely. It is important to test the new data 

and determine the error rates for the classification of the combined data from different 

vendors. 

The performance of the LineSD even improved after performing an LDA. Since this 

resulted in an error rate of 0.000, a training and test set were obtained and they showed 

a different result. 33% to 50% of the test set was incorrectly classified with a KNNC or 

FFNN algorithm. These results were higher with a LDC, QDC and SVM. Simpler classifiers, 

such as an LDA or QDC are less sufficient to perform the classification of this dataset. More 

freedom of the KNNC and FFNN helped with the classification, but distribution free 

classifiers have a higher risk of overfitting. Therefore, cross validation and different 

training and test sets should be continuously used to test the classifier. It would be of 

great value to perform this type of testing for all datasets, but the dataset should be 

enlarged and might need more variance of tumor types to become a functional tool in the 

clinic.  A standard method of classification has not been developed yet. Classifiers that are 

frequently used to classify MR spectra from pediatric brain tumor in other studies are 

KNNC, SVM and ANN. [13, 31, 48, 49] In this research SVM performed very well for most 

datasets, and this is also noted during more studies. [31, 48] 

The three chosen classes were chosen because of the practical consideration aiming for 

the largest amount of data. From clinical point of view, these type of tumors can be 

distinguished based on other factors as well. DIPG tumors are high grade tumors, located 

in the pons. They can be distinguished solely on MR imaging already. A  lot of studies show 

the possibility of differentiating high and low grade tumors, but the benefit of a 

classification tool would be the possibility of differentiating difficult tumors or even 

subtypes within tumor types. From a clinical point of view, differentiation between GCTs, 

ATRTs, plexus tumors is difficult and an ML algorithm capable of doing this would be of 

added value. But more data is needed to train a classifier for this type of multi-

classification. Also differentiation of subtypes would be helpful. One study showed the 
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possibility of differentiating subtypes from medulloblastomas, but the dataset used in this 

study did not contain enough data to train a classifier. [14] 

To improve and build a tool, procedures for data acquisition and data analysis should be 

automated. For now, it was important to determine the value of screenshots and compare 

many different data types. Automation of data acquisition and quality control would be 

of great help in the future, as would automation for the data analysis be. 

 

6.2 Recommendations and future perspectives 

The ultimate goal of this research would be to build a tool able to distinguish different 

tumor types or even histological subtypes within tumor types. [14] There are over a 

hundred different histological subtypes. Therefore, it is necessary to start developing a 

tool with the ability to differentiate tumor types. [50] To do so, other features, such as 

age, gender and location of lesion are needed to be implemented as well.  Other features 

that might be interesting are family history, cancer related syndromes and nationality, but 

also other imaging techniques. Values of Apparent Diffusion Coefficient (ADC) from 

Diffusion Weighted Imaging (DWI) demonstrate higher outcome when severity of tumor 

grades increase. [50, 51] MR perfusion and the degree of contrast enhancement in the 

tumor can contribute in classification of tumors. [47] 

In retrospect the collected data was not enough to provide the algorithm enough data to 

distinguish many different tumor types. Sample sizes of other studies vary between 30 to 

90 patients when trying to classify pediatric brain tumors. These researches try to 

differentiate ependymomas, pilocytic astrocytomas and medulloblastomas. [30, 31, 48] 

In many of them there seems to be a disbalance between the number of cases for 

different tumor types, but there are numerous ways to correct for the unbalanced 

distribution. [48] But when trying to build a robust tool, more data is needed to classify 

the amount of tumor types daily observed in the PMC. Next to collaboration with other 

facilities, there are multiple ideas to enlarge the dataset and they will be discussed next. 

Single Voxel VS Multiple Voxel 

The data that has been collected at the PMC contains solely single voxel spectra (SVS). 

When looking at other research sites, there is also a great interest in the spectra of 2D or 

3D chemical shift imaging (CSI). With these techniques, spectra from multiple voxels can 

be obtained, and information about the spatial distribution of metabolites can be 

provided. This technique can be especially useful when imaging heterogeneous lesions. 

However, CSI remains technically challenging, it is more difficult to perform automatic 

quantification of metabolites and compared to SVS, it is a more time consuming 

technique. [52] Still a lot of sites are enthusiastic about this technique, since it can provide 

more information per time unit. Therefore, it is important to search for methods to use 

information from CSI as well as information from SVS in an algorithm. There might be 

possibilities to take an average spectrum of the multivoxel spectra, or they could be 
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implemented separately. In this last manner, more data would be generated, but 

especially with heterogeneous lesions it is important to know which voxel is studied. 

Imaging of organoids or biopsies 

Scanning biopsies or organoids can be another example of collecting data. Since patient-

derived organoids have become important to determine drug response, this could also be 

used as data to be obtained for a ML tool. More insight is gained in producing multicellular 

tumor spheroids (MTS). These 3D models exhibit characteristics from in vivo tissue, and 

are thus more realistic in vitro models. Unfortunately, research also shows the difference 

between in vivo and in vitro metabolism. More improvement is needed for organoids to 

gain full potential and mimic the organs from which they have been derived. [53, 54] Less 

literature can be found on MR spectroscopy on brain tumor biopsies, but Andronesi et al. 

showed a method from which ex vivo data can be used. 2 mg tissue was needed to 

perform HRMAS 1H MR spectroscopy. After performing the MR spectroscopy, the tissue 

remained available for subsequent analysis. They were able to perform tumor 

classification based on 16 metabolites. [47] 

Both the use of organoids and biopsies give the possibility to investigate therapy response 

with help of MR spectroscopy. Possible benefits of MR spectroscopy should be extended 

to have a purpose after a noninvasive diagnosis. With this manner, more insight can be 

gained on the effect of therapy during treatment. [47] MR spectroscopy is capable of 

differentiating between radiation necrosis and tumor recurrence. [55] Whereas multiple 

obtainment of biopsies during treatment to map therapy response is too invasive and 

comes with great risks, MR spectroscopy could be implemented during routine scanning. 

However, it is important to determine the changes in tissue under more controlled 

circumstances and to gain knowledge on the processes on lower scale.  
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7. Conclusion 

 

In conclusion, this study demonstrates that screenshots can be used as a replacement for 

raw data. Classification is possible for all four datasets. Low error rates were obtained 

with the LineSD and the ConcD after a PCA. The error rates for the Peak/HeigtD and LineSD 

further reduced after an LDA. KNNC and SVM showed promising results to classify the 

data, but with this amount of data all classifiers are more prone to overfitting. 

No unknown features were noticed in the four datasets, but the datasets provided more 

insight in ML algorithms to differentiate pediatric brain tumors. The data included three 

very different tumor types, but this research should be repeated with tumor types which 

are more difficult to classify. Although the datasets were not big enough to build a reliable 

and accessible tool to implement in a clinical setting, it showed the possibility of MRS in 

combination with machine learning to be a useful technique to differentiate pediatric 

brain tumors in a non-invasive manner, and could become a diagnostic classification tool 

for clinical practice.  
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APPENDIX A: Feature Reduction 

 

I

 

III

 
II

 

IV

 
 

 

 

  

Figure A-1: Cumulative variance for all datasets as preparation to perform a PCA. I. RawD. II. ConcD. III. LineSD. IV. 

Peak/HeightD. 
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LineSD 
Error STDS 

Peak/HeightD 
Error STDS 

PCA 0.7620 0.0357 0.6815 0.0515 

LDA 0.6875 0.0467 0.7688 0.0628 

     

 
ConcD 
Error STDS 

RawD 
Error STDS 

PCA 0.5765 0.0464 0.7412 0.0928 

LDA NA NA NVT NA 

  

Figure A-2: The error rates of different numbers for feature reduction with PCA, determined with cross-validation. I. 

RawD. II. ConcD. III. LineSD. IV. Peak/HeightD. 

 

Tablee A-1: The error rates for the two feature reduction methods. 
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APPENDIX B: Hyperparameters 
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Figure B-1: Error rate of datasets for different k, performed with cross validation, after a PCA. I. Error rates for the 

RawD. II. Error rates for the ConcD. III. Error rates for the LineSD. IV. Error rates the for Peak/HeightD. 

 

 

Figure B-2: Error rate of datasets for different k, performed with cross validation after an LDA. A. Error rates for the I. 

Error rates for the LineSD. II. Error rates the for Peak/HeightD. 
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C was chosen to be 0.1, 1, 10, 100, 1000, 1500 2000, 4000. The best error rates with different values for r are plotted in 

Figure B-3 and B-4. 
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Figure B-4: Error rate of datasets for different r, performed with cross validation after an LDA. A. Error rates for the I. 

Error rates for the LineSD. II. Error rates the for Peak/HeightD. 

 

 

Figure B-3: Error rate of datasets for different r, performed with cross validation, after a PCA. I. Error rates for the 

RawD. II. Error rates for the ConcD. III. Error rates for the LineSD. IV. Error rates the for Peak/HeightD. 
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APPENDIX C: Datasets ConcD 

 

 

  

 Data CRLB < 50 All LCModel Conc. Chosen Conc 

KNNC 0.2381 0.1905 0.1952 

SVM 0.3381 0.2952 0.2476 

ANN 0.4000 0.4571 0.3476 

Table C-1: Error rates of the three differenct datasets for the ConcD, performed with cross validation, after a PCA. 
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