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Abstract—Face recognition has been a challenging research
problem due to many variations, for example occlusions, illu-
minations, poses, and expressions. In this paper, we review one
of the unsupervised learning methods called autoencoder to be
used as feature extractor for face recognition system. We explore
several types of autoencoder, including regular and generative
model, and take quantitative measurements on reconstruction
and recognition of face images. Experimental results on Face
Recognition Grand Challenge dataset show that there is a
potential ability in using autoencoder as feature extractor for
face recognition. Furthermore, apart from the latent variable
dimensions, the encoder and decoder network of the autoencoder
have an important role in the reconstruction and recognition
performance. We also found that generative autoencoder model
gives better clustering against identity of a subject. In addition,
we apply residual network in the generative autoencoder model.
We called this Resnet-WAE. It performs better in reconstruction
and recognition and achieves area under the curve score of
0.8763 using likelihood ratio classifier. In the end, Resnet-WAE
demonstrates promising results of using generative model as
feature extractor in face recognition system.

Index Terms—Unsupervised Learning; Autoencoder; Face
Recognition

I. INTRODUCTION

Supervised learning is widely applied in face recognition
applications. The reason is because it is easier to adapt the
features in a good representative for the whole training data.
Hence, it performs very well on classifying subjects either on
a small subset or on a large subset of a training example.
Although state of the art performance of face recognition can
be achieved by supervised learning, it is by the expense of
needs of large-scale training data.

Apart from that, unsupervised learning method could be
used in face recognition systems. Normally, unsupervised
learning is used as a feature extractor and it will be tied up
with some machine learning methods, such as Support Vector
Machines (SVM), nearest neighbour, and neural network. The
reason why unsupervised learning is choosen because it does
not depend on labeled data during training.

One common used of unsupervised learning methods is
autoencoder. Some studies show a lot of advantages in using
autoencoder as a feature extractor. One of the research com-
pares between regular autoencoder and Principle Component
Analysis (PCA) in face recognition [1]. It points out that
autoencoder is superior in feature extractor compared to PCA
because it is able to learn complex representation of the data.
Another usage of autoencoder is proposed in [2], where it uses

the features from autoencoder in facial emotion recognition.
It proves that nonlinear dimension reduction in autoencoder
is more effective compared to linear dimension reduction
in PCA. In addition, the result of the autoencoder achieves
recognition rate of 99.60%, while PCA only reaches 96.44%
on CK+ dataset [3].

In this research, we focus on understanding several types
of autoencoders as a feature extractor in face recognition
system, including regular autoencoder and generative autoen-
coder, such as Variational Autoencoder (VAE) [4], Adversarial
Autoencoder (AAE) [5], and Wasserstein Autoencoder (WAE)
[6]. Some investigations need to be analyzed under several
autoencoder models to see which types of autoencoder is
promising as feature extractor in face recognition system.
Therefore, some research questions are proposed:

Research Question 1: Is it possible that autoencoder to be
used as a feature extractor in face recognition system?

Research Question 2: What factors that have an impact on
the reconstruction and recognition performance?

Research Question 3: Does the autoencoder based genera-
tive model can bring better recognition performance compared
to the regular autoencoder?

The rest of the paper is organized as follows. Section II
outlines an overview of related works of this research. Section
III explains the methods that are used in this research. Section
IV describes and discusses the experiment setups and results
of the research. Finally, Section V gives conclusions of the
research works.

II. RELATED WORK

A. Existing face recognition systems

A lot of methods have been proposed to develop face
recognition systems. Those methods are divided into three
approaches, that are holistic, local handcraft, and deep learn-
ing. Holistic (appearance-based) approach uses distributional
concept to build low-dimensional representation, for example
Eigenface [7] and Fisherface [8]. This approach has many
limitations on the uncontrollable variations in the facial ap-
pearance such as lightning condition, expression, and pose. It
needs another face recognition system which is robust on envi-
ronment changes. Therefore, local handcraft methods replace
the holistic approach by extracting some geometric shapes and
locations from the face, such as eyes, nose, mouth and use
it as features for face recognition system. The examples of



local handcraft are Local Binary Pattern (LBP) [9] and Gabor
wavelets [10].

However, since the methods are based on the extracted fea-
tures of the dataset, there is a lack of difficulties in designing
the optimal size of the codebook for extracting features. On
the other hand, many variations of non-linearity also appear
on the face dataset where the local handcraft methods cannot
achieve an optimal performance. Therefore, deep learning
approaches fix it by introducing nonlinearity in each layer of
the system such as Rectified Linear Unit (ReLU) [11]. It is
able to handle some problems from the previous approaches,
such as illumination, expression, occlusion, and pose [12].
DeepFace [13] and Facenet [14] are the examples of deep
learning approaches. DeepFace uses 9 layers of CNN with 3D
alignment for face processing. It employs a Siamese network
[15] to extract features from pair of faces and compares
the features using Euclidean distance. DeepFace is trained to
minimize the distance between two images with same identity
and maximize the distance of different identity. This network
achieves state of the art with accuracy of 97.35% on the
Labeled Faces in the Wild (LFW) dataset [16]. Meanwhile,
Facenet takes GoogleNet [17] model as its backbone and trains
with triplet loss function. The Facenet network needs face
triplets which contain anchor, positive sample of same identity,
and negative sample of different identity. Basically, the triplet
loss calculates the distance between anchor, positive sample,
and negative sample. During training, the network tries to
minimize the distance between anchor and positive sample of
same identity and maximize the distance between anchor and
negative sample of different identity. Facenet achieves good
performance with accuracy of 99.63% on LFW which is better
than DeepFace.

B. Autoencoder

The domain of autoencoder is divided into two models:
regular and generative autoencoder model. The regular autoen-
coder model is only able to reconstruct its input. Meanwhile,
the generative autoencoder does not only reconstruct its input
but also generate a new sample. Both of them consist of
encoder and decoder network. However, in some types of
generative autoencoder model, it has a discriminator network
which is similar to Generative Adversarial Network (GAN)
[18]. AAE and WAE are the example of this model.

The concept of how a new sample is generated in genera-
tive autoencoder model and GAN is totally different. In the
generative autoencoder model the encoder output distribution
(latent variables) tries to be as close as possible to the true prior
distribution and use its decoder to generate a new sample based
on its latent variables. Meanwhile, in GAN, the generator
network generates fake data from noise and it tries to fool
the discriminator network by improving its generated data as
close as possible to the real data.

Some details about regular autoencoder and generative
autoencoder models are explained as follows:

1) Regular Autoencoder: A Regular autoencoder (AE) has
an objective function that is to reconstruct the input data to

(a) Regular AE model

(b) VAE model

(c) AAE and WAE

Figure 1: Autoencoder diagram for image representation.
Zoom in for a better resolution.

the output with the minimum possible error. The regular AE
network consists of two parts: an encoder part which compress
the input of the network into a lower dimensional variables,
called codes or latent variables; and a decoder part that
reconstructs the latent variables back into its representation
(such as image, text, or speech) at the output of the network.
This network is shown in Figure 1a.

The regular AE is not designed to be perfectly able to copy
its input, otherwise the network will not learn any meaningful
representations. Instead, there is a constraint in the regular
AE network. The constraint is located at the dimension of
the latent variables, where it has a low dimension than the
input dimension. This makes the encoder learns to extract
some important features from the input, and the decoder tries
to learn to use this features to reconstruct back at the output.
Together, they are usually trained by using mean-squared error
(MSE) loss between the reconstruction and the input as shown
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in Equation 1, where L is the MSE loss function, X̂ is the
reconstructed image, X is the input image, and N is the total
amount of the training data. The loss penalizes the network if it
makes a different between the output and the input. Therefore,
the reconstructed image is blur than the original image because
of the pixel-wise MSE loss. An example of this regular AE
network is called undercomplete autoencoder [19].

L =
1

N

N∑
i=0

(X̂ −X)2 (1)

2) Variational Autoencoder: Variational Autoencoder
(VAE) is a generative autoencoder model where it has a goal
to learn the probability distribution P (X) over its training data
X[4, 20]. The reason why we want to model the distribution
because we want VAE to be able to create new plausible values
of X based on the samples from the distribution. The VAE
network is shown in Figure 1b.

From the previous description about VAE, it can be written
mathematically as:

P (X) =

∫
P (X|z)P (z)dz (2)

Where P (z) is the probability distribution of latent variables
z.

The idea of VAE is to sample latent variables of z so
that z will be likely to produce data X [20]. Or mathe-
matically, we say: infer P (z) from P (z|X). P (z|X) is the
probability distribution that projects the distribution data into
latent variables. However, the Equation 2 is intractable or it
has no closed-form solution. Moreover, the function P (z|X)
is unknown. Fortunately, P (z|X) can be computed using
variational inference by approaching P (z|X) on a simple
distribution Q(z|X). The distribution that is used here can
be any type of distribution, such as in semi-supervised [21]
and unsupervised [22] task where they use Gaussian mixture
model. However, most of the VAE use standard Gaussian
distribution because it is easy to calculate.

In order to approach P (z|X) using Q(z|X), Kullback-
Leibler (KL) divergence is used here as in Equation 3.

DKL[Q(z|X)||P (z|X)] =
∑
z

Q(z|X) log
Q(z|X)

P (z|X)
(3)

From the KL divergence equation above, it can be expanded
to find the relationship between P (X), P (X|z), and P (z) by
taking Bayes rule. Hence, the result will be VAE objective
function:

logP (X)−DKL[Q(z|X)||P (z|X)] = E[logP (X|z)]
+DKL[Q(z|X)||P (z)]

(4)

The objective function inteprets VAE to find the lower
bound of logP (X), so it can find the distribution of the
data by maximizing logP (X) and simultaneously minimizing

DKL[Q(z|X)||P (z|X)]. Therefore, Equation 4 is rewritten
into Equation 5.

L = E[logP (X|z)] +DKL[Q(z|X)||P (z)] (5)

Where L is the VAE loss with E[logP (X|z)] acts as recon-
struction loss and DKL[Q(z|X)||P (z)] acts as regularization
loss.

3) Adversarial Autoencoder: Adversarial Autoencoder
(AAE) has the same aim as VAE but with different method. It
imposes the encoder output distribution into some known prior
distribution, such as Gaussian, by using discriminator network
instead of taking KL divergence as in VAE. Figure 1c shows
the network of AAE.

During training AAE model, there are two stage happens.
The first part is reconstruction stage. In this stage, the re-
construction part works the same as regular AE where the
model minimizes the reconstruction error between the output
and input. The second part is regularization stage. At this
stage, the model trains the discriminator network to differ-
entiate between the true prior distributions with the posterior
generated samples. The generator (which is the encoder of the
autoencoder) is updated to confuse the discriminator network
so that the posterior of the generated samples are as close as
possible to the true prior distributions. The loss function of
AAE is shown in Equation 6

L = E[logP (X|z)] + [logD(z) + log(1−D(z̃)] (6)

Where D(z) is the discriminator model takes on true prior
distribution and D(z̃) is the discriminator model that takes
the generated sample of posterior distribution Q(z|X). The
function E[logP (X|z)] is the reconstruction loss where it
usually uses MSE loss function.

4) Wasserstein Autoencoder: Wasserstein Autoencoder
(WAE) is a generalization form of AAE. WAE has a goal
to minimize the distance between data distribution PX and
the model distribution PG by using Wasserstein distance [6].
Figure 1c shows the WAE model.

In [6], WAE is divided into two different regularizers. First
is GAN-based regularizer which uses adversarial loss during
training and the training procedure is similar to AAE. It
uses discriminator network to distinguish between true prior
distribution P (z) and generated posterior distribution Q(z|X).
Second is maximum mean discrepancy (MMD) regularizer
where it calculates the distance between two means distribu-
tion P (z) and Q(z|X).

In this research paper, we focus on WAE-GAN based which
uses the adversarial loss. This loss is defined in Equation 7.

L =

inf
Q(z|X)

EPX
EQ(z|X)[c(X,G(z))] + λD(Q(z|X), P (z)) (7)

Here, c(X,G(z)) is the reconstruction loss,
D(Q(z|X), P (z)) is the regularization loss where it
encourages posterior distribution Q(z|X) to match with prior
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Table I: Autoencoder Architecture

Encoder Network
Layer Name Input Channels Output Channels Kernel Size Stride Padding Activation Function
Conv + BN 3 128 4 2 1 ReLU
Conv + BN 128 256 4 2 1 ReLU
Conv + BN 256 512 4 2 1 ReLU
Conv + BN 512 1024 4 2 1 ReLU

Flatten 1024 × 4 × 4
Fully Connected 1024 × 4 × 4 zdim - - - -

Decoder Network
Layer Name Input Channels Output Channels Kernel Size Stride Padding Activation Function

Fully Connected zdim 1024 × 8 × 8 - - - -
Reshape 1024 × 8 × 8

ConvTranspose + BN 1024 512 4 2 1 ReLU
ConvTranspose + BN 512 256 4 2 1 ReLU
ConvTranspose + BN 256 128 4 2 1 ReLU
ConvTranspose + BN 128 3 1 1 0 -

Discriminator Network
Layer Name Input Channels Output Channels Kernel Size Stride Padding Activation Function

Fully Connected z dim 512 - - - ReLU
Fully Connected 512 512 - - - ReLU
Fully Connected 512 512 - - - ReLU
Fully Connected 512 512 - - - ReLU
Fully Connected 512 1 - - - -

Notes:
a zdim = The dimension of latent variables
b Input image and output image size are 64× 64
c Regular AE learning rate = 1× 10−3

d VAE learning rate = 2× 10−4

e AAE and WAE learning rate = 3× 10−4

f λ constant for WAE = 1

distribution P (z), and λ acts as regularization coefficient
where it is used as a trade-off between regularizer and
reconstruction loss [23]. The reconstruction loss can use any
type of loss such as L1 loss function or binary cross-entropy
loss function. However, if the loss used here is MSE loss
function, then it will be equivalent to AAE. Therefore, WAE
generalize the AAE model into two parts. First it can use
any reconstruction loss functions. Second, it can replace the
adversarial loss function into any discrepancy measurement
loss function, such as MMD [6].

III. METHODOLOGY

A. Architecture of autoencoder

In this following sections, we describe the architecture of
existing autoencoder models on our experiments, that are
regular AE, VAE, AAE, and WAE. We also explain the details
about the model that we modify from WAE, i.e. Resnet-WAE.

The encoder and decoder for regular AE, VAE, AAE, and
WAE have the same architecture. The loss functions for regular
AE, VAE, AAE, and WAE have been explained in the section
II.

In the encoder network, we use 4 × 4 convolutional filters
(Conv) with stride of 2 followed by Batch Normalization
(BN) [24] and ReLU. As for the decoder, we use transposed
convolution (ConvTranspose) with 4 × 4 convolutional filters
followed by BN and ReLU as well. All the architectures and
the hyperparameters are shown in Table I.

As for Resnet-WAE model, we apply a residual network
(resnet) [25] as the encoder and decoder of WAE model. The
idea of using resnet is because of the residual layer, which can
be stacked together into deeper network, hence it will capture
a lot of important features. Therefore, It is expected that the
autoencoder is not only able to generate a good reasonable
image but also to have a good feature extractor.

We build two types of Resnet-WAE. First it contains 18
layers, which we call it Resnet-WAE18. Second it contains
34 layers, which we call it Resnet-WAE34. We do this to
see whether the deeper layer will have an effect on the
reconstruction and recognition performance. The loss function
of Resnet-WAE is same with WAE model.

The encoder consists of 3× 3 convolution with fix feature
size of 64, 128, 256, and 512. For the decoder, we use some
combinations of resize-convolution [26, 27] to reshape the
latent variables into output image of 64 × 64. This is also
used to avoid checkerboard artifacts at the reconstructed and
generated images [26, 27]. Last, for the discriminator network,
we use the same discriminator network as in WAE model.
The architecture and hyperparameters are the same as listed
in Table II.

B. Classifier

We use two classifiers for measuring the recognition per-
formance of autoencoder. The likelihood ratio classifier and
Euclidean distance.
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Table II: Resnet-WAE Architecture

Encoder Network
Layer Name Resnet WAE18 Resnet WAE34
Conv1 + BN 3× 3, 64, stride 2 3× 3, 64, stride 2

Conv2 x + BN
[
3× 3, 64
3× 3, 64

]
× 2

[
3× 3, 64
3× 3, 64

]
× 3

Conv3 x + BN
[
3× 3, 128
3× 3, 128

]
× 2

[
3× 3, 128
3× 3, 128

]
× 4

Conv4 x + BN
[
3× 3, 256
3× 3, 256

]
× 2

[
3× 3, 256
3× 3, 256

]
× 6

Conv5 x + BN
[
3× 3, 512
3× 3, 512

]
× 2

[
3× 3, 512
3× 3, 512

]
× 3

Average Pooling

Flatten
Fully Connected in = 512, out = zdim in = 512, out = zdim

Decoder Network
Layer Name Resnet WAE18 Resnet WAE34

Fully Connected in = zdim, out = 512 in = zdim, out = 512
Reshape 512× 4× 4

ResizeConv2 x + BN
[
3× 3, 256
3× 3, 256

]
× 2

[
3× 3, 256
3× 3, 256

]
× 3

ResizeConv3 x + BN
[
3× 3, 128
3× 3, 128

]
× 2

[
3× 3, 128
3× 3, 128

]
× 6

ResizeConv4 x + BN
[
3× 3, 64
3× 3, 64

]
× 2

[
3× 3, 64
3× 3, 64

]
× 4

ResizeConv5 x + BN
[
3× 3, 64
3× 3, 64

]
× 2

[
3× 3, 64
3× 3, 64

]
× 3

Notes:
a zdim = The dimension of latent variables
b Input image and output image size are 64× 64
c Resnet-WAE learning rate = 3× 10−4

1) Likelihood ratio classifier [28]: The likelihood ratio
classifier takes any two features and compare it to get the
likelihood ratio score. From this score, we can measure the
ROC curve to get the recognition performance. To obtain
the features, we just simply extract it using the encoder of
autoencoder.

Suppose we have biometric feature vectors x ∈ RM and y ∈
RN , where M and N are the dimension of the feature vectors
with M ≥ N . These features should support the hypothesis Hs

where the samples come from the same individual versus Hd

where the samples come from different individual. In addition,
the features x and y are feature vectors from random individual
which are specified by its feature mean. Hence, we can write
mathematical assumption of our features x and y as:

x = µω + wω and y = µ′θ + w′θ (8)

Where µω = E{x|ω} ∈ RM and µ′θ = E{y|θ} ∈ RN are
the subject-specific mean that model the between-subject vari-
ations, wω and w′θ are the stastically independent which have

zero-mean within-subject variations, and ω and θ represent
the identity of x and y. The covariance and cross-covariance
matrices of x and y are

Σxx = E{xxT } ∈ RM×M and Σyy = E{yyT } ∈ RN×N

Σxy = E{xyT } ∈ RM×N and Σyx = Σxy
(9)

In the cross-covariance Σxy above, if ω = θ, then the cross-
covariance will become Σxy = E{µωµ′Tθ }. Otherwise, the
cross-covariance is Σxy = 0. During training, this covariance
and cross-covariance above need to be estimated. The esti-
mated cross-covariance Σ̂xy = 1

K

∑K
i=1 µ̂iµ̂

′T
i , with K is the

number of individuals in training, µ̂i and µ̂′i are the estimated
sample means of subject i.

From the previous hypotheses Hs and Hd, we can write it
into mathematical form that quantified by likelihood ratio as:
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l(x, y) =

p

((
x
y

)
|Hs

)
p

((
x
y

)
|Hd

) (10)

Next, we assume that the probability density of the pairs of
feature vectors for µω , µ′θ, wω , w′θ with unknown ω and θ have
Normal and zero-mean. Subsequently, we use the previous
assumption to Equation 10 and take log as well as ignoring
some constants, we will get similarity score of x and y

s(x, y) =(
xT yT

)((Σxx 0
0 Σyy

)−1
−
(

Σxx Σxy
Σyx Σyy

)−1)(x
y

)
(11)

The Equation 11 can be simplified by reducing the dimen-
sionality and applying whitening transforms to x and y as
in Equation 12. This will also make sure that the estimated
covariance matrix can be inverted and have full rank.

s(xw, yw) =(
xTwyTw

)((I 0
0 I

)−1
−
(

I Σwxy
Σwyx I

)−1)(xw
yw

)
(12)

With I is the identity matrix, xw = WHx ∈ RMw and
yw = WLy ∈ RNw . Mw and Nw are the dimension of
xw and yw with Mw < M , Nw < N , and Mw ≥ Nw.
Additionally, the identity matrix from Equation 12 are obtained
from Σwxx = E{xwxTw} = I, Σwyy = E{ywyTw} = I, and
Σwxy = WHΣxyWT

L .
The Σwxy can be decomposed using singular value decom-

position (SVD). Hence Σwxy = UDVT with U ∈ RMw×Mw ,
and orthonormal, V ∈ RNw×Nw , and orthonormal, and
D ∈ RMw×Nw . From D matrix, the first Nw rows form a
diagonal matrix that contains singular values in decreasing
order vi = 1, . . . , Nw. In addition, from D matrix, the last
Mw − Nw are all 0 matrix. Moreover, the rank of D can be
determined from D = min(Nw,K−1) in a trained classifier,
where K is the number of individuals in training. We can
transform the feature vectors again using the SVD components
above, resulting in

xc = (U∗,1:D)T xw ∈ RD and yc = (V∗,1:D)T yw ∈ RD
(13)

The subscript *,1 : D above indicates that the only first D
columns of matrix U and V are taken.

Next, we can rewrite 12 as

s(xc, yc) =
(
xTc yTc

)((I 0
0 I

)−1
−
(

I D
D I

)−1)(xc
yc

)
(14)

Where D ∈ RD×D is a diagonal matrix from Σwxy with D
largest singular values vi on the diagonal. Equation 14 can be
simplified into

Figure 2: Alignment process on the dataset.

s(xc, yc) =

−
D∑
i=1

vi
1− vi

(xc,i − yc,i)2 +

D∑
i=1

vi
1 + vi

(xc,i + yc,i)
2

(15)

The log-likelihood ratio classifier is then defined as

log(l(xc, yc)) = −1

2

D∑
i=1

log(1− v2i ) +
1

4
s(xc, yc) (16)

2) Euclidean distance: To measure the recognition per-
formance based on Euclidean distance, first we extract the
reconstructed image features by using Facenet. Next, we use
Euclidean distance to calculate the distance between two
features. The mathematical form of Euclidean distance is
shown as follows

d(p,q) =

√√√√ n∑
i=0

(pi − qi)2 (17)

Where p and q are the feature vectors 1 and 2, respectively.

IV. RESULTS AND DISCUSSIONS

All training and testing were done using Pytorch [29].
We used batch of size 100 and trained all models for 50
epochs. The experiments conducted are comparing all model
performances on reconstruction and recognition.

A. Experiment

1) Dataset: We use dataset from CASIA-WebFace [30]
to train all autoencoder models. This dataset contains about
10,000 subjects with 500,000 images. All the images are
cropped and resized into 64× 64.

Before we train all autoencoder models, we have to make
sure that the location of the face for all images are the same in
the center. In order to do so, we apply an affine transformation
to align the face image dataset according to the angle between
the center of the eyes and the horizontal level. For finding
the center of the eyes, we use dlib [31] facial landmark. The
aligment process diagram is shown in Figure 2.

Regarding to test the autoencoder models, we use dataset
from Face Recognition Grand Challenge (FRGC) [32]. This
dataset contains 50,000 recordings which are divided into
training and validation. The FRGC dataset has 3 parts: 3D
images, high resolution still images, and multi-images of each
person [32]. As for our experiment, we only take about 5000
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Table III: Some dimension settings for likelihood ratio classifier

Name Latent variables of 64 Latent variables of 96 Latent variables of 128
Npc Ndc Npc Ndc Npc Ndc

Regular AE 64 57 96 71 128 89
VAE 64 63 96 13 128 7
AAE 64 52 96 92 128 119
WAE 64 17 96 87 128 125

RWAE18 64 8 96 28 128 68
RWAE34 64 9 96 58 128 34

Table IV: Measurement of reconstructed results on all autoencoder models

Name Latent variables of 64 Latent variables of 96 Latent variables of 128
SSIM FaceQNet SSIM FaceQNet SSIM FaceQNet

Regular AE 0.81 0.576 0.83 0.584 0.84 0.590
VAE 0.76 0.541 0.76 0.541 0.76 0.544
AAE 0.78 0.553 0.81 0.575 0.82 0.569
WAE 0.8 0.573 0.82 0.575 0.83 0.578

Resnet-WAE18 0.82 0.575 0.83 0.596 0.84 0.598
Resnet-WAE34 0.82 0.583 0.84 0.593 0.83 0.600

(a) CASIA-WebFace dataset

(b) FRGC dataset

Figure 3: Some sample images for training and testing.

high resolution still images with 270 subjects. Apart from that,
we also create a small dataset containing genuine and impostor
images to test the recognition performance by following the
same procedure as in [28]. From FRGC dataset, 4 images in
each subjects are randomly selected. Next, those images are
generated into 6 genuine pairs and 6 impostor pairs. In the end,
we will have 270 subjects with 3000 images for genuine pairs
and the same amount for impostor pairs. Figure 3 shows some
sample images from CASIA-WebFace and FRGC dataset.

2) Experimental Settings: During the experiment, we do
some settings to measure the reconstruction and recognition

performance. As for the reconstruction performance, we set
the dimension of latent variables into three sizes i.e. 64, 96,
128. We also use some learning rate values as it is explained
in the notes of Table I and II.

As for recognition performance, we apply dimensionality
reduction in the likelihood ratio so it can get the optimal
performance. The reduction of these dimensions are shown
in Table III where Npc comes from the dimension of the
latent variables and Ndc is the dimensionality reduction that
we apply.

3) Reconstruction Results: To compare the models perfor-
mance, we need to check how good the reconstructions are
for each autoencoder models. We test all autoencoder models
on 3 different latent variable dimensions: 64, 96, and 128.
We do this to see the effect of increasing the latent variable
dimensions with the reconstruction results. Moreover, to check
the reconstructed images, we take 1000 sample images from
FRGC dataset and use common reconstruction metric that is
Structural Similarity Index Measure (SSIM) [33]. SSIM is
a method to measure the similarity between two images. In
our research, we use it to calculate the similarity between
reconstruction and input images. SSIM itself measures 3
aspects from images: luminance, contrast, and structure. The
equation of SSIM is shown in Equation 18.

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(18)

Where x and y represent the small Gaussian window on
image 1 and 2, µx and µy are the mean of the window x and
y, σx and σy are the variance, C1 = (K1L)2, C2 = (K2L)2.
K1 and K2 are a constant which have a value K1, K2 << 1,
and L is dynamic range of pixel values (255 for grayscale
images).

We also measure the quality of the images by using
FaceQnet [34, 35]. FaceQnet is useful to examine how good
the quality of the images for face recognition. It is trained
on Resnet-50 with the dataset from VGGFace2 [36] and

7



(a) Input images

(b) Reconstructed images with latent variable dimensions of 128

(c) Variation of latent variable dimensions

Figure 4: Some results of reconstructed images. Zoom in for a better resolution.
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(a) ROC curve results from latent variables features using likelihood ratio classifier

(b) ROC curve results from reconstructed images using Euclidean distance

Figure 5: ROC curve results for all autoencoder models. Zoom in for a better resolution.

(a) TSNE of Regular AE (b) TSNE of VAE (c) TSNE of AAE

(d) TSNE of WAE (e) TSNE of Resnet-WAE34

Figure 6: TSNE results for all autoencoder models. Zoom in for a better resolution.
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BioSecure Multimodal Database [37]. The output of FaceQnet
shows a quality score of an image which has range from 0 to 1.
A good quality image gives a score of 1 and 0 for a bad quality
image. The result of the measurements and the reconstructed
images are shown in Table IV and Figure 4.

4) Recognition Results: The recognition performance is
measured by using likelihood ratio classifier and Euclidean
distance measurement. The likelihood ratio classifier measure-
ment uses the genuine and impostor features that are extracted
in the latent variables, while the Euclidean distance measure-
ment uses Facenet to take the features from the reconstructed
images of genuine and impostor. As for training the likelihood
ratio classifier, we apply dimensional reduction as it can be
seen from Table III. We manually change the value of Ndc
until we get the optimal Area Under the Curve (AUC) score.
Figure 5 shows the Receiver Operating Characteristic (ROC)
curve results of all models.

B. Discussion

In this discussion, we divide into two parts. First, we discuss
our reconstruction results. From Table IV, VAE has very low
SSIM value compared to other models for all latent variable
dimensions. In addition, the scores of FaceQNet are small.
Those happen because the reconstructed images from VAE
are very blurry which makes the FaceQNet scores are very
low and the similarity between the input and output images
have many differences.

We see that increasing the dimension of the latent variables
for all autoencoder models, it will increase the sharpness of the
images. This is because many features extracted from encoder
network are captured in the latent variables. As an example,
the hair in Figure 4c gives significant difference between
each other. In Resnet-WAE, we can see that the reconstructed
images of hair are sharper than the other.

Second, we talk about our recognition performance results.
We observe that the recognition results using autoencoders
features for regular AE, VAE, AAE, and WAE are not as good
as using the reconstructed images. There is a drawback in the
relationship between reconstruction and recognition task in the
autoencoder where increasing the dimension of latent variables
does not guarantee that it will also increase the recognition per-
formance. Additionally, [38] explains that good reconstructed
images do not depend only the quality of the features but
also depend on the decoder network. This is the reason why
the result of the Euclidean distance measurement achieves
better recognition results, since it is based on the quality of
the reconstructed images, which also depends on the decoder
network. However, we analyze that the encoder network also
gives an important role in the recognition performance, where
it is used to extract and select good features. From Figure 5, it
shows that increasing Resnet-WAE layer from 18 to 34 layer,
it will increase the recognition performance. This is because
many important and meaningful features can be captured and
selected throughout the encoder network, hence the latent
variables will contain essential features for reconstruction and
recognition.

Another observation we made is the effect of using adver-
sarial network in the generative autoencoder model. We gather
4 random subjects from the internet which contain 2 male and
2 female identities. From these subjects, we use autoencoder
to extract the features and plot it using TSNE [39]. Figure
6 shows the TSNE of regular AE, VAE, AAE, WAE, and
Resnet-WAE34 on latent variable dimensions of 128.

From the TSNE results, the regular AE could separate
between male (light blue and green circle) and female (dark
blue and red) identity. However, among male subjects, regular
AE are still mixed up with each other. Meanwhile, for the VAE
results, we see that all of the identities are mixed together.
Consequently, the VAE model is not quite good to be used
for recognition task. Apart from that, the TSNE results from
AAE, WAE, and Resnet-WAE34 could separate the class of
each subjects. The results prove that the discriminator network
helps in imposing and classifying the distribution over the
latent variables. Hence, the subjects are clustered well.

V. CONCLUSION

In this work, we have analyzed several types of autoencoder
from the regular autoencoder to generative autoencoder model.
We also investigate using deeper layer such as residual network
to see the performance of the system.

The regular AE, VAE, AAE, WAE, and Resnet-WAE mod-
els can be used as feature extractor. However, the VAE model
is not good enough to be used as feature extractor because
the reconstructed and the recognition quality of VAE are the
lowest compared to other models. Moreover, the identities in
the latent variables are still mixed up with each other. Other
than that, Resnet-WAE performs better for feature extractor
due to the usage of deeper network, hence it gives good
reconstructed and recognition score.

Contrary to our expectation, the shallow layer which only
has 4 convolutional layers such as in regular AE, VAE,
AAE, and WAE have a drawback between reconstruction
and recognition performance. Increasing the latent variables
will increase the sharpness in the reconstructed images, but
it does not guarantee that it will increase the recognition
performance, since the latent variables do not contain rich
features from the encoder network. Nevertheless, taking on
a deeper layer and increasing the latent variable dimensions,
such as in Resnet-WAE, will balance both reconstruction and
recognition performance, because the encoder of the network
contains rich features.

Comparing to the regular autoencoder, the generative au-
toencoder model based on discriminator network helps the
model to force the distribution in better generalization over
latent variables. Therefore, as the results, the identity of the
data distribution could be clustered well.
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